
§12. Generators and Relations.

Let S be a set of symbols, e.g. {a, b}. Let s−1 be the set of symbols {s−1|s ∈
S}. At this stage we have no multiplication defined, so we are thinking of
s−1 as a symbol and not as the inverse of s. We assume S∩S−1 = ∅. A word
is a finite string of symbols from S ∪ S−1 possibly with repetitions. Thus
if S = {a, b}, then aba−1bb−1ab is a word. Let WS be the set of all words
in symbols from S ∪ S−1. Also we regard the empty word as a word and
denote it 1. Multiplication is defined on WS by defining w1w2 to be the word
obtained by writing w1 and then w2: e.g. if w1 = aba−1 and w2 = ab−1b,
then w1w2 = aba−1ab−1b. With multiplication defined in this way, WS is a
semi-group but not a group because

Let R be a subset of WS. If u, v ∈ WS, we write u = v(mod R), if there is a
finite sequence

u = w1, w2, ..., wk = v

of words such that wi is obtained from wi−1, i = 2, ..., k by inserting or
deleting either an element of R or a word of the form ss−1 or s−1s where
s ∈ S.

EXAMPLE.
If S = {a, b} and R = {a2, b3, a−1bab−2}, then aba−1bb−1aba = b (mod R).
(Note that we write a2 to denote the word aa and b−2 to denote the word
b−1b−1 etc.)
In this case the sequence

aba−1bb−1aba, aba−1aba, abba, abaa−1ba, abaa−1bab−1b,
abaa−1bab−1b−1bb, abab2, aaa−1bab2, a−1bab2, a−1bab−1b3,
a−1bab−2b4, b4, b

has the required property.
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THEOREM 12.1.
If u = v(mod R) and w ∈WS, then wu = wv(mod R) and uw = vw(mod R)

Proof.

Using this result the example above becomes much easier. Thus a−1bab−2 = 1
(modR) ⇒ ba = ab2 (modR), multiplying on the left by a and on the right
by b2. Hence

aba−1bb−1aba = ab2a (modR)

= baa (modR)

= b (modR)

THEOREM 12.2.
Equality (modR) is an equivalence relation.

Proof.
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Let < w > denote the equivalence class of WS containing w. It follows from
Theorem 12.1 that if u1 = u2 (modR) and v1 = v2 (modR), then u1v1 = u2v2

(modR), since
u1u2 =

i.e. if < u1 >=< u2 > and < v1 >=< v2 >, then < u1u2 >=< v1v2 >. This
means that it is possible to define a multiplication on the equivalence classes
of WS under equality (modR) by putting < u >< v >=< uv >.

THEOREM 12.3.
The equivalence classes of WS determined by equality (modR) form a group
with multiplication as defined above.

Proof.
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The above group is called the group with the elements of S as generators
and the elements of R as relations.
Relations are usually written as equations, thus the group

(a, b|a2 = b3 = 1, ab = b2a)

is the group as described above, in which

S = {a, b} and R = {a2, b3, aba−1b−2}.

If R = ∅, the w1 = w2 (modR) if w2 can be obtained from w1 by inserting or
deleting words of the form ss−1 or s−1s, where s ∈ S. The group obtained
in this case is called the free group on the set S.

Exercises

12.1. If S = {a, b} and R = {a−1bab4, a2}, prove that

b15 = 1 (modR).

12.2. Prove that the group

(a, b |a−1ba = b2, b−1ab = a2)

has order 1.
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§13. The Word Problem.

Let S be a set of symbols, and let R ⊆ WS.

PROBLEM. Is it possible to program a computer so that if the computer is
given two words w1, w2 it will be able to give the correct answer to whether
or not w1 = w2 (modR)?
This problem is in fact “unsolvable”. It was shown by P. S. Novikov (1955)
that there is a finite set S and a finite set R ⊆ WS for which it is impossible
to program a computer to answer the above question.
In particular cases the question above can be solved. If the group with S as
set of generators and R as set of relations is finite, then the word problem
can be solved (Mendelsohn 1964), although it has to be assumed that the
computer involved has an unbounded amount of storage space and unlimited
time to work on the problem.
The following theorem is useful in solving the word problem in some cases.

THEOREM 13.1.
Let G be a group with S as set of generators and R as set of relations. Let H
be a group and suppose θ : S −→ H is a mapping such that for all w ∈ R,
if w = sε11 s

ε2
2 ...s

εr

r , then

(s1θ)
ε1(s2θ)

ε=2...(srθ)
εr = 1H .

Under these circumstances there exists a homomorphism θ1 : G −→ H such
that < s > θ1 = sθ for all s ∈ S.

EXAMPLE
LetG = (a, b |a2 = b3 = 1). If S = {a, b}, then θ : S −→ S3, aθ = (12), bθ =
(123) satisfies (aθ)2 = 1, (bθ)3 = 1. Theorem 13.1 then states that there is a
homomorphism θ1 : G −→ S3 such that < a > θ1 = (12), < b > θ1 = (123).

Proof. (Theorem 13.1).
We define a mapping θ′ : WS −→ H as follows. If w = sε11 s

ε2
2 ...s

εr

r , then
wθ′ = (s1θ)

ε1(s2θ)
ε=2...(srθ)

εr .
From the hypothesis of the theorem if w ∈ R, then wθ′ = 1. Suppose
w1 = w2(modR).
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Hence w1θ
′ = w2θ

′, i.e. if < w1 >=< w2 >, then w1θ
′ = w2θ

′. It follows
that we can define a mapping θ1 : G −→ H by putting < w1 >= wθ′. The
mapping θ1 is a homomorphism because

EXAMPLE.
Let G = (a, b, |a2 = b5 = 1, a−1ba = b4). Let S = {a, b} and R =
{a2, b5, a−1bab−4}. Since ba = ab4 (modR), every word w of WS is equal
(modR) to a word of the form aibj and since a2 = 1 (modR) and b5 = 1
(modR) every word of WS is equal (modR) to one of the set

{1, a, b, ab, b2, ab2, b3, ab3, b4, ab4}.

The problem is to show that these elements lie in distinct equivalence classes
under equality (modR). If they are distinct, then the Cayley homomorphism

ρ : G −→ A(G)

gives
aρ =
bρ = (1, b, b2, b3, b4)(a, ab, ab2, ab3, ab4).

(Here we should really write < a >,< b > etc. instead of a, b.) This gives
us a clue as to how to show that G has 10 elements. Let

α = (1, 6)(2, 10)(3, 9)(4, 8)(5, 7)
β = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) ,

then α2 = β5 = 1 and α−1βα = β4. Hence by Theorem 10.1 there is a
homomorphism θ1 : G −→ S10 such that < a > θ1 = α, < b > θ1 = β. It is
easy to check that θ′ maps each element of the set

{1, a, b, ab, b2, ab2, b3, ab3, b4, ab4}

to a distinct element of S10 and so no two elements of this set represent the
same element of G. Thus o(G) = 10.
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DEFINITION.
A subset K of R

3 is called a knot if there is a continuous injective mapping
θ : C −→ R

3 where C ⊆ R
2 is the set C = {(x, y)|x2 + y2 = 1} and

Imθ = K

EXAMPLES.

The trivial knot The trefoil

The figure-eight knot The granny knot

The main problem in knot theory is to give a procedure for deciding whether
or not two knots are the same (whatever that means). Loosely speaking if
one thinks of two knots as being made up of string, then they are the same if
one can be moved to take up the same position as the second knot without
cutting the string.
The problem above is unsolved. However it is often possible to show that
two knots are different by computing knot groups.
In a knot diagram insert arrows giving one direction around the curve. Label
each continuous piece of line by a symbol. Let S be the set of all labelling
symbols. For each crossing point of the diagram we take a word r from WS

as follows: if the intersection is like (i) below with the line crossing over going
from right to left take r = cac−1b−1, if as in (ii), then take r = c−1acb−1. Let
R be the subset of WS obtained by selecting an element for each crossing
point of the knot diagram. Let G be the group with S as set of generators
and R as set of relations. It can be shown that two different diagrams of the
same knot give rise to isomorphic groups. Therefore G is called the group of
the knot K. Actually G is isomorphic to the fundamental group of R−K.
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(i)

¾
c

6b

6a

(ii)

-
c

6b

6a

EXAMPLES
IfK is the trivial group, then G is the group generated by a with no relations.
Thus G is the infinite cyclic group with elements 1, a, a−1, a2, a−2, · · · .

a

If K is the trefoil, then

G =

Note that c = aba−1. So substituting for c and c−1 wherever they occur:
G = (a, b, |aba−1aab−1a−1b−1, baba−1b−1a−1),

b
c

a

i.e.

G = (a, b, |aba−1aab−1a−1b−1, baba−1b−1a−1)

= (a, b |aba = bab).
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We will be able to show that the trefoil is not the same as the trivial knot if
we can show that this group is not isomorphic to the infinite cyclic group.

Now in S3 if α = (12) and β = (13), then

αβα = = βαβ.

Hence by Theorem 13.1 there is a homomorphism θ : G −→ S3 such that
aθ = α, bθ = β. This homomorphism is surjective, and so S3

∼= G/Kerθ.
But S3 is not abelian and any factor of an abelian group is abelian. Hence
G is not abelian and therefore cannot be infinite cyclic.

Exercises

13.1. Let G = (a, b |a2 = b3 = (ab)5 = 1). Prove that if H is abelian and
θ : G −→ H is a homomorphism, then aθ = bθ = 1. Prove that there
is a non-trivial homomorphism φ : G −→ A5.

13.2. Use Theorem 13.1 to show that

(a, b |aba = bab) ∼= (c, d |c2 = d3).

13.3. Write down the knot group of the figure eight knot. Write down the
knot group of the granny knot. Show that the granny knot is not the
same as the trivial knot.

9


