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Abstract The electronic properties of the HfO2/MoS2 interface were investigated using multi-

frequency capacitance-voltage (C-V) and current-voltage characterization of top-gated MoS2 

metal-oxide-semiconductor field effect transistors (MOSFETs). The analysis was performed on 

few layer (5 - 10) MoS2 MOSFETs fabricated using photolithographic patterning with 13 nm and 

8 nm HfO2 gate oxide layers formed by atomic layer deposition after in-situ UV-O3 surface 

functionalization. The impedance response of the HfO2/MoS2 gate stack indicates the existence 

of specific defects at the interface, which exhibited either a frequency dependent distortion 

similar to conventional Si MOSFETs with unpassivated silicon dangling bonds, or a frequency 

dispersion over the entire voltage range corresponding to depletion of the HfO2/MoS2 surface, 
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consistent with interface traps distributed over a range of energy levels. The interface defects 

density (Dit) was extracted from the C-V responses by the high-low frequency and the multiple-

frequency extraction methods, where a Dit peak value of 1.2×10
13

 cm
-2 

eV
-1

 was extracted for a 

device (7-L MoS2 and 13 nm HfO2 ) exhibiting a behavior approximating to a single trap 

response.  The MoS2 MOSFET with 4-L MoS2 and 8 nm HfO2 gave Dit values ranging from 

2×10
11 

cm
-2 

eV
-1 

to 2×10
13 

cm
-2 

eV
-1 

across the energy range corresponding to depletion near the 

HfO2/MoS2 interface.  The gate current was below 10
-7

 A/cm
2
 across the full bias sweep for both 

samples indicating continuous HfO2 films resulting from the combined UV ozone and HfO2 

deposition process. The results demonstrated that impedance spectroscopy applied to relatively 

simple top-gated transistor test structures provides an approach to investigate electrically active 

defects at the HfO2/MoS2 interface and should be applicable to alternative TMD materials, 

surface treatments and gate oxides as an interface defect metrology tool in the development of 

TMD-based MOSFETs.  

 

Keywords    Molybdenum disulfide (MoS2), high-k dielectrics, interface defects, electrical 

characterization, top-gated transistors, capacitance – voltage (C-V). 

 

Introduction 

     Over the past decade, two-dimensional (2-D) materials have attracted considerable attention 

due to their atomically-thin structure and their unique electronic, optical and mechanical 

properties 
1–3

. Among these materials, transition metal dichalcogenides (TMDs) have 

demonstrated satisfactory energy bandgap values and promising properties for future 
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applications in electronics and optoelectronics 
4–17

. Molybdenum disulfide (MoS2), as the most 

explored TMD material, has been reported to exhibit an electron mobility of 55 cm
2 

/ V·s in a 

top-gated transistor with a single layer of MoS2 
4–6

, and a theoretical value of 410 cm
2 

/ V·s at 

room temperature 
7
. Moreover, compared with monolayer MoS2, few-layer MoS2 has been 

predicted and experimentally demonstrated as an excellent channel material to achieve high 

mobility and reduced contact resistivity 
8–12

. With the ultimate electrostatic control due to the 2-

D structure, an energy gap in the range of 1.2eV to 1.8eV, and the high mobility value, MoS2 is 

especially attractive for high performance, low power-consumption flexible electronics 
1,10,18,19

.  

     As the utilization of high dielectric constant (high-k) gate oxide  material in conventional 

silicon CMOS processing has been demonstrated to reduce the gate leakage and enable further 

scaling of transistors, high-k dielectrics are also considered extensively for TMD transistors 

5,10,11,16,18–28
. In addition, high-k materials can suppress the coulombic scattering in low 

dimensional nanostructures, increasing the carrier mobility, as shown in the literature with both 

theoretical simulation 
20

 and experimental evidence 
5,11

. Although back gated structures are ideal 

for contact and doping research on TMD transistors 
8,29,30

, top gate devices are more attractive 

for integrated circuit manufacturing. Thus, investigating high-k deposition on TMDs and 

understanding the interface properties is an important scientific and technological research area.  

     An obstacle of integrating high-k dielectrics on these 2-D materials is the lack of bonds 

available at the surface that enables thin film deposition 
21,22

. Many top-gated transistors in the 

literature adopted thick gate dielectric deposition, usually from 15 nm to 50 nm 
5,11,16,23

, to avoid 

pin holes and non-uniformity in the dielectric. Recently, multiple surface functionalization 

methodologies have been reported for thin, uniform high-k dielectric deposition on MoS2 
22,24–27

. 

Metal seed layers 
24

, oxygen plasma treatment 
22,25

 and ultraviolet-ozone (UV-O3) treatment 
26,27
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4 

 

are promising pre-deposition approaches to gain a uniform dielectric layer. However, since the 

ultimate goal of these approaches is the enhancement of electronic device performance, detailed 

reports on device performance related to the impacts of these treatments is vital, but only shown 

in a few papers 
24,25,31

. Our previous research suggested that defects existed at the high-k/MoS2 

interface region after an ex-situ UV-O3 treatment 
28

, but the gate oxide leakage on these large 

area MOS structures affected the analysis, due to the rough surface of the bulk MoS2 sample and 

relatively large capacitor area. Recently, Azcatl et al., 
26,27

 reported that the non-destructive (i.e., 

no Mo-oxide formation) in-situ UV-O3 treatment featured a uniform atomic layer deposited 

(ALD) high-k oxide without unexpected interfacial layers for exfoliated MoS2.  

     Impedance measurements are recognized as one of the fastest and most robust methods to 

investigate properties of a dielectric and its interface with the underlying substrate. However, 

impedance measurements of metal/high-k dielectric/TMD MOS system have only been reported 

in a limited number of works 
10,11,18,31–33

. Most publications report capacitance - voltage (C-V) 

curves without further analysis 
10,11,32

, or back-gated capacitors with high-k deposited on Si 
33

. 

Recently, S. Park et al.
31

 reported C-V characteristics of capacitors with Al2O3 on 100-200 nm 

thick MoS2 yielding Dit values of 10
11 

cm
-2

eV
-1

 to 10
14

 cm
-2

eV
-1

. For high-k on chemical-vapor-

deposited (CVD) MoS2 thin films, a comprehensive study of dielectric impedance was 

performed, showing Dit extraction and modeling work based on capacitors with 30 nm ALD 

HfO2 on monolayer MoS2 with 2nm Al as an interfacial seed layer
18

. Another relevant and useful 

Dit extraction work has been reported by Takenaka et al.
33

, which uses the Terman method to 

analyze and compare interfaces of MoS2 and SiO2/HfO2/Al2O3. The extracted Dit values are 

about 1×10
13 

cm
-2

eV
-1 regardless of the dielectric selection for back-gated devices on semi-bulk 

MoS2. However, the device architecture may not be commensurate with the necessary solution 
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5 

 

for continued device scaling where top-gated architectures dominate.  Here, dielectric/substrate 

interfaces are dependent upon how device fabrication was executed, and therefore, should be 

investigated in this context.   

     In this work, we designed and fabricated top-gated transistors on exfoliated, few-layer MoS2 

as the test structures, with an in-situ UV-O3 functionalization 
26,27

 and 8 to 13 nm ALD HfO2 , 

which are among the thinnest high-k dielectrics on top-gate TMD MOSFETs to date. As we use 

photolithography for source/drain and gate patterning, the gated area is sufficiently large for C-V 

characterization. Both transistor performance and gate-stack interface properties were 

characterized, with an emphasis on the impedance spectroscopy of the dielectric. The interface 

defect density (Dit) was extracted and analyzed by three different methods. Besides reporting the 

interface properties of our transistors, the methodology can be potentially applied to other TMDs 

and surface functionalization, beyond MoS2 and UV-O3 treatment. 

 

Experimental Methods 

     The transistor structure used for the few-layer MoS2 MOSFETs examined in this work is 

shown in Fig. 1a. Before device fabrication, 270nm SiO2 was thermally grown on highly doped 

p-type Si wafers as a substrate. Few-layer MoS2 flakes were mechanically exfoliated from 

commercially available natural MoS2 crystals and transferred onto the SiO2. By using 

conventional photolithography, we aligned a source/drain pattern on the photomask directly on 

the selected flake. After patterning, Au/Ti (380/20nm) was deposited as contacts in an e-beam 

evaporator at 2×10
-6

 Torr, followed by a lift-off process. Thereafter, a 15-minute in-situ UV-O3 

surface treatment 
26

 was performed. The UV-O3 is generated based on irradiance from the fused 
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6 

 

quartz envelope, low pressure UV Hg lamp employed previously 
26,27

 and is estimated to be 5 

mW/cm
2
 which ensures no etching or Mo-oxide formation according to S. Park et al. 

31
  

Following the UV-O3 surface preparation, HfO2 was deposited at 200˚C in the ALD chamber 

immediately after the treatment without a break in vacuum. The thermal ALD used H2O and 

TDMA-Hf as the precursors, and started the deposition with a TDMA-Hf pulse. We intentionally 

avoided annealing the HfO2 after deposition to study the effects of the UV-O3 functionalization 

treatment and its role on HfO2/MoS2 interface properties without the impact of any subsequent 

annealing. The final step of fabrication was patterning and evaporating of Au / Cr (250/50nm) 

metal gate. The typical MoS2 thickness studied in our work was about 5-10 layers (3-6 nm). The 

device size was determined by both lithography and the flake shape. Electrical measurements in 

this work were performed using a Keithley 4200 Semiconductor Characterization System and an 

Agilent E4980A LCR meter at room temperature (25˚C) in a shielded probe station. 

 

    

Figure 1. (a) Schematic cross section of the top-gated MoS2 field effect transistor structure used in this work. Gate 

stack: Au / Cr / HfO2 / MoS2. (b) Cross sectional transmission electron microscopic image of the metal/HfO2/MoS2 

transistor gate stack. 13nm HfO2 is uniformly deposited on a 7-layer MoS2 flake, showing no evidence of 

unintentional oxidation of the MoS2 surface.  
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7 

 

 

Results and Discussion 

     A high-resolution transmission electron microscopic (TEM) image is shown in Fig.1b, 

illustrating the cross section of a device gate stack with 7 layer MoS2 and a 13 nm HfO2 

dielectric. The active channel length under the metal gate is 6.5 µm and the channel width is 9.5 

µm. Fig. 2a shows the IDS-VGS and the gate leakage characteristics for this MoS2 transistor. VDS 

was kept at 0.5V. An excellent on/off ratio of 10
6
 was observed, with an ultra-low leakage 

current on the gate. The MoS2 was intrinsically n-type doped, consistent with our previous 

observation 
28

 and literature reports 
5,8,24,29

. The relatively large negative threshold voltage (VT = 

-3V) is possibility due to the fixed positive charge in the dielectric layer(s). Similar large |VT| 

was also observed by other researchers using top-gated MoS2 transistors with high-k 

dielectrics
11,24

. Since the HfO2 is deposited at low temperature (200 
o
C) with no post deposition 

annealing (to assess the UV-O3 treatment without convolution from additional annealing), a 

possible net oxide charge being present in the HfO2 layer may result. Furthermore, possible 

contribution of induced charges in the underlying SiO2 from potential x-rays exposure during the 

electron beam deposition process – which was used to form the metal gate and source/drain 

regions – could occur. Thus, both oxide layers could possess trapped charge. Assuming the 

threshold voltage shift ∆V=-3V originates from oxide charges, the density of the positive fixed 

charges can be estimated by Qf / q= - Cox· ∆V / q = 1.4×10
13

 /cm
2
. Fig. 2b shows the IDS-VDS 

curves with VGS swept from -4 V to 0 V. A non-linear region was observed at low VDS, likely 

because of high resistance Schottky barriers at the source/drain contacts associated with this 

unannealed device 
5,34

.  This is expected, as there is no intentional doping in the MoS2 film in the 

source and drain region. As is the case in conventional 3D semiconductors, increasing the doping 
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8 

 

in the MoS2 film to high concentrations (> 1x10
19

 cm
-3

), for example via Nb doping 
35

, 

significantly reduces the specific contact resistivity at the Ti/MoS2 interface. In addition, it is 

noted from Fig.1a that the top-gated MOSFET has non-gated regions between the gate edge and 

the source and drain contacts (approximately 1-2µm on each side), which is another source of 

series resistance in the structure. 

 

  

   

Figure 2. Electrical characterization of device with 13 nm HfO2 and 7-layer MoS2 (L=6.5µm,W=9.5µm). (a) IDS - 

VGS: ION / IOFF = 10
6
 with ultra-low gate leakage; (b) IDS – VDS with VGS from -4 V to 0 V; (c) C-V: frequency 
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9 

 

dependence, where a “hump” in the range -2.5 to -3.5 V is indicating an interface defect response. The 0.6 V stretch-

out of 500 kHz curve indicates the Fermi energy pinning at MoS2 / HfO2 interface.  

  

 

Figure 3. (a) ID-VG and multi-frequency C-V overlayed to illustrate the impact of Dit in both measurements occurs 

at the same Vg. SS is degraded due to interface traps and Dit =1.6 × 10
13

 cm
-2

eV
-1

 is estimated. (b) Energy band 

diagram of high-k / MoS2 interface and equivalent circuits. (i) At gate voltages higher than -2.8 V or lower than -3.4 
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10 

 

V, the total AC capacitance is due to the Cox and CMoS2 connected in series. (ii) At gate voltage between -3.4 V and -

2.8 V, the EF is pinned at interface, and there is an AC response at low frequencies due to Dit but no AC response at 

high frequencies.  

     To investigate the electronic properties at HfO2/MoS2 interface, the source and drain were 

connected to one terminal of the LCR meter, while the gate is connected to the other terminal. 

Variable frequency C-V measurements were conducted. The back gate contact was intentionally 

floated to minimize the effect from oxide charge in the underlying SiO2. The frequency 

dependence is shown in Fig. 2c. Since this transistor operates in accumulation mode, the reaction 

of the majority carriers (electrons) to the ac signal is observed. In contrast to our previous study 

on the ex-situ UV-O3 treatment and bulk MoS2 crystals 
28

, these C-V frequency dependence 

results showed a highly improved high-k/MoS2 interface, with significantly less dispersion and 

lower gate leakage due to the in-situ UV-O3 treatment and the few-layer TMD thickness. The C-

V characteristics demonstrate an approximately constant capacitance for positive gate voltage, 

corresponding to the HfO2 gate oxide capacitance, and a decrease in capacitance in the region -

2V to -4 V, consistent with depletion of negative charge at the HfO2/MoS2 interface. It is noted 

that the region of surface depletion in the C-V response in Fig. 2c, is consistent with the sub-

threshold region in the transfer characteristics in Fig. 2a. The measured accumulation 

capacitance is 0.76uF/cm
2
. Based on cross section TEM images, the HfO2 is 13nm, and assuming 

a k value of 17 for ALD grown HfO2, this would yield a maximum capacitance value of 

1.1uF/cm
2
. The lower value obtained experimentally, suggests the possibility of a lower k value 

interface transition region between the HfO2 and the MoS2 which is not immediately obvious 

from the TEM analysis. 

Page 10 of 26

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

 

     In the capacitance-voltage response in the region -4 V to -2 V, a frequency-dependent 

distortion (“hump”) in the depletion region is observed, which is consistent with an electrically 

activated trap response at the high-k/MoS2 interface region. In conventional Si MOSFETs with 

either SiO2 or high-k oxides, this “hump” is usually attributed to interface traps which exhibit a 

peak density at a specific energy in the bandgap 
36,37

, and usually a forming gas anneal around 

400
o
C can passivate the defects 

38,39
, which are primarily silicon dangling bond (Pb) defects. The 

C-V response of Si control sample under the same ALD condition was reported in our previous 

work 
28

. HfO2 formed at low temperature (200
o
C), without any higher temperature annealing in 

N2 or H2/N2 can exhibit gap states which result in C-V hysteresis, interface defect response, and 

lower than expected dielectric constant. However, the HfO2/Si control sample will not be 

representative of the HfO2/MoS2 interface due to the different substrate material and interfacial 

condition. (e.g. The Si substrate surface will spontaneously form a SiO2-like interfacial layer 

during an ALD process, which primarily determines the interfacial property of the HfO2/Si 
40

). 

Published C-V frequency dependence data on a metal / (30nm) HfO2 / monolayer MoS2 gate 

stack was reported by Zhu et al. 
18

, where chemical vapor deposited (CVD) MoS2 was utilized in 

the device structure. Compared with the device based on CVD MoS2, this gate stack with 

mechanically exfoliated MoS2 shows much less frequency dispersion, suggesting significantly 

fewer interface defects. A limited study of the C-V frequency dependence on semi-bulk MoS2 

with Al2O3 has also been reported 
31

, where interface defects (Dit) ranging from 10
11 

cm
-2

eV
-1

 to 

10
14

 cm
-2

eV
-1

 were reported. However, the lateral shift of C-V curves possibly convoluted 

positive oxide charge with interface defects in the Dit extraction process. 

    The techniques that we are about to describe to analyze the Dit are only valid when the device 

is not fully depleted, which must be carefully adhered to when using very thin flakes. In this 

Page 11 of 26

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 

 

work, the flake is not fully depleted over the bias range where the Dit response is detected. If the 

MoS2 thin film is fully depleted, the capacitance should be 0 F (or at a constant number over a 

voltage range due to parasitic capacitance components) 
41

. As shown in Fig. 3a, at about -3V 

where interface traps are detected, the transistor is not fully turned off (i.e., not fully depleted and 

still has carriers in the flake responding to the AC signal). Further evidence, based on series 

resistance analysis (supporting information Fig. S1, S2), confirms that the device is not fully 

depleted in the Vg range used to analyze the Dit from the multi-frequency C-V measurements. 

Due to the influence of the interface traps, the inverse subthreshold slope (SS) also increases at 

around -3V. This change of SS is also consistent with the charging of MoS2/HfO2 interface traps 

providing an independent measurement technique indicating that the C-V response is detecting 

interface traps at the corresponding region of the C-V response. SS can be used to roughly 

estimate Dit since SS = 60mV· [1+(Cdm+Cit)/Cox], where Cdm is the capacitance of depleted MoS2 

and Cit is the capacitance due to interface traps. Thus, Cit and Dit  ( Cit/q ) can be estimated by 

comparing the change in SS around -3.8 V (110 mV/dec) and around -3.2 V (318 mV/dec). The 

calculated result gives Dit = 1.6×10
13

 cm
-2 

eV
-1

. 

     Next, we quantified the Dit from the C-V response (Fig. 2c). As the frequency is increased 

from 1 kHz to 500 kHz, this reduces the AC response of the interface defects to the measured 

capacitance, resulting in the dispersion of capacitance with frequency noted in the region from -

2.5 V to -3.5 V in Fig. 2c. In the limit of increasing frequency, the interface defects will only 

respond to the DC bias (high frequency Dit response), and the interface states will be evident as a 

“plateau” region of the C-V in the case where the interface states are located in a narrow band of 

energies. From Fig. 2c, at frequencies above 100 kHz, an approximate plateau region is observed. 

At 500 kHz this region extends from -2.8 V and -3.4 V. We interpret this 0.6V gate voltage 
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region to be due to the DC response of the defects 
42

. This is illustrated in schematic energy band 

diagrams in Fig. 3b, with surface Fermi level pinning due to interface states with a peak density 

in a specific energy in the band gap
(1)

. The total density of interface defects, in the areal density 

units of cm
-2

, can be estimated from the oxide capacitance and the width of the plateau region in 

the 500kHz CV response, and this yields an interface trap density Dit = 2.7×10
12 

cm
-2

. A more 

detailed calculation is shown in the supporting information S.3. Although the possibility that the 

defects still respond with AC signal at 500kHz could not be fully excluded, an abrupt C-V 

distortion due to peaked distribution of interface defects
42

 is consistent with our following Dit 

extraction and analysis. 

       

                                                           
(1) 

The plateau region is not a constant capacitance. This would only occur for a mono-energetic defect level at a 

temperature of zero K.  
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Figure 4. Dit extraction. (a) Dit vs VGS, calculated by High-Low Frequency method; (b) Re-plotted “Capacitance vs 

Voltage” to “Capacitance vs Frequency” (dots), and modeling (solid lines); (c) Dit vs VGS and τit vs VGS, from the 

modeling work in (b); (d) Comparison of two Dit extraction methods in (a) and (c), showing similar Dit distribution, 

with a Dit peak at 1.2×10
13

 cm
-2 

eV
-1

. 

     Fig. 4a shows the Dit calculated by the conventional high-low frequency method 
42

 from 

equations 

 

 

where capacitance of interface traps (Cit) represents the capacitance when all the traps reacted 

with AC signal at low frequency; CLF and CHF are the capacitance measured at 1 kHz and 500 

kHz respectively. In Fig. 4a, the polynomial function is a guide to the eye. Dit ranges from the 

order of 10
12

 to 10
13

 cm
-2

 eV
-1

, with a peak value of 1.2×10
13

 cm
-2

 eV
-1

. The peak value is one 

order of magnitude lower than what was reported in reference 
31

 using the same high-low 

frequency method, and aluminum oxide as the dielectric. It is in the same range as the defect 

density in literature for exfoliated MoS2 by photo-excited charge collection spectroscopy 
43

.  

Translating each gate voltage in Fig. 4a to a corresponding surface potential at the MoS2/HfO2 
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interface, requires a known value of the active n-type doping concentration in the MoS2.  This 

value is not readily known for the geological samples employed here, and as a consequence, the 

Dit versus energy in the MoS2 energy gap cannot be determined for these devices.  

     An alternative method was also employed to extract Dit 
18

. Instead of only using the C-V data 

of high and low frequencies, data from the complete span of frequencies was used, and using this 

approach both Dit and the trap time constant τit can be extracted. (The importance of τit is that one 

can extract the trap cross section, σ, and trap energy, ET, with temperature dependent 

experiments 
33

 to understand the physical origin of the interface traps, and this is beyond the 

scope of this work.) In this multi-frequency method, Cit is determined by Dit and τit at certain 

voltages. 

 

where ω=2πf, and f is the applied AC frequency. Thus, at certain voltages, Dit and τit can be 

extracted from the C-f or C-ω relationship. Fig. 4b shows the measured data (symbols) and 

model fit (lines) for the capacitance versus frequency for the voltage range corresponding to the 

interface defects response in the C-V characteristic.  From Fig. 4b, the values of Dit, and the 

corresponding τit values, can be determined at each gate voltage, and the characteristics are 

shown in Fig. 4c. The two methods are compared in Fig. 4d, demonstrating consistency between 

the two Dit extraction approaches. Detailed modeling work for these two methods can be found 

in S.3 and S.4. 

��� =  ����
�������

�                                                         (3)
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Figure 5. Electrical characterization and Dit extraction of a device with 8 nm HfO2 and 4-layer MoS2. (W=7.2µm, 

L=5.6µm) (a) IDS - VGS and gate leakage; (b) Corresponding IDS-VDS; (c) C-V: frequency dependence; C-V curves 

disperse in the entire depletion voltage range, indicating interface traps in range of energy levels; (d) Dit vs VGS and 

τit vs VGS, Dit ranges from 2×10
11 

cm
-2 

eV
-1 

to 2×10
13 

cm
-2 

eV
-1

, with both H-L frequency method and multi-

frequency method. 

     Due to possible variation in the electronic properties of exfoliated MoS2 flakes for differing 

samples, and within a given crystal, in addition to contaminants and the presence of surface 

defects 
44

, we applied the same methods on a different MoS2 transistor with 8nm HfO2 and a 4-

layer MoS2 flake to verify if the C-V analysis method is more broadly applicable. Fig. 5a and 5b 

shows the IDS-VGS, gate leakage and IDS-VDS characteristics of this transistor. The gated area is 
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width × length = 7.2 µm × 5.6 µm. Fig. 5c and 5d shows the C-V frequency dependence, along 

with the extracted Dit with two methods. The C-V frequency dispersion (Fig. 5c) suggests a 

different distribution of interface defects at the HfO2/MoS2 interface compared to the sample 

analyzed in Fig. 4. The frequency dependent C-V characteristics are consistent with an interface 

state density distributed throughout the MoS2 energy gap at the HfO2/MoS2 interface. Fig. 5d 

shows the Dit and τit extracted using high-low frequency and multi-frequency methods. The 

magnitude of Dit and τit are comparable to the 7-layer MoS2 flake MOSFET shown in Fig. 4, but 

in this case no peak in Dit is evident. Similar variation has also been reported in other 

publications using thicker MoS2 layers 
33

, and the variation from sample to sample (with 

nominally identical processing) is also manifest in the transport properties 
32

. This variability in 

interface and transport properties is most likely a consequence of the high density and variability 

of impurities and defects in both geological and grown MoS2.
44,45

 

     Interfacial sulfur vacancies 
46,47

 and other types of surface structural defects
48

 are the defects 

often observed by researchers, and can potentially generate these defect responses in the 

impedance measurement. One possible suggestion for the defect level which shows a peak 

response at a specific energy in the band gap (Fig. 4), is that the defect results from sulfur 

vacancies 
33

, which is reported to have an energy level of 0.35eV from mid gap, from 

measurements 
46

. The alternative behavior of an almost constant Dit across the energy gap (Fig. 

5), observed in this work and in literature 
33

, could be a consequence of the area of the certain 

devices not containing S vacancies within the gate area probed. Both cases (peaked Dit & 

uniform Dit) were also reported in Ref 33, showing C-V response of MOS capacitors on semi-

bulk MoS2 flakes, indicating that the samples that we report in this work are representative. We 

also suspect that the defect response observed in our devices can potentially originate from other 
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impurities and defects present in the flake source 
44,45

 (i.e., the exfoliated MoS2 crystal), which 

can exhibit equivalent surface density values in the range 1x10
12

 to 1x10
13

 cm
-2

. In addition, it is 

possible that the response could originate from defects located in an interfacial transition region 

between the MoS2 and the HfO2 
49–51

 because this methodology can also capture border trap 

response. This is also the subject of on-going studies.  

     This work provides a relatively easy fabrication procedure and robust electrical 

characterization methodology to study top-gated metal / high-k / TMD devices. The multi-

frequency C-V response of the structure is consistent with the existence of electrically active 

defects at the interface between high-k and MoS2. By combining with simulation and other 

physical characterization, a route to understand and passivate electrically active interface defects 

in high-k gate TMD MOSFETs is possible .  

 

 

 

Conclusion 

     In conclusion, we designed and photolithographically fabricated top-gated FETs on exfoliated, 

few-layer MoS2 flakes, with an in-situ UV-ozone functionalization treatment and 8nm to 13nm 

ALD HfO2 dielectrics. Both the transistor performance and the gate-stack interface properties 

were characterized electrically. Based on impedance spectroscopy of the HfO2/MoS2 gate stack 

in the MOSFET structure, Dit was extracted from the frequency dependence of the C-V response 

using two different methods. The interface state density values were in the range 1×10
12

 to 

1×10
13

 cm
-2 

eV
-1

 for the devices studied, with trapping time constants in the range 1x10
-5

 to 
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1x10
-6

 s. One device with 7-L MoS2 and 13 nm HfO2 as the gate oxide exhibited a C-V response 

consistent with a Dit distribution peaking at a value of 1.2×10
13

 cm
-2 

eV
-1

  at a specific energy in 

the MoS2 band gap. A second device with 4-L MoS2 and 8 nm HfO2 yielded Dit values ranged 

from 2×10
11 

cm
-2 

eV
-1 

to 2×10
13 

cm
-2 

eV
-1

 with no peak value of Dit observed. The device 

performance and interface properties indicate that the UV-ozone functionalization is promising 

for MoS2-based devices with high-k dielectrics to achieve low leakage, thin and continuous high-

k oxide layers, with interface state density values which allow modulation of the Fermi level at 

the HfO2/MoS2 interface.  The relatively simple MOSFET test structure, combined with the gate 

to channel C-V response, indicates the existence of specific electrically active HfO2/MoS2 

interface defects , and combining these results with simulation and other physical 

characterization methods, will provide an increased understanding of the physical origin of 

defects, as well as a method to monitor the impact of different high-k oxides and varying surface 

preparations on the interface state density at high-k/MoS2 interfaces.  

 

 

Supporting Information 

Proposed equivalent circuits of C-V characterization; Series resistance analysis and full depletion 

of MoS2 flake; Number of interface defects (Nit) extraction from C-V curves; Defects density 

(Dit) calculation by high-low frequency method; Dit and traps time constant τit extraction by 

multi-frequency method. 
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