
Title Analysis of the breakdown spot spatial distribution in Pt/HfO2/Pt
capacitors using nearest neighbor statistics

Author(s) Saura, X.; Sune, J.; Monaghan, Scott; Hurley, Paul K.; Miranda, E.

Publication date 2013

Original citation Saura, X., Suñé, J., Monaghan, S., Hurley, P. K. and Miranda, E. (2013)
'Analysis of the breakdown spot spatial distribution in Pt/HfO2/Pt
capacitors using nearest neighbor statistics', Journal of Applied Physics,
114(15), 154112 (9pp). doi: 10.1063/1.4825321

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://aip.scitation.org/doi/10.1063/1.4825321
http://dx.doi.org/10.1063/1.4825321
Access to the full text of the published version may require a
subscription.

Rights © 2013, AIP Publishing LLC. This article may be downloaded for
personal use only. Any other use requires prior permission of the
author and AIP Publishing. The following article appeared in Saura,
X., Suñé, J., Monaghan, S., Hurley, P. K. and Miranda, E. (2013)
'Analysis of the breakdown spot spatial distribution in Pt/HfO2/Pt
capacitors using nearest neighbor statistics', Journal of Applied
Physics, 114(15), 154112 (9pp). doi: 10.1063/1.4825321 and may be
found at http://aip.scitation.org/doi/10.1063/1.4825321

Item downloaded
from

http://hdl.handle.net/10468/4722

Downloaded on 2018-08-23T20:19:00Z

http://aip.scitation.org/doi/10.1063/1.4825321
http://dx.doi.org/10.1063/1.4825321
http://hdl.handle.net/10468/4722


Analysis of the breakdown spot spatial distribution in Pt/HfO2/Pt capacitors using
nearest neighbor statistics
X. Saura, J. Suñé, S. Monaghan, P. K. Hurley, and E. Miranda

Citation: Journal of Applied Physics 114, 154112 (2013); doi: 10.1063/1.4825321
View online: http://dx.doi.org/10.1063/1.4825321
View Table of Contents: http://aip.scitation.org/toc/jap/114/15
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/949446391/x01/AIP-PT/JAP_ArticleDL_050317/PTBG_instrument_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Saura%2C+X
http://aip.scitation.org/author/Su%C3%B1%C3%A9%2C+J
http://aip.scitation.org/author/Monaghan%2C+S
http://aip.scitation.org/author/Hurley%2C+P+K
http://aip.scitation.org/author/Miranda%2C+E
/loi/jap
http://dx.doi.org/10.1063/1.4825321
http://aip.scitation.org/toc/jap/114/15
http://aip.scitation.org/publisher/


Analysis of the breakdown spot spatial distribution in Pt/HfO2/Pt capacitors
using nearest neighbor statistics

X. Saura,1 J. Su~n�e,1 S. Monaghan,2 P. K. Hurley,2 and E. Miranda1

1Departament d’Enginyeria Electr�onica, Universitat Aut�onoma de Barcelona, 08193 Cerdanyola del Valles,
Barcelona, Spain
2Tyndall National Institute, University College Cork, Cork, Ireland

(Received 20 August 2013; accepted 1 October 2013; published online 21 October 2013)

The breakdown spot spatial distribution in Pt/HfO2/Pt capacitors is investigated using nearest

neighbor statistics in combination with more conventional estimation methods such as the

point-event and event-event distance distributions. The spots appear as a random point pattern over

the top metal electrode and arise as a consequence of significant localized thermal effects caused by

the application of high-voltage ramped stress to the devices. The reported study mainly involves the

statistical characterization of the distances between each failure site and the nearest, second nearest,

… kth nearest event and the comparison with the corresponding theoretical distributions for a

complete spatial randomness (CSR) process. A method for detecting and correcting deviations from

CSR based on a precise estimation of the average point intensity and the effective damaged device

area is proposed. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825321]

I. INTRODUCTION

Reliability analysis of metal-insulator-metal (MIM)

and metal-insulator-semiconductor (MIS) devices typically

involves electrical characterization techniques such as time-

dependent dielectric breakdown (TDDB) and time-zero dielec-

tric breakdown (TZDB) tests.1 TDDB and TZDB tests consist

in the application of constant and ramped electrical stress,

respectively, until the detection of a sudden jump or an anoma-

lous noise increment in the measured signal. These changes

reveal the occurrence of a single or multiple breakdown (BD)

events which physically correspond to the formation of

filamentary-like leakage current paths across the dielectric

film.2 In the case of hard BD, this process is associated with

important thermal effects and lateral propagation of the dam-

age which can result in the evaporation of the metal electrode

at the failure site.3 Filamentary conduction has been previously

reported to occur in SiO2 in MIS structures4,5 as well as in

many other dielectric stacks in MIM structures mainly in con-

nection with the resistive switching effect.6,7 It is often

assumed in reliability studies that the BD spot generation in

MIM and MIS structures is well described by a 2-dimensional

complete spatial randomness (CSR) process, also referred to in

literature as a Poisson process.8 This is well supported by the

area dependence of the Weibull distribution for the time-to-first

BD event in TDDB tests.9 Although this spatio-temporal fail-

ure generation model is also consistent with the successive BD

statistics for uncorrelated events, TDDB characterization is for

practical reasons restricted to only a few breakdown events per

device.10 In general, both TDDB and TZDB do not provide

direct information about the location of the failure sites over

the device area unless special purpose structures are consid-

ered. In this regard, Alam et al.11 were able to determine the x
and y coordinates of successive BD events by tracking the evo-

lution of the current distribution in four-terminal MIS transis-

tors. However, because of the gate current increase after each

BD event and the consequent loss of sensitivity, this Van der

Pauw-like electrical localization technique is, again, limited in

practice to a few events which prevents a detailed investiga-

tion of their spatial distribution. In Ref. 11, this limitation was

circumvented by considering a Monte Carlo simulation of the

BD spot generation process compatible with the observed cur-

rent distribution at the four device terminals. On the other

hand, in recent papers, we have demonstrated that it is possible

to generate a large number of BD spots in MIS and MIM

structures using ramped voltage stress.12,13 As the images

taken through an optical microscope reveal, the damage

caused to the structures can be of such magnitude that perma-

nent marks on the top metal plates become easily perceptible

as random point patterns, which makes the application of the

methods of spatial statistics feasible.14 In addition, we demon-

strated that if the number of spots is sufficiently large, it is pos-

sible to detect departures from CSR associated with a

nonuniform distribution of the failure sites.13 Although these

inhomogeneities can affect first order estimators like the inter-

event distance distribution as well as second order estimators

like the pair correlation function, a systematic approach capa-

ble of characterizing these divergences has not been developed

yet. In this work, numerical and functional estimators like the

intensity plot, the event-event and the point-event distribu-

tions, which help to understand the structure of BD spot pat-

terns in Pt/HfO2/Pt capacitors, are discussed. An accurate

method for assessing and correcting the average point intensity

estimator based on a thorough analysis of the kth nearest

neighbor distance distribution up to the fiftieth order is also

reported. The statistical analysis presented in this paper was

carried out using the Spatstat package for R language.15

II. SAMPLE FABRICATION

The statistical study of the BD spot distribution was per-

formed on MIM capacitors with circular area electrodes of

radius R¼ 113, 282, and 423 lm. The devices were fabri-

cated as follows: 200 nm-thick thermal SiO2 layers were
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grown on n-type Si(100) substrates with resistivities of 1–4

X cm. MIM capacitors were formed on the insulating layers

by first depositing Pt (200 nm-thick) by electron-beam

(e-beam) evaporation. The samples were then placed in a

Cambridge NanoTech Fiji atomic layer deposition (ALD)

system where HfO2 (30 nm-thick) was deposited using

TEMAHf precursor and H2O. The samples were then

returned to the e-beam evaporator and a Pt layer

(200 nm-thick) was deposited on top of the HfO2 layer.

Lithography and lift-off processes were used to form arrays

of capacitors with different radius. Access to the bottom Pt

metal was enabled via a dry etching technique using a

mask/resist process that removes the HfO2 to the bottom Pt

metal while at the same time protecting the top Pt metal of

the patterned devices. In addition, the oxide extends 25 lm

beyond the perimeter edge of the top metal. The relative

j-value of the HfO2 film extracted from capacitance-voltage

measurements is 20. The probe station camera was used to

capture the BD spot patterns shown in this work.

III. BD SPOT PATTERN GENERATION AND
STATISTICAL ANALYSIS

Application of TZDB tests from 0 V to 8 V and from

0 V to 10 V to two capacitors with the same radius

(R¼ 113 lm) lead to the generation of multiple BD spots

on their top metal plates as illustrated in Figs. 1(a) and 1(c),

respectively. As expected, the number of spots is larger in

the second case because of the higher maximum stress volt-

age applied. In the first case, the spot pattern consists in

N¼ 77 events with an average intensity k¼ 1.92 � 10�3

points/lm2, while in the second case the pattern consists in

N¼ 529 events with k¼ 1.32 � 10�2 points/lm2. k is calcu-

lated as the number of points divided by the nominal area

of the device. The degradation process is accompanied by a

remarkable increase of the leakage currents that flow

through the structures and which largely exceed the limit of

our measurement unit (100 mA). In what follows, the BD

spot patterns will be mathematically treated as point pat-

terns, i.e., the spot size will be disregarded. As it will be

shown below, this has a major statistical consequence

mainly in the short distance range. Figures 1(b) and 1(d)

illustrate the interevent distance histograms corresponding

to Figs. 1(a) and 1(c), respectively. The solid lines were cal-

culated using the expression,

pðrÞ ¼ 2r

R2

2

p
cos�1 r

2R

� �
� r

pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

4R2

r" #
0 < r < 2R;

(1)

FIG. 1. (a) Breakdown spot distribu-

tion corresponding to a ramped voltage

stressed device (0 V to 8 V) and (b) is

the interevent distance histogram. The

number of events is N¼ 77. (c) A simi-

lar device is stressed now from 0 V to

10 V. (d) is the corresponding intere-

vent distance histogram. The number

of events is N¼ 529. The solid curves

were calculated using expression (1)

with R¼ 113 lm.
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which corresponds to the probability density function (PDF)

for the distances between randomly dropped points on a

circle of radius R (see Appendix A). In Spatstat, the circular

capacitor is represented by a single connected closed poly-

gon with 128 vertices. Notice that the histograms do not

agree completely with a CSR process, the most significant

deviations occurring at the longest distances, and it is also

clear that the difference reduces for a higher density of

points. However, a central problem with this kind of

approach, especially in the second case (N¼ 529), is that the

large number of distances considered N(N� 1)/2¼ 139656

hinders the analysis of what is actually happening at the tails

of the distribution.

In order to achieve a deeper insight into the point process

characteristics, two conventional functional estimators are

considered: first, F, the empty space function or point-event

distance distribution and second, G, the nearest neighbor func-

tion or event-event distance distribution.14 F is the cumulative

distribution function (CDF) of the distance from a fixed point

in the plane to the nearest point of the process and can also be

interpreted as the probability that a randomly located disc of

radius r contains at least one event. The estimate of F is a use-

ful statistics summarizing the sizes of gaps in the pattern. On

the other hand, G is the CDF of the distance from a typical

point of the process to the nearest other point of the process.

Deviations between the empirical and theoretical G curves

may suggest spatial clustering or spatial regularity. F and G
are estimators widely used in spatial statistics analysis. As it

will be shown below, G can be generalized to higher neighbor

orders. Remarkably, both F and G have the same CDF for a

CSR process (see Appendix B),

FðrÞ ¼ GðrÞ ¼ 1� expð�kpr2Þ r > 0; (2)

where k is the average point intensity. Notice that expression

(2) assumes an unbounded observation window so that edge

effects can in principle introduce some biasing in the estima-

tors and in particular can lead to an overestimation of the

mean nearest neighbor distance. This is similar to censoring

effects in lifetime models.8,15 A variety of edge-corrected

estimators for F (Kaplan-Meier, Reduced Sample, Chiu-

Stoyan) and G (Kaplan-Meier, Reduced Sample, Hanisch)

have been proposed in the literature and they are illustrated

in Fig. 2.14 As it can be seen, the edge-corrected estimators

do not differ significantly among them. Moreover, it will be

shown below that edge-effects do not play a critical role in

our case. However, notice that while the estimated F mainly

deviates at the long distance range, G departs from CSR at

the short distance scale. Remarkably, the estimated G for

N¼ 529 (Fig. 2(d)) indicates that there are less nearest neigh-

bors than expected for a Poisson process with the same aver-

age point intensity. This pseudo-inhibition of nearby points

is in a large extent a consequence of having disregarded the

size of the spots which can be in the range from 1 lm to

3 lm. As shown in Figs. 3(a) and 3(b), the metal electrode is

completely molten at the failure sites and the modification of

the metal electrode extends over a range of around 1.5 lm.

As a consequence, the resulting structures are far more com-

plicated than simple points. These micro-scale explosions,

which in some cases exhibit a surrounding halo (see Fig.

3(b)), are consistent with early reports on the surface genera-

tion of BD spots in thick-oxide MOS devices4 as well as

with more recent gate oxide integrity studies.5 Nevertheless,

FIG. 2. (a) and (b) correspond to the

point-event distance distribution F
with N¼ 77 and N¼ 529 events,

respectively. The point patterns are

shown in Figs. 1(a) and 1(c). km refers

to Kaplan-Meier, rs to Reduced

Sample, cs to Chiu-Stoyan corrections,

and theo to expression (2). (c) and (d)

correspond to the event-event distance

distribution G with N¼ 77 and

N¼ 529 events, respectively. han
refers to Hanish correction.
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a clear limitation of both the F and G estimators is the range

of distances that can be analyzed, which for understandable

reasons decreases as the number of point increases. In order

to overcome this restriction, exploration of the distances to

second nearest-neighbor, third nearest-neighbor, and even

farther neighbors has been suggested as a way to investigate

patterns at different scales.16 As an illustrative example,

Fig. 4 shows the kth-nearest neighbor distances for k¼ 1 to

k¼ 5 for a typical BD spot pattern. Notice how the average

distance between the joined points increases with the neigh-

bor order. This multiscale approach will be used next to

detect inhomogeneities in the spot pattern.

The CDF for the kth-nearest neighbor distance is given

by the expression (see Appendix C),

GkðrÞ ¼
1

ðk � 1Þ! Cðk; pkr2Þ k ¼ 1; 2; 3::::; (3)

where C is the incomplete gamma function of order k. For

k¼ 1, the event-event distribution G given by expression (1)

is recovered. To illustrate the effects of considering very dis-

similar patterns on the Gk estimator, two cases are analyzed

in detail. In this example, a device with radius R¼ 282 lm

has been stressed twice in order to increase the number of

BD spots. Figures 5(a) and 5(b) show the corresponding in-

tensity plot and the CDF Gk (k from 1 to 5) after the first

stress (N¼ 182, k¼ 7.3�10�4 points/lm2), respectively.

Notice that in this case, the nearest neighbor distances (solid

lines) are shorter than expected for a CSR process with the

same intensity (dashed lines), which is seemingly, although

FIG. 4. Typical breakdown spot distri-

bution and its kth nearest event map (k
from 1 to 5).

FIG. 3. (a) AFM image of a breakdown spot. (b) Distribution of BD spots as

observed through an optical microscope.

154112-4 Saura et al. J. Appl. Phys. 114, 154112 (2013)



not conclusive, an indication of clustering. The difference

between the empirical and theoretical curves increases for

higher neighbor order. In fact, this is not a consequence of a

genuine attraction process but a result of the low density of

spots close to the periphery of the device. This observation is

consistent with the larger than unity pair correlation function

values reported in Ref. 9 for the same devices. In the case of

Figs. 5(c) and 5(d), the point intensity is higher (N¼ 969,

k¼ 3.9�10�3 points/lm2) and the empirical distances are

longer than those for a CSR process. Again, this is because

the size of the spots was neglected. As expected, this devia-

tion reduces as the neighbor order increases and thus as the

distance range under test increases. In order to show that the

observed features do not arise because of a bounded observa-

tion window but as a consequence of the absence of points

close to the periphery of the device and because of the finite

size of the spots, Figs. 6(a) and 6(b) show Gk plots for two

simulated point processes with N¼ 200. In the first case, the

spots are generated just within an inner circle with a radius

shorter (0.9R) than the actual device radius (see Fig. 6(a)).

Notice that this particular distribution yields a parallel shift

of the empirical Gk estimators toward the longer distance

range. In the case of Fig. 6(b), the events are strictly mathe-

matical points. No significant difference can be detected

between the empirical and theoretical distributions for the

typical device size and point number considered in this

work.

Since a nonuniform BD spot distribution is apparently

detected in our samples (see for example Fig. 5(c)), an im-

mediate question arises concerning the significance of the

average spot density calculated simply as the observed num-

ber of events over the area of the device: in what extent is

this value a reliable measure of the process intensity given

that the periphery of the devices exhibits such a peculiar

behavior? In order to answer this question and to give a

quantitative measure of this deviation, the following property

of the estimator Gk is invoked:

rk ¼

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

2
kp

vuut
; (4)

where rk is the distance corresponding to the mode (maxi-

mum of the PDF gk) of the distribution for the kth-order

event-event distribution (see Appendix C). Expression (4)

can be rearranged as

Ak ¼ pr2
k ¼

1

k
k � 1

2

� �
; (5)

where now, Ak is the area of the disc associated with the

most frequent observed event-event distance at the order k.

We call Ak the kth nearest neighbor disc area. Notice the lin-

ear relationship with slope 1/k between Ak and k-0.5

expressed by Eq. (5). In this connection, Fig. 7 illustrates

FIG. 5. (a) and (b) correspond to the

intensity plot and the Gk (k from 1 to

5) distributions, respectively, for a de-

vice with R¼ 282 lm and N¼ 182

events. (c) and (d) correspond to the

same device after a second ramped

voltage stress. In this case N¼ 969

events.
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three cases of interest (two of them revisited): (a)

R¼ 113 lm with N¼ 77 and N¼ 529 events, (b) R¼ 282 lm

with N¼ 182 and N¼ 969 events, and (c) R¼ 423 lm with

N¼ 322 and N¼ 1440 events. The circles correspond to the

cases with the lowest density of spots, while the squares cor-

respond to the highest density cases. The maximum order

considered is k¼ 50 in order to avoid edge effects. The

dashed lines are the theoretical values for Ak considering

k¼N/A, where N is the number of events and A the area of

the device. The solid lines in either case are linear fits to the

experimental data from which the effective value keff is cal-

culated using Eq. (5). Table I summarizes the obtained

results for the three samples with different damage levels

investigated. Notice that keff> k in all the cases. From keff,

and assuming for simplicity that the number of points

remains unchanged, it is possible to estimate the effective ra-

dius Reff of the most damaged device area. In Fig. 8, the ex-

perimental and theoretical lines corresponding to the highest

density of spots are illustrated for comparison. In all the

cases analyzed, Reff<R is obtained, which indicates a higher

concentration of events towards the center of the structures.

It is worth mentioning that the occurrence of a low-density

BD spot region, which approximately consists in an outer

annulus 10 lm width, can only be observed in the two largest

area devices (R¼ 282 lm and R¼ 423 lm) analyzed. Even

though there is no clear explanation yet on what causes this

anomaly, it has been observed that severely stressed devices

exhibit a huge accumulation of marks toward the center of

the structure regardless of their shape, circular or rectangu-

lar. These results require further investigation but local

dielectric constant deviations, thickness nonuniformities, or

strain effects associated with the lift-off process could be

behind the observed phenomenon. In principle, as reported

in Ref. 9, the spatial scale of the fringing electric field at the

FIG. 7. Evaluation of the area of the disc corresponding to the kth nearest

neighbor for devices with different radius and number of points: (a)

R¼ 113 lm with N¼ 77 and N¼ 529 points, (b) R¼ 282 lm with N¼ 182

and N¼ 969 points, and (c) R¼ 423 lm with N¼ 322 and N¼ 1440 events.

The circles correspond to the lowest number of events while the squares to

the highest number. The solid lines were obtained using expression (5) with

keff whereas the dashed lines were obtained with the same equation using

k¼N/A, where N is the number of points and A the area of the device (see

Table I for the parameter values).

FIG. 6. Analysis of a simulated random point process with N¼ 200. (a)

shows the Gk (k from 1 to 5) theoretical and empirical distributions for a pro-

cess without points close to the periphery of the device. In (b), the points fol-

low a spatial random process. Notice that no edge effect is observable.
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edge of the capacitors does not seem to correlate to the spa-

tial scale of the low BD spot density region.

IV. CONCLUSIONS

In this paper, it is has been shown that the assumption

of a 2D homogeneous Poisson process for the breakdown

spot spatial distribution in MIM structures does not always

hold true. In order to demonstrate that deviations can

indeed occur in such structures, a number of numerical and

functional estimators like the event-event and point-event

distributions were investigated. A novel methodology based

on the analysis of the kth nearest neighbor disc area was

shown to be useful to quantify the observed departures

from complete spatial randomness. Finally, it is worth

emphasizing that the method reported here is general and

can be applied to any other system or structure exhibiting

similar distribution of events.
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APPENDIX A: EVENT-EVENT DISTANCE DISTRIBUTION

The PDF of the distance r between two points randomly

dropped on a circle of radius R is derived here using

Crofton’s theorem.17 If P is the probability that the two

points are separated by a distance between r and r þ Dr and

P1 is the same probability when one of the points is on the

circumference of the circle then,

AdP ¼ 2ðP1 � PÞdA; (A1)

where A ¼ pR2 is the area of the circle and dA ¼ 2pRdR the

differential area. Since the area of the annulus sectionSin

Fig. 9 is

S ¼ 2arccos
�

r=ð2RÞ
�

rDr (A2)

the probability P1 is given by

P1 ¼
S

pR2
¼ 2rDrcos�1ðr=ð2RÞÞ

pR2
: (A3)

Substituting expression (A3) into Crofton’s formula (A1)

and rearranging terms we get

R4dPþ 4R3PdR ¼ 8rDrRcos�1ðr=ð2RÞÞ
p

; (A4)

which after integrating and using the zero-probability event

p ¼ 0 for r ¼ 2R yields

pðrÞ ¼ 2r

R2

2

p
cos�1 r

2R

� �
� r

pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

4R2

r" #
0 < r < 2R:

(A5)

TABLE I. Summary of the obtained results. R is the nominal device radius,

N the number of events detected, k the average point intensity, keff the effec-

tive average point intensity, and Reff the effective radius of the damaged de-

vice area.

R [lm] N k [lm�2]¼N/pR2

keff [lm�2]

from Eq. (5)

Reff

[lm]¼ (N/pkeff)
0.5

113 77 1.92 � 10�3 1.97 � 10�3 111.52

529 1.32 � 10�2 1.35 � 10�2 111.49

282 182 7.28 � 10�4 1.02 � 10�3 237.45

969 3.88 � 10�3 4.19 � 10�3 271.10

423 322 5.73 � 10�4 7.63 � 10�4 366.54

1440 2.56 � 10�3 2.66 � 10�3 414.63

FIG. 9. Scheme for the calculation of the interevent distance distribution of

randomly dropped points on a circle of radius R.

FIG. 8. Comparison of the area of the disc corresponding to the kth nearest

neighbor for devices with different radius and the maximum number of

points achieved. The solid lines were obtained using expression (5) with keff,

whereas the dashed lines were obtained with the same equation using

k¼N/A (see Table I for the parameter values).
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Integrating Eq. (A5), we can also calculate the CDF PðrÞ

PðrÞ ¼ 1þ 2

p
r2

R2
� 1

� �
cos�1 r

2R

� �

� r

pR
1þ r2

2R2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

4R2

r
0 < r < 2R: (A6)

APPENDIX B: CONTACT DISTRIBUTION

Let PðrÞ be the probability of finding no points within

a distance rof some fixed point (see Fig. 10). For a CSR

process with intensityk, the probability that there will be a

point in an infinitesimal annulus between the distances r and

r þ Dr is 2pkrDr. The probability that there are no points

within r þ Dr is by independence the probability that there

are no points within rtimes the probability that no point

occurs in the region between r and r þ Dr, that is,

Pðr þ DrÞ ¼ PðrÞð1� 2pkrDrÞ: (B1)

Considering Dr ! 0, we arrive at the differential equation

dPðrÞ
dr
¼ �2pkrPðrÞ; (B2)

which, under the condition Pðr ¼ 0Þ ¼ 1, gives

PðrÞ ¼ expð�pkr2Þ: (B3)

The empty space function or point-event distribution is

defined as FðrÞ ¼ 1� PðrÞ, that is,

FðrÞ ¼ 1� expð�pkr2Þ: (B4)

Therefore, the PDF for the contact distribution is given by

the expression

f ðrÞ ¼ 2pkrexpð�pkr2Þ: (B5)

APPENDIX C: k th NEAREST NEIGHBOUR
DISTRIBUTION

For a CSR process with intensity k, the probability of

having at least k points in a circle of area A ¼ pR2 is given by

Pðn;AÞ ¼ 1�
Xk�1

i¼0

ðkAÞi

i!
expð�kAÞ: (C1)

The probability that the kth nearest point is found in the

interval r þ Dr equals to the probability that this point is

located in the annulus with inner and outer radius r and

r þ Dr, respectively. Assuming Dr ! 0, we get

Pðk; k 2 DAÞ ¼ Pðk; pðr þ DrÞ2Þ � Pðk; pr2Þ; (C2)

which after differentiating with respect to r yields

gkðrÞ ¼
2ðpkÞk

ðk � 1Þ! r2k�1expð�pkr2Þ k ¼ 1; 2; 3::::: (C3)

Equation (C3) gives the PDF of the distance from an arbitra-

rily chosen point to its kth nearest neighbor (see Fig. 11). rk

is the maximum of gk and is given by expression (4).

Remarkably, substituting m ¼ pkr2 in Eq. (C3) yields

gkðrÞ ¼
mk�1

ðk � 1Þ! expð�mÞ k ¼ 1; 2; 3::::; (C4)

which corresponds to the Erlang distribution of order k.

Finally, the CDF reads

GkðrÞ ¼
1

ðk � 1Þ! Cðk; pkr2Þ k ¼ 1; 2; 3::::; (C5)

where Cðk; tÞ ¼
Ð x

0
tk�1e�tdt is the lower incomplete gamma

function of order k. For k¼ 1, we obtain the event-event

CDF

GðrÞ ¼ 1� expð�kpr2Þ: (C6)
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