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Constant mean curvature slices and trapped surfaces in asymptotically flat spherical spacetimes
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We investigate trapped surfaces in asymptotically flat spherical spacetimes using constant mean curvature
slicing. Precise necessary and sufficient conditions for the formation of such surfaces are derived. We write
down an explicit expression for the constant mean curvature foliation of the Reissner-Nordstro¨m spacetime. A
set of criteria describing the formation of horizons in arbitrary slicings of asymptotically flat and spherically
symmetric spacetimes is given in the Appendix.@S0556-2821~96!05620-2#

PACS number~s!: 98.80.Hw, 04.20.Gz, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

In the analysis of general relativity as a Hamiltonian sys-
tem @1# one chooses a time function and considers the folia-
tion of the spacetime by the slices of constant time. Two
natural geometrical quantities arise on such three-slices. One
is the intrinsic three-metric, usuallygab , and the other is the
extrinsic curvatureKab, the time derivative ofgab . These are
not independent: They are related by the constraints

R~3!2KabKab1~ trK !2516pr,

¹aK
ab2gab¹atrK528p j a,

whereR(3) is the three scalar curvature,r is the energy
density andj a is the current density of the sources.

It is often useful to specify the foliation, and thus the
time, by placing a condition on the extrinsic curvature, The
most common choice in asymptotically flat spacetimes is the
maximal slicing condition trK50. In cosmologies, the fa-
vored slicing is the constant mean curvature~CMC! foliation
with trK5 const.

Such CMC slices have also been used in an asymptoti-
cally flat context@3#. They are everywhere spacelike, but at
infinity they approach null infinity. Thus they are very useful
in investigating the relationship between spatial and null in-
finity. A standard model of CMC hypersurfaces is the mass
hyperboloids in Minkowski space@4#. In general asymptoti-
cally flat spacetimes, since the CMC slices approach null
infinity, they are not good Cauchy slices. In the spherically
symmetric case, however, if the matter has compact support,
the exterior geometry is fixed and so good initial data can be
prescribed on them.

In this paper we investigate a very special class of CMC,
those which are spherically symmetric. Because of the ab-
sence of gravitational radiation, spherical spacetimes are par-
ticularly simple, yet realistic, models of general solutions to
the Einstein equations.

If we have a spherically symmetric three-surface, the in-
trinsic metric can be written as

ds25dl21R2dV2,

wherel is the proper distance in the radial direction andR is
the Schwarzschild or areal radius. The geometry is encoded
into the relationship betweenR and l and a useful object to
use is the mean curvature of the spherical two surfaces, given
by

p5
2

R

dR

dl
.

The constraints now can be written as

] l p528pr2
3

4
~Kr

r !22
3

4
p21

1

R21
1

2
trKKr

r1
1

4
~ trK !2,

] l~Kr
r2trK !52

3

2
pKr

r1
1

2
ptrK28p j l . ~1!

It has been recently shown@2# that the constraints of gen-
eral relativity in the spherically symmetric case can be ex-
pressed very simply by using the null expansions as subsid-
iary variables and the constraints can be expressed as a
system of quasilinear first order ordinary differential equa-
tions ~ODE’s!. We apply this new formulation in the CMC
case to investigate a number of interesting problems.

Much work has been carried out in recent years on how
concentrations of matter may gravitationally collapse@2,5,6#.
One of the motivations for repeating the calculation in vari-
ous slicings of asymptotically flat spacetimes is due to the
fact that no covariant formulation of the question has been
found. This article, in which we derive both necessary and
sufficient conditions for the formation of trapped surfaces,
can be regarded as an attempt to see how the criteria we
obtain are more or less independent of the details of the
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slicing used. Let us emphasize that the appearance of trapped
surfaces indicates that irreversible gravitational collapse has
commenced.

We derive, for the sake of completeness, the general line
element for the Reissner-Nordstro¨m spacetime in the slicing
by constant mean curvature hypersurfaces, that is, a gener-
alization of the corresponding solution in the maximal slic-
ing @7#. This makes concrete our earlier claim that the exte-
rior geometry is completely fixed. This can be regarded as a
consequence of the Birkoff theorem.

In the Appendix we derive general criteria, valid for arbi-
trary slicings of spherically symmetric geometries, for the
formation of trapped surfaces.

II. CMC HYPERSURFACES IN MINKOWSKI SPACE

Let us consider spherically symmetric CMC hypersur-
faces in Minkowski space. We write the four-metric as

ds252dt21t2@dr21sinh2rdV2#, ~2!

where dV25du21sin2udf2 is the standard round two-
metric. The scalar curvatureR(3) of the three-space defined
by t5 const isR(3)526/t2.

The extrinsic curvature of this slice is pure trace,

Kab[
1
2 ]tgab5(1/t)gab , which implies trK5K53/t. The

proper radial distancel along the slice is related to the coor-
dinate radiusr by tdr5dl which yields

r5
l

t
5
Kl

3
. ~3!

The Schwarzschild radiusR is given by

R5t sinhr

5
3

K
sinh

Kl

3
, ~4!

and its derivative reads

R85
dR

dl
5cosh

Kl

3
. ~5!

The primary objects we deal with are the optical scalars,
the expansionu of the outgoing null rays, and the conver-
genceu8 of the ingoing light rays. These are given by

Ru52R81 2
3KR

52 cosh
Kl

3
12 sinh

Kl

3

52eKl /3 ~6!

and, similarly,

Ru852e2Kl /3; ~7!

therefore, the product ofRu and Ru8 remains constant,
RuRu854. We also have

Ru5
4RK

3
12e2Kl /3. ~8!

Thus at the origin we have

Ru85Ru52, ~9!

and at infinity one of the scalars is divergent while the other
vanishes,

Ru→ 4
3KR, Ru8→0. ~10!

An alternative form of the metric~2! can be written in
terms of the Schwarzschild radius

ds25
2t2

t21R2dt22
2Rt

t21R2dRdt1
t2

t21R2dR
21R2dV2.

~11!

III. GENERAL STRUCTURE OF THE SPHERICALLY
SYMMETRIC CONSTRAINTS

The two divergences of outgoing null rays are given by

v15Ru5Rp2RKr
r1RK, ~12!

v25Ru85Rp1RKr
r2RK, ~13!

where

p5
2

R

dR

dl
~14!

is the mean curvature of a surface of constantR in the slice
whereR is the Schwarzschild radius andl is the proper dis-
tance. The constraints now can be written as

] l~v1!528pR~r2 j !2
1

4R
~2v1

2 2v1v224

24v1RK!, ~15!

] l~v2!528pR~r1 j !2
1

4R
~2v2

2 2v1v224

14v2RK!, ~16!

] lR5R85
1

4
~v11v2!. ~17!

We assume we are givenr ~the energy density!, j5 jW•n̂
~the current density!, wheren̂ is the outgoing radial normal
andRK as functions ofl and then solve the triplet of ODE’s
~15!, ~16!, and~17! for (R,v1 ,v2). The only conditions we
assume are regularity at the origin (R50,v15v252), as-
ymptotic flatness and that the sources satisfy the dominant
energy condition,r>u j u.

Combining Eqs.~15! and ~16! we can write

] l~v2v1!528pR@r~v11v2!1 j ~v12v2!#

2
1

4R
~v2v124!~v11v2!, ~18!
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and by regularity and asymptotic flatness we have that
limR→0v2v154 also limR→`v2v154.

Suppose thatv2v1.4; if both are positive, we have that
the right-hand side of Eq.~18! is strictly negative and if both
are negative the right-hand side is positive. Thus we have

v2v1<4. ~19!

IV. CONSTRAINTS ON ASYMPTOTICALLY FLAT
CMC HYPERSURFACES

When we consider asymptotically flat CMC hypersur-
faces, it is useful to use variables that are finite at the origin
and infinity. From the Minkowski analysis, it is clear that we
need as boundary conditions thatv1→2eKl /3 and
v2→2e2Kl /3. Thus the natural variables to use are
A5v1e

2Kl /3 and B5v2e
Kl /3. Using these Eqs.~15! and

~16! become

] lA528pRe2Kl /3~r2 j !2
eKl /3

4R
@2A22 8

3KRe
2Kl /3A

2ABe22Kl /324e22Kl /3#, ~20!

] lB528pReKl /3~r1 j !2
e2Kl /3

4R
@2B21 8

3KRe
Kl /3B

2ABe2Kl /324e2Kl /3]. ~21!

We know, from the previous section@inequality~19!# that
AB5v1v2 is bounded above by 4 . Let us write the expres-
sion which does not depend on the sources in Eq.~20! as

2
eKl /3

2R
@A22 4

3KRe
2Kl /3A24e22Kl /3#2

e2Kl /3

4R
@42AB#.

~22!

Consider

a52AK2R2/9111
2

3
KR,

~23!

b52AK2R2/9112
2

3
KR;

these are essentially the roots of the quadratic equation in
A in Eq. ~22!. If A lies outside the range

@2be2Kl /3,ae2Kl /3#, ~24!

then every term on the right-hand side of Eq.~20! is negative
and therefore] lA,0.

It is clear thata. 4
3KR and alsoa>2, and these are the

limiting values ofA at infinity and at the origin, respectively.
At any maximum ofA we have that] lA50 which implies
that A<ae2Kl /3 at that point. We can show that this is a
global upper bound, or, equivalently,

v1<2AK2R2

9
111

2

3
KR. ~25!

Consider the function

f ~ l !52AK2R2

9
111

2

3
KR2v1 , ~26!

f ( l ) is zero at the origin and by asymptotic flatness it is
positive at infinity. We can show that it is always positive.
Let us assume, to the contrary, thatf ( l ) is negative some-
where. This means that there must exist a negative minimum,
i.e., a point where

~ i! v1.2AK2R2/9111 2
3KR

and

~ii) f 8( l )50.

However, we can show that if~i! holds, thenf 8( l ).0.
Using Eqs.~15! and ~17!, we can calculate

f 8~ l !5
1

4RFKR3 a~v11v2!

AK2R2/911
12v1

2 2v1v2

24v1KR24G18pR~r2 j !. ~27!

The coefficient ofv2 is

1

4RF2v11
KRa

3AK2R2/911
G . ~28!

This is obviously negative sincev1>a. Therefore we
minimize f 8( l ) by choosing the maximum value ofv2 .
There is a condition, Eq.~19!, that constrains the product of
both optical scalars,v1v2<4. Therefore the maximum of
v2 is 4/v1 .

Now consider the function

f̃ ~ l !5
1

4RFKR3 a~v114/c1!

AK2R2/911
12v1

2 2824v1KRG .
~29!

The derivative of this function with respect tov1 is posi-
tive ~assuming v1>a) and therefore its minimum is
achieved at the minimum ofv1 , i.e., atv15a.

Hence

f 8~ l !>
1

4RFKR3 a214

AK2R2/911
12a22824aKRG

18pR~r2 j !. ~30!

It is easy to see that this expression is positive. Hence we
get a contradiction. We could show, in a similar vein, the
existence of the upper bound onB as well of the lower
bounds. Therefore we have the following global bounds on
the optical scalars:

2b<v1<a, ~31!

2a<v2<b. ~32!
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Those bounds are valid for both signs, positive and nega-
tive, of the trace of the extrinsic curvatureK.

V. SUFFICIENT CONDITIONS FOR TRAPPED SURFACES
IN CMC HYPERSURFACES

We can use the formulae~15! and~17! in Sec. II to derive

] l~v1R!528pR2~r2 j !111 1
4 ~2v1v22v1

2

14v1RK!, ~33!

and we have the bounds onv1 andv2 from the previous
section. It is easy to show that the maximum value of
(2v1v22v1

2 14v1RK) occurs when ~i! v15a and
v25b if K.0, and~ii ! v152b andv252a if K,0.
Hence we get in both cases

2v1v22v1
2 14v1RK<41

16

3
K2R2

1
16

3
uKuRAK2R2

9
11.

~34!

We can complete the square in the square root to finally
get

1
4 ~2v1v22v1

2 14v1RK!<11 8
9K

2R21 4
3 uKuR;

~35!

thus, we get

] l~v1R!<28pR2~r2 j !121 8
9K

2R21 4
3 uKuR. ~36!

If we integrate this equation out to some surfaceSwe get

v1RuS<22~M2P!12L1
2K2

9p
V1

4

3
uKu E

0

l

Rdl,

~37!

whereM5*4pR2rdl is the total amount of matter inside
S, P5*4pR2 jdl is the total outward radial momentum of
the matter,L is the proper radius, andV is the volume inside
S ~notice that 4pR2dl5dV is the proper volume element!.
Therefore, we have that if

~M2P!~S!>L1
K2

9p
V1

2

3
uKu E Rdl,

we must have thatv1RuS is negative and so the surface at
S is a outer future-trapped surface. We can estimate*Rdl as

E Rdl<F E R2dlG1/2F E dlG1/25SVL4p D 1/2. ~38!

Therefore a sufficient condition for the appearance of a
outer future-trapped surface on a slice with constant trace of
the extrinsic curvature is that

~M2P!~S!>L1
K2

9p
V1

uKu
3 SVLp D 1/2. ~39!

VI. NECESSARY CONDITIONS FOR A TRAPPED
SURFACE IN A CMC HYPERSURFACE

Let us return to the equality~33! we derived in Sec. V and
again integrate it out to some surfaceS:

v1RuS522~M2P!1L~S!

1 1
4 E

0

L

~2v1v22v1
2 14v1RK!dl, ~40!

but now we wish to minimize the integral rather than maxi-
mize it. We assume that no outer future trapped surface ex-
ists within S, i.e., v1>0. We also assume that no outer
past-trapped surface exists inS. Not only that, but thatv2 is
strongly bounded away from zero, i.e.,v2>C.0; that
means that all radially ingoing null rays are converging.

In other words, we want to minimize the function
f (v1 ,v2)52v1v22v1

2 14v1RK in the region given by
0<v1<a and C<v2<b. A simple calculation gives
fmin5min„f (a,C),0….
Becausea is a function ofR, we need to study the func-

tion

f̃ ~R!5 f ~a~R!,C!

52aC2a214aRK

in order to findfmin .
We will consider separately two cases, with the positive

and negative traces of the extrinsic curvature.
~i! Let K.0. By inspection we obtain that this function is

an increasing function in the variableR, therefore,

min~ f̃ !5 f ~a~0!,C!54C24.

Clearly, whenC>1, fmin50; otherwise, fmin>4C24.
Inserting this into Eq.~40! we obtain two estimates

v1RuS>H 22~M2P!~S!1L~S! for C>1,

22~M2P!~S!1CL~S! for C<1;
~41!

that is, sinceu(S)50,

M ~S!2P~S!>5
L

2
for C>1,

CL

2
for C<1

is the necessary condition for the existence of a future
trapped surface.

The above result obviously applies to maximal slices. In
connection with that, two of us have to admit that theorem 2
in @2# should be stated as above; the actual statement of@2#,
that the necessary condition for future-trapped surfaces is
M (S)2P(S)>CL/2 can be wrong.

~ii ! Let K,0. In this case one easily estimatesf̃ (R) from
below by

4~C21!1
4KR~41C!

3
for C<1,
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4KR~41C!

3
for C>1.

That leads to a necessary condition forS to be future trapped

M ~S!2P~S!1
~41C!uKu

6 E
0

L~S!

dlR~ l !>5
L

2
for C>1,

CL

2
for C<1.

Using relations dl5 (2/Rp) dR and pR5 1
2 (v11v2)

> C/2 one obtains

E
0

L~S!

dlR~ l !<
S

2pC

and the necessary condition

M ~S!2P~S!1
~41C!uKuS

12pC
>5

L

2
for C>1,

CL

2
for C<1.

A similar necessary condition, under a somewhat stronger
condition, has been obtained by Zannias@6#. Thus negative
values of the trace of the extrinsic curvature can help to form
trapped surfaces.

Let us recall that yet another necessary result has been
derived in @8#, where the following equation has been
proved:

R3

8
u~S!u8~S!1m2S S

16p D 1/25pE
r

`
AaR3@r0~u1u8!

1 j ~u2u8!#. ~42!

This equation has been derived on maximal slices, but it
holds true on any slicing, assuming a quick enough falloff of
matter fields. Under the dominant energy condition one con-
cludes that an outermost trapped surfaceS ~future or past!
must have a Schwarzschild radiusR not greater than 2m.
This conclusion is slicing independent.

VII. REISSNER-NORDSTRÖM GEOMETRY
USING CMC FOLIATIONS

In this section we will present an explicit line element for
electrovacuum in constant mean curvature foliations. The
most general spherically symmetric line element can be put

ds252N2dt21adr21R2dV2. ~43!

We assume that the trace of the extrinsic curvature

K5
] t~AaR2!
2NAaR2 ~44!

is constant on a particular slice and, moreover, is time inde-
pendent. The three nonzero components of the extrinsic cur-
vature are

Kr
r5

] t~Aa!

2NAa
, Kf

f5Ku
u5

] tR

NR
5
1

2
~K2Kr

r !. ~45!

The spherically symmetric Einstein equations consist of
constraint equations~1!, the evolution equation

] t~Kr
r2trK !52

p3R2

2N

] r

Aa
S NpRD 21 3N

2
~Kr

r !218p~Tr
r1r!

1
N

2
K222NKKr

r , ~46!

and the lapse equation

D~3!N5N@ 3
2 ~Kr

r !21 1
2K

22KKr
r14p~Ti

i1r!#. ~47!

In electrovacuum we haveq2/8pR45r5Ti
i52Tr

r where
q is the electric charge. The mean curvaturep of nested two
spheres and the extrinsic curvatures are easily found from the
constraints~1! and they read

pR52A11
C

R
1
q2

R2 1SKR3 1
C1

2R2D 2,
~48!

Kr
r5

K

3
1
C1

R3 .

The lapse equation becomes now

D~3!N5NF3C1
2

2R6 1
q2

R4 1
K2

3 G , ~49!

and one easily finds out that it is solved by

N5g
pR

2
, ~50!

whereg is given by

g~r ,t !511E
R~r !

`

dR̃
C2~R̃,t !

~R̃!2~pR̃!3
. ~51!

Inserting the whole information into Eq.~46! and using
the relation] r /Aa5(Rp/2)]R one obtains that the constant
C2 depends on the rate of change of the radial-radial com-
ponent of the extrinsic curvature,

C2~R,t !54] t@R
3~Kr

r2K !#. ~52!

The change of the coordinate variabler into the areal
radiusR transforms the line element~43! into
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ds25dt2F2N21
g2

4 SC1

R2 2
2KR

3 D 2G
12g

C1 /R
322K/3

p
dtdR1

4

~pR!2
dR21R2dV2

52
g2v1v2

4
dt212g

v22v1

v21v1
dRdt

1
16

~v21v1!2
dR21R2dV2, ~53!

with N andp defined above. Let us point out that the param-
eterC that appears in the expression forp should be identi-
fied with 22mB , wheremB is the Bondi mass. The spatial
part Eq.~53! agrees, forq505C1, with the constant mean
curvature foliation of the Schwarzschild geometry given in
@9#.

VIII. ‘‘CMC SURFACES AVOID SINGULARITIES’’

In the article@2# an argument was advanced as to how
foliations with bounded trace of the extrinsic curvature might
avoid singularities. In this section we wish to produce a dif-
ferent ~and sharper! argument to the same end. This argu-
ment works for essentially any slicing, but we present it here
specifically for CMC slices. Let us consider a model of a
collapsing system where the support of the matter becomes
ever smaller as the collapse continues so that eventually the
star is confined to a region much smaller than that enclosed
by the apparent horizon. If the star were to be compressed
inside a boundary which satisfiesR!m, wherem is the con-
served Arnowitt-Deser-Misner~ADM ! mass of the star, be-
fore any singularity appears then regular CMC foliations will
be excluded from this part of the spacetime.

From the inequalities~31! and~32! we can show that, on
any regular CMC slice,

v1v2>24S 2K2R2

9
111

2uKuR
3

A11K2R2

9 D
>24S 2uKuR

3
11D 2. ~54!

However, both the Schwarzschild radiusR, and the product
v1v2 are four-scalars and we have

v1v254S 12
2mH

R D , ~55!

wheremH is the so-called Hawking mass, which equals the
constant ADM mass outside the support of the matter. In-
equality ~54! and equality~55! can be combined to give the
inequality

mH<
2K2R3

9
1
2uKuR
3

1R. ~56!

This means that for a fixed positivemH we have a lower
bound forR. Let us assume that we are considering a spheri-
cal collapse and viewing it using a CMC foliation. Let us
also assume that during this collapse a two-surface appears

which violates this inequality~56! before the CMC slices
become singular. This means that the CMC foliation cannot
progress past this point, and the lapse collapses. Since the
lapse equation is elliptical, not only does the lapse go to zero
at this point; it becomes small on the whole interior, and the
CMC slicing freezes.

This means that if we wish to find a solution where CMC
slices run right up to the singularity, we cannot allow a large
accumulation of matter near the center before the singularity
appears. A possible way for this to happen is that if the
collapse were such that in addition to the infall of matter, one
also had an explosion that pushed significant amounts of the
star outwards, away from the horizon.

This bound is valid for solutions which have the spatial
topologyR13S2 as in the extended Schwarzschild solution
as well as topologyR3. Maximal slicing can be viewed as a
special case of CMC slicing and it was observed many years
ago ~see @7#! that the regular maximal slicing of the
Schwarzschild solution saturates atR53m/2, in agreement
with the bound stated above.
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APPENDIX

In what follows we prove two results that hold true on any
spherically symmetric slices with an arbitrary slicing condi-
tion K5Kj

j albeit we need thatB5sup0<R,`KR,`.
Theorem 1.Assume the energy conditionr> j . In nota-

tion of Sec. V, if

M ~S!2P~S!.
3

2
L1

B2

2
L,

then a two-sphereSmust be future trapped.
Proof. From Eq. ~15! one obtains, after multiplying by

R and integration by parts,

v1R522@M ~S!2P~S!#

1E
0

L

dlS 12
v1
2

4
1v1KR1

v1v2

2 D . ~A1!

From that one gets, using the obvious estimate
2v1

2 /41v1KR<(KR)2<B2, that

v1R<22@M ~S!2P~S!#1E
0

L

dlS 11B21
v1v2

2 D .
~A2!

From @2# we have thatv1v2<4. Inserting that into Eq.
~A2!, one arrives at

v1R522@M ~S!2P~S!#13L1B2L,

which immediately yields theorem 1.

54 4797CONSTANT MEAN CURVATURE SLICES AND TRAPPED . . .



That result is not exact, as opposed to the sufficiency
condition proved in the main text.

Theorem 2~the Penrose inequality!. Let S be a Cauchy
hypersurface with an arbitrary sliceK and the asymptotic
massm. Assume that matter is of compact support and that it
satisfies the energy conditionr> j outside a sphereS. Let
A54pR2 denote the area ofS. ThenS cannot be trapped if
R.2m.

Proof.Multiplying Eq. ~18! by R and integrating it, one
gets the equation

v1v2R24R528pE
0

L

dlR2@r~v11v2!1 j ~v11v2!#.

~A3!

The integral 4p*0
`dlR2@r(v11v2)1 j (v11v2)# is

conserved in time, as one can easily check; from the asymp-
totic flatness, taking into account the asymptotic behavior of
optical scalars, one obtains that 4m, wherem is the asymp-
totic mass, is actually equal to the integral. Thus Eq.~A3!
can be written as

v1v2R24R528m18pE
L

`

dlR2@r~v11v2!

1 j ~v11v2!#. ~A4!

At spatial infinity both optical scalars are positive. LetS
be the last such sphere that one of the scalars vanishes. Then
outsideS both scalars are positive and one easily shows that
the integrandr(v11v2)1 j (v11v2) is non-negative
outsideS if the energy condition of theorem 2 holds true. But
that means that the sphereSmust be placed within the area
having areal radiusR<2m.

Let us point out that theorem 2 generalizes a result hith-
erto proven in@8# for the case of maximal slices~see also
@10# for the proof of the Penrose inequality for Tolman-
Bondi-Sharp-Misner-Podurets class of metrics!. Theorem 2
excludes the existence of any trapped surfaces, both future
and past, outside the Schwarzschild radius.
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