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Sufficient conditions for apparent horizons in spherically symmetric initial data

Jemal Guveh
Instituto de Ciencias Nucleares, Universidad Nacional Aotoa de Mgico, Apdo. Postal 70-543, 04510 Meo, D.F., Mexico

Niall O Murchadha
Physics Department, University College Cork, Cork, Ireland
(Received 24 July 1997

We establish sufficient conditions for the appearance of both apparent horizons and singularities in spheri-
cally symmetric initial data when spacetime is foliated extrinsically. Meand P be, respectively, the total
material energy and the total material current contained in some ball of radiS8sppose that the dominant
energy condition is satisfied. We show thawif- P= /" then the region must possess a future apparent horizon
for some nontrivial closed subset of such gauges. The same inequality holds on a larger subset of gauges but
with a larger constant of proportionality which depends weakly on the gauge. This work extends substantially
both our joint work on moment of time symmetry initial data as well as the work of Bizon, Malec, and O
Murchadha on a maximal slicES0556-282(97)00524-9

PACS numbd(s): 04.20.Cv

[. INTRODUCTION normal to the hypersurface. itif is the outward pointing unit
normal to the two-sphere of fixed radius in the hypersurface,
This paper is part of an ongoing examination of the con-we can write
straints in spherically symmetric general relativity—3].
Here we would like to establish sufficient conditions for the Kab=NaNpK+ (Jap— NaNp)Kr- (4)

appearance of apparent horizons and singularities in general )
initial data. Because of their very different nature we deferV€ assume that botp and J are appropriately bounded

the examination of necessary conditions to another publicunctions of/” on some compact support. We choose to fo-
tion [4]. liate spacetime extrinsically. This involves fixing some sca-

Ideally one would like to go about this in a manifestly !ar function of the extrinsic curvature tensét,,. We focus
covariant way avoiding the necessity to introduce a gauged" the subset of extrinsic time foliations of spacetime of the
Unfortunately, this is well beyond our present technical caform
pacity. We proceed in a canonical way: the initial data con-
sist of the intrinsic and extrinsic geometry on some spacelike
hypersurface satisfying the constraihtg

KC+Q’KR=0, (5)

where 0.5 a<w but is otherwise an arbitrary functional of

1 the initial data,R and Kg. «=0.5 anda—o define the

Kal Kt 2K . ]—=5[2(RR)' —R'2=1]=8mp (1) superspace Iig.ht cone. While this might not be the most gen-
R eral extrinsic time gauge, a very large degree of freedom is

admitted.
and If cosmic censorship is valid, the existence of an apparent
horizon provides a natural boundary on the configuration
, R space between regular data and data that are singular or will
Krt R (Kr=Kp)=4mJ. (2)  develop a singularity.

We recall that a futurglpas} apparent horizon exists
vhen the divergenc® . (®_) of outward pointing, future
pas) directed null rays vanishes on a closed surface — in
our case a two-sphere of fixed proper radius. It is easy to
show(5], for spherical initial data, that if there exists a non-
spherical trapped surface or apparent horizon then there also
must exist a spherical one. We can expréss=ow- /R,
where

We have parametrized the line element on the spatial geo
etry as follows:

ds?=d/?+R%dQ?, ©)

where/ is the proper radial distance on the surface Brid
the areal radius. All derivatives are with respect/toin a
spherically symmetric spacetime, the extrinsic curvature is w+=2(R'£RKg), (6)
completely characterized by the two scalar functinsand
Kg, proportional respectively to the velocities sfandR  are the optical scalars introduced [i@]. A future apparent
horizon therefore occurs whenewer. =0. If v, <0, we say
that the surface is future trapped. The transcription for past
*Electronic address: jemal@nuclecu.unam.mx horizon will always be obvious so henceforth will be omit-
"Electronic address: niall@ucc.ie ted. Withw, andw_, we can reconstruct the light cone at
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each point on the hypersurfagthis depends both on the MFP=/, (10)
intrinsic and on the extrinsic geometryin particular, it is

often useful to cast the constraints in terms of these variabl
when we are interested in identifying apparent horizo

[6.1.3. . . The inequality (10) is particularly impressive because,
Whe_nKab=_0, _the quauon of an apparent horizon, wher_l when P=O,qit co?lngzidzes w?[h the mo):nen?of time symmetry
one exists, coincides W.Ith an extrema_l surface of the spatigl,q it which we know to be sharp. Unlike the moment of
geon_1etry[2]. In a spherically symmetric geome_try these ACime symmetry scenario where one could fall back on
quatlpns vyhereR’ =0. In general, apparent.honzons do not piecewise-constant density models to guide us, no such ex-
coincide with extremal surfaces of the spatial geometry. Ini v, solvable safety net is available here. Even the analogue

tial data with an apparent horizon need not even possess @ff the constant density star proves to be analytically intrac-
extremal surface and, vice versa. table whenl =0

The spatial geometries we consider consist of a single
asymptotically flat region with topologR®. The appropriate
boundary condition on the metric at the base of the geometr
at /=0 is then

&he region must contain a futu(pas) apparent horizon. This
NSs the central result of this paper.

Bizon, Malec, and’O\/Iurchadha[7,5] using a maximal
slice (@=2), had earlier demonstrated that if the weak en-
¥rgy condition holds and if

R(0)=0. @) M—P= g/ (11)

We suppose that the center is regular so ®d0)=1 and

Kgr(0)=0. If no singularity intervenes between the base andt . .

AR : ; ; he spatial geometry must contain a future trapped surface
infinity we will say that the geometry is regular. In this ge- [7.5] Ql'he ngmericalycoefficient a0Dearing on thgpri ht-hand
ometry, the integrated action of the interior distribution of‘. =~ PP 9 9

source energy-momentum can potentially produce an appa?—Ide is not as good as that appearing in EX0). They

; showed, however, that this coefficient is sharp, by explicitly
ent horizon. . luti it — P> (7/6— )/ b ith
To cast a sufficient condition for the existence of an ap_constructlng a solution witi —P=(7/6-€)/ but without

parent horizon we suppose that the spatial geometry does rr:gpy trapped surface. This solution notably did not satisfy the

; : inant energy condition.
possess any future trapped surfaces and is regular in so gminan : . .
bounded region containing the originw( >0 therd. One The result Eq(10) was first established by Malec and O

needs to then show that some measure of the material ener g‘FChadha for _maX|maI slice$]. These earI|e.r. results were
content in this region must be bounded by a measure of th rl\{ed assuming global regularity, a condition we do not
volume of the region. require. . . .

The challenge is to identify a useful measure of the ma- T_he new idea mtr(_)duced ite] was to recast the con-
terial energy content of a region. We follow the developmen traints of .the thec_)ry in terms of the optical scglar variables
of a sufficiency condition by Bizon, Malec, and ®ur- 6’1"’3: Th|_s permits one to enforce thg dominant energy
chadhg7,5] and more recently by Malec and Kurchadha ~ condition rigorously — even whem varies SO long as it
[6,2]. At a moment of time symmetry, the natural measure Opoes not stray too close to the superspace lightcone.

material energy for casting a sufficiency condition for ant .V\{['rt]htTr?X'.mal sl||qt|ng alone to go by, one cannot bte .cer.—f_
apparent horizon was shown to be the material enevy, ain that the ineéquality posSesses any gauge invariant signifi-
cance — our measures of energy and size, after all, are not

For general initial data, the corresponding measure for a fu- . ) ) . .
ture (pas) apparent horizon was shown to be the differencesPacetime scalars so one rightly hesitated before jumping to

(sum, M= P, whereP is the total radial material momen- physical conclusions. The principal strength of the inequality

tum given by integrating the material current over the propelwe ha\_/e de(lved IS that.|t not t|e_d to the r_naangl gauges; the
spatial volume, result is valid for all slices which remain within the band

1< =2 lying at the center of the superspace light cone. At
/ least within the framework of the extrinsic time foliations,
(M,P)=47Tf d/R%(p,J). (8)  the result does not appear to be sensitive to a change in
0 foliation. It is not at all obvious that such a happy outcome is
possible. It is remarkable in view of the global nature of the
problem that we can do this far which is not constant.
What happens when we move outside this band? If we

Clearly, we need to make some assumptions about matté?lax the gauge to€ a<<oe, it is still possible to establish an

to proceed. We will assume that matter satisfies the dominarﬁ'f'equa"ty .Of .this form. Howgver, a FO”.Star?t of pro_portional-
energy condition in this region: ity, C>1, is introducedC will be finite if « is but diverges

linearly as a—. However, this limit corresponds to the
[3|=<p. 9) polar gauge which breaks down at a horizon.
If we relax the gauge in the other direction to cover all
When the dominant energy condition is satisfittix P is  apparently valide, so that 0.5<a<, such a bound no
positive. longer exists. There appears to be a genuine obstruction to
Let / be the proper radius of this region. Let the domi- casting a strong statement of sufficiency of the form de-
nant energy condition hold everywhere. Let&<2 but be scribed above as we approach the superspace lightcone. We
otherwise arbitrary. Then if need first to weaken the hypothesis to obtain an inequality.

The greater the net outward flujpositive P), the lower
M — P — the more difficult to form a future apparent hori-
zon.
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One way to do this, taking advantage of dominant energyR’— 1, andRKz—0 at infinity consistent with asymptotic
is to assume that the interior contains neither future nor padtatness. Remarkably, it is possible to gain all the control
trapped surfaces. The cost is that the inequality we obtaiover w, andw_ we will need without any asymptotic con-
does not distinguish between future and past apparent horirol.
zons. When we do this, we obtain an inequality of the form We can combine the two constraints to get simple equa-
(10), with some new constant of proportionalitg>>1 which  tions for the spatial derivative ab, andw_:
depends weakly on the gauge. In fact, it is finite even when
a=0.5 everywhere.

To track the potential mischief uncontrolled currents can
play, we will relax the energy condition to the weak energy (12
condition which places no constraint dnThe weak and the
dominant are the two energy conditions that are relevant in , 1
initial data. The strong energy condition which bounds spa- (w-)'= _8”R(P+J)+ﬁ(‘”+“’*_4)_“’*Kﬁ'
tial stresses involves the dynamical Einstein equations in ad- (13
dition to the constraints.

With the weak energy condition, we find we do not fare We can, in turn, combine Eg¢12) and(13) to give
so well. We again find, with the strong form of the hypoth-
esis, that we can only prove sufficiency foslr<<oo. How- (wi0-)'==87R[(0i+w_)p— (0, —w_)J]
ever, the constar@ will now depend onx for all a>1. Itis (ot o) _4) (14)
mimimized atae=1 where it asumes the optimal valdel @+ TO-NO+O- '

— the dominant and weak energy results coincide in thi§¢ a5 shown ir{6] and again if1] that if we had initial data
gauge. which satisfied the dominant energy condition and which

IW? a[so \r/]vnl_c.opsltréjct a sgfﬂmlency condlt_|on for a sin- aq regular at both the origin and infinity then a conse-
gularity in the initial data. Singular geometries can OCCUNGence of Eq(14) was

even though botp andJ are finite. But the only way that the
geometry can become singular is by pinching off at some w,0_<4. (15)
finite proper radius from the center. In Sec. VI, we demon-

strate that the corresponding inequality for singularities can et us assume instead that we have initial data which are
be cast asvi =2/ which is independent of andP. regular at the origin, satisfy the dominant energy condition,
The paper is organized as follows: In Sec. Il we focus onand have no future trapped surface inside some ball of radius
the dominant energy condition. We begin, in Sec. Il Awith a,”, Then inside this radius E¢15) holds. The proof is very
derivation of bounds on the configuration variables whlcheasy_ We know thai», w_=4 at the origin and that it de-
hold in regions with a regular center which do not possess agreases as soon as dominant matter is entered. Let us assume
apparent horizon. These generalize bounds obtaind@Jin that it rises up again to 4. However, sinee is positive,w_
for globally regular geometries. In Sec. IIB we derive amyst also be positive. Then the dominant energy condition
useful inequality which we use in Sec. Il C to derive EQ. and Eq.(14) give us that (., _)’ <0 there, a contradiction.
(10). In Secs. IID and Il E, we relax the upper and lower This result is gauge invariant.
range ofa respectively. In Sec. Ill, we relax the energy  an even better result holds if<a < in the finite region
condition. In Sec. IV, we examine some interesting speciajye consider. If3] it was shown that whem=1, if we had

cases. In particular, we show that outgoing null qui_ds cannoyiobally regular maximal initial data which satisfied the
form future trapped surfaces. In Sec. V we examine singUgominant energy condition then

larities in the initial data.

1
("-M)’:_SWR(p—J)—ﬁ(erw,—4)+w+K£,

—2<w,, w_<2. (16
II. APPARENT HORIZONS: DOMINANT ENERGY
i _ While we need the information at infinity to set the lower
A. Bounds on the configuration space bound, we can get the upper bound just from regularity at the
in regions without trapped surfaces origin. Both w, and w_ start out equalling 2 at the origin
We consider some finite region containing the origin. Toand then decrease as one moves away. Assumevthan-
derive a sufficiency condition in the strong form, we assumecreases up to 2 again ahead«of . However, once it reaches
only that this region is regular and does not possess an¥, from the dominant energy condition and
future trapped surfacesw(. >0 ther¢ — we make no as-
sumptions concerning what happens to the geometry outside
it may contain trapped surfaces, it may even be singular.
Suppose that the dominant energy condition holds at ev- (17)
ery point in this region. When the dominant energy condition
holds, our experience suggests that the appropriate variablge get that o, )’'<0, a contradiction. We obtain the same
to exploit are the optical scalars. result for w_ . This does not depend on the existence of a
Even though the geometry is regular within this region,horizon. Note that we only demaneg=1, we do not require
we cannot suppose that it remains so outside. In particulathat it be a constant.
we cannot impose the the same boundary conditions we did This is not, unfortunately, true if<<1 anywhere — in-
in [3] for everywhere regular geometries where we could setleed, we constructed an explicit counterexamplé¢3in If,

(i)' = —8wR(p—J)+%[4+(a—1)w+w_—awi],
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however, the region possesses neither future nor past appassuming Ea<w, 0 _<2 and Ko, <2.

ent horizons, we can prove that. <), where
Q=max2,2lay)- (18

The proof is simply a rerun of that fag=1.

Of course, if we demand global rather than just local

The first thing we observe is that since bettandw , are
positive we maximizeF* by settingw_=2. Thus we seek
an upper bound for

Fi*=2aw++(1—a)wi. (27)

regularity we can exploit the full range of inequalities de-The value of this quartic is zero when, =0 and 4 when

rived in [3]. With weak energy, we have-1<R’'<+1.
With dominant energy, and<ta <o, we have

|wi|$21 (19)
so that RKgr=(w,—w_)/4 and, of course,
R'=(w,+ w_)/4 are also bounded. We have

|IRKg|<1 (20

and so also get 1=R'<+1.

B. A useful inequality when 1< @<

o, =2. The maximum of the quartic occurs at
W= (28)

and it equals
** @
+max: a— 1 (29)

there. However, it turns out that/ (e« —1)>2 whena<2 so
the maximum of** in that range is 4, independent @f In
other words,

The optical scalar which marks the presence of a future

apparent horizon is . . Its spatial gradient is determined by
Eq. (17). To obtain the appropriate weighting on the sources,
let us recast Eq17) as an equation for the spatial gradient of

Rw, :

(Rw,;)'= —87TR2(p—J)+iL—1[4+ aw+w_+(1—a)wi].
(21)

This equation can be integrated out to any proper raditrs
give

Row,=-2(M-P)+2I',, (22
where
/
F+=f d/Fi(w,s,0_,a), (23
0
and
1 2
F+=§[4+aw+w_+(1—a)w+]. (24

I', is the natural optical scalar generalization for future
trapped surfaces df introduced in[2]. In particular, when

Kabzo,r+:F.

Let us assume that there are no future trapped surfaces
inside some given radius. Far=1, we then have the crude

bound

1 1
F+$§[4+aw+w,]$§(1+a). (25

We can, however, do much better in this range by exploiting
the control we possess over, andw_, 0<w, <2 and

w_=<2, to boundl, in a more subtle way.
We are interested in finding an upper bound for

F*=aw,o_+(l-a)w>, (26)

Fis< 2 (30

Hence we can derive the useful inequality
1, lsa<2,

F,.< (31

14— 2 a2
8(a—1)' 7 °

assuming, of coursey <2 and O<w,=<2. This inequality
is clearly sharp.

C. Sufficiency condition: 1< @<2

It is clear, from Eq.(31), that if « lies between 1 and 2
(and, let us stress again, need not be consthen we get
thatI', </. Thus it immediately follows from Eq22) that
if M—P>/ then the region must contain a future trapped
surface.

D. Sufficiency condition: 1< a<»

It is clear that the inequality no longer holdsdf>2. We
have instead the weaker bound for al=1:

F<1l+H(a), (32

where

Hla)={ 1 &2 1 (33

8(a—1) 2

Let (f) represent the average of any functibrover the
domain[0,/]. We then have

I,<1+(H(a))/. (34)
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H will be finite if « is bounded. Asymptotically, howevet, B. Sufficiency condition: 1< a<%

grows linearly witha. This reflects the fact that, in this limit, Suppose thap=0, and I<a<% but is otherwise un-
the gauge is pathological precisely at a horizon so we woul@pecified. We will show that if

not expect any kind of reasonable estimate.

If w,>0 on any spherical domain which includes the M—-P=(f(a))/, (39
origin then
in some region, where
M—P<(1+{H(a)))/. (35
1(1-a)?
A constant of proportionality has been introduced which is fla)=1+ 3 2a_1" (40

given by the spatial average oftH over the domain of’.
If this inequality is violated we must have a future trapped
surface in the domain.

The dependence oa is surprisingly weak. Clearly, no
extra cost is involved in accomodating a variableln fact,
the inequality does not depend explicitly on the gradient o
.

the spatial geometry in this region must possess a future
trapped surface or a singularity. This exactly reproduces the
condition, Eqg.(11), whena=2. However, the minimum of
ff(a) is assumed wher =1 where we reproduce E@L0).
Curiously, the gauge providing the best bound when we do
not assume dominant energy is not maximal slicing. The
o N likely reason for this is that in this gaugég= P/R?. Here,
E. Sufficiency condition: 0.5< a<< weak energy does as well as dominant energy.

If 0.5<a<1, the derivation above breaks down. To The original proof in[7,5] for K=0 exploited conformal
bound w. , we will asssume that not only is the interior coordinates. Our approach eschews tying ourselves to any
geometry regular and not contain any future trapped surfacagarticular spatial coordinate. Not only is the end result inde-

but, in addition, that it contain no past trapped surfaces. Thefendent of the spatial coordinate, it is clear that the coordi-
Eg. (18) holds. We now have nate invariant approach is not only more transparent but also

more efficient. We will work with the metric variablésand
1 -«
1+a+ ma>< ,0)

F<Z Kgr — when dominant energy is relaxed, the advantage we
2 Apmin gain from exploiting the optical scalars is lost. When Ejj.
holds we can rewrite Ed1) in the form
where we exploit the positivity of the quasilocal mass to
boundw , w <4 and Eq.(18) to boundw, .

: (36)

1-2«a

1 2
47TpR2+(RR’)’=§[1+(R’)2]+ R?K%. (41)

Ill. APPARENT HORIZONS: WEAK ENERGY
We integrate fromy’=0 up to the boundary at proper radius

A. Bounds on the configuration space 2

in regions without trapped surfaces

Let now us relax the energy condition to weak energy,

/o [1-2a
p=0. M+RR’=F+J d/(
0

) R?K2Z, (42

First, we will again assume only that the geometry in our 2
region is regular and thab , >0 there. Without the addi- ) i
tional control overd, it is not reasonable to expekt; to be ~ Wherel' is defined by
bounded in any simple way. In globally regular geometries,
107
~1=R'=1, (37 r=§fo d/[1+(R)’]. (43

everywhere[3]. If we do not have global regularity, the
lower bound orR’ can be breached. What we have instead i
the weaker bound,

JWVe now eliminateR’ in the surface term in favor of the
optical scalarw, andKpg using the defining relatiof6).
To eliminate theKg dependence on the boundary which
—max 1|RKg|, —o)<R'<1. (39) comes along_ with the replacement Rf by Wy, we note
* that we can integrate the momentum constraint, @y. to

obtain[8
The upper bound is a topological one analogous to that on 8]

w, and w_ derived above. The lower bound is a conse- py

guence of the fact that whan, >0, thenR’=—RKg. Sup- R2Kg=P+ J d/(1— a)RR Kg. (44)

pose R'<—1 at some point/y</. We know that if 0

R'<—1, R"<0 so that it will henceforth become more

negative[3]. Thus the mimimum value oR’ under these We do not need an explicit solution of the momentum con-

circumstances is the horizon value as claimed. Thisoisa  straint. In fact, the only explicit use we will make of the

marvellous result — but will be sufficient for our purposes. momentum constraint is Eg¢44) which does not depend on
If we relax the hypothesis to global regularity we canthe possible spatial variation of.

exploit Eq.(37). Substituting Eqs(6) and (44) into (42) we now obtain
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17/ not conclude that the apparent horizon or singularity lies
M-P+ 2w+=F+§f d/(1-2a)R?K} necessarily within the region when the inequality holds — it
0 could exist beyond it.
/ Under these conditions, we again obtain E3f) with the
- f d/(1-a)RRKg. (45  same functiorf (a). We note thaf diverges as we approach

0 the minisuperspace light cone=0.5 anda—<. This oc-
gurs because the discarded negative term blows up at these
two values. At the former value, a more ingeniously con-
structed proof is likely to remove this infinity. At the latter
value, however, the divergence is a genuine signal of the
breakdown of the gauge.

Let us label the second and third terms on the right-hand sid
I, andl,, respectively. Whem>0.5,1, is manifestly nega-
tive. As such we could discard it to cast E@5) as an
inequality. However, it is clear that we can do better by first
completing the square in the sumigfandl , before discard-

ing:
J C. Sufficiency condition: 0.5< a<
|1+|2:Ef/d/(1—2a)(RKR— 1~ Rr>2 We have encountered genuine obstructions to finding
2Jo 1-2a strong sufficient conditions for the existence of future hori-
P 5 zons as one approachee the superspace lightcone. Interest-
+ Ef d/(l_a) R’2. (46) ingly, one can find a very simple sufficient condition which
2)o " 2a-1 is valid for the whole range of’s if we do not distinguish
between future and past horizons.
Now, if R"?><1, we have Let us consider a region around the origin, and let us
5 assume that there are no trapped surfaces in this region. We
| 1< (1-a) > immediately get that in this region we have
1Floszl=——)/. (47
2\ 2a—1
0<R'=1, (57
In addition, under these conditions, we obtain the upper
bound onl, just assuming that the weak energy conditipe: 0, holds.
Let us consider Eg41) and integrate it out to any in
I's/. (48)  the region with no trapped surfaces. We replaRé)t by 1,

and using the facts th&R >0 and that (+2a)R?K3<0
This is, however, only the case when we assume that thge get that

geometry is regular everywhere. Let us suppose that

R’=—1 at some value'y,</. Then, we can decompose the M</. (52
right-hand side of Eq(45) into a part coming from the inte-

gration over the domairf0,/,] and a remainder from Therefore we have shown that if the weak energy condition
[0,/ ]: The integrand®, appearing in this latter contribu- holds and ifM=/ then we must have a trapped surface

tion can be bounded as follows: within this sphere. This result is an old moment-of-time-
symmetry result in disguise. We do not need to assume ab-
P<|RKgl,, —o(1+]a—1|-a), (490 sence of trapped surfaces to get the inequality, all we need to

assume is the absence of a minimal surface, R&z0, to
which is bounded by zero k=1, so that we can discard it. get thatM </". Therefore we have shown thatNf=/" then
We conclude that if the region contains no future trappedhere must be a minimal surface within this sphere. Of

surfaces and its geometry is regular then course, a minimal surface must be a future or a past trapped
surface.
M_p< 1+<E (1—a)2> )/ (50 We can even do better. The term-{2a)R?K3/2 which
2 2a—1/)" " we threw away can be brought over to the other side and

reunited with the 4rpR? term. This combination is nothing
This completes the proof. but one-quarter of the three-scalar curvature, which must be
If we extend the range of to values below+1, not positive by the combination of the requirement tlagt 0.5
surprisingly, we need to relax the hypothesis. However weand the weak energy condition. Therefore we have recovered
decide to do this, we appear to require control over the formhe result that if we have a spherical manifold with positive
of the exterior geometry. One might try to weaken the hy-scalar curvature and if the volume integral of the scalar cur-
pothesis to permit us to assume that the entire spatial geomvature within a sphere is greater thanm6, where/ is the
etry (from its base out to infinityis free of future trapped proper radius of the sphere, then there must be a minimal
surfaces. However, there is no tactical advantage to this —surface within this spherg2].
unlike the moment of time symmetry analysis where this
does imply that the geometry is nonsingular, here a past ap-
parent horizon could turn up in the exterior with a singularity
lurking beyond it. Let us now examine some extreme cases: for simplicity
We need to assume that the entire geometry possesses will only consider dominant energy.
neither future nor past horizons or weaker, is regular not just Let us consider the two extreme distributions satisfying
within the region of interest. The result will be that one can-the average dominant energy condition everywhere, but only

IV. SPECIAL CASES
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just, so thatP— =M [9]. If |J|=p, these are, respectively, these conditions, Eq57) provides the nontrivial statement:
the cases of a radially outward and a radially inward movingsupposep’ <0 and the motion of matter is outward and null,
null fluid. In the caseP—M, Eq. (10) becomes a vacuous then if

statement, not surprisingly, as it is impossible to form an

apparent horizon under such circumstances. All we need to M=3(a)/
do is look at Eq(17) and see that ip=J and if w, is small '
then (w,)'=1/R>0. Thusw, can never pass through zero

from above and since it starts off equalling 2, it must remainthe spatial geometry will possess an apparent horizon. This
positive. In the latter case, we have that if apparently contradicts the proof of the absence of apparent
2M=/+(H(a))/, the geometry will possess a future horizons when one has a null fluid given in the beginning of
trapped surface. It is twice as easy to form an apparent hthS section. The resolution of this paradOX, as we will dem-
rizon with an inflowing null fluid as it is with a stationary Onstrate in the next section, is that E§8) can never be
fluid. satisfied.

It is also possible to tighten the sufficiency condition in  In @ forthcoming publication we will examine intrinsic
the same way we did ifi2] for K,,=0 whenp’<0 if, in time foliations. What is very encouraging is that essentially
addition, we demand that has a fixed sign. What we do the same c_ondition appears despite the very different nature
substitute forR’2 in Eq. (48) using the definition of the O©f the foliation[10].
guasilocal mass. We have

(58)

V. SINGULARITIES

/
— /D2 ’
m—47-rJ’0 d/RTpR'+IRKe] Whereas the sufficiency conditions for apparent horizon

were clearly strengthened by imposing the dominant energy
condition, there is no obvious useful way to import dominant
energy into the statement of a sufficiency condition for sin-
gularities.

4 3 7 5
=?pR +47Tf d/RIIRKz—p'R]
0

4 4 We have an obvious generalization of the moment of time
" B3 /53

=3 PR +47Tfo d/R*JKg (53 symmetry result. We recall that, in general,
4 / 1-2«

>?pR3- (54) M+RR =T+ fo d/| — )RZKg. (59)

The inequality on the second to last line obtains whés 0.
If J is positive (or negativé everywhere(in the gauges we Let us suppose that the geometry is regular everywhere. Let
are consideringr possesses the same signJasve are left p be positive andx=0.5. Now I is bounded by one. Fur-
with a sum of two positive terms and so the last inequalitythermore,R’<1 so thatR(/)</ everywhere on a nonsin-
holds. We now have gular geometry andR’=—1. The surface term is therefore
bounded from below by- /. Finally, the second term on the
, 2 4m 2 right-hand side is negative. Th€,, dependence is trivially
R'*=1-2m/R+R°Kg=1- ?pRZJFRZK . 9 handled. Thus we get

so that M<2/. (60)

M 17
4 /B2 2
<z 3 + 2J0 d/R°Kg. (56) The inequality is independent of the value®fo long as it

is bounded from below by 0.5 — we do as well as we did at
Let us examine how this modifies E@9). The last term on @ moment of time symmetry. As at a moment of time sym-
the right can now be added to tfreegative term of the same metry, if we place constraints on the sources it is possible to
form in Eq.(45) before the completion of the square. We gettighten the inequality. We note that wheri<0 andJ is

positive (or negative everywhere, we can exploit E¢p6) to

4M 3+ et
M _p 3D s /s
3 4
3
in the rangex=1. As before, this is minimized whesa=1 M= 5/. (61)

and whenP=0 again reproduces the result at a moment of
time symmetry. We note, however, that while the left-hand
side has been improved, the right-hand side is weaker.  Thus we see the vacuous nature of Ezf).

From one point of view, Eq(57) is not very satisfactory Unlike the analogous configurations which occur at a mo-
— we have broken the symmetry betwekandp. However, = ment of time symmetry, which are nonsingulat=<0 is not
this very asymmetry apparently permits us to write down asufficient to guarantee a nonsingular geometry — the geom-
non-vacuous sufficiency condition when dominant energy istry can still turn singular il is large enough. We therefore
saturated withP=M. Whereas Eq(50) is vacuous under cannot claim that Eq61) represents a universal bound when
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p' <0 andJ is positive(negative. ACKNOWLEDGMENTS
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