-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Cork Open Research Archive

\‘ ‘ ORA Cork Open Research Archive
£ Cartlann Taighde Oscailte Chorcai

Title Constant mean curvature slices and trapped surfaces in asymptotically

flat spherical spacetimes

Author(s) Iriondo, M; Malec, Edward; o) Murchadha, Niall
Publication date 1996
Original citation Iriondo, M., Malec, E. and O Murchadha, N. (1996) 'Constant mean

curvature slices and trapped surfaces in asymptotically flat spherical
spacetimes', Physical Review D, 54(8), 4792-4798 (7pp). doi:
10.1103/PhysRevD.54.4792

Type of publication |Article (peer-reviewed)

Link to publisher's  |hitps:/journals.aps.org/prd/abstract/10.1103/PhysRevD.54.4792
version http://dx.doi.org/10.1103/PhysRevD.54.4792

Access to the full text of the published version may require a

subscription.

Rights © 1996, American Physical Society

Item downloaded http://hdl.handle.net/10468/4585
from

Downloaded on 2018-08-23T19:47:50Z

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh


https://core.ac.uk/display/95763732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.54.4792
http://dx.doi.org/10.1103/PhysRevD.54.4792
http://hdl.handle.net/10468/4585

PHYSICAL REVIEW D VOLUME 54, NUMBER 8 15 OCTOBER 1996

Constant mean curvature slices and trapped surfaces in asymptotically flat spherical spacetimes
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We investigate trapped surfaces in asymptotically flat spherical spacetimes using constant mean curvature
slicing. Precise necessary and sufficient conditions for the formation of such surfaces are derived. We write
down an explicit expression for the constant mean curvature foliation of the Reissner-Nordpaoetime. A
set of criteria describing the formation of horizons in arbitrary slicings of asymptotically flat and spherically
symmetric spacetimes is given in the Append&0556-282(96)05620-2

PACS numbe(s): 98.80.Hw, 04.20.Gz, 95.30.Sf, 97.60.Lf

I. INTRODUCTION If we have a spherically symmetric three-surface, the in-
trinsic metric can be written as

In the analysis of general relativity as a Hamiltonian sys-
tem[1] one chooses a time function and considers the folia- ds?=dI?+R2dO?,
tion of the spacetime by the slices of constant time. Two
natural geometrical quantities arise on such three-slices. Ongherel is the proper distance in the radial direction d
is the intrinsic three-metric, usually,,, and the other is the the Schwarzschild or areal radius. The geometry is encoded
extrinsic curvatur&®®, the time derivative ofj,,. These are into the relationship betweeR and| and a useful object to

not independent: They are related by the constraints use is the mean curvature of the spherical two surfaces, given
by
R —K3K ,,+ (trK) 2= 16mp,
apt (1K) P B 2 dR
PRl

V K3— g2V trk = — 872,

_ _ The constraints now can be written as
where R®) is the three scalar curvature, is the energy

density andj? is the current density of the sources. 3 3 1 1 1

It is often useful to specify the foliation, and thus the r9|p=—877p—z(KD2—Zp2+ mt EtFKKH Z(UK)Z,
time, by placing a condition on the extrinsic curvature, The
most common choice in asymptotically flat spacetimes is the 3 L
maximal slicing condition =0. In cosmologies, the fa- r_ Y S o
vored slicing is the constant mean curvat((wl%) foliation H(K;—trK) 2 PK;+ 2 ptrk =8, @
with trK = const.

Such CMC slices have also been used in an asymptoti- It has been recently showWg] that the constraints of gen-
cally flat context3]. They are everywhere spacelike, but ateral relativity in the spherically symmetric case can be ex-
infinity they approach null infinity. Thus they are very useful pressed very simply by using the null expansions as subsid-
in investigating the relationship between spatial and null indary variables and the constraints can be expressed as a
finity. A standard model of CMC hypersurfaces is the massystem of quasilinear first order ordinary differential equa-
hyperboloids in Minkowski spacket]. In general asymptoti- tions (ODE’s). We apply this new formulation in the CMC
cally flat spacetimes, since the CMC slices approach nultase to investigate a number of interesting problems.
infinity, they are not good Cauchy slices. In the spherically Much work has been carried out in recent years on how
symmetric case, however, if the matter has compact supportoncentrations of matter may gravitationally collap2é,6|.
the exterior geometry is fixed and so good initial data can béne of the motivations for repeating the calculation in vari-
prescribed on them. ous slicings of asymptotically flat spacetimes is due to the

In this paper we investigate a very special class of CMCfact that no covariant formulation of the question has been
those which are spherically symmetric. Because of the abfound. This article, in which we derive both necessary and
sence of gravitational radiation, spherical spacetimes are pasufficient conditions for the formation of trapped surfaces,
ticularly simple, yet realistic, models of general solutions tocan be regarded as an attempt to see how the criteria we
the Einstein equations. obtain are more or less independent of the details of the

0556-2821/96/5)/47927)/$10.00 54 4792 © 1996 The American Physical Society



54 CONSTANT MEAN CURVATURE SLICES AND TRAPPED ... 4793

slicing used. Let us emphasize that the appearance of trapped 4ARK Ki/a
surfaces indicates that irreversible gravitational collapse has RO= -5t 2e "7C (8)
commenced.

We derive, for the sake of completeness, the general line Thus at the origin we have
element for the Reissner-Nordsincspacetime in the slicing
by constant mean curvature hypersurfaces, that is, a gener- R6'=RO=2, 9
alization of the corresponding solution in the maximal slic- o o )
ing [7]. This makes concrete our earlier claim that the exte-a”d_ at infinity one of the scalars is divergent while the other
rior geometry is completely fixed. This can be regarded as ¥anishes,
consequence of the Birkoff theorem. 4 ,
In the Appendix we derive general criteria, valid for arbi- RO—3KR, R6'=0. (10

trary slicings of spherically symmetric geometries, for the  an alternative form of the metri¢2) can be written in

formation of trapped surfaces. terms of the Schwarzschild radius
Il. CMC HYPERSURFACES IN MINKOWSKI SPACE d<2= -7 dr2— 2R dROr+ dR2+R2d02
_ _ : 7?+R? 7 +R? ?+R? '
Let us consider spherically symmetric CMC hypersur- (12)
faces in Minkowski space. We write the four-metric as
e d2 0 2T Hr2 o 2 Ill. GENERAL STRUCTURE OF THE SPHERICALLY
ds’=—dr+ ~{dr*+ sinttrdQ°], @ SYMMETRIC CONSTRAINTS
where dQ*=d6*+sinfad¢” is the standard round two-  The two divergences of outgoing null rays are given by
metric. The scalar curvaturB® of the three-space defined
by r= const isR(®)= —6/72. o, =RO=Rp—RK[+RK, (12
The extrinsic curvature of this slice is pure trace,
— [ r
Kap=230,9ap=(1/7)0ap, Which implies tk=K=3/r. The w-=R#'=Rp+RK—RK, (13
proper radial distanckalong the slice is related to the coor- where
dinate radiug by rdr=dl which yields
s _2dR 14
[=—=—. ©)) P=R dl
T 3

_ o is the mean curvature of a surface of consfanhn the slice
The Schwarzschild radiug is given by whereR is the Schwarzschild radius amds the proper dis-
tance. The constraints now can be written as

R=7 sinhr
1
_ iy 2 _ _
K 3
—4w,.RK), (15
and its derivative reads
] 1
dR Kl dw-)==8aR(p+])~ 75 (20 ~w,0_—4
R'=——=cosh—. (5)
dl 3
+4w_RK), (16)

The primary objects we deal with are the optical scalars, 1
the exp/anS|on9 _of the outgoing null rays, and_the conver- HR=R'==(w,+w_). (17)
genced’ of the ingoing light rays. These are given by 4

R6=2R’+2KR We assume we are give}n (the energy densilyj=j-n
(the current densijy wheren is the outgoing radial normal
> coshK—I 4o sinhK—I andRK as functions of and then solve the triplet of ODE’s
3 3 (15), (16), and(17) for (R,w, ,w_). The only conditions we

KB assume are regularity at the origiR€ 0,0, =w_=2), as-

=2e (6) ymptotic flathess and that the sources satisfy the dominant
o energy conditionp=|j|.
and, similarly, Combining Eqs(15) and(16) we can write
RO’ =2e KI5, (7) Ww_w,)=—8mR[p(w,+w_)+j(w;—w_)]

therefore, the product oRé and Ré’' remains constant,

RORA' =4. We also have R T-LC R C RO (18
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and by regularity and asymptotic flathess we have that K2R2 )
limg_ow_w,=4 also limg_,w_w,=4. f(l)=2 9 +1+ -KR—-w,, (26)

Suppose thab _w, >4; if both are positive, we have that 3
the right-hand side of Eq18) is strictly negative and if both
are negative the right-hand side is positive. Thus we have

f(l) is zero at the origin and by asymptotic flatness it is
positive at infinity. We can show that it is always positive.
w_w,<4 (19) Let us assume, to the contrary, th‘it)_ is negatiye some-
where. This means that there must exist a negative minimum,

i.e., a point where
IV. CONSTRAINTS ON ASYMPTOTICALLY FLAT

CMC HYPERSURFACES (i) w,>2K?RZ/9+ 1+%KR

When we consider asymptotically flat CMC hypersur-
faces, it is useful to use variables that are finite at the origirand
and infinity. From the Minkowski analysis, it is clear that we
need as boundary conditions thab,—2e”® and () f'(1)=0.
w_—2e X8 Thus the natural variables to use are
A=w,e K and B=w_eX'3, Using these Eqs(15) and
(16) become

However, we can show that if) holds, thenf’(1)>0.
Using Eqgs.(15) and(17), we can calculate

= —KI/3 i e 2_8 —KI1/3 , _i @a(wﬂLwJ 2
dA=—8mRe (p—j)—ﬁ[ZA —3sKRe A f(l)—4R 3 —’—K2R2/9+1+2w+ wWLw_
— ABe 2KI3_ gg-2KI3] (20)
—KI3 —4w,KR—4|+87R(p—j). (27)

9B=—87Re"(p+j)— [2B2+ SKRe B

4R The coefficient ofw_ is
_ABe2K|/3_4eZK|/3]. (21)
1 N KRa 28
We know, from the previous sectidmequality (19)] that 4R| @+ 3 JK2R2/9+ 1|
AB=w, w_ is bounded abovey4 . Let us write the expres-
sion which does not depend on the sources in(E0). as This is obviously negative since.,=a. Therefore we
K13 e KI3 minimize f'(l) by choosing the maximum value @b_ .
— ——[A?— iKRe KIBA— 4~ 2KI/3] — [4—AB]. There is a condition, Eq19), that constrains the product of
2R 4R 29 both optical scalarsp , w _<4. Therefore the maximum of
(22) w_isdlw, .
Consider Now consider the function
2 ~ 1 |KR a(w,+4/
a=2\/K2R2/9+1+§KR, f(l)=-— —(Qf‘mwwi—swmm :
4R| 3 |K?R?9+1
(23 (29)
B=2JK?R%9+1— EKR; The derivative of this function with respect &0, is posi-
3 tive (assuming w,=a) and therefore its minimum is

achieved at the minimum ab, , i.e., atw, = a.

these are essentially the roots of the quadratic equation in Hence
A in Eq. (22). If A lies outside the range
_ pa—KI3  —KI/3 1 |KR a’+4
[ pe e ]’ (24) f'(|)?ﬁ ?m+2a2—8—4aKR
then every term on the right-hand side of E20) is negative '
and therefore) A<O0. +87R(p—j). (30)
It is clear thata>3KR and alsoa=2, and these are the ) ) o N
limiting values ofA at infinity and at the origin, respectively. It is easy to see that this expression is positive. Hence we

At any maximum ofA we have thaw,A=0 which implies g€t @ contradiction. We could show, in a similar vein, the
that A<ae K3 at that point. We can show that this is a existence of the upper bound d& as well of the lower
global upper bound, or, equivalently bounds. Therefore we have the following global bounds on

the optical scalars:

K?R? 2
w0, <24/ 5 +1+§KR. (25) -B<w,<a, (31)

Consider the function —a<w_<p. (32
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Those bounds are valid for both signs, positive and nega-

tive, of the trace of the extrinsic curvatuke

V. SUFFICIENT CONDITIONS FOR TRAPPED SURFACES
IN CMC HYPERSURFACES

We can use the formulg@5) and(17) in Sec. |l to derive
(w,R)=—87R%(p—|)+1+3:( 2w, 0_— wi
+4w,RK), (33

and we have the bounds en, and w_ from the previous
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VI. NECESSARY CONDITIONS FOR A TRAPPED
SURFACE IN A CMC HYPERSURFACE

Let us return to the equalit{83) we derived in Sec. V and
again integrate it out to some surfae

0w, R|s&=—2(M—P)+L(S)
L
0

but now we wish to minimize the integral rather than maxi-
mize it. We assume that no outer future trapped surface ex-

section. It is easy to show that the maximum value ofists within S, i.e., ,=0. We also assume that no outer

(2w,w_—w?+4w,.RK) occurs when() w,=a and
w_=gif K>0, and(ii) o, =—p andw_=—«a if K<O0.
Hence we get in both cases

16
20, 0_— wi+4w+RK$4+?K2R2

2R2

—+1.

+16KR
?" 9

(34)

We can complete the square in the square root to finally

get

12w,0_— 0’ +40,RK)<1+EK?R?*+ 4|K|R;
(35

thus, we get
d(w, R)<—87R*(p—j)+2+EK2R?+ §|K|R. (36)

If we integrate this equation out to some surf&wee get

2K? 4 [
w+R|S$—2(M—P)+2L+—V+—|K|f Rdl,
a 3 0

9
37)

whereM = [47R?pd| is the total amount of matter inside

past-trapped surface existshNot only that, but thatv _ is
strongly bounded away from zero, i.ay_=C>0; that
means that all radially ingoing null rays are converging.

In other words, we want to minimize the function
f(wy ,0_)=2w,0_— 0’ +40,RKin the region given by
O<w,<a and C=w_<pB. A simple calculation gives
f min=min(f(«,C),0).

Becausex is a function ofR, we need to study the func-
tion

T(R)=f(«(R),C)
=2aC— a?+4aRK

in order to findf i, .

We will consider separately two cases, with the positive
and negative traces of the extrinsic curvature.

(i) Let K>0. By inspection we obtain that this function is
an increasing function in the variablig therefore,

min(f) = f((0),C)=4C—4.

Clearly, whenC=1, f;,=0; otherwise,f,=4C—4.
Inserting this into Eq(40) we obtain two estimates

S, P=[47R?jdl is the total outward radial momentum of that is, sinced(S)=0,

the matterl is the proper radius, and is the volume inside
S (notice that 4rR?dI=dV is the proper volume element
Therefore, we have that if

2

K 2
(M—P)(S)>L+—V+—|K|f Rdl,
97 3

—2(M—=P)(S)+L(S) forC=1,
o R[s= (41)
—2(M—=P)(S)+CL(S) forC=<1;
L forC=1
E =4
M(S)—P(S)=
—  forC=1

we must have thab , R|g is negative and so the surface atis the necessary condition for the existence of a future

Sis a outer future-trapped surface. We can estinfif&d| as

1/2 VL
fRdls fdeI fdl (

1/2 1/2

41

(39

trapped surface.

The above result obviously applies to maximal slices. In

connection with that, two of us have to admit that theorem 2

in [2] should be stated as above; the actual statemelr#]pof

that the necessary condition for future-trapped surfaces is

Therefore a sufficient condition for the appearance of av(S)—P(S)=CL/2 can be wrong. _
outer future-trapped surface on a slice with constant trace of (ii) Let K<O0. In this case one easily estimafé®) from

the extrinsic curvature is that

KZ |K| (VL) 1/2
(39

below by

4KR(4+C)

4(C-1)+ 3

for C<=1,
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4KR(4+C) is constant on a particular slice and, moreover, is time inde-
3 for C=1. pendent. The three nonzero components of the extrinsic cur-
vature are

That leads to a necessary condition $to be future trapped
(@, R 1

ToNva’ 0TROTRRT2

L (K=K}). (45
> forC=1,

M(S)—P(S)+ diR(l)= The spherically symmetric Einstein equations consist of

(4+C)|K|JL(S>
6 0 CL constraint equation the evolution equation
- forC<1. a &), d

I(KI—trk)= PRE (N 2+ 3N K24+ 8m(T"+
Using relations di= (2/Rp)dR and pR=1%(w,+w_) (K= trK)==73 JalpR 7 (K)"+8m(T+p)
= C/2 one obtains N
+EK2—2NKK[, (46)

qu)le I S
<
0 ( ) 27C

and the lapse equation

and the necessary condition )
ABPN=N[$(K))?+ sK2=KK[+47(T{+p)]. (47)

L
5 forC=1, In electrovacuum we havg?/87R*=p=T!=—T' where
M(S)—P(S)+ M‘; q is the electric charge. The mean curvatpref nested two
127C CL spheres and the extrinsic curvatures are easily found from the
- forC<1. constraintg1) and they read
A similar necessary condition, under a somewhat stronger pR=2 \/1+ ¢ + q_z + KR + &) 2
" . . 2 2]
condition, has been obtained by Zannj&% Thus negative R R 3 2R
values of the trace of the extrinsic curvature can help to form (48)
trapped surfaces.
Let us recall that yet another necessary result has been K C,
derived in [8], where the following equation has been K[=§+ =k
proved:

3 The lapse equation becomes now

R S 1/2 oo
30(8)0’(S)+m—<ﬁ) :wfr VaR¥[po(6+6")

ABGIN=N 3¢, | @ Kz} 49
= + =+ =,
+i(6—6")]. (42) 2R " RY 3 (49)
This equation has been derived on maximal slices, but iand one easily finds out that it is solved by
holds true on any slicing, assuming a quick enough falloff of
matter fields. Under the dominant energy condition one con- pR
cludes that an outermost trapped surf&éuture or past N= Yoo (50
must have a Schwarzschild radiisnot greater than .
This conclusion is slicing independent. where y is given by
VII. REISSNER-NORDSTROM GEOMETRY © Cz(ﬁ t)
USING CMC FOLIATIONS y(r,t)= 1+f —. (51)
R (R)S(PR)

In this section we will present an explicit line element for
electrovacuum in constant mean curvature foliations. The |nserting the whole information into E¢46) and using

most general spherically symmetric line element can be pune relationd, /\/Ja= (Rp/2)dr one obtains that the constant
C, depends on the rate of change of the radial-radial com-

ds?=—N2dt>*+adr?+R?dQ2. (43 ponent of the extrinsic curvature,
We assume that the trace of the extrinsic curvature Co(R1)=49[R¥(KI—K)]. (52
2
_07t(\/aR) The change of the coordinate variabieinto the areal

B 2N+/aR? (44 radiusR transforms the line elemei@3) into
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Y?[C; 2KR)\? which violates this inequality56) before the CMC slices

dSZ:dtz[ —N%+ Z2\RT 3 } become singular. This means that the CMC foliation cannot
progress past this point, and the lapse collapses. Since the

C,/R3®*-2K/3 4 S lapse equation is elliptical, not only does the lapse go to zero

+2detd R+ (p—R)zdR +R°dQ) at this point; it becomes small on the whole interior, and the

CMC slicing freezes.
Y20, w_ ) w_—w, This means that if we wish to find a solution where CMC

= Tdt +27’de‘“ slices run right up to the singularity, we cannot allow a large

accumulation of matter near the center before the singularity

16 appears. A possible way for this to happen is that if the

+ de2+ R*dQ?, (53 collapse were such that in addition to the infall of matter, one

also had an explosion that pushed significant amounts of the
with N andp defined above. Let us point out that the param-star outwards, away from the horizon.
eterC that appears in the expression fosshould be identi- This bound is valid for solutions which have the spatial
fied with —2mg, wheremg is the Bondi mass. The spatial topology R'X S? as in the extended Schwarzschild solution
part Eq.(53) agrees, forg=0=C,, with the constant mean as well as topologyR®. Maximal slicing can be viewed as a
curvature foliation of the Schwarzschild geometry given inspecial case of CMC slicing and it was observed many years

[9]. ago (see [7]) that the regular maximal slicing of the
Schwarzschild solution saturates Rt 3m/2, in agreement
VIIl. “CMC SURFACES AVOID SINGULARITIES” with the bound stated above.

In the article[2] an argument was advanced as to how
foliations with bounded trace of the extrinsic curvature might
avoid singularities. In this section we wish to produce a dif-  This work was initiated during the ESI Summer School in
ferent (and sharpgrargument to the same end. This argu- Mathematical Relativity, Vienna. It has been partially sup-
ment works for essentially any slicing, but we present it heregyorted by the Forbairt grant SC/94/225 and the KBN project
specifically for CMC slices. Let us consider a model of a2 pO3B 090 08.
collapsing system where the support of the matter becomes
ever smaller as the collapse continues so that eventually the
star is confined to a region much smaller than that enclosed
by the apparent horizon. If the star were to be compressed In what follows we prove two results that hold true on any
inside a boundary which satisfies<m, wherem is the con-  spherically symmetric slices with an arbitrary slicing condi-
served Arnowitt-Deser-MisnefADM) mass of the star, be- tion K:K} albeit we need thaB = sup<r<.KR<o.
fore any singularity appears then regular CMC foliations will  Theorem 1Assume the energy conditign=]. In nota-

ACKNOWLEDGMENTS

APPENDIX

be excluded from this part of the spacetime. tion of Sec. V, if
From the inequalitie$31) and(32) we can show that, on
any regular CMC slice, M(S)— P(S) 3 . B? .
- >—L+—1L,
4(2K2R2+1+ 2|K|R\/m) 22
wL0_=—
i 9 3 9 then a two-spher& must be future trapped.
2IK|R 2 Proof. From Eqg. (15 one obtains, after multiplying by
>_ (T ) (54) R and integration by parts,
. : 0 R==2[M(S)—-P(9)]
However, both the Schwarzschild radiBs and the product
o w_ are four-scalars and we have deI 1 wi KR wLw_ AL
2 + 0 - T+ (O + 2 . ( )
® —4(1— mH) (55)
+W_= B |
R From that one gets, using the obvious estimate

2 2 2
wherem,, is the so-called Hawking mass, which equals the ™ @+/4+ @+ KR<(KR)<B", that
constant ADM mass outside the support of the matter. In- .
9quality(54) and equality(55) can be combined to give the w,R=—2[M(S)— P(S)]JFJ' dl
inequality 0

w,w_
+B%+ .
1+B 2)

(A2)
2K?2R®  2|K|R

my< From [2] we have thatw, w_<4. Inserting that into Eq.

(A2), one arrives at
This means that for a fixed positive, we have a lower
bound forR. Let us assume that we are considering a spheri- w,R=—2[M(S)—P(S)]+3L+B?L,
cal collapse and viewing it using a CMC foliation. Let us
also assume that during this collapse a two-surface appeangich immediately yields theorem 1.
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That result is not exact, as opposed to the sufficiency o

condition proved in the main text. w;w_R—4R=-8m+ 87TJ dIRYp(w. +w_)
Theorem 2(the Penrose inequalityLet 3. be a Cauchy -

hypersurface with an arbitrary slidé and the asymptotic +i(ws+tw)]. (A4)

massm. Assume that matter is of compact support and that it

satisfies the energy conditigre=| outside a spher&. Let

A=47R? denote the area &. ThenS cannot be trapped if At spatial infinity both optical scalars are positive. 1%t
R>2m. o ) o be the last such sphere that one of the scalars vanishes. Then

Proof. Multiplying Eq. (18) by R and integrating it, one o, sjges hoth scalars are positive and one easily shows that
gets the equation the integrandp(w, +_)+j(w,+w_) is non-negative
outsideS if the energy condition of theorem 2 holds true. But
that means that the spheemust be placed within the area

(A3) having areal radiuR<2m.

The integral 47[5dIRY p(w,+w_)+j(w,+w_)] is Let us point out that theorem 2 generalizes a result hith-
conserved in time, as one can easily check; from the asymi®rto proven in[8] for the case of maximal sliceee also
totic flatness, taking into account the asymptotic behavior of10] for the proof of the Penrose inequality for Tolman-
optical scalars, one obtains thand4wherem is the asymp- Bondi-Sharp-Misner-Podurets class of mefricBheorem 2
totic mass, is actually equal to the integral. Thus EB) excludes the existence of any trapped surfaces, both future
can be written as and past, outside the Schwarzschild radius.

L
w,0_R—4R= —877f dIRY p(w,+o_ )+j(w,+ow_)].
0
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