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Abstract—In this paper, an economic Model Predictive Control
(MPC) is used to investigate the effects that arise from the
model mismatch between the control and the system. It is shown
that the average electrical power is affected by the modelling
discrepancies, but that the performance is still acceptable. A
move-blocking technique is incorporated into the structure of
the control horizon of the MPC, where the move-blocking
decreases the computational burden whilst maintaining system
performance, hence drastically reducing the optimisation solving
time. The MPC with the move-blocking incorporated is then
tested on the most significant mismatch, where it is shown that
the control horizon of the MPC can be drastically reduced while
maintaining system performance.

Index Terms—Model predictive control; Electrical optimisa-
tion; System mismatch; System Robustness

I. INTRODUCTION

Many wave energy converter (WEC) designs have been
proposed to maximise the power extraction from ocean waves,
[1]. In the work presented here a cylindrical point absorber
with a semi-hemispherical base is used due to its simplistic
linear design and suitability for array formations [2]. A linear
permanent magnet generator (LPMG) is utilised as a realistic
power take off (PTO) to produce the control forces leading to
power maximisation.

In recent times the importance of active control for WEC
systems has been emphasised, as it allows for greater power
extraction while protecting the device. One of the first control
techniques to be used was reactive control (impedance
matching) [3], in which the velocity of the WEC is controlled
to be in phase with the monochromatic excitation force. This
effectively produces impedance matching which results in
maximum average power. Latching control is another type of
classical control that was developed for monochromatic waves
[4]. Latching control produces a similar phase lock effect to
the reactive control, except that it uses a discontinuous control
force to control the system. These methods were originally
developed for monochromatic excitation waves, though some
have been adapted to accommodate polychromatic irregular
excitation waves, with suboptimal performance [5], [6].

Lately there have been further developments in advanced
control methods, such as bang-bang [7], pseudo spectral [8]

and MPC [9]. In this work, MPC is utilised because of its
ability to produce optimal results in the presence of realistic
mechanical and electrical constraints. MPC maximises the
average power over a prediction horizon by minimising an
economic cost function [10]. It has been shown in [11],
that simply maximising the mechanical average power
was insufficient when extracting electrical power; therefore
including the PTO losses within the optimisation was shown
to be imperative.

In previous work [12], a long prediction horizon and a
perfect (matched) model was assumed, hence allowing the
control system to produce the ideal optimal control for the
system. In this work the effects of model mismatch and
optimisation simplification is examined. Since WEC dynamics
can be uncertain and may indeed vary over their lifetime,
due for example to biofouling [13], the performance of the
control system may therefore in reality become sub-optimal,
leading to mechanical and electrical degradation if the
systems constraints are exceeded. Here a study is presented
to investigate how the performance of a point absorber under
MPC depends on the model accuracy.

Constrained optimisation forms the basis of most MPC
control laws, which makes it advantageous over other control
methods. However, the computational load that comes with it
is undesirable [14]. In this work, an assessment of different
control horizon curtailments is carried out to try to simplify
the online complexity of the MPC optimisation, whilst not
sacrificing the performance of the system. Using a move-
blocking technique [15], the number of free variables in the
control horizon can be drastically reduced while maintaining a
similar high performance as a standard economic MPC with a
longer control horizon. This curtailment reduces the amount of
unnecessary computational power that would have previously
been used to calculate the inconsequential control horizon
variables.

The performance of the MPC with reduced control horizon
is then analysed when a model mismatch occurs between
the control and system. This shows that there needs to be
a balance where the minimum control horizon is found while
maintaining high performance.



II. MODELLING

A. Hydrodynamics

max

min

Fr(t) Fe(t) Fh(t) FPTO(t)

ż(t)

η(t)

Fv(t)

Fig. 1. System model with WEC and PTO

A cylindrical wave energy converter point absorber which
is restricted to move in the heave direction is assumed in
this paper. The model is based on linear wave theory. The
hydrodynamic model (1), as shown in Fig. 1, consists of
the hydrostatic force Fh(t), the radiation force Fr(t), the
excitation force Fe(t), controlled PTO force FPTO(t) and the
non-linear viscous force Fv(t). Initially in this paper, Fv(t)
is neglected, since it adds unnecessary complexity into the
individual characteristic mismatch analysis.

Mz̈(t) = Fh(t) + Fr(t) + Fe(t) + Fv(t) + FPTO(t) (1)

This could be modelled as the integro-differential equation
(2), where the WEC heave displacement is z(t), WEC velocity
is ż(t), the wave elevation is η(t) and the wave velocity η̇(t).
The hydrostatic force Fh(t) is a function of the displacement
z(t), where β is the linear hydrostatic spring constant. The ra-
diation force Fr(t) is a convolution integral from the Cummins
transformation [16], where the radiation kernel hr(t) and the
added mass mµ are found using WAMIT [17]. The non-linear
viscous force Fv(t) depends on the relative velocity between
the WEC and wave and the PTO force FPTO(t) is a control
system produced force,

(M +mµ) z̈(t) +

t∫
0

hr(τ)ż(t− τ)dτ + βz(t)

+Cvis(t) (ż(t)− η̇(t)) = (M +mµ) (uq(t) + v(t))

(2)

where the scaled forces, uq(t) and v(t) are,

uq(t) =
FPTO(t)

M +mµ
v(t) =

Fe(t)

M +mµ
(3)

The excitation force Fe(t) is a non-causal convolution integral
of the wave elevation η(t), where the excitation kernel he(t)
was found using WAMIT [17].

Fe(t) =

t∫
−∞

he(τ)η(t− τ)dτ (4)

The radiation kernel hr(t) can be expressed as a summation
of complex exponentials (5), where the parameters µi and ci
can be found from impulse response data hr(t) using Prony’s
method,

hr(t) ≈ h̃r(t) = c1e
µ1t + c2e

µ2t + c3e
µ3t + ...+ cne

µnt

(5)

The radiation force, Fr(t), can then be transformed into the
Laplace domain as Fr(s) = sHr(s)Z(s), where,

Hr(s) = L {h̃r(t)} =
bms

m + bm−1s
m−1 + ...+ b0

sn + an−1sn−1 + ...+ a0
(6)

This is readily transformed into the following continuous time
state-space model (7),

ẋr(t) = Arxr(t) +Br ż(t)

Fr(t) = Crxr(t) +Dr ż(t),
(7)

where xr(t) ∈ Rn,Ar ∈ Rn×n,Br ∈ Rn,Cr ∈ R1×n.
By temporarily neglecting viscous effects, the entire contin-

uous system can be represented in the following state-space
format (8),

d

dt

 z(t)
ż(t)
xr(t)

 = Ac

 z(t)
ż(t)
xr(t)

+Bcuq(t) + Fcv(t) (8)

Ac =

 0 1 0

− β
M+mµ

− Dr
M+mµ

− Cr
M+mµ

0 Br Ar



x(t) =

 z(t)
ż(t)
xr(t)

 y(t) =

[
z(t)
ż(t)

]
Bc =

 0
1
0

 ,
where Ac ∈ Rn+2×n+2, Bc ∈ Rn+2×1, Fc = Bc, x(t) ∈
R(n+2)×1 and y(t) ∈ R2×1

B. Linear Permanent Magnet Generator PTO

In this paper, a realistic Power Take Off (PTO) utilising
a converter connected Linear Permanent Magnet Generator
(LPMG) is used to transfer electrical energy into a mechanical
force FPTO(t), where this scaled PTO force is represented as,

uq(t) =
FPTO(t)

M +mµ
= −

λ
′

fdiq(t)
π
τ

M +mµ
= −iq(t)ψ (9)

where λ
′

fd = p
2λfd, λfd is the flux linkage, p is the

number of poles and τ is the pole pitch. This realistic PTO
has associated losses, which must ne taken into account when
maximising the electrical power extracted from the wave, [11],



[18]. In this work a cascade control scheme is used, where an
economic MPC sends piecewise linear set points to a faster
inner control loop that controls the current of the LPMG
to produce the desired PTO force. Field weakening is not
included within the optimisation as it is assumed for simplicity
that the non-linear voltage constraint is ignored.

C. Model Predictive Control

The objective of this economic MPC is to maximise the
average electrical power absorbed from the combined WEC
and LPMG system, where the average power is represented as
(10),

Pe = − 1

T

T∫
t=0

(
(M +mµ)uq(t)ż(t) +

R

ψ2
u2q(t)

)
dt (10)

This continuous average electrical power equation can be
transformed into a discrete form using the trapezoidal rule.
This discrete average electrical power approximation J(k) (11)
can be maximised using quadratic programming (QP) over the
prediction horizon N , to produce the optimal PTO forces over
the horizon uq(k + i).

J(k) =
1

2
uq(k +N)ż(k +N) +

N∑
i=1

uq(k + i)ż(k + i)

+
R(M +mµ)

(λ
′
fd

π
τ

)2

(
1

2
u2
q(k +N) +

N∑
i=1

u2
q(k + i)

) (11)

1) Prediction model: To implement MPC as the main outer
controller, the system is discretised using a First Order Hold
(FOH). The FOH produces an outer piecewise linear trajectory,
which is easily tracked by a faster inner PI current controller.
The discrete state space model is,

xf (k + 1) = Afxf (k) +Bf∆uq(k + 1) + Ff∆v(k + 1)

yf (k) = Cfxf (k)
(12)

xf (k) =

 x(k)
uq(k)
v(k)

yf (k) =

[
y(k)
uq(k)

]

Af =

 eAcTL Λ Λ
0 1 0
0 0 1

 ∈ R(n+4)×(n+4)

Bf =

 Γ
1
0

Ff =

 Γ
0
1

 ∈ R(n+4)×1

where Λ = A−1c
(
eAcTL − I

)
Bc ∈ R(n+2)×1, Γ =

1
TL
A−1c (Λ− TLBc) ∈ R(n+2)×1 and TL is the outer sampling

time.
The output vector of the system can be predicted over the

prediction horizon (13), where it is assumed that the future
excitation wave forces are known,

ŷf (k) = Pxf (k) +Ha∆ûq(k) +Hw∆v̂(k). (13)

where

ŷf (k) =


yf (k + 1|k)

:
:

yf (k +N |k)

P =


CA
CA2

:
CAN

 (14)

where P ∈ R3N×(n+4) and ŷf (k) ∈ R3N×1.

Ha =


CB 0 .. 0
CAB CB .. 0

: :
. . . :

CAN−1B CAN−2B .. CB

 ∈ R3N×N

(15)

Hw =


CF 0 .. 0
CAF CF .. 0

: :
. . . :

CAN−1F CAN−2F .. CF

 ∈ R3N×N

(16)
The cost function (11) can then be represented in matrix

form (17).

J(k) =
1

2
ŷf (k)TQŷf (k) (17)

where Q ∈ R3N×3N and M ∈ R3×3

Q =


M 0 .. 0
0 M .. 0

: :
. . . :

0 0 0 1
2
M

M =

[
0 0 0
0 0 1
0 1 2G

]

and
G =

R(M +mµ)

(λ
′
fd
π
τ )2

,

yielding,

J =
1

2
∆ûq

THT
a QHa∆ûq + ∆ûq

THT
a Q (Pxf +Hw∆v̂)

(18)

The semi-positive definite cost function (18) can be solved
using Quadratic Programming (QP) methods, which can be
used to minimise the cost function across the prediction
horizon, subject to constraints.

III. MODEL MISMATCH

In previous work there have been positive results in ab-
sorbing maximum electrical power from a cylindrical WEC.
However, typically the hydrodynamics model used in the MPC
control system was the same as the system simulation model
itself. For normal tracking MPC the system can track the
system reference points with some robustness; however, with
economic MPC the objective is to maximise the electrical
power which is dependent on the systems model and cost
function. With the MPC so finely tuned to maximise the
average electrical power from the ideal system, this mismatch
could lead to a reduction in the average electrical power



absorption. In this section the model mismatch effects between
the control model and the system is investigated.

The main factors of model mismatch include: the mass of
the WEC (which could increase due to future bio-fouling), the
hydrostatic stiffness coefficient (which would change if there
is dynamic change in cross sectional area), the radiation kernel
and the non-linear viscosity effect (which could fluctuate dur-
ing bio-fouling growth). For each of these factors the average
electrical power absorbed is compared against a matched and
a mismatched MPC system.

A. Mass Variation

In this section the mismatch between the WEC mass in the
control model and the system model is analysed. In reality
the modelling mismatch of the WEC mass should be very
little. However to vigorously test the control system during
this mass mismatch, the control model was kept constant at the
nominal plant model and the WEC model mass was varied by
±10% and ±20% from the nominal model. For this analysis
the system was excited by 1 m high monochromatic waves
and was controlled by a linearly constrained economic MPC;
the effects on the average electrical absorbed power from the
WEC mass mismatch is shown in Fig. 2. To have a fair analysis
of the mismatch, the same systems were then tested with
matching control models where the controller model has been
retuned to be the same as the perturbed plant. Fig. 3 shows
the ratio of the average power extracted from the mismatched
system to that obtained if the controller model is returned to
match the perturbed plant.

From Fig. 2 it is clearly shown that when the mass of the
WEC changes, there is an obvious shift in average electrical
power across the monochromatic spectrum. This figure shows
the effect that the change in WEC mass has on the average
power. However Fig. 3 shows that the results obtained from the
mismatched systems are not necessarily poor. Here it is shown
that the mismatched system performs well (with a power
ratio between 1 and 0.9) until the mismatched system starts
to operate in frequencies higher than 1.1 rad.s−1, where the
average electrical powers absorbed between the mismatched
and matched systems start to diverge.

B. Hydrostatic Stiffness Coefficient Variation

The mismatch between the control model and the system
model was then tested with changes in the hydrostatic stiff-
ness. It is known from other research that non-linear effects
produced from hydrodynamic Froude Krylov forces can affect
the performance of the system, especially if the system is
being actively controlled [19] or if the WEC has a variable
cross sectional area; which in this case, it does not. With
the employment of active control in this paper, it is essential
that the mismatch in the hydrostatic stiffness coefficient is
thoroughly tested. As before, the average electrical power
absorbed from the mismatched system was compared against
the average power absorbed from the fully matched model
when excited by 1 m high monochromatic waves.
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Fig. 2. Average electrical powers during a WEC mass mismatch of (a) +10%,
(b) −10%, (c) +20%, (d) −20% and (e) a fully matched system
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Fig. 3. Power ratio (average power from mismatched system/average power
from matched system) during a WEC mass mismatch of (a) +10%, (b)
−10%, (c) +20%, (d) −20%

The average electrical power absorbed from the mismatched
models are shown in Fig. 4, while the ratio of the average
power absorbed from the mismatch to the matched systems
(with controller model returned to match the perturbed system)
are shown in Fig. 5.

As seen in Fig. 4, when there are mismatches between the
system model and the control model, there are minor aver-
age power differences after 0.9 rad.s−1. However, there are
substantial average power differences over lower frequencies
(i.e. 0.1 × 106 W between systems with a 0% and +20%
mismatch at 0.7 rad.s−1). Therefore the extracted average
electrical power from the system is highly dependent on the
change in the hydrostatic stiffness coefficient. Even though
the average power significantly fluctuates depending on the
hydrostatic stiffness, the mismatch between the control model
and the system model seems to have hardly any effect on
the amount of average electrical power absorbed from the
mismatched system, as can be seen in Fig. 5. The worst case
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Fig. 4. Average electrical powers during a hydrostatic stiffness coefficient
mismatch of (a) +10%, (b) −10%, (c) +20%, (d) −20% and (e) a fully
matched system
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Fig. 5. Power ratio (average power from mismatched system/average power
from matched system) during a hydrostatic stiffness coefficient mismatch of
(a) +10%, (b) −10%, (c) +20%, (d) −20%

was during the −20% model mismatch where the the power
ratio dropped to 0.88. Furthermore, the use of an MPC with
a hydrostatic stiffness mismatch in the control model can still
produce an acceptable amount of average electrical power.

C. Radiation Kernel Variation

This subsection focusses on the mismatch between the
control model and the system model in terms of uncertainty
in the radiation kernel. The mismatched system was tested
as before where the mismatched system was excited with
1 m high monochromatic waves. The system mismatch was
achieved by varying the gain, poles and zeros of the radiation
kernel within the mismatch percentages of 10% and 20%. To
test this mismatch in an unbiased manner, multiple variations
of the mismatched radiation kernels had to be analysed since
the radiation kernel is dependent on a number of parameters.
The amount of tested randomised radiation kernel systems
was increased until the mean average electrical power values

equalled the average power absorbed from an ideal matched
system.

Fig. 6 shows the monte-carlo results for the average elec-
trical power absorbed from the system with a radiation kernel
mismatch percentage of ±10% and ±20%. For example at
0.7 rad.s−1, the range of power extracted is anywhere between
0.28 and 0.36 MW, for combinations of the kernel parameters
(gains, zeros and poles) perturbed in the range ±20% about
their nominal values.
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Fig. 6. Average electrical power for a) matched, b) ±10% and c) ±20%
mismatch. The ±10% and ±20% boundaries are also shown.

The change in radiation kernel has a great effect on the ab-
sorbable average electrical power, as shown in Fig. 6. To have
a fair comparison, the power extracted for the mismatched
radiation kernel systems that caused the maximum and mini-
mum average power points for both ±10% and ±20% are now
compared to the performance of the matched control systems.
Fig. 7 shows the power ratio, comparing the average power
extracted when the system radiation kernel is mismatched to
the controller, to the average electrical power extracted when
the controller model is retuned to match the system. It is
shown that over low frequencies of (0.4− 1.05) rad.s−1 that
the mismatched control model produce acceptable results since
the power ratio is higher than 0.9 for both ±10% and ±20%
cases. However for frequencies > 1 rad.s−1, the power ratios
for the mismatched system begin to degrade. The worst case is
when the minimum power for a 20% mismatch in the radiation
kernel during high frequencies, leading to a power ratio of
0.25. This may seem unacceptable, however depending on the
spectrum of the excitation waves, the power content at those
frequencies may actually be inconsequential.

D. Non-Linear Viscosity Variation due to Biofouling
The non-linear viscosity force Fv(t), is based on the semi-

empirical Morison equation [20],

Fv(t) = −Cvis(t) (ż(t)− η̇(t)) (19)

where,
Cvis(t) =

1

2
ρCdA |ż(t)− η̇(t)| .
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Fig. 7. Power ratio (average power from mismatched system/average power
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±20%, (d) min power ratio for ±20%

Here ρ is the density of water, Cd is the drag coefficient [21]
and A is the cross sectional area of the point absorber. In recent
research there has been a focus on the non-linear effects that
viscosity has on the performance of the system [22]. The non-
linear contribution of viscosity is shown in the system model
(20),

d

dt

 z(t)
ż(t)
xr(t)

 = Ac(t)

 z(t)
ż(t)
xr(t)

+Bcuq(t)+Fcv(t)+Ec(t)η̇(t)

(20)
where,

Ac(t) =

 0 1 0

− β
M+mµ

− (Dr+Cvis(t))
M+mµ

− Cr
M+mµ

0 Br Ar


Fc = Bc =

 0
1
0

 Ec(t) =

 0
Cvis(t)
M+mµ

0

 x(t) =

 z(t)
ż(t)
xr(t)


(21)

Variations in the viscosity force could be caused by increas-
ing growth of biofouling on the WEC itself, which could
change the hydrodynamic properties of the WEC. Further-
more, it is important to analyse the effects that the mismatched
control model has on the average power absorbed from the
viscous system, since the viscous drag coefficient could vary
around a certain value in practice. In [22] it was shown that
with the inclusion of the non-linear viscosity term in the hydro-
dynamics, that the average power production was drastically
reduced. A non-linear economic MPC was implemented which
showed that the average power could still be maximised even
with viscosity included. A linear MPC was then implemented
which showed promising results that concluded that a constant
linear viscosity approximation used in a linear MPC could
produce similar results to a computational expensive non-
linear MPC.

In this work, the non-linear viscosity drag coefficient is
inserted into the hydrodynamic system excited again by 1 m
high monochromatic excitation waves. The economic MPC
with a linear viscous approximation, as shown in [22], is used
in this work. Fig. 8 shows the resulting absorbed average
electrical power found from ±10% and ±20% mismatched
viscous coefficient. Here there is a small variation in the
absorbed average power. Fig. 9 shows the power ratio that the
matched system has against the mismatched system. In this
case the matched system used the non-linear MPC from [22],
to produce the best possible results for the matched system. It
is shown in Fig. 9 that the power ratios for both the ±10% and
±20% cases are all above 0.91; therefore the linear viscous
approximated MPC is acceptable for use when the viscosity
is uncertain.
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Fig. 8. Average electrical powers during a non-linear drag coefficient
mismatch of (a) +10%, (b) −10%, (c) +20%, (d) −20% and (e) a fully
matched system
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IV. MOVE-BLOCKING CONTROL HORIZON

Economic MPC controller typically uses a control horizon
of Nc < N free control choices over the prediction horizon.
The computational burden can be lowered by decreasing Nc,
but at the cost of reducing performance.

As shown in section. III, all the system mismatches between
the control model and system model can affect the amount of
absorbable average electrical power. In this section, the effects
of a reduced control horizon Nc on the mismatched systems
performance is investigated. Two types of control horizons are
used in this paper. First a standard control horizon reduction
is applied where the control variables ∆uq(k + i) are set to
zero after the first Nc steps of the prediction horizon,

∆uqh(k) =

[
INc 0Nc×Nr

0Nr×Nc 0Nr×Nr

]
∆uq(k),

where Nr = (N −Nc).
The second being a move-blocking technique where the

Nc control variables are appropriately spread out across the
prediction horizon N , with the control variables concentrated
over the early stages of the prediction horizon,

∆uqm(k) =


Φ1 0 . . . 0
0 Φ2 . . . 0
...

...
. . .

...
0 0 . . . ΦNc

∆uq(k)

where,

Φj =
[

1nj×1 0nj×(nj−1)
]
∈ Rnj×nj ,

where matrix n ∈ RNc×1 and
Nc∑
j=1

nj = N .

It is clearly shown from the waveforms in Fig. 10 that as
the control horizon Nc decreases, the control action across
the prediction horizon becomes more disjointed and diverges
from the control waveform when Nc = N ; this results in
the deterioration of average power. However, by incorporating
a move-blocking system in the control horizon, less control
variables need to be calculated. Therefore, there needs to be a
balance between minimising the amount of control variables
and maintaining an acceptable amount of absorbed average
power.

A. Move-Blocking Control Horizon Performance

First, the performance of the MPC with a perfect (matched)
hydrodynamic model was investigated using a full control
horizon, a reduced control horizon and a move-blocking
control horizon. For all tests, a 1 m monochromatic excitation
wave was used; linear constraints were assumed for WEC
heave and velocity and for the PTO force. Fig. 11 shows the
average electrical powers absorbed from the system when the
different types of control horizons were used. When a standard
reduced horizon is used with Nc = 30, the average power has
drastically diminished when compared to the average power
results found when using a full control horizon with Nc = N .
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Fig. 10. A comparison between the control variables uq(k+ i) created when
using a full control horizon (Nc = 100) and when a move-blocking control
horizon of (a) Nc = 25,(b) Nc = 15, (c) Nc = 10 and (d) Nc = 7 is used

However, when a move-blocking control horizon of Nc = 10
was used, the average power extracted was observed to be
very close to that obtained with a full control horizon of
Nc = N = 100. However, any decrease from Nc = 10
with the moving-block technique resulted in a degradation of
the average power. Nevertheless, the average power results
from the move-blocking technique for Nc < 10 show much
improved power levels when compared with the standard
control horizon reduction with a much greater control horizon
Nc.

To show the serious advantages of using a move-blocking
control horizon, the average optimisation solution times for
the unconstrained and linearly constrained problems were
recorded. As shown in Fig. 12, the difference between the
solution times for constrained and unconstrained MPC is very
clear. However, for both unconstrained and constrained cases
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Fig. 11. Average electrical power absorbed when (a) a full control horizon
is used, (b) a move-blocked control horizon of Nc = 10 is used, (c) a move-
blocked control horizon of Nc = 7 is used and (d) a reduced control horizon
of Nc = 30 is used

the solve time decreases as the control horizon Nc decreases,
with the constrained optimisation solution time decreasing
at a much higher rate than the unconstrained optimisation.
Furthermore, this figure also shows the corresponding power
ratio obtained for the various control horizons. The power
ratio here is the ratio of the average power extracted using
a reduced move-blocking horizon against the average power
extracted when a full control horizon is used. It is clearly
shown that as the control horizon Nc is reduced, the power
ratio stays at unity until the control horizon Nc < 15, when the
power ratio begins to decrease. From this figure, it is shown
that the optimisation of the problem can be simplified without
diminishing the performance of the average power extraction
from the system.
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Fig. 12. (Left axis) The optimisation solve time vs the control horizon Nc (a)
with constraints, (b) without constraints; (Right axis) The power ratio (average
power from an MPC with control horizon Nc/average power from an MPC
with a full control horizon) vs the control horizon Nc (a) with constraints (b)
without constraints

B. System Robustness during system mismatch

Here the move-blocking technique, as shown in section. IV,
is used on a mismatched system where the robustness of the
system will be analysed. From section. III it was shown that
some mismatches within the system can affect the average
power extracted from the system, with some characteristics
having more of an effect on the outcome than others. Here
the hydrostatic mismatch (section III-B) in the system is used
in the robustness analysis since it affects the average power
extraction the most at lower frequencies, where the system
will spend the majority of its operating time.

To test the robustness of the system, the move-blocking
technique was used on the mismatched hydrostatic system
where a −20% hydrostatic stiffness coefficient was used;
1 m high monochromatic waves are used in this analysis.
The resulting extracted average electrical power from the
mismatched system are shown in Fig. 13. From Fig. 13 it
is shown that to some degree, the inclusion of the move-
blocking technique does not cause any significant difference
in performance. It is only when the control horizon has been
decreased to the point (Nc = 10) where ∆uq(k+ 2) is forced
to become the same as ∆uq(k+1) that the average power starts
to significantly deviate from the average power extracted when
using a full control horizon.
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Fig. 13. Average electrical powers during a hydrostatic stiffness coefficient
mismatch of −20% when a control horizon of (a) Nc = 100 (full control
horizon), (b) Nc = 25, (c) Nc = 15 and (d) Nc = 10

On the other hand, when move-blocking results in a
∆uq(k+2) and ∆uq(k+1) which are equal to each other, the
calculated PTO force ∆uq(k) becomes damped; this is shown
in Fig. 14. This damped PTO force control action can lead to
problems in satisfying the hard constraints.

In Fig. 15 it is shown for a 1 m high monochromatic
wave with a frequency of 0.419 rad.s−1 that the heave of the
WEC and LPMG stay within the heave limitation of ±3.5 m
when a control horizon of Nc = 100 is used. However,
when a control horizon of Nc = 10 is implemented, the
PTO force (Fig. 14) becomes more damped and the heave
of the system starts to exceed the heave limitation, which
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Fig. 14. The scaled PTO force uq(t) during a 1 m, 0.4487 rad.s−1

monochromatic excitation wave when an MPC with a control horizon of (a)
Nc = 100 (full control horizon) and (b) Nc = 10 are used

could cause damage. If the control horizon Nc is too low, then
there is a higher chance of ∆uq(k + 2) = ∆uq(k + 1) which
would degrade the systems performance. However, as stated
in section. IV-A, if the control horizon Nc is selected too high,
then the optimisation solve time will increase. Therefore, there
needs to be a compromise where the move-blocking control
horizon is wisely chosen to have the lowest possible control
horizon whilst having acceptable system performance which
obeys the systems constraints.
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Fig. 15. The WEC heave z(t) during a 1 m, 0.6613 rad.s−1 monochromatic
excitation wave when an MPC with a control horizon of (a) Nc = 100 (full
control horizon) and (b) Nc = 10 are used

V. CONCLUSION

In section. III, each characteristic in the hydrodynamic
model was analysed with a degree of model mismatch in-
troduced between the control system and the actual system.
System model characteristics such as, WEC mass, hydrostatic
coefficient, the radiation kernel and the coefficient Cd of
the non-linear viscosity were varied by up to ±20% from

the control model. The results showed that each mismatch
introduced a certain degree of average electrical power loss
when it was compared to the average electrical power absorbed
from a fully matched system. Sections. III-A and III-C showed
the effects that the mismatches had on the average electrical
power. These two section showed similar results where the
difference in average power between the mismatched and
fully matched systems was acceptable up to 1 rad.s−1. For
frequencies ω > 1 rad.s−1 the average power between the
matched and mismatched systems started to diverge. From a
mathematical point of view, this seems unacceptable. However,
from a practical point of view the fundamental frequency of
a realistic excitation wave spectrum would be much lower,
therefore the effects from the higher frequencies would seem
negligible. The mismatch effects shown in section. III-D
are nearly inconsequential, considering that the power ratio
between the matched and mismatched systems was no worse
than 0.92. Section. III-B showed that at lower frequencies
(frequencies that would actually be active during a realistic
sea spectrum), there were large changes in average electrical
power when the hydrostatic coefficient varied between ±20%
(eg. at 0.65 rad.s−1 there was 0.155 MW of a difference in
average power between the systems with a ±20% hydrostatic
coefficient mismatch). Even though the smallest power ratio
produced from the hydrostatic coefficient mismatch was 0.88,
this power ratio drop occurred during the lower frequencies
where there would be a much greater effect due to the system’s
inherent sensitivity to hydrostatic coefficient changes.

In section. IV, a move-blocking technique was incorporated
into the control horizon. The move-blocking method allowed
for a reduction of the number of free control variables needed
to be calculated. Unlike other control horizon minimisation
techniques where a reference trajectory is used, the move-
blocking technique is better suited to this economic MPC
application due to its ability to represent the pseudo periodic
nature of the control action across the prediction horizon with a
small number of free control variables. It was shown in section.
IV-A that this economic MPC can still produce an exceptional
amount of power even with a reduced control horizon of
Nc = 10 whilst reducing the optimisation computation time
by 87%.

In section. IV-B, the move-blocking technique was then
tested on a mismatched system, with a −20% mismatched
hydrostatic coefficient. It was shown that the inclusion of
move-blocking in the control horizon had a minor affect on
the absorption of average electrical power when compared to
a full control horizon. However, it was clear that if the control
horizon was set low enough yielding ∆uq(k+1) = ∆uq(k+2)
then the control action would dampen, which then causes
the system to exceed the systems constraints which may lead
to damage. Therefore, using a move-block technique for the
control horizon whilst operating in a mismatched system is
highly advantageous once the allocation of the control vari-
ables within the control horizon are arranged in a manner that
there is enough resolution at the beginning of the prediction
horizon.
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