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Abstract12

Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin13

(Aptenodytes forsteri). We present a population projection for the emperor pen-14

guin population of Terre Adélie, Antarctica, by linking demographic models (stage-15

structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts16

from an ensemble of IPCC climate models. Based on maximum likelihood capture-17

mark-recapture analysis, we find that seasonal sea ice concentration anomalies (SICa)18

affect adult survival and breeding success. Demographic models show that both deter-19

ministic and stochastic population growth rates are maximized at intermediate values20

of annual SICa, because neither the complete absence of sea ice, nor heavy and per-21

sistent sea ice, would provide satisfactory conditions for the emperor penguin. We22

show that under some conditions the stochastic growth rate is positively affected by23

the variance in SICa. We identify an ensemble of 5 general circulation climate models24

whose output closely matches the historical record of sea ice concentration in Terre25

Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa,26

which in turn drive the population model. Uncertainty is included by incorporating27

multiple climate models and by a parametric bootstrap procedure that includes pa-28

rameter uncertainty due to both model selection and estimation error. The median of29

these simulations predicts a decline of the Terre Adélie emperor penguin population30

of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90%31

or more. The uncertainty in population projections reflects large differences among32

climate models in their forecasts of future sea ice conditions. One such model predicts33

population increases over much of the century, but overall, the ensemble of models34

predicts that population declines are far more likely than population increases. We35

conclude that climate change is a significant risk for the emperor penguin. Our ana-36

lytical approach, in which demographic models are linked to IPCC climate models, is37

powerful and generally applicable to other species and systems.38
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1 Introduction39

Given the observed and predicted changes in climate (Solomon et al., 2007), conservation40

biologists face a major challenge because climate affects all aspects of the life cycle of a species41

(life history traits, phenology, movement). This results in changes in populations, species42

distributions, and ecosystems (see reviews by Hughes (2000); McCarty (2001); Parmesan43

(2006); Parmesan & Yohe (2003); Vitousek (1994); Walther et al. (2002)). The emperor44

penguin (Aptenodytes forsteri) is a species that is known to be extremely sensitive to climate45

change, especially to changes in the sea ice environment (Ainley et al., 2010; Barbraud &46

Weimerskirch, 2001; Croxall et al., 2002; Forcada & Trathan, 2009; Jenouvrier et al., 2005a,47

2009b; Trathan et al., 2011; Fretwell & Trathan, 2009). In this paper, we analyze the48

population responses of the emperor penguin to sea ice conditions and project its fate over49

the rest of the 21st century using a novel and more comprehensive analysis than previous50

studies.51

Climate may affect vital rates (a general term for rates of survival, fertility, development,52

etc.) in many ways (Ballerini et al., 2009; Stenseth et al., 2002) and possibly in opposite53

directions (Barbraud & Weimerskirch, 2001). For example, mean winter temperature has a54

positive effect on adult survival but a negative effect on fecundity of the Eurasian Oyster-55

catcher (Haematopus ostralegus) (van de Pol et al., 2010). Therefore, to fully understand56

the population effects of climate change, climate effects on the vital rates should ideally be57

incorporated into models including the full life cycle (Adahl et al., 2006; van de Pol et al.,58

2010). Although many studies have related climate to one or a few vital rates (e.g. survival59

Jenouvrier et al. (2005b, 2003)), few have integrated these effects into the entire life cycle60

(but see e.g. Jenouvrier et al. (2009b); Wolf et al. (2010); Hunter et al. (2010); Barbraud61

et al. (2010)).62

Seasonality can be particularly important, because the effects may occur at different times63

during the seasonal cycle (Visser et al., 1998). Complex interactions of climate variables have64

been shown to occur for seasonally breeding species, which may fail to adjust their breeding65
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phenology to track the peak of food availability for their young (Both et al., 2006; Moller66

et al., 2008).67

The responses of vital rates to climate conditions is only half of the story; to project68

the population response to climate change, it is necessary to link the demographic models69

to forecasts of future conditions (e.g. Jenouvrier et al. (2009b)). A primary source for such70

forecasts is the set of climate model simulations that have contributed to the Intergovern-71

mental Panel on Climate Change (IPCC) assessment reports (Stock et al., 2011). A growing72

number of studies have now linked climate-dependent demographic models to these climate73

models (e.g. seabirds Jenouvrier et al. (2009b); Barbraud et al. (2010); polar bears Hunter74

et al. (2010)).75

Our approach is to measure the effect of climate on the vital rates in a complete life76

cycle model, to incorporate those vital rates into a population model to compute population77

growth as a function of climate, and then to obtain forecasts of climate trajectories from78

climate models and use those to drive projections of population growth. In this paper, we79

extend previous studies (Barbraud and Weimerskirch 2001, Jenouvrier et al. 2005b, 2009b,80

2010), especially that of Jenouvrier et al. (2009b), in several ways. (1) We obtain rigorous81

statistical estimates of how sea ice, at different seasons of the year, affects penguin vital rates.82

(2) We distinguish males and females, recognizing that the sexes differ in their sensitivity83

to sea ice variations (Jenouvrier et al. 2005b) and that breeding is absolutely dependent on84

participation by both males and females (Prevost, 1961). (3) We introduce a new method of85

selecting climate models based on the agreement of their output with both the mean and the86

variance in observed sea ice. (4) In order to include stochasticity in the climate forecasts,87

only one or a few realizations of which are available, we developed a new method to estimate88

stochasticity from time series of global circulation model (GCM) output.89

Projections from models that are estimated from data are always accompanied by un-90

certainty. If the results are to be useful for policy makers, it is essential to quantify that91

uncertainty, and to draw conclusions that remain valid even given the range of uncertainty92
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(Hunter et al. 2010). We have used the results of statistical estimation of demographic pa-93

rameters, and differences among an ensemble of climate models, to quantify this uncertainty.94

The organization of the paper is as follows. In Section 2 we use a long-term dataset to95

estimate the effects of sea ice on the vital rates. In Section 3 we evaluate the effect of sea ice96

on deterministic and stochastic population growth rates for the emperor penguin. In Section97

4, we compute stochastic sea ice forecasts from a selected set of climate models, and use98

those forecasts to project population response to future sea ice change. We conclude with99

discussion in Section 5.100

2 Emperor penguin life cycle and sea ice101

Various components of the sea ice environment affect different parts of the emperor102

penguin life cycle during different seasons (see review by Croxall et al. (2002); Forcada &103

Trathan (2009); Ainley et al. (2010)). In this section we outline the life cycle of the emperor104

penguin and define the sea ice variables used in our analysis. Then we discuss the mechanisms105

by which sea ice affects the vital rates and present the results of estimating these effects using106

capture-mark-recapture (CMR) analysis.107

Study population and data108

Our analysis is based on a long-term data set on breeding emperor penguins at Dumont109

D’Urville, Terre Adélie, in Antarctica (66◦40 S 140◦01 E). The colony has been monitored110

every year, during the breeding season (March–December), from 1962 onwards. For details111

of the history and data, see Prevost (1961) and Jenouvrier et al. (2005a). From 1962 on-112

wards, breeding adults, number of eggs, frozen chicks, and surviving chicks at the end of the113

breeding season have been counted, allowing the estimation of breeding success (Barbraud114

& Weimerskirch, 2001). From 1968 to 1988, penguins were individually marked using flipper115

bands. Banding stopped in 1988, but banded birds have been recorded since then. We limit116

our analysis to the period before 2000 because too few marked birds were seen after that to117

permit estimation.118
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The life cycle and the demographic model119

Emperor penguins breed on motionless sea ice (i.e. fast ice) during the Antarctic winter.120

They arrive at the colony sometime in late March to early April while sea ice is thickening,121

and leave the colony in late December before the ice breaks up. The colony site is usually far122

from the ocean, and during the breeding season emperor penguins travel long distances to123

feed in ice-free areas, such as polynyas, within the sea ice cover. They feed on fish (mainly124

Pleuragramma antarcticum), crustaceans (mainly Euphausia superba and amphipods), and125

squid (mainly Psychroteuthis glacialis) (Cherel, 2008; Cherel & Kooyman, 1998; Kirkwood126

& Robertson, 1997). The female lays a single egg in May, which is then incubated by the127

male for two months while the female leaves the colony to feed. Females return when chicks128

hatch around July, and both parents take turns feeding the chick until fledging in December.129

Our demographic model is described in detail in Jenouvrier et al. (2010). It is a stage-130

classified matrix population model with a projection interval of one year, but the annual131

projection is based on four seasonal steps. The model has 5 stages: male and female pre-132

breeders (birds that have yet to breed for the first time), breeding pairs, and male and133

female non-breeders (birds that have bred before but do not do so in the current year). The134

formation of pairs is a nonlinear function of the operational sex ratio.135

Our model does not include density dependence because we expect small density ef-136

fects in this population relative to effects of environmental variations, and especially sea ice137

(Supplementary Appendix S1, Herrando-Pérez et al. (2012)).138

The annual population projection depends on the vital rates: the probability that an139

individual of a given stage returns to the breeding site, the probability of mating as a140

function of the availability of potential mates, breeding success (probability that a breeding141

pair raises offspring given the female lays an egg), the primary sex ratio (fixed at 0.5), the142

survival of offspring during the first year at sea, and the annual survival of pre-breeders,143

non-breeders and male and female breeders.144

We divide the year into four seasons: (1) the non-breeding season from January to March,145
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(2) the arrival, copulation and laying period (April–May), hereafter called the laying period,146

(3) the incubation period (June–July) and, (4) the rearing period (August–December).147

Sea ice variables148

Many components of the sea ice environment affect penguins in various way. To avoid149

examining the effect of all possible factors on vital rates and to untangle the networks150

of causation among them, we examine the covariation among several factors selected on151

the basis on the emperor penguin responses to climate (i.e fast ice area and polynya area152

indices, sea ice concentration (SIC) and sea ice extent (SIE), see Ainley et al. 2010 for a153

comprehensive review). All these variables are strongly correlated (Supplementary Appendix154

S2) and we focus our analysis on SIC, including the seasonality in SIC because it drives the155

emperor penguin life cycle.156

Sea ice concentration is the fraction of area covered by sea ice. Observed values of SIC157

from 1979 to 2007 were obtained from passive microwave satellite imagery provided by the158

National Snow and Ice data Center, using the NASA Team sea ice algorithm (see Cavalieri159

et al. (1996) and http://nsidc.org/data). Forecasts of SIC from climate models were160

extracted from 20 models available as part as the WCRP CMIP3 multi-model dataset from161

1900 to 2100 (see Meehl et al. (2007) and http://esg.llnl.gov/portal).162

In order to link population models to the output of GCMs, which use relatively coarse163

spatial grids (100-200 km resolution), we use observed values of SIC over similarly large164

spatial scales. We averaged SIC, both observed and simulated, over a large sector centered165

on the colony. This sector included a 20 degree span in latitude, between longitudes 130◦E166

and 150◦E during the breeding season, and between longitudes 120◦E and 160◦E during167

the nonbreeding season. This includes the maximum foraging distances from the colony,168

of about 100 km during the breeding season and at least 650 km during the non-breeding169

season (Zimmer et al. 2008).170

As a variable to describe the sea ice conditions, we use the proportional anomalies in SIC,171

relative to the mean from 1979 to 2007. We denote this variable as SICa, and calculate it for172
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each of the four seasons (Fig. 1). We estimated the vital rates as functions of the observed173

seasonal SICa (see following section), and used forecasts of seasonal SICa to project future174

population trajectories (Section 4). However, to provide a comprehensive understanding175

of the effect of seasonal SICa on vital rates and population growth rate, we present our176

results as functions of ”annual sea ice” and ”seasonal difference in sea ice”, two variables that177

accounted for most of the variability in the four seasonal SICa variables (Fig. 2, S2). Annual178

sea ice is a weighted mean of seasonal SICa over the year. The seasonal difference in SICa is179

the difference between ice concentration in the non-breeding season and its weighted average180

over the combined incubation and rearing seasons. The contribution of SICa variations181

during the laying season to the seasonal SICa difference variations is small. Thus positive182

values of the seasonal SICa difference correspond to years with positive SIC anomalies in183

the non-breeding season and negative SIC anomalies in the incubating and rearing seasons.184

Relationships between sea ice and vital rates185

Sea ice concentration affects emperor penguin vital rates through various mechanisms,186

which are not mutually exclusive; see review by Ainley et al. (2010). First, SIC may directly187

affect foraging; in years with dense sea ice cover, foraging trips to the nearest open water area188

are on average longer, energetic costs for breeding adults are higher, and the provisioning of189

chicks is lower (Massom et al., 2009; Zimmer et al., 2008). We would thus expect negative190

effects of high SICa on breeding success and on adult survival of both sexes during the191

rearing period.192

Sea ice concentration is also critical to Antarctic ecosystem function (Thomas & Dieck-193

mann, 2003). It may indirectly affect the emperor penguin through its effects on other species194

of the Antarctic food web, either prey or predators (Ainley et al., 2010, 2007; Barbraud &195

Cotte, 2008; Barbraud & Weimerskirch, 2001; Forcada & Trathan, 2009). However, the196

mechanisms involved remain unclear and their relative importance is still debated (Ainley197

et al., 2007; Barbraud & Cotte, 2008).198

The effects of SIC on primary productivity and krill may cascade up to fish and upper199
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predators; e.g. Nicol et al. (2000); Forcada & Trathan (2009); Fraser & Hoffmann (2003).200

Primary productivity and krill density are known to be related to sea ice extent (SIE) and201

concentration (Atkinson et al., 2004; Brierley et al., 2002; Loeb et al., 1997). Around Antarc-202

tica, krill density during summer is positively related to chlorophyll concentrations (Atkinson203

et al., 2008). In the South West Atlantic, krill densities and recruitment during summer are204

positively related to SIE of the previous winter (Loeb et al., 1997; Nicol et al., 2000; Atkinson205

et al., 2004). Other studies have shown non-linear relations between sea ice cover and krill206

populations (Quetin et al., 2007; Wiedenmann et al., 2009). High krill recruitment occurs207

over a range of optimum sea ice conditions, suggesting complex mechanisms linking sea ice208

and krill abundance.209

Sea ice may also influence the emperor penguin by top-down processes (Ainley et al.,210

2010, 2007). Reduced sea ice cover may allow greater access to the foraging areas of the211

emperor penguin by potential predators such as killer whales (Orcinus orca (Ainley et al.,212

2010, 2007; Pitman & Durban, 2010), although no emperor penguin remains have been213

detected in the diet of killer whales (Barbraud & Cotte, 2008). Energetically compromised214

penguins (especially males after their four months fast) may be particularly vulnerable to215

predation (Ainley personal communication).216

Parameter estimation217

The capture-recapture dataset permits the estimation of survival and return probabilities218

(see Jenouvrier et al. (2005a, 2010) for more details), which may differ between males and219

females because of their different breeding investment (Barbraud & Weimerskirch, 2001; Je-220

nouvrier et al., 2005a). We estimated probabilities of survival, and of return to the breeding221

colony, using a multistate capture-mark-recapture model (CMR) based on sex and repro-222

ductive status, with some unobservable stages. Adult survival is allowed to differ between223

sexes, and return probability to differ between breeders and non-breeders. The statistical224

capture-recapture model is described in detail in Appendix C of Jenouvrier et al. (2010); for225

a review of these methods see Lebreton et al. (2009).226
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We estimated linear and quadratic effects of SICa using models relating the vital rates227

to covariates with a general logit link function (Lebreton et al., 1992). It is impossible to228

test the impact of SICa on survival during the first year at sea, or on the survival or return229

probabilities of pre-breeders, because data on pre-breeders and SICa overlap for only a few230

years (modern SIC satellite data are only available from 1979 onwards).231

Estimation and CMR model selection was performed using the program M-SURGE (Cho-232

quet et al., 2004). We used Akaike’s information criterion (AIC, Akaike (1974)) to compare233

models, the model with the lowest AIC being the model most supported by the data. We234

based our inferences on the most plausible set of models using model averaging using AIC235

weights wi (Burnham & Anderson, 2002). Thus a parameter θ is calculated as236

θ = logit−1
(

M∑
i=0

wiβi

)
(1)

where M is the number of models and βi is the estimated parameter on the logit scale for237

model i. The Akaike weights were calculated as238

wi =
exp (−∆i/2)

M∑
r=0

exp (−∆r/2)

(2)

where ∆i = AICi−minAIC, where minAIC is the smallest value of AIC in the model set.239

Concerns have been raised that the use of flipper bands negatively affects the survival240

and breeding success of other species of penguins (Saraux et al., 2011). The banding study241

at Terre Adélie was discontinued in 1988 partly out of such concerns. However, the breeding242

success of banded and unbanded emperor penguins at Terre Adélie is not significantly differ-243

ent (Barbraud, unpublished results). Saraux et al. (2011) found that the effects of bands on244

survival of king penguins disappeared 4.5 years after banding. To reduce possible impacts245

of the flipper bands, but still retain sufficient sample size, we eliminated capture histories246

for the first two years after banding. Circumstantial evidence that the possible effects of247
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bands are minimal in this population comes from estimates of population growth rate. If the248

banded birds on which CMR estimates are based had lower survival probabilities, we would249

expect estimated population growth rates to be consistently lower than those observed. This250

is not the case: the population growth rate obtained from CMR estimates agrees well with251

the observed population growth rate (Jenouvrier et al., 2010).252

To quantify uncertainties resulting from model selection and estimation error, we used253

the parametric bootstrap procedure introduced by Regehr et al. (2010) and Hunter et al.254

(2010). To generate a bootstrap sample of a model output in this procedure, a CMR model255

is first selected with probability proportional to its AIC weight. Then a vector of parameter256

values is drawn from a multivariate normal distribution with a mean equal to the estimated257

parameter vector and a covariance matrix obtained from the Hessian matrix of the CMR258

model, or from the logistic regression model in the case of breeding success. The resulting259

parameter vector is used to create the population model, and the output calculated from260

that model. This process is repeated to generate a bootstrap sample, from which confidence261

intervals can be calculated using the percentile method.262

Results263

Supplementary Appendix 3 details some of the results outlined here, including the un-264

derlying parameter estimates and their uncertainties.265

Breeding success is a decreasing function of SICa during the rearing period (Figure 3).266

The CMR model selection procedure reveals effects of SICa on adult survival of both sexes267

during all four seasons (Table 1). The models with ∆AIC ≤ 4 include effects in all seasons,268

those with ∆AIC ≤ 3 include effects in the laying, incubation, and rearing seasons, and269

those with ∆AIC ≤ 2 include effects during the incubation and rearing seasons. There was270

no support for effects of SICa on the probability of return to the breeding colony (S3).271

Figure 4 shows adult survival as a function of annual SICa and seasonal differences in272

SICa. Survival probability is a concave nonlinear function of annual SICa (Figure 4.a,b).273

The maximum annual adult survival is higher for females than for males (0.96 and 0.93274
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respectively). The effect of seasonal differences in SICa (Figure 4.c,d) is small compared to275

the effect of annual SICa, but it has an important effect on the difference between male and276

female survival. The effect of seasonal differences are positive when annual SICa < 0, and277

negative when annual SICa > 0.278

3 Influence of sea ice on population growth279

To assess the effect of sea ice conditions on population growth, we use a demographic280

model in which the parameters are functions of SICa. Because sea ice is strongly seasonal and281

breeding biology is tied to the seasons, we use a seasonal periodic matrix model (Caswell 2001,282

Chap. 13) to capture these effects. The model, which is described in detail in Jenouvrier et al.283

(2010), includes a sequence of seasonal behaviors (arrival to the colony, mating, breeding)284

and accounts for differences in adult survival between males and females. The model is285

nonlinear because mating probability depends on the availability of males and females for286

mating. This frequency dependence is captured by expressing reproduction as a function of287

the proportional structure of the population.288

In the model, a matrix Mi projects the population from season i to season i + 1. Since289

we identify four seasons, M4 projects the population from season 4 to season 1 in the next290

year. The annual projection matrix is given by the periodic product of the Mi:291

A = M4M3M2M1. (3)

where M1 includes the birth process, M2 includes annual mortality process, M3 includes292

migration to the breeding site, and M4 includes the mating process (Jenouvrier et al. 2010).293

To establish clear notation, let x(t) represent the SICa values (in all four seasons) in year294

t, and let p(t) be the proportional population structure in year t. The vector of demographic295

parameters is a function of sea ice and population composition; we denote it by θ(x,p). Then296
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the population in year t grows according to297

n(t+ 1) = A
[
θ(x(t),p(t))

]
n(t) (4)

Deterministic population growth298

In a fixed, specified sea ice environment, the population will eventually converge to an299

equilibrium proportional structure p̂ and (even though it is nonlinear) grow exponentially300

at a rate λ̂ given by the dominant eigenvalue of the projection matrix evaluated at the301

equilibrium structure, A[θ(x, p̂)]. To compute p̂, we calculate SICa, during each of the four302

seasons, from the annual SICa and the seasonal differences in SICa. We then project the303

population from an arbitrary initial vector until it converges to the equilibrium structure, and304

use that structure to compute λ̂. For a fixed value of annual SICa, the population growth305

rate increases (annual SICa < −0.8) or decreases (annual SICa > −0.3) with increasingly306

positive seasonal differences. Figure 5 shows λ̂ as a function of annual SICa and of seasonal307

differences in SICa. The population growth rate is maximized at intermediate values of308

SICa close to 0, and declines at higher or lower values.309

The range of positive growth is wide (white contours on Figure 5) and λ̂ declines from310

its maximum more rapidly for negative than for positive annual SICa values.311

Stochastic population growth312

To examine the effect of sea ice variability, we calculate the stochastic population growth313

rate as a function of the means and variances of annual SICa and of seasonal differences in314

SICa. The growth rates are calculated from stochastic simulations. At each time step t,315

values for annual SICa and seasonal differences in SICa are drawn from normal distributions316

with specified means and variances, and are used to parameterize the projection matrix A317

in eq.(3). We also include stochastic variation, unrelated to sea ice conditions, in breeding318

success and the probability of return to the colony. For breeding success, we add a normally319

distributed error term with variance given by the residual variation around the logistic re-320
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gression of breeding success on SICa (Figure 3). For probability of return, which is not a321

function of SICa, we sample repeatedly from the set of measured return probabilities from322

1970 to 2000.323

The simulation begins with an arbitrary population vector n0, and projects the population324

according to325

n(t+ 1) = A
[
θ (x(t),p(t))

]
n(t). (5)

The stochastic growth rate is given by326

log λs = lim
T→∞

1

T
log ‖A [θ(T − 1)] · · ·A [θ(0)] p(0)‖ (6)

We evaluate log λs numerically using T = 50, 000.327

Figure 6 shows the results and Appendix S4 provides more details on the distribution of328

sea ice, vital rates and population growth rate for various examples. The stochastic growth329

rate is maximized at intermediate values of mean annual SICa, and declines as anomalies330

become very positive or very negative. At very high or very low values of the mean annual331

SICa the growth rate is improved by increasing variance, but at intermediate values, the332

effect of variance is negative. The effect of the mean and variance in seasonal differences in333

SICa are smaller, and negative. Changes in the mean and/or the variance of annual SICa334

have the potential to greatly reduce the stochastic growth rate.335

4 Population response to climate change336

To project the population response to climate change, we use our demographic model337

to determine the response of the population to future sea ice conditions as forecasted by a338

select set of GCMs. We obtain forecasts of SICa from a set of GCMs, compute stochastic339

SICa forecasts from these, and use the results to generate population trajectories from 2000340

to 2100.341
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Stochastic sea ice forecasts342

GCMs differ in their ability to reproduce sea ice conditions in Antarctica. Thus, from an343

initial set of 20 climate models (Table 2), we selected those for which the statistical properties344

of the distribution of SICa output agree well with the observations from 1979 to 2007, in345

terms of both the median and the standard deviation of the SICa distribution (see S5 for346

details). From the original set of 20 climate models, five were selected: cccma-cgcm3-1,347

cccma-cgcm3-1-t63, mpi-echam5, ukmo-hadcm3, and ukmo-hadgem1 (Table 2, see Figure in348

Appendix S5).349

These climate models were forced with a middle range emissions scenario (SRES A1B,350

IPCC, 2000). This scenario assumes a future socio-economic development depending on351

fossil and non-fossil energy sources in balanced proportions. Under this scenario, the CO2352

level doubles by 2100, from 360 ppm to 720 ppm.353

To generate stochastic SICa forecasts, we first obtain output for SICa in each of the354

four seasons. From this output, we compute smoothed means x̄(t) and smoothed covariance355

matrices C̄(t), using a Gaussian kernel smoother with smoothing parameter h = 2 (Appendix356

S5). We then generate stochastic SICa vectors by drawing x(t) as an iid sample from a357

normal distribution with mean x̄(t) and covariance matrix C̄(t).358

All five GCMs agree that the smoothed mean SICa will decline by 2100, but the rate359

of decline varies between climate models and seasons (Figure 7). For example, SICa during360

the laying season is forecast to decline only by 9% relative to present for the model ukmo-361

hadcm3, while SICa during the non-breeding season will decline by 71% according to the362

model cccma-cgm3-t63. There is no clear pattern of change in the smoothed variance (Figure363

8), but a high variability over time and between models seems likely. Some models predict a364

decline in the smoothed variance by the end of the century (e.g. cccma-cgm3-t63 during the365

non-breeding season), while other an increase (e.g. ukmo-hadcm3 during the laying season).366
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Stochastic population projections367

We used each stochastic SICa forecast to generate a sequence of demographic rates from368

2010 to 2100 (Appendix S6). These rates were used to project the population using as an369

initial population vector the average equilibrium population structure from all the GCMs370

in 2010. To evaluate uncertainties in climate, we used 200 stochastic forecasts from each of371

the five GCMs. To evaluate uncertainties in demography, we use the parametric bootstrap372

approach to generate a sample of 200 simulations for each sea ice forecast. Thus, we project373

40,000 population trajectories for each GCM, for a total of 200,000 population trajectories.374

The population projections exhibit considerable variability (Figure 9). Some projections375

produce dramatic declines in the number of breeding pairs (e.g., projections from cccma-376

cgcm3-1), while a few produce large increases (e.g., ukmo-hadcm3). The median of the 40,000377

trajectories from each GCM has a unique pattern (Figure 9 and 10). Some increase gradually378

(e.g., mpi-echam 5), while some decline gradually (e.g., ukmo-hadgem1). Some remain stable379

for a while and then decline (e.g., cccma-cgcm3-1-t63). For each GCM, however, there exists380

a year beyond which the median projection declines; this tipping year may be late (e.g., 2089381

for ukmo-hadcm3) or early (e.g., 2038 cccma-cgcm3-1-t63). By the end of the century, the382

medians of all GCMs except ukmo-hadcm3 project that the number of breeding pairs will383

decline compared to the minimum number over the last six decades.384

The median over the entire set of simulations declines to 575 breeding pairs by 2100. Over385

this set of simulations, the probability of a decline by 90% or more by 2100 is 0.43 (Table386

3). By 2100, the probability of a decline below the maximum number of breeding pairs ever387

observed in Terre Adélie since 1962 is 93% (Table 4). Therefore, only 7% of population388

trajectories included in this set are projected to increase by 2100.389

5 Discussion390

If the climate during the rest of this century follows the patterns forecast by the GCMs391

examined here, the emperor penguin population at Terre Adélie will respond by declining392
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towards extinction. Our median projection shows a decline in the number of breeding pairs393

by 81% over this period, and a good chance (43%) of a more severe decline of 90% or more.394

By the end of our projection, the population is continuing to decline, regardless of which395

GCM is used to forecast future sea ice conditions. The range of uncertainty associated with396

this result might change the details, but not the overall biological conclusions.397

We arrived at this conclusion by tracing the effects of sea ice concentration from the level398

of the individual to the level of the population. First we measured the response of the vital399

rates to sea ice conditions, then incorporated those responses into a demographic model to400

calculate the population growth, and finally we coupled the demographic model to forecasts401

of sea ice conditions produced by an ensemble of GCMs.402

Effects of sea ice on the vital rates403

The vital rates consist of male and female adult survival, the probability of returning404

to the colony to breed, and breeding success. Previous studies have shown that breeding405

success and adult survival have the biggest impacts on population growth rate, and that406

return probability has only a small effect (Jenouvrier et al., 2005a, 2009a).407

We found that breeding success declines with increasing values of SICa during the rearing408

season. Years with high concentration sea ice may require longer foraging trips, reducing the409

provisioning of chicks and thus breeding success (Massom et al., 2009; Wienecke & Robertson,410

1997). Not all the variability in breeding success is explained by SICa during the rearing411

season, probably because it is affected by many factors; e.g., prolonged blizzards and colder412

temperatures may increase chick mortality (Jouventin, 1975), and premature ice break-out413

may cause massive fledging failures (Budd, 1962). We include this unexplained variability414

in our sea ice-dependent demographic model.415

Sea ice affects adult survival in several ways, more complicated than the linear relation-416

ships assumed in previous studies (Barbraud & Weimerskirch, 2001; Jenouvrier et al., 2005a).417

The effect of annual SICa on adult survival is greater than the effect of seasonal difference418

in SICa. Adult survival is maximized at positive annual SIC anomalies ' 2 and declines419
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otherwise. The maximum annual survival is higher for females than males because males420

are likely more constrained energetically due to their long fasting period (Jenouvrier et al.,421

2005a). Males incubate the egg, and thus fast for four consecutive months, whereas females422

return to open water to forage after a two months fasting period. The response of survival423

to sea ice can be explained by several non-exclusive mechanisms affecting sea ice habitat and424

constraining the energy expenditure of emperor penguins. During years of concentrated sea425

ice, foraging trips may be longer, resulting in higher energetic costs (Wienecke & Robertson,426

1997; Massom et al., 2009). On the other hand, during years of concentrated sea ice, food427

resources may be higher (Barbraud & Weimerskirch, 2001) and/ or predation lower (Ainley428

et al., 2007). Seasonal difference in SICa affects the survival difference between females and429

males, suggesting that the sexes respond differently to SICa during the different seasons.430

Although the mechanisms remain unclear, this difference is probably linked to contrasted431

energetic costs during breeding.432

Male-female survival differences affect the population structure and growth, directly433

through mortality or indirectly by limiting the availability of mates, and thus reproduction,434

because penguins are monogamous (Jenouvrier et al., 2010).435

Effect of sea ice on population growth rate436

Population growth rate provides a measure of the quality of the environment, in terms of437

the fitness of a population occupying that environment (Caswell, 2001). The largest effect438

of sea ice on the population growth of the emperor penguin is due to the annual SICa; the439

effects of seasonal differences are smaller, but still appreciable.440

The deterministic growth rate λ is maximized at intermediate values of annual SICa. The441

maximum occurs at a value of SICa ≈ 0 (depending slightly on the value of the seasonal442

difference in SICa). The optimum is relatively broad, as shown by the wide range of annual443

SICa values enclosed by the contours for log λ = 0 in Figure 5. This implies that changes444

in sea ice conditions have little effect on λ until annual SICa becomes quite positive or445

negative. This intermediate optimum is expected because neither complete absence of sea446
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ice, nor heavy and persistent sea ice (i.e. no access to resources through polynya) would447

provide satisfactory conditions for the emperor penguin (Ainley et al., 2010).448

A complicated interaction exists between annual SICa and seasonal differences in SICa.449

When annual SICa is lower than −0.8 , the effect of seasonal differences is positive (i.e., the450

emperor penguin performs better when sea ice concentration is higher in breeding season451

and lower in non-breeding season). But, when annual SICa is higher than −0.3, the effect of452

seasonal differences is negative; the emperor penguin does better when the seasonal pattern453

is the opposite.454

The emperor penguin population is more sensitive to negative than to positive annual455

sea ice anomalies; i.e., λ decreases from its optimal value faster in the negative than the456

positive direction (Figure 5). This is well illustrated by the dramatic 50% population decline457

in the late 1970s in Terre Adélie, which coincided with several years of the lowest sea ice458

extent ever recorded during the last 40 years (Jenouvrier et al., 2005c). Other colonies have459

disappeared in regions with high temperature and low sea ice duration (Fretwell & Trathan,460

2009; Trathan et al., 2011). The Dion Islets colony along the west coast of the Antarctic461

Peninsula (67 52S, 68 43W) declined from 250 breeding pairs in the 1970s to 20 pairs in462

1999, and was extinct by 2009 (Ainley et al., 2010; Trathan et al., 2011). This extinction463

coincided with a decline in sea ice duration, resulting from a warming of the west coast of464

the Antarctic Peninsula at an unprecedented rate (Vaughan et al., 2001).465

The stochastic population growth rate log λs shows a similar response to mean annual466

SICa, with a broad maximum when the mean annual SICa ≈ 0. The effect of mean seasonal467

difference in SICa is smaller and, as in the deterministic case, is negative when evaluated at468

a mean annual value of SICa = 0 (Figure 6).469

The effects of the variance in annual SICa depend on the value of the mean annual SICa,470

as shown in Figure 6a. Within the range of approximately −3 ≤ SICa ≤ 4, the effect of471

variance is negative, and log λs is maximized when the variance is zero. But for mean annual472

SICa outside this range, the effect of variance on log λs is positive.473

20



It is well known that, all else being equal, temporal variance in the vital rates reduces474

the stochastic growth rate; covariances among vital rates and temporal autocorrelation can475

reverse this conclusion (Caswell, 2001; Lewontin & Cohen, 1969; Tuljapurkar, 1990). How-476

ever, this conclusion does not translate directly to the effect of variance in environmental477

factors. Because the vital rates are a nonlinear function of sea ice, and the two-sex model is478

itself nonlinear, the effect of environmental (i.e., SICa) variance on population growth may479

be either positive or negative (e.g., Koons et al. (2009)).480

Effect of future sea ice change481

Our best projection of the future growth of the Terre Adélie emperor penguin population,482

under the impact of climate change, is a decline by the year 2100 from approximately 3000483

breeding pairs to 575 breeding pairs, a decline of 81%, or an average rate of change of −0.018484

per year. This projection is the median of a large set of simulations that incorporate as many485

sources of uncertainty as possible.486

The median is a smoothed pattern based on 200,000 population trajectories. Each of487

those trajectories fluctuates, with increases, decreases, and periods of relative stability, until488

it reaches a tipping year, after which it declines. The tipping year varies among trajectories,489

depending on the forecasted sea ice, the responses of the vital rates, and the impact of490

sex-specific adult survival on the demography. The decline in the median of the 200000491

population trajectories accelerates after 2040 because more of the population trajectories492

are likely to have reached their tipping year as time goes on.493

These population projections required three steps.494

1. We had to extract the biologically relevant GCM outputs, in our case the seasonal495

SICa values, on appropriate spatial scales. The choice of spatial scales is an important496

issue in studies of climate change using GCMs, which project sea ice variables, such as497

concentration, thickness (SIT) and extent, over a greater spatial scale than the scale498

of emperor penguin habitat requirements. For emperor penguins, the size of polynyas499

(Ainley et al., 2005), sea ice thickness, area of fast ice (Massom et al., 2009), the timing500

21



of ice breakup and formation are meaningful variables with respect to the life cycle501

(see review in Ainley et al. (2010)) but are measurable only at small spatial scales. By502

focusing on SIC we hope to reduce the number of correlated covariates (Grosbois et al.,503

2008). At large spatial scales, SIC is strongly correlated to SIT and open water area,504

and thus SIC is a good measure of the sea ice environment experienced by penguins.505

Further climate research will be required to downscale the sea ice projections of GCMs506

in Antarctica both spatially (e.g. RCMs) and temporally (e.g. daily data to calculate507

the timing of ice breakup) as climate model output is typically saved and available508

with a monthly resolution.509

2. We had to model temporal variance in SICa from the GCM output. Ideally, this would510

be obtained from multiple stochastic realizations of each GCM, but such output does511

not exist. Thus, we obtained smoothed temporal means, variances, and covariances512

from the output, and used those to parameterize variability in SICa at each time step.513

The forecasts of smoothed temporal means and variances of SICa differ strongly among514

climate models. Differences are present in numerous aspects of the climate models,515

including their physical parameterizations and spatial resolution. As such, it is difficult516

to attribute differences in the projected sea ice change to a single factor. However, as517

noted by Lefebvre & Goosse (2008), numerous mechanisms do appear to play a role.518

These include the influence of local simulated climate conditions at the end of the 20th519

century, aspects of the atmospheric Southern Annular Mode response (e.g. Fyfe &520

O.A. (2006)), and changes in the simulated response of the Southern Ocean circulation.521

While our climate model selection process does reduce the uncertainty associated with522

the first of these, differences in simulated feedbacks and climate response will still play523

an important role. This points to a further need for climate model development and524

enhancement.525

3. It was critical to incorporate uncertainty in our projections; a projection of an 81%526

decline without an associated range of uncertainty would be useless. Our uncertainty527
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analysis included components from the demographic parameters and their response to528

sea ice conditions, including both sampling error and the uncertainty due to model529

selection. We also included uncertainty in future sea ice conditions by using an ensem-530

ble of GCMs, chosen on the basis of their agreement with past sea ice observations.531

Figure 9 shows the variation among the models in their forecasts of SICa, and Figure532

10 provides a powerful graphical summary of the resulting uncertainty in population533

forecasts. Models cccma-cgcm3-1 and cccma-cgcm3-1-t63 predict the most rapid de-534

clines, with the population reduced to 20 or 11 breeding pairs, respectively, by 2100. In535

contrast, model ukmo-hadcm-3 makes more optimistic sea ice forecasts, and projects536

an increase in the population by 2100.537

Stochasticity and uncertainty naturally lead to significant variation among projections538

of future emperor penguin population growth. Among the 200,000 population trajectories,539

there are some examples in which the population does not decline, or even increaes, but the540

central tendency is an unambiguous and serious population decline of 81%. More important,541

the probability distributions of projected population size in 2100 show that declines are far542

more likely than increases or stability. In addition, the median population trends predicted543

by all five GCMs during the last decade (2090-2100), even the outlier ukmo-hadcm3, are544

negative. Thus the difference between climate models, i.e. uncertainty in the sea ice forecasts,545

affects the timing of the population median decline, but not whether that median decline546

occurs or not (Figure 10).547

The conclusion that the emperor penguin population will decline dramatically by the end548

of this century raises the issue of possible adaptation. Emperor penguins might adapt to549

the new sea ice conditions or, more likely, disperse to locations where sea ice conditions are550

more favorable (see review Ainley et al. (2010); Forcada & Trathan (2009) and discussion in551

Trathan et al. (2011); Jenouvrier et al. (2009b)). Future studies should quantify potential552

refuges for the species (but see Ainley et al. (2010)) and consider potential evolutionary553

responses. Thus, we encourage ecologists to collect information on phenotypic traits and554
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their heritability.555

The median projection of 575 breeding pairs in 2100 is close to the projection of ≈ 400556

breeding pairs obtained previously using a simpler modelling approach (Jenouvrier et al.557

2009). Consistencies among population projections from different demographic and climate558

models increase confidence in the assessment of the impact of climate change.559

Methodological notes560

Our approach to predicting and understanding the effects of climate change requires the561

measurement of effects of climate on individuals, the integration of those effects into a demo-562

graphic model, and the connection of the demographic model to climate forecasts. Aspects of563

this approach have been applied to some other species, including seabirds (Barbraud et al.,564

2010; Wolf et al., 2010), polar bears (Hunter et al., 2010), the oystercatcher (van de Pol565

et al., 2010), and our previous analysis of the emperor penguin (Jenouvrier et al., 2009b).566

In this study, we have gone beyond these studies in several ways.567

Because of the length and quality of the emperor penguin data set, in this analysis we568

were able to identify detailed effects of sea ice on a seasonal basis through the breeding cycle,569

and to include, for the first time, the nonlinear effects of sex-specific mortality patterns using570

a two-sex demographic model. In the case of the emperor penguin, the extreme conditions571

of its breeding cycle make the presence of both parents essential for successful reproduction.572

Hence, sex-specific climate effects are particularly important (cf. Jenouvrier et al. (2010)).573

In general, however, we expect that even in less dramatic conditions, the different roles of574

the sexes may often cause climate change impacts to differ between males and females.575

Because of the ability to extract relevant sea ice output from the GCMs, we were able576

to include both stochasticity and uncertainty, and to draw conclusions about the projected577

fate of the Terre Adélie emperor penguin population even in the face of that uncertainty.578

Because climate models predict that both the mean and variability of climate will change579

(Solomon et al., 2007), it is important to include these stochastic effects.580

Two factors not included in our models deserve mention: density dependence and demo-581
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graphic stochasticity. It is almost reflexive to ask about density dependence in an analysis582

such as ours. This is a result of exposure to simple scalar population models. In a stage-583

structured population, especially in a highly seasonal environment, and in which different584

stages occupy vastly different environments during the course of the year, population growth585

is never likely to be a function of something as simple as “density.” In the case of the em-586

peror penguin, it is a priori unlikely that density has strong effects, and in Appendix 1, 3587

we describe our analysis of the effects of the number of breeding pairs on the vital rates; we588

found no support for these effects.589

Demographic stochasticity refers to fluctuations arising from the random outcome of590

probabilities of survival and reproduction, applied to individuals in a population. It can be591

analyzed using multi-type branching process models (Chapter 15 of Caswell 2011). Demogr-592

paphic stochasticity is unimportant in large populations, but reduces the stochastic growth593

rate and increases extinction probability in small populations. As the emperor penguin popu-594

lation declines, demographic stochasticity will, at some point, become important. In general,595

however, this requires population sizes of only a few tens to a hundred individuals. To the596

extent that demographic stochasticity becomes important at the end of our simulations, our597

projections overestimate the persistence of the population.598

We encourage further collaborations between ecologists and climatologists. The devel-599

opment of data archive resources such as those provided by the National Snow and Ice600

Data Center (NSIDC) and the Program for Climate Model Diagnosis and Intercomparison601

(PCMDI) (Meehl et al., 2007) have allowed unprecedented access to observed and modeled602

climate data. We believe that the participation of climatologists is critical for selecting the603

most appropriate set of climate models, emissions scenarios, climate variables, and the use604

of climate ensembles versus single climate outputs.605

An important future step will be to incorporate evolutionary responses. A theoretical606

framework to link life history traits and population dynamics (eco-evolutionary dynamics)607

is emerging (Hoffmann & Sgrò, 2011; Pelletier et al., 2009; Kinnison & Hairston, 2007; Reed608
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et al., 2010), and studies of the potential evolutionary responses to climate change and their609

population consequences have recently been initiated (Jenouvrier & Visser (2011); Reed et al.610

(2011)). We believe that the way climatologists have approached the problem, using coupled611

climate system models in which climate systems components (e.g. ocean, atmosphere, sea612

ice, land surface, ice sheets, biogeochemistry and more) are gradually connected, can provide613

a valuable example to ecologists toward an integrative climate- eco-evolutionary framework.614
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Herrando-Pérez S, Delean S, Brook B, Bradshaw CJA (2012) Decoupling of component and693

ensemble density feedbacks in birds and mammals. Ecology.694
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7 Supporting Information legends814

Appendix 1 discusses the effect of density dependence.815

Appendix 2 describes the selection of sea ice variables and details the principal component816

analysis.817

Appendix 3 details vital rates estimation (model selection, estimates and 95% confidence818

intervals) for: (2.1) breeding success, (2.2) adult survival, and (2.3) probabilities of return819

to the colony.820

Appendix 4 details the effect of sea ice variability on demography. Figures show the dis-821

tributions of annual SICa, breeding success, and male and female adult survival for females822

and males, along with the resulting distribution of the deterministic growth rate λ. This823

deterministic rate can be thought of as approximating the growth of the population between824

time t and t+ 1, although this is not always true (see Appendix).825

Appendix 5 shows the sea ice projected by each climate model for each season of the826

penguin’s life cycle and the climate selection procedure (section 4.1). It also details our827

novel approach to obtain stochastic sea ice forecasts from single climate output (section828

4.2).829

Appendix 6 describes the projections of vital rates in the future and shows that the range830

of variation in the forecast vital rates from 2010 to 2100 is plausible.831
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8 Tables832
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Table 1: Results of model selection for annual adult survival, including linear or quadratic
effects of SICa at each of four seasons: non-breeding, laying, incubating and rearing. The
first and second columns give the effects included in the model for females and males re-
spectively. The number of parameters in the model is K, ∆AIC is the difference in Akaikes
information criterion (AIC) between each model and the model with the smallest AIC (i.e.
best supported by the data). AIC weights represent the relative likelihood of a model and
are used to create the averaged model; only models for which the cumulative sum of AIC
weights is 0.98 are included.

Effect for females Effect for males K ∆AIC AIC weight
incubating incubating 135 0.00 0.14
rearing2 rearing2 137 0.78 0.09
rearing2 incubating 136 1.17 0.08
incubating incubating2 136 1.25 0.07
rearing2 time-invariant 135 1.59 0.06
rearing2 incubating2 137 2.11 0.05
rearing time-invariant 134 2.22 0.04
rearing incubating 135 2.46 0.04
rearing laying 135 2.93 0.03
rearing2 rearing 136 3.53 0.02
time-invariant time-invariant 133 3.63 0.02
rearing rearing2 136 3.71 0.02
incubating time-invariant 134 3.73 0.02
rearing non breeding 135 3.94 0.02
rearing2 laying 136 4.00 0.02
rearing rearing 135 4.12 0.02
incubating rearing2 136 4.13 0.02
incubating rearing 135 4.14 0.02
rearing incubating2 136 4.15 0.02
rearing incubating2 136 4.15 0.02
rearing2 non breeding 136 2.97 0.03
time-invariant incubating 134 4.46 0.01
laying incubating 135 4.52 0.01
incubating2 incubating2 137 4.62 0.01
incubating laying 135 4.81 0.01
time-invariant non breeding 134 4.99 0.01
laying time-invariant 134 5.25 0.01
time-invariant rearing 134 5.25 0.01
incubating non breeding 135 5.49 0.01
incubating rearing2 136 5.50 0.01
laying incubating2 136 5.75 0.01
time-invariant incubating2 135 5.88 0.01
non breeding time-invariant 134 6.02 0.01
incubating2 rearing2 137 6.10 0.01
time-invariant laying 134 6.31 0.01
laying rearing2 136 6.34 0.01
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Table 2: Selection of General Circulation Models for climate. Each model was evaluated by
comparing the statistical properties of its sea ice output to observed data from 1979–2007.
Agreement is indicated by an x; the GCMs selected are shown in bold.

Model Non-breeding Laying Incubating Rearing
bccr-bcm2-0
cccma-cgcm3-1 x x x x
cccma-cgcm3-1-t63 x x x x
cnrm-cm3 x x
csiro-mk3-0 x x
gfdl-cm2-0 x x
gfdl-cm2-1 x
giss-aom x x x
giss-model-e-r
iap-fgoals1-0-g
inmcm3-0
ipsl-cm4 x x
miroc3-2-hires x x x
miroc3-2-medres x x x
miub-echo-g
mpi-echam5 x x x x
mri-cgcm2-3-2a x
ncar-ccsm3-0 x x x
ukmo-hadcm3 x x x x
ukmo-hadgem1 x x x x
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Table 3: Probability that the emperor penguin population in Terre Adélie will decline by more
than 90% from 2010 to 2040, 2060, 2080, and 2100, when sea ice follows the forecasts of each of
the five climate models selected.

models 2040 2060 2080 2100
cccma-cgcm3-1 0.0168 0.2366 0.7625 0.9903
cccma-cgcm3-1-t63 0 0.0205 0.6783 0.9997
ukmo-hadcm3 0 0 0 0.0001
ukmo-hadgem1 0 0.0001 0.0088 0.1276
mpi-echam5 0 0 0 0.0181
entire set 0 0.0514 0.2899 0.4272
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Table 4: Probability that the emperor penguin population in Terre Adélie will decline below a
specific number of breeding pairs (threshold) by 2100, when sea ice follows the forecasts of each of
the five climate models selected. Thresholds are based on the minimum and maximum number of
observed breeding pairs (Nobs) during specific time periods (3 first columns), or specific numbers
(last two columns).

threshold min(Nobs1979−2010) max(Nobs1979−2010) max(Nobs1962−2010)
2303 3482 6236 8000 10000

cccma-cgcm3-1 1.00 1.00 1.00 1.00 1.00
cccma-cgcm3-1-t63 1.00 1.00 1.00 1.00 1.00
ukmo-hadcm3 0.21 0.43 0.77 0.87 0.93
ukmo-hadgem1 0.94 0.98 1.00 1.00 1.00
mpi-echam5 0.75 0.90 0.99 1.00 1.00
entire set 0.75 0.84 0.93 0.96 0.98
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9 Figures833

Figure 1: Observed proportional anomalies in sea ice concentration (SICa) relative to834

the mean from 1979 to 2007, for each of four seasons of the penguin life cycle. The grey line835

shows SICa = 0 and represents the mean SIC from 1979 to 2007.836

Figure 2: (a) Seasonal SIC anomalies (color lines, see legend) as a function of the annual837

SICa, with the seasonal differences in SICa set to zero. (b) Seasonal SIC anomalies as a838

function of the seasonal differences in SICa, with the annual SICa set to zero.839

Figure 3: Breeding success as a function of proportional anomalies in SIC during the840

rearing season. The line is a logistic regression fit to the data points shown.841

Figure 4: Annual adult survival as a function of annual SICa and seasonal differences842

in SICa. (a c) and (b d) show the survival of females and males respectively. Upper panels843

(a b) show survival as a function of annual SICa for negative (=-1, grey line), zero (thick844

black line), and positive (=+1, dotted line) values of seasonal differences in SICa. Lower845

panels (c d) show survival as a function of seasonal differences in SICa for negative (=-4,846

grey line), zero (thick black line), and positive (=+4, dotted line) values of annual SICa.847

Figure 5: The deterministic population growth rate (log λ) as a function of annual SICa848

and seasonal differences in SICa. The white contours indicate log λ = 0. The color bar849

shows the values of log λ.850

Figure 6: The stochastic population growth rate log λs as a function of the mean and851

variance of sea ice variables. (a) log λs as a function of the mean and variance of annual852

SICa with seasonal differences in SICa set to zero. The black line stands for a zero variance,853

the grey line for the observed variance, and the dotted line for a variance equal to twice the854

observed. (b) log λs as a function of the mean and variance of seasonal differences in SICa,855

with annual SICa equal to zero.856

Figure 7: (a) Smoothed mean of SICa during the four seasons, from each of the five857

selected GCMs (color lines, see legend). The black line shows the observed SICa from 1979858

to 2007 and the red line shows the zero value, i.e. represents averaged SIC from 1979 to859
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2007.860

Figure 8: Smoothed standard deviation of SICa during the four seasons, from each of861

the five selected GCMs (color lines, see legend on figure 7). The red line shows the ob-862

served standard deviation. The grey box represents 0.5 and 1.5 times the observed standard863

deviation; these values were used in selecting climate models (Appendix 4).864

Figure 9: Projections of the emperor penguin population based on SICa forecasts from865

an ensemble of five GCMs. The black line gives the observed number of breeding pairs866

from 1979 to 2010. For each GCM, three random population trajectories are shown (thin867

colored lines), along with the median (thick colored line) and the 95% envelope (grey area),868

from 40,000 stochastic simulations. The median and 95% envelope are also shown from the869

combined 200,000 simulations for the set of 5 GCMs.870

Figure 10: Summary of the projections of the emperor penguin population based on SICa871

forecasts from an ensemble of five GCMs. The thick colored lines (see legend on figure 9) give872

the median and the grey area is the 95% envelope from the combined 200,000 simulations for873

the set of 5 GCMs. Also shown are the probability density functions for simulated population874

size in 2100, for each GCM.875
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Figure 1: Observed proportional anomalies in sea ice concentration (SIC) relative to the
mean from 1979 to 2007, for each of four seasons of the penguin life cycle. The grey line
shows SICa = 0 and represents the mean SIC from 1979 to 2007.
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Figure 2: (a) Seasonal SIC anomalies as a function of the annual SICa, with the seasonal
differences in SICa set to zero. (b) Seasonal SIC anomalies as a function of the seasonal
differences in SICa, with the annual SICa set to zero.
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Figure 3: Breeding success as a function of proportional anomalies in SIC during the rearing
season. The line is a logistic regression fit to the data points shown.
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Figure 4: Annual adult survival as a function of annual SICa and seasonal differences in
SICa. (a c) and (b d) show the survival of females and males respectively. Upper panels
(a b) show survival as a function of annual SICa for negative (=-1, grey line), zero (thick
black line), and positive (=+1, dotted line) values of seasonal differences in SICa. Lower
panels (c d) show survival as a function of seasonal differences in SICa for negative (=-4,
grey line), zero (thick black line), and positive (=+4, dotted line) values of annual SICa.
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Figure 5: The deterministic population growth rate (log λ) as a function of annual SICa and
seasonal differences in SICa. The white contours indicate log λ = 0. The color bar shows
the values of log λ
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Figure 6: The stochastic population growth rate log λs as a function of the mean and variance
of sea ice variables. (a) log λs as a function of the mean and variance of annual SICa with
seasonal differences in SICa set to zero. The black line stands for a zero variance, the grey
line for the observed variance, and the dotted line for a variance equal to twice the observed.
(b) log λs as a function of the mean and variance of seasonal differences in SICa, with annual
SICa equal to zero.
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Figure 7: Smoothed mean of SICa during the four seasons, from each of the five selected
GCMs (color lines, see legend ). The black line shows the observed SICa from 1979 to 2007
and the red line shows the zero value, i.e. represents averaged SIC from 1979 to 2007.
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Figure 8: Smoothed standard deviation of SICa during the four seasons, from each of the five
selected GCMs (color lines, see legend on figure 7). The red line shows the observed standard
deviation. The grey box represents 0.5 and 1.5 times the observed standard deviation; these
values were used in selecting climate models (Appendix 4).
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Figure 9: Projections of the emperor penguin population based on SICa forecasts from an
ensemble of five GCMs. The black line gives the observed number of breeding pairs from 1979
to 2010. For each GCM, three random population trajectories are shown (thin colored lines),
along with the median (thick colored line) and the 95% envelope (grey area), from 40,000
stochastic simulations. The median and 95% envelope are also shown from the combined
200,000 simulations for the set of 5 GCMs.
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Figure 10: Summary of the projections of the emperor penguin population based on SICa

forecasts from an ensemble of five GCMs. The thick colored lines (see legend on figure 9) give
the median and the grey area is the 95% envelope from the combined 200,000 simulations for
the set of 5 GCMs. Also shown are the probability density functions for simulated population
size in 2100, for each GCM.
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