Confidence Intervals (Cls)

\qquad
\qquad
\qquad
\qquad
\qquad

[^0]| Learning Outcomes |
| :--- |
| Following this session you should be able to: |
| - Understand the concepts and interpretation of |
| confidence intervals; |
| - Explain how they are derived |
| - Understand how they can be used to assess precision |
| - Demonstrate how they are should be presented |
| - Use software to calculate them |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Soutiramplof

Point Estimation

- Provides Single Value
- Based on Observations from 1 Sample
- Gives No Information about how close our value is to the unknown Population Parameter
- Example: Sample Mean $(\bar{X})=50$

Point Estimate of unknown Population Mean

Estimation from a population
- The population is defined as the group about whom
statements will be made
- If a representative sample is taken conclusions from
the sample can be generalized to the wider group

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southamplon Understanding Statistical notation		
Population		Sample
Mean	μ	$\bar{\chi}$
Standard Deviation	σ	$\begin{gathered} \mathrm{S} \\ \text { (SD Std Dev) } \end{gathered}$

Southameripo
 sidociofmald

Estimating the mean of a continuous variable

Repeated sampling from the population gives samples means whose frequency distribution (sampling distribution) properties are:

- The mean of this distribution would be the population mean μ

- The standard deviation of this distribution of sample means is called the Standard Error (SE)

Southamploin

Standard Error (SE)

- The Standard Error measures how precisely the population mean is estimated by the sample mean
- SE is estimated by the sample SD divided by the square root of the number of observations

$$
S E=\frac{S D}{\sqrt{n}}
$$

| Estimating the mean of a continuous |
| :--- | :--- |
| variable |
| - Using the properties of the normal distribution we |
| can estimate the range in which the unknown |
| population mean lies |

Estimating the mean of a continuous
variable
- This range is called the 95% confidence interval about
the mean
- It is calculated as:
Sample mean $\pm 1.96 *$ Standard Error
- All values within the confidence interval are
reasonable values for the population mean that
generated the observed sample
- It gives an idea of the precision of the estimate
from the sample size available

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Different forms of Confidence
Intervals
- Continuous outcome variables : Means, Medians
- One sample
- Two sample (difference)
- \quad Categorical outcome variables : Proportions
- One sample proportion
- \quad Two sample proportion (difference)
- \quad Odds ratio (OR) \& Relative risk (RR)
- \quad Standardised Mortality ratios

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Southamentof Edrodiocreviliog
Alternative Distributions	
Different Confidence Interval calculations require different theoretical distributions	
Means (small numbers)	t distribution
Standardised Mortality ratios	Poisson distrubution
Medians	Binomial Distribution
They all need a sample estimate and a standard error	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southamploin

Associaton between Cl and P values

Differences in Continuous measures or proportions

- If $95 \% \mathrm{Cl}$ includes $\mathbf{0}$ then p value will be greater than 0.05
- If $95 \% \mathrm{Cl}$ does not include $\mathbf{0}$ then p value will be less than 0.05

Ratios and Risks

- If $95 \% \mathrm{Cl}$ includes 1 then p value will be greater than 0.05
- If $95 \% \mathrm{Cl}$ does not include $\mathbf{1}$ then p value will be less than 0.05
$99 \%=0.01$
Cl \& Hypothesis Testing

If Cls do not cross at a significance level (say 5\%, then hypothesis testing
is significant but the opposite is not always true?
Confidence intervals No overlap

Can conclude that there is
a real difference between
the two groups

Confidence intervals overlap
about difference without further
information

Southiamploton

geloolotymidios:

Example 1: Interpreting a rate

- Sample of 1106 pregnancies, estimated rate of congenital abnormality was $\mathbf{4 . 2 \%}$ (95\%CI 3.0\%to 5.3\%)
- The 'true' population rate could be as low as 3.0\%
- The 'true' population could be as high as 5.3\%
- There is a 1 in 20 chance that our estimate is wrong and that the true population value is outside this range
- Our best estimate of congenital abnormality is 4.2%
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southamploin

```
Example 2: Interpreting a difference between two means
- Mean birthweight was measured in a sample of 15 non-smokers ( 3.59 Kg ) and 14 heavy smokers ( 3.20 Kg )
- The difference in the mean weight was 390 g ( \(95 \% \mathrm{Cl} 60 \mathrm{~g}\) to 721 g )
- The \(95 \% \mathrm{Cl}\) excludes 0 , therefore the difference is statistically significant (P will be less than 0.05)
- Although the difference is significant, our estimate of the Percentage difference is 390 / \(3400=11.5 \%\)
- Is this clinically important?
```


Southamsproin
 gibolocmeridoe
 Example 3: Interpreting differences

- Length of stay in hospital

Group $1(\mathrm{n}=392)$ Mean stay 37 days
Group $2(n=368)$ Mean stay 41 days

- Difference $=4$ days $(95 \% \mathrm{Cl}=-2$ to 9$)$ days
- $95 \% \mathrm{Cl}$ includes 0 , not statistically significant ($\mathrm{P}>0.05$)
- The study has been unable to rule out that the true difference could be 9 days
- Lack of evidence of a difference is NOT EVIDENCE of no difference!

Southiamprocon

sidoolofmaidoe

Example 4: Interpreting proportions

- RCT of flu vaccine
- Infection rate of placebos 80/220 (36\%)
- Infection rate for subjects 20/240 (8\%
- Difference in rates $28 \%(95 \%$ Cl 21% to 35%
- $95 \% \mathrm{Cl}$ excludes 0 , difference was significant ($\mathrm{P}<0.001$)
- The true difference is at least 21% best estimate is 28%
- Vaccine clearly demonstrates protective effect
- But...... side effects, consider costs, generalisability
\qquad

Southamplocin

Confidence Intervals (CIs) or P values?

- Leading medical journals recommended both when reporting the main study results
- Use of Cls recommend by the ICMJE
- Over emphasis on the P values detracts from more useful approaches when interpreting study results
The problem with P values
- Wrong type of thinking through use of arbitrary cut
off at a predefined level (5%)
- Low quality information with
P<0.05, $\mathrm{P}>0.05, \mathrm{P}=\mathrm{NS}$
- $\mathrm{P}=0.049$ is declared as significant and
$\mathrm{P}=0.051$ as not significant
- Cut off leads to statistical significance being equated
with clinical significance

Southumproc
 givolofmatido

The problem with P values continued

- A very small improvement, 1% of one treatment compared to another may be statistically significant (P <0.001)
- Only quoting P values may lead uncritical reader into thinking that treatment A was more effective than treatment B
- A clinically important effect may be non- significant because of a small sample size

\qquad
\qquad
\qquad
\qquad
\qquad

	Soutthemprof
Table of CIA features	
$\frac{4 \text { Mean and her ardiferenes }}{5 \text { median and }}$	Sinte
6 Proontions and theid difeencos	Singee Tow samples
7 Epp d	
8Regession and coreration	Singele 8 To samples
9 Tmelo Evenstsudes	Singe 8 T wo semple Hazard Ralo
	Sonsin
10 Iignosicis sudies	Likelihood ratio Area under ROC curves
111 Cincicaltrals and Meatanaysis	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southempiocm

A Common Question
What is the difference between Reference Range and
Confidence Interval?
Reference Ranges refer to Individual values and
Confidence Intervals to Estimates
Reference Range uses Standard Deviation
Mean ± 1.96 * Std Deviation
Confidence Interval uses Standard Error
Mean ± 1.96 * Std Error

Southamploin

Quoting Confidence Intervals

- They are not required for all results
- Not required for the mean response of subjects to treatments A and B, if major outcome was the difference between treatments A and B
- Generally restricted to the main outcome of the study which is usually a contrast (difference) between means or proportions

Southamprof
 midoolofmiadoe
 Quoting Confidence Intervals

The difference between the sample mean systolic blood pressure in diabetics and non-diabetics was 6.0 mmHg , with a 95\% confidence interval from 1.1 to 10.9 mmHg the t test statistic was 2.4 with 198 degrees of freedom and an associated P value of 0.02

Mean difference was $6.0 \mathrm{mmHg}(95 \% \mathrm{Cl} 1.1$ to 10.9 mmHg)

Southiampipon

sidociofmaladoe

Summary

- Indicate the (im)precision of sample estimates as population values
- They give a range of values for the estimated population parameter (difference)
- They depend on
- Sample size (larger sizes give narrower CIs)
- Variability of parameter being estimated
- Degree of confidence required ($90 \% 95 \% 99 \%$)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary
- Indicate the (im)precision of sample estimates as
population values
- They give a range of values for the estimated
population parameter (difference)
- They depend on
- Sample size (larger sizes give narrower CIs)
- Variability of parameter being estimated
- Degree of confidence required (90\% 95\% 99\%

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southamploin

References

- Altman D.G., Machin D., Bryant, T.N. \& Gardner M.J. Statistics with Confidence. 2nd Edition. BMJ Books 2000

Altman, D.G. Practical Statistics for Medical Research. Chapman and Hall 1999. Chapter 8.

- Bland M. An Introduction to Medical Statistics. 3rd Edition. Oxford Oxford Medical Publications 2000 \qquad
- Machin D. Campbell M.J. \& Walters S.J. Medical Statistics: A textbook for the Health Ściences. 4th Edition, 2007. Chapters 7 \& 8
- Kirkwood B.R. \& Sterne J.A.C. Essential Medical Statistics. 2nd Edition. Oxford: Blackwell Science Ltd 2003
http:// www.blackwellpublishing.com/ essentialmedstats/ default.ht m Chapters 6 to 8 (and others).
- Altman DG, Bland JM. (1995) Absence of evidence is not evidence of absence. BMJ 311485.

Questions?

[^0]: Dr Trevor Bryant

