Hypothesis Testing

Dr Trevor Bryant

Learning Outcomes
Following this session you should be able to:
- Understand the concept and general procedure of
hypothesis testing
- Understand the concept and interpretation of P values
- Explain the relationship between CI (point estimate \pm
1.96 \times S.E) \& Hypothesis Testing
- Describe Type I \& Type II Errors

Southempion
gidolotmaildoe
Hypothesis testing - milestones

- Develop the research question
- Develop the research hypothesis
- State it as a statistical hypothesis
- Test the hypothesis
- Was it a good idea?
- Next question(s)

Southamplocin

The Four Elements of a Research Question \qquad

- Cells, Patient or Population
- What or Who is the question about?
- Intervention or Exposure*
- What is being done or what is happening to the cells, patients or population?
- Outcome(s)
- How does the intervention affect the cells, patients or population?
- Comparison(s)
- What could be done instead of the intervention
*Intervention is intentional whereas an exposure is incidental

Southaminplon shedousmast
Defining a Research Hypothesis
'A well-defined hypothesis crystallizes the research question and influences the statistical tests that will be used in analyzing the results'

Southinmpion
 geloolotwalitos

\qquad
\qquad
\qquad
'A well-defined hypothesis crystallizes the research question and influences the statistical tests that will be used in analyzing the results' \qquad
\qquad
\qquad
http:// intra.som.umass.edu/ nakosteen/ Topics/ Developing\%20the\%/20research\%/20design.doc
[Accessed 17 Feb 2009] Accessed 17 Feb 2009$]$ \qquad

You cannot prove a hypothesis
- Falisifiability
- (Karl Popper, 1902- 1994)
- Scientific laws cannot be shown to be True or False
- They are held as Provisionally True
- 'All Swans are White'
- (David Hume,1711-1776)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southampron

What is a Hypothesis?

- A tentative statement that proposes a possible explanation to some phenomenon or event
- A useful hypothesis is a testable statement which may include a prediction
- Any procedure you follow without a hypothesis is not an experiment

Formalized Hypothesis
- IF and THEN
- Specify a tentative relationship
- IF skin cancer is related to ultraviolet light, THEN
people with a high exposure to UV light will have a
higher frequency of skin cancer
Dependent variable
Independent variable

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southamsiplof shaoiofmeidios

Disproving a hypothesis

- Collect evidence
- If evidence supports current hypothesis Hold hypothesis to be Provisionally True
- If evidence does not support hypothesis Reject hypothesis and develop new one
- Statistical testing uses Null Hypothesis
- No difference unless unlikely event (p)
- Alternative hypothesis - a difference?
- Swans
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southampron

Statistical Hypothesis testing - Overview

- Define the problem
- State null hypothesis $\left(\mathrm{H}_{0}\right)$
- State alternative hypothesis $\left(\mathrm{H}_{1}\right)$
- Collect a sample of data to gather evidence
- Calculate a test statistic

Test statistic $=\frac{\text { observed value }- \text { hypothesised value }}{\text { standard error of observed value }}$

- Relate test statistic to known distribution to obtain P value
- Interpret P value

Southamprocon

Defining the problem

- The null hypothesis assumes No Effect
\mathbf{H}_{0} : There is no treatment effect in the population of interest
- The alternative hypothesis opposite of null hypothesis
$\mathbf{H}_{\mathbf{1}}$: There is a treatment effect in the population of interest

Note: These are specified before collecting the data, they relate to the population not the sample and usually no direction is specified for the effect
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southameriplon givolofmatido

Calculating the test statistic

The test statistic summarises the data from the sample in a single number. It's size indicates the amount of evidence gathered for either hypothesis

- The choice of test statistic will depend on the type of data collected and the hypotheses of interest
- 'Large' test statistic - more evidence for H_{1}
- Values of the test statistic are standardized and can 'compare to published tables' - calculated
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating the test statistic
The test statistic summarises the data from the sample in
a single number. It's size indicates the amount of
evidence gathered for either hypothesis
- The choice of test statistic will depend on the type of
data collected and the hypotheses of interest
- 'Large' test statistic - more evidence for H_{1}
- Values of the test statistic are standardized and can
'compare to published tables' - calculated

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southampron

\qquad
How do we choose the test statistic?

- What is the measurement of interest? Means, proportions, etc \qquad
- What is the distribution of the measurement Normal or skewed
- How many groups of patients are being studied?

1, 2, 3 or more

- Are they independent groups?
or paired

Interpretation of the P value
The P value is the probability of getting a test statistic
as large as, or larger than, the one obtained in the
sample if the null hypothesis were true
It is the probability that our results occurred by chance

Southemantor
 gidolotmaildoe

Interpretation of the P value (2)

- By convention, P values of <. 05 are often accepted as "statistically significant" in the medical literature
- It is an arbitrary cut- off
- A cut- off of $P<.05$ means that in about 5 out of 100 (1 in 20) experiments, a result would appear significant just by chance ("Type I error")
- We can use other P values for example 0.01
\qquad

Interpretation of the P value (3)

- Large \mathbf{P} value (usually >0.05)
- Likely to have got results by chance if H_{0} was true
- Accept null hypothesis
- Result is non-significant
- Small P value (usually <0.05)
- Unlikely to have got results by chance if H_{0} was true - Reject null hypothesis - accept alternative hypothesis
- Result is significant

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southamplion

Example of a hypothesis test

Randomised controlled trial of cranberry-lingonberry juice and Lactobacillus GG drink for the prevention of urinary tract infections in women. Kontiokari et al. BMJ (2001) 322: 1571-3

150 women were randomised to three groups (cranberrylingonberry juice, lactobacillus drink or control group).

At six months, 8/ 50 (16\%) women in the cranberry group, 19/ 50
(38%) in the lactobacillus group, and $18 / 50(36 \%)$ in the control group had had at least one recurrence.

Question: Is there any EFFECT of cranberry to prevent infection?
Example of a hypothesis test
What is the Hypothesis?
If women drink cranberry- lingoberry juice then there
will be a reduction in the recurrence of urinary tract
infection
Statistical Hypothesis
Null H_{0} : There are no differences in recurrence rates
among women in the population who drink cranberry-
lingoberry juice, lactobacillus drink or neither of these
Alternative H_{1} : There is a difference in the recurrence
rates between these three groups in the population

Southiamploton
 gdvoloesmaidor

Example of a hypothesis test

- Which test should be used?

Chi- squared test

- What is the test statistic?
$X^{2} 7.05, P=0.03$
- How to interpret the result?

Reject null hypothesis
There is a significant difference in recurrence rates between these three groups (based on 5\% significance)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Errors in Hypothesis testing

Jury's verdict	True state of Defendant	
	Defendant really is Guilty	Defendant really is Innocent
Guilty	\checkmark Correct Decision	\mathbf{x}
Not guilty	\mathbf{x}	\checkmark Correct Decision

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

		Southanive
Types of Error in hypothesis testing		
Statistical Decision	True state of null hypothesis - Reality	
	Null hypothesis is True	Null Hypothesis is False
Accept	H_{0} accepted correctly	Type II error (β)
Reject	Type I error (α)	H_{0} rejected correctly

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southrimplycon stadocemesm

Type I error

- The probability that we reject null hypothesis when it is true
- 'False positive’
- Rejected H_{0} because the results occurred by chance
- Conclude that there is a significant effect, even though no true effect exists
- Probabilities of Type 1 error called - alpha (α) Determined in advance, typically 5%

Southamenporon
 midolocmaildoe

Type 1 Error - Null Hypothesis is True

Shaded areas gives the probability that the Null hypothesis is wrong rejected

Adapted from Kirkwood \& Sterne $2^{\text {nd }}$ Ed
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Southamploin

Type II error

- The probability that we accept null hypothesis when it is false
- 'False Negative'
- Accept H_{0} even though it is not true
- Conclude that there is no significant effect, even though a true difference exists
- Probabilities of Type II error called - beta (β)

Southinamplof

Type II error rate

- Type II error rate depends on :
- the size of the study
- the variability of the measurement
- The implications of making either a type I or type II error will depend on the context of the study

Southamploin

The Power of the Study

The power of the study is the probability of correctly detecting a true effect \qquad
Or the probability of correctly rejecting the null hypothesis \qquad

Power = 100\%- Type II error rate = $(1-\beta) \times 100$ \qquad
\qquad
\qquad

Southemproin gideol of mididas

The Power of the Study (2)

- The power will be low if there are only a few observations
taking a larger sample will improve the power
- The power will be low if there is variability amongst the observations
reducing variability will improve power
- Ideally we would like a power of 100% but this is not feasible
usually accept a power of 80\%

Southiampriplon

 shoolofmelationThings to consider

We can never be 100% certain that the correct decision has been reached when carrying out a hypothesis test \qquad
An hypothesis test cannot prove that a null hypothesis is true or false. It only gives an indication of the \qquad strength of evidence
\qquad
\qquad
\qquad

Southamplicin

References:

- Altman, D.G. Practical Statistics for Medical Research. Chapman and Hall 1991. Chapter 8
- Kirkwood B.R. \& Sterne J.A.C. Essential Medical Statistics. 2nd Edition. Oxford: Blackwell Science Ltd 2003. Chapter 8
- Machin D. and Campbell M.J. The Design of Studies for Medical Research, John Wiley and Sons 2005 Chapter1

Questions

