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1 A rough sketch of the schedule of lectures

Week 1 Introductory material
Definition of real numbers; field axioms
Definition of ordered field; definition of bounded

Week 2 Definition of supremum, infimum; basic properties
Definition of sequence; limn→∞ an = L; examples
Arithmetic of limits; inequalities and the squeeze rule

Week 3 Examples of limits
Bounded monotone sequences converge; l’Hopital’s rule
Cauchy criterion

Week 4 δ − ε definition of limx→a f(x) = L
Convergence of series (partial sums); geometric and harmonic series
Examples of series; Euler’s constant

Week 5 Comparison, limit comparison tests (series with non-negative terms)
Integral test (series with non-negative terms)
Ratio and root tests

Week 6 General series; absolute vs. conditional convergence
Alternating series
Rearranging conditionally convergent series

Week 7 Power series; radius and interval of convergence
Taylor series (as example of power series)
Function → series → function

Week 8 Algebra of power series; differentiation, integration; uniqueness
Definition of continuity
Properties of continuity; sequences and continuity

Week 9 Maximum and intermediate value properties (statements)
Maximum and intermediate value properties (proofs, applications)
Uniform continuity
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Week 10 Uniform convergence of sequences of functions
Derivatives; Mean value theorem (statement)
Proof of Mean value theorem; examples

Week 11 Cauchy mean value theorem; proof of l’Hopital
Fundamental theorem of calculus (statement and proof)
Improper integrals

Week 12 Revision
Revision
Revision

2 Properties of real numbers

Definition 2.1 A field is a set F equipped with two (binary) operations:

• addition (denoted +) so that for any pair a and b of elements of F , their sum a + b is
defined, and

• multiplication (denoted ·) so that for any pair a and b of elements of F , their product a · b
is defined,

that satisfy the following conditions:

• F is a commutative group under addition: that is, for any pair a and b of elements of
F , a+ b = b+a; there is an element 0 of F (the additive identity) so that a+0 = a for all
a ∈ F ; and for each element a ∈ F , there is an additive inverse −a so that a+ (−a) = 0;

• F −{0} = F ∗ is a commutative group under multiplication: that is, for any pair a and
b of elements of F , a · b = b · a; there is an element 1 of F (the multiplicative identity) so
that a · 1 = a for all a ∈ F ; and for each element a ∈ F ∗, there is a multiplicative inverse
a−1 so that a · a−1 = 1;

• addition and multiplication are related by the distributive law: that is, for any three ele-
ments a, b, and c of F , we have a · (b+ c) = a · b+ a · c.

Example 2.2 The real numbers R with its usual operations of addition and multiplication is a
field. (In fact, we can think of the axioms defining a field as being abstracted from the familiar
properties of the real numbers.)

The rational numbers Q also form a field, a subfield of R. However, the integers Z do not form a
field, as there is no multiplicative inverse for 2.

Example 2.3 Prove that the statement ‘a · 0 = 0 · a = 0 for all a ∈ F ’ holds in a field F , using
only the axioms of a field given above.

Since 0 is the additive identity, x+0 = x for all elements x of F . In particular, take x = 0, so that
0+ 0 = 0. Multiply both sides on the left by a to get a · (0+ 0) = a · 0. Apply the distributive law to
the left hand side to get a · 0+ a · 0 = a · 0. Since a · 0 is an element of F , it has an additive inverse
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−(a · 0). Adding −(a · 0) to both sides, we get a · 0 + a · 0 + (−(a · 0)) = a · 0 + (−(a · 0)). Since
a · 0 + (−(a · 0)) = 0, this simplifies to a · 0 + 0 = 0. Since 0 is the additive identity, a · 0 = 0, and
so finally we get a · 0 = 0 as desired. (To get 0 · a = 0, we just repeat this argument, multiplying
on the right by a instead of on the left.) (To see that a · 0 = 0 · a, we note that both are equal to 0,
and hence are equal to each other.)

Exercise 2.4 Prove that each of the following statements holds in a field F , using only the axioms
of a field.

1. a · (−b) = (−a) · b = −(a · b) for all a, b ∈ F ;

2. (−a) · (−b) = a · b for all a, b ∈ F ;

3. (−1) · a = −a for all a ∈ F ;

4. (−1) · (−1) = 1.

Example 2.5 Let p be a prime number, and consider the integers modulo p, usually denoted Zp
or Z/pZ. This is a field.

Exercise 2.6 Let n ≥ 4 be an integer that is not prime. Show that the integers modulo n, Zn, is
not a field.

Definition 2.7 An order on a set X is a relation <, called less than, on X satisfying three
conditions, namely:

• a 6< a for all elements a of X;

• for any pair a and b of elements of X, a 6= b, either a < b or b < a;

• for any three elements a, b, and c of X, if a < b and b < c, then a < c.

An ordered field is a field F with an order < that is well behaved with respect to the operations
of addition and multiplication, namely

• for any three elements a, b, and c of F , if a < b, then a+ c < b+ c;

• for any three elements a, b, and c of F with c > 0, if a < b, then a · c < b · c.

Example 2.8 The real numbers R and the rational numbers Q with the usual notion of < are
ordered fields. However, the integers modulo a prime p Zp do not form an ordered field.

Exercise 2.9 Prove that there does not exist an order on the complex numbers C so that C becomes
an ordered field.
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3 Some properties of order

Definition 3.1 A set A of real numbers is bounded above if there exists a real number s so that
a ≤ s for all a ∈ A. A number s satisfying this definition is called an upper bound for A. Note
that upper bounds are not unique; if s is an upper bound for A, then s + 1, s + 2, . . . , s + 100, . . .
are also upper bounds for A.

Definition 3.2 A set A of real numbers is bounded below if there exists a real number t so that
t ≤ a for all a ∈ A. A number t satisfying this definition is called a lower bound for A. Note
that lower bounds are not unique; if t is a lower bound for A, then t− 1, t− 2, . . . , t− 100, . . . are
also lower bounds for A.

Definition 3.3 A set A of real numbers is bounded if it is both bounded above and bounded below.

Definition 3.4 Let A be a set of real numbers. The supremum of A is a real number s satisfying
two properties:

• s is an upper bound for A;

• if u is any upper bound for A, then s ≤ u.

The supremum of A is denoted sup(A). The supremum is also called the least upper bound,
as it is the smallest of all possible upper bounds for A. Any set of real numbers that is bounded
above has a supremum.

Definition 3.5 Let A be a set of real numbers. The infimum of A is a real number t satisfying
two properties:

• t is a lower bound for A;

• if w is any lower bound for A, then w ≤ t.

The infimum of A is denoted inf(A). The infimum is also called the greatest lower bound, as
it is the largest of all possible lower bounds for A. Any set of real numbers that is bounded below
has an infimum.

Definition 3.6 An ordered field F is a complete ordered field if every subset A of F that is
bounded above, has a supremum. (Equivalently, if every set that is bounded below then has an
infimum.)

Example 3.7 The real numbers R with their usual order < are a complete ordered field.

Exercise 3.8 Show that the rationals Q with their usual order < form an ordered field but not a
complete ordered field.

Example 3.9 For the subset S =
{

1
n | n ∈ N

}

of R, determine whether S is bounded above,

bounded below, bounded, or neither. If S is bounded above, determine sup(S), and decide whether
or not sup(S) is an element of S. If S is bounded below, determine inf(S), and decide whether or
not inf(S) is an element of S.

S is bounded below by 0 (since 0 < 1
n for all n ∈ N), and so has an infimum. Since 0 is a lower

bound and since there are elements of S arbitrarily close to 0 (given ε > 0, we can find n so that
1
n < ε by taking n to be any integer greater than 1

ε ), the infimum inf S = 0. In this case, inf(S) 6∈ S.
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S is bounded above by 1 (since 1
n ≤ 1 for all n ∈ N), and so has a supremum. Making use of a

result from Exercise ??, since 1 is an upper bound for S and since 1 ∈ S, we have that 1 = sup(S).
In this case, sup(S) ∈ S.

Since S is both bounded above and bounded below, it is bounded.

Exercise 3.10 For each subset S of R given below, determine whether S is bounded above, bounded
below, bounded, or neither. If S is bounded above, determine sup(S), and decide whether or not
sup(S) is an element of S. If S is bounded below, determine inf(S), and decide whether or not
inf(S) is an element of S.

1. S =
{

1
n | n ∈ Z− {0}

}

;

2. S = {2x | x ∈ Z};

3. S = [−1, 1] ∪ {5} = {x ∈ R | − 1 ≤ x ≤ 1} ∪ {5};

4. S =
{

x
2y | x, y ∈ N

}

;

5. S =
{

n+1
n | n ∈ N

}

;

6. S =
{

(−1)n
(

1 + 1
n

)

| n ∈ N
}

;

7. S =
{

x ∈ Q | x2 < 10
}

;

8. S = {x ∈ R | |x| > 2};

Example 3.11 For subsets A and B of R, show that sup(A ∪B) = max(sup(A), sup(B)).
Assume without loss of generality that sup(A) ≥ sup(B), so that max(sup(A), sup(B)) = sup(A).
To show that sup(A∪B) = sup(A), we need to show two things, that sup(A) is an upper bound for
A ∪B and that if u is any upper bound for A ∪B, then u ≥ sup(A).
If a ∈ A, then a ≤ sup(A) by definition (since sup(A) is greater than or equal to every element of
A). Similarly, if b ∈ B, then b ≤ sup(B); since sup(B) ≤ sup(A), this yields that b ≤ sup(A) for
all b ∈ B. Since every element c of A ∪ B satisfies either c ∈ A or c ∈ B (or both), we see that
c ≤ sup(A), and so sup(A) is an upper bound for A ∪B.
Let u be any upper bound for A ∪ B. Since u ≥ c for every c ∈ A ∪ B, we also have that u ≥ c
for every c ∈ A. In particular, u is an upper bound for A, and so by the definition of supremum,
u ≥ sup(A). Therefore, sup(A) is an upper bound for A∪B that is less than or equal to any other
upper bound for A ∪B. That is, sup(A ∪B) = sup(A).

Exercise 3.12 In this question, A and B are subsets of R. Show that each of the following holds.

1. inf(A ∪B) = min(inf(A), inf(B));

2. if A ∩B 6= ∅, then sup(A ∩B) ≤ min(sup(A), sup(B));

3. if A ∩B 6= ∅, then inf(A ∩B) ≥ max(inf(A), inf(B));

4. if u is an upper bound for A and if u ∈ A, then u = sup(A);

5. if t is an lower bound for A and if t ∈ A, then t = inf(A);
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6. if inf(A) exists, then inf(A) = sup{y | y is a lower bound of A};

7. if sup(A) exists, then sup(A) = inf{y | y is a upper bound of A};

8. sup(A) is unique if it exists;

9. inf(A) is unique if it exists;

Exercise 3.13 In this question, A is a subset of R. Define A− = {−a | a ∈ A}. Show that each of
the following holds.

1. if sup(A) exists, then inf(A−) exists and inf(A−) = − sup(A);

2. if inf(A) exists, then sup(A−) exists and sup(A−) = − inf(A).

Exercise 3.14 For each of the following, either give an example of a subset S of R satisfying the
stated property, or prove that no such set exists.

1. S has a rational lower bound and inf(S) is irrational;

2. S has a rational lower bound and inf(S) is rational;

3. S has an irrational lower bound and inf(S) is rational;

4. S has an irrational lower bound and inf(S) is irrational;

4 Sequences and limits of sequences

Definition 4.1 A sequence {an} is a collection of real numbers indexed by a collection of con-
secutive, increasing integers. The index set of a sequence is usually, but not always, taken to be the
natural numbers N.

Example 4.2 The collections
{an = n | n ∈ N}

and

{bn =
1

ln(n)
| n ≥ 2}

are two examples of sequences.

Definition 4.3 Let {an} be a sequence. Then, {an} converges to L if, for every ε > 0, there
exists M so that |an − L| < ε for every n > M .

Symbolically, the sentence ‘{an} converges to L’ is denoted either by an → L as n → ∞ or by
limn→∞ an = L.
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Definition 4.4 A sequence that does not converge, diverges.

There are two nice ways that a sequence can diverge. A divergent sequence {an} converges to ∞
if, for every ε > 0, there is M so that an > ε for every n > M .

Symbolically, the sentence ‘{an} converges to ∞’ is denoted either by an → ∞ as n → ∞ or by
limn→∞ an =∞.
Similarly, a divergent sequence {an} converges to −∞ if, for every ε > 0, there is M so that
an < −ε for every n > M .

Symbolically, the sentence ‘{an} converges to −∞’ is denoted either by an → −∞ as n→∞ or by
limn→∞ an = −∞.

Exercise 4.5 A sequence has its nth term given by un =
3n−1
4n−5 . Write the 1

st, 5th, 10th, 100th,

1000th, 10, 000th, and 100, 000th term of the sequence in decimal form. Make a guess as to the
limit of this sequence as n→∞. Using the definition of limit, verify that the guess you’ve made is
correct.

Exercise 4.6 Using the definition of limit, prove that limn→∞ 1+2·10n

5+3·10n =
2
3 . For what value of M

do we have that |1+2·10n

5+3·10n − 2
3 | < 10−3 for all n > M?

Definition 4.7 Varieties of monotonicity: a sequence {an} is

• monotone increasing (or just increasing) if an < an+1 for all n (each term is strictly
bigger than the preceeding term);

• monotone non-decreasing (or just non-decreasing) if an ≤ an+1 for all n (each term is
no smaller than the preceeding term);

• monotone decreasing (or just decreasing) if an > an+1 for all n (each term is strictly
smaller than the preceeding term);

• monotone non-increasing (or just non-increasing) if an ≥ an+1 for all n (each term is
no bigger than the preceeding term);

A sequence is monotone if it is one of these four.

Think of a non-decreasing sequence as an increasing sequence with a stutter, and similarly of a
non-increasing sequence as a decreasing sequence with a stutter.]

Theorem 4.8 A bounded monotone sequence converges.

Proof of Theorem ??: Let {an} be a bounded monotone sequence. There are two cases: either
{an} is monotone non-increasing (which includes the case of monotone decreasing) or is monotone
non-decreasing (which includes the case of monotone increasing). Suppose to start that {an} is
monotone non-decreasing. Let A = {an}, and let s = sup(A).
Since s = sup(A), we know that an ≤ s for all an ∈ A and also that for each ε > 0, there exists
some M so that |s− aM | = s − aM < ε. (Because, if there is some ε0 > 0 so that s − an ≥ ε0 for
all n, then s− ε0 is an upper bound for A = {an} which is smaller than s, contradicting the choice
of s = sup(A).)
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However, since {an} is monotonically non-decreasing, we have that an ≥ aM for all n > M , and so
we have that s ≥ an ≥ aM for all n > M . In particular, |s− an| < |s− aM | < ε for all n > M , and
so {an} satisfies the definition of limn→∞ an = s.

The proof in the case that {an} is monontonically non-increasing is the same, except that inf(A)
takes the place of sup(A). Note that the proof of Theorem ?? gives up a bit more information than
the statement of the theorem, namely, not only does a bounded monotone sequence converge, but
it converges to its infimum or supremum (depending on whether it’s monotone non-increasing or
monotone non-decreasing). QED

Method 4.9 A method to test whether a sequence {an} is monotone: we know from first year
calculus that a function with non-negative derivative is increasing (that is, if f is a function with
f ′(x) ≥ 0 for all x (in its domain) and if a < b, then f(a) < f(b)), and that a function with non-
positive derivative is decreasing (that is, if f is a function with f ′(x) ≤ 0 for all x (in its domain)
and if a < b, then f(a) > f(b)). (We will revisit this point later in the course, and in fact we’ll see
how to use the mean value theorem to prove these statements.)

So, suppose we can find a function f(x) so that an = f(n) and so that f ′(x) ≥ 0. Then, the
sequence {an} is monotonically non-decreasing. (If f ′(x) > 0, then {an} is monotonically increas-
ing.) Similarly, if f ′(x) ≤ 0, then {an} is monotonically non-increasing. (If f ′(x) < 0, then {an} is
monotonically decreasing.)

Exercise 4.10 Prove that 1
n+1 < ln(n+ 1)− ln(n) < 1

n for all n ∈ N.

Now, consider the sequence given by an =
(

∑n
k=1

1
k

)

− ln(n). Prove that {an} is a decreasing
sequence and that each an is positive. Conclude that the limit γ = limn→∞ an exists. [This number
γ is known as Euler’s constant, and little is known about it. For instance, it is not known whether
γ is rational or irrational.]

Exercise 4.11 Explain exactly what is meant by the following statements:

1. limn→∞ 32n−1 =∞;

2. limn→∞(1− 2n) = −∞;

3. limn→∞ e−n = 0;

Theorem 4.12 Arithmetic of sequences: Let {an} be a sequence converging to a and let {bn}
be a sequence converging to b. Show that the following hold:

1. sums: {an + bn} converges to a+ b;

2. differences: {an − bn} converges to a− b;

3. products: {anbn} converges to ab;

4. reciprocals: if a 6= 0, then { 1
an
} converges to 1

a ;

5. quotients: if b 6= 0, then {an
bn
} converges to a

b ;
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Proof of Theorem ??: The information we are given to start is that limn→∞ an = a and that
limn→∞ bn = b. Translating these into mathese, for any ε > 0, there exists M so that |an − a| < ε
for n > M and there exists P so that |bn − b| < ε for n > P .

1. we need to show that for any ε > 0, there exists Q so that |(an+ bn)− (a+ b)| < ε for n > Q.
So, start by simplifying:

|(an + bn)− (a+ b)| = |an − a+ bn − b| ≤ |an − a|+ |bn − b|.
Since limn→∞ an = a, there exists M so that |an − a| < 1

2ε for n > M . Since limn→∞ bn = b,
there exists P so that |bn − b| < 1

2ε for n > P . So, for n > Q = max(M,P ), we have that
both |an − a| and |bn − b| are less than 1

2ε, and so

|(an + bn)− (a+ b)| ≤ |an − a|+ |bn − b| < 1
2
ε+

1

2
ε = ε.

2. we need to show that for any ε > 0, there exists Q so that |(an− bn)− (a− b)| < ε for n > Q.
So, start by simplifying:

|(an − bn)− (a− b)| = |an − a− bn + b| ≤ |an − a|+ | − bn + b| = |an − a|+ |bn − b|.
Since limn→∞ an = a, there exists M so that |an − a| < 1

2ε for n > M . Since limn→∞ bn = b,
there exists P so that |bn − b| < 1

2ε for n > P . So, for n > Q = max(M,P ), we have that
both |an − a| and |bn − b| are less than 1

2ε, and so

|(an − bn)− (a− b)| ≤ |an − a|+ |bn − b| < 1
2
ε+

1

2
ε = ε.

3. we need to show that for any ε > 0, there exists Q so that |an bn − a b| < ε for n > Q. We
follow the same general pattern as for the previous two, though the algebra is a bit more
intricate. As before, we begin by simplifying |an bn − a b|:

|an bn − a b| = |an bn − an b+ an b− a b| ≤ |an bn − an b|+ |an b− a b|.
We take these two terms one at a time.

We start with |an bn − an b| = |an| |bn − b|. Since limn→∞ an = a, we have control over
|an|; specifically, we have that for large n, |an| is almost equal to |a|. Specifically, apply the
definition of limn→∞ an = a with ε = 1 to see that there exists M so that |an − a| < 1 for
n > M . Rearranging, this implies that |an| < |a|+1 for n > M . Using this positive constant
|a|+ 1, we now apply the definition of limn→∞ bn = b to get P so that |bn − b| < 1

2
1

|a|+1ε for

n > P . Thus, for n > max(P,M), we have that

|an bn − an b| = |an| |bn − b| < (|a|+ 1) 1
2

1

|a|+ 1ε =
1

2
ε,

The other term to consider is |an b−ab| = |an−a| |b|. We first note that |b| < |b|+1. (This is
to eliminate the possibility of dividing by 0, as we’ll see in a second.) Since limn→∞ an = a,
there exists K so that |an − a| < 1

2
1

|b|+1ε for n > K. Hence, for n > K we have that

|an b− a b| = |an − a| |b| < |an − a| (|b|+ 1) ≤ 1
2

1

|b|+ 1ε(|b|+ 1) =
1

2
ε.

Hence, for n > Q = max(P,M,K), we have that

|an bn − a b| ≤ |an bn − an b|+ |an b− a b| < 1
2
ε+

1

2
ε = ε.
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4. we need to show that for any ε > 0, there exists Q so that | 1
an
− 1

a | < ε for n > Q. So, as
with all the others, we start by simplifying:

∣

∣

∣

∣

1

an
− 1
a

∣

∣

∣

∣

=
|a− an|
|a an|

.

Note that since a 6= 0 by assumption and since {an} converges to a, we can choose M so that
an 6= 0 for all n > M , by taking ε = 1

2 |a| in the definition of limn→∞ an = a.

Again taking ε = 1
2 |a| in the definition of limn→∞ an = a, we have not only that an 6= 0 for

n > M , but we also have that 3
2 |a| > |an| > 1

2 |a| for n > M , since |an| lies in the interval of
radius 1

2 |a| centered at |a|. Hence, for n > M , we have that

1

|a an|
≤ 2

|a|2 .

Since limn→∞ an = a, we can choose P so that |an − a| < |a|2
2 ε for n > P . Then, for

n > Q = max(M,P ), we have that

∣

∣

∣

∣

1

an
− 1
a

∣

∣

∣

∣

=
|a− an|
|a an|

<
2

|a|2
|a|2
2
ε = ε,

as desired.

5. One way to do this would be to repeat the style of argument just given for reciprocals, which
would work but which is somewhat involved. Another approach, and the one we take here,
is to note that since {an} converges to a and since {bn} converges to b 6= 0, we have that
{ 1
bn
} converges to 1

b , by what we just did with reciprocals, and hence { an
bn
} converges to a

b ,
by taking products.

QED

Theorem 4.13 Tests for convergence and divergence of sequences. Let {an}, {bn}, and
{cn} be sequences.

1. Comparison test: If an ≤ bn for all n and if an →∞ as n→∞, then bn →∞ as n→∞;

2. Limit comparison test: If limn→∞ an
bn
= L with 0 < L < ∞, then {an} converges if and

only if {bn} converges.

3. l’Hopital’s rule: (see Section ?? for the statement and proof of l’Hopital’s rule.)

4. Squeeze rule: If an ≤ bn ≤ cn for all n and if {an} and {cn} both converge with limn→∞ an =
limn→∞ cn, then {bn} converges with limn→∞ bn = limn→∞ cn.

5. Cauchy criterion: if {an} converges, then for every ε > 0, there exists M so that |ap−aq| <
ε for all p, q > M .

Proof of Theorem ??:
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1. we are given that an → ∞ as n → ∞, and so we have that for every ε > 0, there exists M
so that an > ε for n > M . Since bn ≥ an for all n, we have bn > ε for n > M , and so the
definition of limn→∞ bn =∞ is satisfied.

2. we are given that limn→∞ an
bn
= L with 0 < L < ∞. In particular, by the definition of limit,

for every ε > 0, there exists M so that
∣

∣

∣

an
bn
− L

∣

∣

∣ < ε for n > M . Taking ε = 1
2L and rewriting

this a bit, we have that there exists M so that 1
2L < an

bn
< 3

2L for n > M .

Suppose now that {bn} converges, and set limn→∞ bn = b. We want to show that {an}
converges. A reasonable guess for the limit of {an} would be bL, since {an

bn
} converges to L

and {bn} converges to b. So, take ε > 0 and consider the quantity |an − bL|:

|an − bL| =
∣

∣

∣

∣

an
bn

bn − bL

∣

∣

∣

∣

=

∣

∣

∣

∣

an
bn

bn − bnL+ bnL− bL

∣

∣

∣

∣

≤
∣

∣

∣

∣

an
bn

bn − bnL

∣

∣

∣

∣

+ |bnL− bL|

= |bn|
∣

∣

∣

∣

an
bn
− L

∣

∣

∣

∣

+ L |bn − b| .

Since limn→∞ bn = b, there exists M so that |bn − b| < 1
2Lε for n > M .

Also, since limn→∞ bn = b, we have that limn→∞ |bn| = |b|, and so there exists P so that
|bn| < |b|+ 1 for n > P (apply the definition of limn→∞ |bn| = |b| with ε = 1). Further, there
exists Q so that

∣

∣

∣

∣

an
bn
− L

∣

∣

∣

∣

<
1

2

1

|b|+ 1ε

for n > Q. Hence, for n > M = max(M,P,Q), we have that

|an − bL| ≤ |bn|
∣

∣

∣

∣

an
bn
− L

∣

∣

∣

∣

+ L |bn − b| < (|b|+ 1)1
2

1

|b|+ 1ε+ L
1

2L
ε = ε,

and so {an} converges to bL.

To go the other way, that if {an} converges then {bn} converges, we use the argument just
given and the fact that if limn→∞ an

bn
= L with 0 < L <∞, then limn→∞ bn

an
= 1

L .

3. (see Section ?? for the statement and proof of l’Hopital’s rule.)

4. we are given that an ≤ bn ≤ cn for all n and that {an} and {cn} both converge with
limn→∞ an = limn→∞ cn = A. We want to show that limn→∞ bn = A, which is to say, for
every ε > 0, there exists M so that |bn −A| < ε for n > M .

Since limn→∞ an = limn→∞ cn = A, we have that limn→∞(an − cn) = A− A = 0, and so for
every µ > 0, there exists P so that |an − cn| < µ for n > P . Since an ≤ bn ≤ cn for all n, we
know that |an− bn| ≤ |an− cn| for all n, and so |an− bn| < µ for n > P . We also know, since
limn→∞ an = A, that for every η > 0, there exists Q so that |an −A| < η for n > Q.
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So, for ε > 0, choose P so that |an−bn| < 1
2ε for all n > P , and choose Q so that |an−A| < 1

2ε
for n > Q. Then, for n > M = max(P,Q), we have that

|bn −A| = |bn − an + an −A| ≤ |bn − an|+ |an −A| < 1
2
ε+

1

2
ε = ε,

as desired.

5. since {an} converges, write limn→∞ an = a, so that for every ε > 0 there exists M so that
|an − a| < 1

2ε for n > M . Consider the difference |ap − aq| for p, q > M :

|ap − aq| = |ap − a+ a− aq| ≤ |ap − a|+ |a− aq| <
1

2
ε+

1

2
ε = ε,

as desired.

QED

Remark 4.14 The more often used form is the contrapositive of the Cauchy criterion: Let
{an} be a sequence. Suppose there exists µ > 0 so that for every M , there are p, q > M with
|ap − aq| ≥ µ. Then, {an} diverges.
Also, it is a fact, and one that we won’t prove here, that the converse of the Cauchy criterion
holds as well. That is, if {an} is a sequence of real numbers, and if for every ε > 0, there exists
M so that |ap − aq| < ε for all p, q > M , then {an} converges. This fact is useful, as it gives us a
way of checking whether a sequence converges without explicitly determining its limit beforehand.

Remark 4.15 Standard tricks for evaluating limits: Some of these are facts that we will
prove later in the course but which are nonetheless very useful to know now.

1. exponents: for c > 0, if {an} converges to a, then {can} converges to ca;

2. trigonometric functions: if {an} converges to a, then {cos(an)} converges to cos(a), and
{sin(an)} converges to sin(a).

Example 4.16 For the two sequences given below, do the following:

• Determine whether the sequence converges or diverges;

• if the sequence converges, determine its limit;

• if the sequence diverges, determine whether the sequence converges to ∞ or if the sequence
converges to −∞ or neither;

1. an =
√
n+ 5−√n;

converges: we use the standard first method to try for evaluating limits of differences of
square roots. Write

an =
√
n+ 5−√n = (

√
n+ 5−√n)

√
n+ 5 +

√
n√

n+ 5 +
√
n
=

5√
n+ 5 +

√
n
.

Then, since
√
n+ 5+

√
n >

√
n and since

√
n→∞ as n→∞, we have that

√
n+ 5+

√
n→

∞ as n→∞, and hence {an} converges to 0.
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2. an = sin
(

nπ
4

)

;

diverges: for n = 8k, an = sin
(

8kπ
4

)

= sin(2kπ) = 0, and for n = 8k + 2, an =

sin
(

(8k+2)π
4

)

= sin
(

2kπ + π
2

)

= 1. Hence, |a8k − a8k+2| = 1 for all k, and so the sequence
fails the Cauchy criterion, and hence diverges.

Exercise 4.17 The sequence scavenger hunt: for each of the following sequences {an}, do the
following:

• Determine whether the sequence converges or diverges;

• if the sequence converges, determine its limit;

• if the sequence diverges, determine whether the sequence converges to ∞ or if the sequence
converges to −∞ or neither;

1. an = (n+ 2)
1/n;

2. an =
n2+3n+2

6n3+5
;

3. an = (1 +
1
n)

n;

4. an =
sin(n)

3n ;

5. an =
√
2n+ 3−

√
n+ 1;

6. an = cos
(

nπ
4

)

;

7. an = (1 +
1
n)

1/n;

8. an = ln(n);

9. an = en;

10. an =
ln(n)√

n
;

11. an =
(

1− 2
n2

)n
;

12. an =
n3

10n2+1
;

13. an = xn, where x is a constant with |x| < 1;

14. an =
c
np , where c 6= 0 and p > 0 are constants;

15. an =
2n

5n−3 ;

16. an =
1−n2

2+3n2 ;

17. an =
n3−n+7
2n3+n2 ;

18. an = 1 +
(

9
10

)n
;

19. an = 2−
(

−1
2

)n
;
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20. an = 1 + (−1)n;

21. an =
1+(−1)n

n ;

22. an =
1+(−1)n√n
( 3

2)
n ;

23. an =
sin2(n)√

n
;

24. an =
√

2+cos(n)
n ;

25. an = n sin(πn);

26. an = n cos(πn);

27. an = π− sin(n)/n;

28. an = 2
cos(πn);

29. an =
ln(2n)
ln(3n) ;

30. an =
ln2(n)
n ;

31. an = n sin
(

1
n

)

;

32. an =
arctan(n)

n ;

33. an =
n3

en/10 ;

34. an =
2n+1
en ;

35. an =
sinh(n)
cosh(n) ;

36. an = (2n+ 5)
1/n;

37. an =
(

n−1
n+1

)n
;

38. an = (0.001)
−1/n;

39. an = 2
(n+1)/n;

40. an =
(

2
n

)3/n
;

41. an = (−1)n(n2 + 1)1/n;

42. an =
( 2

3)
n

( 1
2)

n
+( 9

10)
n ;

Exercise 4.18 The Fibonacci sequence {an | n ≥ 0} is formed by setting a0 = 0, a1 = 1, and
an = an−1+an−2 for n ≥ 2. Consider the derived sequence {qn = an

an−1
} of quotients of consecutive

terms of the Fibonacci sequence. Show that if limn→∞ qn exists, then limn→∞ qn =
1+

√
5

2 .
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Example 4.19 Prove that if xn → −4 as n → ∞, then |xn| → 4 as n → ∞, using the definition
of limit.

We need to show that limn→∞ |xn| = 4, which is phrased mathematically as needing to show that
for each µ > 0, there is P so that | |xn| − 4| < µ for n > P . First, note that if we take ε = 1, we
have that there exists M1 so that |xn − (−4)| < 1 for n > M1. In particular, for n > M1 we have
that xn < 0 (since for n > M1 it lies in the interval of radius 1 centered about −4, which is the
interval (−5,−3)). In particular, for n > M1, we have that |xn| = −xn.
So, for n > M1, we have that | |xn| − 4| = | − xn − 4| = |xn + 4|, and we have been given that for
any ε > 0, there is M so that | |xn| − 4| = | − xn − 4| = |xn + 4| < ε. So, for any ε > 0, take P to
be the larger of M1 (chosen so that xn < 0 for n > M1) and M (which comes from the definition
that limn→∞ xn = −4). Then, for n > P , we have that | |xn| − 4| < ε, and we are done.

Exercise 4.20 Prove that each of the following statements is true, using the definition of limit.

1. if xn → −4 as n→∞, then
√

|xn| → 2 as n→∞;

2. if xn → −4 as n→∞, then x2
n → 16 as n→∞;

3. if xn → −4 as n→∞, then xn
3 → −4

3 as n→∞;

Exercise 4.21 Let {an} be a sequence converging to a. Show that the following hold:

1. square roots: if a > 0, then {√an} converges to
√
a;

2. {|an|} converges to |a|;

3. if a =∞, then { 1
an
} converges to 0.

4. If a 6= 0, then {(−1)nan} diverges;

5. If a = 0, then {(−1)nan} converges to 0.

Exercise 4.22 Prove that if xn → x as n→∞, then x1+···+xn
n → x as n→∞.

Proposition 4.23 Let A = {an} be a convergent sequence. Then, A is bounded.

Proof Set a = limn→∞ an, and apply the definition of limit of a sequence with ε = 1, so that there
exists M > 0 so that |an − a| < 1 for all n > M . In particular, for n > M , we have that an lies
in the interval (a − 1, a + 1). Let s = max(a1, . . . , aM , a + 1), and note that an ≤ s for all n. In
particular, A = {an} is bounded above by s.
Similarly, set t = min(a1, . . . , aM , a−1), and note that t ≤ an for all n, so that A = {an} is bounded
below by t.

Since A is both bounded below and bounded above, it is bounded. (Note that the choice of ε = 1
is completely arbitrary. Any positive number will work.) QED

Exercise 4.24 Give five different examples of sequences that are bounded but not convergent.
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5 Limits of functions

In the same way that we define the supremum and infimum for a subset of R, we can define the
supremum and infimum of a function f : S → R, where S ⊂ R.

Definition 5.1 Let f : S → R be a function, where S ⊂ R. Define the supremum of f on
S, denoted sup(f), by setting sup(f) = sup(f(S)). That is, the supremum of a function is the
supremum of the image of its domain in R.

Similarly, define the infimum of f on S, denoted inf(f), by setting inf(f) = inf(f(S)). That is,
the infimum of a function is the infimum of the image of its domain in R.

Example 5.2 Take the function f : (0,∞) → R defined by f(x) = e−x. For this function,
sup(f) = 1 and inf(f) = 0, since the image of (0,∞) under f is the interval (0, 1).

Exercise 5.3 Given a function f : A → R, define a new function −f : A → R by (−f)(a) =
−f(a). Prove that inf(−f) = − sup(f).

Definition 5.4 limit of a function: Let f be a function defined on the union (a−β, a)∪(a, a+β)
for some β > 0. Say that limx→a f(x) = L if for every ε > 0, there exists δ > 0 so that if
0 < |x− a| < δ, then |f(x)− L| < ε.

Note that the definition of limx→a f(x) = L includes the requirement that 0 < |x− a|, and so does
not require that the function f be defined at a, nor that f(a) = L. The definition cares what is
happening near a, not what is happening at a.

The definitions of limx→∞ f(x) = L, limx→−∞ f(x) = L, limx→a f(x) =∞, and limx→a f(x) = −∞
are similar:

• limx→∞ f(x) = L: for every ε > 0, there exists M so that if x > M , then |f(x)− L| < ε;

• limx→−∞ f(x) = L: for every ε > 0, there exists M so that if x < M , then |f(x)− L| < ε;

• limx→a f(x) = ∞: for every N > 0, there exists δ > 0 so that if 0 < |x − a| < δ, then
f(x) > N ;

• limx→a f(x) = −∞: for every N < 0, there exists δ > 0 so that if 0 < |x − a| < δ, then
f(x) < N ;

Exercise 5.5 Explain exactly what is meant by the following statements:

1. limx→1(2x)
4 = 16;

2. limx→−3(3x
2 + ex) = 81 + e−3;

Definition 5.6 there are times when we need a variant of the definition of the limit of a function:

• right-handed limit: Let f be a function defined on the interval (a, a+ β) for some β > 0.
Say that limx→a+ f(x) = L if for every ε > 0, there exists δ > 0 so that if 0 < x − a < δ,
then |f(x)− L| < ε. [Note that since 0 < x− a, we are restricting our attention to values of
x that are greater than a, that is, to values of x that are to the right of a on the numberline.
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• left-handed limit: Let f be a function defined on the interval (a − β, a) for some β > 0.
Say that limx→a− f(x) = L if for every ε > 0, there exists δ > 0 so that if 0 < a − x < δ,
then |f(x)− L| < ε. [Note that since 0 < a− x, we are restricting our attention to values of
x that are less than a, that is, to values of x that are to the left of a on the numberline.

Though we won’t use them much at all, the definitions of limx→a+ f(x) =∞, limx→a+ f(x) = −∞,
limx→a− f(x) =∞, and limx→a− f(x) = −∞ are similar:

• limx→a+ f(x) = ∞: for every N > 0, there exists δ > 0 so that if 0 < x − a < δ, then
f(x) > N ;

• limx→a+ f(x) = −∞: for every N < 0, there exists δ > 0 so that if 0 < x − a < δ, then
f(x) < N ;

• limx→a− f(x) = ∞: for every N > 0, there exists δ > 0 so that if 0 < a − x < δ, then
f(x) > N ;

• limx→a− f(x) = −∞: for every N < 0, there exists δ > 0 so that if 0 < a − x < δ, then
f(x) < N ;

These one-sided variants of the definition of limit are related to the definition given first by the
following lemma.

Lemma 5.7 limx→a f(x) = L if and only if limx→a+ f(x) = limx→a− f(x) = L.

Proof If limx→a f(x) = L, then for every ε > 0, there exists δ > 0 so that if 0 < |x− a| < δ, then
|f(x)−L| < ε. In particular, by restricting our attention to only those values of x with 0 < x−a < δ,
we get that the definition of limx→a+ f(x) = L is satisfied, while restricting our attention to only
those values of x with 0 < a− x < δ, we get that the definition of limx→a− f(x) = L is satisfied.

Suppose now that limx→a+ f(x) = limx→a− f(x) = L. Since limx→a+ f(x) = L, for every ε > 0,
there is δ1 > 0 so that if 0 < x − a < δ1, then |f(x) − L| < ε. Since limx→a− f(x) = L, for every
ε > 0, there is δ2 > 0 so that if 0 < a− x < δ2, then |f(x)− L| < ε.

Set δ = min(δ1, δ2), and suppose that 0 < |x− a| < δ. If 0 < x− a, then |x− a| = x− a < δ ≤ δ1,
and so |f(x)−L| < ε. If 0 < a− x, then |x− a| = a− x < δ ≤ δ2, and so |f(x)−L| < ε. In either
case, we see that if 0 < |x− a| < δ, then |f(x)− L| < ε, and so the definition of limx→a f(x) = L
is satisfied. QED

The usual rules of arithmetic and basic properties of limits of sequences also hold for limits of
functions, with the same proofs. We collect them here in a single statement, and leave it to you
the reader to modify the proofs given for sequences.

Theorem 5.8 Let f(x), g(x), and h(x) be functions defined on the union S = (a−β, a)∪(a, a+β)
for some β > 0, and suppose that the limits of the three functions as x→ a exist, with limx→a f(x) =
L, limx→a g(x) =M , and limx→a h(x) = P . Then:

• sums: limx→a(f(x) + g(x)) = L+M ;

• differences: limx→a(f(x)− g(x)) = L−M ;
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• products: limx→a(f(x) · g(x)) = L ·M ;

• reciprocals: if L 6= 0, then limx→a
1

f(x) =
1
L ;

• quotients: if M 6= 0, then limx→a
f(x)
g(x) =

L
M ;

• Comparison test: If f(x) ≤ g(x) for all x and if limx→∞ f(x) =∞, then limx→∞ g(x) =∞;

• Limit comparison test: If limx→∞
f(x)
g(x) = Q with 0 < Q < ∞, then limx→∞ f(x) exists if

and only if limx→∞ g(x) exists;

• l’Hopital’s rule: (see Section ?? for the statement and proof of l’Hopital’s rule.)

• Squeeze rule: If f(x) ≤ g(x) ≤ h(x) for all x in S and if limx→a f(x) = limx→a h(x) = L,
then limx→a g(x) = L as well.

Example 5.9 Determine whether or not limx→0 f(x) exists, where f(x) = [2x] (where [x] is the
largest integer or floor function); if the limit does exist, determine its value if possible.

Note that f(x) = −1 for − 1
2 ≤ x < 0, and so limx→0− f(x) = −1. Also, f(x) = 0 for 0 ≤ x < 1

2 ,
and so limx→0+ f(x) = 0. Since limx→0+ f(x) 6= limx→0− f(x), we have that limx→0 f(x) does not
exist.

Exercise 5.10 For each of the functions given below, determine whether or not limx→0 f(x) exists;
if the limit does exist, determine its value whereever possible.

1. f(x) = sin(x) sin( 1x), for x 6= 0;

2. f(x) = cos(x) for x 6= 0, and f(0) = 2;

3. f(x) = [3x+ 1] (where [x] is the largest integer or floor function);

4. f(x) = sin(sin( 1x)), for x 6= 0;

5. f(x) = cos(x), if x is a positive rational multiple of π, and f(x) = 1 otherwise;

6. f(x) = sin(x)
|x| for x 6= 0;

Exercise 5.11 For each of the functions f(x) given below, consider the sequence constructed by
setting xn+1 = f(xn) for n ≥ 0 and taking x0 = c. Determine whether {xn} converges or diverges,
and note that this may depend on the initial choice of c. Where possible, calculate the limit when
it exists.

1. f(x) = x+ 3;

2. f(x) = 1
3x+

3
4 ;

3. f(x) = 2
5x+

1
5 ;

4. f(x) = 10− x;

5. f(x) =
√
3x;

6. f(x) = 1
2

(

x+ c
x

)

;

7. f(x) = 1
2(x+ 4);
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6 Series and limits of series

Definition 6.1 A series (or infinite series) is a mathematical construct of the form
∑∞

n=0 an.
A series is essentially the sum of a sequence.

Definition 6.2 Consider a series
∑∞

n=0 an. We define what it means for
∑∞

n=0 an to converge or
diverge by reducing to what we have done before, namely sequences. Namely, consider the following
sequence:

{

Sk =
k
∑

n=0

an

}

.

The sequence {Sk} is the sequence of partial sums of the series
∑∞

n=0 an. Say that the series
∑∞

n=0 an converges if the sequence of partial sums {Sk} converges, and that the series
∑∞

n=0 an
diverges if the sequence of partial sums {Sk} diverges. If {Sk} converges to S, we say that the
series

∑∞
n=0 an converges to S as well.

Example 6.3 Consider the series
∑∞

n=0 an, where an = 1 for all n ≥ 0. This series diverges. To
see this, consider the partial sums: the kth partial sum Sk is Sk =

∑k
n=0 an =

∑k
n=0 1 = k+1, and

the sequence {Sk = k + 1} diverges.

Fact 6.4 Let
∑∞

n=0 an and
∑∞

n=0 bn be two infinite series, and suppose there exists P so that
an = bn for all n > P . (That is, assume the terms of the two series are equal after some point.)
Then,

∑∞
n=0 an converges if and only if

∑∞
n=0 bn converges. That is, the convergence or divergence

of a series is not affected by mucking about with finitely many terms of the series.

This is a powerful and highly useful fact that I’ll make repeated use of, often without being explicit
about it, so keep a sharp eye out.

Example 6.5 Fix a real number r 6= 0 and consider the series ∑∞
n=0 r

n. We can determine for
which values of r this series converges, directly from the definition. Namely, consider the kth partial
sum Sk:

Sk =
k
∑

n=0

rn = 1 + r + r2 + · · ·+ rk =
1− rk+1

1− r
.

We now need to evaluate the limit limk→∞ Sk. However, as k →∞, we know how rk+1 behaves:

• if |r| < 1, then limk→∞ rk+1 = 0;

• if r = 1, then Sk = k + 1 (that is, the formula above breaks down in this case), and so {Sk}
diverges;

• if r > 1, then limn→∞ rk+1 =∞;

• if |r| ≤ −1, then limn→∞ rk+1 diverges.

Hence, limn→∞ rk+1 exists if and only if |r| < 1, and in this case limn→∞ rk+1 = 0. Hence, {Sk}
converges if and only if |r| < 1, and in this case {Sk} converges to 1

1−r .

Exercise 6.6 1. A ball has bounce coefficient 0 < r < 1 if, when it is dropped from height h,
it bounces back to a height of rh. Suppose that such a ball is dropped from the initial height
a and subsequently bounces infinitely many times. Determine the total up-and-down distance
the ball travels.
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2. Two cars, driven by Jack and Jill, are begin driven towards each other, with Jack driving at
25 miles per hour and Jill driving at 95 miles per hour. When the cars are 120 miles apart, a
fly leaves the front of Jack’s car and flies to Jill’s car at 257 miles per hour; when it reaches
Jill’s car, it immediately turns around and flies back to Jack’s car, and keeps going back and
forth until it is crushed between the two cars when they crash together. Assuming the fly loses
no time in changing direction, calculate the total distance the fly has flown in its journey
between the two cars.

Example 6.7 Though we do not yet have the technical tool we need to prove this, the other im-
portant series to know is to pick a real number s and consider the series

∑∞
n=1

1
ns . This series

converges if and only if s > 1.

For s = 1, this series is called the harmonic series, and we can prove directly that it diverges.
Note that 1

3 +
1
4 >

1
2 , that

1
5 + · · ·+ 1

8 > 4
1
8 =

1
2 , and in general that

1

2k−1 + 1
+

1

2k−1 + 2
+ · · ·+ 1

2k
> 2k−1 1

2k
=
1

2
.

Hence, the (2k)th partial sum S2k satisfies S2k > 1+k 1
2 . Since the terms in the harmonic series are

all positive, the sequence of partial sums is monotonically increasing, and by the calculation done
the sequence of partial sums is unbounded, and so the sequence of partial sums diverges. Hence, the
harmonic series diverges.

Exercise 6.8 Prove that
∑∞

n=1
1
ns diverges for s < 1, by estimating its partial sums.

Theorem 6.9 Arithmetic of sequences: Let
∑∞

n=0 an and
∑∞

n=0 bn be convergent series, with
∑∞

n=0 an = A and
∑∞

n=0 bn = B.

1. sums:
∑∞

n=0(an + bn) =
∑∞

n=0 an +
∑∞

n=0 bn = A+B;

2. differences:
∑∞

n=0(an − bn) =
∑∞

n=0 an −
∑∞

n=0 bn = A−B;

3. multiplication by a constant: for a constant c,
∑∞

n=0 c an = c
∑∞

n=0 an = cA;

Proof of Theorem ??: Let Sk =
∑k

n=0 an and Vk =
∑k

n=0 bn be the partial sums of the two
series. Since the series are both convergent, we have that limk→∞ Sk = A and limk→∞ Vk = B.

1. this follows immediately from the definition of convergence of a series in terms of partial sums:
the partial sums of the series

∑∞
n=0(an + bn) are

Tk =
k
∑

n=0

(an + bn) =
k
∑

n=0

an +
k
∑

n=0

bn = Sk + Vk

(since the sums are finite). Since limk→∞ Sk = A and limk→∞ Vk = B, we have that

lim
k→∞

Tk = lim
k→∞

(Sk + Vk) = lim
k→∞

Sk + lim
k→∞

Vk = A+B.

So, not only does the series of sums
∑∞

n=0(an + bn) converge (since its sequence of partial
sums converges), but it converges to A+B, as expected.
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2. much as the rule for sums just done, this follows immediately from the definition of con-
vergence of a series in terms of partial sums: the partial sums of the series

∑∞
n=0(an − bn)

are

Wk =
k
∑

n=0

(an − bn) =
k
∑

n=0

an −
k
∑

n=0

bn = Sk − Vk

(since the sums are finite). Since limk→∞ Sk = A and limk→∞ Vk = B, we have that

lim
k→∞

Wk = lim
k→∞

(Sk − Vk) = lim
k→∞

Sk − lim
k→∞

Vk = A−B,

So, not only does the series of differences
∑∞

n=0(an−bn) converge (since its sequence of partial
sums converges), but it converges to A−B, as expected.

3. much as the rules for sums and differences just done, this follows immediately from the
definition of convergence of a series in terms of partial sums: the partial sums of the series
∑∞

n=0 c an are

Zk =
k
∑

n=0

c an = c
k
∑

n=0

an = c Sk

(since the sums are finite). Since limk→∞ Sk = A, we have that

lim
k→∞

Zk = lim
k→∞

c Sk = c lim
k→∞

Sk = cA,

So, not only does the series of constant multiples
∑∞

n=0 c an converge (since its sequence of
partial sums converges), but it converges to cA, as expected.

QED

Exercise 6.10 1. Show that, if
∑∞

n=0 an converges and if
∑∞

n=0 bn diverges, then the series of
sums

∑∞
n=0(an + bn) diverges.

2. Show that, if
∑∞

n=0 an diverges and if c 6= 0, then the series of multiples
∑∞

n=0 c an diverges.

Example 6.11 Construct an example of convergent series
∑∞

n=0 an and
∑∞

n=0 bn with positive
terms for which the series of products

∑∞
n=0 an bn diverges, or prove that no such example exists.

No such example exists: since
∑∞

n=0 an and
∑∞

n=0 bn both converge, the sequences of partial sums
{Sk =

∑k
n=0 an} and {Vk =

∑k
n=0 bn} both converge. Note that the kth partial sum Wk of the series

of products satisfies

Wk =
k
∑

n=0

an bn ≤
(

k
∑

n=0

an

)(

k
∑

n=0

bn

)

= Sk Vk.

Since Sk ≤ A =
∑∞

n=0 an and Vk ≤ B =
∑∞

n=0 bn for all k, we have that Wk ≤ AB for all k. Since
{Wk} is a monotonically increasing sequence (as an and bn are positive for all n) and since {Wk}
is bounded (by AB), we have that {Wk} converges, and hence that the series of products

∑∞
n=0 an bn

converges.

Exercise 6.12 Unlike sequences, the convergence of series whose terms are products and quotients
of convergent series does not necessarily follow. Exploring this phenomenon is the purpose of this
example. Construct examples of each of the following, or prove that no such example exists:
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1. convergent series
∑∞

n=0 an and
∑∞

n=0 bn with positive terms for which the series of products
∑∞

n=0 an bn converges;

2. divergent series
∑∞

n=0 an and
∑∞

n=0 bn with positive terms for which the series of products
∑∞

n=0 an bn diverges;

3. divergent series
∑∞

n=0 an and
∑∞

n=0 bn with positive terms for which the series of products
∑∞

n=0 an bn converges;

4. convergent series
∑∞

n=0 an and
∑∞

n=0 bn with positive terms for which the series of quotients
∑∞

n=0
an
bn
diverges;

5. convergent series
∑∞

n=0 an and
∑∞

n=0 bn with positive terms for which the series of quotients
∑∞

n=0
an
bn
converges;

6. divergent series
∑∞

n=0 an and
∑∞

n=0 bn with positive terms for which the series of quotients
∑∞

n=0
an
bn
diverges;

7. divergent series
∑∞

n=0 an and
∑∞

n=0 bn with positive terms for which the series of quotients
∑∞

n=0
an
bn
converges;

Fact 6.13 This is a useful fact that we have already run across at least once. If the terms of a
series

∑∞
n=0 an are all positive, then the sequence of partial sums is monotonically increasing, since

Sk+1 =
k+1
∑

n=0

an =
k
∑

n=0

an + ak+1 >
k
∑

n=0

an = Sk.

(If all the terms in the series are non-negative, then the sequence of partial sums is monotonically
non-decreasing.) This fact makes an appearance in the proofs of several of the following tests for
convergence or divergence of series.

Theorem 6.14 Series convergence tests: be careful when reading the hypotheses, as not all
these tests have the same hypotheses. In particular, some only apply to series with non-negative
terms, while others apply to all series.

• nth term test for divergence: If limn→∞ an 6= 0 (so that either {an} diverges, or {an}
converges to a 6= 0), then the series ∑∞

n=1 an diverges.

• First comparison test: If ∑∞
n=0 an and

∑∞
n=0 bn are series with non-negative terms, if

an ≤ bn for all n ≥ 0, and if
∑∞

n=0 an diverges, then
∑∞

n=0 bn diverges.

• Second comparison test: If ∑∞
n=0 an and

∑∞
n=0 bn are series with non-negative terms, if

an ≤ bn for all n ≥ 0, and if
∑∞

n=0 bn converges, then
∑∞

n=0 an converges.

• Limit comparison test: If ∑∞
n=0 an and

∑∞
n=0 bn are series with non-negative terms and

if the limit limn→∞ an
bn
= L exists with 0 < L < ∞, then ∑∞

n=0 an converges if and only if
∑∞

n=0 bn converges.

• Integral test: If ∑∞
n=0 an is a series of positive terms and if there exists a decreasing con-

tinuous function f(x) for which f(n) = an, then
∫∞
0 f(x)dx converges (that is, is finite) if

and only if
∑∞

n=0 an converges. [This integral is an improper integral, as described in Section
??.]
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• Ratio test: Let ∑∞
n=0 an be a series of positive terms and suppose limn→∞

an+1

an
= L exists.

If L < 1, then
∑∞

n=0 an converges. If L > 1, then
∑∞

n=0 an diverges. If L = 1, this test gives
no information.

• Root test: Let ∑∞
n=0 an be a series of positive terms and suppose limn→∞(an)1/n = L exists.

If L < 1, then
∑∞

n=0 an converges. If L > 1, then
∑∞

n=0 an diverges. If L = 1, this test gives
no information.

• Alternating series test: Consider a series of the form ∑∞
n=0(−1)nan, where an > 0 for all

n ≥ 0. If an+1 ≤ an for all n ≥ 0 and limn→∞ an = 0, then the series converges.

Proof of Theorem ??:

• nth term test for divergence: we prove this by proving its contrapositive: If the series
∑∞

n=1 an converges, them limn→∞ an = 0. Let Sk =
∑k

n=0 an be the k
th partial sum of

the series
∑∞

n=1 an. By definition, the sequence of partial sums {Sk} converges. By the
Cauchy criterion, we then have that for every ε > 0, there exists M so that if p, q > M , then
|Sp−Sq| < ε. In particular, taking any p > M and q = p+1, we see that |Sp−Sq| = |ap+1| < ε.
Hence, if we set Q =M +1, then |an| < ε for every n > Q, and so limn→∞ an = 0, as desired.

• First comparison test: again, we use partial sums: let Sk =
∑k

n=0 an and Tk =
∑k

n=0 bn
be the partial sums of the two series. Since an ≤ bn for all n, we have that Sk ≤ Tk for all
k. Further, since both the series have non-negative terms, we have that both sequences {Sk}
and {Tk} are monotonically non-decreasing. Since

∑∞
n=0 an diverges, it must be that {Sk} is

unbounded, since bounded monotonic sequences converge. Hence, since Sk ≤ Tk for all k, we
have that {Tk} is also an unbounded monotonic sequence, hence divergent, and so

∑∞
n=0 bn

must diverge as well.

• Second comparison test: yet again, we use partial sums: let Sk =
∑k

n=0 an and Tk =
∑k

n=0 bn be the partial sums of the two series. Since an ≤ bn for all n, we have that Sk ≤ Tk
for all k. Further, since both the series have non-negative terms, we have that both sequences
{Sk} and {Tk} are monotonically non-decreasing. Since

∑∞
n=0 bn converges, it must be that

{Tk} is bounded, since a monotonic sequence converges if and only if it is bounded. Hence,
{Sk} is also a bounded monotonic sequence, bounded by limk→∞ Tk since Sk ≤ Tk for all
k, and so

∑∞
n=0 an is also a convergent series. [Note that the proofs of the first and second

comparison tests rely heavily on the fact that the series have non-negative terms, thus forcing
the sequences of partial sums to be monotonic.]

• Limit comparison test: since limn→∞ an
bn
= L > 0, we can apply the definition of limit

with ε = 1
2L to get that there exists M so that 1

2L < an
bn

< 3
2L for n > M . In particular,

applying a bit of algebraic massage, we have that an <
3
2Lbn for all n > M and that bn <

2
Lan

for n > M . Let Sk =
∑k

n=0 an and Tk =
∑k

n=0 bn be the partial sums of the two series. As
above, since both the series have non-negative terms, we have that both sequences {Sk} and
{Tk} are monotonically non-decreasing. For the sake of precision, remove the first M terms
of both series, which does not affect the convergence or divergence of either. This is done so
that the two inequalities an <

3
2Lbn and bn <

2
Lan hold true for all n.

Suppose that
∑∞

n=0 bn converges, so that {Tk} is a bounded monotonic sequence. Since
an <

3
2Lbn for all n > M , we have that Sk <

3
2LTk; hence, the sequence {Sk} is bounded by

3
2L limk→∞ Tk, and so

∑∞
n=0 an converges.
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Suppose now that
∑∞

n=0 an converges, so that {Sk} is a bounded monotonic sequence. Since
bn < 2

Lan for all n > M , we have that Tk < 2
LSk; hence, the sequence {Tk} is bounded by

2
L limk→∞ Sk, and so

∑∞
n=0 bn converges.

• Integral test: the definition of convergence for the integral ∫∞0 f(x)dx is that the limit

limM→∞
∫M
0 f(x)dx exists (and is finite). Recall also that

∫M
0 f(x)dx is the area under the

graph of f(x) over the interval [0,M ], and that
∫∞
0 f(x)dx is the area under the graph of

f(x) over [0,∞).

Suppose that limM→∞
∫M
0 f(x)dx exists. For each n satisfying 1 ≤ n ≤ M , consider the

rectangle Rn over the interval [n − 1, n] with height f(n) = an. Since f is decreasing, the
rectangle Rn is contained entirely under the graph of f , and the area of Rn is base · height =
f(n) = an. So, comparing areas, we see that

M
∑

n=1

(area of Rn) =
M
∑

n=1

an ≤
∫ M

0
f(x)dx.

Since the sequence {∫M0 f(x)dx} is monotone increasing (since each ∫M+1
M f(x)dx is positive)

and bounded (by limM→∞
∫M
0 f(x)dx), we see that the sequence of partial sums of

∑∞
n=1 an

is also a bounded monotone sequence, hence convergent. That is,
∑∞

n=0 an converges.

Suppose now that
∑∞

n=0 an converges. For each n ≥ 1, let Wn be the rectangle over the
interval [n − 1, n] with height f(n − 1) = an−1. The part of the graph of f over [0,M ] is
contained in the union of the rectangles W0 ∪ · · · ∪WM−1, and so comparing areas, we see
that

∫ M

0
f(x)dx ≤

M
∑

n=1

(area of Wn) =
M
∑

n=1

an−1.

As above, the sequence {∫M0 f(x)dx} is monotonically increasing and bounded (by ∑∞
n=0 an),

and so limM→∞
∫M
0 f(x)dx exists (and is finite), as desired.

• Ratio test: [note: the proofs of the ratio and root tests are similar to each other, but
different from the proofs already given, in that they don’t use partial sums, but instead use
comparison to an appropriately chosen geometric series.]

We are given that limn→∞
an+1

an
= L exists. Suppose that L < 1. Choose some µ so that

L < µ < 1; applying the definition of limit with ε = µ−L, there existsM so that an+1

an
< µ for

n ≥M . (Note the change from the usual n > M to n ≥M , made here purely for notational
convenience.) So, aM+1 < µaM , and aM+2 < µaM+1 < µ2aM , and in general, we have that
aM+k < µkaM for k ≥ 0. (We’re using here that the an are all positive, so that among other
things, the inequalities don’t change direction when we multiply through by an.) Since the
geometric series

∑∞
k=0 µ

k converges (since µ < 1), the second comparison test yields that the
truncated series

∑∞
n=M an converges, and hence that the original series

∑∞
n=0 an converges.

Suppose now that L > 1, and essentially repeat the argument. Choose some η so that
1 < η < L; applying the definition of limit with ε = L−η, there existsM so that an+1

an
> η for

n ≥M . (Note the change from the usual n > M to n ≥M , made here purely for notational
convenience.) So, aM+1 > ηaM , and aM+2 > ηaM+1 > η2aM , and in general, we have that
aM+k > ηkaM for k ≥ 0. (We’re using here that the an are all positive, so that among other

24



things, the inequalities don’t change direction when we multiply through by an.) Since the
geometric series

∑∞
k=0 η

k diverges (since η > 1), the first comparison test yields that the
truncated series

∑∞
n=M an diverges, and hence that the original series

∑∞
n=0 an diverges.

[The reason this proof does not work when L = 1 is that we cannot find a number between
L and 1, as we did in both of the parts of the proof just given.]

• Root test: The proof here is very similar to the proof just given (and fails when L = 1 for
the same reason). When L < 1, again choose µ satisfying L < µ < 1, and then apply the
definition of limit to find M so that (an)1/n < µ for n ≥ M . Then, taking the nth power of
both sides, we get that an < µn for all n ≥M , and so again we can use the second comparison
test with the convergent geometric series

∑∞
n=M µn to get convergence of

∑∞
n=0 an.

When L > 1, choose η satisfying 1 < η < L, and apply the definition of limit to get M so
that (an)

1/n > η for n ≥ M , so that an > ηn for n ≥ M . By the first comparison test with
the divergent geometric series

∑∞
n=M ηn, we get that

∑∞
n=0 an diverges.

• Alternating series test: start by considering the partial sums Sk for k odd:

S2p+1 =
2p+1
∑

n=0

an = (a0 − a1) + (a2 − a3) + · · ·+ (a2p − a2p+1).

Since each term in parentheses a2s − a2s+1 is non-negative, since a2s+1 ≤ a2s by assumption,
we have that the odd partial sums S2p+1 are all non-negative, and are monotonically non-
decreasing. Also, by grouping the terms in S2p+1 differently, namely as

S2p+1 =
2p+1
∑

n=0

an = a0 − (a1 − a2)− (a3 − · · · − a2p)− a2p+1,

and again using that the parenthetical terms are non-negative, we see that S2p+1 ≤ a0 for all
p, and so the odd partial sums form a bounded monotone sequence. Let S = limp→∞ S2p+1.

We need to show now that the even partial sums S2p converge to the same limit. However,
since S2p = S2p−1 + a2p and since limp→∞ a2p = 0, we have that

lim
p→∞S2p = lim

p→∞S2p−1 + lim
p→∞ a2p = S + 0 = S,

and so the sequence {Sk} of all partial sums converges to S. That is, the series
∑∞

n=0(−1)nan
converges.

QED

Example 6.15 We use the integral test to show that the series
∑∞

n=1
1
ns from Example ?? converges

for s > 1. Recall that we have already seen that this series diverges for s ≤ 1.
So, consider the function f(x) = 1

xs = x−s, so that 1
ns = f(n). Since s > 1, f ′(x) = −s 1

xs+1 < 0
for all x > 0, and so f(x) is decreasing. Further,

∫ ∞

1
f(x)dx = lim

M→∞

∫ M

1
x−sdx

= lim
M→∞

1

−s+ 1x
−s+1

∣

∣

∣

M
1

= lim
M→∞

1

−s+ 1

(

1

M s−1
− 1

)

=
1

s− 1 .
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Since the limit converges, the series converges, as desired.

It is known that for s an even positive integer, that
∑∞

n=1
1
ns is a rational multiple of πs. Moreover,

there is an explicit formula for the sum of this series.

For s an odd positive integer, we have already seen that this series diverges for s = 1 (as this is the
harmonic series). Further, it is known that

∑∞
n=1

1
n3 is an irrational number, but it is not known

that
∑∞

n=1
1
n3 is a rational multiple of π. Nothing is known about

∑∞
n=1

1
ns for s an odd positive

integer s ≥ 5, other than it is a convergent series.

Method 6.16 The first test to apply is always the nth term test for divergence, whether you write
out the details or just apply the test mentally. Beyond that, you need to sort the remaining tests
into your own personal order of preference, and then go through your list with each series until you
get to a test that yields either convergence or divergence.

My personal preference is to try to use the comparison tests before trying any of the others. I’ll
then move onto the ratio test, the limit comparison test, and end with the root and integral tests.
This is just the way that I work. I also tend sometimes not to use the most obvious test, but to try
and see if I can be clever using one of the others.

In all the series problems which follow, there is no single correct way to do any problem. For each
problem, there are many methods that work.

Example 6.17 For a convergent series
∑∞

n=1 an with positive terms, prove that
∑∞

n=1
an
n converges.

Let Sk =
∑k

n=1 an be the k
th partial sum of

∑∞
n=1 an. Consider the k

th partial sum Tk of the new
series

∑∞
n=1

an
n , Tk =

∑∞
n=1

an
n , and compare Tk to Sk: since

an
n ≤ an for all n ≥ 1, we have that

Tk ≤ Sk for all n ≥ 1. Since
∑∞

n=1 an is a convergent series with positive terms, its sequence of
partial sums {Sk} is a monotonically increasing sequence that converges to S. In particular, Sk ≤ S
for all k ≥ 1. Since Tk ≤ Sk ≤ S, we see that {Tk} is a bounded monotonically increasing sequence,
and hence converges. So,

∑∞
n=1

an
n is a convergent series.

Exercise 6.18 In each of the following,
∑∞

n=1 an is a convergent series with positive terms.

1. Prove that, if {cn} is a sequence of positive terms satisfying limn→∞ cn = 0, then
∑∞

n=1 ancn
converges;

2. Prove that, if {cn} is a sequence of positive terms satisfying limn→∞ cn = c 6= 0, then
∑∞

n=1 ancn converges.

In general, a series whose terms are positive is much easier to handle, particularly in terms of
determining convergence and divergence. One way to handle a general series, that is one without
the restriction that the terms be positive, is to compare it to a series with positive terms.

Definition 6.19 Let
∑∞

n=0 an be a series. Consider the associated series
∑∞

n=0 |an|, whose terms
are all positive (or at least non-negative). Say that

∑∞
n=0 an converges absolutely if the associated

series
∑∞

n=0 |an| converges.
Note that absolute convergence and convergence are the same for a series with positive terms.

The connection between convergence and absolute convergence is given in the following proposition.
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Proposition 6.20 Let
∑∞

n=0 an be a series. If
∑∞

n=0 an converges absolutely, then
∑∞

n=0 an con-
verges.

Proof of Proposition ??: Let
∑∞

n=0 an be a series that converges absolutely, so that
∑∞

n=0 |an|
converges. By the arithmetic of series, the series

∑∞
n=0 2|an| then also converges.

We wish to understand whether or not the original series
∑∞

n=0 an converges. Note that 0 ≤
an + |an| ≤ 2|an|, and so by the second comparison test, the series

∑∞
n=0(an + |an|) converges.

Since
∑∞

n=0 |an| converges, by assumption, their difference
∑∞

n=0(an+ |an|)−
∑∞

n=0 |an| =
∑∞

n=0 an
converges, by the arithmetic of series, and we are done. QED

In Theorem ??, we stated the ratio and root tests for series with positive terms. Combining
Theorem ?? with Proposition ??, we obtain the ratio and root tests for series with non-zero terms,
as tests to determine whether the series converges absolutely or diverges.

Proposition 6.21 Ratio and root tests for general series: Let
∑∞

n=0 an be a series with
non-zero terms, so that an 6= 0 for all n.

• Ratio test: Suppose that limn→∞
∣

∣

∣

an+1

an

∣

∣

∣ = L exists. If L < 1, then
∑∞

n=0 an converges

absolutely. If L > 1, then
∑∞

n=0 an diverges. If L = 1, this test gives no information.

• Root test: Suppose that limn→∞(|an|)1/n = L exists. If L < 1, then
∑∞

n=0 an converges
absolutely. If L > 1, then

∑∞
n=0 an diverges. If L = 1, this test gives no information.

Definition 6.22 Proposition ?? gives us that a series that converges absolutely then necessarily
converges. The converse however is not true: there are series that converge but do not converge
absolutely.

To give this possibility a name, say that a series converges conditionally if it converges but does
not converge absolutely.

Example 6.23 The alternating series test gives us a way to construct an example of a series that
converges conditionally. Consider the alternating harmonic series

∑∞
n=1(−1)n 1

n . Since
1
n > 1

n+1

for all n ≥ 1 and since limn→∞ 1
n = 0, the alternating series test yields that

∑∞
n=1(−1)n 1

n converges.
However, when we take absolute values of all the terms in this series, we get the harmonic series
∑∞

n=1 |(−1)n 1
n | =

∑∞
n=1

1
n , which we have already seen diverges. So, the alternating harmonic series

∑∞
n=1(−1)n 1

n converges but does not converge absolutely. That is, it converges conditionally.

Example 6.24 Determine whether the series
∑∞

n=0 e
−n converges absolutely, converges condition-

ally, or diverges. if the series converges, determine its limit, where possible.

converges absolutely: we apply the ratio test, as

lim
n→∞

e−(n+1)

e−n
= lim

n→∞
e−1

1
=
1

e
< 1,

and so
∑∞

n=0 e
−n converges. (We make implicit use of the fact that for a series of positive terms,

convergence and absolute convergence are the same notion.)

Exercise 6.25 The series scavenger hunt: for each of the infinite series given below, do the
following:
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• Determine whether the series converges absolutely, converges conditionally, or diverges;

• if the series converges, determine its limit, where possible.

1.
∑∞

n=0
2n−1

3n ;

2.
∑∞

n=0(1.01)
n;

3.
∑∞

n=1(
e
10)

n;

4.
∑∞

n=1
1

n2+n+1
;

5.
∑∞

n=1
1

n+
√
n
;

6.
∑∞

n=1
1

1+3n ;

7.
∑∞

n=2
10n2

n3−1
;

8.
∑∞

n=1
1√

37n3+3
;

9.
∑∞

n=1

√
n

n2+n
;

10.
∑∞

n=2
2

ln(n) ;

11.
∑∞

n=1
sin2(n)
n2+1

;

12.
∑∞

n=1
n+2n

n+3n ;

13.
∑∞

n=2
1

n2 ln(n)
;

14.
∑∞

n=1
n3+1
n4+2

;

15.
∑∞

n=1
1

n+n3/2 ;

16.
∑∞

n=1
10n2

n4+1
;

17.
∑∞

n=2
n2−n
n4+2

;

18.
∑∞

n=1
1√
n2+1

;

19.
∑∞

n=1
1

3+5n ;

20.
∑∞

n=2
1

n−ln(n) ;

21.
∑∞

n=1
cos2(n)

3n ;

22.
∑∞

n=1
1

2n+3n ;

23.
∑∞

n=1
1

n(1+
√

n) ;

24.
∑∞

n=1 1/(2
n(n+ 1));

25.
∑∞

n=1 n!/(n
2en);
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26.
∑∞

n=2

√
n/(3n ln(n));

27.
∑∞

n=2(2n)!/(n!)
3;

28.
∑∞

n=1(1− (−1)n)/n4;

29.
∑∞

n=1(2 + cos(n))/(n+ ln(n));

30.
∑∞

n=3 1/(n ln(n)
√

ln(ln(n)));

31.
∑∞

n=1 n
n/(πnn!);

32.
∑∞

n=1 2
n+1/nn;

33.
∑∞

n=1(−1)n−1/
√
n;

34.
∑∞

n=1 cos(πn)/((n+ 1) ln(n+ 1));

35.
∑∞

n=1(−1)n(n2 − 1)/(n2 + 1);

36.
∑∞

n=1(−1)n/(nπn);

37.
∑∞

n=1(−1)n(20n2 − n− 1)/(n3 + n2 + 33);

38.
∑∞

n=1 n!/(−100)n;

39.
∑∞

n=3 1/(n ln(n)(ln(ln(n)))
2);

40.
∑∞

n=1(1 + (−1)n)/
√
n;

41.
∑∞

n=1 e
n cos2(n)/(1 + πn);

42.
∑∞

n=2 n
4/n!;

43.
∑∞

n=1(2n)!6
n/(3n)!;

44.
∑∞

n=1 n
1002n/

√
n!;

45.
∑∞

n=3(1 + n!)/(1 + n)!;

46.
∑∞

n=1 2
2n(n!)2/(2n)!;

47.
∑∞

n=1(−1)n/(n2 + ln(n));

48.
∑∞

n=1(−1)2n/2n;

49.
∑∞

n=1(−2)n/n!;

50.
∑∞

n=0−n/(n2 + 1);

51.
∑∞

n=1 100 cos(nπ)/(2n+ 3);

52.
∑∞

n=10 sin((n+ 1/2)π)/ ln(ln(n));

53.
∑∞

n=1(2n)!/(2
2n(n!)2);

54.
∑∞

n=1(n/(n+ 1))
n2
;
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55.
∑∞

n=1 1/(1 + 2 + · · ·+ n);

56.
∑∞

n=1 ln(n)/(2n
3 − 1);

57.
∑∞

n=1 sin(n)/n
2;

58.
∑∞

n=1(−1)n(n− 1)/n;

59.
∑∞

n=1(−1)n23n/7n;

60.
∑∞

n=1 cos(n)/n
4;

61.
∑∞

n=1(−1)n3n/(n(2n + 1));

62.
∑∞

n=1(−1)n−1n/(n2 + 1);

63.
∑∞

n=2(−1)n−1/(n ln2(n));

64.
∑∞

n=1(−1)n−12n/n2;

65.
∑∞

n=1(−1)n sin(
√
n)/n3/2;

66.
∑∞

n=1 n
4e−n

2
;

67.
∑∞

n=1 sin(nπ/2)/n;

68.
∑∞

n=2 1/(ln(n))
8;

69.
∑∞

n=13 1/(n ln(n)(ln(ln(n)))
p), where p > 0 is an arbitary positive real number;

Exercise 6.26 Let
∑∞

n=1 an be a convergent series of positive terms. Show that for each s ≥ 1,
the series

∑∞
n=1 a

s
n is also convergent.

Example 6.27 rearranging conditonally convergent series: There is a rather strange fact,
that illustrates the difference between an absolutely convergent and a conditionally convergent series.
First, we note that for an absolutely convergent series, rearranging the terms does not affect the
sum of the series.

However, for a conditionally convergent series, rearranging the terms can affect the sum of the
series, and in fact, we can play a wonderful game. Let

∑∞
n=0 an be a conditionally convergent

series with non-zero terms, so that
∑∞

n=0 an converges but
∑∞

n=0 |an| diverges. (The restriction to
a series with non-zero terms is not essential, but it makes the exposition a bit smoother.) Choose
any number S ∈ R. Then, there is a rearrangement ∑∞

n=0 bn of
∑∞

n=0 an (so the same terms,
but in a different order) so that

∑∞
n=0 bn converges to S.

Start by rewriting the original series
∑∞

n=0 an: set

pn =

{

an if an > 0;
0 if an ≤ 0;

and

qn =

{

0 if an > 0;
an if an ≤ 0;
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Note that both
∑∞

n=0 pn and
∑∞

n=0 qn diverge: since an = pn + qn for all n, if
∑∞

n=0 pn converges,
then

∑∞
n=0 qn =

∑∞
n=0(an − pn) converges, by the arithmetic of series. However,

∑∞
n=0 pn is a

series of non-negative terms, for which convergence and absolute convergence are the same notion,
and

∑∞
n=0 qn is a series of non-positive terms, for which convergence and absolute convergence are

the same notion. But if both
∑∞

n=0 pn and
∑∞

n=0 qn converge absolutely, then so does their sum
∑∞

n=0 an, a contradiction. Hence, both
∑∞

n=0 pn and
∑∞

n=0 qn diverge.

Given S, build the new series as follows: start by choosing elements b0 = p0, b1 = p1, . . . , bm = pm
(ignoring all the pn that are equal to 0) from the series

∑∞
n=0 pn until

∑m
n=0 bn > S (but

∑m−1
n=0 bn ≤

S). Then, choose elements bm+1 = q0, bm+2 = q1, . . . , bm+k+1 = qk (ignoring all the qn that are
equal to 0) until

∑m+k+1
n=0 bn < S (but

∑m+k
n=0 bn ≥ S). Then, choose the next elements of

∑∞
n=0 pn

(again ignoring the terms equal to 0) until the sum is greater than S, and then choose the next
elements of

∑∞
n=0 qn (again ignoring the terms equal to 0) until the sum is less than S, and repeat

indefinitely. This gives a rearrangement
∑∞

n=0 bn of the original series
∑∞

n=0 an. (Ignoring the terms
equal to 0 in constructing the bn means that the only terms appearing in the series

∑∞
n=0 bn are the

same as those appearing in the original series
∑∞

n=0 an.) The divergence of
∑∞

n=0 pn and
∑∞

n=0 qn
enters into this construction, as it ensures that we can in fact continue this process indefinitely.

It remains only to check that
∑∞

n=0 bn converges to S, but this follows immediately from the con-
struction of this new series, and the fact that limn→∞ pn = limn→∞ qn = 0.

7 Power series

Definition 7.1 A power series is an infinite series with a variable. Specifically, a power series
is an infinite series of the form

∞
∑

n=0

an(x− a)n,

where the an are real numbers, where x is a variable, and where a is a real number, the center of
the power series.

The main question we ask about the power series
∑∞

n=0 an(x − a)n is, for what values of x does
this series converge? The set of values of x for which the power series converges will always be an
interval, the interval of convergence, centered at a. Note that the series always converges for
x = a. The interval of convergence will have some radius r, the radius of convergence.

So, if the power series
∑∞

n=0 an(x − a)n has radius of convergence r, then the series converges
absolutely for all values of x in the open interval (a − r, a + r) and diverges for all values of x in
the two open rays (−∞, a − r) and (a + r,∞). The power series may or may not converge at the
two endpoints of the interval, these need to be checked separately.

Note that there are power series whose radius of convergence is 0, and these series converge only at
their center value. There are also power series whose radius of convergence is ∞, and these series
converge for all values of x and hence their interval of convergence is all of R.

This split between convergence and divergence, with only two points at which convergence needs
to be checked by hand, namely the endpoints of the interval of convergence, follows from the ratio
and root tests, Proposition ??. Consider the following example.
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Example 7.2 Consider the power series
∑∞

n=0 x
n/(n + 1), which is a power series centered at

a = 0. We always begin the same way with a power series, by using the ratio test. The ratio test
asks us to calculate

lim
n→∞

∣

∣

∣

∣

∣

xn+1/((n+ 1) + 1)

xn/(n+ 1)

∣

∣

∣

∣

∣

= |x| lim
n→∞

n+ 1

n+ 2
= |x|.

By Proposition ??, this series converges absolutely for |x| < 1 and diverges for |x| > 1. So, the
radius of convergence is 1.

Proposition ?? yields that the open interval (−1, 1) lies in the interval of convergence. In order
to determine the interval of convergence, we need to check the behavior of the series at the two
endpoints of this interval, namely x = 1 and x = −1.
At x = 1, the series becomes

∑∞
n=0 1/(n+ 1), which is the harmonic series and hence diverges.

At x = −1, this series becomes ∑∞
n=0(−1)n/(n+ 1), which is the alternating harmonic series, and

hence converges conditionally.

So, the interval of convergence is the half-open interval [−1, 1).

Exercise 7.3 The power series scavenger hunt: for each of the power series given below,
determine the radius and interval of convergence.

1.
∑∞

n=0(−1)nxn/n!;

2.
∑∞

n=1 5
nxn/n2;

3.
∑∞

n=1 x
n/(n(n+ 1));

4.
∑∞

n=1(−1)nxn/
√
n;

5.
∑∞

n=0(−1)nx2n+1/(2n+ 1)!;

6.
∑∞

n=0 3
nxn/n!;

7.
∑∞

n=0 x
n/(1 + n2);

8.
∑∞

n=1(−1)n+1(x+ 1)n/n;

9.
∑∞

n=0 3
n(x+ 5)n/4n;

10.
∑∞

n=1(−1)n(x+ 1)2n+1/(n2 + 4);

11.
∑∞

n=0 π
n(x− 1)2n/(2n+ 1)!;

12.
∑∞

n=2 x
n/(ln(n))n;

13.
∑∞

n=0 3
nxn;

14.
∑∞

n=0 n!x
n/2n;

15.
∑∞

n=1(−2)nxn+1/(n+ 1);

16.
∑∞

n=1(−1)nx2n/(2n)!;

17.
∑∞

n=1(−1)nx3n/n3/2;
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18.
∑∞

n=2(−1)n+1xn/(n ln2(n));

19.
∑∞

n=0(x− 3)n/2n;

20.
∑∞

n=1(−1)n(x− 4)n/(n+ 1)2;

21.
∑∞

n=0(2n+ 1)!(x− 2)n/n3;

22.
∑∞

n=1 ln(n)(x− 3)n/n;

23.
∑∞

n=0(2x− 3)n/42n;

24.
∑∞

n=2(x− a)n/bn, where b > 0 is arbitrary.

25.
∑∞

n=0(n+ p)!xn/(n!(n+ q)!), where p, q ∈ N;

26.
∑∞

n=1 x
n−1/(n3n);

27.
∑∞

n=1(−1)n−1x2n−1/(2n− 1)!;

28.
∑∞

n=1 n!(x− a)n, where a ∈ R is arbitrary;

29.
∑∞

n=1 n(x− 1)n/(2n(3n− 1));

Exercise 7.4 Prove, if {an} is a sequence satisfying limn→∞ |an|1/n = L 6= 0, then the power
series

∑∞
n=0 anx

n has radius of convergence 1
L .

Note that, if we use the ratio test to determine the radius of convergence of a power series, we cannot
then use the ratio test to determine whether the series converges or diverges at the endpoints of
the interval of convergence. This is because the limit is equal to 1 at the endpoints of the interval,
and when the limit is 1 is precisely when the ratio test gives no information.

Exercise 7.5 For each of the following series, determine the values of x for which the series
converges.

1.
∑∞

n=1((x+ 2)/(x− 1))n/(2n− 1);

2.
∑∞

n=1 1/((x+ n)(x+ n− 1));

8 Continuity

Definition 8.1 f is continuous at a if limx→a f(x) = f(a). This is actually a very concise
definition, containing several independent pieces:

• first, that limx→a f(x) exists;

• second, that f is defined at a;

• third, that these two numbers limx→a f(x) and f(a) are equal.

In general, a function f : (c, d)→ R with domain an interval in R is continuous if f is continuous
at every a in the interval (c, d).
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Exercise 8.2 Prove, using the definition, that each of the following functions is continuous at all
points of R.

1. hn(x) = xn, where n ∈ N;

2. g(x) = c, where c ∈ R;

3. f is a function on R which satisfies |f(x)− f(y)| ≤ c|x− y| for all x, y ∈ R, where c > 0 is
a constant.

Since continuous functions are defined in terms of limits, the rules of arithmetic for limits of func-
tions, as given in Theorem ??, extend immediately to rules of arithmetic for continuous functions.

Theorem 8.3 Let f and g be functions that are continuous at a. Then, the following hold.

1. the sum f + g, defined by setting (f + g)(x) = f(x) + g(x), is continous at a;

2. the difference f + g, defined by setting (f − g)(x) = f(x)− g(x), is continous at a;

3. the product f · g, defined by setting (f · g)(x) = f(x)g(x), is continous at a;

4. if g(a) 6= 0, then the quotient f/g, defined by setting (f/g)(x) = f(x)/g(x), is continous at
a;

Proposition 8.4 If f is continuous at a and if g is continuous at f(a), then the composition
g ◦ f(x) = g(f(x)) is continuous at a.

Proof of Proposition ??: We need to show that limx→a g(f(x)) = g(f(a)). Since g is continuous
at f(a), we know that for each ε > 0, there exists µ > 0 so that if |z − f(a)| < µ, then |g(z) −
g(f(a))| < ε. [Here I’m using z as a variable so that there aren’t too many x’s running around.]

We also know that f is continuous at a, so that for each µ > 0, there exists δ > 0 so that if
|x−a| < δ, then |f(x)− f(a)| < µ. Take the µ that is output by the definition of continuity of g at
f(a) and input it into the definition of continuity of f at a: since |f(x)− f(a)| < µ, we can apply
the definition of continuity of g at f(a) to get that if |x − a| < δ, then |f(x) − f(a)| < µ, and so
|g(f(x))− g(f(a))| < ε, as desired. QED

Exercise 8.5 Prove, if f is continuous and if limx→∞(f(x+1)−f(x)) = 0, that limx→∞ f(x)/x =
0.

Definition 8.6 Let f : [a, b]→ R be a real-valued function whose domain is a closed interval. Say
that f is continuous on [a, b] if f is continuous at each point of the open interval (a, b), and if
f(a) = limx→a+ f(x) and f(b) = limx→b− f(x).

The following two theorems, Theorem ?? (Maximum value property for continuous functions) and
Theorem ?? (Intermediate value property for continuous functions) are two of the most important
properties of continuous functions.
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Theorem 8.7 Maximum value property for continuous functions: Let f be a function that
is continuous on the closed interval [a, b]. Then f achieves its maximum on [a, b]; that is, there
exists some x0 in [a, b] so that f(x0) ≥ f(x) for all x ∈ [a, b].

Theorem 8.8 Intermediate value property for continuous functions: Let f be a function
that is continuous on the closed interval [a, b], and let c be a number lying between f(a) and f(b).
Then, there exists some x0 in the open interval (a, b) so that f(x0) = c. [Pictorally, this theorem
says that any horizontal line whose height lies between f(a) and f(b) must intersect the graph of f
over the interval [a, b].]

Exercise 8.9 The minimum value property states that, if f is continuous on [a, b], then f
achieves its minimum on [a, b]; that is, there exists some y0 in [a, b] so that f(y0) ≤ f(x) for all
x ∈ [a, b]. Prove that a continuous function f : [a, b] → R satisfies the minimum value property if
it satisfies the maximum value property.

Example 8.10 For the function f(x) which is continuous on the closed interval [a, b] and satisfies
a < f(x) < b for all x ∈ [a, b], use the Intermediate value property for continuous functions to
determine whether there is a solution to the equation f(x) = x on the interval [a, b].

Consider the associated function g(x) = f(x) − x. Since f is continuous on [a, b], we see that g
is continuous on [a, b], being the difference of two continuous functions. Since a < f(a) and since
f(b) < b (both of these inequalities follow from the given fact that a < f(x) < b for all x in [a, b]),
we have that g(a) = f(a)−a > 0 and g(b) = f(b)−b < 0. Applying the Intermediate value property
to g, we see that there exists c in (a, b) so that g(c) = 0, and hence so that f(c) − c = 0. That is,
f(c) = c, and so the equation f(x) = x has a solution in [a, b], as desired.

Exercise 8.11 For each of the following functions described below, use the Intermediate value
property for continuous functions to determine whether there is a solution to the given equation in
the specified set.

1. f(x) = x, where f(x) is continuous on the closed interval [a, b] and satisfies f(a) < a < b <
f(b) for all x ∈ [a, b];

2. g(x) = 0, where g(x) = x2 − cos(x);

3. f(x) = 0 on the interval [−a, a], where a is an arbitrary positive real number and f(x) =
x1995 + 7654x123 + x;

4. tan(x) = e−x for x in [−1, 1];

5. x3 + 2x5 + (1 + x2)−2 = 0 for x in [−1, 1];

6. 3 sin2(x) = 2 cos3(x) for x > 0;

7. 3 + x5 − 1001x2 = 0 for x > 0;

Example 8.12 solving equations by the method of bisection: The intermediate value prop-
erty allows us to determine whether an equation f(x) = 0 has a solution on a closed interval [a, b],
but we may also interate this process to find the location of a solution to an arbitrary degree of accu-
racy. Let’s illustrate this by taking a specific example; the method works the same for all continuous
functions.
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Consider g(x) = x2− cos(x) from the previous exercise. We determined that there exists a solution
c1 to g(x) = 0 in the interval [0, 2], since g(0) = −1 < 0 and g(2) = 4.6536... > 0. To isolate this
solution, let’s break the interval in half, and see which half contains the solution: the value of g
at 1 is g(1) = (1)2 − cos(1) = 0.4597... > 0. Since g(0) < 0 and g(1) > 0, the intermediate value
property yields the existence of a solution to g(x) = 0 in (0, 1). [Since g(1) > 0 and g(2) > 0, the
intermediate value property yields no information about the possible existence of solutions in [1, 2].
To answer that question, we would need to do something else.]

Now break [0, 1] in half: the value of g at 0.5 is g(0.5) = (0.5)2−cos(0.5) = −0.6276..., and so there
is a solution to g(x) = 0 in [0.5, 1].

Now, break [0.5, 1] in half: the value of g at 0.75 is g(0.75) = (0.75)2 − cos(0.75) = 0.1343... > 0,
and so there is a solution to g(x) = 0 in [0.5, 0.75].

Now, break [0.5, 0.75] in half: the value of g at 0.625 is g(0.625) = (0.625)2−cos(0.625) = −0.0204 <
0, and so there is a solution to g(x) = 0 in [0.625, 0.75]. We’re getting close, since g(0.625) is close
to 0, so we can continue.

This is an easy method to teach a computer, since it involves evaluating a function, comparing
numbers, and diving by 2. It is also possible to make this method a bit more intelligent: there is
no reason to divide the intervals in the middle. For instance, in the last step done above, it would
make sense to break the interval [0.625, 0.75] closer to 0.625 than to 0.75, since the value of g at
0.625 is closer to 0 than the value of g at 0.75.

Proposition 8.13 Suppose that f is continuous and that the sequence {an} converges to a. Then,
the sequence {f(an)} converges to f(a).

Proof Since f is continuous at a, for every ε > 0, there exists some δ > 0 so that if |x − a| < δ,
then |f(x) − f(a)| < ε. Since {an} converges to a, for each µ > 0, there exists some M so that
if n > M , then |an − a| < µ. So, suppose we are given some ε > 0, and take µ = δ, where δ
comes from our choice of ε in the definition of continuity at a and where µ is the input in the
definition of {an} converging to a. Then, for n > M , we have that |an−a| < µ = δ, and hence that
|f(an)− f(a)| < ε, which is precisely the definition of {f(an)} converges to f(a), as desired. [This
proof should convince you, if you have not already been convinced, of the power of appropriate
definition.] QED

Exercise 8.14 Suppose that f is continuous and that the sequence c, f(c), f(f(c)), f(f(f(c))), . . .
converges to a. Prove that f(a) = a.

Definition 8.15 A function f : R→ R is uniformly continuous if for each ε > 0, there exists
δ > 0 so that if |x− y| < δ, then |f(x)− f(y)| < ε.

Note that this definition is very similar to the definition of continuity, except in one aspect: in
the definition of continuity, the value of δ depends on both ε and on the point at which continuity
is being checked, while for uniform continuity, the value of δ depends only on ε and not on the
point at which the definition is being checked. To see that the two definitions are in fact different,
consider the following example.
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Example 8.16 The function f : R → R given by f(x) = x2 is NOT uniformly continuous. Note
however that since f is a polynomial, it is continuous.

To see that f is not uniformly continuous, we argue by contradiction. We start with a bit of algebra,
namely |f(x)− f(y)| = |x2 − y2| = |x− y| |x+ y|. Suppose now that f were uniformly continuous,
so that for each ε > 0, there exists δ > 0 so that if |x−y| < δ, then |f(x)−f(y)| < ε. In particular,
there is a value δ1 of δ that works for ε = 1. That is, if f were uniformly continuous, then there
would exist δ1 > 0 so that if |x− y| < δ1, then |f(x)− f(y)| < 1.
Now, take x to be very large and positive. Since we are working with x and y satisfying |x−y| < δ1,
we make take y = x+ 1

2δ1. In particular, the value of |x+ y| satisfies |x+ y| = x+ y = 2x+ 1
2δ1,

and so |f(x)− f(y)| = |x2 − y2| = |x− y| |x+ y| = 1
2δ1 (2x+

1
2δ1). Now we need only take x large

enough for 1
2δ1 (2x+

1
2δ1) > 2 (which we can do, since δ1 is fixed and we have complete freedom to

vary x) to get a contradition to |f(x)− f(y)| < 1.

Definition 8.17 A sequence {fn} of functions fn : R → R converges pointwise to a function
f : R→ R if for each a ∈ R, the sequence {fn(a)} converges to f(a).

Definition 8.18 A sequence {fn} of functions fn : R → R converges uniformly to a function
f : R → R if for each ε > 0, there exists M so that if n > M , then |fn(a) − f(a)| < ε for each
a ∈ R.

As with the difference between continuity and uniform continuity, the difference between these two
definitions is on one level small, merely the placement of a quantifier, but it has major effects. To
see this, if we rewrite the definition of pointwise convergence, we get:

A sequence {fn} of functions fn : R → R converges pointwise to a function f : R → R if for
each ε > 0 and for each a ∈ R, there exists M so that if n > M , then |fn(a)− f(a)| < ε.

Namely, the difference is in the placement of quantifier for each a ∈ R. We demonstrate that
these two definitions are different in two steps, one a theorem and the other an example.

Theorem 8.19 Suppose that {fn} is a sequence of functions fn : R → R, where each fn is
continuous. Suppose further that {fn} converges uniformly to f . Then f is continuous.

Proof We show that f is continuous at a. So, take an arbitrary ε > 0; we need to show that there
exists δ > 0 so that if |x− a| < δ, then |f(x)− f(a)| < ε.

Since {fn} converges to f uniformly, there exists M so that if n > M , then |fn(b)− f(b)| < 1
3ε for

all b ∈ R. We also know that fM+1 is continuous at a, and so there exists some δ > 0 so that if
|x− a| < δ, then |fM+1(x)− fM+1(a)| < 1

3ε. Therefore:

|f(x)− f(a)| = |f(x)− fM+1(x) + fM+1(x)− fM+1(a) + fM+1(a)− f(a)|
≤ |f(x)− fM+1(x)|+ |fM+1(x)− fM+1(a)|+ |fM+1(a)− f(a)|

<
1

3
ε+

1

3
ε+

1

3
ε = ε,

and so f is continuous at a. (Here, the first and third inequalities follow from the uniform conver-
gence of {fn} to f , while the middle inequality follows from the continuity of fM+1.) QED
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Example 8.20 For n ≥ 1, define fn : [0, 1]→ [0, 1] by fn(x) = xn. Then, {fn} converges pointwise
to the discontinuous function

f(x) =

{

0 for 0 ≤ x < 1
1 for x = 1

This is just a reflection of the fact that for 0 ≤ a < 1, the sequence {an} converges to 0, but the
rate of convergence depends on the value of a; if a is close to 0, then the convergence is much
quicker than if a is close to 1. Since the pointwise limit of {fn} is not continuous, we have by
Theorem ?? that the convergence of {fn} to f cannot be uniform. (It is also possible to show that
the convergence of {fn} to f cannot be uniform by direct application of the definition.)

9 Differentiability

Definition 9.1 The function f is differentiable at a if the limit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

w→a

f(w)− f(a)

w − a

exists. f is differentiable if it is differentiable at every point of its domain.

Example 9.2

Proposition 9.3 Suppose that f is differentiable at a. Then, f is continuous at a.

Proof The proof of this is the evaluation of a single limit. Recall that f is continuous at a if
limx→a f(x) = f(a), or equivalently, if limx→a(f(x)− f(a)) = 0. So,

lim
x→a
(f(x)− f(a)) = lim

x→a

f(x)− f(a)

x− a
(x− a) = lim

x→a

f(x)− f(a)

x− a
lim
x→a
(x− a) = f ′(a) · 0 = 0,

as desired. QED

Theorem 9.4 Rolle’s theorem: Suppose that the function f is continuous on the closed interval
[a, b] and differentiable on the open interval (a, b), and that f(a) = f(b). Then, there exists a
number c in the interval (a, b) so that f ′(c) = 0.

Proof The proof of Rolle’s theorem is a direct consequence of the maximum value property for
continuous functions on a closed interval, the definition of the derivative, and a bit of calculation.
Since f is continuous on [a, b], it achieves its maximum at some point c in [a, b]. Assume to start
that f achieves its maximum at a point c in the open interval (a, b). Consider the derivative of
f at c, which is defined and continuous since f is assumed to be differentiable on (a, b): f ′(c) =

limh→0
f(c+h)−f(c)

h exists. Since this limit exists, the two one-sided limits limh→0+
f(c+h)−f(c)

h and

limh→0−
f(c+h)−f(c)

h exist and are both equal to f ′(c). Let’s examine them individually.

For limh→0+
f(c+h)−f(c)

h : since f achieves its maximum at c, we have that f(c + h) ≤ f(c) for all

values of h for which c+h lies in (a, b), and so f(c+h)−f(c) ≤ 0. Hence, limh→0+
f(c+h)−f(c)

h ≤ 0,
since the numerator is negative or 0 and the denominator is positive.

For limh→0−
f(c+h)−f(c)

h : again since f achieves its maximum at c, we have that f(c+h) ≤ f(c) for

all values of h for which c+h lies in (a, b), and so f(c+h)−f(c) ≤ 0. Hence, limh→0−
f(c+h)−f(c)

h ≥ 0,
since the numerator is negative or 0 and the denominator is also negative.
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Since limh→0+
f(c+h)−f(c)

h = limh→0−
f(c+h)−f(c)

h and since the left hand limit is non-positive and
the right hand limit is non-negative, it must be that both are equal to 0, and hence that f ′(c) = 0
as well.

If f does not achieve its maximum at some point in (a, b), then it must achieve its maximum at
the endpoints, and so f(x) ≤ f(a) for all x ∈ [a, b]. We can make the same argument at the point
c in (a,b) at which f achieves its minimum, making use of the minimum value property for f , and
again argue that if f achieves its minimum at a point c in (a, b), then f ′(c) = 0.

The only remaining alternative is that f achieves both its maximum and its minimum at the
endpoints of [a, b], in which case it must be that f is constant on [a, b]. In this case, we can easily
calculate that f ′(c) = 0 at every c in (a, b). This completes the proof of Rolle’s theorem. QED

Theorem 9.5 Mean value theorem: Suppose that the function f is continuous on the closed
interval [a, b] and differentiable on the open interval (a, b). Then, there exists a number c in the
interval (a, b) so that f ′(c)(b− a) = f(b)− f(a).

Proof Consider the new function

g(x) = f(x)− f(a)−
(

f(b)− f(a)

b− a

)

(x− a),

and note that g is continuous on [a, b] and differentiable on (a, b), since it is constructed from f
and a linear polynomial, and moreover we have that g(b) = g(a) = 0. Hence, we may apply Rolle’s
theorem to g to obtain a point c in (a, b) at which g′(c) = 0. Calculating, we see that

g′(c) = f ′(c)− f(b)− f(a)

b− a
,

and so when g′(c) = 0, we have that f ′(c) = f(b)−f(a)
b−a , which is the conclusion of the mean value

theorem. QED

Proposition 9.6 Let f : R → R be a differentiable function. If f ′(x) > 0 for all x, then f(x) is
increasing; that is, if a < b, then f(a) < f(b).

Proof This is a straightforward application of the mean value theorem. Take points a and b with
a < b, and apply the mean value theorem to f(x) on the interval [a, b]. So, there is some number c
in (a, b) so that f(b)− f(a) = f ′(c)(b− a). Since f ′(c) > 0 by assumption and since b− a > 0, we
have that f(b)− f(a) > 0, that is, that f(b) > f(a), as desired. QED

Exercise 9.7 Show that f(x) = |x − 2| on the interval [1, 4] satisfies neither the hypotheses nor
the conclusion of the Mean Value Theorem.

Example 9.8 Use the mean value theorem to prove that if f ′(x) is constant on R, then f(x) is a
linear function; that is, there exist constants a and b so that f(x) = ax+ b.

Since f ′(x) is constant on R, there exists some a ∈ R so that f ′(x) = a for all x ∈ R. Consider
the function g(x) = f(x)− ax. Since both f and the linear polynomial ax are differentiable on all
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of R, and hence continuous on all of R, we have that g is differentiable on all of R, and hence is
also continuous on all of R. In order to apply the mean value theorem, we need to work on closed
intervals.

So, for x0 > 0, consider the interval [0, x0]. Since g is continuous on [0, x0] and differentiable on
(0, x0), the mean value theorem states that there exists some c in (0, x0) so that g(x0) − g(0) =
g′(c)(x0− 0). However, g′(c) = f ′(c)− a = a− a = 0, and so g(x0)− g(0) = 0, and so g(x0) = g(0)
for all x0 > 0. To show that g(x0) = g(0) for all x0 < 0 as well, work with the interval [x0, 0] and
repeat the argument just given.

So, g(x) is constant, that is, there is b ∈ R so that g(x) = b for all x ∈ R. Substituting in
g(x) = f(x)− ax, this yields that f(x)− ax = b for all x ∈ R, or that f(x) = ax+ b for all x ∈ R,
where a and b are constants, as desired.

Exercise 9.9 Use the mean value theorem to prove each of the following statements.

1. If g′(x) is a polynomial of degree n− 1, then g(x) is a polynomial of degree n;

2. x/(x+ 1) < ln(1 + x) < x for −1 < x < 0 and for x > 0;

3. sin(x) < x for x > 0;

Example 9.10 For the function g(x) = x2 − cos(x), the same as in Exercise ??, use Rolle’s
theorem or the mean value theorem to determine whether the solutions described in Exercise ?? to
the equation g(x) = 0 are the only ones.

In Exercise ??, we saw that there exist at least two solutions c1 and c2 to this equation, where
0 < c1 < 2 and −2 < c2 < 0. Suppose there were a third solution c3 to g(x) = 0. Then, since there
are three points c1, c2, and c3 at which g(x) = 0, by Rolle’s theorem there would exist two points
e1 and e2 at which g

′(x) = 0. (For instance, if c3 < c2, then e1 would lie between c3 and c2, and
e2 would lie between c2 and c1.) Note that there is already one point at which g

′(x) = 0, namely
x = 0.

However, by the same sort of argument used in the solution to parts 3 and 4 of Exercise ??, we
have that g′(x) satisfies g′(x) = 2x+ sin(x) 6= 0 for all x 6= 0. (Specifically, we have that g ′(0) = 0,
and that g′′(x) = 2 + cos(x) > 0 for all x ∈ R, since −1 ≤ cos(x) ≤ 1 for all x ∈ R. Hence,
g′(x) < 0 for all x < 0 and g′(x) > 0 for all x > 0.) Hence, by Rolle’s theorem, there are only the
two solutions to g(x) = 0 that we had already found.

Exercise 9.11 For each of the following functions, the same as in Exercise ??, use Rolle’s theorem
or the mean value theorem to determine whether the solutions described in Exercise ?? are the only
ones.

1. f(x) = 0 on the interval [−a, a], where a is an arbitrary positive real number and f(x) =
x1995 + 7654x123 + x;

2. tan(x) = e−x for x in [−1, 1];

3. 3 sin2(x) = 2 cos3(x) for x > 0;

4. 3 + x5 − 1001x2 = 0 for x > 0;
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Exercise 9.12 For each of the following functions described below, determine whether there is a
solution to the given equation in the specified set.

1. g′(a) = 0 = g′(b), where a < b are real numbers and g(x) = x3 − 12πx2 + 44π2x − 48π3 +
cos(x)− 1;

2. f ′(a) = 0, where f(x) = x4 − π3x− sin(x) and a ∈ R;

3. g′(x) = 0 for at least k − 1 distinct real numbers, where g(x) is a differentiable function on
R which vanishes at at least k distinct real numbers.

4. x3 + px+ q = 0 has exactly one real root for p > 0;

10 The Cauchy mean value theorem and l’Hopital’s rule

Theorem 10.1 Cauchy mean value theorem: Let f and g be two functions that are both
continuous on [a, b] and differentiable on (a, b). Suppose further that g ′(x) is never zero on (a, b).
Then, there exists some c in (a, b) so that

f(b)− f(a)

g(b)− g(a)
=

f ′(c)
g′(c)

.

Proof Consider the function

ϕ(x) = f(x)− f(a)−
(

f(b)− f(a)

g(b)− g(a)

)

(g(x)− g(a)).

Since both f and g are continuous on [a, b] and differentiable on (a, b), the new function ϕ(x) is as
well, as it is a linear combination of f and g. Applying the mean value theorem to ϕ, there exists
a point c in (a, b) so that ϕ′(c) = ϕ(b)−ϕ(a)

b−a . That is,

ϕ′(c) = f ′(c)−
(

f(b)− f(a)

g(b)− g(a)

)

g′(c) = 0,

since ϕ(b) = ϕ(a) = 0. Hence, f ′(c) =
(

f(b)−f(a)
g(b)−g(a)

)

g′(c). Since g′(c) 6= 0 no matter the value of c,
this is equivalent to

f ′(c)
g′(c)

=
f(b)− f(a)

g(b)− g(a)
,

which is the desired conclusion. QED

The Cauchy mean value theorem can be thought of as a variant of the mean value theorem that
holds simultaneously for two functions. Also, note that the Cauchy mean value theorem follows
as an immediate application of the mean value theorem, which is an immediate application of
Rolle’s theorem, which is an immediate application of the maximum value property for continuous
functions on a closed interval.

The main use of the Cauchy mean value theorem for us is to give a proof of l’Hopital’s rule.
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Theorem 10.2 l’Hopital’s rule: Suppose that f and g are differentiable on the union I = (a−
ε, a) ∪ (a, a+ ε) for some ε > 0, and that g′(x) is non-zero on I. Suppose also that

lim
x→a

f(x) = lim
x→a

g(x) = 0.

Then,

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)
g′(x)

,

provided that the right hand limit either exists or is ±∞.

Proof Since limx→a f(x) = 0, we set f(a) = 0 in order to insure that f is a continuous function
on (a− ε, a+ ε), and similarly we set g(a) = 0. Fix a value of x in I, and apply the Cauchy mean
value theorem to f and g on the interval [a, x] (if x > a, or on the interval [x, a] if x < a). Hence,
regardless of which case we’re in, there exists some number z between a and x so that

f(x)

g(x)
=

f(x)− f(a)

g(x)− g(a)
=

f ′(z)
g′(z)

.

Since z lies between a and x, it must be that z → a as x→ a, and so

lim
z→a

f ′(z)
g′(z)

= lim
x→a

f ′(z)
g′(z)

.

Since
f(x)

g(x)
=

f ′(z)
g′(z)

,

we also have that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(z)
g′(z)

,

and so are done. QED

Definition 10.3 l’Hopital’s rule involves limits of the form limx→a
f(x)
g(x) , where limx→a f(x) =

limx→a g(x) = 0. We refer to such a limit as having indeterminate form
0
0 .

Similarly, we can define what it means for a limit limx→a
f(x)
g(x) to have indeterminate form

∞
∞ ,

namely that limx→a f(x) = limx→a g(x) = ∞. We can convert a limit of indeterminate form ∞
∞

into one of indeterminate form 0
0 very easily, since if

lim
x→a

f(x)

g(x)

has indeterminate form ∞
∞ , then

lim
x→a

1/g(x)

1/f(x)

has indeterminate form 0
0 , and

lim
x→a

1/g(x)

1/f(x)
= lim

x→a

1/g(x)

1/f(x)
· f(x)
f(x)

= lim
x→a

f(x)

g(x)
.

There are other indeterminate forms that can be handled by l’Hopital’s rule and some algebraic
massage:
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• indeterminate form 0 ·∞: limx→a f(x)g(x), where limx→a f(x) = 0 and limx→a g(x) =∞.
In this case, rewrite

lim
x→a

f(x)g(x) = lim
x→a

f(x)

1/g(x)

to get indeterminate form 0
0 .

As an example of this indeterminate form, consider

lim
n→∞n ln

(

1

n

)

.

• indeterminate form 1∞: limx→a f(x)
g(x), where limx→a f(x) = 1 and limx→a g(x) = ∞.

In this case, rewrite
lim
x→a

f(x)g(x) = lim
x→a

exp (ln(f(x))g(x)) ,

so that the exponent has indeterminate form 0 · ∞, and then use the previous reduction to
evaluate the limit of the exponent.

As an example of this indeterminate form, consider

lim
n→∞

(

1 +
1

n

)n

.

• indeterminate form ∞0: limx→a f(x)
g(x), where limx→a f(x) = ∞ and limx→a g(x) = 0.

In this case, rewrite
lim
x→a

f(x)g(x) = lim
x→a

exp (ln(f(x))g(x)) ,

so that the exponent has indeterminate form∞·0, and then use the above reduction to evaluate
the limit of the exponent.

As an example of this indeterminate form, consider

lim
n→∞n1/n.

We close by noting that l’Hopital’s rule also holds for limits of the form limx→∞
f(x)
g(x) which

have one of these indeterminate forms. Remember that it is necessary to check that the limit
has an indeterminate form before applying l’Hopital’s rule.

Example 10.4 Evaluate the limit limx→1(x
5 − 1)/(x2 − 1).

Not all indeterminate forms require l’Hopital’s rule. By factoring, we have that

lim
x→1

x5 − 1
x2 − 1 = limx→1

(x− 1)(x4 + x3 + x2 + x+ 1)

(x− 1)(x+ 1) = lim
x→1

x4 + x3 + x2 + x+ 1

x+ 1
=
5

2
.

(The second equality follows from the fact that when we are taking the limit as x → 1, we do not
care what is actually happening at 1 but only near 1, and near 1 the value of x− 1 is not zero.)

Exercise 10.5 Evaluate the following limits.

1. limx→2(1− cos(πx))/ sin2(πx);
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2. limx→−1(x
7 + 1)/(x3 + 1);

3. limx→3(1 + cos(πx))/ tan
2(πx);

4. limx→1(1− x+ ln(x))/(1 + cos(πx));

5. limx→∞(ln(x))1/x;

6. limx→2(x
2 + x− 6)/(x2 − 4);

7. limx→0(x+ sin(2x))/(x− sin(2x));

8. limx→0(e
x − 1)/x2;

9. limx→0(e
x + e−x − x2 − 2)/(sin2(x)− x2);

10. limx→∞ ln(x)/x;

11. limx→2(x
3 − x2 − x− 2)/(x3 − 3x2 + 3x− 2);

12. limx→1(x
3 − x2 − x+ 1)/(x3 − 2x2 + x);

11 The fundamental theorem of calculus and improper integrals

We begin this section by stating the fundamental theorem of calculus.

Theorem 11.1 Fundamental theorem of calculus: Let f be a continuous function on the
closed interval [a, b].

• Consider the function on [a, b] defined by

F (x) =

∫ x

a
f(t)dt.

Then, F ′(x) = f(x) for every x in (a, b). In shorthand,

f(x) =
d

dx

∫ x

a
f(t)dt.

• If G is any function on [a, b] satisfying G′(x) = f(x), then

∫ b

a
f(x)dx = G(b)−G(a).

In shorthand,
∫ b

a
G′(x)dx = G(b)−G(a).

The fundamental theorem of calculus tells us how to integrate a continuous function on a closed
interval. In order to integrate a function that is not continuous on a closed interval, we need to do
something a bit different. This brings us to the notion of the improper integral.
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Definition 11.2 There are many kinds of improper integrals. We do not give a precise definition
that covers all cases, but for our purposes here, an improper integral is an integral in which one
(or more) of the following occurs:

• the interval of integration is not a closed interval, but instead is one of (−∞, a], [a,∞), or
(−∞,∞), or

• the integrand has an infinite discontinuity at some point c, namely limx→c f(x) = ±∞.

We define convergence and divergence for improper integrals essentially by approximating what
happens on closed intervals that fill out the interval of integration.

An improper integral of the form
∫∞
a f(x)dx (where f is continuous on [a,∞)) converges if the

limit limM→∞
∫M
a f(x)dx exists (as a finite number). If the improper integral

∫∞
a f(x)dx converges,

we set
∫ ∞

a
f(x)dx = lim

M→∞

∫ M

a
f(x)dx.

(This is analogous to our definition of the sum of an infinite series, as the limit of the sequence
of partial sums when that limit exists.) Similarly for improper integrals of this form where f is
continuous on (−∞, a].

An improper integral of the form
∫∞
−∞ f(x)dx (where f is continuous on (−∞,∞)) converges when,

for some (and hence any) c in (−∞,∞), the two improper integrals ∫∞c f(x)dx and
∫ c
−∞ f(x)dx

both converge. This is different from assuming that limM
−M f(x)dx exists, as we will see later.

An improper integral of the form
∫ b
a f(x)dx (where f is continuous on (a, b] and limx→a+ f(x) =

±∞) converges if the limit limc→a+
∫ b
c f(x)dx exists (as a finite number). If the improper integral

∫ b
a f(x)dx exists, we set

∫ b

a
f(x)dx = lim

c→a+

∫ b

c
f(x)dx.

Similarly for improper integrals of this form where f is continuous on [a, b) and limc→b− f(x) = ±∞.
An improper integral of the form

∫ b
a f(x)dx (where f is continuous on [a, b] except at a single point

c in (a, b), and both the integrals
∫ c
a f(x)dx and

∫ b
c f(x)dx are of the previous form) converges if

both the improper integrals
∫ c
a f(x)dx and

∫ b
c f(x)dx converge.

An improper integral that does not converge is said to diverge.

Example 11.3 Consider the integral
∫∞
4 dx/x3/2. This is an improper integral because the interval

of integration is [4,∞) and hence is not a closed interval. So, we attempt to evaluate this integral
by formulating it as a limit of integrals over closed intervals, namely

∫ ∞

4

1

x3/2
dx = lim

M→∞

∫ M

4

1

x3/2
dx

= lim
M→∞

∫ M

4
x−3/2 dx

= lim
M→∞

(

− 2√
M
+
2√
4

)

= 1.

Hence, this improper integral converges to 1.
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Exercise 11.4 Determine whether the following improper integrals converge or diverge, and eval-
uate those which converge.

1.
∫ 4
0 dx/x

3/2;

2.
∫∞
1 dx/(x+ 1);

3.
∫∞
5 dx/(x− 1)3/2;

4.
∫ 9
0 dx/(9− x)3/2;

5.
∫−2
−∞ dx/(x+ 1)

3;

6.
∫ 8
−1 dx/x

1/3;

7.
∫∞
2 dx/(x− 1)1/3;

8.
∫∞
−∞ xdx/(x2 + 4);

9.
∫ 1
0 e

√
xdx/

√
x;

10.
∫∞
1 dx/x ln(x);

Exercise 11.5 Show that
∫∞
−∞(1+x)dx/(1+x

2) diverges, but that limt→∞
∫ t
−t(1+x)dx/(1+x

2) = π.

12 Taylor series

Definition 12.1 For a function f : (a, b) → R that has derivatives of all orders in (a, b) and for
a number c in (a, b), the Taylor series for f centered at c is the power series

∞
∑

n=0

1

n!
f (n)(c)(x− c)n,

where f (n)(c) denotes the nth derivative of f(x) evaluated at c.

Exercise 12.2 For each of the given functions, calculate its Taylor series about the given point;
also, determine the radius and interval of convergence of the resulting power series whereever pos-
sible.

1. f(x) = x3 + 6x2 + 5x− 7 about a = 6;

2. f(x) = e3x about a = −2;

3. f(x) = cosh(x) about a = 1;

Lemma 12.3 Uniqueness of series representations: Consider two power series
∑∞

n=0 an(x−
a)n and

∑∞
n=0 bn(x− a)n that both converge absolutely on the open interval (a− ε, a+ ε) for some

ε > 0. If
∑∞

n=0 an(x−a)n =
∑∞

n=0 bn(x−a)n for all x in (a− ε, a+ ε), then an = bn for all n ≥ 0.
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We now present a test to determine when a function is equal to its Taylor series, followed by an
example of a function NOT equal to its Taylor series, to show that the condition in Theorem ??
does not hold for all functions.

Theorem 12.4 Let f be a function which has derivatives of all orders in the interval (a−β, a+β)
for some β > 0. Then,

f(x) =
∞
∑

n=0

1

n!
f (n)(a)(x− a)n

(that is, f is equal to its Taylor series) if and only if

lim
n→∞Rn(x) = 0,

where

Rn(x) =
1

(n+ 1)!
f (n+1)(z)(x− a)n+1,

where z is some number between a and x (and so z depends on a, x, and n).

Example 12.5 Consider the Taylor series for the function f(x) = ex centered at a = 0, namely

∞
∑

n=0

1

n!
f (n)(0)xn =

∞
∑

n=0

1

n!
xn,

since f (n)(0) = e0 = 1 for all n ≥ 0. In order to show that ex =∑∞
n=1

1
n!x

n for all x in R, we need
to show that for each x,

lim
n→∞Rn(x) = lim

n→∞
1

(n+ 1)!
ezxn+1,

where z lies between 0 and x and depends on 0, x, and n.

First take the case that x > 0. In this case, we have that 1 < ez ≤ ex =M for all z between 0 and
x, since we’re thinking of x as fixed and since ex is an increasing function. Since we know that
limn→∞ 1

n!x
n = 0 for x fixed (for instance, by the ratio test), the squeeze law for limits yields that

limn→∞ 1
(n+1)!e

zxn+1 = 0 for each x, as desired.

In the case that x ≤ 0, we note that 0 < ex ≤ 1, and the same argument applies here as well. Since
limn→∞Rn(x) = 0 for each x, we have that f(x) = ex is equal to its Taylor series.

Example 12.6 We can pass between functions and series in the following way: a power series
∑∞

n=0 an(x−c)n defines a function on its interval of convergence I, namely f(x) =
∑∞

n=0 an(x−c)n
for every x ∈ I (since the interval of convergence is precisely the set of values of x for which the
power series converges).

We can then take the Taylor series for f at any point a in the interval of convergence I. When we
do this, we get back the power series we started with, since power series representations of functions
are unique.

However, when we perform the other possible composition of these operations, namely start with a
function f , construct its Taylor series which then has an interval of convergence I, and then look
at the function on I given by summing the series, we do NOT necessarily get back the function we
started with. The easiest way to see this is via an example. So, consider the function

f(x) =

{

e−1/x2
for x 6= 0

0 for x = 0
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It is a (difficult) calculation that f (n)(0) = 0 for all n ≥ 0, and so the Taylor series for this function
centered at 0 is ∞

∑

n=0

1

n!
f (n)(0)xn =

∞
∑

n=0

0 xn,

which is the series representation of the constant function g(x) = 0, which is not the function f we
began with.

Proposition 12.7 Arithmetic of power series: Let f(x) =
∑∞

n=0 an(x − a)n and g(x) =
∑∞

n=0 bn(x−a)n be two power series that converge absolutely for all x in the open interval (a−ε, a+ε)
for some ε > 0. Then, the following hold on the open interval (a− ε, a+ ε):

• the sum (f + g)(x) is given by the power series (f + g)(x) =
∑∞

n=0(an + bn)(x− a)n;

• the difference (f − g)(x) is given by the power series (f − g)(x) =
∑∞

n=0(an − bn)(x− a)n;

• the product (f · g)(x) is given by the power series (f · g)(x) = ∑∞
n=0 cn(x − a)n, where

cn =
∑n

k=0 ak · bn−k.

• the derivative of f(x) is given by differentiating the power series term by term:

f ′(x) =
∞
∑

n=1

n an−1(x− a)n−1;

• the (indefinite) integral of f(x) is given by integrating the power series term by term:
∫

f(x)dx = c+
∞
∑

n=0

an
n+ 1

(x− a)n+1;

Example 12.8 Determine a series representation for the function f(x) = (x+1)/(x+2) centered
at a = 0.

One way would be to calculate the Taylor series for f(x) centered at a = 0, but this gets complicated,
as the derivatives of f(x) get complicated. Another way is to use the arithmetic of power series.
We start by deriving a series representation for 1/(x + 2), using the fact that 1

1−r =
∑∞

n=0 r
n for

|r| < 1. Hence, for | − 1
2x| < 1, we have:

1

x+ 2
=

1

2(12x+ 1)

=
1

2

1

1− (−1
2x)

=
1

2

∞
∑

n=0

(

−1
2
x

)n

=
∞
∑

n=0

(−1)n 1

2n+1
xn.
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Hence, a series representation for f(x) centered at 0 is:

f(x) =
x+ 1

x+ 2
= (x+ 1)

∞
∑

n=0

(−1)n 1

2n+1
xn

=
∞
∑

n=0

(−1)n 1

2n+1
xn+1 +

∞
∑

n=0

(−1)n 1

2n+1
xn

=
∞
∑

n=1

(−1)n+1 1

2n
xn +

∞
∑

n=0

(−1)n 1

2n+1
xn

=
1

2
+

∞
∑

n=1

(

(−1)n+1 1

2n
+ (−1)n 1

2n+1

)

xn =
1

2
+

∞
∑

n=1

(−1)n+1 1

2n+1
xn.

13 Last year’s exam

Semester 1, 1999:

Rubric: Full marks may be obtained by giving COMPLETE and CORRECT answers to ALL
questions. Be sure to justify all of your answers. Each question is worth 5 marks, giving a total of
100 marks for the exam.

1. Give an example of a sequence that is bounded but not convergent, or prove that no such
sequence exists. Also, give an example of a sequence that is convergent but not bounded, or
prove that no such sequence exists.

Solution: The sequence {an = (−a)n} is bounded below by −1 and bounded above by 1,
and so is bounded. This sequence does not converge, though; since |an − an+1| = 2 for all n,
this sequence fails the Cauchy criterion, and hence diverges.

For the other part, we know that every convergent sequence is bounded. This is Proposition
??. (Note that you are asked in this question to state and to write out the proof of this
proposition.)

2. Determine whether the sequence






an =

(

2
3

)n

2− n1/n







converges or diverges. If the sequence converges, determine its limit.

Solution: We know that limn→∞(23)
n = 0, since 2

3 < 1. Hence, we need to evaluate

limn→∞ n1/n: start by writing

n1/n = exp(ln(n))1/n = exp

(

ln(n)

n

)

.

Since limn→∞ n1/n = exp
(

limn→∞
ln(n)
n

)

, and since limn→∞
ln(n)
n has the indeterminate form

∞
∞ , we may use l’Hopital’s rule to evaluate:

lim
n→∞

ln(n)

n
= lim

n→∞

1
n

1
= 0,
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and so

lim
n→∞

n1/n = exp

(

lim
n→∞

ln(n)

n

)

= e0 = 1.

Hence, the original limit can be evaluated using the arithmetic of limits:

lim
n→∞

(

2
3

)n

2− n1/n
=

0

2− 1 = 0,

and so the sequence converges to 0.

3. Prove that if a sequence {an} is increasing and bounded above, then it is convergent.

Solution: Since {an} is bounded above, it has a supremum a. By the definition of supremum,
for every ε > 0, there exists M so that |aM − a| < ε. Since {an} is increasing and since a
is an upper bound for {an}, we have that aM < an ≤ a for every n > M . In particular, we
have that |an − a| < |aM − a| < ε for every n > M , and this is just the definition that {an}
converges to a.

4. Determine whether the infinite series

∞
∑

n=3

1

n ln(n)

converges or diverges. (You do not need to evaluate the sum of the series in the case that it
converges.)

Solution: Since the terms in the series are all positive, we may use the integral test, with
f(x) = 1

x ln(x) . This function is continuous for x ≥ 3 and is decreasing, since f ′(x) =

− ln(x)+1
x2 lnx(x)

< 0 for x ≥ 3. Then, the series converges if and only if the improper integral
∫∞
3

1
x ln(x)dx = limM→∞

∫M
3

1
x ln(x)dx converges. Calculating, we see that

lim
M→∞

∫ M

3

1

x ln(x)
dx = lim

M→∞
ln(ln(x))

∣

∣

∣

M
3 = lim

M→∞
(ln(ln(M))− ln(ln(3)) =∞.

Since the intergral diverges, the series diverges.

5. Determine whether the infinite series

∞
∑

n=1

(−1)n√
n

converges absolutely, converges conditionally, or diverges. (You do not need to evaluate the
sum of the series in the case that it converges.)

Solution: Notice that this is an alternating series. Since limn→∞ 1√
n
= 0 and since 1√

n+1
<

1√
n
, the alternating series test yields that this series converges.

However, the series
∑∞

n=1
1√
n
diverges, for instance by comparison to the harmonic series, as

1√
n
≥ 1

n for all n ≥ 1, and so this series does not converge absolutely. That is, this series
converges conditionally.
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6. By explicitly calculating its partial sums, show that the infinite series

∞
∑

n=1

(

1

n
− 1

n+ 1

)

is convergent.

Solution: Calculating, we see that the kth partial sum is a telescoping sum, namely

Sk =
k
∑

n=1

(

1

n
− 1

n+ 1

)

=

(

1

1
− 1

1 + 1

)

+

(

1

2
− 1

2 + 1

)

+ · · ·+
(

1

k
− 1

k + 1

)

= 1− 1

k + 1
.

Therefore, limk→∞ Sk = 1− limk→∞
1

k+1 = 1, and so this series converges.

7. Determine the radius of convergence and the interval of convergence of the power series

∞
∑

n=1

(

1 +
1

n

)n

(x− 1)n.

Solution: Apply the ratio test:

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

(

1 + 1
n+1

)n+1
(x− 1)n+1

(

1 + 1
n

)n
(x− 1)n

∣

∣

∣

∣

∣

∣

∣

= |x− 1| lim
n→∞

(

1 + 1
n+1

)n+1

(

1 + 1
n

)n = |x− 1|e
e
= |x− 1|.

So, the radius of convergence is 1, and this series converges absolutely for |x − 1| < 1. We
need to check the endpoints of this interval.

At x = 0, the series becomes
∑∞

n=1

(

1 + 1
n

)n
(−1)n, which diverges by the nth term test for

divergence, since limn→∞
(

1 + 1
n

)n
(1)n does not exist, since limn→∞

(

1 + 1
n

)n
= e.

At x = 2, the series becomes
∑∞

n=1

(

1 + 1
n

)n
, which diverges since limn→∞

(

1 + 1
n

)n
= e.

So, the interval of convergence is (0, 2).

8. What can be said about a sequence {an} if it converges and if every an is an integer? Also,
give a qualitative description of all of the convergent subsequences of the sequence

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . . .

Solution: A convergent sequence of integers must be eventually constant; that is, there exists
M so that an = ap for all n, p > M . This follows from the Cauchy criterion with ε = 1

2 and
the fact that the difference of two non-equal integers is at least 1.

For this given sequence, the convergent subsequences are all of the following form: pick a
positive integer p, and note that p appears infinitely many times in the given sequence. Then,
a convergent subsequence is of the form a0, a1, . . . , aM , aM+1 = p, aM+2 = p, . . . for some M ,
where a0, . . . , aM are arbitrary positive integers.
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9. Explain exactly what is meant by the statement

lim
x→4
(x2 − ex) = 16− e4.

Solution: For every ε > 0, there exists δ > 0 so that if 0 < |x − 4| < δ, then |(x2 − ex) −
(16− e4)| < ε.

10. Evaluate the limit

lim
h→0

1
2+h − 1

2

h
.

Solution: Either use l’Hopital’s rule, since it has the indeterminate form 0
0 , or notice that

this is the definition of the derivative of f(x) = 1
x at x+ 0 = 2, namely

lim
h→0

1
2+h − 1

2

h
= f ′(2) = −1

4
.

11. Define what it means for a function f : R→ R to be continuous. Using the definition, show
that the function f(x) = 2x− 5 is continuous.

Solution: f is continuous at a if limx→a f(x) = f(a). f is continuous if it is continuous at
every point in its domain.

To show that f(x) = 2x − 5 is continuous, we show that it is continuous at a for every a.
That is, we need to show that

lim
x→a
(2x− 5) = 2a− 5.

So, for any ε > 0, take δ = 1
2ε. Then, if |x− a| < δ = 1

2ε, then

|f(x)− f(a)| = |(2x− 5)− (2a− 5)| = 2|x− a| < 21
2
ε = ε,

and so the definition of limx→a f(x) = f(a) is satisfied.

12. Consider the function g : R → R given by setting g(x) = 1 if x is a rational number and
g(x) = 0 if x is an irrational number. Determine whether g is or is not continuous.

Solution: This function is not continuous at 0, since there are numbers arbitrarily close to 0,
namely all the irrational numbers of the form π

n for n ∈ N, and we have that |g(0)− g(πn)| =
|1 − 0| = 1. Hence, for ε = 1

2 , there does not exist δ > 0 so that if |0 − a| < δ, then
|g(0)− g(a)| < ε = 1

2 . So, limx→0 g(x) 6= g(0). (In fact, limx→0 g(x) does not exist.)

13. Let f be a function which is continuous on the closed interval [a, b], where a < b. Suppose
that f(b) < f(a). Determine whether there exists a point c in the open interval (a, b) so that
f(c) = c.

Solution: Not necessarily: take f(x) = 100 − x on the interval [a, b] = [0, 1]. Then, f(1) =
99 < f(0) = 100, but there are no solutions to x = 100 − x in the interval [0, 1]. (The only
solution is at x = 50.)
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14. Show that the function h(x) =
√
x− 1 satisfies the hypotheses of the Mean Value Theorem

on the interval [2, 5]. Find all the numbers c in (2, 5) that satisfy the conclusion of the Mean
Value Theorem.

Solution: (Be sure to state the mean value theorem first, so that it is clear to me that
you know what the hypotheses and the conclusions are.) Note that h(x) is continuous and
differentiable on all of (1,∞), since x− 1 > 0 on x > 1, and so in particular h is continuous
on [2, 5] and differentiable on (2, 5) (i.e., satisfies the hypotheses).

So, there exists some c in (2, 5) at which

h′(c) =
h(5)− h(2)

5− 2 =
1

3
.

In fact, since h′(c) = 1
2
√
c−1
, the only solution to h′(c) = 1

3 occurs at c =
13
4 (which does lie

in (2, 5), as expected).

15. Use the Mean Value theorem to prove that if f and g are two differentiable functions on
the closed interval [a, b], where a < b, and if f ′(x) = g′(x) for all x in [a, b], then there is a
constant K so that f(x) = g(x) +K for all x in [a, b].

Solution: Set h(x) = f(x) − g(x), so that h′(x) = f ′(x)− g′(x) = 0 for all x. We may now
argue as in Example ??. Take x in (a, b], and apply the mean value theorem to h(x) (which
is continuous on a, b and differentiable on (a, b) since both f(x) and g(x) are) on [a, x], to

see that there exists c in (a, x) so that h′(c) = h(x)−h(a)
x−a . But since h′(c) = 0, we have that

h(x)−h(a) = 0, or that h(x) = h(a). That is, f(x) = g(x)+h(a), as desired, where K = h(a).

16. Evaluate the limit

lim
t→∞

t2 + 1

t ln(t)
.

Solution: This limit has the indeterminate form ∞
∞ , and so we apply l’Hopital’s rule:

lim
t→∞

t2 + 1

t ln(t)
= lim

t→∞
2t

ln(t) + 1
.

The right-hand limit still has the indeterminate form ∞
∞ , and so we may apply l’Hopital’s rule

again:

lim
t→∞

2t

ln(t) + 1
= lim

t→∞
2
1
t

= lim
t→∞

2t =∞.

17. Prove or give a counterexample to the following statement: if

∞
∑

n=1

an

is a convergent infinite series of positive terms, then the power series

∞
∑

n=1

anx
n

converges for all real numbers x.

Solution: The statement is false: to take a specific example, the series
∑∞

n=1
1
n2 converges,

but the power series
∑∞

n=1
1
n2x

n has radius of convergence 1, for instance by the ratio test.
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18. Determine whether the improper integral

∫ 1

0

e
√
x

√
x
dx

converges or diverges. In the case that it converges, determine its value.

Solution:

∫ 1

0

e
√
x

√
x
dx = lim

ε→0+

∫ 1

ε

e
√
x

√
x
dx

= lim
ε→0+

2e
√
x
∣

∣

∣

1
ε

= lim
ε→0+

(2e− 2
√
ε) = 2e− 2,

which converges.

19. Calculate the Taylor series of the function

f(x) = cos(2x)

about x0 = π.

Solution: The Taylor series centered at x0 = π is the series

∞
∑

n=0

1

n!
f (n)(π)(x− π)n.

Note that f (n)(π) = ± sin(π) = 0 for n odd, that f (4k)(π) = cos(π) = 1, and that f (4k+2)(π) =
− cos(π) = −1 for k ≥ 0. Hence, the Taylor series becomes

∞
∑

k=0

1

(4k)!
f (4k)(π)(x− π)4k +

∞
∑

k=0

1

(4k + 2)!
f (4k+2)(π)(x− π)4k+2

=
∞
∑

k=0

1

(4k)!
(x− π)4k −

∞
∑

k=0

1

(4k + 2)!
(x− π)4k+2

=
∞
∑

p=0

1

(2p)!
(−1)p(x− π)2p.

20. State both parts of the Fundamental Theorem of Calculus. Also, determine whether the
following argument is correct: By the Fundamental Theorem of Calculus,

∫ 1

−1

1

x2
dx =

[

−1
x

]1

−1
= −2,

and so the integral of a positive function can be negative.

Solution: For the statement, see Theorem ??. The proof is false: the integrad is not
continuous on [−1, 1], and so the fundamental theorem of calculus does not apply.
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14 Solutions to exercises

Solution ??:

1. Since F is a commutative group under addition, a+ (−a) = 0. Multiplying on the right by b
and applying the above fact that 0 · b = 0, we get (a+ (−a)) · b = 0. Apply the distributive
law to get a · b+ (−a) · b = 0. Adding the additive inverse −(a · b) of a · b to both sides and
using the two facts that −(a · b) + a · b = 0 and that 0 is the additive identity, we obtain
(−a) · b = −(a · b). (Similarly, starting with b + (−b) = 0 and multiplying on the left by a,
we get that a · (−b) = −(a · b).) (And as above, since both (−a) · b and a · (−b) are equal to
−(a · b), they are equal to each other.)

2. Start with a + (−a) = 0, and multiply both sides on the right by b + (−b). Expanding out,
we get a · b + a · (−b) + (−a) · b + (−a) · (−b) = 0. Since a · (−b) = (−a) · b = −(a · b), this
becomes a · b+ (−(a · b)) + (−(a · b)) + (−a) · (−b) = 0. Since −(a · b) is the additive inverse
for a · b, this becomes −(a · b) + (−a) · (−b) = 0. Adding a · b to both sides and simplifying,
this becomes (−a) · (−b) = a · b, as desired.

3. Start with 1 + (−1) = 0, and multiply on the right by a. Since 0 · a = 0, this becomes
(1+(−1)) ·a = 0. Expanding out, this becomes 1 ·a+(−1) ·a = 0. Since 1 is the multiplicative
identity, this becomes a+(−1) ·a = 0. Adding −a to both sides and simplifying, this becomes
(−1) · a = −a, as desired.

4. Since we know already that (−a) · (−b) = a · b, we can take a = 1 and b = 1 to get
(−1)·(−1) = 1·1 = 1, with this last equality following from the fact that 1 is the multiplicative
identity.

Solution ??: Write n as a product n = a · b, where 2 ≤ a, b < n, so that a and b are not equal in
Zn. Then, in Zn, the product a · b is 0, being a multiple of n. However, if Zn were a field, then a
would have a multiplicative inverse a−1, and we could multiply both sides of a · b = 0 on the left
to obtain a−1 · a · b = a−1 · 0, which simplifies to b = 0. This contradicts the choice of b to satisfy
2 ≤ b < n, and so a has no multiplicative inverse, contradicting the definition of a field.

Solution ??: Suppose there were such an order on C, and denote it by <. Compare 0 and i. Since
0 6= i, it must be that either 0 < i or i < 0.
Suppose that 0 < i. Multiplying both sides by i and remembering that 0 < i, we see that 0 · i < i · i,
which simplifies to 0 < −1. Adding 1 to both sides, we see that 1 < 0. Again multiplying both
sides by i and remembering that 0 < i, we see that 1 · i < 0 · i, which simplifies to i < 0. Hence, if
0 < i, then i < 0, contradicting the second condition in the definition of an order.

Suppose now that i < 0. Adding the additive inverse −i of i to both sides, we get that 0 < −i.
Multiplying both sides by −i, we get that 0 · (−i) < (−i) · (−i), and so 0 < −1. Multiplying
both sides by −i again, we get that 0 < (−1) · (−i) = i. Hence, if i < 0, then then 0 > i, again
contradicting the second condition in the definition of an order.

Hence, since we have that neither 0 < i nor i < 0, we see that there cannot exist an order on C
that makes C into an ordered field.

Solution ??: To see that Q is not a complete ordered field, note that the subset A = {a ∈ Q | a <√
2} is bounded above, for instance by s = 2, but has no supremum in Q: that is, for every rational
number s so that a ≤ s for every a ∈ A, we have that there exists another rational number t so that
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t < s and a ≤ t for every a ∈ A. (One way to see this is to use decimal expansions, and to recall
that a number is rational if and only if its decimal expansion is either repeating or terminating.)

Solution ??:

1. Bounded above by 1 (since for n ∈ Z− {0}, either n ≥ 1 in which case 1
n ≤ 1, or n ≤ −1, in

which case 1
n ≤ 0), and so has a supremum. Again making use of Exercise ??, since 1 is an

upper bound for S and since 1 ∈ S, 1 = sup(S). In this case, sup(S) ∈ S.

Bounded below by −1 (since for n ∈ Z− {0}, either n ≥ 1, in which case 0 < 1
n , or n ≤ −1,

in which case 1
n ≥ 1

−1 = −1), and so has an infimum. Again making use of Exercise ??, since
−1 is a lower bound for S and since −1 ∈ S, −1 = inf(S). In this case, inf(S) ∈ S.

Since S is both bounded above and bounded below, it is bounded.

2. Bounded below by 0 (since 2x > 0 for all x ∈ R, we certainly have that 2x > 0 for all x ∈ Z),
and so has an infimum. Given any ε > 0, we can always find x so that 2x < ε, namely take
log2 of both sides, and take x to be any integer less than log2(ε). Hence, there is no positive
lower bound, and so the greatest lower bound, the infimum, is inf(S) = 0. Since there are no
solutions to 2x = 0, in this case inf(S) 6∈ S.

Since 2x > x for positive integers x, given any C > 0 we can find an x so that 2x > C, and
so there is no upper bound. That is, S is not bounded above.

Since S is not bounded above, it is not bounded.

3. Bounded below by −1 (since [−1, 1] = {x ∈ R | − 1 ≤ x ≤ 1} and since −1 < 5), and so
has an infimum. Again making use of Exercise ??, since −1 is a lower bound for S and since
−1 ∈ S, −1 = inf(S). In this case, inf(S) ∈ S.

Bounded above by 5, and so has a supremum. Again making use of Exercise ??, since 5 is an
upper bound for S and since 5 ∈ S, 5 = sup(S). In this case, sup(S) ∈ S.

Since S is both bounded above and bounded below, it is bounded.

4. Considering the subset of S in which y = 1, we have that S contains the natural numbers N,
and hence S is not bounded above.

Since x and 2y are both positive for x, y ∈ N, we have that x
2y > 0 for all x, y ∈ N. Therefore,

S is bounded below by 0, and so has an infimum. Considering the subset of S in which x = 1,
we have that S contains 1

2y for all y ∈ N. In particular, for each ε > 0, we can find y ∈ N so
that 1

2y < ε, namely take log2 of both sides to get −y < log2(ε), or equivalently y > log2(ε).
Hence, there is no positive lower bound, and so 0 = inf(S). Since x

2y is never 0 for x, y > 0,
in this case inf(S) 6∈ S.

Since S is not bounded above, it is not bounded.

5. Write n+1
n = 1 + 1

n . Bounded below by 1, since
1
n > 0 for all n ∈ N, and hence 1 + 1

n > 1
for all n ∈ N. Moreover, since for each ε > 1 we can find n so that 1 + 1

n < ε, there is no
lower bound greater than 1, and so inf(S) = 1. In this case, inf(S) 6∈ S, since 1 + 1

n 6= 1 for
all n ∈ N.
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Bounded above by 2, since 1
n ≤ 1 for all n ∈ N and hence 1 + 1

n ≤ 2. In this case, 2 = 1 + 1
1

and so 2 ∈ S. Since 2 is an upper bound for S that is contained in S, we have that 2 = sup(S)
and so sup(S) ∈ S.

Since S is both bounded above and bounded below, it is bounded.

6. Break S up into two subsets, one of the positive terms (when n is even) and the negative
terms (when n is odd). So, S = {−2,− 4

3 ,−6
5 , . . .} ∪ {3

2 ,
5
4 ,

7
6 , . . .}.

The positive terms are all of the form 1+ 1
n where n is even. Since

1
n decreases as n increases,

the largest positive term is 1+ 1
2 =

3
2 , and so S is bounded above and hence has a supremum.

Since S is bounded above by 3
2 and since

3
2 ∈ S, sup(S) = 3

2 , and in this case sup(S) ∈ S.

The negative terms are all of the form 1+ 1
n where n is odd. Since

1
n decreases as n increases,

− 1
n increases as n increases, and so the smallest negative term is

−1−1
1 = −2, and so S is

bounded below and hence has an infimum. Since S is bounded below by −2 and since −2 ∈ S,
inf(S) = −2, and in this case inf(S) ∈ S.

Since S is both bounded above and bounded below, it is bounded.

7. We can rewrite S as S = (−
√
10,
√
10) ∩Q. By the definition of (−

√
10,
√
10), S is bounded

below by −
√
10, and hence has an infimum. Since there are rational numbers greater than

−
√
10 but arbitrarily close to −

√
10 (as can be seen by taking the decimal expansion of −

√
10

and truncating it after some number of places to get a rational number near −
√
10), there is

no lower bound greater than −
√
10, and so inf(S) = −

√
10. In this case, inf(S) 6∈ S.

S is bounded above by
√
10, and hence has a supremum. Since there are rational numbers

less than
√
10 but arbitrarily close to

√
10 (as can be seen by taking the decimal expansion

of
√
10 and truncating it after some number of places to get a rational number near

√
10),

there is no upper bound less than
√
10, and so sup(S) =

√
10. In this case, sup(S) 6∈ S.

Since S is both bounded above and bounded below, it is bounded.

8. Rewrite S as S = (−∞,−2) ∪ (2,∞). This set is neither bounded above (since for each real
number r, there is s ∈ S with s > r, namely the larger of 3 and r + 1) nor bounded below
(since for each real number r, there is s ∈ S with s < r, namely the smaller of −3 and r− 1).

Since S is not bounded below, it has no infimum. Since S is not bounded above, it has no
supremum.

Since S is neither bounded above not bounded below, it is not bounded.

Solution ??:

1. Assume without loss of generality that inf(A) ≤ inf(B), so that min(inf(A), inf(B)) = inf(A).
To show that inf(A ∪B) = inf(A), we need to show two things, that inf(A) is a lower bound
for A ∪B and that if t is any lower bound for A ∪B, then t ≤ inf(A).

If a ∈ A, then a ≥ inf(A) by definition (since inf(A) is less than or equal to every element of
A). Similarly, if b ∈ B, then b ≥ inf(B); since inf(B) ≥ inf(A), this yields that b ≥ inf(A)
for all b ∈ B. Since every element c of A∪B satisfies either c ∈ A or c ∈ B (or both), we see
that c ≥ inf(A), and so inf(A) is a lower bound for A ∪B.
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Let t be any lower bound for A ∪B. Since t ≤ c for every c ∈ A ∪B, we also have that t ≤ c
for every c ∈ A. In particular, t is a lower bound for A, and so by the definition of infimum,
t ≤ inf(A). Therefore, inf(A) is a lower bound for A∪B that is greater than or equal to any
other lower bound for A ∪B. That is, inf(A ∪B) = inf(A).

2. The easiest way to do this is to begin with an intermediate fact: if A ⊂ B and if sup(B) exists,
then sup(A) exists and sup(A) ≤ sup(B). The proof uses the definition of supremum: since
sup(B) exists, we have that b ≤ sup(B) for all b ∈ B and that if u is an upper bound for B,
then sup(B) ≤ u. Since b ≤ sup(B) for all b ∈ B and since A ⊂ B, we have that a ≤ sup(B)
for all a ∈ A. In particular, A is bounded above, and so sup(A) exists. To see the second
statement, note that since sup(B) is an upper bound for A, we have that sup(A) ≤ sup(B)
by definition.

So, since A ∩ B ⊂ A, we have that sup(A ∩ B) ≤ sup(A). Similarly, A ∩ B ⊂ B, and so
sup(A ∩B) ≤ sup(B). Hence, sup(A ∩B) ≤ min(sup(A), sup(B)).

To have an example in which sup(A ∩ B) < min(sup(A), sup(B)), take A = {0, 1} and
B = {0, 2}. Then, sup(A) = 1, sup(B) = 2, and sup(A ∩B) = 0 since A ∩B = {0}.

3. The easiest way to do this is to begin with an intermediate fact: if A ⊂ B and if inf(B)
exists, then inf(A) exists and inf(A) ≥ inf(B). The proof uses the definition of infimum:
since inf(B) exists, we have that b ≥ inf(B) for all b ∈ B and that if t is a lower bound for
B, then inf(B) ≥ t. Since b ≥ inf(B) for all b ∈ B and since A ⊂ B, we have that a ≥ inf(B)
for all a ∈ A. In particular, A is bounded below, and so inf(A) exists. To see the second
statement, note that since inf(B) is a lower bound for A, we have that inf(A) ≥ inf(B) by
definition.

So, since A ∩ B ⊂ A, we have that inf(A ∩ B) ≥ inf(A). Similarly, A ∩ B ⊂ B, and so
inf(A ∩B) ≥ inf(B). Hence, inf(A ∩B) ≥ max(inf(A), inf(B)).

We note that it is possible to construct an example in which inf(A∩B) > max(inf(A), inf(B)).
Namely, take A = {−1, 0} and B = {−2, 0}. Then, inf(A) = −1, inf(B) = −2, and inf(A ∩
B) = 0 since A ∩B = {0}.

4. Since u is an upper bound for A, we have that u ≥ sup(A), by the definition of supremum.
(And note that sup(A) exists since A is bounded above.) Since u ∈ A, we also have that
u ≤ sup(A). Since u ≥ sup(A) and u ≤ sup(A), it must be that u = sup(A).

5. Since t is a lower bound for A, we have that t ≤ inf(A), by the definition of infimum. (And
note that inf(A) exists since A is bounded below.) Since t ∈ A, we also have that t ≥ inf(A).
Since t ≤ inf(A) and t ≥ inf(A), it must be that t = inf(A).

6. Set X = {y | y is a lower bound for A}. By definition, inf(A) ∈ X, since inf(A) is a lower
bound for A. Now take any element y of X, so that y is a lower bound for A. Again by the
definition of the infimum, y ≤ inf(A). So, inf(A) is an upper bound for X and inf(A) ∈ X,
and so inf(A) = sup(X) = sup{y | y is a lower bound for A}. (Note that the assumption that
inf(A) exists is equivalent to the assumption that A is bounded below, which insures that X
is non-empty.)

7. Set X = {y |y is an upper bound for A}. By definition, sup(A) ∈ X, since sup(A) is an upper
bound for A. Now take any element y of X, so that y is an upper bound for A. Again by the
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definition of the supremum, y ≥ sup(A). So, sup(A) is a lower bound for X and sup(A) ∈ X,
and so sup(A) = inf(X) = inf{y | y is an upper bound for A}. (Note that the assumption
that sup(A) exists is equivalent to the assumption that A is bounded above, which insures
that X is non-empty.)

8. This one we argue by contradiction. Suppose that a set A has two suprema, and call them
x1 and x2. Both x1 and x2 are upper bounds for A, by definition. Since x1 is a supremum
for A, it is less than or equal to all other upper bounds, and so x1 ≤ x2. Similarly, since x2 is
a supremum for A, it is less than or equal to all other upper bounds, and so x2 ≤ x1. Since
x1 ≤ x2 ≤ x1, it must be that x1 = x2, and so the supremum of A is unique. (Note that this
exercise justifies why we call it ’the supremum’ instead of ’a supremum’.)

9. This one we argue by contradiction. Suppose that a set A has two infima, and call them x1

and x2. Both x1 and x2 are lower bounds for A, by definition. Since x1 is an infimum for A,
it is greater than or equal to all other lower bounds, and so x1 ≥ x2. Similarly, since x2 is an
infimum for A, it is greater than or equal to all other upper bounds, and so x2 ≥ x1. Since
x1 ≥ x2 ≥ x1, it must be that x1 = x2, and so the infimum of A is unique. (Note that this
exercise justifies why we call it ’the infimum’ instead of ’an infimum’.)

Solution ??:

1. Since sup(A) exists, the set A is bounded above. Let u be any upper bound for A, so that
a ≤ u for all a ∈ A. Multiplying through by −1, this becomes −a ≥ −u for all a ∈ A. Since
−a ranges over all of A− as a ranges over A, this yields that −u is a lower bound for A−, and
so inf(A−) exists. In particular, taking u = sup(A), we have that − sup(A) is a lower bound
for A−.

To see that there is no lower bound for A− that is greater than − sup(A), note that t is a
lower bound for A− if and only if −t is an upper bound for A. Therefore, a lower bound for
A− greater than − sup(A) exists if and only if an upper bound for A less than sup(A) exists,
but by the definition of supremum no such upper bound can exist. Hence, − sup(A) is the
greatest lower bound for A−, or in other words, − sup(A) = inf(A−), as desired.

2. Since inf(A) exists, the set A is bounded below. Let t be any lower bound for A, so that
a ≥ t for all a ∈ A. Multiplying through by −1, this becomes −a ≤ −t for all a ∈ A. Since
−a ranges over all of A− as a ranges over A, this yields that −t is an upper bound for A−,
and so sup(A−) exists. In particular, taking t = inf(A), we have that − inf(A) is an upper
bound for A−.

To see that there is no upper bound for A− that is less than − inf(A), note that u is an upper
bound for A− if and only if −u is a lower bound for A. Therefore, an upper bound for A−

less than − inf(A) exists if and only if a lower bound for A greater than inf(A) exists, but by
the definition of infimum no such lower bound can exist. Hence, − inf(A) is the least upper
bound for A−, or in other words, − inf(A) = sup(A−), as desired.

Solution ??: [Note that each of these exercises has many, many possible solutions. And yes, it is
a very silly question.]

1. Take S = {x ∈ R | x >
√
2}, so that inf(S) =

√
2, which is irrational, and S is also bounded

below by 0, which is rational. (In fact, any set of real numbers that is bounded below has
both infinitely many rational lower bounds and infinitely many irrational lower bounds.)
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2. Take S = (0,∞), so that inf(S) = 0, which is rational, and S is bounded below by −1, which
is also rational.

3. Take S = (2, 4), so that inf(S) = 2, which is rational, and S is also bounded below by −π,
which is irrational.

4. Take S = (
√
3,∞), so that inf(S) =

√
3, which is irrational, and S is also bounded below by√

2, which is also irrational.

Solution ??:

• u1 =
3(1)−1
4(1)−5 =

2
−1 = −2;

• u5 =
3(5)−1
4(5)−5 =

14
15 ≈ 0.9333;

• u10 =
3(10)−1
4(10)−5 =

29
35 ≈ 0.8286;

• u100 =
3(100)−1
4(100)−5 =

299
395 ≈ .7570;

• u1000 =
3(1000)−1
4(1000)−5 =

2999
3995 ≈ 0.7507;

• u10000 =
3(10000)−1
4(10000)−5 =

29999
39995 ≈ 0.7501;

• u100000 =
3(100000)−1
4(100000)−5 =

299999
399995 ≈ 0.7500;

So, it seems that a reasonable guess would be that L = limn→∞ un exists and equals 0.75 =
3
4 . To

verify this, we use the definition: we need to show that for any choice of ε > 0, we can find M so
that |un − L| < ε for all n > M .

Calculating, we see that

|un − L| =
∣

∣

∣

∣

3n− 1
4n− 5 −

3

4

∣

∣

∣

∣

=

∣

∣

∣

∣

4(3n− 1)− 3(4n− 5)
4(4n− 5)

∣

∣

∣

∣

=

∣

∣

∣

∣

11

4(4n− 5)

∣

∣

∣

∣

=
11

4(4n− 5) .

(The last equality follows since un − L is positive for n > 1.)

To find the value of M so that |un−L| < ε for n > M , we start by solving for n: since 11
4(4n−5) < ε,

we have that 11
4ε < 4n − 5, and so 11

16ε +
5
4 < n. That is, for a specified value of ε, we can take

M = 11
16ε +

5
4 =

11+20ε
16ε . Then, for any choice of ε > 0, we set M = 11+20ε

16ε , and then if we take
n > M , working backwards we have that |un − L| < ε.

Solution ??: Set an =
1+2·10n

5+3·10n and L =
2
3 . For each choice of ε > 0, we need to show that there

exists M so that |an − L| < ε for all n > M .

Calculating, we see that

|an − L| =
∣

∣

∣

∣

1 + 2 · 10n
5 + 3 · 10n −

2

3

∣

∣

∣

∣

=

∣

∣

∣

∣

3 + 6 · 10n − (10 + 6 · 10n)
3(5 + 3 · 10n)

∣

∣

∣

∣

=

∣

∣

∣

∣

7

15 + 9 · 10n
∣

∣

∣

∣

.

Hence, for a given value of ε > 0, we want to find M so that
∣

∣

∣

7
15+9·10n

∣

∣

∣ < ε for n > M . So, we solve

for n in terms of ε. First, note that 7
15+9·10n > 0 for all positive integers n. So, we need only solve

7
15+9·10n < ε for n.
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So, 7
ε < 15 + 9 · 10n, and so −15 + 7

ε < 9 · 10n, and so −15
9 +

7
9ε < 10

n. Performing a final bit of
simplification, we get −15ε+7

9ε < 10n. If the numerator is positive, that is if ε < 7
15 , we can solve for

n by taking log10 of both sides. If on the other hand the numerator is negative, then any positive
integer will do. So, set

M =

{

1 if ε ≥ 7
15 ;

log10

(

−15ε+7
9ε

)

otherwise

To get a specific value of M so that |an − L| < 10−3 for n > M , we substitute ε = 10−3 into the

above equation to get that n > log10

(

−15·10−3+7
9·10−3

)

≈ 2.8899. So, we can take M = 3.

Solution ??: We start with the first part of the inequality, that 1
n+1 < ln(n+1)−ln(n) = ln

(

n+1
n

)

.

Set f(x) = ln
(

x+1
x

)

− 1
x+1 and bn = f(n). We want to show that f(x) > 0 for all x ≥ 1. Calculating,

we see that f ′(x) = − 1
x(x+1)2

< 0 for all x > 0. This implies that f(x) is decreasing, and hence

that {bn} is a monotonically decreasing sequence. Since limn→∞ bn = 0, this yields that bn > 0 for
all n. (Because, if some bM < 0, then since {bn} is a monotonically decreasing sequence, we would
have that bM+k < bM for all k ≥ 0, and so limn→∞ bn would then be negative.) Since bn > 0 for

all n, we have that ln
(

n+1
n

)

> 1
n+1 for all n, as desired.

To handle the other part of the inequality, consider cn =
1
n−ln

(

n+1
n

)

and set g(x) = 1
x−ln

(

x+1
x

)

, so

that cn = g(n). Since g′(x) = − 1
x2(x+1)

for all x > 0, we see that {cn} is monotonically decreasing.
Again, since limn→∞ cn = 0, we see that cn > 0 for all n, and hence that

1
n > ln

(

n+1
n

)

for all n, as

desired.

It remains to show that {an} is bounded below and monotonically decreasing. Since

an+1−an =
(

n+1
∑

k=1

1

k

)

− ln(n+1)−
(

n
∑

k=1

)

+ln(n) =
1

n+ 1
− ln(n+1)+ln(n) = 1

n+ 1
− ln

(

n+ 1

n

)

,

we see that an+1 − an < 0 by the first part of the inequality. That is, {an} is monotonically
decreasing.

Since 1
n+1 < ln

(

n+1
n

)

for all n, we have that

an =

(

n
∑

k=1

1

k

)

− ln(n) = 1 +
(

n−1
∑

k=1

1

k + 1

)

− ln(n) > 1 +
n−1
∑

k=1

ln

(

k + 1

k

)

− ln(n) = 1,

and so {an} is bounded below.
Since {an} is bounded above (since an < a1 for all n, since it is a monotonically decreasing sequence)
and bounded below, it is bounded. Since it is also monotonic, we have that {an} converges.
Solution ??: (This is an exercise in writing out the definition of the convergence or divergence of
a sequence for a triple of specific examples. Note that we are not asked to determine whether the
given statements are true or false, or to prove them if they are true, but just to write them down.)

• for every ε > 0, there exists M so that 32n−1 > ε for all n > M .

• for every ε > 0, there exists M so that 1− 2n < −ε for all n > M .

• for every ε > 0, there exists M so that |e−n − 0| < ε for all n > M .
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Solution ??:

1. converges: whenever we are evaluating a limit in which the variable (in this case n) appears
in both the base and the exponent, we follow the same basic procedure. First use the identity
x = exp(ln(x)) to rewrite the term. Here,

an = (n+ 2)
1/n = exp

(

ln(n+ 2)

n

)

.

Next, we check to see whether we are dealing with an indeterminate form. Since the limit
limn→∞

ln(n+2)
n has the indeterminate form ∞

∞ , we may use l’Hopital’s rule to evaluate

lim
n→∞

ln(n+ 2)

n
= lim

n→∞
1

n+ 2
= 0.

Hence, {an} converges to e0 = 1.

2. converges: there is a standard way of evaluating the limit as n→∞ of a rational function
in n (where a rational function is the quotient of two polynomials). First, locate the highest
power of n that appears in either the numerator or the denominator, and then multiply both
numerator and denominator by its reciprocal. Here, the higest power of n that appears is n3,
and so we calculate

an =
n2 + 3n+ 2

6n3 + 5
=

n2 + 3n+ 2

6n3 + 5
·

1
n3

1
n3

=
1
n +

3
n2 +

2
n3

6 + 5
n3

.

We then use several properties of limits: that the limit of a quotient is the quotient of the
limits, that the limit of a sum is the sum of the limits, and that limn→∞ 1

n = 0. Here,

lim
n→∞ an = lim

n→∞

1
n +

3
n2 +

2
n3

6 + 5
n3

=
0

6
= 0.

Hence, {an} converges to 0.

3. converges: as above, we first rewrite the term using x = exp(ln(x)). Here,

an =

(

1 +
1

n

)n

= exp

(

n ln

(

1 +
1

n

))

= exp





ln
(

1 + 1
n

)

1
n



 .

We then concentrate on the exponent and check to see whether we are dealing with an
indeterminate form, which in this case we are, since both limn→∞ ln(1 + 1

n) and limn→∞ 1
n

are equal to 0. Hence, we may apply l’Hopital’s rule to evaluate

lim
n→∞

ln
(

1 + 1
n

)

1
n

= lim
n→∞

1

1 + 1
n

= 1.

Hence, {an} converges to e1 = e.

4. converges: here we use the squeeze law. Since −1 ≤ sin(n) ≤ 1 for all n, we have that
− 1

3n ≤ sin(n)
3n ≤ 1

3n . Since limn→∞ 1
3n = 0, we have that limn→∞− 1

3n = 0 as well, and so {an}
converges to 0.
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5. diverges: write

an = (
√
2n+ 3−

√
n+ 1) ·

√
2n+ 3 +

√
n+ 1√

2n+ 3 +
√
n+ 1

=
n+ 2√

2n+ 3 +
√
n+ 1

.

We now massage algebraically, in order to simplify:

n+ 2√
2n+ 3 +

√
n+ 1

≥ n+ 2

2
√
2n+ 3

=
n+ 3

2 +
1
2

2
√

2(n+ 3
2)

>
n+ 3

2

2
√

2(n+ 3
2)
=

1

2
√
2

√

n+
3

2
.

Since limn→∞
√

n+ 3
2 =∞, we see by the comparison test that limn→∞ an =∞, and so {an}

diverges.

6. diverges: for n = 8k, a8k = cos
(

8kπ
4

)

= 1, while for n = 8k+1, a8k+1 = cos
(

(8k+1)π
4

)

= 1√
2
.

In particular, |a8k − a8k+1| = 1√
2
, and so the sequence fails the Cauchy criterion, and so

diverges.

7. converges: write an =
(

1 + 1
n

)1/n
= exp

(

ln(1+ 1
n)

n

)

. Since limn→∞ ln(1 + 1
n) = 0, we have

that limn→∞
ln(1+ 1

n
)

n = 0 (by the squeeze law for instance, since 0 ≤ ln(1+ 1
n

)

n ≤ ln(1 + 1
n) for

n ≥ 1). Hence, limn→∞ exp
(

ln(1+ 1
n

)

n

)

= e0 = 1, and so {an} converges to 1.

8. diverges: given ε > 0, we show that there exists M so that an > ε for n > M . Since
an = ln(n), this becomes ln(n) > ε for n > M . Exponentiating both sides of ln(n) > ε, we
get that n > eε (and vice versa, that if n > eε, then ln(n) > ε, since ex is an increasing
function), and so we can take M = eε.

9. diverges: very similar to the question just done. Given ε > 0, we show that there exists M
so that an > ε for n > M . Taking logs of both sides of an = en > ε, we get that n > ln(ε).
So, we make take M = ln(ε).

10. converges: since limn→∞ an has the indeterminate form
∞
∞ (as both ln(n)→∞ and√n→∞

as n→∞), we may apply l’Hopital’s rule to see that

lim
n→∞

ln(n)√
n
== lim

n→∞

1
n
1

2
√
n

= lim
n→∞

2√
n
= 0.

Hence, {an} converges to 0.

11. converges: as always, we first rewrite each term as

an =

(

1− 2

n2

)n

= exp

(

n ln

(

1− 2

n2

))

= exp





ln
(

1− 2
n2

)

1
n



 .

As n → ∞, the exponent reveals itself to have the indeterminate form 0
0 , and so we may

evaluate using l’Hopital’s rule:

lim
n→∞

ln
(

1− 2
n2

)

1
n

= lim
n→∞

1
1− 2

n2
· 4
n3

−1
n2

= lim
n→∞

− 4
1− 2

n2

n
= 0.

Hence, {an} converges to e0 = 1.
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12. diverges: we could use either l’Hopital’s rule (since the limit has the indeterminate form ∞
∞)

or the standard trick for dealing with limits of rational functions (multiply numberator and
denominator by the reciprocal of the highest power of n appearing anywhere in the term),
but instead we massage algebraically:

an =
n3

10n2 + 1
>

n3

10n2 + 10n2
=

n

20
.

Since { n
20} diverges, the comparison test gives that {an} diverges as well.

13. converges: it is a reasonable guess that {an = xn} converges to 0, which by definition means
that given ε > 0, there existsM so that |xn−0| = |xn| < ε for n > M . For x = 0, this is true,
since {xn} becomes the constant sequence {an = 0}. So, we can assume that x 6= 0. Taking
ln of both sides of |xn| < ε and using that |xn| = |x|n, we get that n ln(|x|) < ln(ε), and so
n > ln(ε)

ln(|x|) . (The direction of the inequality changes since |x| < 1 and so ln(|x|) < 0.) Hence,
we may takeM = ln(ε)

ln(|x|) . [Then, if n > M = ln(ε)
ln(|x|) , then n ln(|x|) < ln(ε), and exponentiating

we get that |x|n < ε, as desired.)

14. converges: recall that np ≥ n and that n → ∞ as n → ∞, and so np → ∞ as n → ∞.
Hence, { 1

np } converges to 0, and therefore {an = c
np } converges to c · 0 = 0.

15. converges: using the standard trick for rational functions, write

an =
2n

5n− 3 =
2n

5n− 3 ·
1
n
1
n

=
2

5− 3
n

.

As n→∞, 1
n → 0 and so {an} converges to 2

5 .

16. converges: using the standard trick for rational functions, write

an =
1− n2

2 + 3n2
=
1− n2

2 + 3n2
·

1
n2

1
n2

=
1
n2 − 1
2
n2 + 3

.

As n→∞, 1
n2 → 0 and so {an} converges to − 1

3 .

17. converges: using the standard trick for rational functions, write

an =
n3 − n+ 7

2n3 + n2
=

n3 − n+ 7

2n3 + n2
·

1
n3

1
n3

=
1− 1

n2 +
7
n3

2 + 1
n

.

As n→∞, both 1
n2 → 0 and 1

n → 0, and so {an} converges to 1
2 .

18. converges: by a previous part of this exercise, we know that {( 9
10)

n} converges to 0, since
| 9
10 | < 1, and so limn→∞(1 + ( 9

10)
n) = 1 + limn→∞( 9

10)
n = 1.

19. converges: by a previous part of this exercise, we know that {(− 1
2)
n} converges to 0, since

| − 1
2 | < 1, and so limn→∞(2− (−1

2)
n) = 2− limn→∞(−1

2)
n = 2.

20. diverges: for n even, an = 2, while for n odd, an = 0. In particular, |an − an+1| = 2 for all
n, and so the sequence fails the Cauchy criterion and hence diverges.

21. converges: note that 0 ≤ 1 + (−1)n ≤ 2 for all n, and so the squeeze law yields that since
limn→∞ 2

n = 0, we have that limn→∞ an = 0.
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22. converges: we begin by noting that

0 ≤ 1 + (−1)
n√n

(32)
n

≤ 2
√
n

(32)
n
,

and so we’ll concentrate on evaluating limn→∞
2
√
n

( 3
2
)n and hope to be able to apply the squeeze

law. Since limn→∞
2
√
n

( 3
2
)n has the indeterminate form

∞
∞ , we may use l’Hopital’s rule to evaluate

lim
n→∞

2
√
n

(32)
n
= lim

n→∞

1√
n

ln(32) exp(n ln(
3
2))
= lim

n→∞
1

ln(32)
√
n(32)

n
= 0

(where we differentiate ( 32)
n by first writing it as exp(n ln( 32))). Hence, we may use the squeeze

law to see that {an} converges to 0.

23. converges: since 0 ≤ sin2(n) ≤ 1 for all n and since 1√
n
→ 0 as n → ∞ (since

√
n → ∞ as

n→∞), the comparison test yields that sin2(n)√
n
→ 0 as n→∞. That is, {an} converges to 0.

24. converges: since 1 ≤
√

2 + cos(n) ≤
√
3 for all n and since 1

n → 0 as n → ∞, the squeeze
law yields that

√

2+cos(n)
n → 0 as n→∞. That is, {an} converges to 0.

25. converges: since sin(πn) = 0 for all integers n, this sequence is the constant sequence
an = n · 0 = 0 for all n. In particular, {an} converges to 0.

26. diverges: since cos(πn) = (−1)n, this sequence can be rewritten as an = (−1)nn. For n ≥ 1,
|an+1 − an| ≥ 2, and so the sequences fails the Cauchy criterion, and so diverges.

27. converges: since −1 ≤ − sin(n) ≤ 1 for all n, we have that − 1
n ≤ −

sin(n)
n ≤ 1

n for all n, and

so {− sin(n)
n } converges to 0. Hence, {an} converges to π0 = 1.

28. diverges: for n even, cos(πn) = 1 and for n odd, cos(πn) = −1. In particular, |an+1− an| =
|21 − 2−1| = 3

2 for all n, and so this sequences fails the Cauchy criterion, and hence {an}
diverges.

29. converges: we could use l’Hopital’s rule, since limn→∞
ln(2n)
ln(3n) has the indeterminate form

∞
∞ , but we proceed in a more low tech way. Use the laws of logarithms and a variant of the
standard trick for rational functions, we rewrite

an =
ln(2n)

ln(3n)
=
ln(2) + ln(n)

ln(3) + ln(n)
=
ln(2) + ln(n)

ln(3) + ln(n)
·

1
ln(n)

1
ln(n)

=
1 + ln(2)

ln(n)

1 + ln(3)
ln(n)

.

Since ln(n) → ∞ as n → ∞, we have that both ln(2)
ln(n) and

ln(3)
ln(n) go to 0 as n → ∞, and so

limn→∞ an = 1.

30. converges: since limn→∞
ln2(n)
n has the indeterminate form ∞

∞ , we can use l’Hopital’s rule:

lim
n→∞

ln2(n)

n
= lim

n→∞
2 ln(n) 1

n

1
= lim

n→∞
2 ln(n)

n
.
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This limit still has the indeterminate form ∞
∞ , and we can apply l’Hopital’s rule again to get

lim
n→∞

2 ln(n)

n
= lim

n→∞

2
n

1
= 0.

Hence, {an} converges to 0.

31. converges: write

an = n sin

(

1

n

)

=
sin( 1

n)
1
n

.

Since limn→∞ an has the indeterminate form
0
0 , we can apply l’Hopital’s rule to get

lim
n→∞

sin
(

1
n

)

1
n

= lim
n→∞

cos
(

1
n

) (

− 1
n2

)

− 1
n2

= lim
n→∞ cos

(

1

n

)

= cos(0) = 1.

Hence, {an} converges to 1. (There is also a geometric argument for evaluating this limit,
that can be found in Adams (p. 116, Theorem 7).)

32. converges: as n→∞, arctan(n)→ π
2 , and so limn→∞

arctan(n)
n = 0. (This is an application

of the squeeze law, since the numerator is bounded by 0 and π.)

33. converges: since limn→∞ n3

en/10 has the indeterminate form
∞
∞ , we may use l’Hopital’s rule:

lim
n→∞

n3

en/10
= lim

n→∞
3n2

1
10e

n/10
.

Since this latter limit still has the indeterminate form ∞
∞ , we use l’Hopital’s rule again:

lim
n→∞

3n2

1
10e

n/10
= lim

n→∞
6n

1
100e

n/10
.

And as we still have the indeterminate form ∞
∞ , we apply l’Hopital’s rule yet again:

lim
n→∞

6n
1

100e
n/10

= lim
n→∞

6
1

1000e
n/10

.

The right hand limit evaluates to 0, and so {an} converges to 0.

34. converges: write

an =
2n + 1

en
=
2n

en
+
1

en
=
2n

en
+
1n

en
=

(

2

e

)n

+

(

1

e

)n

.

Since both 2
e < 1 and

1
e < 1, we have that both (

2
e )
n and (1e )

n go to 0 as n→∞, and so their
sum goes to 0 as n→∞. That is, {an} converges to 0.

35. converges: again there are several possible approaches, including l’Hopital’s rule, but again
we take a low tech approach, and begin by expressing sinh(n) and cosh(n) in terms of en and
e−n, to get

an =
sinh(n)

cosh(n)
=

en − e−n

en + e−n
=

en − e−n

en + e−n
· e

−n

e−n
=
1− e−2n

1 + e−2n
.

Since e−2n = ( 1
e2
)n → 0 as n→∞, we see that limn→∞ an = 1. That is, {an} converges to 1.
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36. converges: as with all limits in which the variable appears in both the base and the expo-
nent, we begin by rewriting using the identity m = exp(ln(m)) to get an = (2n + 5)

1/n =

exp
(

ln(2n+5)
n

)

. We may now use l’Hopital’s rule to evaluate the limit of the exponent

limn→∞
ln(2n+5)

n (as it has the indeterminate form ∞
∞) to get

lim
n→∞

ln(2n+ 5)

n
= lim

n→∞

2
2n+5

1
= 0.

Therefore, {an} converges to e0 = 1.

37. converges: as with all limits in which the variable appears in both the base and the exponent,
we begin by rewriting using the identity m = exp(ln(m)) to get

an =

(

n− 1
n+ 1

)n

=

(

n+ 1− 2
n+ 1

)n

=

(

1− 2

n+ 1

)n

= exp

(

n ln

(

1− 2

n+ 1

))

.

Since the exponent has the indeterminate form 0 · ∞ as n→∞, we rewrite it as

n ln

(

1− 2

n+ 1

)

=
ln(1− 2

n+1)
1
n

,

which as the indeterminate form 0
0 as n→∞. We now apply l’Hopital’s rule to evaluate

lim
n→∞

ln
(

1− 2
n+1

)

1
n

= lim
n→∞

1
1− 2

n+1

· 2
(n+1)2

− 1
n2

= lim
n→∞

−2n2

(

1− 2
n+1

)

· (n+ 1)2
= −2.

Hence, {an} converges to e−2.

38. converges: since − 1
n → 0 as n→∞, we see that {an} converges to (0.001)0 = 1.

39. converges: as n→∞, n+1
n = 1 + 1

n → 1, and so {an} converges to 21 = 2.

40. converges: one way to evaluate this limit is to write an = (
2
n)

3/n = 23/n

n3/n and to evaluate the

limits of the numerator and denominator separately. To evaluate limn→∞ 23/n, all we need
note is that limn→∞ 3

n = 0, and so {23/n} converges to 20 = 1.

To evaluate limn→∞ n3/n, we rewrite n3/n as n3/n = exp(ln(n) 3
n) and use l’Hopital’s rule to

evaluate limn→∞
3 ln(n)
n (since it has the indeterminate form ∞

∞). Using l’Hopital’s rule, we
get that

lim
n→∞

3 ln(n)

n
= lim

n→∞

3
n

1
= 0,

and so {n3/n} converges to e0 = 1. Therefore,

lim
n→∞

23/n

n3/n
=
limn→∞ 23/n

limn→∞ n3/n
=
1

1
= 1.

41. diverges: begin by ignoring the (−1)n and worrying about what happens to the rest of
the term. Using the standard trick, massage to get (n2 + 1)1/n = exp( ln(n2+1)

n ). Since

limn→∞
ln(n2+1)

n has the indeterminate form ∞
∞ , we may use l’Hopital’s rule to evaluate

lim
n→∞

ln(n2 + 1)

n
= lim

n→∞

2n
n2+1

1
= 0,
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and so

lim
n→∞ exp

(

ln(n2 + 1)

n

)

= e0 = 1.

So, putting the (−1)n back into the picture, we see that {an} fails the Cauchy criterion:
specifically, since {n2+1

n } converges to 1, for any ε > 0, there exists M so that
∣

∣

∣

n2+1
n − 1

∣

∣

∣ < ε

for n > M . Choose ε = 1
2 , and note that for n > M , we get that |an − an+1| > 1, since one

of an, an+1 is within
1
2 of 1 and the other is within

1
2 of −1 (remember the alternating signs).

So, {an} diverges.

42. converges: we perform a bit of algebraic massage: note that

an =

(

2
3

)n

(

1
2

)n
+
(

9
10

)n <

(

2
3

)n

(

9
10

)n =

(

20

27

)n

.

Since
(

20
27

)n
→ 0 as n→∞ (since 20

27 < 1), the comparison test yields that {an} converges to
0 as well.

Solution ??: Suppose that {qn} converges and set x = limn→∞ qn. Now, note that

qn =
an
an−1

=
an−1 + an−2

an−1
= 1 +

an−2

an−1
= 1 +

1

qn−1
.

Hence,

x = lim
n→∞ qn = lim

n→∞

(

1 +
1

qn−1

)

= 1 +
1

limn→∞ qn−1
= 1 +

1

x
,

since limn→∞ qn−1 = x as well. Therefore, x = 1 + 1
x , and so (multiplying through by x and

simplifying) x satisfies the quadratic equation x2−x− 1 = 0. By the quadratic formula, this yields
that x = 1

2

(

1±
√
5
)

. However, since qn ≥ 0 for all n, it must be that x ≥ 0 as well, and so
x = 1

2

(

1 +
√
5
)

.

Solution ??: In all three of these statements, we start with the same piece of information, namely
that limn→∞ xn = −4. That is, for each ε > 0, there exists M (which depends on ε) so that
|xn − (−4)| = |xn + 4| < ε for n > M .

1. we need to show that limn→∞
√

|xn| = 2, which is phrased mathematically as needing to show
that for each µ > 0, there exists P so that |

√

|xn| − 2| < µ for n > P . We start by rewriting
|
√

|xn| − 2|, using the standard trick for handling differences of square roots, namely

|
√

|xn| − 2| = |
√

|xn| − 2| ·
|
√

|xn|+ 2|
|
√

|xn|+ 2|
=
| |xn| − 4|
|
√

|xn|+ 2|
≤ | |xn| − 4|

2
.

(The last inequality follows from the fact that |
√

|xn| + 2| ≥ 2 for all possible values of
xn.) Since for any µ > 0, there exists M so that | |xn| − 4| < 2µ (by using the definition of
limn→∞ |xn| = 4) for n > M , we have that

|
√

|xn| − 2| ≤
| |xn| − 4|

2
<
2µ

2
= µ

for n > M , and so we are done.
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2. we need to show that limn→∞ x2
n = 16, which is phrased mathematically as needing to show

that for each µ > 0, there exists P so that |x2
n − 16| < µ for n > P . We start by rewriting

|x2
n − 16|, using that it is the difference of two squares:

|x2
n − 16| = |(xn − 4)(xn + 4)| = |xn − 4| |xn + 4|.

Now apply the definition of limn→∞ xn = −4 with ε = 1, so that there exists M so that if
n > N , then |xn − (−4)| < 1. In particular, if n > M , then −5 < xn < −3, and so |xn| < 5,
and so |xn − 4| ≤ |xn|+ 4 < 9.

Since xn → −4 by assumption, we know that for any ε > 0, there is Q so that |xn − (−4)| =
|xn + 4| < 1

9ε for n > Q. Hence, if n > P = max(M,Q), then

|x2
n − 16| = |xn − 4| |xn + 4| < 9

1

9
ε = ε,

as desired.

3. we need to show that limn→∞ xn
3 = −4

3 , which is phrased mathematically as needing to show
that for each µ > 0, there exists P so that |xn

3 − (−4
3)| = |xn

3 +
4
3 | < µ for n > P . Note that

|xn
3 − (−4

3)| = |xn
3 +

4
3 =

1
3 |xn + 4|. We know from the definition of limn→∞ xn = −4 given

above that for any µ > 0, there exists M so that |xn − (−4)| = |xn + 4| < 3µ for n > M .
Hence, for n > M , we have that 1

3 |xn + 4| < 1
33µ = µ for n > M , and so we are done.

Solution ??:

1. since a > 0, we can apply the definition of limn→∞ an = a with ε = 1
2a to see that there

exists P so that an > 0 for n > P (since the interval of radius 1
2a centered at a contains only

positive numbers), and so for n > P ,
√
an makes sense.

We need to get our hands on |√an −
√
a|, which we do with our usual trick for handling

differences of square roots:

|√an −
√
a| = |√an −

√
a| |
√
an +

√
a|

|√an +
√
a| =

|an − a|√
an +

√
a
.

(Here we’re using that both
√
an > 0 and

√
a > 0 to say that |√an+

√
a| = √an+

√
a.) Since√

an +
√
a >

√
a for n > P , we have that

|√an −
√
a| = |an − a|√

an +
√
a
<
|an − a|√

a

for n > P . Since {an} converges to a, for every ε > 0, we can choose M > P so that
|an − a| < ε

√
a for n > M . For this choice of M , we have that

|√an −
√
a| = |an − a|√

an +
√
a
<
|an − a|√

a
<

ε
√
a√
a
= ε,

and so {√an} converges to
√
a.
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2. this one, we break into three cases. If a > 0, then (applying the definition of limn→∞ an = a
with ε = a) there exists M0 so that an > 0 for n > M0. In this case, we have |an| = an for
n > M0 and |a| = a, and so ||an| − |a|| = |an − a|. Since there is M1 so that |an − a| < ε for
n > M1, we have that ||an| − |a|| < ε for n > M = max(M0,M1), and so limn→∞ |an| = |a|.

If a < 0, then (applying the definition of limn→∞ an = a with ε = |a|) there exists M0 so
that an < 0 for n > M0. In this case, we have |an| = −an for n > M0 and |a| = −a, and so
||an| − |a|| = | − an + a| = |an − a|. Since there is M1 so that |an − a| < ε for n > M1, we
have that ||an| − |a|| < ε for n > M = max(M0,M1), and so limn→∞ |an| = |a|.

If a = 0, then the definition of limn→∞ an = a becomes: for every ε > 0, there exists M
so that |an − 0| = |an| < ε for n > M . Since | |an| | = |an|, we have that the definition of
limn→∞ |an| = 0 is satisfied without any further work.

3. since limn→∞ an = ∞, for each ε > 0, there exists M so that an > ε for n > M . Inverting
both sides, we see that 1

an
< 1

ε for n > M . So, given µ > 0, choose ε > 0 so that 1
ε < µ, which

can be done by taking ε large enough. Then, there exists M so that
∣

∣

∣

1
an
− 0

∣

∣

∣ = 1
an

< 1
ε < µ

for n > M , as desired.

4. if a 6= 0, consider the definition of limn→∞ an = a with ε = 1
2 |a|: there exists M so that

|an − a| < 1
2 |a| for n > M . That is, an lies in the interval centered at a with radius

1
2 |a|, and

so |an| > 1
2 |a|.

Now consider the sequence {(−1)nan}. For n > M and n even, (−1)nan = an lies in the
interval centered at a with radius 1

2 |a|. For n > M and n odd, (−1)nan = −an lies in the
interval centered at −a with radius 1

2 |a|. In particular, we have, regardless of whether n is odd
or even, that |(−1)nan − (−1)n+1an+1| > |a| for n > M , since (−1)nan and (−1)n+1an+1 lie
on opposite sides of 0 and are both distance at least 1

2 |a| from the origin. Hence, {(−1)nan}
violates the Cauchy criterion (see Theorem ?? below), and so diverges.

5. if a = 0, the definition of limn→∞ an = 0 becomes: for every ε > 0, there exists M so that
|an − 0| = |an| < ε for n > M . However, note that |(−1)nan − 0| = |an| as well, and so the
definition of limn→∞(−1)nan = 0 is satisfied without any further work.

Solution ??: Since limn→∞ xn = x, we have that for each ε > 0, there existsM so that |xn−x| < 1
3ε

for n > M . For any m > 0 and n > M , we now have that

|xn+1 + · · ·+ xn+m −mx| = |xn+1 − x+ · · ·+ xn+m − x|
≤ |xn+1 − x|+ · · ·+ |xn+m − x|

≤ m
1

3
ε.

Dividing by n+m, we obtain that

∣

∣

∣

∣

1

n+m
(xn+1 + · · ·+ xn+m)−

m

n+m
x

∣

∣

∣

∣

≤ m

n+m

1

3
ε <

1

3
ε

(since m
n+m < 1). Viewing n as fixed for the moment, choose m so that both | m

n+mx − x| < 1
3ε

(which we can do since limm→∞ m
n+m = 1 for n fixed) and

1
n+m |x1 + x2 + · · ·+ xn| < 1

3ε (which we
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can do since x1 + x2 + · · ·+ xn is a constant when n is fixed). Then,

∣

∣

∣

∣

1

n+m
(x1 + · · ·+ xn+m)− x

∣

∣

∣

∣

=

∣

∣

∣

∣

1

n+m
(x1 + · · ·+ xn) +

1

n+m
(xn+1 + · · ·+ xn+m)−

m

n+m
x+

m

n+m
x− x

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

n+m
(x1 + · · ·+ xn)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

n+m
(xn+1 + · · ·+ xn+m)−

m

n+m
x

∣

∣

∣

∣

+

∣

∣

∣

∣

m

n+m
x− x

∣

∣

∣

∣

≤ 1

3
ε+

1

3
ε+

1

3
ε = ε

for allm > 0. Since this is true for all n > M and allm > 0, we have that
∣

∣

∣

1
p(x1 + · · ·+ xp)− x

∣

∣

∣ < ε

for all p > M , as desired.

Solution ??:

1. {an = (−1)n}, bounded above by 1 and bounded below by −1, hence bounded. This sequence
fails the Cauchy criterion, since |an − an+1| = 2 for all n, and so diverges.

2. {sin(n)}, bounded above by 1 and bounded below by −1, hence bounded. Though it seems
fairly clear why this sequence diverges, the actual proof is a bit subtle, and we do not give it
here. If you are intrigued, ask me after class, or come to my office hours.

3. {0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . .}, bounded above by 1 and bounded below by 0, hence
bounded. Arbitrarily far out in the sequence, there are consectutive terms taking the values
0 and 1, so the sequence fails the Cauchy criterion and hence diverges.

4. {an = the nth digit of π}, bounded above by 9 and bounded below by 0, hence bounded.
Does not converge, because the only way for a sequence of integers to converge is for it to
be eventually constant, that is, constant past some index, which in this case would then
imply that π is a repeating decimal, hence a rational number, which it isn’t. (In fact, fixing
an irrational number x and taking an to be the n

th digit of the decimal expansion of x gives
a sequence that is bounded but not convergent, by the same argument.)

5. {an = the nth digit of the rational number 1
7 = .142857}, using the same argument as above

(which works for rational numbers, as long as the length of the repeating section in the
decimal expansion is longer than one digit).

Solution ??: Let c = sup(f), so that c = sup{f(a) | a ∈ A}. In particular, c ≥ f(a) for all a ∈ A,
and if u is any number satisfying u ≥ f(a) for all a ∈ A, then u ≤ c. Multiplying by −1, we see
that −c ≤ −f(a) for all a ∈ A and that if s is any number satisfying s ≤ −f(a) for all a ∈ A, then
s ≥ −c. However, this is exactly the definition that −c = inf(−f), as desired.
Solution ??: (Note that we are not asked to determine whether the statement is correct or not,
and if it is correct we are not asked to prove it. This is an exercise in writing down the definition
of limx→a f(x) = L for specific values of a and L and a specific function f(x).)

1. For every ε > 0, there exists δ > 0 so that if 0 < |x− 1| < δ, then |(2x)4 − 16| < ε.

2. For every ε > 0, there exists δ > 0 so that if 0 < |x− (−3)| = |x+ 3| < δ, then |(3x2 + ex)−
(81 + e−3)| < ε.

71



Solution ??:

1. use the squeeze law. We have that −1 ≤ sin( 1
x) ≤ 1 for all x 6= 0, and that limx→0 sin(x) = 0.

So, we can bound f(x) below by − sin(x) and above by sin(x). Since limx→0− sin(x) =
limx→0 sin(x) = 0, we have that limx→0 sin(x) sin(

1
x) = 0. [Note that the fact that f(x) is not

defined at 0 does not matter, since evaluating limx→0 f(x) depends only on what’s happening
with f(x) near 0, and not at all on what’s happening at 0.]

2. since limx→0 cos(x) = 1, and since f(x) = cos(x) except at 0, we have that limx→0 f(x) =
limx→0 cos(x) = 1. [This is another reflection of the fact that limx→0 f(x) does not care about
the value of f(x) at 0, but only on the values of f(x) near 0.]

3. note that f(x) = 0 for − 1
3 < x ≤ 0, and so limx→0− f(x) = 0. Also, f(x) = 1 for 0 < x < 1

3 ,
and so limx→0+ f(x) = 1. Since limx→0+ f(x) 6= limx→0− f(x), we see that limx→0 f(x) does
not exist.

4. as x→ 0+, we see that 1
x →∞, and so sin( 1x) oscillates between −1 and 1. Hence, as x→ 0+,

we have that f(x) oscillates between sin(−1) and sin(1), and so limx→0+ f(x) does not exist.
Hence, limx→0 f(x) does not exist.

5. we apply the squeexe rule, since cos(x) ≤ f(x) ≤ 1 for all x near 0. Since both limx→0 cos(x) =
1 and limx→0 1 = 1, we have that limx→0 f(x) = 1.

6. to evaluate this limit, we recall from calculus that limx→0
sin(x)
x = 1, and so by Lemma ??,

we have that limx→0+
sin(x)
x = limx→0−

sin(x)
x = 1.

For x > 0, we have that |x| = x, and so limx→0+
sin(x)
|x| = limx→0+

sin(x)
x = 1. However,

for x < 0, we have that |x| = −x, and so limx→0−
sin(x)
|x| = − limx→0−

sin(x)
x = −1. Since

limx→0+
sin(x)
|x| 6= limx→0−

sin(x)
|x| , we see that limx→0

sin(x)
|x| does not exist.

Solution ??:

Solution ??:

1. Before hitting the ground the first time, the ball travels distance a. Between hitting the
ground the first and second times, the ball travels distance 2ra (distance ra up from the
ground, and then distance ra back to down to earth again). Between hitting the ground the
second and third times, the ball travels distance 2r2a (distance r2a up from the ground, and
then distance r2a back to down to earth again). Between hitting the ground the nth and the
(n + 1)st times, the ball travels distance 2rna (distance rna up from the ground, and then
distance rna back to down to earth again). Hence, the total distance travelled is

a+2ra+2r2a+ . . . = a+
∞
∑

n=1

2rna = a+2ra
∞
∑

n=1

rn−1 = a+2ra
∞
∑

k=0

rk = a+
2ra

1− r
=

a+ ra

1− r
.

2. One way to do this problem is to actually write out the appropriate geometric series and
summing it. The easier way is to note that the cars will crash exactly one hour after the fly
leaves the front of Jack’s car, and in that hour (given the assumption that the fly loses no
time in changing direction) the fly flies exactly 257 miles.
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Solution ??: Note that for s < 1, we have that ns < n (even for s = 0 or s negative), and hence
that 1

ns > 1
n . Hence, if we let Sk be the k

th partial sum of the harmonic series
∑∞

n=1
1
n , and Tk be

the kth partial sum of the series
∑∞

n=1
1
ns under consideration, then Tk > Sk. Since

1
ns > 0 for all

n, we have that {Tk} is an unbounded monotonically increasing sequence, unbounded since {Sk} is
unbounded by the argument given in Example ??, and so {Tk} diverges. So, by definition,

∑∞
n=1

1
ns

diverges.

Solution ??:

1. we argue by contradiction: suppose that
∑∞

n=0(an+bn) converges. Since
∑∞

n=0 an converges by
assumption, the arithmetic of series, Theorem ??, yields that their difference also converges.
However, their difference is

∑∞
n=0(an + bn − an) =

∑∞
n=0 bn, which diverges by assumption,

yielding the desired contradiction.

2. again we argue by contradiction: suppose that the series of multiples
∑∞

n=0 can converges.
Then, the sequence {Tk =

∑k
n=0 can} of partial sums converges. Note though that Tk =

∑k
n=0 can = c

∑k
n=0 an = cSk, where Sk is the k

th partial sum of the series
∑∞

n=0 an. Since
{Tk} converges, the sequence { 1

cTk = Sk} also converges, by the arithmetic of sequences (since
the constant sequence { 1

c} converges), and so the original series converges, a contradiction.

Solution ??:

1. by what has just been done, all we need are two convergent series. For instance, take an =
(0.5)n and bn = (0.3)n for all n ≥ 0. Then,

∑∞
n=0 an,

∑∞
n=0 bn, and

∑∞
n=0 an bn are all

convergent geometric series.

2. take an = 1 for all n ≥ 0 and bn = 1 for all n ≥ 0. Then, both
∑∞

n=0 an and
∑∞

n=0 bn are
both divergent geometric series, as is

∑∞
n=0 an bn (since an bn = 1 for all n ≥ 0).

3. for this one, let’s take an = bn =
1
n for all n ≥ 1. Then, both

∑∞
n=1 an and

∑∞
n=1 bn are the

harmonic series, and hence divergent. However, the series of products
∑∞

n=1 an bn =
∑∞

n=1
1
n2

is convergent, by the discussion in Example ??.

4. take any convergent series, for example
∑∞

n=0(0.5)
n, and set an = bn = (0, 5)

n. Then, the
series of quotients is

∑∞
n=0

an
bn
=
∑∞

n=0 1, which diverges.

5. here, we can take an =
1
n2 and bn =

1
n4 for n ≥ 1. Then, both

∑∞
n=1 an =

∑∞
n=1

1
n2 and

∑∞
n=1 bn =

∑∞
n=1

1
n4 converge by Exercise ??, as does the series of quotients, as

an
bn
= 1

n2 .

6. let’s use geometric series again: both of
∑∞

n=0 an =
∑∞

n=0 6
n and

∑∞
n=0 bn =

∑∞
n=0 2

n are
divergent geometric series, and the series of quotients

∑∞
n=0

an
bn
=
∑∞

n=0 3
n is also a divergent

geometric series.

7.
∑∞

n=1 an =
∑∞

n=1 1 and
∑∞

n=1 bn =
∑∞

n=1 n
2 both diverge, but the corresponding sequence of

quotients
∑∞

n=1
an
bn
=
∑∞

n=1
1
n2 converges.

Solution ??: Let Sk =
∑k

n=1 an be the k
th partial sum of

∑∞
n=1 an.

1. Since limn→∞ cn = 0 and cn > 0 for all n, there exists M > 0 so that 0 < cn < 1 for n > M .
Let M = max(1, c1, c2, . . . , cM ), and note that cn ≤ M for all n ≥ 1. In particular, the kth
partial sum of the series

∑∞
n=1 ancn satisfies

k
∑

n=1

ancn ≤
k
∑

n=1

anM =M Sk.
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Hence, the sequence of partial sums of the series
∑∞

n=1 ancn forms a monotonic (since all
the an and cn are positive), bounded (above by M

∑∞
n=1 an, below by 0) sequence, and so

converges. That is,
∑∞

n=1 ancn converges.

2. The proof in the case that limn→∞ cn = c 6= 0 is very similar to the proof in the case that
limn→∞ cn = 0. Since limn→∞ cn = c 6= 0, there exists M > 0 so that cn < c+ 1 for n > M .
Let M = max(c + 1, c1, c2, . . . , cM ), and note that cn ≤ M for all n ≥ 1. In particular, the
kth partial sum of the series

∑∞
n=1 ancn satisfies

k
∑

n=1

ancn ≤
k
∑

n=1

anM =M Sk.

Hence, the sequence of partial sums of the series
∑∞

n=1 ancn forms a monotonic (since all
the an and cn are positive), bounded (above by M

∑∞
n=1 an, below by 0) sequence, and so

converges. That is,
∑∞

n=1 ancn converges.

Solution ??: we make implicit use of the fact that convergence and absolute convergence are the
same for series with positive terms.

1. converges absolutely: we could apply the ratio test, but we do not need to use such heavy
machinary. Instead, we note that

∞
∑

n=0

2n−1

3n
=
1

2

∞
∑

n=0

2n

3n
=
1

2

∞
∑

n=0

(

2

3

)n

=
1

2

1

(1− 2/3) =
3

2
,

since
∑∞

n=0
2n

3n is a convergent geometric series.

2. diverges: this is a geometric series, and since 1.01 > 1, it is a divergent geometric series.

3. converges absolutely: this is a convergent geometric series, since e
10 < 1, and it converges

to ∞
∑

n=1

(

e

10

)n

=
∞
∑

n=0

(

e

10

)n

− 1 = 1

1− e/10
− 1 = 10

10− e
− 10− e

10− e
=

e

10− e
.

4. converges absolutely: we use the second comparison test: since n2 + n + 1 > n2 for all
n ≥ 1, we have that 1

n2+n+1
< 1

n2 for all n ≥ 1. Since
∑∞

n=1
1
n2 converges, we have that

∑∞
n=1

1
n2+n+1

converges.

5. diverges: note that for n ≥ 1, we have that n ≥ √
n, and so n +

√
n ≤ 2n. Therefore,

1
n+

√
n
≥ 1

2n for n ≥ 1. Since the harmonic series
∑∞

n=1
1
n diverges, its multiple

∑∞
n=1

1
2n

diverges, and hence by the first comparison test the series
∑∞

n=1 1/(n+
√
n) diverges.

6. converges absolutely: since 1 + 3n > 3n for all n ≥ 1, we have that 1
1+3n < 1

3n for all

n ≥ 1. Since
∑∞

n=1
1
3n =

∑∞
n=1

(

1
3

)n
converges, the second convergence test yields that

∑∞
n=1 1/(1 + 3

n) converges.

7. diverges: we’ll use the limit comparison test: for large values of n, it seems that 10n2

n3−1
behaves

like a constant multiple of 1
n , and in fact

lim
n→∞

10n2/(n3 − 1)
1/n

= lim
n→∞

10n3

n3 − 1 = 10 = L.
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Since the limit exists and 0 < L = 10 <∞, and since ∑∞
n=1

1
n diverges, the limit comparison

test yields that
∑∞

n=2 10n
2/(n3 − 1) diverges.

8. converges absolutely: again we’ll use the limit comparison test: for large values of n, it
seems that 1/

√
37n3 + 3 behaves like 1/n3/2, and in fact

lim
n→∞

1/
√
37n3 + 3

1/n3/2
= lim

n→∞
n3/2

√
37n3 + 3

= lim
n→∞

1
√

37 + 3/n3
=

1√
37
= L.

Since the limit exists and 0 < L = 1√
37

< ∞, and since ∑∞
n=1

1
n3/2 converges, the limit

comparison test yields that
∑∞

n=1 1/
√
37n3 + 3 converges.

9. converges absolutely: we start this one with a bit of algebra, namely

√
n

n2 + n
<

√
n

n2
=

1

n3/2
.

From Example ??, we know that
∑∞

n=1 1/n
3/2 converges, and so by the second comparison

test,
∑∞

n=1

√
n/(n2 + n) converges.

10. diverges: since ln(n) < n for all n ≥ 2, we have that 1
ln(n) > 1

n for all n ≥ 2, and so
∑∞

n=2 2/ ln(n) diverges by the first comparison test, comparing it to the harmonic series
∑∞

n=1
1
n .

11. converges absolutely: since 0 < sin2(n) ≤ 1 for all n ≥ 1, we have that

0 <
sin2(n)

n2 + 1
≤ 1

n2 + 1
<
1

n2

for all n ≥ 1. Since we are dealing with a series with positive terms and since
∑∞

n=1
1
n2

converges by Example ??, we have that
∑∞

n=1 sin
2(n)/(n2 +1) converges by the second com-

parison test.

12. converges absolutely: for this series, we start with a bit of algebraic massage:

n+ 2n

n+ 3n
<

n+ 2n

3n
<
2n + 2n

3n
= 2

(

2

3

)n

.

So, the second comparison test, comparing with the convergent geometric series 2
∑∞

n=0

(

2
3

)n

yields that
∑∞

n=1(n+ 2
n)/(n+ 3n) converges.

13. converges absolutely: since 1/(n2 ln(n)) < 1/n2 for n ≥ 3, since ln(n) ≥ 1 for n ≥ 3, we
have by the second comparison test that

∑∞
n=2 1/(n

2 ln(n)) converges.

14. diverges: for large values of n, it seems that the nth in the series is approximately 1
n , and

so we might guess that the series diverges by the limit comparison test. To check this guess,
we need to evaluate

lim
n→∞

(n3 + 1)/(n4 + 2)

1/n
= lim

n→∞
n4 + n

n4 + 2
= 1 = L.

Since the limit exists and since 0 < L = 1 < ∞, and since the harmonic series ∑∞
n=1

1
n

diverges, we have that
∑∞

n=1(n
3 + 1)/(n4 + 2) diverges by the limit comparison test.
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15. converges absolutely: since 1
n+n3/2 < 1

n3/2 for all n ≥ 1 and since
∑∞

n=1
1

n3/2 converges by

Example ??, we have that
∑∞

n=1 1/(n+ n3/2) converges by the second comparison test.

16. converges absolutely: for large values of n, it seems that the nth term in this series is
approximately equal to 10

n2 , and so we might guess that this series converges by use of the
limit comparison test. To verify this guess, we calculate

lim
n→∞

10n2/(n4 + 1)

10/n2
= lim

n→∞
n4

n4 + 1
= 1 = L.

Since the limit exists and since 0 < L = 1 < ∞, and since ∑∞
n=1

10
n2 converges by Example

??, we have that
∑∞

n=1 10n
2/(n4 + 1) converges by the limit comparison test.

17. converges absolutely: for large values of n, it seems again that the nth term in this series
is approximately equal to 1

n2 , and so we might guess that this series converges by use of the
limit comparison test. To verify this guess, we calculate

lim
n→∞

(n2 − n)/(n4 + 2)

1/n2
= lim

n→∞
n4 − n3

n4 + 2
= 1 = L.

Since the limit exists and since 0 < L = 1 < ∞, and since ∑∞
n=1

1
n2 converges by Example

??, we have that
∑∞

n=2(n
2 − n)/(n4 + 2) converges by the limit comparison test.

18. diverges: for large values of n, it seems that the nth term of this series is approximately
equal to 1

n , and so we might guess that this series then diverges by the limit comparison test.
To verify this guess, we calculate

lim
n→∞

1/
√
n2 + 1

1/n
= lim

n→∞
n√

n2 + 1
= lim

n→∞
n

n
√

1 + 1/n2
= 1 = L.

Since the limit exists and since 0 < L = 1 < ∞, and since ∑∞
n=1

1
n diverges by Example ??,

we have that
∑∞

n=2 1/
√
n2 + 1 diverges by the limit comparison test.

19. converges absolutely: since
1

3 + 5n
<
1

5n
=

(

1

5

)n

,

and since
∑∞

n=0

(

1
5

)n
converges, the second comparison test yields that

∑∞
n=1 1/(3 + 5

n)
converges.

20. diverges: first note that since ln(n) < n for all n ≥ 2, this is a series of positive terms.
Also, n− ln(n) < n, and so 1/(n− ln(n)) > 1/n. Hence, since ∑∞

n=1
1
n diverges, we have that

∑∞
n=2 1/(n− ln(n)) diverges, by the first comparison test.

21. converges absolutely: since 0 < cos2(n) ≤ 1 for all N ≥ 1, we have that cos2(n)/3n < 1/3n.
Since

∑∞
n=0

1
3n is a convergent geometric series, we have by the second comparison test that

∑∞
n=1 cos

2(n)/3n converges.

22. converges absolutely: since 1/(2n + 3n) < 1/2n and since
∑∞

n=0
1
2n converges, the second

comparison test yields that
∑∞

n=1 1/(2
n + 3n) converges.
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23. converges absolutely: since 1+
√
n ≥ 2 for n ≥ 1, we have that n1+

√
n ≥ n2 for n ≥ 1, and

so 1/n(1+
√
n) ≤ 1/n2 for n ≥ 1. Hence, since ∑∞

n=1
1
n2 converges by Example ??, we have by

the second comparison test that
∑∞

n=1 1/n
(1+

√
n) converges.

24. converges absolutely: since 2n(n+ 1) > 2n for n ≥ 1, we have that 1/(2n(n+ 1)) < 1/2n
for n ≥ 1. Since ∑∞

n=1
1
2n is a convergent geometric series, we have by the second comparison

test that
∑∞

n=1 1/(2
n(n+ 1)) converges.

25. diverges: since factorials are involved, we first see whether the ratio test gives us any infor-
mation, and so we evaluate

lim
n→∞

(n+ 1)!/((n+ 1)2en+1)

n!/(n2en)
= lim

n→∞
(n+ 1)!n2en

n!(n+ 1)2en+1
= lim

n→∞
n2

(n+ 1)2
n+ 1

e
=∞,

and since ∞ > 1, the ratio test implies that
∑∞

n=1 n!/(n
2en) diverges.

[Though it’s not obvious how, we could also have applied the nth term test for divergence,
since for large values of n we have

n!

n2en
=
(n− 1)(n− 2)!

nen
=

n− 1
n

n− 2
e

· · · 2
e

1

e2
>

n− 1
n

2

e

1

e2
>
1

e3
.

We simplified by noting that the middle terms n−2
e , . . . , 3

e are all greater than 1 and that
n−1
n > 1

2 for n large. Hence, limn→∞ n!
n2en 6= 0.]

26. converges absolutely: there is not an obvious comparison to make, and so we try the ratio
test:

lim
n→∞

√
n+ 1/(3n+1 ln(n+ 1))√

n/(3n ln(n))
= lim

n→∞
1

3

ln(n)

ln(n+ 1)

√

n+ 1

n
=
1

3
,

since limn→∞
ln(n)

ln(n+1) = 1, for instance using l’Hopital’s rule. Since
1
3 < 1, the ratio test yields

that
∑∞

n=1

√
n/(3n ln(n)) converges.

27. converges absolutely: since there are factorials involved, we first try the ratio test:

lim
n→∞

(2(n+ 1))!/((n+ 1)!)3

(2n)!/(n!)3
= lim

n→∞
(2n+ 2)(2n+ 1)

(n+ 1)3
= 0 < 1,

and so the ratio test yields that
∑∞

n=2(2n)!/(n!)
3 converges.

28. converges absolutely: note that the numerator of each term is either 0 or 2, and so
this is a series with non-negative terms. Also, (1 − (−1)n)/n4 < 2/n4 for all n ≥ 1 and
∑∞

n=1
1
n4 converges by Example ??, and so by the second comparison test

∑∞
n=1(1−(−1)n)/n4

converges.

29. diverges: we start with a bit of algebraic simplification:

2 + cos(n)

n+ ln(n)
≥ 1

n+ ln(n)
>
1

2n
.

(The first inequality holds since 2 + cos(n) ≥ 2 + (−1) = 1 for all n ≥ 1, and the second
inequality holds since ln(n) < n for all n ≥ 1, and so n+ln(n) < n+n = 2n.) Since

∑∞
n=1

1
2n

diverges (as it is a constant multiple of the harmonic series), the first comparison test yields
that

∑∞
n=1(2 + cos(n))/(n+ ln(n)) diverges.
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30. diverges: for this one, we use the integral test. Set

f(x) =
1

x ln(x)
√

ln(ln(x))
,

so that an = f(n) for all n ≥ 3. (The restriction that n ≥ 3 is to ensure that
√

ln(ln(n)) is
well defined.) In order to apply the integral test, we need to know that f(x) is decreasing,
which involves calculating a derivative and checking its sign:

f ′(x) =
−
(

ln(x)
√

ln(ln(x)) +
√

ln(ln(x)) + x ln(x) 1

2
√

ln(ln(x))

1
x ln(x)

)

(x ln(x)
√

ln(ln(x)))2
< 0.

Hence, the integral test can be applied, and says that
∑∞

n=3 1/(n ln(n)
√

ln(ln(n))) converges
if and only if

∫∞
3 f(x)dx = limM→∞

∫M
3 f(x)dx exists. So, we calculate:

lim
M→∞

∫ M

3
f(x)dx = lim

M→∞

∫ M

3

1

x ln(x)
√

ln(ln(x))
dx = lim

M→∞
2
√

ln(ln(x))
∣

∣

∣

M
3 ,

which diverges, and so
∑∞

n=3 1/(n ln(n)
√

ln(ln(n))) diverges.

31. converges absolutely: try the ratio test, since there are factorials about:

lim
n→∞

(n+ 1)(n+1)/(π(n+1)(n+ 1)!)

nn/(πnn!)
= lim

n→∞

(

n+ 1

n

)n 1

π
= lim

n→∞

(

1 +
1

n

)n 1

π
=

e

π
= L.

Since the limit exists and since L < 1, the ratio test yields that
∑∞

n=1 n
n/(πnn!) converges.

32. converges absolutely: since both the numerator and the denominator are raised to (essen-
tially) the same power, we try the root test, and so need to calculate:

lim
n→∞

(

2n+1

nn

)1/n

= lim
n→∞

21/n
2

n
= L = 0

(since limn→∞ 21/n = 20 = 1). Since the limit exists and since L < 1, the root test yields that
∑∞

n=1 2
n+1/nn converges.

33. converges conditionally: we first test for absolute convergence, by considering the related
series

∑∞
n=1 |(−1)n−1/

√
n| =∑∞

n=1 1/
√
n, which diverges by Example ??.

We now test for convergence. This is an alternating series, and so we use the alternating
series test: write

∞
∑

n=1

(−1)n−1

√
n

= (−1)
∞
∑

n=1

(−1)n√
n
= (−1)

∞
∑

n=1

(−1)nan,

where an =
1√
n
> 0 for all n ≥ 1. Since limn→∞ an = limn→∞ 1√

n
= 0 and since an+1 =

1√
n+1

< 1√
n
= an for all n ≥ 1, the alternating series test applies and yields that this series

converges.

Hence, this series converges but does not converge absolutely. That is, the series converges
conditionally.
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34. converges conditionally: we first check for absolute convergence, that is, convergence of
the associated series

∑∞
n=1 | cos(πn)/((n + 1) ln(n + 1))| =

∑∞
n=1 1/((n + 1) ln(n + 1)). For

this series, we apply the integral test, with f(x) = 1/((x+ 1) ln(x+ 1)). Since

f ′(x) =
−
(

ln(x+ 1) + (x+ 1) 1
x+1

)

(x+ 1)2(ln(x+ 1))2
=

−(ln(x+ 1) + 1)
(x+ 1)2(ln(x+ 1))2

< 0

for x ≥ 1, the integral test yields that the series converges if and only if
∫∞
1 f(x)dx =

limM→∞
∫M
1 f(x)dx exists, so we calculate:

lim
M→∞

∫ M

1

1

(x+ 1) ln(x+ 1)
dx = lim

M→∞
ln(ln(x+ 1))

∣

∣

∣

M
1 = lim

M→∞
(ln(ln(M + 1))− ln(ln(2))),

which diverges (very very slowly). So, the series does not converge absolutely.

We now test for convergence. Since cos(πn) = (−1)n, this is an alternating series, and we start
with the alternating series test. Since (n+1) ln(n+1) < (n+2) ln(n+2) for all n ≥ 1, we have
that 1/((n+1) ln(n+1)) > 1/((n+2) ln(n+2)) for n ≥ 1. Since limn→∞ 1/((n+1) ln(n+1)) = 0
(and since 1/((n+ 1) ln(n+ 1)) > 0 for n ≥ 1), the alternating series test applies and yields
that the series converges.

Hence, this series converges but does not converge absolutely. That is, the series converges
conditionally.

35. diverges: since limn→∞(n2 − 1)/(n2 + 1) = 1, we have that limn→∞(−1)n(n2 − 1)/(n2 + 1)
does not exist, and so

∑∞
n=1(−1)n(n2−1)/(n2+1) diverges by the nth term test for divergence.

36. converges absolutely: we first test for absolute convergence, by considering the associated
series

∑∞
n=1 |(−1)n/(nπn)| =

∑∞
n=1 1/(nπ

n). Since 1/(nπn) ≤ 1/πn for n ≥ 1 and since
∑∞

n=0
1
πn converges, the second comparison test yields that

∑∞
n=1 1/(nπ

n) converges, and
hence that

∑∞
n=1(−1)n/(nπn) converges absolutely.

37. converges conditionally: we first test for absolute convergence, that is, convergence of the
associated series

∑∞
n=1 |(−1)n(20n2−n−1)/(n3+n2+33)| =∑∞

n=1(20n
2−n−1)/(n3+n2+33).

Since the nth term looks like a constant multiple of 1
n for large n, let’s try the limit comparison

test:

lim
n→∞

(20n2 − n− 1)/(n3 + n2 + 33)

1/n
= lim

n→∞
20n3 − n2 − n

n3 + n2 + 33
= 20 = L.

Since the limit exists and 0 < L < ∞, the series being considered here diverges, since the
harmonic series converges. So, the original series does not converge absolutely.

We now test for convergence. The series
∑∞

n=1(−1)n(20n2 − n − 1)/(n3 + n2 + 33) =
∑∞

n=1(−1)nan is an alternating series, since 20n2−n−1
n3+n2+33

> 0 for n ≥ 1, and so let’s check whether
it satisfies the conditions of the alternating series test. Since (20n2 − n − 1)/(n3 + n2 + 33)
is a rational function and the denominator has higher degree than the numerator, we have
that limn→∞(20n2 − n − 1)/(n3 + n2 + 33) = 0. All that remains to check is whether the
an are monotonically decreasing. For this, let f(x) = (20x

2 − x− 1)/(x3 + x2 + 33), so that
f(n) = an, and check that it’s decreasing, which involves calculating f

′(x):

f ′(x) =
−20x4 + 2x3 + 4x2 + 1322x− 33

(x3 + x2 + 33)2
< 0
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for all x greater than any of the roots of the numerator. So, the alternating series test applies,
and yields that this series converges.

Hence, this series converges but does not converge absolutely. That is, the series converges
conditionally.

38. diverges: note that, for n ≥ 101, we have

n!

100n
=

n(n− 1) · · · 1
100n

=
n

100

n− 1
100

· · · 101
100

100

100

99

100
· · · 1
100

>
99

100
· · · 1
100

,

and so limn→∞ n!/(−100)n does not exist. Hence, by the nth term test for divergence, the
series diverges.

39. converges absolutely: we apply the integral test, with the function f(x) = 1
x ln(x)(ln(ln(x)))2

.

First, we check to see that f(x) is decreasing, by calculating its derivative:

f ′(x) =
−(ln(x)(ln(ln(x)))2 + (ln(ln(x)))2 + 1)

(x ln(x)(ln(ln(x)))4
< 0

for x ≥ 2 (and the denominator is non-zero for x ≥ 3). So, now we need to calculate
∫ ∞

3
f(x)dx = lim

M→∞

∫ M

3

1

x ln(x)(ln(ln(x))2
dx

= lim
M→∞

1

ln(ln(x)

∣

∣

∣

M
3 = lim

M→∞

( −1
ln(ln(M))

+
1

ln(ln(3))

)

=
1

ln(ln(3))
.

Since the limit converges,
∑∞

n=3 1/(n ln(n)(ln(ln(n)))
2) converges absolutely.

40. diverges: we start with a bit of arithmetic, noting that the numerator satisfies: (1+(−1)n) =
0 for n odd and (1 + (−1)n) = 2 for n even. Hence, the terms of the series are non-zero only
for n even, so let’s make the substitution n = 2k for k ≥ 1. Then, for n even, we have that

1 + (−1)n√
n

=
2√
2k
=

√
2√
k
>
1√
k
.

Hence, by the first comparison test and Example ??, we have that
∑∞

n=1(1 + (−1)n)/
√
n

diverges.

41. converges absolutely: again, we begin with a bit of algebra, simplifying the nth in the
series by noting that

en cos2(n)

1 + πn
≤ en

1 + πn
≤ en

πn
=

(

e

π

)n

,

where the first inequality follows from cos2(n) ≤ 1 for all n ≥ 1. Since∑∞
n=0(e/π)

n converges,
the second comparison test yields that

∑∞
n=1 e

n cos2(n)/(1 + πn) converges.

42. converges absolutely: since there are factorials involved, let’s first try the ratio test:

lim
n→∞

(n+ 1)4/(n+ 1)!

n4/n!
= lim

n→∞

(

n+ 1

n

)4 n!

(n+ 1)!
== lim

n→∞

(

n+ 1

n

)4 1

n+ 1
= 0 = L.

Since the limit exists and since L < 1, the ratio test yields that the series converges.
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43. converges absolutely: again, since there are factorials involved, we first try the ratio test:

lim
n→∞

(2(n+ 1))!6(n+1)/(3(n+ 1))!

(2n)!6n/(3n)!
= lim

n→∞
6(2n+ 2)(2n+ 1)

(3n+ 3)(3n+ 2)(3n+ 1)
= 0 = L.

Since the limit exists and since L < 1, the ratio test yields that the series converges.

44. converges absolutely: and yet again, since there are factorials involved, our first attempt
should be with the ratio test:

lim
n→∞

(n+ 1)1002(n+1)/
√

(n+ 1)!

n1002n/
√
n!

= lim
n→∞

(

n+ 1

n

)100 2√
n+ 1

= 0 = L.

Since the limit exists and since L < 1, the ratio test yields that this series converges.

45. diverges: since there are factorials involved, we first try the ratio test:

lim
n→∞

(1 + (n+ 1)!)/(1 + (n+ 1))!

(1 + n!)/(1 + n)!
= lim

n→∞
1 + (n+ 1)!

(1 + n!)(n+ 2)
= lim

n→∞
1/n! + n+ 1

(1/n! + 1)(n+ 2)
= 1,

and so the ratio test gives no information. (This discussion was put in to remind you that
the ratio test doesn’t always work with factorials.)

Hmm. Notice that when n is large, 1 + n! is very nearly equal to n!, and so (1 + n!)/(n+ 1)!
is very nearly equal to n!/(n + 1)! = 1/(n + 1). So, let’s try the limit comparison test with
1/(n+ 1):

lim
n→∞

(1 + n!)/(1 + n)!

1/(n+ 1)
= lim

n→∞
(n+ 1)(1 + n!)

(n+ 1)!
= lim

n→∞
1 + n!

n!
= 1 = L.

Since the limit exists and since
∑∞

n=0 1/(n + 1) diverges (as it’s the harmonic series less the
leading term), the series

∑∞
n=3(1 + n!)/(1 + n)! diverges by the limit comparison test.

46. diverges: again, since there are factorials involved, we first try the ratio test:

lim
n→∞

22(n+1)((n+ 1)!)2

(2(n+ 1))!

(2n)!

22n(n!)2
= lim

n→∞
4(n+ 1)2

(2n+ 1)(2n+ 2)
= 1,

and so the ratio test yields no information.

So, let’s explicitly try the nth term test for divergence. We start with a bit of algebraic
massage, namely:

22n(n!)2 = (2n · n!)2 = ((2n) · (2n− 2) · (2n− 4) · · · 4 · 2)2,

and so

22n(n!)2

(2n)!
=

(2n) · (2n) · (2n− 2) · (2n− 2) · · · 2 · 2
(2n) · (2n− 1) · (2n− 2) · (2n− 3) · · · 2 · 1 =

(2n) · (2n− 2) · · · 2
(2n− 1) · (2n− 3) · · · 1 > 1.

In particular, the limit limn→∞ 22n(n!)2/(2n)! cannot be zero, and so the nth term test yields
that

∑∞
n=1 2

2n(n!)2/(2n)! diverges.
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47. converges absolutely: we first check for absolute convergence, namely the convergence of
the series

∑∞
n=1 |(−1)n/(n2 + ln(n))| =∑∞

n=1 1/(n
2 + ln(n)). Since n2 + ln(n) > n2, we have

that 1/(n2 + ln(n)) < 1/n2, and so by the second comparison test, the series
∑∞

n=1 1/(n
2 +

ln(n)) converges. That is, the original series
∑∞

n=1(−1)n/(n2 + ln(n)) converges absolutely.

48. converges absolutely: we begin with a bit of algebraic massage, noting that

∞
∑

n=1

(−1)2n
2n

=
∞
∑

n=1

((−1)2)n
2n

=
∞
∑

n=1

1

2n
=

∞
∑

n=1

(

1

2

)n

.

This is a convergent geometric series, converging to

1

1− 1
2

− 1 = 1.

(The subtraction of 1 arises from the fact that the starting index in this series is not 0, so
that ∞

∑

n=1

1

2n
=

∞
∑

n=0

1

2n
−
(

1

2

)0

=
∞
∑

n=0

1

2n
− 1 = 2− 1 = 1.)

49. converges absolutely: we first check for absolute convergence, namely the convergence of
the series

∑∞
n=1 |(−2)n/n!| =

∑∞
n=1 2

n/n!. Since there are factorials involved, we make use of
the ratio test:

lim
n→∞

2(n+1)/(n+ 1)!

2n/n!
= lim

n→∞
2

n+ 1
= 0 = L.

Since this limit exists and satisfies L < 1, the ratio test yields that
∑∞

n=1 2
n/n! converges,

and hence that the original series
∑∞

n=1(−2)n/n! converges absolutely.

50. diverges: first, note that this is not an alternating series, but is a series with all non-positive
terms. Hence, for this series, convergence and absolute convergence are equivalent, as they
are for series with non-negative terms.

Now, for n large, n/(n2+1) is approximately equal to 1/n, and so let’s try the limit comparison
test with 1

n . So, we calculate:

lim
n→∞

n/(n2 + 1)

1/n
= lim

n→∞
n2

n2 + 1
= 1 = L.

Since the limit exists and since 0 < L = 1 < ∞, and since ∑∞
n=1−1/n diverges (as it is

a constant multiple of the harmonic series), the limit comparison test yields that the series
∑∞

n=1−n/(n2 + 1) diverges.

51. converges conditionally: we start by noting that cos(nπ) = (−1)n, and so this is an
alternating series. So, we first check for absolute convergence, namely the convergence of the
series

∑∞
n=1 |100 cos(nπ)/(2n + 3)| =

∑∞
n=1 100/(2n + 3). Here, there are many tests that

yield divergence, for instance we may use the limit comparison test with the harmonic series
∑∞

n=1
1
n :

lim
n→∞

100/(2n+ 3)

1/n
= lim

n→∞
100n

2n+ 3
= 50 = L;

since this limit exists and satisfies 0 < L = 50 < ∞, and since the harmonic series diverges,
the limit comparison test yields that

∑∞
n=1 100/(2n+ 3) diverges.
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However, since 100
2(n+1)+3 =

100
2n+5 < 100

2n+3 and since limn→∞ 100
2n+3 = 0, the alternating series

test yields that
∑∞

n=1 100 cos(nπ)/(2n+ 3) converges.

Hence, this series converges but does not converge absolutely. That is, the series converges
conditionally.

52. converges conditionally: as before, we begin by simplifying the expression of each term.
Here, note that sin((n + 1/2)π) = (−1)n, and so this is an alternating series. As always, we
first check for absolute convergence, namely the convergence of the series

∑∞
n=10 | sin((n +

1/2)π)/ ln(ln(n))| = ∑∞
n=10 1/ ln(ln(n)). Since n > ln(ln(n)) for all n ≥ 10, we have that

1/ ln(ln(n)) > 1/n for all n ≥ 10, and so the series ∑∞
n=10 1/ ln(ln(n)) diverges by the first

comparison test. That is, the original series does not converge absolutely.

We are now ready to determine convergence of the original series. As this is an alternating
series, let’s check whether the hypthoses of the alternating series test are satisfied. Since
1/ ln(ln(n)) > 1/ ln(ln(n + 1)) and since limn→∞ 1/ ln(ln(n)) = 0 (since limn→∞ ln(ln(n)) =
∞), the alternating series test applies to this series, and yields that the series ∑∞

n=10 sin((n+
1/2)π)/ ln(ln(n)) converges.

Hence, this series converges but does not converge absolutely. That is, the series converges
conditionally.

53. diverges: similar to the algebraic manipulation we performed on the series whose terms were
the reciprocals of the terms in this series, we calculate:

(2n)!

22n(n!)2
=

(2n)!

(2nn!)2

=
(2n) · (2n− 1) · (2n− 2) · (2n− 3) · · · 2 · 1
(2n) · (2n) · (2n− 2) · (2n− 2) · · · 2 · 2

=
(2n− 1) · (2n− 3) · · · 3 · 1
(2n) · (2n− 2) · · · 4 · 2

=
1

2n

2n− 1
2n− 2

2n− 3
2n− 4 · · ·

5

4

3

2
>
1

2n
.

Hence, since the series
∑∞

n=1
1
2n diverges (as it is a constant multiple of the harmonic series),

the first comparison test yields that
∑∞

n=1(2n)!/(2
2n(n!)2) diverges.

54. converges absolutely: since each term is a power, we first attempt to apply the root test,
and so we calculate:

lim
n→∞

[

(

n

n+ 1

)n2]1/n

= lim
n→∞

(

n

n+ 1

)n

= lim
n→∞

(

n+ 1

n

)−n
=

1

limn→∞
(

1 + 1
n

)n =
1

e
= L.

Since the limit exists and since L < 1, the root test yields that
∑∞

n=1(n/(n+1))
n2
converges.

55. converges absolutely: we begin with a bit of algebraic manipulation, namely noting that

1 + 2 + · · ·+ n =
n(n+ 1)

2

83



for n ≥ 1, and so
1

1 + 2 + · · ·+ n
=

2

n(n+ 1)
<
2

n2

for n ≥ 1. Since ∑∞
n=1 1/n

2 converges, by Example ??, the second comparison test yields
that

∑∞
n=1 1/(1 + 2 + · · ·+ n) converges.

56. converges absolutely: we begin with a bit of simplification, namely noting that

0 ≤ ln(n)

2n3 − 1 ≤
n

2n3 − 1 ≤
n

n3
=
1

n2

for n ≥ 1. (The first inequality follows since ln(n) ≤ n for n ≥ 1, while the second inequality
follows since 2n3− 1 ≥ n3 for n ≥ 1.) Since ∑∞

n=1 1/n
2 converges by Example ??, the second

comparison test yields that
∑∞

n=1 ln(n)/(2n
3 − 1) converges.

57. converges absolutely: note that this is not an alternating series, even though the terms
are not all of the same sign (since sin(n) behaves a bit strangely). However, we still begin
testing for convergence by testing for absolute convergence, namely the convergence of the
series

∑∞
n=1 | sin(n)/n2|. Since | sin(n)| ≤ 1 for all n ≥ 1, and since ∑∞

n=1 1/n
2 converges by

Example ??, the second comparison test yields that
∑∞

n=1 sin(n)/n
2 converges absolutely.

58. diverges: since limn→∞(n − 1)/n = 1, we have that limn→∞(−1)n(n − 1)/n does not exist
(since for large n, it is oscillating between numbers near 1 and numbers near −1). Since this
limit does not exist, the nth term test for divergence yields that

∑∞
n=1(−1)n(n−1)/n diverges.

59. diverges: we can rewrite this series as a geometric series, to whit:

∞
∑

n=1

(−1)n23n
7n

=
∞
∑

n=1

(−8)n
7n

=
∞
∑

n=1

(−8
7

)n

.

Since | − 8
7 | ≥ 1, this is a divergent geometric series.

60. converges absolutely: this is similar to a series we handled a few problems ago. Even
though the terms are not of the same sign and are not of alternating signs, we still begin our
check for convergence by checking for absolute convergence. Since | cos(n)/n4| ≤ 1/n4 (since
| cos(n)| ≤ 1 for all n ≥ 1) and since ∑∞

n=1 1/n
4 converges, the second comparison test yields

that
∑∞

n=1 cos(n)/n
4 converges absolutely.

61. diverges: even though this is an alternating series, I personally feel the need to try the nth

term test first, since for n large, the dominant terms are the 3n in the numerator and the
2n in the demoninator, and so I expect that the value of 3n/(n(2n + 1)) to be large for large
values of n. Let’s check this:

3n

n(2n + 1)
=

3n

n 2n + n
>

3n

n 2n + n 2n
=

3n

2n 2n
=

(

3

2

)n 1

2n
.

Now, notice that (3/2)n > n for n ≥ 3 (since (3/2)3 > 3 and the derivative of (3/2)n − n is
positive for n ≥ 3), and so

3n

n(2n + 1)
>

(

3

2

)n 1

2n
>
1

2

for n ≥ 3. (So, not exactly large for large values of n, but big enough to do the trick.) Hence,
the limit limn→∞(−1)n3n/(n(2n+1)) does not exist (as it oscillates positive and negative and
never settles down to 0), and so by the nth term test for divergence,

∑∞
n=1(−1)n3n/(n(2n+1))

diverges.
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62. converges conditionally: we first check for absolute convergence, namely the convergence
of the series

∑∞
n=1 |(−1)n−1n/(n2+1)| =∑∞

n=1 n/(n
2+1). Since n/(n2+1) > n/(n2+n2) =

1/(2n) for all n ≥ 1 and since
∑∞

n=1 1/(2n) diverges (as it is a constant multiple of the
harmonic series), the first comparison test yields that

∑∞
n=1 n/(n

2 + 1) diverges, and so the
original series does not converge absolutely.

As it is an alternating series, we can attempt to check convergence by seeing if we can
apply the alternating series test. Since limn→∞ n/(n2 + 1) = 0 and since n/(n2 + 1) >
(n+1)/((n+1)2+1) for all n ≥ 1, the hypotheses of the alternating series test are met, and
so
∑∞

n=1(−1)n−1n/(n2 + 1) converges.

Hence, this series converges but does not converge absolutely. That is, the series converges
conditionally.

63. converges absolutely: we first check absolute convergence, namely the convergence of the
series

∑∞
n=2 |(−1)n−1/(n ln2(n))| = ∑∞

n=2 1/(n ln
2(n)). For this series, we use the integral

test: set f(x) = 1/(x ln2(x)). We need to check that f(x) is decreasing, which we do by
calculating its derivative:

f ′(x) =
−(ln2(x) + 2 ln(x))

x2 ln4(x)
< 0

for x ≥ 2 (since ln(x) > 0 for x ≥ 2). We now calculate:
∫ ∞

2
f(x)dx = lim

M→∞

∫ M

2

1

x ln2(x)
dx

= lim
M→∞

−1
ln(x)

∣

∣

∣

M
2

= lim
M→∞

( −1
ln(M)

+
1

ln(2)

)

=
1

ln(2)
.

Since this limit exists, the integral test yields that the series
∑∞

n=2 1/(n ln
2(n)) converges,

and hence that the original series
∑∞

n=2(−1)n−1/(n ln2(n)) converges absolutely.

64. diverges: we apply the ratio test (Proposition ??), as this is a series with non-zero terms:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n2(n+1)/(n+ 1)2

(−1)n−12n/n2

∣

∣

∣

∣

∣

= lim
n→∞

2n2

(n+ 1)2
= 2 = L.

Since this limit exists and satisfies L > 1, the series
∑∞

n=1(−1)n−12n/n2 diverges.

65. converges absolutely: we first check for absolute convergence, namely the convergence of
the series

∑∞
n=1 |(−1)n sin(

√
n)/n3/2| =∑∞

n=1 | sin(
√
n)|/n3/2. Since | sin(√n)|/n3/2 ≤ 1/n3/2

for n ≥ 1 (since | sin(√n)| ≤ 1 for n ≥ 1), and since ∑∞
n=1 1/n

3/2 converges by Example ??,
the second comparison test yields that

∑∞
n=1 | sin(

√
n)|/n3/2 converges, and hence that the

original series
∑∞

n=1(−1)n sin(
√
n)/n3/2 converges absolutely.

66. converges absolutely: even though there are no factorials, let us apply the ratio test. So,
we calculate:

lim
n→∞

(n+ 1)4e−(n+1)2

n4e−n2 = lim
n→∞

(

n+ 1

n

)4

e−2n−1 = 0 = L.

Since this limit exists and since L < 1, the ratio test yields that the series
∑∞

n=1 n
4e−n

2

converges.
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67. converges conditionally: before testing for absolute convergence, we perform a bit of
algebraic simplification, by noting that

sin

(

nπ

2

)

= sin

(

2kπ

2

)

= sin(kπ) = 0

for n even and

sin

(

πn

2

)

= sin

(

π(2k + 1)

2

)

= sin

(

kπ +
π

2

)

= (−1)k

for n = 2k + 1 odd. Hence, setting n = 2k + 1 for k ≥ 0, we may rewrite the series as
∞
∑

n=1

sin(nπ/2)

n
=

∞
∑

k=0

sin(π(2k + 1)/2)

2k + 1
=

∞
∑

k=0

(−1)k
2k + 1

.

We first test for absolute convergence, namely the convergence of the series
∑∞

k=0 |(−1)k/(2k+
1)| = ∑∞

k=0 1/(2k + 1). However, since 1/(2k + 1) > 1/(2k + 2) = 1/2(k + 1) and since
∑∞

k=0 1/(k + 1) is the harmonic series, the series
∑∞

k=0 1/(2k + 1) diverges by the first com-
parison test, and hence the original series does not converge absolutely.

To test convergence, we use the alternating series test. Since 1/(2k + 1) > 1/(2(k + 1) +
1) for all k ≥ 0 and since limk→∞ 1/(2k + 1) = 0, the alternating series test yields that
∑∞

k=0(−1)k/(2k + 1) converges.

Hence, this series converges but does not converge absolutely. That is, the series converges
conditionally.

68. diverges: for this series, we first note that ln(x) < x1/8 for x large (x > e32 works), as
follows: consider the function f(x) = x1/8 − ln(x), and note that

f(e8k) = (e8k)1/8 − ln(e8k) = ek − 8k,

and so f(e32) = e4 − 32 = 22.5982... > 0.

Moreover, for x ≥ e32, we have that f(x) is increasing: differentiating, we see that

f ′(x) =
1

8
x−7/8 − 1

x
=
1

x

(

1

8
x− 1

)

,

and so f ′(x) > 0 for x > 8.

So, for n > e32, we have that
1

ln(n)8
>

1

(n1/8)8
=
1

n
,

and hence by the first comparison test,
∑∞

n=2 1/(ln(n))
8 diverges. (Note that we are mak-

ing heavy use of Fact ??, that ignoring finitely many terms of a series does not affect its
convergence or divergence.)
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69. converges absolutely: (note that the lower limit 13 for the series yields that ln(n) and
ln(ln(n)) are positive for all terms in the series.) We apply the integral test, using the
function

f(x) =
1

x ln(x)(ln(ln(x)))p
.

We first check that f(x) is decreasing:

f ′(x) =
−(ln(x) ln(ln(x))p + ln(ln(x))p + p)

(x ln(x) ln(ln(x))p)2
< 0

for x > 13, since both ln(x) > 0 and ln(ln(x)) > 0 for x > 13 and since p > 0 by assumption.

In order to apply the integral test, we now need to calculate:

∫ ∞

13
f(x)dx = lim

M→∞

∫ M

13

1

x ln(x)(ln(ln(x)))p
.

There are two cases: if p = 1, we get

lim
M→∞

∫ M

13

1

x ln(x)(ln(ln(x))
= lim

M→∞
ln(ln(ln(x)))

∣

∣

∣

M
13

= lim
M→∞

(ln(ln(ln(M)))− ln(ln(ln(13)))) =∞,

and so for p = 1 the series diverges.

For p 6= 1, we get:

lim
M→∞

∫ M

13

1

x ln(x)(ln(ln(x))p
= lim

M→∞
1

−p+ 1
1

ln(ln(x))p−1

∣

∣

∣

M
13

=
1

−p+ 1 lim
M→∞

(

ln(ln(M))−p+1 − ln(ln(13))−p+1
)

,

which converges for p > 1 (since −p + 1 < 0)and diverges for p < 1 (since −p + 1 > 0).
Hence, the series

∑∞
n=13 1/(n ln(n)(ln(ln(n)))

p) converges if and only if p > 1. (Note that this
is really just Example ?? in a bit of disguise.)

Solution ??: By the contrapositive to the nth term test for divergence, since the series
∑∞

n=1 an
converges, we have that limn→∞ an = 0. In particular, taking ε = 1 and remembering that each
an > 0, there exists M so that 0 < an < 1 for all n > M . Since 0 < an < 1 for n > M and
since s ≥ 1, we have that asn < an for n > M , and so by the second comparison test, we have
that

∑∞
n=M+1 a

s
n converges by comparison to

∑∞
n=M+1 an. Since

∑∞
n=M+1 a

s
n converges, we see that

∑∞
n=0 a

s
n converges, as desired.

Solution ??:

1. radius of convergence is ∞, interval of convergence is R: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1xn+1/(n+ 1)!

(−1)nxn/n!

∣

∣

∣

∣

∣

= |x| lim
n→∞

1

n+ 1
= 0.

Hence, this series converges absolutely for all values of x (since this limit is 0 for every value
of x).
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2. radius of convergence is 1
5 , interval of convergence is

[

−1
5 ,

1
5

]

: Apply the ratio test

and calculate:

lim
n→∞

∣

∣

∣

∣

∣

5n+1xn+1/(n+ 1)2

5nxn/n2

∣

∣

∣

∣

∣

= |x| lim
n→∞

5n2

(n+ 1)2
= 5|x|.

Hence, this series converges absolutely for 5|x| < 1, that is for |x| < 1
5 , and so the radius of

convergence is 1
5 . We now need to check the endpoints of the interval (− 1

5 ,
1
5):

At x = −1
5 , the series becomes

∑∞
n=1 5

n(−1/5)n/n2 =
∑∞

n=1(−1)n/n2, which converges abso-
lutely.

At x = 1
5 , the series becomes

∑∞
n=1 5

n(1/5)n/n2 =
∑∞

n=1 1/n
2, which converges absolutely.

So the series converges absolutely for all x in the closed interval
[

−1
5 ,

1
5

]

, and diverges else-

where.

3. radius of convergence is 1, interval of convergence is [−1, 1]: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

xn+1/((n+ 1)(n+ 2))

xn/(n(n+ 1))

∣

∣

∣

∣

∣

= |x| lim
n→∞

n

n+ 2
= |x|.

Hence, this series converges absolutely for |x| < 1, and so the radius of convergence is 1. We
now need to check the endpoints of the interval (−1, 1):

At x = −1, the series becomes ∑∞
n=1(−1)n/(n(n+ 1)), which converges absolutely.

At x = 1, the series becomes
∑∞

n=1 1/(n(n+ 1)), which converges absolutely.

So, the series converges absolutely for all x in the closed interval [−1, 1], and diverges else-
where.

4. radius of convergence is 1, interval of convergence is [−1, 1): Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1xn+1/
√
n+ 1

(−1)nxn/√n

∣

∣

∣

∣

∣

= |x| lim
n→∞

√

n

n+ 1
= |x|.

Hence, this series converges absolutely for |x| < 1, and so the radius of convergence is 1. We
now need to check the endpoints of the interval (−1, 1):

At x = −1, the series becomes∑∞
n=1(−1)n/

√
n, which converges conditionally. (The alternat-

ing series test yields convergence, but this series does not converge absolutely, by comparison
to the harmonic series.)

At x = 1, the series becomes
∑∞

n=1 1/
√
n, which diverges.

So, the series converges absolutely for all x in the open interval (−1, 1), converges conditionally
at x = −1, and diverges elsewhere.

5. radius of convergence is ∞, interval of convergence is R: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1x2(n+1)+1/(2(n+ 1) + 1)!

(−1)nx2n+1/(2n+ 1)!

∣

∣

∣

∣

∣

= |x|2 lim
n→∞

(2n+ 1)!

(2n+ 3)!

= |x|2 lim
n→∞

1

(2n+ 3)(2n+ 2)
= 0.
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Hence, this series converges absolutely for all values of x (since this limit is 0 for every value
of x).

6. radius of convergence is ∞, interval of convergence is R: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

3n+1xn+1/(n+ 1)!

3nxn/n!

∣

∣

∣

∣

∣

= |x| lim
n→∞

3

n+ 1
= 0.

Hence, this series converges absolutely for all values of x (since this limit is 0 for every value
of x).

7. radius of convergence is 1, interval of convergence is [−1, 1]: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

xn+1/(1 + (n+ 1)2)

xn/(1 + n2)

∣

∣

∣

∣

∣

= |x| lim
n→∞

1 + n2

2 + 2n+ n2
= |x|.

Hence, this series converges absolutely for |x| < 1, and so the radius of convergence is 1. We
now need to check the endpoints of the interval (−1, 1):

At x = −1, the series becomes ∑∞
n=0(−1)n/(1 + n2), which converges absolutely.

At x = 1, the series becomes
∑∞

n=0 1/(1 + n2), which converges absolutely.

So, the series converges absolutely for all x in the closed interval [−1, 1], and diverges else-
where.

8. radius of convergence is 1, interval of convergence is (−2, 0]: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)(n+1)+1(x+ 1)n+1/(n+ 1)

(−1)n+1(x+ 1)n/n

∣

∣

∣

∣

∣

= |x+ 1| lim
n→∞

n

n+ 1
= |x+ 1|.

Hence, this series converges absolutely for |x+ 1| < 1, and so the radius of convergence is 1.
We now need to check the endpoints of the interval (−2, 0):

At x = −2, the series becomes ∑∞
n=1(−1)n+1(−1)n/n = −∑∞

n=1 1/n, which diverges, being a
constant multiple of the harmonic series.

At x = 0, the series becomes
∑∞

n=1(−1)n+1/n, which converges conditionally, as it is the
alternating harmonic series.

So, the series converges absolutely for all x in the open interval (−2, 0), converges conditionally
at x = 0, and diverges elsewhere.

9. radius of convergence is 4
3 , interval of convergence is (− 19

3 ,−11
3 ): Apply the ratio test

and calculate:

lim
n→∞

∣

∣

∣

∣

∣

3n+1(x+ 5)n+1/4n+1

3n(x+ 5)n/4n

∣

∣

∣

∣

∣

=
3

4
|x+ 5|.

Hence, this series converges absolutely for 3
4 |x + 5| < 1, that is for |x + 5| < 4

3 , and so the
radius of convergence is 4

3 . We now need to check the endpoints of the interval (− 19
3 ,−11

3 ).

89



At x = −19
3 , the series becomes

∞
∑

n=0

3n
(

−19
3 + 5

)n

4n
=

∞
∑

n=0

(−1)n,

which diverges (being, for instance, a divergent geometric series).

At x = −11
3 , the series becomes

∞
∑

n=0

3n
(

−11
3 + 5

)n

4n
=

∞
∑

n=0

1,

which diverges (again being, for instance, a divergent geometric series).

So, the series converges absolutely for all x in the open interval (− 19
3 ,−11

3 ), and diverges
elsewhere.

10. radius of convergence is 1, interval of convergence is [−2, 0]: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1(x+ 1)2(n+1)+1/((n+ 1)2 + 4)

(−1)n(x+ 1)2n+1/(n2 + 4)

∣

∣

∣

∣

∣

= |x+ 1|2 lim
n→∞

n2 + 4

n2 + 2n+ 5
= |x+ 1|2.

Hence, this series converges absolutely for |x + 1|2 < 1, that is for |x + 1| < 1, and so the
radius of convergence is 1. We now need to check the endpoints of the interval (−2, 0).

At x = −2, the series becomes∑∞
n=1(−1)n(−1)2n+1/(n2+4) =

∑∞
n=1(−1)n+1/(n2+4), which

converges absolutely.

At x = 0, the series becomes
∑∞

n=1(−1)n/(n2 + 4), again which converges absolutely.

So, the series converges absolutely for all x in the closed interval [−2, 0], and diverges else-
where.

11. radius of convergence is ∞, interval of convergence is R: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

πn+1(x− 1)2(n+1)/(2(n+ 1) + 1)!

πn(x− 1)2n/(2n+ 1)!

∣

∣

∣

∣

∣

= |x− 1|2 lim
n→∞

π

(2n+ 2)(2n+ 3)
= 0.

Hence, this series converges absolutely for all values of x (since this limit is 0 for every value
of x).

12. radius of convergence is ∞, interval of convergence is R: This time, since the coeffi-
cients are nth powers, we apply the root test and calculate:

lim
n→∞

∣

∣

∣

∣

xn

(ln(n))n

∣

∣

∣

∣

1/n

= |x| lim
n→∞

1

ln(n)
= 0.

Hence, this series converges absolutely for all values of x (since this limit is 0 for every value
of x).
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13. radius of convergence is 1
3 , interval of convergence is (− 1

3 ,
1
3): Apply the ratio test

and calculate:

lim
n→∞

∣

∣

∣

∣

∣

3n+1xn+1

3nxn

∣

∣

∣

∣

∣

= 3|x|.

Hence, this series converges absolutely for 3|x| < 1, that is |x| < 1
3 , and so the radius of

convergence is 1
3 . We now need to check the endpoints of the interval (− 1

3 ,
1
3).

At x = −1
3 , the series becomes

∞
∑

n=0

3n
(

−1
3

)n

=
∞
∑

n=0

(−1)n,

which diverges (being, for instance, a divergent geometric series).

At x = 1
3 , the series becomes ∞

∑

n=0

3n
(

1

3

)n

=
∞
∑

n=0

1,

which diverges (again being, for instance, a divergent geometric series).

So, the series converges absolutely for all x in the open interval (− 1
3 ,

1
3), and diverges else-

where.

14. radius of convergence is 0, interval of convergence is {0}: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(n+ 1)!xn+1/2n+1

n!xn/2n

∣

∣

∣

∣

∣

= |x| lim
n→∞

n+ 1

2
=∞.

Hence, this series converges only for x = 0 and diverges elsewhere.

15. radius of convergence is 1
2 , interval of convergence is (− 1

2 ,
1
2 ]: Apply the ratio test

and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−2)n+1x(n+1)+1/((n+ 1) + 1)

(−2)nxn+1/(n+ 1)

∣

∣

∣

∣

∣

= |x|2(n+ 1)
n+ 2

= 2|x|.

Hence, this series converges absolutely for 2|x| < 1, that is |x| < 1
2 , and so the radius of

convergence is 1
2 . We now need to check the endpoints of the interval (− 1

2 ,
1
2).

At x = −1
2 , the series becomes

∞
∑

n=1

(−2)n
(

−1
2

)n+1

n+ 1
= −1

2

∞
∑

n=1

1

n+ 1
,

which diverges, as it is a constant multiple of the harmonic series.

At x = 1
2 , the series becomes

∞
∑

n=1

(−2)n
(

1
2

)n+1

n+ 1
=
1

2

∞
∑

n=1

(−1)n
n+ 1

,
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which converges, as it is a constant multiple of the alternating harmonic series.

So, the series converges absolutely for all x in the open interval (− 1
2 ,

1
2), converges condition-

ally at x = 1
2 , and diverges elsewhere.

16. radius of convergence is ∞, interval of convergence is R: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1x2(n+1)/(2(n+ 1))!

(−1)nx2n/(2n)!

∣

∣

∣

∣

∣

= |x|2 lim
n→∞

1

(2n+ 2)(2n+ 1)
= 0.

Hence, this series converges absolutely for all values of x (since this limit is 0 for every value
of x).

17. radius of convergence is 1, interval of convergence is [−1, 1]: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1x3(n+1)/(n+ 1)3/2

(−1)nx3n/n3/2

∣

∣

∣

∣

∣

= |x|3 lim
n→∞

n3/2

(n+ 1)3/2
= |x|3.

Hence, this series converges absolutely for |x|3 < 1, that is |x| < 1, and so the radius of
convergence is 1. We now need to check the endpoints of the interval (−1, 1).

At x = −1, the series becomes ∑∞
n=1(−1)n(−1)n/n3/2 =

∑∞
n=1 1/n

3/2, which converges, by
Example ??.

At x = 1, the series becomes
∑∞

n=1(−1)n/n3/2, which converges absolutely, by Example ??.

So, the series converges absolutely for all x in the closed interval [−1, 1], and diverges else-
where.

18. radius of convergence is 1, interval of convergence is [−1, 1]: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)(n+1)+1xn+1/((n+ 1) ln2(n+ 1))

(−1)n+1xn/(n ln2(n))

∣

∣

∣

∣

∣

= |x| lim
n→∞

n ln2(n)

(n+ 1) ln2(n+ 1)
= |x|.

Hence, this series converges absolutely for |x| < 1, and so the radius of convergence is 1. We
now need to check the endpoints of the interval (−1, 1).

At x = −1, the series becomes ∑∞
n=2(−1)n+1(−1)n/(n ln2(n)) = −∑∞

n=2 1/(n ln
2(n)), which

converges by the integral test: take f(x) = 1/(x ln2(x)). Then,

f ′(x) =
−(ln2(x) + 2 ln(x))

x2 ln4(x)
< 0

for x ≥ 2, and so f(x) is decreasing. Then, we evaluate
∫ ∞

2
f(x)dx = lim

M→∞

∫ M

2

1

x ln2(x)
dx

= lim
M→∞

−1
ln(x)

∣

∣

∣

M
2

= lim
M→∞

( −1
ln(M)

+
1

ln(2)

)

=
1

ln(2)
,
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which converges. Hence, by the integral test, the series converges.

At x = 1, the series becomes
∑∞

n=2(−1)n+1/(n ln2(n)), which converges absolutely by the
argument just given.

So, the series converges absolutely for all x in the closed interval [−1, 1], and diverges else-
where.

19. radius of convergence is 2, interval of convergence is (1, 5): Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(x− 3)n+1/2n+1

(x− 3)n/2n

∣

∣

∣

∣

∣

=
1

2
|x− 3|.

Hence, this series converges absolutely for 1
2 |x− 3| < 1, that is |x− 3| < 2, and so the radius

of convergence is 2. We now need to check the endpoints of the interval (1, 5).

At x = 1, the series becomes
∑∞

n=0(−2)n/2n =
∑∞

n=0(−1)n, which diverges, being for instance
a divergent geometric series.

At x = 5, the series becomes
∑∞

n=0 1, which diverges, again being for instance a divergent
geometric series.

So, the series converges absolutely for all x in the open interval (1, 5), and diverges elsewhere.

20. radius of convergence is 1, interval of convergence is [3, 5]: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1(x− 4)n+1/((n+ 1) + 1)2

(−1)n(x− 4)n/(n+ 1)2

∣

∣

∣

∣

∣

= |x− 4| lim
n→∞

(n+ 1)2

(n+ 2)2
= |x− 4|.

Hence, this series converges absolutely for |x− 4| < 1, and so the radius of convergence is 1.
We now need to check the endpoints of the interval (3, 5).

At x = 3, the series becomes
∑∞

n=1(−1)n(−1)n/(n+ 1)2 =
∑∞

n=1 1/(n+ 1)
2, which converges

by Example ??.

At x = 5, the series becomes
∑∞

n=1(−1)n/(n + 1)2, which converges absolutely, again by
Example ??.

So, the series converges absolutely for all x in the closed interval [3, 5], and diverges elsewhere.

21. radius of convergence is 0, interval of convergence is {2}: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(2(n+ 1) + 1)! (x− 2)n+1/(n+ 1)3

(2n+ 1)! (x− 2)n/n3

∣

∣

∣

∣

∣

= |x− 2| lim
n→∞

(2n+ 3)! n3

(2n+ 1)! (n+ 1)3
=∞

for all x 6= 2. Hence, the series converges only for x = 2.

22. radius of convergence is 1, interval of convergence is [2, 4): Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

ln(n+ 1)(x− 3)n+1/(n+ 1)

ln(n)(x− 3)n/n

∣

∣

∣

∣

∣

= |x− 3| n ln(n+ 1)
(n+ 1) ln(n)

= |x− 3|.
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Hence, this series converges absolutely for |x− 3| < 1, and so the radius of convergence is 1.
We now need to check the endpoints of the interval (2, 4).

At x = 2, the series becomes
∑∞

n=1 ln(n)(−1)n/n, which converges by the alternating series
test (but does not converge absolutely).

At x = 4, the series becomes
∑∞

n=1 ln(n)/n, which diverges by the first comparison test, since
ln(n)/n > 1/n for n ≥ 3 and the harmonic series ∑∞

n=1 1/n diverges.

So, the series converges absolutely for all x in the open interval (2, 4), converges conditionally
at x = 2, and diverges elsewhere.

23. radius of convergence is 8, interval of convergence is (− 13
2 ,

19
2 ): Apply the ratio test

and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(2x− 3)n+1/42(n+1)

(2x− 3)n/42n

∣

∣

∣

∣

∣

=
1

16
|2x− 3| = 1

8

∣

∣

∣

∣

x− 3
2

∣

∣

∣

∣

.

Hence, this series converges absolutely for 1
8

∣

∣

∣x− 3
2

∣

∣

∣ < 1, that is for
∣

∣

∣x− 3
2

∣

∣

∣ < 8, and so the

radius of convergence is 8. We now need to check the endpoints of the interval (− 13
2 ,

19
2 ).

At x = −13
2 , the series becomes

∑∞
n=0(2(−13/2)− 3)n/42n =

∑∞
n=0(−1)n, which diverges.

At x = 19
2 , the series becomes

∑∞
n=0(2(19/2)− 3)n/42n =

∑∞
n=0 1, which diverges.

So, the series converges absolutely for all x in the open interval (− 13
2 ,

19
2 ), and diverges

elsewhere.

24. radius of convergence is b, interval of convergence is (a − b, a + b): Apply the ratio
test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(x− a)n+1/bn+1

(x− a)n/bn

∣

∣

∣

∣

∣

=
1

b
|x− a|.

Hence, this series converges absolutely for 1
b |x − a| < 1, that is for |x − a| < b, and so the

radius of convergence is b. We now need to check the endpoints of the interval (a− b, a+ b).

At x = a− b, the series becomes
∑∞

n=2(a− b− a)n/bn =
∑∞

n=2(−1)n, which diverges.

At x = a+ b, the series becomes
∑∞

n=2(a+ b− a)n/bn =
∑∞

n=2 1, which diverges.

So, the series converges absolutely for all x in the open interval (a − b, a + b), and diverges
elsewhere. (Note that the previous series is a specific example of this general phenomenon,
with a = 3

2 and b = 8.)

25. radius of convergence is ∞, interval of convergence is R: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

((n+ 1) + p)!xn+1/((n+ 1)!((n+ 1) + q)!)

(n+ p)!xn/(n!(n+ q)!)

∣

∣

∣

∣

∣

= |x| lim
n→∞

n+ 1 + p

(n+ 1)(n+ 1 + q)
= 0.

Hence, this series converges absolutely for all values of x (since this limit is 0 for every value
of x).
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26. radius of convergence is 3, interval of convergence is [−3, 3): Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

x(n+1)−1/((n+ 1)3n+1)

xn−1/(n3n)

∣

∣

∣

∣

∣

= |x| lim
n→∞

n

3(n+ 1)
=
1

3
|x|.

Hence, this series converges absolutely for 1
3 |x| < 1, that is for |x| < 3, and so the radius of

convergence is 3. We now need to check the endpoints of the interval (−3, 3).

At x = −3, the series becomes ∑∞
n=1(−3)n−1/(n3n) = 1

3

∑∞
n=1

(−1)n−1

n , which converges
conditionally, as it is a constant multiple of the alternating harmonic series.

At x = 3, the series becomes
∑∞

n=1 3
n−1/(n3n) = 1

3

∑∞
n=1

1
n , which diverges, as it is a constant

multiple of the harmonic series.

So, the series converges absolutely for all x in the open interval (−3, 3), converges conditionally
at x = −3, and diverges elsewhere.

27. radius of convergence is ∞, interval of convergence is R: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)(n+1)−1x2(n+1)−1/(2(n+ 1)− 1)!
(−1)n−1x2n−1/(2n− 1)!

∣

∣

∣

∣

∣

= |x|2 lim
n→∞

1

2n(2n+ 1)
= 0.

Hence, this series converges absolutely for all values of x (since this limit is 0 for every value
of x).

28. radius of convergence is 0, interval of convergence is {a}: Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(n+ 1)!(x− a)n+1

n!(x− a)n

∣

∣

∣

∣

∣

= |x− a| lim
n→∞

(n+ 1) =∞

for all x 6= a. Hence, the series converges only for x = a.

29. radius of convergence is 2, interval of convergence is (−1, 3): Apply the ratio test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

(n+ 1)(x− 1)n+1/(2n+1(3(n+ 1)− 1))
n(x− 1)n/(2n(3n− 1))

∣

∣

∣

∣

∣

= |x− 1| lim
n→∞

(n+ 1)(3n− 1)
2n(3n+ 2)

=
1

2
|x− 1|.

Hence, this series converges absolutely for 1
2 |x − 1| < 1, that is for |x − 1| < 2, and so the

radius of convergence is 2. We now need to check the endpoints of the interval (−1, 3).

At x = −1, the series becomes ∑∞
n=1 n(−1−1)n/(2n(3n−1)) =

∑∞
n=1(−1)nn/(3n−1), which

diverges by the nth term test for divergence, as limn→∞ n
3n−1 =

1
3 , and so limn→∞

(−1)nn
3n−1 does

not exist.

At x = 3, the series becomes
∑∞

n=1 n(3 − 1)n/(2n(3n − 1)) =
∑∞

n=1 n/(3n − 1), which again
diverges by the nth term test for divergence.

So, the series converges absolutely for all x in the open interval (−1, 3), and diverges elsewhere.
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Solution ??: The condition that the an satisfy is similar to the condition of the root test, and so
we apply the root test to the power series

∑∞
n=0 anx

n. Namely, we calculate

lim
n→∞ |anx

n|1/n = |x| lim
n→∞ |an|

1/n = L|x|.

Hence, the series converges absolutely for L|x| < 1, that is |x| < 1
L , and diverges for L|x| > 1, and

so the radius of convergence of this series is 1
L , as desired.

Solution ??: We can use the same techniques that we have developed for power series for other
series, that are not strictly speaking power series. For instance, we can apply the ratio test to the
series, for all the values of x for which the terms are defined.

1. first, we note that this series is not defined at x = 1, but is defined for all other values of x.
Applying the ratio test, we calculate:

lim
n→∞

∣

∣

∣

∣

∣

((x+ 2)/(x− 1))n+1/(2(n+ 1)− 1)
((x+ 2)/(x− 1))n/(2n− 1)

∣

∣

∣

∣

∣

=
|x+ 2|
|x− 1| limn→∞

2n− 1
2n+ 1

=
|x+ 2|
|x− 1| .

Hence, this series converges absolutely for |x+2|
|x−1| < 1, that is for |x+2| < |x− 1|, which is the

open ray (−∞,− 1
2), and diverges for

|x+2|
|x−1| > 1, which is the union (− 1

2 , 1) ∪ (1,∞).

At x = −1
2 , the only remaining point at which to test for convergence, the series becomes

∞
∑

n=1

1

2n− 1

(

−1
2 + 2

−1
2 − 1

)n

=
∞
∑

n=1

1

2n− 1(−1)
n,

which converges conditionally, by the alternating series test. Hence, the series converges on
the closed ray (−∞,− 1

2 ].

2. for this series, first note that the series is not defined at x = 0, x = 1, x = 2, et cetera,
and so the domain of consideration is the complement in R of the non-negative integers
W = {0, 1, 2, . . .} (the whole numbers). Applying the ratio test, we calculate

lim
n→∞

∣

∣

∣

∣

1/((x+ n+ 1)(x+ n+ 1− 1))
1/((x+ n)(x+ n− 1))

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

x+ n− 1
x+ n+ 1

∣

∣

∣

∣

= 1

for every (allowable) value of x, and so yields no information. However, we are saved by the
observation that the series ∞

∑

n=1

1

(n+ α)(n+ β)

converges for all α, β, by limit comparison to the series
∑∞

n=1
1
n2 . Hence, taking α = x and

β = x− 1, we have that ∑∞
n=1 1/((x+ n)(x+ n− 1)) converges at every value of x for which

it is defined, namely the union

(−∞, 0) ∪ (0, 1) ∪ (1, 2) ∪ (2, 3) ∪ · · · = R−W.

Solution ??:
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1. To show that hn(x) is continuous at a ∈ R, we need to show that limx→a hn(x) = hn(a).
Recalling the definition of limit, this translates to showing that for each ε > 0, there exists
δ > 0 so that if |x − a| < δ, then |hn(x) − hn(a)| < ε. Since hn(x) = xn, this is the same as
showing that for each ε > 0, there exists δ > 0 so that if |x−a| < δ, then |xn−an| < ε. Let’s
break the proof into cases.

If n = 1, then all we need to do to satisfy the definition is take δ = ε. So, we can assume
that n ≥ 2. If in addition we have that a = 0, then by the definition of limit, we need to
show that for each ε > 0, there is δ > 0 so that if |x| < δ, then |xn| = |x|n < ε. So, taking
δ = ε1/n, we are done in this case as well.

Consider now the case that n ≥ 2 and a > 0, and factor |xn − an| to get |xn − an| =
|(x − a)(xn−1 + axn−2 + · · · + an−2x + an−1)|. Recall that we have a great deal of choice
in how we choose δ, so we may restrict our attention to the interval |x − a| < 1

2a, so that
1
2a < x < 3

2a, by requiring that δ <
1
2a (which makes sense, since a > 0). Calculating, we see

that

|xn − an| = |(x− a)(xn−1 + axn−2 + · · ·+ an−2x+ an−1)|
≤ |x− a|(xn−1 + axn−2 + · · ·+ an−2x+ an−1)

< |x− a|
(

(

3

2
a

)n−1

+ a

(

3

2
a

)n−2

+ · · ·+ an−2 3

2
a+ an−1

)

= |x− a|an−1
n−1
∑

k=0

(

3

2

)k

= |x− a|an−1 1− (3/2)n
1− (3/2) = C|x− a|,

where C = an−1 1−(3/2)n

1−(3/2) > 0 depends on both a > 0 and n ≥ 2. So, take δ to be the smaller
of 1

C ε and
1
2a. Then, for |x− a| < δ, we have that |xn − an| < C|x− a| ≤ ε as desired. (The

first inequality follows from the calculation above and the fact that |x − a| < δ < 1
2a, while

the second inequality follows from δ < 1
C ε.)

A similar argument, with appropriate placements of absolute values, holds for a < 0. (Note
that for a given ε > 0, the choice of δ depends on ε, on a, and on n.)

2. To show that g(x) is continuous at a ∈ R, we need to show that limx→a g(x) = g(a). Recalling
the definition of limit, this translates to showing that for each ε > 0, there exists δ > 0 so that
if |x−a| < δ, then |g(x)− g(a)| < ε. Since g(x) = c for all x, this is the same as showing that
for each ε > 0, there exists δ > 0 so that if |x− a| < δ, then |c− c| = 0 < ε. So, regardless of
the value of ε, taking δ = 1 (or whatever your favorite positive number happens to be today)
satisfies the definition.

3. To show that f(x) is continuous at a ∈ R, we need to show that limx→a f(x) = f(a). Recalling
the definition of limit, this translates to showing that for each ε > 0, there exists δ > 0 so that
if |x − a| < δ, then |f(x) − f(a)| < ε. Since |f(x) − f(a)| ≤ c|x − a|, taking δ = 1

cε satisfies
the definition. (If |x − a| < δ = 1

cε, then |f(x) − f(a)| ≤ c|x − a| < c 1
cε = ε, as desired.)

(Functions that satisfy this condition are often referred to as Lipschitz functions.)
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Solution ??: First, since limx→∞(f(x + 1) − f(x)) = 0, for any ε > 0, there exists x0 (which we
can take to be positive) so that |f(x+ 1)− f(x)| < 1

2ε for x > x0. Now, using the maximum value
property, Theorem ??, there exists a maximum value M of |f(x)| on the interval [x0, x0 + 1].

The first claim is that for any k ≥ 0, we have that |f(x)| ≤ k
2kε + M for x in the interval

[x0 + k, x0 + k + 1]. To see this, let K be the maximum value of |f(x)| on [x0 + k, x0 + k + 1],
occurring at y. Then, x0+ k ≤ y ≤ x0+ k+1, and so x0 ≤ y− k ≤ x0+1. We now engage in some
algebraic manipulation:

|f(y)| = |f(y)− f(y − k) + f(y − k)|
≤ |f(y)− f(y − k)|+ |f(y − k)|
≤ |f(y)− f(y − 1) + f(y − 1)− · · · f(y − k + 1) + f(y − k + 1)− f(y − k)|+ |f(y − k)|
≤ |f(y)− f(y − 1)|+ |f(y − 1)− f(y − 2)|+ · · ·+ |f(y − k + 1)− f(y − k)|+ |f(y − k)|

≤ 1

2
ε+

1

2
ε+ · · ·+ 1

2
ε+M

≤ k

2
ε+M.

In particular, this tells us that

|f(y)|
y

≤
k
2ε+M

y
≤

k
2ε

y
+
M

y
≤

k
2ε

x0 + k
+
M

y
<

k
2ε

k
+
M

y
<
1

2
ε+

M

y

for all y in the interval [x0 + k, x0 + k + 1].

Now, choose x1 > x0 so that
M
x1

< 1
2ε. Then, for all y > x1, we have that

∣

∣

∣

∣

f(y)

y

∣

∣

∣

∣

=
|f(y)|
y

<
1

2
ε+

M

y
<
1

2
ε+

1

2
ε

for all y > x1. In particular, we have that the definition of limx→∞
f(x)
x = 0 is satisfied, as desired.

Solution ??: Since f is continuous on [a, b], so is g(x) = −f(x). Since g is continuous on the
closed interval [a, b], the maximum value property applied to g yields that there exists some x0

in [a, b] so that g(x0) ≥ g(x) for all x in [a, b]. Hence, −f(x0) ≥ −f(x) for all x in [a, b], and so
f(x0) ≤ f(x) for all x in [a, b]. That is, f satisfies the minimum value property.

Solution ??:

1. as before, consider the continuous function g(x) = f(x) − x. Since f(a) < a, we have that
g(a) = f(a) − a < 0. Since f(b) > b, we have that g(b) = f(b) − b > 0. Hence, the
intermediate value property applied to g yields that there exists c in (a, b) with g(c) = 0.
That is, f(c)− c = 0, and so f(c) = c. Hence, the equation f(x) = x has a solution in [a, b].

2. first of all, note that g(x) = x2 − cos(x) is continuous on all of R, and so is continuous on
every closed interval [a, b] in R. In order to apply the intermediate value property to find a
point c at which g(c) = 0, we need to find a and b so that g(a) > 0 and g(b) < 0 (or vice
versa), and the intermediate value property then implies the existence of such a number c
between a and b.

So, let’s start plugging numbers into g: g(0) = − cos(0) = −1 < 0 and g(2) = (2)2− cos(2) =
4.6536... > 0, and so there exists a number c1 between 0 and 2 with g(c1) = 0. (Note that
since (2)2 = (−2)2 and cos(2) = cos(−2), we also have that there exists c2 between −2 and 0
with g(c2) = 0.)
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3. for f(x) = x1995 + 7654x123 + x on the closed interval [−a, a], start by verifying continuity;
actually, f is continuous on all of R being a polynomial, and hence is continuous on [−a, a].
Now, check the sign of f on the endpoints of the given interval: f(a) = a1995+7654a123+a >
0 (since a > 0) and f(−a) = (−a)1995 + 7654(−a)123 + (−a) = −f(a) < 0, and so the
intermediate value property implies that there exists some c in (−a, a) with f(c) = 0. (And
actually, casual inspection reveals that f(0) = 0.)

4. for tan(x) = e−x for x in [−1, 1], start by defining g(x) = tan(x)− e−x, so that tan(c) = e−c

if and only if g(c) = 0, as was done above. Note that g is continuous on [−1, 1], since e−x is
continuous on all of R and tan(x) is continuous as long as its denominator cos(x) is non-zero,
which holds true on [−1, 1]. Since we are working on the closed interval [−1, 1], check the
values of g on the endpoints: g(1) = tan(1)−e−1 = 1.1895... > 0 and g(−1) = −4.2757... < 0,
and so there exists some c in (−1, 1) with g(c) = 0, and hence with tan(c) = e−c.

5. as above, f(x) = x3+2x5+(1+x2)−2 is continuous on [−1, 1], as it is the sum of a polynomial
and a rational function whose denominator is non-zero on [−1, 1]. As always, check the
endpoints of the interval first: f(1) = 13

4 and f(−1) = − 11
4 , and so by the intermediate value

property, there is some c in (−1, 1) at which f(c) = 0.

6. consider f(x) = 3 sin2(x) − 2 cos3(x). Since both sin(x) and cos(x) are continuous on all
of R, we have that f is continuous on all of R. Since no specific closed interval is given,
we need to find an appropriate interval on which to apply the intermediate value property
for f , if in fact such an interval exists. Fortunately, we remember that sin(kπ) = 0 for
all integers k, and so we may consider the interval [kπ, (k + 1)π] for any integer k ≥ 1, so
that the interval lies in (0,∞). At the endpoints of this interval, f(kπ) = −2 cos3(kπ) and
f((k + 1)π) = −2 cos3((k + 1)π). Since cos(kπ) and cos((k + 1)π) are equal to ±1 and have
opposite signs, f(kπ) and f((k + 1)π) are both non-zero and have opposite signs, and so by
the intermediate value property, there is a point ck in (kπ, (k+1)π) at which f(ck) = 0, that
is, at which 3 sin2(ck) = 2 cos

3(ck), as desired.

7. first, note that f(x) = 3 + x5 − 1001x2 is a polynomial and so is continuous on all of R,
and in particular is continuous for x > 0. As above, we need to choose a closed interval on
which to apply the intermediate value property. Let’s start by evaluating f at some of the
natural numbers: f(1) = −997; f(2) = −3969; f(10) = −90097; f(11) = 880. Hence, the
intermediate value property implies that there is a number c in the open interval (10, 11) at
which f(c) = 0.

Solution ??: first, for the sake of notational clarity, define the n-fold composition of f with itself
by f◦n, so that f◦n = f ◦ f◦(n−1). The hypothesis can then be restated as saying that the sequence
{f◦n(c)} converges to a. Now, apply f to both sides. Since f is continuous, the sequence {f(f ◦n(c))}
converges to f(a), by Proposition ??. However, since f(f ◦n(c)) = f ◦ f◦n(c) = f◦(n+1)(c), the
sequence {f(f◦n(c))} is the same as the sequence {f ◦n(c)} with the first term removed, and so
{f(f◦n(c))} converges to a as well. Hence, since {f(f ◦n(c))} converges to both a and f(a), we have
that a = f(a).

Solution ??: First, note that f is continuous on [1, 4], as it is the composition of two continuous
functions, namely absolute value and a linear polynomial. However, f is not differentiable at x = 2
(since absolute value is not differentiable at 0), and so the hypotheses of the mean value theorem
are not satisfied.
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To see that f does not satisfy the conclusion of the mean value theorem, we calculate: f(4)−f(1) =
|4 − 2| − |1 − 2| = 2 − 1 = 1 and 4 − 1 = 3. However, for x > 2, we have that f ′(x) = 1
and for x < 2 we have that f ′(x) = −1, and so there cannot be a point c in (1, 4) at which
f ′(c) = (f(4)− f(1))/(4− 1) = 1/3.
Solution ??:

1. This proof follows the same general outline as the proof just given. Suppose that g ′(x) =
an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0, and consider the new function h(x) = 1

nan−1x
n +

1
n−1an−2x

n−1+ · · ·+ 1
2a1x

2+a0x−g(x). Note that since g and polynomials are differentiable,
and hence continuous, on all of R, we have that h is differentiable, and hence continuous, on
all of R. Also, h′(x) = an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0 − g′(x) = 0 for all x ∈ R.

For x0 > 0, apply the mean value theorem to h on the interval [0, x0]. Since h is continuous
on [0, x0] and differentiable on (0, x0), the mean value theorem yields that there exists some
c in (0, x0) so that h(x0) − h(0) = h′(c)(x0 − 0) = 0, since h′(c) = 0. That is, h(x0) = h(0)
for all x0 > 0. As above, we also get that h(x0) = h(0) for all x0 < 0 by applying the mean
value theorem to h on the interval [x0, 0].

Hence, setting b = h(0), we have that h(x) = b for all x ∈ R. Substituting in the definition
of h, this yields that 1

nan−1x
n + 1

n−1an−2x
n−1 + · · ·+ 1

2a1x
2 + a0x− g(x) = b for all x ∈ R,

that is, g(x) = 1
nan−1x

n + 1
n−1an−2x

n−1 + · · ·+ 1
2a1x

2 + a0x− b for all x ∈ R, and so g is a
polynomial of degree n.

2. This is a slightly different sort of argument, and we break it into two pieces, corresponding
to the two inequalities.

Set h(x) = x− ln(x+1), and note that h is differentiable, and hence continuous, on (−1,∞).
The two cases, of −1 < x < 0 and of x > 0, are handled in the same fashion, and we write
out the details only for the case x > 0. Apply the mean value theorem to h on any closed
interval in [0,∞). Note that h(0) = 0 − ln(1) = 0. If there were another point x0 > 0 at
which h(x0) = 0, then by applying either Rolle’s theorem or the mean value theorem to h
on the interval [0, x0], there would exist a point c in (0, x0) at which h′(c) = 0. However,
h′(c) = 1 − 1

c+1 , which is non-zero for c 6= 0. Hence, h(x) 6= 0 for all x ∈ (0,∞). By the
intermediate value theorem, this forces either h(x) > 0 for all x > 0 or h(x) < 0 for all x > 0
(because if there are points a and b in (0,∞) at which h(a) > 0 and h(b) < 0, then there is a
point c between a and b at which h(c) = 0). Since h(1) = 1− ln(2) = 0.3069... > 0, we have
that h(x) > 0 on (0,∞), that is, that x > ln(x+1) for all x > 0, as desired. (As noted above,
the argument to show that h(x) > 0 for −1 < x < 0, or equivalently that x > ln(x + 1) for
−1 < x < 0, is similar, and is left for you to write out.)

For the other inequality, set g(x) = ln(x + 1) − x
x+1 , and note that g is differentiable, and

hence continuous, for x > −1. (As above, we give the details in the case that x > 0, and
leave the case of −1 < x < 0 to you the reader.) Note that g ′(x) = x

(x+1)2
> 0 for x > 0. In

particular, applying the mean value theorem to g on the interval [0, x0], we see that there is
c in (0, x0) so that g(x0)− g(0) = g′(c)(x0 − 0) > 0, since both g′(c) > 0 and x0 > 0. Hence,
g(x0) > g(0) = 0 for all x > 0. That is, ln(x+ 1) > x

x+1 for all x > 0.

3. Here, set g(x) = x−sin(x). We wish to show that g(x) > 0 for all x > 0. First, note that since
−1 ≤ sin(x) ≤ 1 for all x ∈ R, we have that g(x) > 0 for x > 1, and so we can restrict our
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attention henceforth to 0 < x ≤ 1. Also, note that g(x) is differentiable, and hence continuous,
on all of R, and so we may apply the mean value theorem to g on any closed interval [0, x0]
for 0 < x0 ≤ 1. So, there exists some c in (0, x0) so that g(x0) − g(0) = g′(c)(x0 − 0). Since
g(0) = 0 and since g′(c) = 1 − cos(c) > 1 for c ∈ (0, 1), we have that g(x0) > 0 for all
0 < x0 ≤ 1, and hence that g(x) > 0 for all x > 0, as desired.

Solution ??:

1. we know that there is one solution to f(x) = 0 in [−a, a], namely x = 0 (which can be found
with using the intermediate value theorem or by inspection). To see that there are no others,
we again use Rolle’s theorem: if there were b in [−a, a], b 6= 0, with f(b) = 0, then there would
exist some point c between b and 0 with f ′(c) = 0. However, f ′(x) = 1995x1994+941442x122+1
and so f ′(c) ≥ 1 > 0 for all c ∈ R. Hence, by Rolle’s theorem, there is no second solution to
f(x) = 0.

2. again working with g(x) = tan(x) − e−x, we saw earlier that there is a solution to g(x) = 0
in the interval [−1, 1]. However, since g′(x) = sec2(x) + e−x > 0 for all x ∈ (−1, 1), Rolle’s
theorem implies that there can be no second solution to g(x) = 0 in the interval [−1, 1]. (It
is the same reasoning as before: if there were two solutions to g(x) = 0, then there would
exist a point c between them at which g′(c) = 0; however, the calculation above shows that
g′(c) 6= 0 for all c in (−1, 1))

3. we don’t have enough information to decide whether we’ve found all the solutions to f(x) = 0.
With f(x) = 3 sin2(x) − 2 cos3(x), we have that f ′(x) = 6 sin(x) cos(x) + 6 cos2(x) sin(x) =
6 sin(x) cos(x)(1 + cos(x)) = 0 when x = kπ for k ∈ N (since sin(kπ) = 0) and when x =
(k+ 1

2)π (since cos((k+
1
2)π) = 0 for k ∈ N). Note that f(kπ) = −2 cos3(kπ) = (−1)k+12 6= 0

and that f((k + 1
2)π) = 3 sin

2((k + 1
2)π) = 3 6= 0. So, for any m ∈ N, consider the interval

(mπ, (m+ 2)π).

So, there exist three points in this interval at which f ′(x) = 0, namely at (m+ 1
2)π, (m+1)π,

and (m+ 3
2)π, and our earlier analysis using the intermediate value theorem found only two

points in this interval at which f(x) = 0. However, while Rolle’s theorem yields that two
points at which f(x) = 0 yields one point at which f ′(x) = 0, we are unable to argue the other
way: there may be many points at which f ′(x) = 0 and still no points at which f(x) = 0.
This example shows the limitations of this sort of analysis.

4. for f(x) = 3 + x5 − 1001x2 on x > 0, again differentiate: f ′(x) = 5x4 − 2002x = x(5x3 −
2002), and so there is only one point in (0,∞) at which f ′(x) = 0, namely the solution c of
5c3−2002 = 0. By calculation, we have that c = 7.3705..., and so if there is a second solution
to f(x) = 0 in (0,∞), it must lie in the interval (0, c) (since by Rolle’s theorem, if there are
two solutions to f(x) = 0, then there exists at least one solution to f ′(x) = 0 between them).

Since f(0) = 3 and since f(c) = −32624.3179..., the intermediate value property implies that
that there is a solution to f(x) = 0 in the interval (0, c). Since the only solution to f ′(x) = 0
on (0,∞) occurs at c, Rolle’s theorem implies that there can be at most two solutions to
f(x) = 0 in (0,∞), and we have found them both.

Solution ??: (In these problems, I’ve stopped explicitly checking the continuity and diffentiability
hypotheses of the intermediate value property and of Rolle’s theorem and the mean value theorem,
because they have been checked so many times already and since they hold true for all the functions
in this exercise.)
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1. using the general mantra that two solutions to g(x) = 0 yield one solution to g ′(x) = 0 via
Rolle’s theorem, let’s see if we can find three solutions to g(x) = 0 for g(x) = x3 − 12πx2 +
44π2x−48π3+cos(x)−1. Factoring, we see that g(x) = (x−2π)(x−4π)(x−6π)+cos(x)−1,
and so g(2π) = g(4π) = g(6π) = 0. By Rolle’s theorem, there then exists a in (2π, 4π) and b
in (4π, 6π) so that g′(a) = g′(b) = 0, as desired. (Also, note that the mixture of polynomial
and trigonometric functions makes it unlikely that we would find solutions to g ′(x) = 0 by
direct calculation.)

2. a still slightly different method: calculating, we see that f ′(x) = 4x3 − π3 − cos(x), and that
f ′(−10) = −4000 − π3 − cos(−1000) < 0 and that f ′(10) = 4000 − π3 − cos(1000) > 0.
Since f is continuous on R, it is certainly continuous on the interval [−10, 10], and so by the
intermediate value property, there is some a in (−10, 10) at which f ′(a) = 0.

3. label the points at which g vanishes as a1 < a2 < · · · < an. For each consecutive pair ak, ak+1,
Rolle’s theorem yields that there exists a point bk between ak and ak+1 at which g

′(bk) = 0.
This yields k − 1 points b1, . . . , bk−1 at which the derivative g

′(x) vanishes, as desired.

4. let h(x) = x3+ px+ q. Suppose that h has two real roots; by Rolle’s theorem, there is then a
number c between these roots at which h′(c) = 0. However, calculating directly we see that
h′(x) = 3x2 + p ≥ p > 0 for all x ∈ R, and so there are no solutions to h′(x) = 0. Hence,
there can be at most one root of h.

To see that there is a root, we note that since h has odd degree (and since the coefficient of the
highest degree term is positive), we have that limx→∞ h(x) = ∞ and limx→−∞ h(x) = −∞.
Hence, we can find a point a at which h(a) > 0 and a point b at which h(b) < 0, and the
intermediate value property then implies that there is a point between a and b at which
h(x) = 0.

Solution ??: [Note that for some of these limits, we do not need to use as heavy a piece of
machinery as l’Hopital’s rule, just some clever simplifying.]

1. since this limit has the indeterminate form 0
0 (since both limx→2(1 − cos(πx)) = 0 and

limx→2 sin
2(πx) = 0), we may use l’Hopital’s rule:

lim
x→2

1− cos(πx)
sin2(πx)

= lim
x→2

π sin(πx)

2π sin(πx) cos(πx)
= lim

x→2

1

2 cos(πx)
=
1

2
.

(Note that we may also evaluate this limit without l’Hopital’s rule, using the trigonometric
identity sin2(θ) + cos2(θ) = 1, as follows:

lim
x→2

1− cos(πx)
sin2(πx)

= lim
x→2

1− cos(πx)
1− cos2(πx) = limx→2

1

1 + cos(πx)
=
1

2
. )

2. again, here we have the choice of factoring or using l’Hopital’s rule. I feel like factoring:

lim
x→−1

x7 + 1

x3 + 1
= lim

x→−1

(x+ 1)(x6 − x5 + x4 − x3 + x2 − x+ 1)

(x+ 1)(x2 − x+ 1)

= lim
x→−1

x6 − x5 + x4 − x3 + x2 − x+ 1

x2 − x+ 1
=
7

3
.
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3. write tan(z) = sin(z)/ cos(z) and simplify:

lim
x→3

1 + cos(πx)

tan2(πx)
= lim

x→3

(1 + cos(πx)) cos2(πx)

sin2(πx)

= lim
x→3

(1 + cos(πx)) cos2(πx)

1− cos2(πx) = lim
x→3

cos2(πx)

1− cos(πx) =
1

2
.

4. as this has the indeterminate form 0
0 , and since there seems to be no easy simplification

possible, we use l’Hopital’s rule:

lim
x→1

1− x+ ln(x)

1 + cos(πx)
= lim

x→1

−1 + 1
x

−π sin(πx) .

Since this limit still has the indeterminate form 0
0 , we may use l’Hopital’s rule again:

lim
x→1

−1 + 1
x

−π sin(πx) = limx→1

− 1
x2

−π2 cos(πx)
= − 1

π2
.

5. this has the indeterminate form ∞0, and so we rewrite it:

lim
x→∞(ln(x))

1/x = lim
x→∞

(

eln(ln(x))
)1/x

= elimx→∞ ln(ln(x))/x.

The exponent has the indeterminate form ∞
∞ , and so we may use l’Hopital’s rule:

lim
x→∞

ln(ln(x))

x
= lim

x→∞

1
ln(x) · 1

x

1
= 0.

Hence, we see that
lim
x→∞(ln(x))

1/x = elimx→∞ ln(ln(x))/x = e0 = 1.

6. factoring, we see that

lim
x→2

x2 + x− 6
x2 − 4 = lim

x→2

(x− 2)(x+ 3)
(x− 2)(x+ 2) = limx→2

x+ 3

x+ 2
=
5

4
.

7. as this limit has the indeterminate form 0
0 , we may use l’Hopital’s rule:

lim
x→0

x+ sin(2x)

x− sin(2x) = limx→0

1 + 2 cos(2x)

1− 2 cos(2x) =
1 + 2

1− 2 = −3.

8. since this limit has the indeterminate form ∞
∞ , we may apply l’Hopital’s rule:

lim
x→0

ex − 1
x2

= lim
x→0

ex

2x
= lim

x→0

ex

2
=∞.

(The second equality follows from applying l’Hopital’s rule a second time, which is valid since
the limit still has the indeterminate form ∞

∞ .)
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9. in this limit, though we need to check at each stage, we will apply l’Hopital’s rule four times,
as the original limit has the indeterminate form 0

0 , and each of the first three applications of
l’Hopital’s rule results in a limit still in the indeterminate form 0

0 .

lim
x→0

ex + e−x − x2 − 2
sin2(x)− x2

= lim
x→0

ex − e−x − 2x
2 sin(x) cos(x)− 2x = lim

x→0

ex − e−x − 2x
sin(2x)− 2x

= lim
x→0

ex + e−x − 2
2 cos(2x)− 2

= lim
x→0

ex − e−x

−4 sin(2x)

= lim
x→0

ex + e−x

−8 cos(2x) = −
1

4
.

10. this limit has the indeterminate form ∞
∞ , and so we apply l’Hopital’s rule:

lim
x→∞

ln(x)

x
= lim

x→∞

1
x

1
= 0.

11. here, we first attempt to evaluate the limit by factoring, a sensible first step for limits of
rational functions:

lim
x→2

x3 − x2 − x− 2
x3 − 3x2 + 3x− 2 = limx→2

(x− 2)(x2 + x+ 1)

(x− 2)(x2 − x+ 1)
= lim

x→2

x2 + x+ 1

x2 − x+ 1
=
7

3
.

12. again, we first attempt to evaluate the limit by factoring:

lim
x→1

x3 − x2 − x+ 1

x3 − 2x2 + x
= lim

x→1

(x− 1)(x2 − 1)
x(x− 1)2 = lim

x→1

x+ 1

x
= 2.

Solution ??:

1. this is an improper integral because 1/x3/2 is continuous on (0, 4] and limx→0+ 1/x
3/2 = ∞.

So, we evaluate:
∫ 4

0

1

x3/2
dx = lim

c→0+

∫ 4

c

1

x3/2
dx

= lim
c→0+

∫ 4

c
x−3/2 dx

= lim
c→0+

(

− 2√
4
+
2√
c

)

= −1 + 2 lim
c→0+

1√
c
=∞,

and so this improper integral diverges.

2. this is an improper integral because the interval of integration is [1,∞), which is not a closed
interval. So, we evaluate:

∫ ∞

1

1

x+ 1
dx = lim

M→∞

∫ M

1

1

x+ 1
dx

= lim
M→∞

[

ln(M + 1)− ln
(

1

2

)]

=∞,

and so this improper integral diverges.
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3. this is an improper integral, as the interval of integration is [5,∞), which is not a closed
interval. So, we evaluate:

∫ ∞

5

1

(x− 1)3/2 dx = lim
M→∞

∫ M

5

1

(x− 1)3/2 dx

= lim
M→∞

∫ M

5
(x− 1)−3/2 dx

= lim
M→∞

[

− 2√
M − 1 + 1

]

= 1,

and so this improper integral converges to 1.

4. this is an improper integral because 1/(9 − x)3/2 is continuous on [0, 9) and limx→9− 1/(9 −
x)3/2 =∞. So, we evaluate:

∫ 9

0

1

(9− x)3/2
dx = lim

c→9−

∫ c

0

1

(9− x)3/2
dx

= lim
c→9−

∫ c

0
(9− x)−3/2 dx

= lim
c→9−

[

−2
3
+

2√
9− c

]

=∞,

and so this improper integral diverges.

5. this is an improper integral, since the interval of integration is (−∞,−2] and so is not a closed
interval. So, we evaluate:

∫ −2

−∞

1

(x+ 1)3
dx = lim

M→−∞

∫ −2

M

1

(x+ 1)3
dx

= lim
M→−∞

[

−1
2

1

(−2 + 1)2 +
1

2

1

(M + 1)2

]

= −1
2
,

and so this improper integral converges to − 1
2 .

6. this is an improper integral, since the integrand is not continuous on [−1, 8] as it has a
discontinuity at 0. Hence, we can break it up as the sum of two improper integrals:

∫ 8

−1
dx/x1/3 =

∫ 0

−1
dx/x1/3 +

∫ 8

0
dx/x1/3,

and we have that
∫ 8
−1 dx/x

1/3 converges if both
∫ 0
−1 dx/x

1/3 and
∫ 8
0 dx/x

1/3 converge. So, we
evaluate:

∫ 0

−1

1

x1/3
dx = lim

c→0−

∫ c

−1

1

x1/3
dx

= lim
c→0−

∫ c

−1
x−1/3dx

= lim
c→0−

[

3

2
c2/3 − 3

2

]

= −3
2
,
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and

∫ 8

0

1

x1/3
dx = lim

c→0+

∫ 8

c

1

x1/3
dx

= lim
c→0+

∫ 8

c
x−1/3dx

= lim
c→0+

[

3

2
82/3 − 3

2
c2/3

]

= 6.

Since both these improper integrals converge, we see that the original improper integral
∫ 8
−1 dx/x

1/3 converges to 9
2 .

7. this is an improper integral, since the interval of integration is [2,∞) and hence is not a closed
interval. So, we evaluate:

∫ ∞

2

1

(x− 1)1/3 dx = lim
M→∞

∫ M

2

1

(x− 1)1/3 dx

= lim
M→∞

∫ M

2
(x− 1)−1/3 dx

= lim
M→∞

[

3

2
(M − 1)2/3 − 3

2

]

=∞,

and so this improper integral diverges.

8. this is an improper integral since the interval of integration is (−∞,∞) and hence is not
a closed interval. We evaluate this improper integral by breaking it up as the sum of two
improper integrals

∫∞
−∞ xdx/(x2 + 4) =

∫ 0
−∞ xdx/(x2 + 4)+

∫∞
0 xdx/(x2 + 4), and evaluating

the two resulting improper integrals separately. So,

∫ 0

−∞

x

x2 + 4
dx = lim

M→−∞

∫ 0

M

x

x2 + 4
dx

= lim
M→−∞

[

1

2
ln(M2 + 4)− 1

2
ln(4)

]

=∞.

Since one of these two improper integrals diverges, we don’t need to evaluate the other one,
as the original improper integral

∫ 0
−∞ xdx/(x2 + 4) necessarily diverges.

9. this is an improper integral, as the integrand is continuous on (0, 1] and limx→0+ e
√
x/
√
x =∞.

So, we evaluate:

∫ 1

0

e
√
x

√
x
dx = lim

c→0+

∫ 1

c

e
√
x

√
x
dx

= lim
c→0+

(2− 2√c) = 2,

and so this improper integral converges to 2.

10. this is an improper integral, as the interval of integration is [1,∞) and so is not a closed
interval. Moreover, the integrand is not continuous at 0 but limx→1+ 1/x ln(x) =∞, and so we
need to break this improper integral into the sum of two improper integrals

∫∞
1 dx/x ln(x) =
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∫ 2
1 dx/x ln(x) +

∫∞
2 dx/x ln(x), and evaluate the two resulting improper integrals separately.

So,

∫ 2

1

1

x ln(x)
dx = lim

c→1+

∫ 2

c

1

x ln(x)
dx

= lim
c→1+

(ln(ln(2))− ln(ln(c))) =∞,

and so this improper integral diverges, and so the original improper integral
∫∞
1 dx/x ln(x)

necessarily diverges.

Solution ??: We first need to write
∫∞
−∞(1 + x)dx/(1 + x2) as the sum of two improper integrals,

for instance
∫ ∞

−∞

1 + x

1 + x2
dx =

∫ 0

−∞

1 + x

1 + x2
dx+

∫ ∞

0

1 + x

1 + x2
dx,

and then evaluate the two resulting improper integrals separatedly. So,

∫ ∞

0

1 + x

1 + x2
dx = lim

M→∞

∫ M

0

1 + x

1 + x2
dx

= lim
M→∞

[

∫ M

0

1

1 + x2
dx+

∫ M

0

x

1 + x2
dx

]

= lim
M→∞

[

(arctan(M)− arctan(0)) +
(

1

2
ln(1 +M2)− 1

2

)]

=∞,

since limM→∞ ln(1 + M2) = ∞, and so the original improper integral ∫∞−∞(1 + x)dx/(1 + x2)
diverges.

However, when we evaluate limt→∞
∫ t
−t(1 + x)dx/(1 + x2), we get

lim
t→∞

∫ t

−t

1 + x

1 + x2
dx = lim

t→∞

[∫ t

−t

1

1 + x2
dx+

∫ t

−t

x

1 + x2
dx

]

= lim
t→∞

[

(arctan(t)− arctan(−t)) + 1
2

(

ln(1 + t2)− ln(1 + (−t)2)
)

]

= lim
t→∞

2 arctan(t) = 2
π

2
= π,

and so limt→∞
∫ t
−t(1 + x)dx/(1 + x2) converges. (Here, we use that arctan(−t) = − arctan(t).)

Solution ??:

1. we start by calculating the derivatives of f at a = 6:

f (0)(6) = f(6) = 455; f (1)(6) = f ′(6) = 185; f (2)(6) = 48; f (3)(6) = 6; f (n)(6) = 0 for n ≥ 4.

Hence, the Taylor series for f centered at a = 6 is

∞
∑

n=0

1

n!
f (n)(6)(x− 6)n = 455 + 185(x− 6) + 1

2
48(x− 6)2 + 1

6
6(x− 6)3.

The radius of convergence of this series is ∞ (using the root test, for instance), and so the
interval of convergence is R.
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2. we start by calculating that f (n)(x) = 3ne3x for n ≥ 0, and so f (n)(−2) = 3ne−6. Hence, the
Taylor series for f centered at a = −2 is

∞
∑

n=0

1

n!
f (n)(−2)(x+ 2)n = e−6

∞
∑

n=0

3n

n!
(x+ 2)n.

The radius of convergence of this series is ∞ (using the ratio test, for instance), and so the
interval of convergence is R.

3. we start here by recalling that

f (n)(x) =

{

cosh(x) for x even, and
sinh(x) for x odd.

So, we have that f (n)(1) = cosh(1) = 1
2(e +

1
e ) for n even, and f

(n)(1) = sinh(1) = 1
2(e − 1

e )
for n odd. Hence, the Taylor series for f centered at a = 1 is

∞
∑

n=0

1

n!
f (n)(1)(x− 1)n =

∞
∑

k=0

1

(2k)!
f (2k)(1)(x− 1)2k +

∞
∑

k=0

1

(2k + 1)!
f (2k+1)(1)(x− 1)2k+1

=
e2 + 1

2e

∞
∑

k=0

1

(2k)!
(x− 1)2k + e2 − 1

2e

∞
∑

k=0

1

(2k + 1)!
(x− 1)2k+1.

The radius of convergence of this series is ∞ (using the ratio test, for instance), and so the
interval of convergence is R.
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