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Constraints in spherically symmetric classical general relativity.
I. Optical scalars, foliations, bounds on the configuration space variables,

and the positivity of the quasilocal mass
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Physics Department, University College Cork, Cork, Ireland
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This is the first of a series of papers in which we examine the constraints of spherically symmetric
general relativity with one asymptotically Bat region. Our approach is manifestly invariant under
spatial diffeomorphisms, exploiting both traditional metric variables as well as the optical scalar
variables introduced recently in this context. With respect to the latter variables, there exist two
linear combinations of the Hamiltonian and momentum constraints one of which is obtained from
the other by time reversal. Boundary conditions on the spherically symmetric three-geometries
and extrinsic curvature tensors are discussed. We introduce a one-parameter family of foliations of
spacetime involving a linear combination of the two scalars characterizing a spherically symmetric
extrinsic curvature tensor. We can exploit this gauge to express one of these scalars in terms of the
other and thereby solve the radial momentum constraint uniquely in terms of the radial current.
The values of the parameter yielding potentially globally regular gauges correspond to the vanishing
of a timelike vector in the superspace of spherically symmetric geometries. We de6ne a quasilocal
mass (QLM) on spheres of fixed proper radius which provides observables of the theory. When the
constraints are satisfied the QLM can be expressed as a volume integral over the sources and is
positive. We provide two proofs of the positivity of the QLM. If the dominant energy condition
(DEC) and the constraints are satisfied positivity can be established in a manifestly gauge-invariant
way. This is most easily achieved exploiting the optical scalars. In the second proof we specify
the foliation. The payoff is that the weak energy condition replaces the DEC and the Hamiltonian
constraint replaces the full constraints. Underpinning this proof is a bound on the derivative of the
circumferential radius of the geometry with respect to its proper radius. We show that, when the
DEC is satisfied, analogous bounds exist on the optical scalar variables and, following on from this,
on the extrinsic curvature tensor. We compare the difference between the values of the QLM and
the corresponding material energy to prove that a reasonable definition of the gravitational binding
energy is always negative. Finally, we summarize our understanding of the constraints in a tentative
characterization of the con6guration space of the theory in terms of closed bounded trajectories on
the parameter space of the optical scalars.

PACS number(s): 04.20.Cv

I. INTRODUCTION

To identify the independent dynamical degrees of free-
dom of the gravitational field in general relativity it is
useful to cast the theory in Hamiltonian form [I]. This
means that the gravitational field must be viewed, not as
a fixed four-dimensional object, but rather as a sequence
in "time" of Riemannian three-geometries. Thus we
think of specifying some initial configuration of sources
and gravitational field and letting it evolve. As is well
known, this initial data cannot be specified arbitrarily;

'Electronic address: guvenoroxanne. nuclecu. unam. mx
Electronic address: nialloiruccvax. ucc.ie

it must satisfy the Einstein constraint equations. These
constraints only contain the source energy density and
momentum density. They do not depend on the equa-
tions of state. Of course, if we wanted to track the evo-
lution of the system we would need to provide a more
detailed specification of the sources, including these equa-
tions of state.

In this paper we will focus on the solution of the classi-
cal constraints and the identification of those features of
the theory which depend only on the initial data in the
simplified setting of spherically symmetric general rela-
tivity with our sight set on the quantum theory.

A remarkable consequence of the di8'eomorphism in-
variance of general relativity is that, in a sense, the con-
straint equations are all there is to the theory. For if.

'

the constraints are satisfied at all times and the sources
are completely specified, then the evolution equations fol-
low [2]. For this reason, the solution of the constraints
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should be viewed as much more than a prerequisite to
the solution of the dynamical problem. Once a point in
the classical configuration space (i.e., a solution of the
constraints) has been identified, its subsequent evolution
is implicitly defined. The structure of this space is, of
course, highly nontrivial.

The most developed classical approach to the solution
of the constraints has been the conformal geometry ap-
proach pioneered by York and co-workers in the 1970s.
This was very successful in settling formal questions such
as the existence and uniqueness of solutions [3]. How-
ever, beyond this formal level, it. is extremely diFicult to
piece together the structure of the configuration space of
the full theory outside the domain of perturbation the-
ory. Unfortunately, this is the &amework on which the
canonical quantization of the theory is based. Thus, until
this is done any claims we make about quantum theory
must necessarily be taken with a grain of salt.

One regime in which the problem simplifies, without
sacrificing all local dynamical degrees of freedom (such as
we do in homogeneous relativistic cosmologies), is when
the geometry as well as the material sources are spher-
ically symmetric [4—7]. In such a system, all the true
local dynamical degrees of freedom reside in the sources.
There are no independent local gravitational dynamical
degrees of freedom. The sources, however, generate a
"gravitational potential, " a kinematical object, which in
turn interacts on them. The dynamics of matter asso-
ciated with this potential can be extremely nontrivial,
a point convincingly demonstrated by the recent contro-
versy generated by Choptuik's numerical simulations of
the collapse of a massless scalar field [8].

There are only four topologies compatible with spher-
ically symmetric initial data that is defined on a three-
manifold. The manifold can be R, with a regular cen-
ter and one end, just like ordinary flat space; it can be
S x B, with two ends and no center as with t;he spa-
tial slice through extended Schwarzschild spacetime; it
can be S x S which is the spherically symmetric torus
or it can be S, the three-sphere [9]. We limit the dis-
cussion to the first case, i.e., to geometries possessing
one asymptotically Bat region deferring the examination
of spherically symmet, ric inhomogeneous cosmologies and
the double-ended case to future publications.

The boundary conditions associated with the given
topology play an important role. In the case we will
study, the only boundary condition we need to imple-
ment is the regularity (or the degree of singularity) at
the base of the spatial geometry. Technically this is be-
cause the Hamiltonian constraint is a singular ordinary
differential equation at this point. On one hand, this im-
poses an extraordinary rigidity on the solution, making
it unique. On the other it provides the mechanism, when
the energy density is appropriately large, which allows
singularities to occur in the geometry. If the material
sources are suitably localized (as we will always assume)
the constraints will automatically steer the geometry to
asymptotic flatness if no singularity intervenes. In closed
cosmologies, the nonsingular closure of the spatial ge-
ometry imposes integrability conditions on the sources it
contains.

The initial data for the gravitational field consists of
two parts, the intrinsic geometry of the three-manifold
and an extrinsic curvature tensor which describes how
this three-manifold is embedded into a four-dimensional
spacetime. The solution of the constraints involves the
implementation of gauge conditions. One of these con-
ditions involves the specification of how these three-
manifolds foliate spacetime. There are two ways of do-
ing this within the canonical context; intrinsically, where
the foliation is determined by placing some restriction on
the three-metric, for example, that it be flat and extrin-
sically, where some condition is placed on the extrinsic
curvature, for example, that its trace vanishes (the max-
imal slicing condition). For any choice one must show
that it is compatible with the constraints and that it can
be used as an evolution condition. It has been found
that doing this extrinsically is invariably better than do-
ing it intrinsically. In view of this we will only consider
extrinsic slicing conditions.

The remaining gauge condition concerns the specifica-
tion of the spatial coordinate system. The point of view
we will adopt in this paper is that it is not necessary,
at; least at the level of the constraints, to make an ex-
plicit spatial coordinate choice. The justification for this
is the fact that there are two invariant linear measures
of the spherically symmetric geometry, the circurnferen-
tial radius R, and the proper radial length I,, and the
constraints come ready cast in terms of derivatives of R
with respect to l.

It is natural that the gauge which fixes the foliation
is the gauge which should be tackled first. Fix the fo-
liation, then fix coordinates on the hypersurfaces picked
out by this foliation. Having said this, it is only fair
to also point out that the choice of gauge which sim-
plifies the solution of the constraints most dramatically
is implemented most efBciently by inverting this order,
exploiting the circumferential radius as the radial coor-
dinate and then foliating spacetime by the so-called polar
gauge. In this gauge, not only does the extrinsic curva-
ture quadratic miraculously fall out of the Hamiltonian
constraint so that it mimics its form at a moment of time
symmetry, but the constraint is then also exactly solv-
able. Furthermore, the momentum constraint reduces
to an algebraic equation which permits the nonvanish-
ing extrinsic curvature component to be determined lo-
cally in terms of the material current. What is unfortu-
nate is that both the foliation and the spatial coordinate
system break down catastrophically when the geometry
possesses an apparent horizon. This corresponds to the
vanishing of one or the other of O~, the divergence of the
future and past pointing outward directed null rays on a
metric two-sphere at fixed proper radius [10].

For the purpose of examining observable effects in the
classical theory it is suFicient to truncate the geometry
at the horizon if it possesses one, and place appropri-
ate boundary conditions there. Even if the formation of

This is the gauge exploited in Refs. [4—6].
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the horizon is a consequence of physical processes occur-
ring in its interior once formed the details of the interior
physics can have no observable consequences in the exte-
rior. In the quantum theory, however, we know that we
are not always at liberty to truncate the theory in this
way.

On one hand, a process such as the Hawking efFect can
be understood in terms of the polarization of the vacuum
in the exterior neighborhood of the event horizon [11].
In the approximation in which the back reaction on the
geometry can be ignored the techniques of quantum field
theory on a given curved background spacetime apply.
What is beyond the scope of any approximation which
truncates the geometry at the horizon is the prediction
of the final state of the black hole.

There are other processes, however, still below the
Planck regime, such as tunneling from a configuration
without an apparent horizon to a configuration with an
apparent horizon, in which the existence of classically in-
accessible regions of the spatial geometry can have dra-
matic consequences in the quantum theory [12,13].

The above processes in quantum gravity are both semi-
classical in nature. In the Planck regime, however, we do
not even possess an unambiguous classical lump to start
with. Furthermore, the very definition of an apparent
horizon involves both the intrinsic and the extrinsic ge-
ometries (or equivalently the momentum conjugate to the
intrinsic geometry) which are not simultaneously observ-
able in the quantum theory.

If we adhere to a configuration space consisting of met-
ric variables, for the canonical quantization of the model
we will need to catalogue all possible solutions satisfy-
ing the constraints with or without apparent horizons.
The only way to mend the situation to accommodate the
polar gauge would be to introduce the gauge patch by
patch between successive horizons. We do not examine
this possibility here because it would be almost impossi-
ble to implement in the quantum theory.

A canonical change of variables, &om the tradi-
tional metric phase-space variables, to the optical ten-
sor variables defined on a foliating sequence of closed
two-dimensional hypersurfaces embedded in the three-
geometry provides an extremely useful alternative de-
scription of the initial data when the geometry is spheri-
cally symmetric. In this case, when the two-dimensional
hypersurfaces are also spherically symmetric, the opti-
cal tensors reduce to the two scalar quantities O~. The
vanishing of O+ corresponds to a future apparent hori-
zon and the vanishing of 0 to a past apparent horizon.
Thus, by adopting this variable to characterize the con-
figuration space, we sidestep the difIiculty inherent in
the metric variable description of apparent horizons in
the quantum theory. These variables are a linear com-
bination of intrinsic and extrinsic quantities [14]. Most
importantly, is that, when cast with respect to the op-
tical scalars, we can replace the Hamiltonian constraint
and the momentum constraint by a pair of quasilinear
first-order equations, one of which is the time reversal of
the other [15] and which are entirely equivalent to the
original constraints.

In Sec. III we return to the metric variables in a

search for a globally valid foliation. We introduce a one-
parameter family of foliations corresponding to the van-
ishing of some linear combination of the two independent
scalars characterizing the extrinsic curvature in a spheri-
cally symmetric geometry. Each such gauge corresponds
to a ray in superspace [16]. The physically acceptable fo-
liations correspond to timelike directions. Maximal slic-
ing is one of these. With the optical variables, this is the
natural choice of gauge. However, we find that there are
other unexpected parameter values possessing attractive
features. One of the lightlike directions in superspace
bounding the valid gauges corresponds to polar gauge.
In the gauge defined by the other lightlike direction, the
Hamiltonian constraint also mimicks its form at a mo-
ment of time symmetry. As such, it is worth considering
more closely. Minimal surfaces in this gauge, however,
do not coincide with apparent horizons. What is more
serious, the foliation is not suitably asymptotically fIat.

One of the most remarkable results in general relativ-
ity is the positivity of the Arnowitt-Deser-Misner (ADM)
mass, the result of a conspiracy occurring at the level of
the constraints which ensures that the Hamiltonian of the
theory is positive definite. When the spacetime geome-
try is spherically symmetric there also exists a quasilocal
mass (QLM) which is positive and reduces to the ADM
mass at infinity in an asymptotically fiat geometry [17].
Attempts to find an analogous quantity when this sym-
metry is relaxed which is also positive have failed.

In Sec. IV, the QLM of a spherically symmetric geome-
try is introduced as an integral over a spherical surface of
fixed proper radius of a spacetime scalar quantity, and, as
such, an observable of the theory by any reasonable cri-
terion [18]. When an appropriate linear combination of
the constraints is satisfied the QLM can be expressed as
a volume integral over the sources. An equivalent expres-
sion was derived by Fischler et al. in [17] (see also [19)).
The QLM thereby provides a very useful first integral of
the constraints.

In Sec. V we provide two proofs of the positivity of the
QLM when the geometry is regular.

If the dominant energy condition (DEC) ([10])and the
constraints are satisfied positivity can be established in
a manifestly gauge-invariant way [15]. This is achieved
remarkably easily by exploiting the optical scalars. We
comment on the approach to a singularity when the QLM
is negative. The second proof is weakly gauge dependent.
However, it has the peculiar property of permitting us to
replace the DEC by the weak energy condition and ignore
the momentum constraint when we use a linear extrinsic
curvature foliation of spacetime.

Both of these positivity proofs arise as simple corollar-
ies to the existence of appropriate bounds on the phase-
space variables; in the former case an upper bound on
the product of the optical scalars [15]; in the latter, by
the bound on the derivative of the circumferential ra-
dius of the geometry with respect to its proper radius:
—1 ( B~B & 1. This bound has a simple geometrical in-
terpretation in terms of the embedding of the geometry
in Bat B4.

When the DEC is satisfied and the geometry is regular,
additional bounds can be placed on the values assumed
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by the optical scalars, which, in turn, imply a bound on
the extrinsic curvature. Considering the identification
of these variables as the momenta conjugate to the spa-
tial metric this is a particularly intriguing result. These
bounds assume a particularly simple form when the foli-
ation is maximal. It is not clear what role these bounds
play in the theory. They do not appear to be related
directly to the positivity of the QLM. It is possible, how-
ever, that they will prove to be more fundamental. The
derivations we prove in Sec. VI are more economical and
the bounds tighter than those derived in [15].

In Sec. VII, we compare the values of the QLM and the
material energy. Any reasonable defined measure of the
gravitational binding energy should always be negative.
In particular, we demonstrate that the naive definition
consisting of the difFerence between the QLM and the
material energy is negative when the foliation of space-
time is maximal.

In Sec. VIII we summarize our understanding of the
constraints in terms of the optical scalars. This is done by
associating with each regular solution of the constraints
a closed bounded trajectory on the parameter space of
the optical scalars. The set of all such trajectories can
be identified as the phase space of the theory.

Because of the importance of instantons in the semi-
classical approximation we will also occasionally com-
ment on the form of the constraints in Euclidean sig-
nature relativity.

We finish with a summary and an outline of subsequent
papers [20,21].

The spatial geometry at constant t, we parametrize by
two functions 8 and B of the radial coordinate r. N and
P are, respectively, the lapse and the radial shift. The
scalar curvature of the spatial geometry is now given by

, [2(RR')' —R" —1] . (2.3)

K~s = YL~AsKc + (g~b %~As) KR (2 4)

We introduce the prime to denote the derivative with re-
spect to the proper radius l defined by dl = l'. dr. When
radial derivatives are taken with respect to l, 8 no longer
appears explicitly in the constraints. The requirement
that this condition be preserved under the dynamical evo-
lution of the spatial geometry will determine P implicitly.
In general P will not be zero.

The other invariant geometrical measure of a spher-
ically symmetric geometry is the circumferential radius
B. The identification of r with R is the radial coordinate
choice which is most frequently adopted. The difIiculty,
however, is that this identification breaks down wherever
B' = 0 which is the condition that the two-surface of
constant r be an extremal surface (see Appendix A) of
the spatial geometry. By comparison, / increases mono-
tonically as we move out &om the base of the geometry,
insensitive to the formation of extrernal surfaces (or ap-
parent horizons) so that the identification of / with r is
globally valid.

We can write the extrinsic curvature in the form con-
sistent with spherical symmetry

II. THE CONSTRAINTS

A. 'The constraints in terms of metric variables

K —K K b+R=16mp (2.1a)

and

Initial data for the gravitational field in general rel-
ativity consist of a spatial metric g b and an extrinsic
curvature tensor K g which satisfy the constraints [1,2]

where Kg and KR are two spatial scalars and n is the
outward pointing unit normal to the two-sphere of fixed
r, n = (l:,0, 0). With respect to the proper timelike
normal derivative (N = 1 and N' = 0), K s = g s/2, so
that Kc = 8/2 and KR = R/R. Kc is also proportional
to the acceleration of a radial spacelike geodesic curve on
the initial data surface.

The quadratic in K b appearing in the Hamiltonian
constraint can be expressed in terms of Kg and K~. The
constraints are now given by

V Kb —V K= —8vrJ (2.1b) KR[KR + 2K'] — [2(RR')' —R' —1] = 8mp (2.5)

'R is the three-scalar curvature constructed with g b. The
three-scalar p is the material energy per unit physical
three-volume. The three-vector J is the corresponding
current. When the signature of the spacetime metric is
made positive definite the sign of the quadratic terms
in the extrinsic curvature appearing in Eq. (2.la) is re-
versed.

We will examine spherically symmetric spacetime ge-
ometries. The only nontrivial spacetime directions are
the radial and time directions orthogonal to the orbits
of rotations and the geometry can be described by a line
element of the form

ds' = —[m'(r, t) —P'(~, t)]Ck'

+2P(r, t)dtdr+l:(r, t) dr +R (r, t)dA

(2.2)

and

a'
KR+ —(KR —Kc) = 4' 2, (2.6)

Indeed, with respect to this choice of radial coordinate and
a foliation by K& = 0, the Hamiltonian constraint reduces to
an exactly solvable linear 6rst-order difFerential equation for'. In addition, P = 0.

where we define the scalar J = J n. All but the radial
component of the current; three-vector J vanish. The
only nonvanishing momentum constraint is the projec-
tion onto the radial direction.
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In any realistic model, matter will be modeled by a
field theory, p and J will then be cast as functionals of the
fields and their momenta. However, for our purposes we
will suppose that we are given two functions p(l) and, J(l)
on some compact support, say [0, lo]. An. important fact
we will discuss in detail below is that a solution which is
both asymptotically flat and nonsingular will not exist for
every specification of p(l) and J(l). This might happen if
an excessive energy, in a sense which will be defined more
precisely in subsequent papers, is concentrated within a
confined region [20,21].

We stress that our specification of the sources possesses
a spatial difFeomorphism invarian. t meaning. This should
be contrasted with the provision of p or J as functions of
the flat background coordinate in conformal coordinates,
rg = B, with respect to which the line element assumes
the conformally flat form

R'(0) = 1 . (2.8b)

A remarkable feature of the constraints is that once we
demand that the geometry be regular at its base point,
this boundary condition is automatically implemented
when the constraints are satisfied. The only boundary
condition we need to impose on R is (2.8a). The techni-
cal reason for this is the singularity of the Hamiltonian
constraint, Eq. (2.5), as a second-order ordinary differ-
ential equation (ODE). This is obvious if we rewrite the
constraint in the form

possess a wormhole to another asymptotically flat region
or that it does something like degenerate into an infinite
cylinder at this end. Local flatness of the metric at this
base point also requires that

ds =8 (dr +r dO). (2 7) RR" = -(1 —R") + Z~[Z~+ 2Z, ]
—4~R'p .

2 2

B. Boundax'y contkitions

We are interested in geometries which possess a sin-
gle asymptotically flat region. It is then appropriate to
require that the geometry be closed at one end, l = 0:

R(0) = 0 . (2.8a)

In this way we exclude the possibility that the geometry

Like the proper radial identification, this system is glob-
ally valid. The disadvantage is the unphysical nature of
the background spatial geometry. Even the simple con-
stant density star is not without its subtleties in this
gauge despite the fact that the constant density is a spa-
tial diKeomorphism invariant. The reason is that the di-
mensions of the physical support of the star is determined
in terms of its coordinate dimensions with respect to the
flat background only after we have solved the constraint.

In conformal gauge, an appropriate conformal scaling
of p is often introduced in order to guarantee existence
of a solution to the constraints [3]. The results is that
one appears to be able to sidestep the very singularities
we take pains to focus on. While this is fine when one is
only interested in existence, simply consigning boundary
points on the configuration space to infinity does not help
to clarify the physics which underlies the occurrence of
singularities.

To be fair there is no procedure for solving the initial-
value problem which is entirely satisfactory. Even though
the specification of p as a function of l does possess a
spatial difFeomorphism invariant significance, we have no
quantitative notion of the proper volume it occupies or,
indeed, if such a p can be even consistently specified until
we solve the constraints. In the former case, we could,
of course, treat V itself as our spatial coordinate. This
would correspond to the identification 4mB 8 = 1. The
constraints then provide an equation for R (and thus triv-
ially also for 8). However, the benefit we gain is ofFset
by the increased nonlinearity of the equations.

(2.5')

The right-hand side is regular if B is and K g blow up
no faster than B . Because B now multiples the second
derivative the equation must be singular at B = 0. Once
we impose the boundary condition (2:Sa), however, the
requirement that R" also be finite enforces Eq. (2.8b)
(by convention we choose the positive sign) and in turn,
R"(0) = 0. For a given p(l) and J(l), a nonsingular
solution of the constraint will be unique if it is regular at
l =O.

In particular, we will also see that the single boundary
condition (2.8a) is sufficient to guarantee that spacetime
be asymptotically flat, B + l as l —+ oo provided the
sources are distributed on a compact support (or fall ofF

appropriately) and provided the geometry is nonsingular.
As an illustration of what might go wrong if R'(0) g 1,

let us compute the three-scalar curvature for the spa-
tial geometry described by the line element, - d8 = dl +
a l dO where a is some positive constant. In this geom-
etry, R'(0) = a. If a g 1, the geometry sufFers a conical
singularity at the origin associated with the solid angle
deficit, AB = 4'(l —a ). This manifests itself in the
divergence of 'R given by

1
2~a2l2

as the origin is approached. The sign of R depends on
the sign of a —1. It is positive when a ) 1 (a solid angle
surplus) and negative when a ( 1 (a solid angle deficit).
Unlike a two-dimensional cone which is flat away &om
its apex (7Z = 0 when / g 0), the conical singularity we
are considering has a long-range field associated with it.
In fact, the faDoB' in 'R is so slow that the space is not
even asymptotically flat. This is the generic behavior
associated with a conical singularity. Two-dimensional
conical structures are exceptional in this regard.

If both J = 0 and K~b ——0 the Hamiltonian con-
straint gives us that R. will be finite when p is. The
constraints therefore forbid simple conical singularities
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(finite R' g 1) under these conditions. They do, how-
ever, admit more serious cusp singularities (infinite R')
with a divergence in the traceless component of 'R b. If
J g 0, however, the constraints do not necessarily imply
that 'R is Gnite. This is because a divergence in 'R can
be balanced by a divergence in K b. However, what is
true is that B' will always diverge at the singularity so
that conical singularities cannot occur. The formation
of singularities will be discussed in Sec. V and in greater
detail in II (1 = 0) [20] and III (J g 0) [21].

C. The constraints in terms of the optical scalars

A remarkable feature of the constraints when the
spacetime geometry is spherically symmetric is that the
constraint equations (2.5) and (2.6) can be expressed in
a symmetrical form with respect to the optical scalars,
de6ned in terms of the divergence of the future pointing
and past pointing outward radially directed light rays on
the spherical surface of fixed proper radius. In Appendix
A, we show that

(2.9a,b)

~+(0) = 2,
cu (0) = 2.

(2.12a)
(2.12b)

If the geoxnetry is asymptotic Hat, in addition,

llm (d+ = 2 = llm 4)
Rm oa R—+oo

(2.13)

We note that Eq. (2.lib) obtains from Eq. (2.lla) un-
der time interval, J —+ —J and K b ~ —K b. In this
form the two constraints are linear in the "momentum. "
In this sense they are the natural "square roots" of the
Hamiltonian. Note, however, that Kg appears on the
right-hand side (RHS) of Eqs. (2.11). The most natural
way to treat Kg, in this context, is as an independent ini-
tial datum specifying some extrinsic time foliation. 5 We
note that these equations are simpler than the equations
written down by Malec and 0 Murchadha who treat the
trace of K b, instead of Kg, as the independent foliation
datum [15].

If the geometry is locally Hat at the origin, so that
Eqs. (2.8a) and (2.8b) hold, and the tangential projection
of the extrinsic curvature diverges at the origin slower
than B ~ then

BR' = —(8++ 0 ), (2.10a}

i.e. , 8+(0 ) is the tangential projection of the sum (dif-
ference) of the metric connection and the extrinsic cur-
vature tensor. In addition, 8+ and 0 are canonically
conjugate variables. In the quantum theory, the 0+ rep-
resentation appears to provide a very simple characteri-
zation of the states which correspond to configurations
without apparent horizons of the form 4(O+) = 0 if
0+ &0.

We can invert the defining equations (2.9a) and (2.9b}
in favor of the tangentially projected two-extrinsic and
three-extrinsic curvatures:

III. FOI IATIONS AND SOLUTIC)NS OF THE
MOMENTU M CC)NSTKAINT

To Bx the foliation of spacetime we will keeze some ho-
mogeneous linear combination of the extrinsic curvature
scalars. Such a choice is natural because the momentum
constraint is itself linear in K b. Any nonlinearity or in-
homogeneity in the gauge condition would destroy the
linear scaling of K b with J.

More specifically, let us consider the one-parameter
family of foliations:

Kg+ o.K~ ——0 . (3.1)

B
RK~ = —(0+ —0 ) .

4
(2.10b)

It is straightforward now to demonstrate that by adding
and subtracting an appropriate linear combination of the
constraints, Eqs. (2.5) and (2.6), we obtain two equiva-
lent constraints (u~ = Re~):

We do not consider gauges involving higher spatial
derivatives of the extrinsic curvature scalars. The folia-
tion (3.1), whenever valid, fixes one (linear. combination)
of the two geometrical momenta at each point. The re-
maining one is determined completely in terms of the
intrinsic geometrical and matter variables by solving the
momentum constraint. This reads

I
(su+) = 87rR(p —J) — —((u+(u —4) + (a+Kg,4B

(2.11a)

B'
K„'+ (1+n) K& = 4~J-

B (3.2)

1
((u )' = 87rR(p+ J) —— (~+~ —4) —~

4B
(2.11b)

and is exactly solvable. The solution which is regular at
the origin ls

One could consider a distribution of p which diverges like
l at the origin so that its integral over the spatial volume
in the neighborhood of l = 0 is finite.

A spacetime argument is presented in Appendix B which
makes the existence of two such equations more obvious.

This is not, however, the usual way to fix such a foliation,
which generally will be some functional relation of the form
I'"(Kc, Ka) = 0
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4m

Ri+ 0
(3 3)

KR ——0, (3.4)

which corresponds to o. —+ oo in the parametrization
(3.1). What is inost alluring about this gauge in a spher-
ically symmetric geometry is that when KR ——0, the
dependence on K b drops out of the Hamiltonian con-
straint (2.5) which then mimics its form in a momentarily
static configuration (MSC) K b = 0. The Hamiltonian
constraint can then be solved independently of the value
assumed by the unfixed extrinsic curvature scalar Kg.
One particular peculiarity of this gauge is that appar-
ent horizons show up as extremal two-surfaces of the in-
trinsic spatial geometry (see Appendix A). Remarkably,
in fact, the physical content of the model gets encoded
completely in this geometry.

Where then is the snag? To see what price we have to
pay let us examine the solution of the momentum con-
straint (2.6):

B
Kg ———4~—J .B' (3 5)

Kg is determined locally in terms of the source. This
contrasts dramatically with the solution Eq. (3.3) when
o. is finite where Kp is determined nonlocally in terms
of J. As o. tends to infinity, the difFerential equation

What might appear to be the other "natural" possibility,
K& ——0, corresponds to o. = 0 and therefore does not yield a
satisfactory falloK

"In phase space, this is expressed as II~ ——0 where II~ is the
momentum canonically conjugate to Z.

K b vanishes if J = 0 everywhere. In particular, the
foliation of Minkowski space by any one of these gauges
is the standard Hat slicing. If KR vanishes at any point,
then so also does Kg so that K b ——0 there. We note
that the boundary condition (2.8a) at the origin implies
that

KR(I) 4vr
J(0)
2+a

in the neighborhood of I = 0. In particular, KR(0) = 0
and therefore also we have that K b

——0 at the origin.
The slowest acceptable fallofF of the extrinsic curva-

ture in an asymptotically Bat geometry must be faster
than R s~2 [22]. If n ( 0.5 the solution of Eq. (3.2) is
inconsistent with asymptotic Qatness of the metric in a
spatially open geometry.

If n ) 0.5 and is finite, the gauge is globally valid on
any regular spatial geometry regardless of the support of
the initial data, or the presence of extremal or trapped
sur faces.

It is odd, therefore, that the simplest choice of gauge
in the spherically symmetric context appears to be the
polar gauge

l

0
(3.3')

where E(P, I) = exp(J dt PR'/R). There does not ap-
pear to be any gauge (intrinsic or extrinsic) which is not
tuned artificially by hand which will provide a static de-
scription of spacetime outside matter.

The gauge (3.4) is clearly not the only linear combi-
nation of the geometric momenta in which the Hamilto-
nian constraint (2.5) mimics the MSC form. The gauge
2K' + KR ——0 will also do the job. While this does not
appear to suer from the pathologies of polar gauge, it
sufFers &om the shortcoming of producing a slow falloK

B ~ in K b outside the support of the current. This
complicates the asymptotic analysis of the Geld. As we
will see, the conventional expression for the ADM mass
is no longer valid.

The existence of two gauges mimicking a MSC is a
consequence of the I.orentz signature (—,+) of (the met-
ric part of) the supermetric which permits the term
quadratic in the metric momenta to factorize. These two
gauges define the null directions in superspace with re-

(3.2) becomes singular. The support of the integrand
appearing in the solution collapses in this limit and we
recover Eq. (3.5).

Technically, this is because no derivative of K~ appears
in the constraint. The consequence, however, is that the
gauge will break down whenever B' vanishes on the sup-
port of J. The vanishing of.B' signals the development of
an extremal two-surface in the spatial geometry so that
the gauge breaks down whenever a current Bows across
an apparent horizon.

The foliation gauge condition should also fix the lapse.
It is easily demonstrated that if B' = 0 anywhere on the
support of p, the lapse collapses N(l) -+ 0 in polar gauge;
another manifestation of the breakdown of the gauge.
Polar gauge clearly does not provide a useful description
of the physics in the strong field regime (inside matter)
we are interested in.

Outside the support of J, Eq. (3.5) implies that K~ =
0 so that K b

——0. This means that the slicing of space-
time defined by polar gauge coincides with the sequence
of level surfaces of the timelike Killing vector in this re-
gion. Vacuum spacetime therefore appears "static" in po-
lar gauge. This is the optimal exterior form of the metric.
In fact, as we can see, polar gauge is the unique mem-
ber of the one-parameter family possessing this property.
The obvious shortcoming of finite o. gauges is that they
do not provide a static slicing outside the support of the
matter.

It is also clear, however, that a static description of
spacetime can be approximated arbitrarily closely out-
side the support of matter by letting o. be appropri-
ately large. This suggests the possibility of construct-
ing a gauge which displays the exterior behavior of polar
gauge, while at the same time sidestepping its interior
shortcomings. What we can do is to admit a space de-
pendent parameter n(l) in Eq. (3.1) which tends to in-
finity outside matter. I et a(l) = n + P(l), such that
limi~ P(l) = oo. Then
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dlB+ J
0

(3.6)

determined by the current Bow. Thus outside the support
of the field flow K~ is proportional to B ~ + ~. For ex-
ample, when o. = 2, K b is, up to a constant, the unique
spherically symmetric transverse-traceless tensor on B
(see [23]).

It might appear that we could just as well have cho-
sen to integrate Eq. (3.2) in from infinity and to have
concluded that outside the support of the field flow, the
solution is always K~ ——0 and that the foliation of space-
time is static. The difhculty with this is that the resulting
solution will be singular at the origin unless the current
is fine-tuned appropriately.

Once the momentum constraint has been solved, we
substitute (3.1) and (3.3) into (2.5) and solve for R(l)
subject to the boundary conditions, (2.8). We defer the
details to papers II and III.

This gauge, like polar gauge, has a particularly simple
phase-space representation, corresponding as it does to the
vanishing of the momentum canonically conjugate to B.

spect to the supermetric. With respect to a foliation
defined by any other linear combination of Kp and KR,
extrinsic curvature will show up in Eq. (2.5).

The two MSC mimicking gauges with o. = 0.5 and
o, = oo define the light cone of the superspace. The ad-
missible gauges constructed using linear combinations of
Kg and KR therefore correspond to tangent vectors ly-
ing strictly inside the light cone of the superspace metric
[16]. The trajectory in the configuration space therefore
moves along spacelike directions. This suggests a special
role for the light cone in this minisuperspace.

The maximal slicing condition K = Kg+2KR ——0 cor-
responds to n = 2. This is the gauge which most readily
facilitates the analysis of the constraints in York's con-
formal approach to the full theory and remains the most
popular choice among the more formally inclined workers
in the field. In the spherically symmetric asymptotically
flat context, however, this is not such a convincing crite-
rion. Any valid o. would appear to ofFer the same reason-
able compromise between acceptable asymptotic fallofF
and nonsingular behavior in the interior. The remarkable
nature of maximal slicing will, however, become evident
in Sec. V within the &amework of the optical scalars in-
troduced in Sec. IIC when we specialize to initial data
satisfying the dominant energy condition. This is not at
all obvious in the context of the metric variables we have
been exploiting in this section.

We note that when n = 1, the integral appearing in
Eq. (3.3) is simply the proper volume integral of the ra-
dial current scalar J in the interior of /. As we will see
in paper III, various results simplify dramatically in this
gauge.

We note that the solution of the momentum constraint
requires us to integrate out f'rom / = 0. K~B + tends
asymptotically to the constant value

IV. THE QU'ASILGCAL MASS

An important feature of the constraints when the ge-
ometry is spherically symmetric is that they possess a
first integral which permits the definition of a quasilocal
mass (QLM), m(t), over a sphere of fixed proper radius
which can be expressed as a volume integral over the
sources contained within that sphere. To motivate its
definition, as well as to make a few observations about
asymptotic behavior, let us first consider the momentar-
ily static data, K b

——0. We define

mR —o = —[1 —(R) ]2
(4.1)

This should be viewed as a surface integral over the
sphere of proper radius l of a spherically symmetric scalar
function. When K b

——0, it is simple to show that the
Hamiltonian constraint can be cast in the form

m' = 4vrB B'p, (4.2)

where m is given by Eq. (4.1) for all values of l. In par-
ticular, outside the support of matter m~ 0

——0 so that
m assumes a constant value, m, say. This is the ADM
mass. If we implement regularity at I = 0, Eq. (2.8), we
obtain

l

m~ —0 ——4~ dl B B'p .
~ 0

(4.3)

Asymptotically we can now rewrite Eq. (4.1)

Bf2 2m~
R

Thus, as R ~ oo, B l to leading order. The ADM mass
is encoded in the next-to-leading order, R / —m ln l.
This is turn permits us to identify a simpler asymptotic
expression for m

m = lim R(1 —R') .
l—+oo

(4.5)

If K b does not vanish, the naive generalization is to
replace the quadratic B' by the square of the spacetime
covariant derivative:

Bm:= —(1 —V„RV' R) .
2

(4.6)

Using the fact that KR = R/R, this yields the expression

The "integrability" of the system should not be surpris-
ing once we identify the mechanical analogue of (2.5) cor-
responding to the identification of l with time. A generic
two- or higher-dimensional model will not be integrable in
this way. There has been a 8urry of research recently on
integrable "one-" and "two"-dimensional models in general
relativity [24].
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R3K2
, "+ —,[1 —(R')'], (4 7)

which depends, as before, only on initial data. To de-
termine the form of the first integral of the constraints
analogous to Eq. (4.2) we integrate the Hamiltonian con-
straint up to l to obtain

—[1 —(R') ] = 4~ dl pR R'
2 0

l

dl K~ [K@+ 2K']R R' .
2 0

(4.8)

As before, the LHS coincides asymptotically with m
However, it does not coincide with m outside the sup-
port of matter.

Let us add the extrinsic curvature quadratic appearing
in the definition (4.7) to the LHS of Eq. (4.8). We can
exploit the momentum constraint (2.6) to eliminate Kg
appearing in the integral on the RHS in favor of KR and
J. Thus, modulo the constraints, m satisfies

m = 4~ dl R [pR'+ JRK~] .
0

(4 9)

We will see below that the LHS of (4.8), like m, is pos-
itive everywhere in any regular geometry when spacetime is
foliated by an o. gauge. In contrast to m, it is even positive
everywhere in Euclidean relativity.

The RHS is the integral of the scalar, p:= pA'+ JR',
over the volume bounded by the surface at proper ra-
dius I (dV = 4mR dl) (see [19]). It is clear that, outside
the support of matter, m is a constant which we again
identify as the ADM mass m

We note that if the extrinsic curvature scalar K~ (as
well as K~) tends asymptotically to zero faster than
R ~, (4.7) reduces asymptotically to the same form
(4.5) as Eq. (4.1). However, when n = 0.5 the asymptotic
form of the surface integral Eq. (4.7) is not (4.1). To see
this let us examine the asymptotic "dependence" of the
extrinsic curvature contribution to m on the parameter
n. We note that RsK&/2 ~ R tends to a constant
if o. = 0.5 and diverges if o, & 0.5. The latter possibility
was rejected in Sec. III because it was inconsistent with
asymptotically flat boundary conditions. We can also see
that such a foliation yields an asymptotically divergent
QLM. In particular, it does not coincide asymptotically
with m

We noted in Sec. II that if the geometry is nonsingular
and the sources have compact support then regularity at
the origin is sufFicient to force asymptotic flatness. This
point is clarified using the first integral of the constraint
encoded in the defiiution of the QLM. From Eq. (4.9) it
is clear that if both p and J are compactly supported
and R' and K~ remain finite, the QLM will be a finite
constant outside the support of matter. We also noted in
the last paragraph that if KR falls ofI' fast enough then
(4.7) also reproduces Eq. (4.4) so that R approaches l in

the same way as it does for momentarily static data.
Only one linear combination of the constraints features

in the derivation of (4.9). It proves extremely useful to
exploit this first integral of the constraints, implementing
regularity at the origin, in place of one or the other of
the constraints. In practice, we replace Eq. (2.5) by (4.9)
[with m defined by (4.7)]. If, in turn, we suppose that
spacetime is foliated by an o. gauge, then we can solve
Eq. (2.6) for KR in terms of J obtaining the expression
given by Eq. (3.3).

Note that we have eliminated Kg in going Rom
Eq. (4.8) to Eqs. (4.7) and (4.9) without any recourse
to a foliation gauge condition. Two properties of the
constraints have conspired to yield the simple form for p
as a local scalar. The first is that Kp appears linearly
in Eq. (2.5) and therefore linearly in Eq. (4.8). The sec-
ond is that it appears undifFerentiated in Eq. (2.6). In
both regards it is unlike KR. There is clearly a conspir-
acy involving both constraints permitting the QLM to be
expressed in the simple form Eq. (4.9).

It is extremely useful to cast the QLM in terms of the
optical scalars 0+ and 0 . We get

R(
m = —

/

1 ——co+co
2 i, 4 )

(4.10)

The quasilocal mass m is seen to be just the Hawking
mass [25]. With respect to these variables, Eq. (4.9) as-
sumes the form

l

m = vr dt R [p((u+ + u) ) + J((u+ —w )]
0

(4.11)

or

I,

m = m dlR [(p+ J)~++ (p —J)~ ] .
0

(4.11')

B2
Q Pg

2
(4.12)

where the notation we use has been defined in Appendix
B. The Einstein equations can now be exploited to re-
cover Eq. (4.9) on projecting (4.12) along the radial di-
rection. The evolution of m, along the (timelike) normal
to the hypersurface t" is obtained by projecting (4.12)
onto t". Note that the radial pressure will occur on the
RHS.

The ADM mass is a spacetime difFeomorphism invari-
ant. In particular, it is independent of the foliation of
spacetime on which it is constructed. The definition of
the quasilocal mass either in terms of metric variables,
Eq. (4.6) or in terms of the optical scalars shows that it
is a spacetime scalar through its value does depend on
the foliation for finite values of l. For each value of l,
Eq. (4.9) provides a quasilocal observable of the classi-
cal theory. In addition, these observables are nontrivial.
For whereas m as the effective Hamiltonian is trivially
conserved, the observables defined by the QLM are not.

We note that, in general, the spacetime covariant
derivative of m can be cast in the form [9]
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V. BOUNDS ON THE PHASE-SPACE
VARIABLES AND THE POSITIVITY

OF THE QLM

The most important property of the QLM is its posi-
tively everywhere in any regular spherically symmetrical
geometry. In this section we will demonstrate how this
positivity arises as a consequence of bounds on the phase-
space variables.

A. Positivity of m: The dominant energy condition
and a bound on the product of the optical scalars

Let us suppose that the material energy current four-
vector is timelike so that it satisfies the dominant energy
condition (DEC) [10]:

p&QJ J (5.1)

& 4 (5.2)

This inequality was first derived in [15] but, for com-
pleteness, we give a derivation here. We note that we
can exploit Eqs. (2.11a) and (2.11b) to obtain

Suppose also that the constraints (2.5) and (2.6), or al-
ternatively (2.11a) and (2.lib), are satisfied. Then m
is positive everywhere, independently of how we foliate
spacetime, if the spatial geometry is regular everywhere.
Because m coincides with m at infinity, this provides us
with a generalization of the positivity of the ADM mass.

Because the sources appear explicitly in the manifestly
positive combinations, p + J, when the constraints are
cast in terms of u+ and u, it suggests that these are
the more appropriate variables to use when the DEC can
be exploited.

Recall the definition of the QLM in terms of the optical
scalars, Eq. (4.10). It is clear that the positivity of the
QLM is entirely equivalent to the statement

unless sr+ + u = 0. It is now clear that Eq. (5.2) is
satisfied when p &

~
J[. For if u+ and u possess diB'erent

signs (which includes the case where w+ + id = 0) then
Eq. (5.2) is obviously satisfied. Therefore suppose that
they possess the same sign. It is then always true that

(d+ —4P &1.
(d+ + 4)

(5.5)

1. Negative QLM and the approach to singularities

If e+v ) 4 anywhere, the geometry must possess a
singularity. How does this occur? If we enter a region in
which ~+u ) 4 with both u+ and ~ & 0, then when
the DEC is satisfied, Eq. (5.3) implies that

((d+Lo ) ) 0 (5.6)

The product u+~ monotonically increases. Once I,
goes negative it decreases monotonically. In partic-
ular, m cannot recover positive values. The barrier,

4, with both u+ and u & 0 is therefore
semipermeable.

In addition, when u+u ) 4, then

Thus the term appearing in square brackets in Eq. (5.4)
is manifestly positive whenever (5.1) is satisfied; this es-
tablishes Eq. (5.2).

In those regions of the (u+, u ) plane where u+ and
possess different signs so that ~+~ & 0, not only

is m positive but, in addition, m ) R/2 regardless of
whether the constraints are satisfied, or that the energy
is positive. In particular, m = R/2 on the future and the
past apparent horizons.

We note that the absolute maximum of the product,
obtains at the boundary values l = 0 and l = oo

and it is also the Hat space value. We note, however, the
corresponding values of m are m(0) = 0 and limi~ m =
m QQ ~

((u+ur )' = —8vrR[(~++(u )p —((u+ —~ )J]
—(~+ + id )((u+(u —4) . (5.3)

4i(~++(u ) ( —1, (5.7)

Note how Kc which appears in both Eqs. (2.11a) and
(2.lib) has dropped out of Eq. (5.3). This equation is
entirely equivalent to Eq. (4.11) with m defined by (4.10).
We note first of all that the product satisfies the bound-
ary conditions

M+(d (0) = 4 = lliil ld+&
R—+oo

(2.12c)

on account of the boundary conditions, Eqs. (2.12) at the
origin and (2.13) at infinity, if the geometry is asymptot-
ically fIat. In addition, it must be finite everywhere in
any regular geometry. And, if the product is finite every-
where, it must possess an interior critical point at some
finite value of l if it is not constant. At the critical point,
the RHS of Eq. (5.3) must vanish. Thus

(M+(d ) ( 0, (5.6')

so that R' & —1 and decreasing. Therefore, if the cir-
cumferential radius is Ro when ~+su = 4 we know that
the solution must crash, i.e., R ~ 0 in a finite proper
distance which is less than Ro from that point.

What would happen if instead we had a source which
did not satisfy the DEC so that we entered the region) 4 but with both ~+ and u ) 0? Let us further
assume that the source changed its nature so that in this
region it did satisfy the DEC. Instead of Eq. (5.6) we now
have

QJ+ —(d—4 = —SvrR p — J
&+ +Cd

(5.4) We will see in II and III that it is nonetheless remains
6nite all the way to any singularity.
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which means that the solution is being pushed out of the
region w+w & 4 and, instead of Eq. (5.7) we get

4(Cd++Cd ) ) 1 (5 7')

so that R' ) 1. Hence there is no way that the solution
can now crash within the region u+u ) 4. Thus the
barrier u+co = 4, u+, w ) 0 is also semipermeable,
one can go &om above down but not up &om below so
long as the DEC holds.

B. Positivity of vn: n gauges, the rveak energy
condition, and a bound on R'~

(R') =—1 —S~pR + K~[KR+ 2K']R (5.8)

at such a point. In a MSC, if p ) 0 at the critical point
then it is certainly always true that

(5 9)

If K s g 0 this will not generally be true unless K~[K~+
2K'] & 0 at this point. There is, unfortunately, no gauge
invariant reason why this should hold. If, however, space-
time is foliated by any gauge such that Eq. (3.1) holds at
least at the critical points of B', then the third term on
the right-hand side of Eq. (5.1) is given by

A remarkable feature of foliations of spacetime by the
o. parametrized gauges is that it is possible to (1) relax
Eq. (5.1) to the weak energy condition (WEC), viz. , p ) 0
and (2) omit the momentum constraint yet still establish
the positivity of m everywhere.

The proof is again very simple. However, there is no
advantage to be gained by exploiting the optical scalars.
We return to the definition of m given in terms of the
metric variables, Eq. (4.7). It is clear that m & 0
whenever (R') & 1. We need therefore only show that
(R')2 & 1 under the conditions of the hypothesis and we
are done.

We first note that R' must be bounded in any regular
geometry. Because R' = 1 both at the origin and at
infinity, B must possess some interior critical point. This
will occur when B" = 0. The Hamiltonian constraint
(2.5) then implies that

FIG. 1. The (u+, &u ) plane. Regular asymptotically flat
solutions are con6ned to the region Z bounded by the closed
union of line and arc segments AB, BC, CD, DE, EI', and
I'A. When Eq. (3.1) is satisfied, this is reduced to the hexag-
onal region Z, bounded by the closed union of line segments
A'B', B'C, CD', D'E', E'I', and I"A'. Both a regular tra-
jectory j. 0 and a singular one I are illustrated.

true: the geometry is regular if and only if —1 ( B' ( 1
everywhere.

Because the momentum constraint has not featured in
this proof, unlike the first proof no control is necessary
over the material current such as that implied by the
DEC. However, in the same way that Eq. (4.11) involves
only one linear combination of the constraints, so does
Eq. (5.3). Thus neither proof requires the full constraints.

We note that when l —+ oo we again recover the posi-
tivity of the ADM mass. The proof is interesting because,
unlike the general proof [26], it does not require the dom-
inant energy condition to be satisfied.

Let us suppose that m ( 0 somewhere, so that R' ) 1
at that point. However, if this is the case, then Eq. (2.5)
[or (2.5')] implies that

K~[K~+ 2K~] = (1 —2n)K~,

which is negative if o, ) 0.5. This is just the condition
defining a globally valid o. gauge. This completes the
proof that (R') & 1.

A few comments on the proof are in order.
We note that the inequality (5.9) is stronger than the

inequality (5.2). It is clear that what the lemma we have
proved here is a stronger statement than the positivity
of the QLM. For it is possible that R'z ) 1 but m &
0 (see Fig. 1). In paper III we will demonstrate that
whereas the converse of the positivity of the QLM is false
(viz. , m may be positive everywhere but the geometry
singular) the converse of what we have proved is also

BlI ( 0

so that R' is decreasing there. This can only occur if
B ( —1. Therefore, if the circumferential radius is Ro
when m(lo) = 0, then R' & —1. We know then that the
solution must crash, i.e., R —+ 0 in a finite proper distance
which is less than or equal to Ro &om that point.

In fact, we do not even require that m ( 0. For, as
we remarked before, it is possible to have R' ( —1 but
m ) 0. Indeed, it is possible that though R' decreases
monotonically, m nonetheless remains positive. The cat-
alogue of possibilities will be discussed in papers II and
III.

We finally recall that a complete specification of the
gauge was not necessary in the positivity proof provided
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in this section. However, if we had not specified the gauge
everywhere R' & —1 was satisfied, we would not have
been able to claim that R' decreased monotonically as
we proceeded outward.

C. a gauges and embedding in Euclidean R4

If the inequality R' & 1 holds everywhere on the in-
terval [0, l] it is clear that the interior geometry can al-
ways be embedded as a hypersurface in flat Euclidean
R . Thus any regular spherically symmetric asymptoti-
cally flat three-geometry consistent with the Hamiltonian
constraint in the gauge equation (3.1) can be embedded
in R4. Later we will encounter (strongly) singular solu-
tions of the constraints which cannot be thus embedded
[20,21].

More generally, whenever K ~K p
—K is positive, it

is clear from Eq. (2.1a) that the scalar curvature 7Z is
also positive when p is. Intuitively, one would expect a
spatial geometry with a positive R to be embedded more
readily in a low-dimensional flat Euclidean space (in the
best case, as a hypersurface) than a generic geometry.
That is, of course, not true of the embedding of such a
geometry in Lorentzian Bat R4 which requires that the
initial data be trivial.

Analogous statements do not exist in Euclidean rela-
tivity where the sign of the extrinsic curvature quadratic
is reversed. Indeed, in the Euclidean theory, p does not
even possess a definite sign. If p is of the form kinetic
energy plus potential energy, the sign of the kinetic term
will reverse in the Euclidean theory. There is, therefore,
no analogous positive quasilocal mass result for instan-
tons except when K g ——0. Indeed, R' need not be
bounded at finite values of /.

A unieeraal bound on R by l

We have seen that the only possible approach to a sin-
gularity is through B' & —1. It is therefore always true
that R' & 1 on any slice defined by an n gauge. If this in-
equality holds everywhere on the interval [0, t], the proper
radius of the geometry will exceed its circumferential ra-
dius at l. This is simply because then

gauge is not of the form (3.1). The embedding argument
we have just considered in Sec. V C is not gauge invariant.

In this section we will demonstrate that when Eq. (5.1)
is satisfied, both u+ and u are bounded when the full
constraints are satisfied. The nature of these bounds
is very difFerent &om that of the upper bound equa-
tion (5.2) we obtained on the product ~+~ . The proof
that such bounds exist proceeds, however, in exactly the
same way as the proof of (5.2). Before proceeding with
the proof, it is useful to recast the constraint equations,
Eqs. (2.11a) and (2.lib), in a form which treats the trace
K rather than Kg as the independent extrinsic curvature
scalar which will be fixed by an appropriate gauge con-
dition. Eliminating Kc in favor of K we get [15]

((u+)' = —87rR(p —J)
1 2

[2(d —4 —4Ld+It R —id+Cd ]4R + (6.1a)

(u) )' = —8vrR(p+ J)
1 2

4R
[2(d —4 + 44) KR —(d+CO ] (6.1b)

We will prove that

I~+I & I&I+ (I&l'+4)":=~ (6.2)

1 2 = 1
+[2(u —4 —4(u+ K+] = (u+(u —8vr R(p —J),4R

where e+ is the value of RK at the critical point of u+.
Exploiting Eqs. (5.1) and (5.2) we have

Cd+ —2&+K+ —4 + 02 (6.3)

It is now clear that

where r = SupRIKI. We again recall that both ~+ and
satisfy the boundary conditions, Eqs. (2.12), at the

origin and (2.13) at infinity if the geometry is asymptot-
ically flat. In addition they must be finite everywhere in
any regular geometry. And. , if so, they each must pos-
sess an interior critical point at some finite value of l if
not constant. At the critical point, the RHS of Eq. (5.3)
must vanish. Thus

l —R= dl(l —R') ) 0.
0

Equality only obtains when space is flat.

VI. BOUNDS ON u+ AND ~

(5.10) &+ —(I&+I'+4)" & ~+ & ~++ (I~+I'+4)' '.
(6.4a)

Similarly

—(lr. I'+ 4)'~' ( ~ ( -ic + (IK I'+ 4)'~2,
In general, the inequality (5.9) will not be valid, even

when the dominant energy condition is satisfied, if the

We note that the lowest dimension into which the
Schwarzschild solution can be embedded is R [27] consistent
with the singularity of the geometry at R = 0.

(6.4b)

where r is the value assumed by RK at the critical point
of w . Now both

I
r+ I

and IK
I

are bounded by K which
completes the proof of Eq. (6.2). We note that we can
obtain more transparent (though weaker) inequalities, by
further approximating (lrlz + 4) ~ (

libel + 2, so that
I~+I & 2+ 21~1.
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More stringent bounds on co+ and w can be extracted
&om Eqs. (6.4a) and (6.4b) by using r+ ——maxRK and

= max( —BK) to give

(6.6a)

r+ ——(~r+~ +4)'~ (~ ( r.* + (~K*
~

+4)'~

These expressions are useful in the special case where K
has a Axed sign. Consider the case where K & 0. This
gives r* = 0 and we get the bounds

VII. NEGATIVE BINDINC ENEKCY

Once we fix a foliation, a simple measure of the mate-
rial energy content of the system is the (nonconserved)
quantity

l

M=4' d/B p,
0

(7.1)

strapping on these inequalities that the numerical bound
which is independent of )K[, )w~( & 2/gl —(2 —n[, can
be established in the neighborhood of n = 2 [21]. We
now independently possess the bound B' & 1 to estab-
lish (5.2).

—2 & (u+ & r++ (~K+~'+4)'~',

—r.+ —(ir.+i'+ 4)'i' & (u & 2,
and in the case where K & 0 we get

(6.7a)

(6.7b)

(6.8a)

also termed the "bare mass" by ADM [28]. M is a spatial
scalar. It is positive and monotonically increases with
/ when p is positive. It does, however, depend on the
foliation. It is the'QLM which we can think of as the
sum of M and a deficit which we tentatively identify with
the gravitational binding energy E~ associated with the
sources in its interior

—2 & (u & r.* + (~K* ~'+ 4)'~' . (6.8b)
m = M+Egy, (7 2)

Of course, if spacetime is foliated by an o. gauge, then we
can do better still. If J & (&)0, then ~+ & (&)~

We can also place a bound on the sum and di8'erence
of ~+ and ~ . We exploit Eq. (6.2) to get, for both the
sum and difference

(6.9)

When K = 0, the former bound coincides with the bound
(5.7) in n gauges. If K g 0, B' is still bounded if K
is. However, the corresponding spatial geometry will not
generally be embeddable in B . The inequality on the
di8'erence has no analogue if the dominant energy condi-
tion is not satisfied.

It is clear that the bound on the sum can be improved.
This is because the bound on the product, Eq. (5.2), does
not permit w+ and. u to simultaneously saturate their
upper and lower bounds. We find

/B'/ & —
(

A+ —
/

This is most easily checked using the graphical represen-
tation provided. in Fig. 1.

The inequalities, Eq. (6.2) come cast naturally in terms
of K. Despite the fact that the pair of equations,
Eqs. (2.1la) and (2.lib), superficially appear simpler
than (6.la) and (6.1b) the latter provide the more natural
presentation of the constraints.

A privileged role appears to be played by the maxi-
mal slicing of spacetime. Now ~u~~ ( 2. The bounds
Eqs. (6.2a) and (6.2b) now imply the bound (5.2). It
might appear that when n g 2 the bounds on w+ and

are not so useful appearing as they do to involve
SupR~K~ explicitly. One can show, however, by boot-

which is independent of the foliation. Its value at infinity
is also conserved.

On the other hand, even though the QLM is positive
everywhere when the dominant energy condition is satis-
Ged and the geometry is regular, it is easy to see that, in
general, it will not increase monotonically with l except
outside the last apparent horizon.

To show this we recall that Eq. (4.10) implies

m' = vrB'[(p+ J)or+ + (p —J)ur ] ) 0 . (7.3)

(7 4)

for all values of L. This is true at a MSC where we can

The RHS is clearly positive whenever ~~ ) 0 (or outside
the last apparent horizon) and p )

~
J~ (see Hayward

[17]).
If the initial data possesses an apparent horizon, even

though p might be large (so that M might also be large
if a singularity does not intervene), if p is packed behind
the apparent horizon m~ can be arbitrarily small. We
will examine explicit examples in papers I and III. Phys-
ically, the material energy is screened by a large gravi-
tational binding energy. Because of this the QLM does
not provide a very useful measure of the material energy.
The positivity of the QLM implies that the magnitude
of the gravitational binding energy can never exceed the
material energy in a regular geometry.

If our understanding is consistent, our definition of the
gravitational binding energy as the difFerence between m
and M had better be negative at inanity at least. It is
surprising that, in the maximal slicing, this inequality
holds everywhere. M therefore provides a global upper
bound on m:
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always express the difFerence [29]

M —m = 4vr dl R p[1 —R'] .
0

(7.5)

The right-hand side is always positive when p is positive

because then B' & 1 everywhere. In fact, Bizon, Malec,
and 0 Murchadha have shown that we can do much bet-
ter than this. It is possible to place an extremely strin-
gent lower bound on the difFerence in a MSC [30]. We
will return to this point in paper II.

In general, the difference is given by

M —m = vr dlR p[4 —(1+ J/p)or+ —(1 —J/p)ur ]
0

dl R p[(1 + J/p) (2 —~+) + (1 —J/p) (2 —u) )] .
0

(7.6)

(7.7)

When Eq. (5.1) is satisfied and when K = 0, so that( 2, the difference is positive. In general, with
K j 0 it is difficult to see how the positivity of M —m
will hold. This is an open question worth settling.

VIII. THE (u+, cu ) PLANE

We can exploit the (u+, u ) plane to represent solu-
tions to the constraints of spherically symmetric general
relativity. We cast the constraints in the form (2.11a)
and (2.11b). To solve these equations we must supple-
ment them with the equation which anchors u+ and ~
to B:

R = (ld+ + (d —)/4 (2.11c)

On the right-hand side of (2.11a) and (2.11b) appear
three additional functions; the material sources p(l) and
J(l), and the extrinsic curvature scalar Kc(l).

Our approach has been to specify p(l) and J(l) on some
compact interval [0, lo] consistent with the dominant en-

ergy condition, (5.1), though we have seen that it is pos-
sible to relax this condition to the weak energy condition
under cert;ain circumstances. It is we who decide whether
they do or do not satisfy the energy condition; this is not
something we derive.

We could specify Kp as some function of l. However,
intuitively, extrinsic curvature should respond to the Bow
of matter J. In particular, if we were to do this, in
the absence of sources. we would find ourselves foliating
Minkowski space nontrivially. It is therefore not really
appropriate to treat Kg the same way as p or J. What
we do is specify some foliation gauge appropriate to the
topology under consideration, (3.1) say. This permits us
to eliminate K~ in favor of K~ = (~+ —~ )/4R. The
right-hand sides of Eqs. (2.11a) and (2.11b) new involve
only the functions B, ~+, and ~ and the two functions
p(l) and J(l).

The resulting three coupled ordinary first-order differ-
ential equations can now be solved subject to boundary
conditions on ~+, u, and R appropriate to the topol-
ogy, in our case these boundary conditions are (2.12a),
(2.12b), and (2.8a).

Each solut, ion of these equations will define a trajec-

tory I" = (R(l), ~+(l), u (l)) on the space of triplets,
(R, u+, ur ). What is remarkable is that no essential
information is lost by limiting ourselves to the pro-
jections of these trajectories onto the (~+, ~ ) plane,
I' —= (~+(i) ~-(l)).

Whenever the dominant energy condition holds all reg-
ular asymptotically Bat trajectories are bounded on the
(u+, u ) plane by Eq. (6.2) as well as the positivity of the
QLM, Eq. (5.2). Because these inequalities are indepen-
dent of B when cast with respect to these variables, they
can be represented in the projection. The region Z of
the plane in which these inequalities are simultaneously
satisfied as indicated in Fig. 1. Regular, asymptotically
Hat solutions are confined to Z. Any trajectory which
strays outside Z is necessarily singular. Not only can it
not reenter Z, the trajectory must run off to infinity on
the (u+, u ) plane at some finite value of l. The details
will be discussed in papers II and III.

If the gauge is maximal, this is a square region with
vertices (2,2), (2,—2), (—2, —2), and (—2, 2). The in-
equality Eq. (5.2) is a consequence of the other two in-
equalities. In general, however, (5.2) bites out two discs
&om the square defined by the other two inequalities. In
this paper the bounds we derive on co+ and ~ charac-
terized by the number 0 do depend on the trajectory
itself unless K = 0 (derived, not something we put in by
hand). However, the fact that this bound changes from
trajectory to trajectory when K g 0 is not entirely sat-
isfactory. We can do better. In paper III we show that
in any of the gauges (3.1), 0 can in turn be bounded by
a universal numerical constant that depends only on the
parameter a appearing in the gauge.

The boundary conditions (2.12) and (2.13) imply that
each nonsingular trajectory must both begin and end on
the point (2,2). Thus, physical nonsingular initial data
can be identified with bounded closed curves I'0 in Z each
of which contains the point (2,2). In general, trajecto-
ries can intersect themselves any number of times. The
configuration space of spherically symmetric general rel-
ativity can be identified as the space of all such bounded
closed trajectories. We note the following.

(1) Vacuum, ffat data corresponds to the zero trajec-
tory, I' = (2, 2) for all l.

(2) Initial data which do not possess apparent horizons
correspond to trajectories which lie in the upper right-
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hand quadrant, ~+, cu ) 0.
(3) Spatial geometries which do not possess extremal

surfaces, R' ) 0, correspond to trajectories which lie to
the right of the principal (negatively sloped) diagonal,
R' = 0.

(4) Moment of time symmetry initial data correspond
to trajectories lying on the positively sloped diagonal,
KR ——0. The extremal surface condition coincides with
the apparent horizon condition.

If spacetime is foliated by an o, gauge, in addition,
we have the inequality (5.7) satisfied by B'. If n g 2,
this reduces the range of the allowed trajectories further,
reducing Z to the hexagonal Z, illustrated in Fig. 1.

(5) In an n gauge, when J ) 0 (J ( 0) everywhere so
also is KR. Thus the trajectory lies below (above) the
diagonal, KR ——0.

(6) The existence of an extremal surface does not nec-
essarily imply that of a future apparent horizon. Why
this is so is clear when J & 0 in an o, gauge. Conversely,
the existence of a future apparent horizon does not nec-
essarily imply the existence of an extremal surface.

A small loop in the neighborhood of the point (2,2)
corresponds to almost flat initial data. The length of
such a trajectory will typically be close to zero —the flat
data value. A larger loop, crossing u+ ——0 has a length
bounded from below by 4. It would appear that the
length of a trajectory corresponds somehow to how far
the initial data are 6.om vacuum flat initial data. This
criterion does not, however, require the trajectory to ven-
ture far from the point (2,2). For example, a trajectory
might wiggle about so much that it possess an arbitrar-
ily large arc length even though the distance of maxi-
mum excursion from (2,2) is never large. In paper II,
we find better criteria to characterize the distance of the
initial data &om flat space by defining a norm on the
space of initial data which consigns singular initial data
to infinity —something the naive idea proposed here fails
to do.

IX. CONCLUSIONS

This paper has been devoted to an examination of
the constraints in spherically symmetric general relativ-
ity with the goal of identifying the physical degrees of
&eedom. With this goal in mind we found that it was
useful to exploit not only the traditional canonical de-
scription of the phase space provided by the metric vari-
ables, (g s, It g), but also the optical scalar variables,
(w+, w ). An intriguing feature of the optical scalars
is the possibility of casting the constraints in the linear
form (2.1la) and (2.11b). Working with the appropriate
set of variables, we could focus in on different properties

We note that the points extremizing the length of the ex-
cursion from Bat space, (u+ —2) + (ur —2), are the natural
analogue of the points at which B"= 0 at a moment of time
symmetry.

of the phase space; g g to describe spatial metric prop-
erties; K g to describe the foliation; w+ and u to de-
scribe the light cone. Solutions are represented as trajec-
tories on the (~+, ~ ) [or (B', BAR)] plane as described
in Sec. VIII.

Our approach distinguishes between properties which
are spacetime diffeomorphism invariant, independent of
the foliation, and those which are not.

When we do fix the foliation we take particular care
to introduce gauges which are global and which do not
break down at either minimal surfaces or at apparent
horizons. We introduced a one-parameter family of linear
extrinsic time foliations of spacetime in Sec. III which in-
cludes both the polar gauge and the maximal slicing con-
dition. It turns out that only a subset of these give rea-
sonable asymptotic falloffs to the initial data and these
gauges are those bounded by the null directions of the
superspace metric. These gauges are the natural asymp-
totically flat foliations of spacetime. If the spherically
symmetric model is any indication, the null directions in
superspace may provide a guide toward identifying the
natural gauges in less trivial models.

In spherically symmetric general relativity it is easy to
identify a spacetime diffeomorphism invariant quasilocal
mass, which coincides with the Hawking mass, and to
write an expression which relates this quasilocal mass to
an integral over the sources when the constraints are sat-
isfied. The remarkable feature of the QLM is its positiv-
ity when the geometry is regular and the material sources
satisfy certain very reasonable energy conditions. The
positivity of the QLM appears to suggest the negativity
of a physically realistically defined binding energy.

We found that we could prove the positivity of the
QLM under two different sets of assumptions on the ini-
tial data. One of the proofs is gauge invariant, the other
is not, relying, in addition, on the implementation of a
valid o. gauge. However, whereas the former requires that
matter satisfies the DEC (as one would expect), the lat-
ter does not, requiring only that matter satisfy the weak
energy condition (WEC). This is not to say that the con-
junction of the WEC with an o. gauge is equivalent to
the DEC.

Underpinning the positivity in either case, are vari-
ous bounds on the canonical variables. When the for-
mer (latter) set of conditions mentioned in the preceding
paragraph are satisfied, u+u ( 4 (B'2 ( 1) everywhere
in any regular solution to the constraints. This bound
on R' has a simple geometrical interpretation in that it
demonstrates that each of the spacelike hypersurfaces we
obtain as solutions to the constraints can be embedded
in flat R . In fact, given the spherical symmetry, they
can be described simply by curves in R . Of course, this
visualization ignores the nontrivial extrinsic curvature.

There is no analogous bound on KR if the DEC is not
satisfied. One might be forgiven for overlooking, even
attempting, to search for such a bound because typi-
cally one does not expect momenta to be bounded. What
is remarkable is that when the DEC is satisfied, KR is
bounded. This is not at all obvious using the metric vari-
ables. The way one proceeds is to establish that both co+
and u are bounded when the DEC is satisfied. It is then



52 CONSTRAINTS IN SPHERICALLY. . . . I. 773

a simple corollary that K~ is also bounded. Clearly the
spacetime light-cone structure on the initial hypersur-
face, though heavily disguised in the metric description
of the initial data, is encoded in the constraints. While
the guiding principle behind the discovery of the bounds
on or+ and u inay be the positivity of the QLM, these
bounds are of a fundamentally different nature to that
on the product, ~+~, which features in the proof of the
positivity of the QLM. We note that the form of these
bounds is also very different &om that of the bounds
separating geometries with apparent horizons &om ones
which do not. The existence of bounds on the canon-
ical variables (or their gradients) appears to be a very
fundamental feature of the spherically symmetric theory,
undermining one's confidence in any naive quantization
of this model which does not take them into account. It is
likely that analogous bounds will exist in the full theory.
Their discovery is a challenge for the future.

What we have learned about the configuration space
of spherically symmetric general relativity will be built
upon in future papers. In particular, we will show that
two ingredients, the description of solutions as trajecto-
ries on the (u+, u ) plane and the quasilocal mass pro-
vide extremely useful practical tools, not just abstract
constructions. We can exploit the QLM to characterize
the behavior of the spatial metric and the extrinsic cur-
vature in the neighborhood of generic singularities. The
only singularities that can occur in a spherically symmet-
ric geometry do so because B returns to zero. Generically
this will be accompanied by a divergence of both B' (to-
ward minus infinity) and of K~. No singular geometries
terminate in the region Z indicated in Fig. 1. Where they
terminate will depend in an essential way on the value of
the QLM in the neighborhood of the singularity.

A very brief outline of subsequent papers follows.
In II, we will examine the solution of the Hamiltonian

constraint at a moment of time symmetry. In this sim-
plified setting we can gain useful clues as to how best to
characterize the configuration space of the theory. In III,
we extend this analysis to J g 0.
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mal vectors, one outward directed and future pointing,
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We can represent these null vectors

k~ = +t&+ n& . (A1)

k" is obtained &om k+ by reversing the sign of t~. The
divergence of k+ on S is now given by

O~ = (g" + t"t" —n"n")7'„(+t„+n ) . (A2)

Let us suppose that S is embedded in some spacelike
hypersurface 8 with normal vector t~. Now the normal
vector to S in 8 is also clearly normal to t" in spacetime.
With respect to Gaussian normal coordinates for space-
time adapted to 8, t" = (1,0, 0, 0) and no = 0 = no.
Thus we can express

Og = (g —n n )V (+ts+ nt, )
= V'. n+(g' —n ~')Z., (A3)

where g p and K p ——V' tp are, respectively, the spatial
metric and the extrinsic curvature of Z. The second term
is the trace of the projection of K p orthogonal to S. In
particular, we observe that 0+ and 0 are completely
described by the initial data, (g q, K g) on the spacelike
hypersurface in which we have embedded S. We note
that a change in the prescription of Z will change 0+ by
a boost factor, p say, and 0 by the factor p . Thus
neither 0+ nor 0+ is a spacetime scalar. However, their
product 0 0+ is. This is the product which occurs in
the quasilocal mass formula introduced in Sec. V. Clearly,
m is also a spacetime scalar.

A future (past) trapped surface is a closed two-
dimensional spacelike surface on which the divergence of
future (past) outward directed null rays is negative. A
future (past) apparent horizon is the outer boundary of
such trapped surfaces. The appearance of a future (past)
apparent horizon signals (Penrose's theorem [10]) gravi-
tational collapse to form a black hole (initial conditions
which could only have evolved out of a state which pos-
sesses a singularity).
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APPENDIX A: OPTICAL SCALARS, APPARENT
HORIZONS, AND EXTREMAL SURFACES

Let us consider a closed two-dimensional spacelike sur-
face S. Each point on S possesses two mutually orthogo-
nal spacetime unit vectors which are normal to S. One of
these, tl" say, may be taken to be timelike and future di-
rected. The other vector, n~ say, is then spacelike and we
choose it to be pointing outward. This choice is clearly
well defined up to a Lorentz boost in the normal tangent
space. Alternatively, we can always choose two null nor-

V ~=0 (A4)

We note that there exists no analogue of an apparent hori-
zon in a Euclidean geometry.

is the condition that the closed two-dimensional space-
like surface S be an extremal hypersurface of 8. The
apparent horizon coincides with an extremal (minimal)
surface in a MSC, regardless of the material content of
the theory.

In the spherically symmetric model, the normal space-
like vector to the spherically symmetric two-dimensional
surface of circumferential radius A is given by n
1/E(1, 0, 0) and
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APPENDIX 8: SPACETIME APPROACH TO
EQS. (2.lla) AND (2.lib)

In addition,

(g' —n n')Z'. s = 2Z'~ .

Og = —(R + RKR) .2 /

B (A5)

Recall that with respect to the proper timelike normal,
BK~ ——B. We can therefore alternatively write

This term therefore not only vanishes in a MSC but also
when K~ ——0. In general, however, it will not. We can
write

Another route to the derivation of Eqs. (2.11a) and
(2.11b) which makes them, perhaps, more obvious is the
following spacetime approach. We note that the con-
straint equations (2.1a) and (2.1b) are equivalent to the
projected Einstein equations (G+" is the Einstein tensor)

G&„~" = 8~T&„t (B1)

where V' denotes the future-directed unit normal to the
hypersurface 8. We exploit the "radial" Einstein equa-
tion [9]

2
Og ———k~V„R .

In flat space foliated by flat spacelike hypersurfaces, B =
/ independent of t and K g

——0. Thus

h „6~V VpR = h„—4vrRT ~~ „~p„, (B2)

O~R=2

for all R.
A minimal surface in the spatial geometry does not

necessarily correspond to any physically significant lo-
cus of points on the spatial geometry. However, it does
imply that the geometry possesses either a future or a
past apparent horizon. Even if an apparent horizon is
not present on the initial spacelike surface, as the sys-
tem evolves an apparent horizon might form. One of the
nice things about the identification of the radial coordi-
nate with the proper radius is that it is insensitive to
the formation of minimal surfaces or trapped surfaces.
This should be contrasted with Schwarzschild coordi-
nates, which even if globally valid on the initial surface,
will not necessarily remain so.

where h~ is the r —t part of the spacetime metric, m
is the QLM, defined by Eq. (4.6), and e„„is a two-form
associated with the surfaces orthogonal to the orbits of
the rotation group. If nI" be the radial tangent to 8, then
e„„=2t~„n„j. By contracting (B2) with nl we obtain a
set of equations equivalent to (Bl). The Hamiltonian and
momentum constraints obtain by projecting the resulting
equations onto t and n, respectively. If, however, we
project onto the two linear combinations k+ defined by
Eq. (Al), we get

k~n~V VpB = p 4~BT pk~t~,

a set of equations equivalent to Eqs. (2.1la) and (2.11b).
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