§12. Generators and Relations.

Let S be a set of symbols, e.g. $\{a, b\}$. Let s^{-1} be the set of symbols $\left\{s^{-1} \mid s \in\right.$ $S\}$. At this stage we have no multiplication defined, so we are thinking of s^{-1} as a symbol and not as the inverse of s. We assume $S \cap S^{-1}=\emptyset$. A word is a finite string of symbols from $S \cup S^{-1}$ possibly with repetitions. Thus if $S=\{a, b\}$, then $a b a^{-1} b b^{-1} a b$ is a word. Let W_{S} be the set of all words in symbols from $S \cup S^{-1}$. Also we regard the empty word as a word and denote it 1 . Multiplication is defined on W_{S} by defining $w_{1} w_{2}$ to be the word obtained by writing w_{1} and then w_{2} : e.g. if $w_{1}=a b a^{-1}$ and $w_{2}=a b^{-1} b$, then $w_{1} w_{2}=a b a^{-1} a b^{-1} b$. With multiplication defined in this way, W_{S} is a semi-group but not a group because

Let R be a subset of W_{S}. If $u, v \in W_{S}$, we write $u=v(\bmod R)$, if there is a finite sequence

$$
u=w_{1}, w_{2}, \ldots, w_{k}=v
$$

of words such that w_{i} is obtained from $w_{i-1}, i=2, \ldots, k$ by inserting or deleting either an element of R or a word of the form $s s^{-1}$ or $s^{-1} s$ where $s \in S$.

EXAMPLE.
If $S=\{a, b\}$ and $R=\left\{a^{2}, b^{3}, a^{-1} b a b^{-2}\right\}$, then $a b a^{-1} b b^{-1} a b a=b(\bmod R)$. (Note that we write a^{2} to denote the word $a a$ and b^{-2} to denote the word $b^{-1} b^{-1}$ etc.)
In this case the sequence

$$
\begin{aligned}
& a b a^{-1} b b^{-1} a b a, a b a^{-1} a b a, a b b a, a b a a^{-1} b a, a b a a^{-1} b a b^{-1} b, \\
& a b a a^{-1} b a b^{-1} b^{-1} b b, a b a b^{2}, a a a^{-1} b a b^{2}, a^{-1} b a b^{2}, a^{-1} b a b^{-1} b^{3}, \\
& a^{-1} b a b^{-2} b^{4}, b^{4}, b
\end{aligned}
$$

has the required property.

THEOREM 12.1.
If $u=v(\bmod R)$ and $w \in W_{S}$, then $w u=w v(\bmod R)$ and $u w=v w(\bmod R)$ Proof.

Using this result the example above becomes much easier. Thus $a^{-1} b a b^{-2}=1$ $(\bmod R) \Rightarrow b a=a b^{2}(\bmod R)$, multiplying on the left by a and on the right by b^{2}. Hence

$$
\begin{aligned}
a b a^{-1} b b^{-1} a b a & =a b^{2} a(\bmod R) \\
& =b a a(\bmod R) \\
& =b(\bmod R)
\end{aligned}
$$

THEOREM 12.2.
Equality $(\bmod R)$ is an equivalence relation.
Proof.

Let $\langle w\rangle$ denote the equivalence class of W_{S} containing w. It follows from Theorem 12.1 that if $u_{1}=u_{2}(\bmod R)$ and $v_{1}=v_{2}(\bmod R)$, then $u_{1} v_{1}=u_{2} v_{2}$ $(\bmod R)$, since

$$
u_{1} u_{2}=
$$

i.e. if $\left.\left\langle u_{1}\right\rangle=<u_{2}\right\rangle$ and $\left\langle v_{1}\right\rangle=\left\langle v_{2}\right\rangle$, then $\left\langle u_{1} u_{2}\right\rangle=\left\langle v_{1} v_{2}\right\rangle$. This means that it is possible to define a multiplication on the equivalence classes of W_{S} under equality $(\bmod R)$ by putting $\langle u\rangle\langle v\rangle=\langle u v\rangle$.

THEOREM 12.3.
The equivalence classes of W_{S} determined by equality $(\bmod R)$ form a group with multiplication as defined above.

Proof.

The above group is called the group with the elements of S as generators and the elements of R as relations.
Relations are usually written as equations, thus the group

$$
\left(a, b \mid a^{2}=b^{3}=1, a b=b^{2} a\right)
$$

is the group as described above, in which

$$
S=\{a, b\} \text { and } R=\left\{a^{2}, b^{3}, a b a^{-1} b^{-2}\right\} .
$$

If $R=\emptyset$, the $w_{1}=w_{2}(\bmod R)$ if w_{2} can be obtained from w_{1} by inserting or deleting words of the form $s s^{-1}$ or $s^{-1} s$, where $s \in S$. The group obtained in this case is called the free group on the set S.

Exercises

12.1. If $S=\{a, b\}$ and $R=\left\{a^{-1} b a b^{4}, a^{2}\right\}$, prove that

$$
b^{15}=1(\bmod R) .
$$

12.2. Prove that the group

$$
\left(a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right)
$$

has order 1.

§13. The Word Problem.

Let S be a set of symbols, and let $R \subseteq W_{S}$.
PROBLEM. Is it possible to program a computer so that if the computer is given two words w_{1}, w_{2} it will be able to give the correct answer to whether or not $w_{1}=w_{2}(\bmod R)$?
This problem is in fact "unsolvable". It was shown by P. S. Novikov (1955) that there is a finite set S and a finite set $R \subseteq W_{S}$ for which it is impossible to program a computer to answer the above question.
In particular cases the question above can be solved. If the group with S as set of generators and R as set of relations is finite, then the word problem can be solved (Mendelsohn 1964), although it has to be assumed that the computer involved has an unbounded amount of storage space and unlimited time to work on the problem.
The following theorem is useful in solving the word problem in some cases.
THEOREM 13.1.
Let G be a group with S as set of generators and R as set of relations. Let H be a group and suppose $\theta: S \longrightarrow H$ is a mapping such that for all $w \in R$, if $w=s_{1}^{\epsilon_{1}} s_{2}^{\epsilon_{2}} \ldots s_{r}^{\epsilon_{r}}$, then

$$
\left(s_{1} \theta\right)^{\epsilon_{1}}\left(s_{2} \theta\right)^{\epsilon=2} \ldots\left(s_{r} \theta\right)^{\epsilon_{r}}=1_{H} .
$$

Under these circumstances there exists a homomorphism $\theta_{1}: G \longrightarrow H$ such that $\langle s\rangle \theta_{1}=s \theta$ for all $s \in S$.

EXAMPLE
Let $G=\left(a, b \mid a^{2}=b^{3}=1\right)$. If $S=\{a, b\}$, then $\theta: S \longrightarrow S_{3}, a \theta=(12), b \theta=$ (123) satisfies $(a \theta)^{2}=1,(b \theta)^{3}=1$. Theorem 13.1 then states that there is a homomorphism $\theta_{1}: G \longrightarrow S_{3}$ such that $<a>\theta_{1}=(12),\theta_{1}=(123)$.

Proof. (Theorem 13.1).
We define a mapping $\theta^{\prime}: W_{S} \longrightarrow H$ as follows. If $w=s_{1}^{\epsilon_{1}} s_{2}^{\epsilon_{2}} \ldots s_{r}^{\epsilon_{r}}$, then $w \theta^{\prime}=\left(s_{1} \theta\right)^{\epsilon_{1}}\left(s_{2} \theta\right)^{\epsilon=2} \ldots\left(s_{r} \theta\right)^{\epsilon_{r}}$.
From the hypothesis of the theorem if $w \in R$, then $w \theta^{\prime}=1$. Suppose $w_{1}=w_{2}(\bmod R)$.

Hence $w_{1} \theta^{\prime}=w_{2} \theta^{\prime}$, i.e. if $<w_{1}>=<w_{2}>$, then $w_{1} \theta^{\prime}=w_{2} \theta^{\prime}$. It follows that we can define a mapping $\theta_{1}: G \longrightarrow H$ by putting $<w_{1}>=w \theta^{\prime}$. The mapping θ_{1} is a homomorphism because

EXAMPLE.

Let $G=\left(a, b, \mid a^{2}=b^{5}=1, a^{-1} b a=b^{4}\right)$. Let $S=\{a, b\}$ and $R=$ $\left\{a^{2}, b^{5}, a^{-1} b a b^{-4}\right\}$. Since $b a=a b^{4}(\bmod R)$, every word w of W_{S} is equal $(\bmod R)$ to a word of the form $a^{i} b^{j}$ and since $a^{2}=1(\bmod R)$ and $b^{5}=1$ $(\bmod R)$ every word of W_{S} is equal $(\bmod R)$ to one of the set

$$
\left\{1, a, b, a b, b^{2}, a b^{2}, b^{3}, a b^{3}, b^{4}, a b^{4}\right\}
$$

The problem is to show that these elements lie in distinct equivalence classes under equality $(\bmod R)$. If they are distinct, then the Cayley homomorphism

$$
\rho: G \longrightarrow A(G)
$$

gives

$$
\begin{aligned}
& a \rho= \\
& b \rho=\left(1, b, b^{2}, b^{3}, b^{4}\right)\left(a, a b, a b^{2}, a b^{3}, a b^{4}\right) .
\end{aligned}
$$

(Here we should really write $\langle a\rangle,\langle b\rangle$ etc. instead of a, b.) This gives us a clue as to how to show that G has 10 elements. Let

$$
\begin{aligned}
& \alpha=(1,6)(2,10)(3,9)(4,8)(5,7) \\
& \beta=(1,2,3,4,5)(6,7,8,9,10),
\end{aligned}
$$

then $\alpha^{2}=\beta^{5}=1$ and $\alpha^{-1} \beta \alpha=\beta^{4}$. Hence by Theorem 10.1 there is a homomorphism $\theta_{1}: G \longrightarrow S_{10}$ such that $<a>\theta_{1}=\alpha,\theta_{1}=\beta$. It is easy to check that θ^{\prime} maps each element of the set

$$
\left\{1, a, b, a b, b^{2}, a b^{2}, b^{3}, a b^{3}, b^{4}, a b^{4}\right\}
$$

to a distinct element of S_{10} and so no two elements of this set represent the same element of G. Thus $o(G)=10$.

DEFINITION.

A subset K of \mathbf{R}^{3} is called a knot if there is a continuous injective mapping $\theta: C \longrightarrow \mathbf{R}^{3}$ where $C \subseteq \mathbf{R}^{2}$ is the set $C=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ and $\operatorname{Im} \theta=K$

EXAMPLES.

The trivial knot

The figure-eight knot

The trefoil

The granny knot

The main problem in knot theory is to give a procedure for deciding whether or not two knots are the same (whatever that means). Loosely speaking if one thinks of two knots as being made up of string, then they are the same if one can be moved to take up the same position as the second knot without cutting the string.
The problem above is unsolved. However it is often possible to show that two knots are different by computing knot groups.
In a knot diagram insert arrows giving one direction around the curve. Label each continuous piece of line by a symbol. Let S be the set of all labelling symbols. For each crossing point of the diagram we take a word r from W_{S} as follows: if the intersection is like (i) below with the line crossing over going from right to left take $r=c a c^{-1} b^{-1}$, if as in (ii), then take $r=c^{-1} a c b^{-1}$. Let R be the subset of W_{S} obtained by selecting an element for each crossing point of the knot diagram. Let G be the group with S as set of generators and R as set of relations. It can be shown that two different diagrams of the same knot give rise to isomorphic groups. Therefore G is called the group of the knot K. Actually G is isomorphic to the fundamental group of $\mathbf{R}-K$.
(i)

(ii)

EXAMPLES

If K is the trivial group, then G is the group generated by a with no relations. Thus G is the infinite cyclic group with elements $1, a, a^{-1}, a^{2}, a^{-2}, \cdots$.

If K is the trefoil, then
$G=$
Note that $c=a b a^{-1}$. So substituting for c and c^{-1} wherever they occur: $G=\left(a, b, \mid a b a^{-1} a a b^{-1} a^{-1} b^{-1}, b a b a^{-1} b^{-1} a^{-1}\right)$,

i.e.

$$
\begin{aligned}
G & =\left(a, b, \mid a b a^{-1} a a b^{-1} a^{-1} b^{-1}, b a b a^{-1} b^{-1} a^{-1}\right) \\
& =(a, b \mid a b a=b a b) .
\end{aligned}
$$

We will be able to show that the trefoil is not the same as the trivial knot if we can show that this group is not isomorphic to the infinite cyclic group.

Now in S_{3} if $\alpha=(12)$ and $\beta=(13)$, then

$$
\alpha \beta \alpha=\quad=\beta \alpha \beta .
$$

Hence by Theorem 13.1 there is a homomorphism $\theta: G \longrightarrow S_{3}$ such that $a \theta=\alpha, b \theta=\beta$. This homomorphism is surjective, and so $S_{3} \cong G / \operatorname{Ker} \theta$. But S_{3} is not abelian and any factor of an abelian group is abelian. Hence G is not abelian and therefore cannot be infinite cyclic.

Exercises

13.1. Let $G=\left(a, b \mid a^{2}=b^{3}=(a b)^{5}=1\right)$. Prove that if H is abelian and $\theta: G \longrightarrow H$ is a homomorphism, then $a \theta=b \theta=1$. Prove that there is a non-trivial homomorphism $\phi: G \longrightarrow A_{5}$.
13.2. Use Theorem 13.1 to show that

$$
(a, b \mid a b a=b a b) \cong\left(c, d \mid c^{2}=d^{3}\right)
$$

13.3. Write down the knot group of the figure eight knot. Write down the knot group of the granny knot. Show that the granny knot is not the same as the trivial knot.

