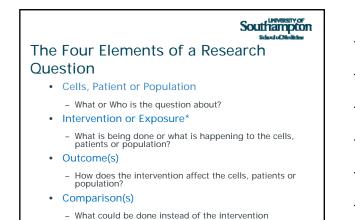
Southampton stool of Medicine

Hypothesis Testing

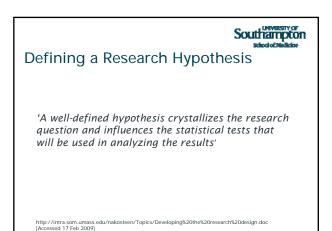
Dr Trevor Bryant

Southampton

Learning Outcomes


Following this session you should be able to:

- Understand the concept and general procedure of hypothesis testing
- Understand the concept and interpretation of P values
- Explain the relationship between CI (point estimate ± 1.96 x S.E) & Hypothesis Testing
- Describe Type I & Type II Errors


Southampton

Hypothesis testing - milestones

- Develop the research question
- Develop the research hypothesis
- State it as a statistical hypothesis
- Test the hypothesis
- · Was it a good idea?
- Next question(s)

*Intervention is intentional whereas an exposure is incidental

Southampton

You cannot prove a hypothesis

- Falisifiability
 - (Karl Popper, 1902-1994)
- Scientific laws cannot be shown to be True or False
- They are held as Provisionally True
- 'All Swans are White'
 - (David Hume, 1711-1776)

What is a Hypothesis?

- A tentative statement that proposes a possible explanation to some phenomenon or event
- A useful hypothesis is a testable statement which may include a prediction
- Any procedure you follow without a hypothesis is not an experiment

Southampton adodeStellator

Formalized Hypothesis

- IF and THEN
- · Specify a tentative relationship
- **IF** skin cancer is related to ultraviolet light, THEN people with a high exposure to UV light will have a higher frequency of skin cancer

Dependent variable

Independent variable

Southampton

Disproving a hypothesis

- Collect evidence
- If evidence supports current hypothesis Hold hypothesis to be *Provisionally True*
- If evidence does not support hypothesis Reject hypothesis and develop new one
- Statistical testing uses Null Hypothesis
 - No difference unless unlikely event (p)
 - Alternative hypothesis a difference?
 - Swans

3

Statistical Hypothesis testing -Overview

- Define the problem
- State null hypothesis (H₀)
- State alternative hypothesis (H $_{\rm 1})$
- Collect a sample of data to gather evidence
- Calculate a test statistic

 $Test \ statistic = \frac{observed \ value - \ hypothesised \ value}{standard \ error \ of \ observed \ value}$

- Relate test statistic to known distribution to obtain P value
- Interpret P value

Southampton

Defining the problem

• The null hypothesis assumes No Effect

 $\mathbf{H}_{\mathbf{0}}$: There is no treatment effect in the population of interest

- The *alternative hypothesis* opposite of null hypothesis
 - \mathbf{H}_{1} : There is a treatment effect in the population of interest

Note: These are specified before collecting the data, they relate to the population not the sample and usually no direction is specified for the effect

Southampton

Calculating the test statistic

The test statistic summarises the data from the sample in a single number. It's size indicates the amount of evidence gathered for either hypothesis

- The choice of test statistic will depend on the type of data collected and the hypotheses of interest
- 'Large' test statistic more evidence for H₁
- Values of the test statistic are standardized and can 'compare to published tables' calculated

How do we choose the test statistic?

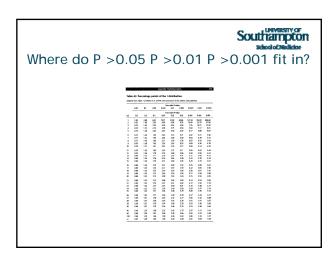
- What is the measurement of interest? *Means, proportions, etc*
- What is the distribution of the measurement Normal or skewed
- How many groups of patients are being studied? 1, 2, 3 or more
- Are they independent groups?
 or paired

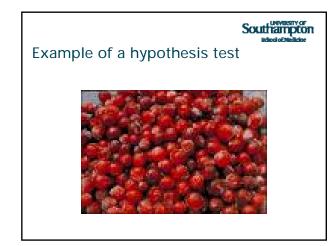
Southampton

Interpretation of the P value

The P value is the probability of getting a test statistic as large as, or larger than, the one obtained in the sample if the null hypothesis were true

It is the probability that our results occurred by chance


Southampton


Interpretation of the P value (2)

- By convention, P values of <.05 are often accepted as "statistically significant" in the medical literature
- It is an arbitrary cut-off
- A cut-off of P <.05 means that in about 5 out of 100 (1 in 20) experiments, a result would appear significant just by chance ("Type I error")
- We can use other P values for example 0.01

Interpretation of the P value (3)

- Large P value (usually > 0.05)
- Likely to have got results by chance if $\rm H_{0}$ was true
 - Accept null hypothesis
 - Result is non-significant
- Small P value (usually < 0.05)
- Unlikely to have got results by chance if H₀ was true
 - Reject null hypothesis accept alternative hypothesis
 - Result is significant

Example of a hypothesis test

Randomised controlled trial of cranberry-lingonberry juice and Lactobacillus GG drink for the prevention of urinary tract infections in women. Kontiokari et al. BMJ (2001) 322: 1571-3

150 women were randomised to three groups (cranberrylingonberry juice, lactobacillus drink or control group).

At six months, 8/50 (16%) women in the cranberry group, 19/50 (38%) in the lactobacillus group, and 18/50 (36%) in the control group had had at least one recurrence.

Question: Is there any EFFECT of cranberry to prevent infection?

Southampton

Example of a hypothesis test

What is the Hypothesis?

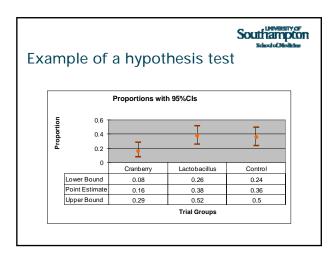
If women drink cranberry-lingoberry juice then there will be a reduction in the recurrence of urinary tract infection

Statistical Hypothesis

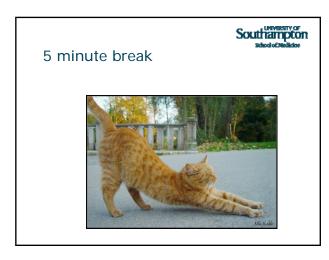
Null H_0 : There are no differences in recurrence rates among women in the population who drink cranberry-lingoberry juice, lactobacillus drink or neither of these

Alternative H_1 : There is a difference in the recurrence rates between these three groups in the population

Example of a hypothesis test


• Which test should be used?

Chi-squared test

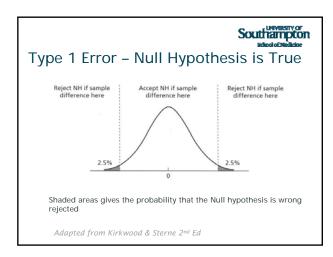

- What is the test statistic?
 - X^2 7.05, P = 0.03
- How to interpret the result?

Reject null hypothesis

There is a significant difference in recurrence rates between these three groups (based on 5% significance)

Err	ors in H	lypothesis tes	Southampto stoodeChecklose
	Jury's verdict	True state of Defendant	
		Defendant really is Guilty	Defendant really is Innocent
	Guilty	✓ Correct Decision	×
	Not guilty	×	✓ Correct Decision

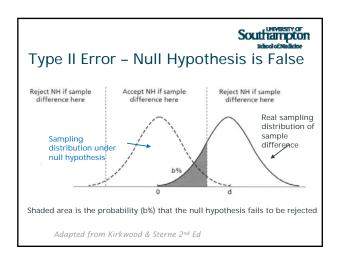
ypes of Error in hypothesis testing						
	True state of null hypothesis - Reality					
Statistical Decision	Null hypothesis is True	Null Hypothesis is False				
Accept	H ₀ accepted correctly	Type II error (β)				
Reject	Type I error (α)	H ₀ rejected correctly				

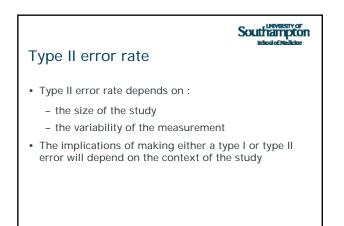


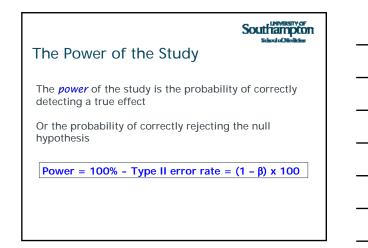
Type I error

The probability that we reject null hypothesis when it is true

Southampton


- 'False positive'
- Rejected H_0 because the results occurred by chance
- Conclude that there is a significant effect, even though no true effect exists
- Probabilities of Type 1 error called alpha (α) Determined in advance, typically 5%





Type II error

- The probability that we accept null hypothesis when it is false
- 'False Negative'
- Accept H₀ even though it is not true
- Conclude that there is no significant effect, even though a true difference exists
- Probabilities of Type II error called beta (β)

Southampton

The Power of the Study (2)

• The power will be low if there are only a few observations

taking a larger sample will improve the power

The power will be low if there is variability amongst the observations

reducing variability will improve power

- Ideally we would like a power of 100% but this is not feasible
 - usually accept a power of 80%

Things to consider

We can never be 100% certain that the correct decision has been reached when carrying out a hypothesis test

An hypothesis test cannot prove that a null hypothesis is true or false. It only gives an indication of the strength of evidence

References:

- Altman, D.G. *Practical Statistics for Medical Research*. Chapman and Hall 1991. Chapter 8
- Kirkwood B.R. & Sterne J.A.C. *Essential Medical Statistics*. 2nd Edition. Oxford: Blackwell Science Ltd 2003. Chapter 8
- Machin D. and Campbell M.J. *The Design of Studies for Medical Research*, John Wiley and Sons 2005 Chapter1

Questions	Southannoton sidoolo20edidoe