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Sufficient conditions for apparent horizons in spherically symmetric initial data

Jemal Guven*
Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Apdo. Postal 70-543, 04510 Me´xico, D.F., Mexico

Niall Ó Murchadha†

Physics Department, University College Cork, Cork, Ireland
~Received 24 July 1997!

We establish sufficient conditions for the appearance of both apparent horizons and singularities in spheri-
cally symmetric initial data when spacetime is foliated extrinsically. LetM and P be, respectively, the total
material energy and the total material current contained in some ball of radiusl . Suppose that the dominant
energy condition is satisfied. We show that ifM2P>l then the region must possess a future apparent horizon
for some nontrivial closed subset of such gauges. The same inequality holds on a larger subset of gauges but
with a larger constant of proportionality which depends weakly on the gauge. This work extends substantially
both our joint work on moment of time symmetry initial data as well as the work of Bizon, Malec, and O´

Murchadha on a maximal slice.@S0556-2821~97!00524-9#

PACS number~s!: 04.20.Cv

I. INTRODUCTION

This paper is part of an ongoing examination of the con-
straints in spherically symmetric general relativity@1–3#.
Here we would like to establish sufficient conditions for the
appearance of apparent horizons and singularities in general
initial data. Because of their very different nature we defer
the examination of necessary conditions to another publica-
tion @4#.

Ideally one would like to go about this in a manifestly
covariant way avoiding the necessity to introduce a gauge.
Unfortunately, this is well beyond our present technical ca-
pacity. We proceed in a canonical way: the initial data con-
sist of the intrinsic and extrinsic geometry on some spacelike
hypersurface satisfying the constraints@1#

KR@KR12KL#2
1

R2 @2~RR8!82R8221#58pr ~1!

and

KR81
R8

R
~KR2KL!54pJ. ~2!

We have parametrized the line element on the spatial geom-
etry as follows:

ds25dl 21R2dV2, ~3!

wherel is the proper radial distance on the surface andR is
the areal radius. All derivatives are with respect tol . In a
spherically symmetric spacetime, the extrinsic curvature is
completely characterized by the two scalar functionsKL and
KR , proportional respectively to the velocities ofl and R

normal to the hypersurface. Ifna is the outward pointing unit
normal to the two-sphere of fixed radius in the hypersurface,
we can write

Kab5nanbKL1~gab2nanb!KR . ~4!

We assume that bothr and J are appropriately bounded
functions ofl on some compact support. We choose to fo-
liate spacetime extrinsically. This involves fixing some sca-
lar function of the extrinsic curvature tensor,Kab . We focus
on the subset of extrinsic time foliations of spacetime of the
form

KL1aKR50, ~5!

where 0.5<a,` but is otherwise an arbitrary functional of
the initial data,R and KR . a50.5 anda→` define the
superspace light cone. While this might not be the most gen-
eral extrinsic time gauge, a very large degree of freedom is
admitted.

If cosmic censorship is valid, the existence of an apparent
horizon provides a natural boundary on the configuration
space between regular data and data that are singular or will
develop a singularity.

We recall that a future~past! apparent horizon exists
when the divergenceQ1(Q2) of outward pointing, future
~past! directed null rays vanishes on a closed surface — in
our case a two-sphere of fixed proper radius. It is easy to
show@5#, for spherical initial data, that if there exists a non-
spherical trapped surface or apparent horizon then there also
must exist a spherical one. We can expressQ65v6 /R,
where

v652~R86RKR!, ~6!

are the optical scalars introduced in@6#. A future apparent
horizon therefore occurs wheneverv150. If v1<0, we say
that the surface is future trapped. The transcription for past
horizon will always be obvious so henceforth will be omit-
ted. With v1 andv2 , we can reconstruct the light cone at
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each point on the hypersurface~this depends both on the
intrinsic and on the extrinsic geometry!. In particular, it is
often useful to cast the constraints in terms of these variables
when we are interested in identifying apparent horizons
@6,1,3#.

WhenKab50, the location of an apparent horizon, when
one exists, coincides with an extremal surface of the spatial
geometry@2#. In a spherically symmetric geometry these are
locations whereR850. In general, apparent horizons do not
coincide with extremal surfaces of the spatial geometry. Ini-
tial data with an apparent horizon need not even possess an
extremal surface and, vice versa.

The spatial geometries we consider consist of a single
asymptotically flat region with topologyR3. The appropriate
boundary condition on the metric at the base of the geometry
at l 50 is then

R~0!50. ~7!

We suppose that the center is regular so thatR8(0)51 and
KR(0)50. If no singularity intervenes between the base and
infinity we will say that the geometry is regular. In this ge-
ometry, the integrated action of the interior distribution of
source energy-momentum can potentially produce an appar-
ent horizon.

To cast a sufficient condition for the existence of an ap-
parent horizon we suppose that the spatial geometry does not
possess any future trapped surfaces and is regular in some
bounded region containing the origin (v1.0 there!. One
needs to then show that some measure of the material energy
content in this region must be bounded by a measure of the
volume of the region.

The challenge is to identify a useful measure of the ma-
terial energy content of a region. We follow the development
of a sufficiency condition by Bizon, Malec, and O´ Mur-
chadha@7,5# and more recently by Malec and O´ Murchadha
@6,2#. At a moment of time symmetry, the natural measure of
material energy for casting a sufficiency condition for an
apparent horizon was shown to be the material energy,M .
For general initial data, the corresponding measure for a fu-
ture ~past! apparent horizon was shown to be the difference
~sum!, M7P, whereP is the total radial material momen-
tum given by integrating the material current over the proper
spatial volume,

~M ,P!54pE
0

l

dl R2~r,J!. ~8!

The greater the net outward flux~positive P), the lower
M2P — the more difficult to form a future apparent hori-
zon.

Clearly, we need to make some assumptions about matter
to proceed. We will assume that matter satisfies the dominant
energy condition in this region:

uJu<r. ~9!

When the dominant energy condition is satisfied,M6P is
positive.

Let l be the proper radius of this region. Let the domi-
nant energy condition hold everywhere. Let 1<a<2 but be
otherwise arbitrary. Then if

M7P>l , ~10!

the region must contain a future~past! apparent horizon. This
is the central result of this paper.

The inequality ~10! is particularly impressive because,
whenP50, it coincides with the moment of time symmetry
result which we know to be sharp. Unlike the moment of
time symmetry scenario where one could fall back on
piecewise-constant density models to guide us, no such ex-
actly solvable safety net is available here. Even the analogue
of the constant density star proves to be analytically intrac-
table whenJÞ0.

Bizon, Malec, and O´ Murchadha@7,5# using a maximal
slice (a52), had earlier demonstrated that if the weak en-
ergy condition holds and if

M2P>
7

6
l , ~11!

the spatial geometry must contain a future trapped surface
@7,5#. The numerical coefficient appearing on the right-hand
side is not as good as that appearing in Eq.~10!. They
showed, however, that this coefficient is sharp, by explicitly
constructing a solution withM2P>(7/62e)l but without
any trapped surface. This solution notably did not satisfy the
dominant energy condition.

The result Eq.~10! was first established by Malec and O´

Murchadha for maximal slices@6#. These earlier results were
derived assuming global regularity, a condition we do not
require.

The new idea introduced in@6# was to recast the con-
straints of the theory in terms of the optical scalar variables
@6,1,3#. This permits one to enforce the dominant energy
condition rigorously — even whena varies so long as it
does not stray too close to the superspace lightcone.

With maximal slicing alone to go by, one cannot be cer-
tain that the inequality possesses any gauge invariant signifi-
cance — our measures of energy and size, after all, are not
spacetime scalars so one rightly hesitated before jumping to
physical conclusions. The principal strength of the inequality
we have derived is that it not tied to the maximal gauges; the
result is valid for all slices which remain within the band
1<a<2 lying at the center of the superspace light cone. At
least within the framework of the extrinsic time foliations,
the result does not appear to be sensitive to a change in
foliation. It is not at all obvious that such a happy outcome is
possible. It is remarkable in view of the global nature of the
problem that we can do this fora which is not constant.

What happens when we move outside this band? If we
relax the gauge to 1<a,`, it is still possible to establish an
inequality of this form. However, a constant of proportional-
ity, C.1, is introduced.C will be finite if a is but diverges
linearly as a→`. However, this limit corresponds to the
polar gauge which breaks down at a horizon.

If we relax the gauge in the other direction to cover all
apparently valida, so that 0.5<a,`, such a bound no
longer exists. There appears to be a genuine obstruction to
casting a strong statement of sufficiency of the form de-
scribed above as we approach the superspace lightcone. We
need first to weaken the hypothesis to obtain an inequality.
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One way to do this, taking advantage of dominant energy,
is to assume that the interior contains neither future nor past
trapped surfaces. The cost is that the inequality we obtain
does not distinguish between future and past apparent hori-
zons. When we do this, we obtain an inequality of the form
~10!, with some new constant of proportionality,C.1 which
depends weakly on the gauge. In fact, it is finite even when
a50.5 everywhere.

To track the potential mischief uncontrolled currents can
play, we will relax the energy condition to the weak energy
condition which places no constraint onJ. The weak and the
dominant are the two energy conditions that are relevant in
initial data. The strong energy condition which bounds spa-
tial stresses involves the dynamical Einstein equations in ad-
dition to the constraints.

With the weak energy condition, we find we do not fare
so well. We again find, with the strong form of the hypoth-
esis, that we can only prove sufficiency for 1<a,`. How-
ever, the constantC will now depend ona for all a.1. It is
mimimized ata51 where it asumes the optimal value11
— the dominant and weak energy results coincide in this
gauge.

We also will construct a sufficiency condition for a sin-
gularity in the initial data. Singular geometries can occur
even though bothr andJ are finite. But the only way that the
geometry can become singular is by pinching off at some
finite proper radius from the center. In Sec. VI, we demon-
strate that the corresponding inequality for singularities can
be cast asM>2l which is independent ofa andP.

The paper is organized as follows: In Sec. II we focus on
the dominant energy condition. We begin, in Sec. II A with a
derivation of bounds on the configuration variables which
hold in regions with a regular center which do not possess an
apparent horizon. These generalize bounds obtained in@3#
for globally regular geometries. In Sec. II B we derive a
useful inequality which we use in Sec. II C to derive Eq.
~10!. In Secs. II D and II E, we relax the upper and lower
range of a respectively. In Sec. III, we relax the energy
condition. In Sec. IV, we examine some interesting special
cases. In particular, we show that outgoing null fluids cannot
form future trapped surfaces. In Sec. V we examine singu-
larities in the initial data.

II. APPARENT HORIZONS: DOMINANT ENERGY

A. Bounds on the configuration space
in regions without trapped surfaces

We consider some finite region containing the origin. To
derive a sufficiency condition in the strong form, we assume
only that this region is regular and does not possess any
future trapped surfaces (v1.0 there! — we make no as-
sumptions concerning what happens to the geometry outside,
it may contain trapped surfaces, it may even be singular.

Suppose that the dominant energy condition holds at ev-
ery point in this region. When the dominant energy condition
holds, our experience suggests that the appropriate variables
to exploit are the optical scalars.

Even though the geometry is regular within this region,
we cannot suppose that it remains so outside. In particular,
we cannot impose the the same boundary conditions we did
in @3# for everywhere regular geometries where we could set

R8→1, andRKR→0 at infinity consistent with asymptotic
flatness. Remarkably, it is possible to gain all the control
over v1 andv2 we will need without any asymptotic con-
trol.

We can combine the two constraints to get simple equa-
tions for the spatial derivative ofv1 andv2 :

~v1!8528pR~r2J!2
1

4R
~v1v224!1v1KL ,

~12!

~v2!8528pR~r1J!1
1

4R
~v1v224!2v2KL .

~13!

We can, in turn, combine Eqs.~12! and ~13! to give

~v1v2!8528pR@~v11v2!r2~v12v2!J#

2~v11v2!~v1v224!. ~14!

It was shown in@6# and again in@1# that if we had initial data
which satisfied the dominant energy condition and which
was regular at both the origin and infinity then a conse-
quence of Eq.~14! was

v1v2<4. ~15!

Let us assume instead that we have initial data which are
regular at the origin, satisfy the dominant energy condition,
and have no future trapped surface inside some ball of radius
l . Then inside this radius Eq.~15! holds. The proof is very
easy. We know thatv1v254 at the origin and that it de-
creases as soon as dominant matter is entered. Let us assume
that it rises up again to 4. However, sincev1 is positive,v2

must also be positive. Then the dominant energy condition
and Eq.~14! give us that (v1v2)8<0 there, a contradiction.
This result is gauge invariant.

An even better result holds if 1<a,` in the finite region
we consider. In@3# it was shown that whena>1, if we had
globally regular maximal initial data which satisfied the
dominant energy condition then

22<v1 , v2<2. ~16!

While we need the information at infinity to set the lower
bound, we can get the upper bound just from regularity at the
origin. Both v1 and v2 start out equalling 2 at the origin
and then decrease as one moves away. Assume thatv1 in-
creases up to 2 again ahead ofv2 . However, once it reaches
2, from the dominant energy condition and

~v1!8528pR~r2J!1
1

4R
@41~a21!v1v22av1

2 #,

~17!

we get that (v1)8<0, a contradiction. We obtain the same
result for v2 . This does not depend on the existence of a
horizon. Note that we only demanda>1, we do not require
that it be a constant.

This is not, unfortunately, true ifa,1 anywhere — in-
deed, we constructed an explicit counterexample in@3#. If,
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however, the region possesses neither future nor past appar-
ent horizons, we can prove thatv6<V, where

V5max~2,2/amin!. ~18!

The proof is simply a rerun of that fora>1.
Of course, if we demand global rather than just local

regularity we can exploit the full range of inequalities de-
rived in @3#. With weak energy, we have21<R8<11.
With dominant energy, and 1<a,`, we have

uv6u<2, ~19!

so that RKR5(v12v2)/4 and, of course,
R85(v11v2)/4 are also bounded. We have

uRKRu<1 ~20!

and so also get21<R8<11.

B. A useful inequality when 1<a<`

The optical scalar which marks the presence of a future
apparent horizon isv1 . Its spatial gradient is determined by
Eq. ~17!. To obtain the appropriate weighting on the sources,
let us recast Eq.~17! as an equation for the spatial gradient of
Rv1 :

~Rv1!8528pR2~r2J!1
1

4
@41av1v21~12a!v1

2 #.

~21!

This equation can be integrated out to any proper radiusl to
give

Rv1522~M2P!12G1 , ~22!

where

G15E
0

l

dl F1~v1 ,v2 ,a!, ~23!

and

F15
1

8
@41av1v21~12a!v1

2 #. ~24!

G1 is the natural optical scalar generalization for future
trapped surfaces ofG introduced in@2#. In particular, when
Kab50, G15G.

Let us assume that there are no future trapped surfaces
inside some given radius. Fora>1, we then have the crude
bound

F1<
1

8
@41av1v2#<

1

2
~11a!. ~25!

We can, however, do much better in this range by exploiting
the control we possess overv1 and v2 , 0,v1<2 and
v2<2, to boundG1 in a more subtle way.

We are interested in finding an upper bound for

F1* 5av1v21~12a!v1
2 , ~26!

assuming 1<a,`, v2<2 and 0,v1<2.
The first thing we observe is that since botha andv1 are

positive we maximizeF1* by settingv252. Thus we seek
an upper bound for

F1** 52av11~12a!v1
2 . ~27!

The value of this quartic is zero whenv150 and 4 when
v152. The maximum of the quartic occurs at

v15
a

a21
~28!

and it equals

F1max** 5
a2

a21
~29!

there. However, it turns out thata/(a21).2 whena,2 so
the maximum ofF1** in that range is 4, independent ofa. In
other words,

F1* <H 4, 1<a<2,

a2

a21
, a.2.

~30!

Hence we can derive the useful inequality

F1<H 1, 1<a<2,

11
a

8~a21!
, a.2,

~31!

assuming, of course,v2<2 and 0,v1<2. This inequality
is clearly sharp.

C. Sufficiency condition: 1<a<2

It is clear, from Eq.~31!, that if a lies between 1 and 2
~and, let us stress again, need not be constant! then we get
that G1<l . Thus it immediately follows from Eq.~22! that
if M2P.l then the region must contain a future trapped
surface.

D. Sufficiency condition: 1<a<`

It is clear that the inequality no longer holds ifa.2. We
have instead the weaker bound for alla>1:

F<11H~a!, ~32!

where

H~a!5H 0, 1<a<2,

1

8

a2

~a21!
2

1

2
, a>2.

~33!

Let ^ f & represent the average of any functionf over the
domain@0,l #. We then have

G1<„11^H~a!&…l . ~34!

56 7661SUFFICIENT CONDITIONS FOR APPARENT HORIZONS . . .



H will be finite if a is bounded. Asymptotically, however,H
grows linearly witha. This reflects the fact that, in this limit,
the gauge is pathological precisely at a horizon so we would
not expect any kind of reasonable estimate.

If v1.0 on any spherical domain which includes the
origin then

M2P,„11^H~a!&…l . ~35!

A constant of proportionality has been introduced which is
given by the spatial average of 11H over the domain ofl .
If this inequality is violated we must have a future trapped
surface in the domain.

The dependence ona is surprisingly weak. Clearly, no
extra cost is involved in accomodating a variablea. In fact,
the inequality does not depend explicitly on the gradient of
a.

E. Sufficiency condition: 0.5<a<`

If 0.5<a,1, the derivation above breaks down. To
bound v1 , we will asssume that not only is the interior
geometry regular and not contain any future trapped surfaces
but, in addition, that it contain no past trapped surfaces. Then
Eq. ~18! holds. We now have

F<
1

2F11a1maxS 12a

amin
,0D G , ~36!

where we exploit the positivity of the quasilocal mass to
boundv1v2<4 and Eq.~18! to boundv1 .

III. APPARENT HORIZONS: WEAK ENERGY

A. Bounds on the configuration space
in regions without trapped surfaces

Let now us relax the energy condition to weak energy,
r>0.

First, we will again assume only that the geometry in our
region is regular and thatv1.0 there. Without the addi-
tional control overJ, it is not reasonable to expectKR to be
bounded in any simple way. In globally regular geometries,

21<R8<1, ~37!

everywhere@3#. If we do not have global regularity, the
lower bound onR8 can be breached. What we have instead is
the weaker bound,

2max~1,uRKRuv150!<R8<1. ~38!

The upper bound is a topological one analogous to that on
v1 and v2 derived above. The lower bound is a conse-
quence of the fact that whenv1.0, thenR8>2RKR . Sup-
pose R8,21 at some pointl 0,l . We know that if
R8,21, R9,0 so that it will henceforth become more
negative@3#. Thus the mimimum value ofR8 under these
circumstances is the horizon value as claimed. This isnot a
marvellous result — but will be sufficient for our purposes.

If we relax the hypothesis to global regularity we can
exploit Eq.~37!.

B. Sufficiency condition: 1<a<`

Suppose thatr>0, and 1<a,` but is otherwise un-
specified. We will show that if

M2P>^ f ~a!&l , ~39!

in some region, where

f ~a!511
1

2

~12a!2

2a21
, ~40!

the spatial geometry in this region must possess a future
trapped surface or a singularity. This exactly reproduces the
condition, Eq.~11!, whena52. However, the minimum of
f (a) is assumed whena51 where we reproduce Eq.~10!.
Curiously, the gauge providing the best bound when we do
not assume dominant energy is not maximal slicing. The
likely reason for this is that in this gauge,KR5P/R2. Here,
weak energy does as well as dominant energy.

The original proof in@7,5# for K50 exploited conformal
coordinates. Our approach eschews tying ourselves to any
particular spatial coordinate. Not only is the end result inde-
pendent of the spatial coordinate, it is clear that the coordi-
nate invariant approach is not only more transparent but also
more efficient. We will work with the metric variablesR and
KR — when dominant energy is relaxed, the advantage we
gain from exploiting the optical scalars is lost. When Eq.~5!
holds we can rewrite Eq.~1! in the form

4prR21~RR8!85
1

2
@11~R8!2#1

122a

2
R2KR

2 . ~41!

We integrate froml 50 up to the boundary at proper radius
l :

M1RR85G1E
0

l

dl S 122a

2 DR2KR
2 , ~42!

whereG is defined by

G5
1

2E0

l

dl @11~R8!2#. ~43!

We now eliminateR8 in the surface term in favor of the
optical scalarv1 andKR using the defining relation~6!.

To eliminate theKR dependence on the boundary which
comes along with the replacement ofR8 by v1 , we note
that we can integrate the momentum constraint, Eq.~2!, to
obtain @8#

R2KR5P1E
0

l

dl ~12a!RR8KR . ~44!

We do not need an explicit solution of the momentum con-
straint. In fact, the only explicit use we will make of the
momentum constraint is Eq.~44! which does not depend on
the possible spatial variation ofa.

Substituting Eqs.~6! and ~44! into ~42! we now obtain
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M2P12v15G1
1

2E0

l

dl ~122a!R2KR
2

2E
0

l

dl ~12a!RR8KR . ~45!

Let us label the second and third terms on the right-hand side
I 1 andI 2, respectively. Whena.0.5, I 1 is manifestly nega-
tive. As such we could discard it to cast Eq.~45! as an
inequality. However, it is clear that we can do better by first
completing the square in the sum ofI 1 andI 2 before discard-
ing:

I 11I 25
1

2E0

l

dl ~122a!S RKR2
12a

122a
R8D 2

1
1

2E0

l

dl
~12a!2

2a21
R82. ~46!

Now, if R82<1, we have

I 11I 2<
1

2K ~12a!2

2a21 L l . ~47!

In addition, under these conditions, we obtain the upper
bound onG,

G<l . ~48!

This is, however, only the case when we assume that the
geometry is regular everywhere. Let us suppose that
R8521 at some valuel 0,l . Then, we can decompose the
right-hand side of Eq.~45! into a part coming from the inte-
gration over the domain@0,l 0# and a remainder from
@ l 0 ,l #: The integrand,F, appearing in this latter contribu-
tion can be bounded as follows:

F<uRKRuv150~11ua21u2a!, ~49!

which is bounded by zero ifa>1, so that we can discard it.
We conclude that if the region contains no future trapped
surfaces and its geometry is regular then

M2P,S 11 K 1

2

~12a!2

2a21 L D l . ~50!

This completes the proof.
If we extend the range ofa to values below11, not

surprisingly, we need to relax the hypothesis. However we
decide to do this, we appear to require control over the form
of the exterior geometry. One might try to weaken the hy-
pothesis to permit us to assume that the entire spatial geom-
etry ~from its base out to infinity! is free of future trapped
surfaces. However, there is no tactical advantage to this —
unlike the moment of time symmetry analysis where this
does imply that the geometry is nonsingular, here a past ap-
parent horizon could turn up in the exterior with a singularity
lurking beyond it.

We need to assume that the entire geometry possesses
neither future nor past horizons or weaker, is regular not just
within the region of interest. The result will be that one can-

not conclude that the apparent horizon or singularity lies
necessarily within the region when the inequality holds — it
could exist beyond it.

Under these conditions, we again obtain Eq.~39! with the
same functionf (a). We note thatf diverges as we approach
the minisuperspace light cone,a50.5 anda→`. This oc-
curs because the discarded negative term blows up at these
two values. At the former value, a more ingeniously con-
structed proof is likely to remove this infinity. At the latter
value, however, the divergence is a genuine signal of the
breakdown of the gauge.

C. Sufficiency condition: 0.5<a<`

We have encountered genuine obstructions to finding
strong sufficient conditions for the existence of future hori-
zons as one approachee the superspace lightcone. Interest-
ingly, one can find a very simple sufficient condition which
is valid for the whole range ofa ’s if we do not distinguish
between future and past horizons.

Let us consider a region around the origin, and let us
assume that there are no trapped surfaces in this region. We
immediately get that in this region we have

0,R8<1, ~51!

just assuming that the weak energy condition,r>0, holds.
Let us consider Eq.~41! and integrate it out to anyl in

the region with no trapped surfaces. We replace (R8)2 by 1,
and using the facts thatRR8.0 and that (122a)R2KR

2<0
we get that

M,l . ~52!

Therefore we have shown that if the weak energy condition
holds and if M>l then we must have a trapped surface
within this sphere. This result is an old moment-of-time-
symmetry result in disguise. We do not need to assume ab-
sence of trapped surfaces to get the inequality, all we need to
assume is the absence of a minimal surface, i.e.,R8>0, to
get thatM,l . Therefore we have shown that ifM>l then
there must be a minimal surface within this sphere. Of
course, a minimal surface must be a future or a past trapped
surface.

We can even do better. The term (122a)R2KR
2/2 which

we threw away can be brought over to the other side and
reunited with the 4prR2 term. This combination is nothing
but one-quarter of the three-scalar curvature, which must be
positive by the combination of the requirement thata>0.5
and the weak energy condition. Therefore we have recovered
the result that if we have a spherical manifold with positive
scalar curvature and if the volume integral of the scalar cur-
vature within a sphere is greater than 16pl , wherel is the
proper radius of the sphere, then there must be a minimal
surface within this sphere@2#.

IV. SPECIAL CASES

Let us now examine some extreme cases: for simplicity
we will only consider dominant energy.

Let us consider the two extreme distributions satisfying
the average dominant energy condition everywhere, but only
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just, so thatP→6M @9#. If uJu5r, these are, respectively,
the cases of a radially outward and a radially inward moving
null fluid. In the caseP→M , Eq. ~10! becomes a vacuous
statement, not surprisingly, as it is impossible to form an
apparent horizon under such circumstances. All we need to
do is look at Eq.~17! and see that ifr5J and if v1 is small
then (v1)8.1/R.0. Thusv1 can never pass through zero
from above and since it starts off equalling 2, it must remain
positive. In the latter case, we have that if
2M>l 1^H(a)&l , the geometry will possess a future
trapped surface. It is twice as easy to form an apparent ho-
rizon with an inflowing null fluid as it is with a stationary
fluid.

It is also possible to tighten the sufficiency condition in
the same way we did in@2# for Kab50 whenr8<0 if, in
addition, we demand thatJ has a fixed sign. What we do
substitute forR82 in Eq. ~48! using the definition of the
quasilocal mass. We have

m54pE
0

l

dl R2@rR81JRKR#

5
4p

3
rR314pE

0

l

dl R2@JRKR2r8R#

>
4p

3
rR314pE

0

l

dl R3JKR ~53!

>
4p

3
rR3. ~54!

The inequality on the second to last line obtains whenr8<0.
If J is positive~or negative! everywhere~in the gauges we
are consideringKR possesses the same sign asJ) we are left
with a sum of two positive terms and so the last inequality
holds. We now have

R825122m/R1R2KR
2<12

4p

3
rR21R2KR

2 , ~55!

so that

G<l 2
M

3
1

1

2E0

l

dl R2KR
2 . ~56!

Let us examine how this modifies Eq.~39!. The last term on
the right can now be added to the~negative! term of the same
form in Eq.~45! before the completion of the square. We get

4M

3
2P,

31^a&
4

l ,^a&l ~57!

in the rangea>1. As before, this is minimized whena51
and whenP50 again reproduces the result at a moment of
time symmetry. We note, however, that while the left-hand
side has been improved, the right-hand side is weaker.

From one point of view, Eq.~57! is not very satisfactory
— we have broken the symmetry betweenJ andr. However,
this very asymmetry apparently permits us to write down a
non-vacuous sufficiency condition when dominant energy is
saturated withP5M . Whereas Eq.~50! is vacuous under

these conditions, Eq.~57! provides the nontrivial statement:
supposer8<0 and the motion of matter is outward and null,
then if

M>3^a&l , ~58!

the spatial geometry will possess an apparent horizon. This
apparently contradicts the proof of the absence of apparent
horizons when one has a null fluid given in the beginning of
this section. The resolution of this paradox, as we will dem-
onstrate in the next section, is that Eq.~58! can never be
satisfied.

In a forthcoming publication we will examine intrinsic
time foliations. What is very encouraging is that essentially
the same condition appears despite the very different nature
of the foliation @10#.

V. SINGULARITIES

Whereas the sufficiency conditions for apparent horizon
were clearly strengthened by imposing the dominant energy
condition, there is no obvious useful way to import dominant
energy into the statement of a sufficiency condition for sin-
gularities.

We have an obvious generalization of the moment of time
symmetry result. We recall that, in general,

M1RR85G1E
0

l

dl S 122a

2 DR2KR
2 . ~59!

Let us suppose that the geometry is regular everywhere. Let
r be positive anda>0.5. Now G is bounded by one. Fur-
thermore,R8<1 so thatR(l )<l everywhere on a nonsin-
gular geometry andR8>21. The surface term is therefore
bounded from below by2l . Finally, the second term on the
right-hand side is negative. TheKab dependence is trivially
handled. Thus we get

M<2l . ~60!

The inequality is independent of the value ofa so long as it
is bounded from below by 0.5 — we do as well as we did at
a moment of time symmetry. As at a moment of time sym-
metry, if we place constraints on the sources it is possible to
tighten the inequality. We note that whenr8<0 and J is
positive~or negative! everywhere, we can exploit Eq.~56! to
get

M<
3

2
l . ~61!

Thus we see the vacuous nature of Eq.~58!.
Unlike the analogous configurations which occur at a mo-

ment of time symmetry, which are nonsingular,r8<0 is not
sufficient to guarantee a nonsingular geometry — the geom-
etry can still turn singular ifJ is large enough. We therefore
cannot claim that Eq.~61! represents a universal bound when
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r8,0 andJ is positive~negative!.
The singularity condition is not symmetrical inM andP.

Unlike the apparent horizon conditions, whereP shows up in
the combinationM6P, it does not arise in a natural way in
either Eq.~60! or Eq. ~61!.
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