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Sources of noise (CEP 9.3)

When transmitting a signal over a channel, it is typically subject to:

• Interference, caused by the transmissions of other communicating devices.

• Sky noise, caused by the emission of radio waves by warm bodies in space, the
atmosphere and on the surface of the Earth.

• Johnson noise, caused by the thermal agitation of electrons within the transmitter
and receiver circuits.

• Shot noise, caused by random fluctuations in the number of electrons that flow as
a current within the transmitter and receiver circuits.

• Quantum noise, caused by random fluctuations in the number of photons that flow
in an optical fibre.

• Flicker and partition noise, caused by semiconductors.
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Additive White Gaussian Noise (CEP 9.4 – 9.5)

• All sources of noise can be thought of as being combined into a single source of
Additive White Gaussian Noise (AWGN).

• Suppose we have a digitally modulated signal v(t), which was obtained using FSK,
ASK, PSK or digital-QAM, for example.

• If we transmit this over a channel that introduces AWGN, the received signal will
be corrupted according to v̂(t) = v(t) + n(t), where n(t) is the AWGN.

• The AWGN n(t) is additive because it is added to the signal v(t).

• The AWGN n(t) is white because its amplitude spectrum is flat within the bandwidth
of the signal v(t) (white light has a flat amplitude spectrum within the visible part of
the electromagnetic spectrum).

• The AWGN n(t) is Gaussian because its value at a particular time t resembles a
random value chosen from a Gaussian distribution having a mean of 0 and a standard
deviation of σ.
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Additive White Gaussian Noise (CEP 9.3 – 9.5)
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Bit errors

• Noise in the received signal v̂(t) can cause the demodulator to make mistakes when
recovering the bit sequence that is conveyed by the transmitted signal v(t).

• These so-called bit errors cause a 0 to be recovered when a 1 was transmitted and
vice versa.

• The Bit Error Ratio (BER) is the fraction of bits that suffer from bit errors.

• The BER typically increases as the AWGN standard deviation σ is increased.

L8/12: p5/19 5



ELEC1011 Communications: Channel Coding Rob Maunder

Channel coding (CEP 1.4.3.3)

• Channel coding can be used to allow a receiver to mitigate the bit errors in its
recovered bit sequence.

• The transmitter’s channel encoder inserts some carefully chosen redundancy into
the bit sequence.

• A channel decoder mitigates the bit errors in the information bits by considering
the redundant bits that were inserted by the channel encoder.

• The simplest example of a channel code is a repetition code.
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Repetition coding

• For each information bit in the bit sequence, the repetition encoder inserts two
redundant replicas of it - e.g. 00110 becomes 000000111111000.

• Suppose that noise in the channel causes the 1st, 5th, 11th and 12th bits in this
sequence to suffer bit errors, giving 100010111100000.

• The repetition decoder considers three bits at a time and uses them to vote for the
value of the decoded bit, giving 00100.

• Note that not all of the bit errors were corrected because a repetition code isn’t a
very strong code.

• A repetition encoder has a coding rate of Rc = k/n = 1/3 because it outputs
n = 3 encoded bits whenever k = 1 information bit is input.

• Using channel coding and M -ary shift keying (see Lecture 5), the symbol rate is
given by Rs = Rb/(log2(M)Rc), where Rb is the information bit rate.
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Channel capacity (CEP 6.6.3)

Shannon’s channel capacity law states that a channel code can be designed to mitigate
(nearly) all of the bit errors caused by a noisy channel, provided that the number of
information bits transmitted per second Rb does not exceed the channel capacity C,
i.e. if Rb < C.

The capacity of an AWGN channel (in bits per second) is given by C = B log2(1+S/N)
where:

• B is the bandwidth used to convey the bit sequence (in Hertz),

• S = limT→∞
1
T

∫ T

0
|v(t)|2dt is the signal power (in Watts),

• N = limT→∞
1
T

∫ T

0
|n(t)|2dt = σ2 is the noise power (in Watts),

• S/N is the Signal to Noise Ratio (SNR), which may be expressed in decibels as
10 log10(S/N).
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Bandwidth efficiency

Bandwidth efficiency is given by η = Rb/B in bits/s/Hz (see Lecture 5). Therefore it
is possible to mitigate (nearly) all bit errors if η < log2(1 + S/N).
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Implication for M-ary shift keying schemes
• Using a channel coding rate Rc, the information bit rate Rb and the symbol rate Rs

are related according to
Rb = log2(M)RcRs.

• For M -ary ASK, PSK and digital-QAM, the bandwidth is given by B = Rs (see
Lecture 5), resulting in a bandwidth efficiency of

η =
Rb

B
=

log2(M)RcRs

Rs
= log2(M)Rc.

• For M -ary FSK, the bandwidth is given by B = 1
2(M + 1)Rs (see Lecture 5),

resulting in a bandwidth efficiency of

η =
Rb

B
=

log2(M)RcRs
1
2(M + 1)Rs

=
2 log2(M)
M + 1

Rc.

• Therefore, it is possible to mitigate (nearly) all transmission errors when using any
information bit rate Rb over an AWGN channel having any SNR S/N , provided that
we choose a channel coding rate Rc that reduces the bandwidth efficiency so that it
satisfies η < log2(1 + S/N).

• However, a lower bandwidth efficiency η implies that we require a higher bandwidth
B.
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Hamming code

• A Hamming code is a more sophisticated channel code than a repetition code.

• A sequence x of k = 4 information bits are input into a Hamming encoder at a
time.

• In response, the Hamming encoder outputs a sequence y of n = 7 encoded bits.

• The coding rate of the Hamming code is therefore Rc = k/n = 4/7.
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Hamming encoding

• Hamming encoding is achieved using
the generator matrix G and the modulo-
2 matrix product

y = G · x

y1
y2
y3
y4
y5
y6
y7


︸ ︷︷ ︸

y

=



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

G

·


x1

x2

x3

x4


︸ ︷︷ ︸

x

• For example

y1 = 1 · x1 ⊕ 1 · x2 ⊕ 0 · x3 ⊕ 1 · x4

= x1 ⊕ x2 ⊕ x4

y2 = x1 ⊕ x3 ⊕ x4

y3 = x1

...

• Here, a⊕ b is the modulo-2 sum of the
binary values a and b.

a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

• For example, when x = [ 1 0 1 1 ]T , we get y = [ 0 1 1 0 0 1 1 ]T .
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Hamming decoding
• When the codeword y is transmitted over a noisy channel it will be received as ŷ,
which may contain some bit errors.

• Hamming decoding can mitigate the bit errors errors using the parity check matrix
H and the modulo-2 matrix product

s = H · ŷ

 s1
s2
s3


︸ ︷︷ ︸

s

=

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


︸ ︷︷ ︸

H

·



ŷ1
ŷ2
ŷ3
ŷ4
ŷ5
ŷ6
ŷ7


︸ ︷︷ ︸

ŷ

• Using the resultant n − k = 3-bit syndrome s, the Hamming decoder decides if it
thinks there are any bit errors in ŷ.
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Hamming decoding cont

• If the syndrome is s = [ 0 0 0 ]T then the Hamming decoder thinks there are no
bit errors in ŷ (it may be wrong though).

• In this case, it outputs x̂ = [ ŷ3 ŷ5 ŷ6 ŷ7 ]T since y3 = x1, y5 = x2, y6 = x3

and y7 = x4 in G.

• If the syndrome s is not equal to [ 0 0 0 ]T then its 3-bit number is converted
into a decimal number i ∈ [1, 7].

• In this case, the Hamming decoder thinks that the ith bit in ŷ has been flipped by
a bit error (it may be wrong though).

• The Hamming decoder flips the ith bit in ŷ before outputting x̂ =
[ ŷ3 ŷ5 ŷ6 ŷ7 ]T .
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Some examples
x y ŷ s x̂ Notes

1000 1110000 1110000 000 1000 The Hamming decoder correctly determines that

there are no bit errors in ŷ.

1101 1010101 1000101 011 1101 The Hamming decoder correctly identifies and

corrects the bit error in the 3rd bit of ŷ. A Hamming

decoder can correct a single bit error in ŷ.

0011 1000011 0001011 101 0111 The Hamming decoder correctly determines that

there are bit errors in ŷ, but it incorrectly thinks

that the 5th bit is in error. A Hamming decoder

can detect the presence of two bit errors in ŷ, but

it cannot correct them.

0000 0000000 0010110 000 1110 The Hamming decoder incorrectly thinks that there

are no bit errors in ŷ. A Hamming decoder cannot

(always) detect the presence of three bit errors in

ŷ.
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Legitimate permutations

• There are 2k = 16 possible permutations of the Hamming encoder’s k = 4-bit input
x.

• Although there are 2n = 128 possible permutations of a n = 7 bit sequence, only
2k = 16 of these are legitimate permutations of the encoder’s n = 7-bit output y.

• For example, 1110000 and 0000000 are legitimate permutations of y, as shown on
the previous slide.

• By contrast, 1000000 is not a legitimate permutation of y, for example.

• Whenever ŷ is not a legitimate permutation of y, the syndrome s will have a value
other than 000 and the Hamming decoder can be sure that there are bit errors in ŷ.

• In this case, the syndrome s identifies which bit of ŷ can be toggled to give the
legitimate permutation of y that is most similar.
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Hamming distances

• In general, channel decoders assume that there are a low number of bit errors in ŷ
and therefore attempt to correct them by selecting the legitimate permutation of y
that has the lowest number of differing bit values.

• The number of bits that differ between two bit sequences is called the Hamming
distance d.

• For example, d(1110000, 0000000) = 3.

• The strength of a channel code is proportional to the minimum dmin of the Hamming
distances between each pairing of the legitimate permutations of y.

• For an Rc = 4/7 Hamming code, dmin = 3.

• In general, a channel code can correct up to bdmin−1
2 c bit errors and can detect

dmin − 1 bit errors.
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Exercise

For the case of a Rc = 4/7 Hamming code, fill-in the empty boxes in the following
table. For each case, explain if the decoder is able to detect the presence of bit errors
and if it is able to correct them.

x y e Number of
bit errors

ŷ = y ⊕ e s x̂

0001 0001000
0000000 1001

0 0011001
1 1010111

1101001 0100000
0111100 1 110

1011 1110011
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Exercise cont

x y e Number of
bit errors

ŷ = y ⊕ e s x̂

0111 0
0010110 1110110

1101 1110000
0000100 1011110

1000 0010010
1001 001 1001
0000 111 0101
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