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Stress, turbulence and heat flow measurements over 
the Gulf of Maine and surrounding land 

Andrew F. Bunker 

Woods Hole Oceanographic Institution 

Abstract 

This report presents turbulence, flux, temperature and water 

vapor data obtained from an airplane flying over the Gillf of Maine and 

adjacent shores. Measurements of the root-mean-square turbulmt devia-

tion velocities, shearing stresses, and heat flows were made at many 

heights and offshore distances in air masses moving from land to water. 

Stability effects on the turbulence and fluxes of heat and momentum 

have been Observed over a wide range of conditions as air flowed over 

cooler or warmer surfaces. 

The following conclusions have been drawn from a study of 

the data: 

(1) The magnitudes of the root-mean-square turbulent devia-

tion velocitiesrk andru 3 increases with height in the lowest 100 

meters and then decreases slowly with height up to the inversion where 

the velocities drop to very low values. 

(2) Shearing stresses were found to increase with height 

up to the 100 to 200 in level and then drop off with height. This 

height variation is in contrast to the generally accepted notion of 

a decrease of the stress from the surface to the geostrophic level. 

These observations confirm the findings of Scrase (1930) and others 

and demand an investigation of the acceleration of the air and the 

effects of thermal winds. 

(3) Both the horizontal and vertical components of the tur-

bulent wind are increased by hydrostatic instability and decreased by 

stability. The horizontal component is affected less than the vertical 

component by stability differences. 
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(4) The decrease in the turbUlent velocities as air passes from 

land to cooler water is great and rapid while the increase in turbulent 

velocities as the air passes over warmer water is slight and slow. 

(5) The observed heat fluxes also first increase and then de-

crease with height and usually become negative near the top of the mixed 

ground layer where the potential temperature gradient becomes strongly 

positive. 

(6) The stability of the air above about 5D in is a very poor 

indicator of the temperature difference existing between the underlying 

surface and the air of the main mixed layer. Diffusion of heat downward 

from a layer of warm air above the ground layer frequently is the cause 

of a stable lapse rate regardless of the relative temperature of the sur-

face below. 

(7) No comparison of the coefficient of turbulent mass exchange 

for water vapor, heat flow and momentum could be made since the tempera-

ture gradient was stable even when heat was flowing upward, and no wind 

profiles were made over the water. 
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I Introduction 

A. The relation of the present "work to previous Observational 
and theoretical Studies 

A vast nuMber of observational studies of turbulence and diffu-

sion in the atmosphere have been made in the past three quarters of a 

century. The Meteorological Abstracts and Bibliography (Kramer, et. al., 

1953), lists 342 key papers on the subjectl and many more have appeared 

since that date. A similarly large number of papers have been published 

(Rigby, et. al., 1953), on the theory of turbulence and turbulent diffu-

sion. In spite of the great strides toward an understanding of the tur-

bulent processes operating in the atmosphere which these papers represent, 

large gaps in our knowledge still remain. Most of the observational 

studies of atmospheric turbulence have been confined to the lower levels 

; 
	that can be reached by towers. Innumerable observations of wind and 

temperature gradients have been made to the higher regions of the free 

atmosphere, but only a few scattered observations of the turbulence have 

been made simultaneously at these levels. To fill this critical void of 

information, a system was developed to measure from an airplane in flight 

values of the horizontal and vertical components of the turbulent wind 

and variations of the air temperature. From a time series of these quan-

tities the following means have been computed: 

(1) root-mean-square horizontal turbulent component, 

(2) r-m-s vertical turbulent component, 

(3) shearing stress, from-i. 	and 

(4) the heat flow„wAtr'T 

These values have been measured at many heights, from 15 in above the water 

to 2000 in, aid many positions over land, a few km offshore and about 

175 km'offshore. Temperature arid humidity measurements were made simul-

taneously so that stabilities, heat flows and water vapor flows could be 
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measured. Winds were not measured except for the routine Weather Bureau 

observations; although winds would have been of great value had they been 

measured over the water. 

The program of measurements was not developed around the idea 

of testing any one theory of turbulence of diffusion. It will be seen 

that data collected does rule out certain assumptions used frequently in 

turbulent theory and may act as a guide in suggesting new lines of approach 

and other assumptions on which to build a theory of turbulence. Spectra 

of the turbulent quantities have not been determined; hence much is left 

to be desired by the theoretician from the present study. 

B. Meteorological quantities measured 

The present study has been concentrated upon obtaining two 

types of data from flights with a PBY-6A amphibious aircraft. One type 

is the distribution of temperature and water vapor with height and dis-

tance over the waters of the Gulf of Maine. From this data the flux of 

moisture and heat can be obtained by computing the time rate of change of 

the water vapor and heat content of the air columns. The other type of 

observation is the recording of the rapid changes in the vertical accelera-

tion, the airspeed, the attitude of the airplane and the temperature of 

the air. The instruments used for the measurement of these quantities has 

been described by Bunker and McCasland (1954). From these observations a 

time series of the rapid (1/5 second) variations of the vertical and hori-

zontal components of the turbulent wind fluctuations and the temperature 

variations can be computed. The vertical velocities have been computed 

from the equation developed and described by Bunker (1955): 
3 , 

.4.n. 	49  X /0 del 	z1 04 V +. 	4/rtif4'. +/Ay; 9? --- — (0 v 	 abf 

Where -0 is the vertical turbUlent component of the wind, An the vertical 

acceleration of the airplane,/6 the density of the air, V the velocity of 
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the airplane, ALatt  the attitude of the airplane and w o  any original ver-

tical velocity of the airplane. The constants appearing in the equation 

depend upon the aerodynamic characteristics of the PBY-6A. Deviations 

from 7 second averages were not taken as desirable in the above reference. 

The horizontal component fluctuations were found from the record of the 

airspeed assuming the ground velocity of the airplane to be constant or 

change linearly during the ran. Since the completion of the present pro-

gram, an additional horizontally mounted accelerometer has been attached 

to the airplane so that the assumption of a constant ground velocity is 

no longer necessary. 	, 

From these time series the meteorological quantities r-m-s 

vertical and horizontal deviation velocities, shearing stress and heat 

flows can be computed. Measurements of these quantities have been made 

at many heights from 150 in to 2000 in over the land and from 51 in to 

2000 in over water and distances up to 175 km offshore. 

C. Airplane instruments 

The instruments installed on the PBY have been described in a 

t- 	report by Bunker and McCasland (195); hence it will be stated here only 

that the outputs of a vertical accelerometer, an airspeed gauge, an 

attitude gyro, an altimeter and thermopile were recorded simultaneously 

on five galvanometers of a nine channel oscillograph. All of the fluctua-

tion data was computed from these records. 

Psychrometric data was recorded on a self-balancing potentio-

meter. The sensing heads were a calibrated thermistor and a lithium 

chloride strip mounted in the air-stream of the nose of the airplane. 

D. Site of the experiment 

The experiments to be described were carried out over the 

waters of the Gulf of Maine. This body of water is ideal for such work 
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since it is close at hand, has a curved coastal line so that air from the 

SSW to N and reaching 42° 30 1 N, 6830W has traveled over equal distances 

of water, and its temperature cycle and thermal structure are well known. 

In the summer and fall the water is usually cooler than the air from the 

land while in the winter it is usually much warmer, hence a wide variety 

of stability conditions occur. 

Water temperatures were determined from mean temperature charts 

on file at the Institution adjusted for deviations of observed tempera-

tures from the normal. The observed temperatures were taken from the 

Portland, Nantucket and Pollock Rip Lightships as well as at a few harbors 

along the coast. December, 1953,  temperatures were found to be about 3°C 

above normal while January, 1954, was about 1.5*C above the normal. Water 

temperatures are expressed in this report as the potential temperature 

of an air parcel in contact with the water and having its temperature. 

• 
II Presentation of heasurements 

A. Presentation of Observations taken on individual days 

After the psychrograph and turbulence Observations were reduced 

it became apparent that each day's character was different from all the 

others with respect to stability, cloud cover, wind speed, turbulence 

and transport. Hence the data pertaining to a given day are presented 

as a unit. A very brief description of the large scale synoptic weather 

pattern of the day is given at the beginning of each case presentation. 

The bulk of the data is given in a single graph to show the variation of 

the various quantities with height. The figures contain potential tempera-

tures, heat fluxes, temperature deviations, mixing ratios, vertical and 

horizontal turbulent components of the wind, shearing stress, the wind 

profile, and the water temperatures. Notes concerning time, location, 

cloud height and amount, and precipitation have been added to the figure 

as needed. 



Nnmerous quantities such as gradients, stabilities, fluxes, and 

mean winds have been neasured from the graphs and presented in the text 

and in tables. To show both the height and offshore distance variation 

ofrw, the observed values off); have been plotted on cross sections. 

Lines of equalTif have been drawn for each 20 cm sec'-. Stabilities of 

the air columns have been entered as well as differences of air and water 

temperatures. 

Case I. October 20, 1953 

Turbulent and convective heating of the air changed to cooling 

and greatly reduced turbulence as the air mass moved from land out over 

the cool waters of the Gulf of Maine. A ridge of high pressure west of 

the Gulf caused clear skies and a weak northwesterly flow out over the 

water. The land, heated by the solar radiation, was transferring its heat 

to the atmosphere and creating considerable convective turbulence. As 

the air flowed out over the water which was about 8*C cooler, the turbu-

lence dropped to about 1/10 its previous level at 13 km offshore. 

Three series of observations were taken on this day between 

1200 and 1600 hrs. EST, the first over the land near Portland, Maine, 

the second 13 in offshore near the Portland Lightship, and the last 

175 km offshore at about 42*N Orki. Observations were made from 60 in to 

1960 in above sea level. The sounding areas were chosen to lie along 

the air trajectory. The 2100 z pilot balloon runs show that the wind 

swung more northerly during the observation period so that the air tra-

jectory cut across the observational line at an average of 30*. 

Table Ia., has been compiled to show the average winds in the 

region at 1500 z and 2100 z. The values are averages of Portland, Maine, 

Boston, Massachusetts, and Nantucket, Massachusetts. From these data the 

average speed of the air was found to be 609 in sec-. Thus the air required 



- 8 - 

1900 seconds and 25000 seconds to travel to the 13 km and 175 km points 

respectively. These values are used in computations of heat and water 

vapor fluxes from the observed changes in the air columns. The tempera-

tures and mixing ratios measured with the airplane psychrographl are 

plotted in Figure 1, for each of the sounding areas. From these plots 

of potential temperatures the stabilities have been computed for uniform 

portions of the three plots. The stabilities are tabulated as follows 

in Table lb. The greatest stabilities observed over the Gulf are the 

result of the heat transfer from the air to the water which was about 

14° C, 8* colder than the air. Mixing ratio gradients observed in the 

sounding areas are collected in Table Ic. 

The heat flow computation from the net change in temperature of 

the column of air is greatly complicated by the change in wind speed 

and direction during the period. Using the winds presented in Table Ia, 

it is found that the air measured by the airplane in the center of the 

Gulf of Maine left the coast in the vicinity of Penobscot Bay around 

0900 hrs„ EST. Using the Old Town surface observations it is concluded 

that the air column started across the water about 3 °C cooler than the 

air measured over Portland at 1200'hrs.„ the transit time to the center 

of the Gulf is estimated to be 3 x 104  seconds. With these values and 

the observed temperatures over the Gulf it is found that the heat flux 

was -0.2 in cal cm-2  sec', with a gradient of 1 x 10 44  cm-1, a coefficient 

of turbulent mass exchange of about 10 gm cm-1  sec-1,1e ,found. 

Table id, presents the turbulent quantities and fluxes computed 

from the fluctuation data in the manner described in Section I. The 

following quantities are listed: (1) and identifying run nunber, (2) 

the height of the run, (3)Grii.  the root-mean-square vertical velocity, 

(4)071 the r-m-s deviation horizontal velocity, (5) the shearing stress, 

(6) the r-m-s temperature deviations„ and (7) the heat flux. 
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The data contained in Table Id have been plotted in Figure 1 

together with the psychrograph, wind, and sea water temperature data. 

The various quantities for each of the sounding areas have been plotted 

against height as the ordinate and appropriate scale as the abscissa. 

From this graph many of the changes in the air mass produced by the 

flowing of the air over cooler water are clearly depicted. Most note-

worthy are the cooling of the lowest 400 in of the air, the change of 

a large upward flaw of heat to exceedingly small and negative flows, a 

decrease by one order of magnitude in the r-m-s vertical velocities, 

and a similarly large decrease in the shearing stress. These phenomena 

will be discussed in the following section in conjunction with the data 

from other days. 

A cross section of the air from the Maine shore to the 175 km 

offshore sounding area is presented as Figure 2 to show the variation of 

the root-mean-square vertical velocities with height and distance. Most 

significant here is the rapidity and magnitude of the decrease in the 

turbulent velocities with offshore distance. Only a slight further 

decrease occurs between the 13 km area and the 175 km area. 

Table Ia 

Average Radio and Pilot Balloon Winds for Oct. 210, 1953 

Height 
meters 

1500 z Winds 
Direction Velocity 

in sec-1  

2100 z Winds 
Direction Velocity 

c̀ T 
	

in sec-1  

sfc 
300 

310 
320 

6.6 
6.6 

olo 
020 

5.3 
6.1 

600 330 7.7 360 6.7 
900 330 8.3 350 7.0 

1200 320 7.7 340 6.7 
150o 290 7.2 330 6.5 
1800 280 9.2 320 7.6 
2100 290 10.2 310 8.3 
2400 300 10.8 310 8.3 



Table lb 

Stabilities of Air Regions 

Portland Lightship 
Height Range Stability 

in 	cm71 x 108  

90 to moo 	5 

Portland, Maine 
Height Range Stability 

in 	cm-1  x 	108  

250 to 500 	19 
500 to 1300 	0 

42°N 	68°W 
Height Range Stability 

m 	cm-1  x 	108  

70 to 400 	36 
500 to goo 	9 
900 to 19)0 	5 
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Portland, Maine 
Height Range GrOient 

in 	10 0  cm-1  

250 to 1250 -1.4 
1275 to 1300 -24 
1300 to 1950 -1.5 

Table Ic 

Mixing Ratio Gradients 

Portland Lightship 
Height Range Gradient 

in 	108 cm-1  

90 to 940  

42° N 	68°W 
Height Range Gradient 

DI 	10' cm-1  

	

70 to 400 	000 

	

400 to 470 	-12 
470 to 1500 -0.8 

Table Id 

Turbulence and Flux Data 

Run No, Height 
in 

a. Portland, Maine, 1200 to 1240 EST 

6-14 	G-11 	-76 wito 	ri 
cm sec-1 	cm sec-1 	dyne 	°C 

cm -2 
462 225 log 	86 	7.3 	oolo 
463 300 128 	60 	0.9 	0.18 
464 600 66 	49 	0.3 	0.06 
465 130 	42 	0.7 	0010 
467 
468 

1200 
1500 

43 	40 	-106 	0.09 
18 	18 	-0.2 	0.07 

b. Portland Lightship, 1410 to 1440 EST 

473 60 12 	14 	-0000 	0.10 
474 150 15 	14 	0.02 	0.04 
475 300 16 	20 	0.08 	0.05 
476 600 13 	18 	-0.15 	0.04 
478 900 15 	16 	0.02 	0.03 

c. 42'N 68'W„ 1540 to 1615 EST 

479 60 13 	16 	0.07 	0.03 
481 
482 

19) 
300 

12 	8 	0.03 	0.03 
11 	13 	0.05 	- 

483 600 7 	lo 	-10.03 	- 
484 goo 13 	23 	oal 	0.03 

fTI 
mca0 cm-? sec-1  cw  

1.5 
5.5 

-0.06 
1.4 

-0.02 
001 

-0.05 
0.03 
0.09 
0.08 
0.06 

0.06 
-0.02 

0.00 



Case II October 27, 1953 

The surface flow , on this day was controlled by a small high 

pressure cell located over the North Atlantic Ocean between Cape Cod 

LO° 

	

	and Bermuda. Thus air from southern New England passed northeastward 

over the cooler waters of the Golf of Maine, losing its heat with a 

resulting condensation into a stratus undercast about 60 km offshore. 

The air was stable over the land since it had travelled long distances 

from the south and the remnants of a nocturnal inversion were still 

present. Fluxes cannot be calculated from the temperature changes in 

the column because of the development of the stratus undercast which 

was not penetrated by the airplane. 

The soundings were made along a line that described the 

trajectory of the air within experimental verification. The first 

sounding was made over land north of Cape Cod, the second 29 km down-

wind over the water off Provincetown, Mass, and the third 200 km from 

the the first sounding at 43 ° N 69°14. Table lialicais the Boston and 

Portland wind from 1500 z. 

The average of these winds is 603 in sec-1. The transit times 

to the second and third sounding areas are 4.6 x 103 sec. and 3.2 x 104 

sec. The air measured over the Gulf thus left the land before sunrise 

and was already cool at the lowest layers from outward radiation. 

The stabilities of the air mass have been measured from Figure 3 

and entered in Table lib. Gradients of the mixing ratio have been measured 

and entered in Table II6. Table lid presents the fluctuation data obtained 

on this day. 



North of C. C. Canal North of Province ton 436N 69°w 
Height Range Stability Height Range Stability Height Range Stability 

in 	cm-1  x 108  in 	cm-1  x 108  in cnr1  x 108  

150 to 500 29 70 to 500 6 330 to 9)0 lo 
9)0 to 1000 3 500 to moo 9 500 to moo 8 
woo to 1500 21 1000 to 1500 21 1000 to 1500 14 

Table IIc 

Mixing Ratio Gradients 

North of C. C. Canal North of Provincetown 434 N 69'W 
Height Range Gradient Height Range Gradient Height Range Gradient 

in 	cm-1  x 108  in 	cm-1 x 108 in 	cm71  x 108  
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Table ha 	
. 

Pilot Balloon and Rawin Winds at Boston and Portland, Oct. 27, 1953, 15o0 z  

Height 	Boston Winds 	 Portland Winds 
meters 	Direction Velocity 	Direction Velocity 

T 
	

in sec-1 	 ° T 	in sec-1  

sfc - - 210 3.1 
300 230 6.8 190 2.6 
600 240 8.1 zoo 4.1 
900 - - 220 5.2 

1200 - - 230 7.2 
1500 - - 240 11.4 

Table IIB 

Stabilities of Air Regions 

150 to iloo -3.9 70 to 500 -2.6 330 to 1100 -201 
1100 to 1850 -0.9 500 to 1000 -5.5 1100 to 1260 -8.0 

low to 1850 -1.7 1260 to 1570 -2.6 

Table IId 

Turbulence and Flux data 

a. North of Cape Cod Canal, 1040 to 1125 EST 

	

-- ---- 	 _ -- 
Run No. Height 	a"; 	6-11 	 G-  T 	c 

	

--e-woul 	 r  101, 1 

in 	cm sec-1  cm sec-1  dyne .cm-2 	/1-0 mod)  cm-25ec -1 

486 180 27 27 -0.28 0.09 0.16 
488 280 47 46 0.88 0.10 -0.52 
489 460 9 lo -o.o4 - - 
490 760 111 8 0.02 0.02 -0.17 
491 1200 13 20 0001 0.05 0.21 
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Table lid (continued) 

Turbulence and Flux data 

b. North of Provincetown, 1140 to 1225 EST 

Run No. Height 	G-7w 	677a 	--wlui 	671- 	Cp( wT 
in 	cm sec-1  cm sec-1  dyne _cm-2 	*C mcal cm-2sec -1  

y.  
D 8  

498 
497 
496 
495 
494 
493 
492 
504 
503 
502 
501 
500 

	

50 	lo 

	

150 	1)4 	. 

	

290 	9 

	

580 	12 

	

910 	9 

	

1530 	lo 

	

1850 	19 

	

310 	23 

	

620 	11 

	

910 	6 

	

1200 	14 

	

1560 	13 

25 
25 
6 

16 
8 

21 
20 
23 
11 
12 
10 
17 

-0.02 
-0.18 
0.01 
0.08 
-0.00 
-0.05 
0.24 
-0.22 
-0.03 
-0.05 
-0.01 

0.05 
0.03 
0.07 
0.05 
0.05 
0.05 

0.11 

0.04 
0.03 

0.28 
-0.04 
-0.00 
-0,01 
-0.13 
-0.03 

- 
-0.07 

0.01 
0.08 

Figure 3 has been drawn presenting the psychrograph, wind and 

fluctuation data given in Table lid. It is seen that this situation is 

very similar to that of Case I, that is, the r-m-s velocities are very 

small as is also the stress and heat flux. Figure 4, the cross-section 

of the atmosphere shows the small values of the r-m-s vertical velocity 

8 	and its small variation from land to sea. 

Case III. December 7, 1953 

The series of observations taken on this day are most remark-

able for the large values of the r-m-s vertical velocities and shearing 

stresses observed over the land. A strong cold front passed the area 

around IDOO hrs EST, pushed by 20 to 30 m/sec winds. Equally remarkable 

is the manner in whiah the turbulence died off as the air blew out over 

the water which was almost exactly the sane temperature as the air. The 

stress dropped from 21 dynes am-2 to less than 1 dyne cm-2  during the 

1/2 . hours journey over the water. Two soundings were made on this - day„ 

one over land near Beverly, Massachusetts and the other over the water 

several kilometers north of Provincetown, Massachusetts. The two sounding 
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areas lie along the air trajectory and are about 40 km apart. Table Ina 

gives the Nantucket, Boston, and Portland 2100 z pibal Observations. The 

Boston wind was used exclusively for determining transit tines since the 

airplane observations were made so close to Boston. The air took 1600 - 

 sec to traverse the 40 km. 

It will be noted that the instability over the land was greater 

than any other air mass studied during the series. Although no soil tem-

peratures were Obtained, it is obvious that the sun-heated land was 

warmer than the air. The ground layer must have been warmed to a consid-

erable depth as the cold front was preceeded by a very warm period. The 

air retained a large part of its instability over the water even though 

the air and water were about equal in temperature. No fluxes of heat or 

water vapor could be determined on this day since the inversion at 1500 m 

was broken and the lower air mixed with the upper air. 

Table IIIc presents the mixing ration gradients found in the 

two sounding areas, while Table IIId presents the fluctuation data. 

Table IIIa 

Pilot Balloon Observations, 2100 z 

Height 

sfc 

Nantucket 	Mass _ 
*T 	m sec-1  

280 	8.3 

Boston, Mass. 
'T 	m sec-1  

Portland Maine 

	

° T 	m sec-1  

	

270 	8.9 
300 280 15 280 25 280 17 
600 290 16 280 25 290 21 
900 290 19 280 290 22 

1200 300 28 290 25 290 22 
1500 300 32 300 27 290 22 
1800 300 33 300 31 300 

The stabilities of the various layers of the atmosphere 

over Beverly and the water are contained in Table IIIb. 

5 
5 
5 
5 
5 



Table iiib 

Stabilities of Air Regions 
Beverly, Mass. 	 North .of Provincetown 

	

Height Range 	Stability 	Height Range 	Stability 
in 	 cmr1x.10 	 in 	 cnrix 10° 

	

150 to 500 	 -ID 
	

300 to 500 
	

-7 

	

500 to 1300 
	

2 
	

500 to 1000 
	

4 

	

1300 to 1600 
	

90 
	

IMO to 1500 
	

60 

Table Ilia 

Mixing Ratio Gradients 

Beverly, Mass. 	 North of Provincetawn 

	

Height Range 	Gradient 	 Height Range 	Gradient 
in 	 cm71x 108 	 in 	 cm-lx 108  

	

150 to 1430 	-0.4 
	

300 to iloo 	 -0.9 

	

1430 to 1785 	-0.4 
	

1100 to 1600 	 -0.4 

Table hId 

Turbulence and Fluctuation Data 

a. Over Beverly, Massachusetts, 1415 to 1455 EST 

Run No. Height 
in 

rw 
cm sec-1  

G-ii 
cm sec-1  

--pi uowl 
dyne_cm72 

T 
• 'C 

CID 	ja 	wITI 
mcal cm72 .sec-1  

522 150 127 130 8.7 0.05 0.03 
523 .300 197 173 21.3 0.06 -0.96 
524a '600 90 92 3.9 0.06 -0.92 
524b goo 33 47 -0.5 0.05 -0.08 
530 1500 42 37 0.9 0.50 -2.95 
531 1800 32 41 -0.1 0.19 -10.54 

b. Downwind Flight from Plymouth, Massachusetts to North of Provincetown 
Massachusetts, 1525 to 1535 EST 

534a 900 31 30 -0.30 0.07 -0.40 
b 900 42 38 0.34 0.08 -0.38 
c 900 74 90 -1.73 0.09 -0.37 
d 900 57 38 0.49 0.06 0.49 
e 900 69 39 -0.02 0006 0.18 
f 900 69 54 -1.47 0.06 -o.58 
g 900 41 58 -0.07 0.06 0,00 
h 900 32 39 -0.04 0.04 -0.01 
i 900 28 69 0.06 0.07 -0.01 

, 
c. North of Provincetown, Massachusetts, 1540 to 1610 EST 

535 300 43 54 -0.79 0.05 0.16 
536 600 42 55 -0.35 0.04 0.06 
537 900 24 29 0003 0.10 -0.15 
538 1200 30 38 -0.69 0.30 -o.52 
539 1680 24 16 0.41 001 0,07 
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This data together with the psychrograph data has been plotted 

on a height diagram, Figure 5, and a root-mean-square vertical velocity 

cross section, Figure 6. The magnitude of the turbulence and the changes 

in turbulence on this day are brought out in the diagrams which have the 

same scales as the other diagrams in this paper. 

Case IV. December 17, 1953 

The air on this day was the coldest of the series and consequently 

had the greatest temperature difference, 18sC, with the sea surface. The 

flow of air was moderate and steady from the northwest under the influence 

of a high over the midwest of the United States and a low over the Atlantic 

Ocean northeast of Newfoundland. Over the land 8/10 of the sky was covered 

with cumulus clouds, bases 14050 m, tops 1800 m. As the air moved out over 

the water the cumulus merged into I0/10 sky coverage and snow showers were 

observed frequently in the center of the Gulf of Maine. The turbulence 

over the water on this day was the greatest observed during the series. 

Aircraft soundings were made over the land near Portland, Maine 11 km off-

shore and 150 km offshore in a direction exactly downwind. The 2100 z 

pilot balloon wind observations are presented in Table IVa. Using the 

Portland pibals we find an average wind of 709 in sec-1  from the surface 

to 1200 m, giving a transit time of 1400 sec to the second sounding area 

and 19000 sec to the third area. Stabilities of the air are presented in 

Table IVb. 

Heat and water vapor fluxes have been computed but they are at 

best only crude approximations since much heat was liberated and water 

vapor lost through the process of snow showers. The value of the water 

vapor obtained between the land and the first offshore sounding is 29 x 

10-6  gm cm-2  sec-1 . This value is reliable since no showers were observed 

in this area. One value of the coefficient of turbulent mass transport 
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was computed to be 1200 gm cm-1  sec-1  although the process was primarily 

one of convection. The heat flux measured between the Lightship and 60* 

30 11d was 7.3 mcal cm-2 sec -1 . The observed mixing ratio gradients are 

presented in Table IVc, Table Did presents the fluctuation data obtained 

Table IVa 

Pilot Balloon Winds 2100 z 

ay Height 
in 

Nantucket 
Direction 	Velocity 

*if 
 

in sec-1  

Boston 
Direction 	Velocity 

*T in sec-1  

Portland 
Direction Velocity 

*T in sec-1  

sfc 310 4.7 _ _ 330 5.7 
300 310 5.7 320 8.3 340 7.8 

Lc 600 300 6.2 320 7.8 320 9.4 
900 300 6.2 310 9.4 310 10.4 

.3d 1200 
1500 

- 
_ 

- 
_ 

290 
280 

9.9 
9.9 

290 
_ 

6.2 
_ 

1800 - - 290 83 - - 

Table IVb 

Stabilities of Air Regions 

Portland, Maine 	Portland Lightship 
- 	Height Range Stability Height Range Stability 

in 	cm-lx 10° 	in 	cm-lx 100  

	

150 to 1500 	0.8 	50 to 1200 	0.4 

	

1500 to 2000 	37 

Table IVc 

Mixing Ratio Gradients 

Portland, Maine 	Portland Lightship 
Height Range Gradient Height Range Gradient 

in 	cm-lx 108 	in 	cm-lx 108 

	

150 to 1700 	-0.2 	50 to 1200 	-0.1 

	

1700 to 1850 	-2.0 

	

1850 to 1950 	0.0 

42*30 1 N 	68'30 1 1i 
Height Range Stability 

in 	 cm-lx 100  

150 to 350 	-19 
350 to 850 	6 

42° 30 1 N 	68'30 1 N 
Height Range Gradient 

in 	cm-lx 108 

150 to 850 	0.0 
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Table IVd 

Turbulence and Fluctuation Data 

Run No. Height 	49-w 	CI 	_..).; ulwt 	C-i 
in 	cm sec-1 	cm sec-1 	dyne 	cm-2 	°C 

a. 	Over Portland, Maine, 1340 to 1 )010 EST 

cpto wfv 
mcal cm-4sec°1  

542  150 133 60 2.1 0.1 1.60 
543 220 118 89 -2.6 0.11 2.2 
545 530 72 43 1.4 0.03 -0.3 
546 830 40 35 0.6 0.0 -0.08 
547 l000 62 45 1.8 0.08 -0.01 
548 1880 39 20 0.01 0.0 0.04 

b. Over Portland Lightship, 1450 to 1525 EST 

554 5o 91 111 -1.85 0.13 1.90 
553 140 112 81 2.67 0.08 0.63 
552 420 58 44 0.48 0.06 0.15 
551 610 57 58 0.13 0.03 0.12 
550 970 94 57 2.39 0.07 0.47 
549 1215 74 55 2.36 0.06 -0.43 

c. 	42°30 1 N 68°304, 1600 to 1620 EST 

557 140 93 90 1.11 0.13 1.95 
558 280 96 44 1.87 0.0 1.48 
559 560 131 78 1.61 0.11 1.95 

The above data is presented in graphic form as Figures 7 and 8 

axe V. December 23, 1953 

A cool air mass was blowing offshore from the northwest over the 

Gulf water which was about 60 0 warmer than the air. No low clouds were 

present over the land with a few tenths sky coverage of flat top cumulus 

north of Provincet own and 5 to 8/10 coverage of flat top cumulus at 

420 30'N, 68° 30 1111. The flatness of the cloud tops was caused by the sta-

bility of an intense inversion at 1200 m. Overland the potential tempera-

ture increased 6.5° C in 50 m. 

The sounding areas were chosen in an east-west line starting 

at Beverly, Massachusetts. The second two soundings were made 56 km and 

190 km offshore. The winds, which are presented in Table Va., actually 

came from a more northerly direction and showed a marked divergence. The 

HE 

12 
12 
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average wind for the lowest 1200 in was found to be 11.6 in sec -1, giving 

transit times of 4.8 x 103  sec and 11.6 x 103. The stabilities of the 

air layers are presented in Table Vb. The great stability of 480 x 10-8 

cm-1  is noteworthy and indicative of strong subsidence. 

Flows of heat were computed and found to be 4.7 meal_ cm-2  

1 sec-  between land and 70°15 1W and 6.9 _ 4c,al cm-2  sec-1, between 70° 15 1W 

and 6830 1W through the surface layer. Water vapor content of the air 

was not measured on this day due to failure of the humidity strip circuit. 

The data obtained on this day has been plotted and .presented as Figures 9 

and 10. 

Table Va 

Pilot Balloon and Radio Winds for 1500 z 

Height Nantucket 
Direction 	Velocity 

DT 
	

in sec-1  

Boston 
Direction Velocity 

° T 	in sec-1 

Portland 
Direction Velocity 

DT 	in sec-1  

sfc 320 8.3 250 7.8 
300 300 14.1 280 1200 270 10.4 
600 290 ah.1 290 12.0 290 10.9 
900 270 Th.1 300 13.0 290 9.4 

1200 - 260 15.6 290 17.3 300 8.3 
1500 260 21.4 270 22.4 290 9.4 
1800 260 25.5 250 26.0 260 11.0 

Table Vb 

Stabilities of the Air Regions 

Beverly, Mass. 
Height Range Stabilities 

in 	 cm-1  x 10 8  

42. 30N 	70°15'W 
Height Range Stabilities 

in 	 cm-1  x 108  

42°301N 	68°30W 
Height Range Stabilit4s 

in 	 cm-1  x 100  

150 to 700 	-1 	ho to hoo 	-1 	9) to vo 	o 

	

700 to 1200 	6 	400 to 1150 	4 	700 to 1000 	45 

	

1200 to 1250 	1480 	1150 to 1200 	480 	 - 

	

1250 to 1477 	145 	1200 to 1425 	45 	 - 
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Table Vc 

Turbulence and Fluctuation Data 

Run No. 

a. 

Height 
M 

Over Beverly, Massachusetts,- 1110 to 1145 EST 

drw 	0711 	,./-414,wout 
2 
ri 	Opol4 W I T/ 

cm sec-1 	cm sec-1 	dyne ce- 	C 	meal cM-2  sec ' 

563 150 123 111 2.49 0.07 0.62 
564 285 51 52 0.42 0.04 0.00 
565 570 45 37 0.26 0.03 -0.04 
566 860 75 44 0.52 0.02 -0.47 
567 1150 37 48 0.45 0.05 -0.06 
568 '1420 26 13 0.06 0.21 0.77 

b. Sounding at 424 30'N, 70p 15rW, 1155 to 1230 EST 

574 40 57 53 0.71 0.07 0.51 
573 150 66 35 -0.14 0.09 0.91 
572 280 100 64 1.47 0.05 0.01 
571 570 108 51 1.34 0.014 0.05 
570 um 36 46 -0.43 0.141 -0.28 
569 1420 14 13 0.001 0.08 0.01 

c. Sounding at 42° 30IN, 68° 30 1W, 1300 to 1325 EST 

580 50 54 46 -0.06 0.07 0.07 
579 150 68 59 0.81 0.05 0.25 
578 
577 

290 
580 

82 
87 

56 
39 

-0.36 
2.55 

0.06 
0.06 

0.47 
0.09 

576 840 39 ho 0.43 0.10 -o .44 
575 1620 12 15 -0.02 0.03 0.01 

Case VI., January 5, 1954 

This series of observations was made in a col between two 

coastal storms, one northeast of Newfoundland, the other over Virginia. 

Winds near the surface were light and generally from the northwest, while 

winds aloft were from the southwest bringing in a 10/10 cirrus overcast. 

The waters of Massachusetts Bay were about 6°C warmer than the air. Air-

plane observations were made along a 46 km line 150 in above the water 

from north of Provincetown, Massachusetts to Beverly, Massachusetts. 

There an ascent was made to 920 m, and then another sounding was made 

near the original point off Provincetown. The 1500 GCT pilot balloon 

and radio winds are presented in Table VIA. The average speed of the wind 

for tbe.lower layers is 3.0 in sec -1  and transit time 1.5 x 104 sec. 



- 21 _ 

The stabilities of the air layers are even in Table VIb, while 

the mixing ratio gradients are presented in Table VIC. The heat flux was 

found to be 1.6 crmal cm-2  sec, while the water vapor flux was found 

to be 2.5 x 10-6  gm cm-2  sec-. An austansch value of 800 gm cm -1  sec-1 

 was found. Turbulence and fluctuation data is contained in Table VId. 

Table VIa 

Pilot Balloon and Radio Winds, 1500 GOT 

Height 
in 

Nantucket 
Direction 	Velocity 

°T 	t sec-1  

Boston 
Direction 	Velocity 

*T 	in sec-1  

Portland 
Direction 	Velocity 

*T 	in sec-1  

sic 300 2.3 320 1.8 

300 260 5.5 280 3.2 330 2.3 

600 250 8.2 260 5.9 280 1.4 

900 250 10.0 270 8.7 250 2.7 
1200 240 9.5 260 10.0 270 5.0 
1500 240 9.5 250 1009 270 7.2 

1800 260 10.0 250 12.3 270 7.7 

Table VIb 

Stabilities of Air Regions 

Beverly, Mass. 	 North of Provincetown 
Height Range Stabilities 	Height Range Stabilit4s 

in 	cm-lx 108 	in 	cm-lx 100  

150 to 300 1 15 to 400 5 
300 to 900 79 400 to 700 120 

700 to 900 37 

Table VIC 

Nixing Ratio Gradients 
Beverly, Mass. 	 North of Provincetawn 

Height Range Gradient 	' 	Height Range Gradient 
in 	 cm73-x 108 	 in 	cprix 108  

300 to 900 	003 	 15 to 300 	-0.3 
300 to 400 	-10 
400 to 600 	1.5 
600 to 920 	0 

nd 
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Table VId 

Turbulence and Fluctuation Data 

Run No. 

	

a. 	Provincetown, Massachusetts to Beverly, Massachusetts 
Flight, 1105 to 1120 EST 

_ 	 - 
Height 	a7,,r 	Q u 	 T 	cp /0 

	

in 	cm sec-1 	cm sec-1 	dyne Gni' 	°C 	meal cm-2sec-1  

583 150 53 44 -0.01 0.06 0.37 
584 150 46 32 0.11 0.05 0.07 
585 150 49 58 0.98 0.06. 0.13 
586 150 58 36 0.13 0.05 0.22 
587 150 65 43 -0.05 0.05 0,60 
588 150 62 44 1.37 0.06 0.28 
589 180 52 36 0.33 0.04 0.19 
590 230 50 45 0.08 0.06 0.20 

b. Over Beverly, Massachusetts, 1120 to 1140 EST 

591 290 25 26 0.07 0.05 -0.01 
592 595 16 11 -0.02 0.04 0.11 
593 915 9 16 -0.003 0.03 -0.01 

c. Over water north of Provincetown, 1205 to 1230 EST 

600 15 44 39 -0.18 0.09 0.68 
599 45 50 39 0.33 0.07 0.51 
598 95 39 26 0.142 0005 0015 
597 305 33 33 0.18 0.08 -0.25 
596 440 15 12 -0.06 0.04 0.01 
595 610 16 21 0.10 0.10 -0003 
594 915 12 24. 0.11 0.11 0.14 

Case VII, January 7, 1954 

A moderate north westerly wind was blowing offshore under the 

influence of a high over Louisiana and a low off Newfoundland. The 

water temperature was about 8 ° C warner than the air aa it left the land. 

As a result, convection started soon after the air left the coast and 

cumulus clouds increased until a convlete overcast was present over the 

final sounding area. These soundings were made in a down-wind line, one 

over the land, one 18 km offshore, and the last, 190 km offshore. The 

observed 1500 z winds are presented in Table Vila. Transit tines for the 

air were 2.4 x 10 3  seconds and 2.4 x 104  seconds. The heat flux into the 

column was found to be 5.5 meal cm-2  sec°1  between land and 18 km offshore 

and 3.7 meal cm-2  sec-1  between 181cm and 190 km. 
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Table Vila 

Pilot Balloon and Radio Winds, 1500 z 

Height 
in 

Nantucket 
Direction 	Velocity 

° T 
	

in sec-1  

Boston 
Direction 	Velocity 

° T 	in sec-1  

Portland 
Direction 	Velocity 

*T 	in sec" 

sfc 290 7.8 - - 290 3.6 
300 280 11.0 290 10.4 300 4.2 
600 280 9.9 300 11.4 320 3.6 
700 280 9.9 310 10.4 350 2.1 

1200 280 12.0 300 9.4 330 2.1 
1500 280 14.1 290 11.0 280 4.7 
1800 280 13.5 280 12.0 270 8.3 

Table VIIb 

, 	Stabilities of Air Regions 

Newburyport, Massachusetts, 18 km offshore, 42° 30 1 N 
68°30 1w 

Height Run Stability 	Height Run Stability 	Height Run Stability 
in 	cm-lx 10° 	in 	cm-lx 10° 	in 	cm-lx 10° 

150 to 900 	-0.2 	50 to 400 	-1 	50 to 600 	0.0 
900 to 1400 52 

	

	400 to l000 +6 	600 to 750 	io 
1000 to 1400 +65 

Table Virc 

Turbulence and Fluctuation Data 

a. Over Newburyport, Massachusetts, 1100 to 1130 EST 

Run No. Height m Or-w 
cm sec 1-  

fru 
cm sec-1  

-- ?:;71-1717  67i, 
 dyne cm-2 	*C 

__---- 
coo wilt' 

meal cm72  sec-1  

602 135 97 71 0.87 0.10 0.71 

604 300 1113 102 3.37 0.08 1.11 
605 550 86 60 1.40 0.07 -0.26 
606 820 61 49 -0.96 0.05 0.12 
607 1130 37 28 0.12 0.32 1.44 
608 1410 24 26 -0.02 0.08 -0.07 

b. 	18 km offshore, 1135 to 1200 EST 

613 55 68 46 -0.11 0.11 1.28 
612 140 95 49 0.78 o.o6 0.39 
611 260 76 58 -0.76 o.o6 0.34 
610 570 42 31 -0.59 0.04 0.05 
609 890 67 56 -0.23 o.o6 -0.08 



Run No, 

616 
617 
618 
619 
620 

Table VIIC (continued) 

c. 4230 0 N 68°30% 1300 to 1320 EST 

Height 	0-W 	, 	0-u. 	--t° ill ul C-T 

	

in 	cm sec 	cm sec-1  dyne cur 2 	*C 

55 	69 

	

140 	79 

	

270 	58 

	

550 	98 

	

740 	46 

cp e w?T? 
meal cm-2  sec-1  

68 1.84 o.ol 5 0.46 
58 1.15 0.1C 1.63 
35 0.41 0.0! 5 0.19 
55 1.44 0.0 5 0.99 
32 -0.22 0.0 5 -0.40 

Case VI/I. January 29, 1954 

On this day there was a strong northwest flow of cold air out 

over the Gulf as a result of an intense law pressure area northeast of 

Newfoundland. The air was subsiding and consequently clear; except for, 

at most, 2/10 sky coverage by cumulus clouds over the water. In spite 

of the small  amount of cumulus clouds present, intense convection was 

going on as a result of the 13'C difference in water and Air temperature. 

One sounding was made over Portland, Maine. A down wind flight 

was made to 42*30 1 N, 68*30 114 at 350 m above the sea. Six turbulence runs 

were made at five minute intervals during the flight. A regular sound-

ing with turbulence runs were made at the terminus of the flight. Runs 

were obtained at 0, 31, 52, 73 1  105, 1)45, and 175 km offshore. 

An average wind speed of 10.2 in sec-1  is determined from the 

1500 z winds which are reproduced here. Transit time of the air column 

to the final sounding area is 1.7 x 104 seconds. The stabilities of the 

air column are presented in Table VII1b. The observed mixing ratio gradient 

are tabulated in Table VIIIc. The heat and water vapor flaws computed 

from the change in heat and water vapor content of the air column were 

found to be equal to 2.8 meal cm-2  sec-1  and 2.3 x 10-6  gm cm-2  sec-1 , 

giving a coefficient of mass exchange of 770 gm cm-1  sec-, 
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Direction Velocity 

° T 	m sec-1  

Boston 
Direction Velocity 

° T in sec-1  
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Table Villa 

Pilot Balloon and Radio Minds, 1500 z 

Height 
1 

sfc 
300 
600 
900 

1200 
1500 
1800 

Portland 
Direction Velocity 

° T 	m sec-1  

,Iu 	4 • e 	 - 	 - 	 250 	3.1 

300 	6,3 	280 	5.6 	290 	3.6 
300 	7.2 	 300 	5.1 	310 	5.1 
300 	9.4 	 320 	7.8 	340 	8.9 
310 	10.3 	 320 	10.3 	350 	12.5 
320 	10.3 	 310 	11.0 	 - 	- 

320 	13.9 	 310 	11.0 	330 	15.6 

Lent 

Table VIIIb 

Stabilities of Air Regions 

Portland, Maine 	 42- JO'N 	OCT JU 'w. 

Height Range StabilitiRs 	 Height Range Stabilities 
in 	cm-1  x 100 	 in 	cm-1  x 108 

230 to 650 	11 	 90 to  740 	3 

	

650 to 1220 	55 	 740 to 1350 	4o 

Table VIIIc 

Mixing Ratio Gradients 

• Portland, Maine 	 42°  30 IN 	68° 30 1W 
Height Range Gradients 	 Height Range Gradients 

m 	cm-1  x 108 	 m 	cm-1  x 108  

	

230 to 450 	-0.4 

	

450 to 600 	.„7 

	

600 to 1200 	+0.2 

Table VIIId 

Turbulence and Fluctuation Data 

Height 	a-W 	 19-11 	.....70  W t U i 	Oni 

m 	cm sec-1  cm sec-1  dyne cm-2 	00 

a. Over Portland, Maine 1330 to 1400 EST 

	

235 	86 	29 	0.76 	0.10 

	

370 	142 	49 	1.07 	0.07 

	

655 	23 	34 	0.33 	0.17 

	

925 	14 	12 	-0.13 	0.08 

	

1220 	22 	29 	0.60 	0.13 

75 to 730 	-0.3 
730 to 1400 	0 

Run No. 

635 
636 
637 
638 
639 

c- "ft il ;w 1 T 1  
mcal cm-2  sec-1  

0.82 
-0.35 
-0.76 
-0.11 
-0.57 
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Table VIIId (continued) 

	

Run No. Height 	17..w- 
 

01 	twluo v  T 	cnrytT 1  , 

	

in • 	cm sec-1  cm sec- 	e_cm-2 	°C mcal"cm 4  sec' 

b. 	Downwind flight from Portland, Maine to 42 ° 30'N, 68°30 1 1i, 
1405 to 1440 EST. 

640 320 51 49 0.31 0.07 -0,35 
641 315 122 50 1.23 0.09 0.98 
642 340 bo 42 0.12 0.07 -0.18 
643 370 75 54 0.14 0.07 0.76 
644 340 104 63 -1.73. 0.07 0.67 
6145 360 79 37 1.24 0.04 0.47 

c. 42°30% 686 30% ihb5 to 1530 EST. 

646 85 92 78 3.88 0.14 1.94 
647 185 108 59 -0.56 0.21 3.50 
648 340 121 55 0.75 0.08 2.21 
649 630 44 40 1.10 0.13 0.89 
650 875 18 15 0.06 0.10 -0.29 
651 1140 16 18 -0.24 0.05 0.06 
652 1380 13 10 0.54 

B. Mean(; maps. 

Two maps have been prepared to show the geographical variation 

of the vertical component of the turbulence. The first map, Figure 17, 

shows the variation of G1  at 300 in as it moves over water that is cooler 

than the air. Values of the turbulence over the land is usually high 

due to convection over the heated land. The turbulence drops off rapidly 

as the stability of the air is increased by the cool water. The air on 

December 7, 1953 almost was in equilibrium with the water. 

The second map, Figure 18, was drawn up to show the range of 

values found when the water is warmer than the air. It is seen that the 

turbulence increased, or maintained its land values as the air was heated 

by the water and convection was established in the air. 

* temperature variations too small to measure 



- 27 - 

III. Average Values and empirical eelations 

A. Average variation ofrw andCil with height. 

The average values Of the root-mean-square vertical and horizon-

tal deviation component6 of the turbulent wind has been found for several 

height ranges for both stable and unstable case over water and over land. 

The averages are presented in Table 1. 

These averages show a general pattern with small valuesdafthe 

root-mean-square deviation velocities close to the ground or water in-

creasing to a broad maximum in the 50 to 500 in range and a slaw decrease 

as the temperature inversion or stable layer capping the ground layer is 

approached. The greater values of 6r4 and 6ril over the land in comparison 

with the over water unstable case is interpreted to be the result of the 

greater roughness of the land; since wind and stability conditions were 

about the same in each case. In the case of stable air over the water 

the turbulent velocities are exceedingly small as a result of the great 

amount of. turbulent energy required to displace the stable air and the 

relative smoothness of the water surface. 

B. The ratio ofck tool as a function of height and tempera-

ture contrast. 

The present set of data lends itself to the study of the ratio 

of the vertical r-m-s velocity to the horizontal r-m-s deviation velocity. 

It is desired to see if this ratio varies with height above a surface or 

with temperature contrast between the surface and the air. 

First, it is necessary to check the data to see if there are 

any systematic differences between4rk anda-u. As no tower comparisons of 

07.1 were made and no flight test can reveal any such difference, the only 

check possible is the determination of the over all value of the ratio of 
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Height Range 
Dl 

0- to 50 
50 to 100 

100 to 230 
200 to 500 
500 to 1000 

1000 to 2000 
2000 up 

Table 1 

Averages of6r4 and 0--u over Land and Water 

Land 	 Water 
Unstable Stable . 

0-7,04-711 	 010 trat 6-fil oro 

	

cm.sec-1 	 cm sec-1  cm sec-1  

- 	 - 	 47 	39 - 	- 
_ 	_ 	 72 	64 13 16 

1403 	81 	 70 	58 12 	8 
93 	69 	 70 	46 17 18 

, 55 	41 	 54 	40 	9 14 
30 	29 	 19 	19 14 14 
39 	20 	 _ 

Height Range 
in 

0 to 50 
50 to 100 

100 to 200 
200 to 500 
500 to 1000 

1000 to 2000 
2000 up 

Table 2 

Shearing Stress Averages 

Average Mind 	Land 
Land Stations 

in sec-1 	 dy cm-2  

6.5 

3.70 

	

7.9 	 3.73 

	

9.3 	 0.83 

	

11.6 	 0.54 
0.01 

Water 

	

Stable 	Unstable 
dy cm-2  dy cm-2  

0.26 

	

0.07 	0.95 

	

0.03 	1.47 

	

0.14 	0.62 

	

0.08 	0.79 

	

0.06 	0.33 

Height Range 
In 

0 to 50 
50 to 100 

100 to 200 
we to 500 
500 to moo 
moo to 2000 

Table 3 

_ - 
Heat Flux Averages Computed from cp pwiTt 

. _Water 
Lana 	 Stable 	 Unstable . 

mcal ce2sec-1 	 meal cm-2sec-1  meal cm72sec-' 

- 	 0.28 	 0.68 
0.51 	 -0.05 	 0.57 
0.72 	 -0.01 	 1.05 
0.66 	 0.01 	 1.01 
-0.07 	 0.02 	 0.28 
-0.18 	 0.01 	 -0.08 
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The average ove011 heights for the unstable case is 1.25 while 

the average of s11  stable cases is 0.93. The average for both cases, 

giving equal weight to the two ratios is 1.09. As this ratio is nearly 

1 and the ratio: to be discussed in the next paragraph are greater than 

2, it is concluded that systematic errors may 	considered negligible. 

The data has been studied by plotting ratios of leu on a 

height-temperature difference diagram, Figure 19. When the ratios were 

plotted and contours drawn, a pattern emerged which shows the effect 

of the sea-air temperature contrast. The main feature of the pattern is 

a maximum of the ratio located roughly between 300 and 600 m above the 

surface and at greater than a 5° C excess of the water temperature above 

the air temperature. The maximum is the net result of the forces 

of buoyancy, viscosity, and turbulence and any theory attempting to des-

cribe the processes operating in an atmosphere with these stability con-

ditions must be able to predict the observed maximum. 

In other regions of the graph there is a wide scatter in the 

values of the ratio, but the mean value is roughly 1. Much of the 

scatter if produced by the exceedingly small r-m-s velocity values so 

that a difference of only 1 cm sec -1  may make a difference of 0.1 in 

the ratio. Above 1000 in much of the scatter is caused by varying heights 

-1 	of the ground layer inversion. 

A 0.5 contour has been drawn in at the bottom of the graph, 

although there is only a weak suggestion that it may exist. Data taken 

in other studies such as tunnel and tower studies and one value of 0.5, 

obtained by the PBY over the Atlantic Ocean in an unstable atmosphere 

at 15 m, indicate such a decrease exists. Damping of the vertical 

component by the boundary surface is the cause of the decrease of the 

ratio. 
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C. Variation of the stress with height over land and water. 

Averages of the shearing stresses have been found and tabulated 

in Table 2. 

A glance at this table will show that the stresses of the three 

groups differ widely from one another. The overland values are several 

tines as large as the unstable over-water group. Since the degree of 

instability and the wind speed of these two groups are about the sane, 

it is concluded that the roughness of the land has a large effect upon 

the shearing stress. The relation between the averages of the stable 

and unstable air masses is of particular interest because of the exceed-

ingly small values of the stress in the stable case. The wind speed of 

the stable case is about 1/2 of the speed in the unstable case, yet the 

stress is much less than the 1/4 expected with such relative wind speeds. 

This small relative stress is attributed to the turbulence-damping ability 

of the stable air. 

The variation of the stress with height is of great importance 

since it does not agree with the distribution observed in channels and 

generally accepted as describing the meteorological case. The accepted 

picture is that of a stress of zero at the height of the gradient wind 

increasing regularly to a maximum value at the boundary surface. The 

height distribution over the land may agree with this picture although 

no measurements were made within 100 in of the surface. Measurements 

made over the plains of Nebraska (to be published in a G.R.D. paper) 

indicate that the airplane-measured stresses reached a maximum at the 

lowest level measured, 18 m, in all but one series of observations. 

Perfect agreement with stress measuring equipment mounted in the ground 

was not attained, but no significant differences were obtained between 

the lowest airplane measurements and the ground equipment. 
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It should be noted that Scrases (1930), Cramer and Becord(1953), 

Observed an increase in the stress with height, while Panof sky (1956) ob-

served a maximum of the stress at the 46 m or higher levels of the 

Brookhaven tower on all but one of his measurements. He suggested the 

maxima to be caused by the presence of trees upwind of the tower. 

Scrasels Observations have been similarly explained. The presence of 

an increase over the Gulf of Maine indicabes that the phenomena is of 

a much more general character and most likely is related to the thermal 

wind, variation of the turbulence intensity with height, and accelerations 

of the air. It seems most likely that the change in the sign of the volume 

,1-  
frictional force l o'-;:q, results in an acceleration of the air. If this 

is the case, a carefully planned Observing program must be set up to mea-

sure each one of these factors. The equation that applies to the problem 

of an increasing stress with height is, in conventional vector notation, 

which accounts for the acceleration of a particle, changes in the pressure 

field due to heating along the trajectory, Coriolis force and the varia-

tion of the stress with height. Accelerations, downstream heating, and 

changes in the intensity of the turbulence are all considered important 

in the case since all of these factors are present in both Panofsky's 

studies at Brookhaven and the present studies over the Gulf of Maine. 

D. Average values of the heat flux. 

The values of the heat flux have been averaged for several 

height ranges over the land, and for the stable and unstable groups over 

the water. These averages are tabulated in Table 3. 

Before interpreting the values in the table, let us state clearly 

what quantities are measured by the airplane technique. The heat flow 

computed from averaging the individual products of wiT 1  is the net flux 
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composed of a downgradient flow due to turbulent diffusion from the warm 

inverstion air and the upward flow produced by the convection of parcels 

heated by the water. Hence the total amount of heat entering the ground 

layer from both the top and bottom will be greater than the value found 

at any given level by the airplane measuring technique. The larger 

values of the heat flux measured from the temperature changes confirm 

this conclusion. From the small values measured in the two cases of 

great stability (Oct. 20 and Oct. 27) it is concluded that an appreciable 

amount of heat is transported by gusts with temperature deviations too 

small to be detected by the thermopile. The thermopile record was read 

to the nearest 001°C while the temperature variations of the smallest 

gusts were less than this value. Thus the heat temperature variations 

of the smallest gusts were less than this value. Thus the heat trans-

ported by the smoll gusts cannot be measured accurately by the present 

system, and the flux values due to diffusion will be systematically low. , 

 The fluxes due to large scale diffusion and convection will be recorded 

faithfully. 

Returning to the table of fluxes, it is seen that the maximum 

flux recorded in the unstable column is 1 mcal cm -2  sec-1  yet the aver-

age flux for these cases as measured by the temperature change method 

is about 4 meal cm-2sec-1 . If both upward and downward fluxes Were 

measured accurately throughout the spectrum of diffusion and convection, 

then we could conclude that 2.5 mcal cm7 2  sec-1  entered the layer from 

the bottom and 1.5 mcal cm7 2  sec-1  entered from the top. However, as 

we know the measurements are systematically low, we can only say that, 

heat enters from the top and bottom but not specify the relative amounts. 

The small negative values found in the stable cases show that 

technique gives the correct sign of the flux, but compared with the flux 
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found from temperature changes, gives values at least one order of mag-

nitude too small. The negative values found in the 1000 to WOO in 

range for all three classes prove that there is an important heat flow 

downward from the warmer air aloft. Presumably these measured values 

are also too small by a factor of 100 

The increase.inthe flux with height is the lowest 100 in is 

puzzling if real, but may be the result of much of the heat flow being 

outside of the spectral range of the thermopile and airplane technique. 

E. Stability and sea, Air, and inversion potential tempera-

ture differences. 

One of the unexpected results of the present study was the lack 

of a relation between the static stability-  of the air and the temperature 

difference between the air and the water. It was assumed that cool air 

flowing over warm water would display a negative stability. It was found 

that in the lowest 50 in to 300 in range negative stabilities are observed 

frequently, but not consistently 9  whenever air flows over warmer water. 

Above the 300 m level only one negative stability was observed. In the 

higher regions of the ground layer above the 300 in level the stabilities 

became positive and increased slowly up to the height of the inversion 

when they increased rapidly as the inversion is encountered. 

Data on stabilities and temperatures have been collected in 

Table 4. Stabilities are given for each major region of the atmosphere 

studies. Heights are not given but maybe obtained from Section II. 

Potential temperatures are tabulated for the water surface, for the main 

body of the ground layer at the point farthest from shore, and for the 

base of the warm air above the inversion. The last two columns give the 

temperature differences of the water and air, and the air and the inver-

sion air. 



- 34 - 

From a comparison of the tabulated Stabilities and temperature 

differences it is clear that while there is a weak relation between the 

temperature difference and stability of the lowest air many of the observa-

tions show no relation. For example, a stability of -7 x 10-8 cm-1 was 

found for December 7 where the temperature difference was only - 0.5°C and 

a stability of 3 x 10-8  cm°1  was found on January 29 when the difference 

was 12°C0 The case of December 7 may be explained as residual instability 

retained from the instability set up over the land. The rest of the 

cases are the result of great stability aloft and turbulence in the lower 

layers. 

Here their turbulence is actively mixing downward the warm air 

of the inversion region as well as mixing upward the air warmed by the 

water. Hence an airplane flying as low as SO in may completely miss re-

cording the instability of the air although it will encounter numerous 

convective currents carrying heat upward. Thus the stability of the 

air as measured by the airplane frequently gives no clue to the nature of 

the underlying surface. The presence of warm convective currents does, 

however, prove to be a good indicator of a want' underlying surface. It 

is these convective currents that contribute the upward component of the 

heat flux in a stable atmosphere in accordance with Priestleygs theory 

(1954)0 A confirmation of this theory was made by Bunker (1956), using 	; 

data obtained by airplane on a Rhode Island to Bermuda flight. 

The relation of stability of the upper region of the ground 

layer to the ground layer potential temperature minus inversion layer 

air potential tenverature inconsistent in sign since all values are 

positive. However, the magnitude of the stability does not follow the 

magnitude of the temperature difference very well. This scatterisbrought 

about by the variation in the magnitude of the turbulence in the various 

cases. 
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F. Relation between G/u, ,7i/4.  and water minus air temperatures 

Studies of turbulence by other workers have shown that the general 

amplitude of the atmosphere turbulence increases with increasing stability. 

The present data have been used to establish the relation between the water 

minus air temperatures and the root-mean-square vertical and horizontal 

turbulence deviation velocities. To demonstrate this relation, values 

of OW an.d0—u, divided by the gradient wind, were plotted against the water-

air temperature. The values observed at 300 in are presented in Figure 20. 

It is seen that a strong relation exists between the turbulence and the 

temperature differences. Bothrw/u and 4rVia increase with greater posi-

tive temperature differences, butOrw ./u increases much more rapidly; as 

might be expected from buoyancy considerations. Mean lines have been 

drawn through the points which curve upward, although this is only a hint 

from the data that the lines should not be straight. 

A similar chart could be made for the overland cases if soil 

surface temperatures were available. Any plot based on stabilities of 

the air leads to a scatter of points. This is due to the poor relation 

discussed earlier between the observed stabilities of the air and the 

difference in temperatures between the air and the underlying surface. 

G. Turbulence in atmospheres with nearly neutral stability. 

On three occasions measurements of turbulence, stress, and heat 

flows were made in air masses that were of nearly neutral stability. One 

of these cases, Dec. 7, 1553, was measured 40 km offshore. Upwind over 

the land, the air WAS very' unstable and turbulent. Another was observed 

over land on Dec. 17, 1953, while the third properly belongs to a different 

series of observations but will 'be reported upon here. The observations 

were made near Bermuda at a tine of strong (26 in/see) winds from the 

northwest. In Table 5 are listed values of Ow andrit/u for the 300 m level. 

It is noted that the ratio is highest over land, but with considerable 
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variation among the over water values. The relation between the Dec. 7 

3. measurement and the Jan. 20, 1955, measurement is particularly signifi-

cant since the air 40 km offshore had only 1/2 hour previously atirW of 

197 cm sec-1  while the Jan. 20 must be considered an equilibrium state 

of turbulence since the air had been flowing at about the same velocity 

over about the same surface for 20 hoUrs or better. 

The only conclusion that can be drawn from such a small number 

of observations is that the turbulence over land is greater than over 

the water for a given wind speed. 

Calculations based on the hixing length theory. 

The classical mixing length theory of von K -1,Pmgn provideS a 

convenient basis for discussing observations of diffusion although its 

value is being diminished by the develowent of more basic theories of 

turbulent diffusion. Nevertheless, it may be profitable at this point 

to compare a few austausch values with root-mean-square vertical veloci-

ties and make an estimate of root-mean-square mixing lengths. Values of 

the coefficient of turbulent mass exchange and w are entered in Table 6. 

The coefficient values presented were computed from heat or water vapor 

flows and gradients on the only four days which yielded reliable results. 

Too few values are available to establish whether a linear re-

lation exists between the coefficient andrk or a square low exists, from 

the definitional equation 

/4 	,,e/e/- 
 

',A5 /  

it is seen that A would be a function of wf 4 sincedrit might be expected 

to be proportional to 6-Tr. 

A value of j  may be computed from this equation if r is 

assumed to be 0.8. Using A = 1200, and wi = 131, ,r . . 115 m. This 

L. [ 	value is consistent with the presence of connection in the air mass. 



-38- 

Table 5 

Values of 	arldr4/u at 300 m in atmosphere GT neutral stability. 

Date Surface- 47#  
cm sec-1  

07w/u 
x 102 

Dec. 7, 1953 Water 43 1.7 

Dec. 17, 1953 Land 118 13 

Jan. 20, 1955 Water 111 5.8 

Table 6 

Values of the Coefficient of Turbulent mass exchange andG. 

Date Coefficient 11-M-S Vertical Velocity 
cm sec -1 

Oct. 20, 1953 10 13 

Dec. 17, 1953 1200 130 

Jan . 5, 1954 800 60 

Jan. 29 1  1954 770 120 
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Using A = 10 and w = 13, Ae . 10 m. These values may be in error because 

of the assumptions made, but serve to give .a rough idea of the vertical 

distance traveled by the gust before they lose their identity. 

IV Summary of results 

The observations obtained during this brief experiment have 

established the orders of magnitude of the turbulent velocities and fluxes 

associated with various combinations of stabilities, wind speed, and sur-

face roughness. It was found that root-mean-square vertical velocities 

varies from a low value of 6 cm sec-1  obtained in a stable air mass over 

water to a maximum of 197 cm sec -1  in an unstable air mass over land. The 

root-mean-square horizontal deviation velocities have a similar range 

and pattern. 

Both components of the turbulent deviation velocities are observed 

to increase with height up to a broad maximum in the 100 in to 500 in height 

range and to decrease slowly with height up to the inversion level. In 

the inversion layer the turbulent velocities drop to very low values. 

This variation with height need not be discussed in detail since this varia-

tion has been observed previously, although the range of values had not 

been established. The variation of theCrii.  andGna with height emphasizes 

the errors that may result from using an assumption of constant eddy diffu-

sion or viscosity with height in anythetml. This danger has been recognized 

for many years and is the greatest fault of theories such as the Ekman wind 

spiral. 

The ratio of the root-mean-square vertical velocities to the root-

mean-square horizontal deviation velocities and its variation with height 

and stability of the air is a valuable bit of information for the study 

of turbulent flow near a surface or an inversion. It is seen thatra 

becomes relatively large close to the surface indicating a damping of 



the vertical component by the surface. In unstable air the buoyancy of 

the warmer air amplifies the vertical component of the wind so thee'wka 

becomes greater than 2. 

Possibly the greatest contribution of the present work is the 

determination of the magnitude of the shearing stresses and the varia-

tion of the stress with surface roughness, wind speed, height and sta-

bility. The variation with stability is most pronounced, ranging over 

water surfaces from only a 0001 dyne cm -2  to about it dyne cm-2 . This 

dependence of stress upon stability as well as wind speed forces new con-

sideration of the energy balance of both the atmospheric circulation and 

the oceanic wind-driven circulations. 

In addition to the stress supplied by the wtul product, another 

stress due to the TOR product should be mentioned. This stress is of the 

same order of magnitude as the wlul stress but is of less importance 

14'40 because of the small resulting volume frictional force, 	. This 
, 

at—irumw) 	_ 
force is at least an order of magnitude smaller than 	since IPplIke 

changes appreciably in 10 1 s of kilometers while-760W changes a similar 

amount in a single kilometer in the vertical. 

As mentioned above, the gradient of the shearing stress in the 

vertical is large 2  and except for an increase in the lowest layer, is 

negative. Thus an appreciable retarding force acts upon the moving air 

mass. In the lowest layer where the gradient is positive an accelerating 

force is indicated. Although the causes and results of this positive 

gradient have not been determined, it seems clear that this gradient is 

not a steady state phenomenon and probably has a rather small effect 

upon the large scale circulation pattern. In certain regions where rapid 

changes of temperature and surface roughness occur, appreciable accelera-

tions of the air may occur. 
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-A comparison of the heat flaws computed by theCe7wITI and the 

c  dp 	
T methods shows that the cross product technique gives a value that 

represents the total sensible heat flow as long as heat is being added to 

the air mass from one direction only. When heat is added from both top 

and bottom, the cross product gives the net flow of heat through any sur-

face. The average net flow was found to be about 1 mcal cm -2  sec-1  from 

unstable air and much smaller positive and negative flows in the stable cases. 

The downward heat flow observed in air masses flowing from land 

out over warmer water is the direct result of the degree of turbulence of 

the air and the stability of the air aloft. Because of the stability aloft 

and the turbulence, a stable lapse rate was established from the ground 

layer inversion down to a few hundred meters from the water surface. Thus 

it is seen that the observed stability of the ground layer has a very poor 

relation to the relative temperature of the sea and air. This phenomenon of 

stability is produced by the large scale subsidence of the air flowing from 

the northwest. 

The effect of surface roughness upon turbulence was studied by com-

paring observations of 	obtained on days of similar stability. The study 

showed that the land produced from 2 to 6 times as great a value ofTWu as 

the water surface produced. 

At the beginning of this program of observational studies it was 

planned to enter fluxes and gradients into the classical diffusion equation 

and obtain values of the coefficient of turbulent mass exchange for heat, 

water vapori and momentum. It was soon found, however, due to the fluxes 

of heat against the gradient and the existence of increases of stress with 

height, that the diffusion equation failed to be any aid in the descriptions 

or understanding of the processes operating in the atmosphere. As no suit-

able general theory of turbulence in the atmosphere has been developed, we 

must, for the time being, cling closely to the details of the observed struc-

ture of convective panels and of turbulence. 
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