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The response of a soft-phonon ferroelectric material subjected to a high-intensity optical pulse of
duration much shorter than the period of the phonon is modeled using a classical, finite-temperature
simulation. It is found that complete, permanent reversal of the orientation of the ferroelectric domains
may occur even when the energy per atom imparted by the light pulse is much less than the average
thermal energy. The result raises the possibility of using the effect to create optical switches or data

storage media with switching times less than 10 psec.

PACS numbers: 63.20.Ry, 42.79.Vb, 78.30.Hv, 78.47.+p

In recent years it has become feasible to excite co-
herent, large-amplitude vibrations in a crystal, using an
intense light pulse of duration (typically less than 1 ps)
much shorter than the period of the phonon [1-3]. On
the time scale of the atomic vibration, the primary effect
of the light pulse is to impart (through an appropriate non-
linear photon-phonon coupling, e.g., Raman coupling) an
approximately instantaneous impulse to the motion of the
atoms in the relevant mode of vibration—thus giving rise
to the name “impulsive scattering” for this process [1].
The resulting oscillations in the atomic positions, follow-
ing the application of the light pulse, can be probed in
real time by observing their effect on the reflectivity of
the material as atoms moving back and forth modulate
the electronic response [2,3]. Since the duration of the
optical pulse is very short and does not modify the subse-
quent, intrinsic dynamics of the atomic system, impulsive
scattering has provided a useful tool for the time-domain
investigation of phonon motion. In particular, because of
the large amplitude of atomic motion attainable, it is a
natural means for investigation of anharmonic effects [3].

In ferroelectrics, antiferroelectrics, and other soft-
phonon materials, the formation of domains is associated
with the development of a permanent nonzero phonon
displacement below the transition temperature 7, [4]. In
the vicinity of T., the phonon branches associated with
the phase transition show a very low frequency in a small
region of the Brillouin zone near the wave vector of the
soft mode, and anharmonic effects become important
at relatively small amplitudes. Below 7., the phonon
modes can be visualized as vibrations about the potential
energy minima of a double-well structure, each well
corresponding to a different domain orientation of the
material [5]. The soft modes, particularly in ferroelectrics
and antiferroelectrics, often couple strongly to scattered
light, so that conventional light scattering has provided
an effective tool for studying such soft phonons [6], and
impulsive scattering is especially effective in producing
large-amplitude motion [1,3].
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Our purpose in this paper is to analyze the large-
amplitude response of a soft-phonon material to impulsive
light scattering, using a finite-temperature, classical model
of the phonon dynamics. For very large-amplitude light
pulses, it will be shown that the domain structure is not
destroyed, but undergoes a coherent switching behavior
where entire domains have their orientation reversed,
without fragmentation. This coherent domain reversal
occurs for values of the light amplitude which lie within
broad windows, giving the effect a robustness which
suggests that the behavior is not dependent on the precise
details of the model used in the simulations presented
here, but should occur generally in soft-phonon materials
below 7T.. The switching of domain orientation occurs
within a few phonon periods, which is typically of the
order of 10 psec, raising the possibility of using the effect
in fast optical switches. The effect can persist even when
the energy per atom required for domain reversal is less
than 1% of the average thermal energy per atom. This
indicates that the domain reversal can be achieved without
substantial heating of the material. Indeed, the physical
process involved here is quite distinct from a heating-
reannealing effect.

The simplest model [5] containing the essential fea-
tures of a phonon branch associated with a soft-mode
transition is a set of harmonically coupled, damped os-
cillators (nearest-neighbor coupling spring constant k,
damping constant y, and mass m = 1), each in an an-
harmonic double-well potential u(x) = x* — ax?. (The
barrier height between the wells is a?/4, the minima oc-
curring at x = +,/a/2.) In this model the position of
each oscillator represents the local amplitude of the op-
tical mode associated with the phase transition.

By taking a nearest-neighbor coupling only, we are ne-
glecting, for example, the important long-range coupling
to the polarization field present in ferroelectrics [5,7].
However, for the purposes of the present general discus-
sion, such a coupling does not affect our qualitative con-
clusions. The essential feature we wish to represent is
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the softening of the phonon branch near the center of the
Brillouin zone. Throughout this paper we will assume
that we are considering the material below the structural
phase transition temperature, where the soft-phonon mode
of the high-temperature structure has acquired a perma-
nent nonzero amplitude.

In the one-dimensional case of this model, the small-
amplitude, harmonic oscillations about the well minima
have a dispersion relation given by

w? = 4a + 2k[1 — cosq],

where ¢ is the phonon wave vector, measured in units of
the inverse atomic spacing. Thus, the phonon branch is
substantially softened (i.e., has a frequency less than twice
the lowest frequency wp;, = 2+/a) over a fraction ap-
proximately y/a/k of the entire Brillouin zone [8]. In the
real materials of interest, this fraction is typically 10%—
30% in a given direction in the Brillouin zone [9], as long
as we are not too close to the transition temperature, so
that it is reasonable for illustrative purposes to use a ra-
tio k/a = 20 in our simulations. Parenthetically, we note
that, even within the model, the phonon frequencies are
temperature dependent, due to the anharmonicity of the
potential u(x) [8]. This choice of parameters places the
model in the “displacive” regime [10].

The fraction of the Brillouin zone over which softening
occurs is closely related to the equilibrium thickness of
a wall between domains of opposite orientation. Such
domain walls have a thickness of order m unit cells
[8]. We will make use of this point in the qualitative
interpretation of the coherent domain reversal found in
the numerical simulations.

The choose an appropriate value for the damping y
to model the real system, we note that typically the soft
phonons are strongly damped [1,3,9] (as determined by
the phonon linewidth), so that a Q factor of 10 or less is
to be expected. For the zone-center mode in our model,
the Q factor is \/a /vy, suggesting a value of y of the
order of \/a /10 or larger to be appropriate. It will turn
out that y plays a crucial role in determining the width
of the windows of values for the pulse energy which give
coherent domain reversal, larger values of y giving wider
energy windows.

In order to examine numerically the collective dynam-
ics of the system, we have performed finite-temperature
simulations on large arrays of oscillators (approximately
10*-105) with nearest-neighbor coupling. The equations
of motion for the system are

i),‘ = '—4X? + 2axi + kZ(Xj - x,~) - YV, + n, (1)
j

where v; = x;, j varies over nearest neighbors of i, and 7
is a random force term (proportional to ykgT) satisfying
the fluctuation-dissipation theorem [11] for temperature
T. The damping and random force terms represent the
anharmonic coupling of the modes in the phonon branch
under consideration with all the electronic and vibrational

degrees of freedom of the crystal not explicitly contained
in the model.

We achieve an initial thermalization of the system at
a specified temperature by evolving the system under
thermal forces after starting with all atoms at the positive
minimum (x; = y/a/2) of the double-well potential. Note
that the thermalization time, though sufficient for relaxa-
tion of the positions within one domain, is not long
enough to allow substantial domain-wall creation or
annihilation at low temperature, so that it is necessary to
set up the initial condition of the system with a definite
polarization.

Having reached thermalization of the positions and
velocities of the particles, the effect of the optical pulse
is reproduced [1] by adding an impulse V to the velocity
of each particle; i.e., v; = v; — V. For a large system,
this increases the average kinetic energy per particle by
V2/2. As we will see below, this increment to the average
energy per particle may be large or small compared to the
average thermal energy, but it is important to note that the
impulse contributes initially only to the motion associated
with the zone-center vibrational mode.

Shown in Fig. 1 is the final average polarization (i.e.,
the average value of x;) of a two-dimensional system
of 200 X 200 oscillators, having evolved according to
the equations of motion for a time 5/ after an initial
velocity pulse V, for various values V. The temperature
kgT = 0.25 is equal to the barrier height for the single-
particle potential u(x), which is approximately a factor
of 20 smaller than the paraelectric transition temperature
found in simulations of the system. (Note that a time of
5/7y, which is of the order of 10 psec for many materials
of interest, is long enough for the initial pulse of energy
to be damped, though not necessarily long enough for
annealing of any domain walls formed.) Also shown
in Fig. 1 is the variance of the final positions. A large
variance indicates the presence of multiple domains in the
system at the end of the evolution time.

The original domain is not permanently altered until the
pulse energy V2/2 approximately equals the barrier height
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FIG. 1. Final average polarization X and variance o2 of

position versus initial pulse velocity V for a system of 200 X
200 oscillators evolving according to Eq. (1). The parameters
are y = 0.1, k = 20, a = 1, and k3T = 0.25.
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in u(x). Very close to this value of V, we see a sudden
increase in the variance of the final positions of the atoms,
indicating that fragmentation of the initial single-domain
structure has occurred. This fragmentation is permanent
on the time scale of our simulation. However, as the
pulse velocity V is increased slightly, the fragmentation
decreases again and the entire single domain remains
intact but undergoes a reversal of direction. Over a
window of values between V = 0.74 and 0.88, essentially
no fragmentation occurs. At a higher threshold near V =
0.89, fragmentation again occurs before the final domain
orientation returns to its initial value for a range of values
of V above 0.90.

To understand this behavior, let us first consider a
system at zero temperature. Since an identical velocity
pulse is given to each particle, the entire system merely
follows the dynamics of a single particle in the potential
u(x), with the damping y. In this situation, the final state
of the particle is either at y/a/2 or at —/a/2. Which
value it finally takes depends on how many times the
particle can climb over the barrier in u(x) before damping
reduces its energy below the barrier height. If it can
pass the barrier an odd number of times, it has a final
value of —\/a/2. Otherwise, it has a final value \/a/2.
The width of the first energy window above the first
threshold is equal to the energy lost due to damping
during one half-period of the motion, i.e., the energy lost
to damping in moving from x = 0, x > 0 back to x = 0,
x < 0 (see Fig. 2). For small damping v, the motion is
approximately periodic and the first energy window above
threshold has a width W = y2a+/2a /3. Note that this
width is proportional to the damping 7y, so that a broader
phonon line width gives a broader energy window.

This pattern of windows of values of V giving intact
domains of alternating orientation, separated by narrow
thresholds where substantial domain fragmentation occurs
persists as the temperature is increased. The most notable
aspect of the behavior shown in Fig. 1 is the fact that
the energy threshold over which fragmentation occurs is
much smaller than the temperature of the system. Thus,
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FIG. 2. Phase-space (x,x) diagram for the single particle in
an anharmonic potential u(x) = x? — x* with damping y = 0.1,
showing the trajectories separating regions of initial conditions
which lead to opposite final polarization x = ++/2 /2.
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although in the example the temperature equals the barrier
height and the thermal kinetic energy of each particle
is comparable to the energy barrier in u(x), with an
associated fluctuation in its velocity, this does not give
rise to a comparable uncertainty in the value of V entering
into the “single-particle” analysis of barrier passage given
above.

This behavior can be understood when we realize that
the coupling of neighboring atoms prevents an individual
atom from changing its displacement too much from that
of its neighbors. Thus, it is not possible to form a long-
lived domain fragment less than a certain critical size.
We would expect the linear dimension of this critical
domain fragment to be proportional to the thickness of
a static domain wall and, certainly, the critical fragment
must have a size at least twice the domain wall thickness.
In the present model, this means that we would expect
the critical domain fragment size to be proportional to
Vk/a and the number of atoms in this fragment to be
proportional to (k/a)?/?, where d is the dimension of the
system.

This allows us to give a qualitative analysis of the
fragmentation and the average final polarization near the
threshold, as follows: We assume that there is a typical
domain fragment size Np which acts as an independent
entity, i.e., for which the coupling to the rest of the
system can be approximately ignored. The velocity of the
center of mass of this unit has a Gaussian fluctuation AV
with a standard deviation equal to \/kgT /Np, where kp is
Boltzmann’s constant. We now treat this entity as in a
single-atom problem (ignoring its coupling to other parts of
the system), but with the temperature reduced by a factor of
Np. We assume that if the initial (center of mass) velocity
of this unit (the impulse velocity V plus the given value of
the random thermal velocity AV) is greater than a threshold
value V,, the final polarization of the unit will be negative.
It is then straightforward to show that a large system will
have a final average polarization near threshold,

V-V )
V2kgT/Np |’

where xg is the full polarization value. Equation (2) gives
an excellent fit to the simulation results near threshold.
We find a value of Np = 12\/k/a for one-dimensional
systems and Np = (30y/k/a)? for two-dimensional sys-
tems. Three-dimensional systems of appropriate size
require much larger computations and have not been
performed yet. However, we expect much larger values
of Np in 3D systems, with correspondingly sharper
thresholds.

Shown in Fig. 3 is the average final polarization versus
impulse velocity V for a temperature k37T = 4.5, compa-
rable to the paraelectric transition temperature (which is
slightly larger than 5 in our simulations). We see a sub-
stantial renormalization of the barrier energy V?/2 = 0.03
(a factor of 8 smaller than the low-temperature barrier)

Y(V) = Xp Cl'f[
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FIG. 3. Final average polarization X and variance o2 versus

initial pulse velocity V, as in Fig. 1, but for a 400 X 400 system
with temperature kg7 = 4.5.

and of the domain polarization, as expected. It is remark-
able that, although the average energy added per particle
is less than 1% of the thermal energy, the domain reversal
threshold remains quite sharp and clear windows of alter-
nating final polarization persist in Fig. 3. At this tempera-
ture, the width of the first energy window is comparable to
the threshold energy V2/2, so that a substantial fractional
error can be tolerated in the applied pulse energy without
seriously degrading the reliability of the domain reversal.
Since the average energy per particle in our simulation is
only increased by about 1%, the heating effect of a single
pulse is small. In a material with many phonon branches,
this heat is distributed over all modes and the temperature
rise in the material is correspondingly reduced.

In the following, we estimate the energy of the op-
tical pulse necessary to flip a domain. From the ex-
pression giving the change in energy density, 6U =
—(8x/2)E?, one obtains the effective force per unit cell
F = (dx/dx)E?. Here, 8y is the susceptibility change
due to the phonon displacement x and E is the electric
field of the light. For pulse widths shorter than the phonon
period, the velocity impulse is given by

_ 9x Pv

V= ax 2Mc’ &)

where P is the total pulse energy per unit area, v, is the
cell volume, M is the phonon effective mass, and c is
the speed of light. Since domain reversal requires that
MV?/2 = 0.01kgT,, an estimate for P is

V SMC‘ZkBTC

10v.(dy/ox) " @

Priip =
Values for dy/ox can be obtained from measurements
of the Raman scattering cross section. In the region of
transparency, we find that 9 y/dx =~ 0.1-10 A~! [12]; this
range is consistent with the relative reflectivity changes
AR/R = 107°-10"2 observed in impulsive scattering
experiments [1-3]. For typical values of the remaining
parameters, we obtain the conservative estimate Py, =~
0.01-1 J/cm?. Since standard femtosecond laser systems
give pulse energies in the range 1072—10% nJ and spot

sizes are limited only by the diffraction limit, it appears
that our mechanism should operate in a range accessible
to experiments. We emphasize that the kinetic energy
per particle required to flip a domain decreases with
T, especially near the phase transition temperature T,
(see Fig. 3). In addition, we note that dy/ox can be
enhanced by using laser frequencies in the vicinity of the
material’s energy gap. These considerations suggest that
experimental realizations of our proposal may be feasible
at the lower end of available energies.

The work at the University of Michigan was supported
in part by the National Science Foundation through the
Center for Ultrafast Optical Science under STC PHY
8920108.

Note added.—After this manuscript was accepted for
publication, the authors became aware of a preprint by
Nelson [13], where the reversal of ferroelectric domains
by impulsive excitation of coherent phonons is also
considered.
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