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We give a detailed description of the constant mean curvature foliations in Schwarzschild spacetime, show
that the lapse collapses exponentially, and compute the exponent.
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l. INTRODUCTION om dr2
d32=—<1—— dt?+ T
In the analysis of general relativity as a Hamiltonian sys- 1- —
tem[1], one chooses a time function and considers the folia- r
tion of the spacetime by the slices of constant time. Two +12(d6?+sirPad ?), (5)

natural geometrical quantities arise on such spacelike three-

slices. One is the intrinsic three-metric, usualy,, and the

other is the extrinsic curvaturﬁab, the derivative ofg,,, wheret is the “static” Killing vector andr is the “areal” or
along the normal to the slice. They are related by the con*Schwarzschild” radius. In the left and right zoness time-

straints, which in a vacuum spacetime read like andr>2m is spacelike. In the bottom zoneis timelike
and runs forward from the past singularity et=0 to r
R B)— KK 4+ (trK)?=0, (1) =2m. In the top zoner is also timelike and runs forward
ab  ab B from r =2m to the future singularity, also at=0. We do not
VaK*P=g®V,trK=0, ) seek the most general CMC slices. We are looking for those

CMC slices which inherit the underlying spherical symmetry
of the given spacetime.

There are two complementary ways of analyzing this
problem. One way is to assume that one is given initial data
(the intrinsic metric and extrinsic curvatyyeboth parts of
which have the desired symmetry. It turns out that one can
explicitly solve the constraints. From the momentum con-
straint, Eq.(2), it is clear that the extrinsic curvature must be
just a sum of the trace term and a part which is both trace-
and divergence-freftransverse—trace-fred T)]. There ex-

where R ®) is the three-scalar curvature. Given the initial
data, one chooses, essentially arbitrarily, the |dpsad the
shift N', which determine the magnitude and direction of the
unit time vector relative to the normal to the slice.

One can now write the evolution equations for the intrin-
sic metric and extrinsic curvature in vacuum: €.g] (the
reader should be warned that we follow W48l in our
definition of the extrinsic curvature, ndtl]; positive K
means increasing volume to the futyre

9 9an=2NKap+ Nap+Np.a 3) ists a unique spherically symmetric TT tensor. Therefore, the
’ ' extrinsic curvature can be written down with just two free
0K ap=N..p— N(Ryp— 2K 3K g+ K yptr K) parameters. On substituting into the Hamiltonian constraint,

Eqg. (1), one discovers—see Sec. Vll—that this also can be
+Kap N +Ka NG +HK NS (4)  solved explicitly.
The alternative approach is to take the given spacetime

Let us stress that we are using the convention of signs thaind make a coordinate transformation in the ) plane only,
gives trK=+n?,, wheren® is the timelike unit normal to  given byt=h(r), leaving the rest untouchetl(r) is called
the slice andd;\Jg= Vg(N trK + N%). In other words, a the height function. One now imposes the condition that the
positive trK means expansion. It is often useful to specifyt’ =0 slice be CMC. This gives a second-order equation for
the foliation, and thus the time, by placing a condition on thethe height function which can be integrated explicitly once.
extrinsic curvature. A very popular choice is to demand thafThis is enough to evaluate the intrinsic metric and extrinsic
the trace of the extrinsic curvature be constant on each sliceurvature of the slice, and, of course, they agree with the
(“CMC slicing” ) [4]. expressions obtained using the first approach.

In this paper, we investigate the CMC slices of the ex- One then can work out how these slices fit into the given
tended Schwarzschild solution. The manifold consists of fouspacetime and construct interesting CMC foliations. One
segments, each of which can be covered by the standaehds up with a first-order equation for the height function
Schwarzschild metric which cannot be integrated explicitly. Nevertheless, one can
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make qualitative statements about the location of the slicesargely stick to the metric forni7) and ignore questions such

In this paper, we focus on a particular class of slicings inas the “best” choice of spatial coordinate.

which we fix the value of tK and vary the parameter defin-  To simplify the notation, we will write the line element as

ing the amount of the TT component in the extrinsic curva- " o oo )

ture. For small values of the parameter we have two folia- ds’= —N?dt*+adr’+ R d6*+sir(6)d¢?],  (8)

tions, one which runs from one infinity to the other, and one

which emerges and returns to one of the singularities. As th
arameter increases, the leaves of the foliations approach o : .

gnother, and at a critical value of the parameter, E[)rf)ey touch} "0 places. One is the dependenceainr and the other is

For values of the parameter greater than the critical one, th € relz_monshlp betweeR andr. This second piece is con-
tained in the mean curvature of the surfaces of constast

Ir;]e;ltr?lrg/ icr)lftc:hti eCsl\i/Incg:]uSIg(r:i?; changes. They all now run fromembedded two-surfaces in the spatial three-geometry,

In this paper, we focus on the behavior of the slices as > dR
they approach the critical value. We find the classic “col- p= — —.
lapse of the lapse” phenomenon. Further, by looking care- JaRr dr
fully at the first-order equation for the height function, we o
obtain an explicit expression for how the lapse decays near The only nonzerdthreg extrinsic curvature components
criticality. The first part of this papefSecs. ll-V) draws With mixed-case indices are
very heavily on the analysis given [6] of the collapse of

here the writtent(,r) arenotthe original ¢,r) while R is
e originalr. The geometry of=const slices is encoded in

. . . . dia iR 1
the lapse for maximal slices of the Schwarzschild solution. KM= O_Ké=—""— ~(rK—K"
~2an’ Ke=Ko=gn~ 2 r)- ©
Il. EXTRINSIC AND INTRINSIC GEOMETRY OF CMC These can be viewed as evolution equationsfandR. The
SLICES evolution equations for the extrinsic curvature can most

We can generate an essentially general spherically synfRompactly be written as
metric slicing of the Schwarzschild solution by making a CUUiN_ KK
coordinate transformatioti =t’(t,r),r’=r’(t,r). This will HIK=VVIN=K{KN, (10
give us a spacetime metric of the form YIN
r

5

ds= — gy dt'2+ N, dt'dr’ +g,,.dr'2 At =KD =NRE = NKIK]+ NKGr K+

+r2[d6%+ sir2(6)d$2]. ©) (11
_ The form of the three-dimensional Ricci curvature com-
We have t_hggt,t, ,_N,, , andg, . are funct!oqs of’ andr_’. ponentR(3)’ is
The coefficientr? in front of the two-metric is the original, '
Schwarzschild, coordinaté but can be viewed as a function 9.(pR)
of t’ andr’ as well. We can make a further coordinate trans- R§3)’ ==, (12

formation of the formr”=r"(t’,r"), leavingt’ unchanged. Var

This has the effect of changing thé coordinate within each while the three-dimensional scalar curvat®e is

slice but leaving the slicing unchanged. This kind of trans-

formation can be used to arrange th&t' - Vr”=0. This is 20.(pR) (pR? 2

equivalent to dragging the' coordinate along the normal to R =_ ' PR _ (P p—— (13)
the slicing and thus sets the shift to zero. This will give us a R\a 2R R

spacetime metric,

It turns out that the momentum constraint can be written as
ds?= —N2dt'?+ g, dr"?+r?[d 6%+ sir?(9)d ¢?]. (7) 3 L
r _ r
On any one given slice, we can arrange ttatr, the origi- Gr(K—trK)= 2 P+ 2 Pk, (14)
nal Schwarzschild coordinate. However, when one tries to
propagate this condition, one discovers that in general it i@nd the Hamiltonian constraint is
not compatible with vanishing shift. Therefore, one can have
a metric of the form(6) with r’=r or a metric of the form Iy (PR)=— §(Kr)2_ 1o, 1
(7) with zero shift, but not both. Another choice would be to \/gR (P 4> 4 P R?
setg,,»=1, i.e., to choose the’ coordinate as the proper
distance along the slice. Again, this is not compatible with 1 1
vanishing shift. One advantage that the “proper distance” + EtrKK,+ Z(trK)z' (15
coordinate choice has over the’=r" gauge is that, so long
as the slice remains spacelike, the proper distance gauge al- We are interested in finding surfaces which hav tr
ways remains regular while ther“=r" choice may well  =const, where tK=(1/N)d,In(yaR?) is the fractional rate
have coordinate singularities. However, in this paper we willof change of a coordinate volume during the temporal evo-
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lution. Assume thaK=trK is constant on a fixed Cauchy 4 3 (2r—3m)?
hypersurface. Then the momentum constréim is easily rf—2mri+ —7—=0. (22)
solved by
This is a quartic equation with two real roots. One lies
Kr=5+ § (16) betweenr=2m and r=3m/2 and the other between
3 R¥ =3m/2 andr =0. This is clear by looking for the extrema of
the quartic. To find these, we just differentiate to get
whereC is again a constant on the chosen Cauchy slice. The

other components of the extrinsic curvature are 2r—3m
4r3—6mr?+4———=2(2r—3m) M+ =0.
K= K¢—E— < 17 “ (23
0 "N 3 R3'

Therefore, it has only one minimét r=3m/2) and the
This can be recognized as a combination of the trace termuartic is negative there. Hence it has two real roots, one on
plus the unique spherically symmetric TT tensor, the termsach side of =3m/2. On substituting back into Eq1) it is
with coefficientC. Therefore, CMC slices of the Schwarz- clear that the solution of Eq22) with r>3m/2 hasK>0
schild solution are completely defined by the two parametergnd the solution withr <3m/2 haskK <0.
KandC. The only residual freedom is the ability to drag any  |n the lower quadrant, things are somewhat different. The
surface along the Kllllng vector without disturbing either the trace of the extrinsic curvature is now given by
intrinsic or extrinsic geometry.

The insertion of Egs(16),(17) into the Hamiltonian con- 3m—2r
straint leads, after some minor manipulation, to the equation Ks ———. 24)
P a vamrd—r# (
R c? K?
3| —(pR)?>—R— =3— —R3|=0. (18 This is because, in the upper quadrant, the future is in the
4 R® 9 direction of decreasing, while in the lower quadrant the

future is in the direction of increasing This is now large

Equation(18) is solved by and positive near=0, zero atr =3m/2, and becomes large

B [KR C\2 and negative as approaches @. We get the same quartic,
(pR)2:4{1— _+(__ 7) (19 Eqg. (22), with the same roots, but now with the order re-
R 3 R versed. The root which is less tham® corresponds t&

. . ) , . >0, while the other root hak <0.
Here g is essentially the integration constant, modified by i enr we can work out. from Eq21), the value of the
completmgihe square ét andC related terms. Itis €asy 10 y4ca of the extrinsic curvature. We can, in fact, work out the
show thas=2m. If “ r"is replaced by the “areal radiug, entire extrinsic curvature and evaluate the consBaassoci-

. _ 2 .
then one findsa=4/(pR)". Notice also that the three- e with these cylindrical CMC slices. In the upper quadrant
dimensional line elements in such a case read

we get
4 2 D221 2 3mré—r4
dsfg)z(p—R)zdR +RAd6?+sirf(0)dg?].  (20) c— _ (25
32mr3—r4
Ill. THE CYLINDRICAL CMC SLICES Therefore,C>0 on each of these slices.
OF SCHWARZSCHILD SPACETIME In the bottom quadrant, the extrinsic curvature picks up a

In the upper and lower quadrants of Schwarzschild spacemmus sign. Therefore, for the cylindrical CMC slices we get

time, the Killing vector is spacelike and runs along the

4 3
=const surfaces. Since everything is constant along the Kill- K= ﬂ C= ﬂ (26)
ing vector, the trace of the extrinsic curvature is preserved v2mri—r4 3y2mr3—r?
along these cylindrical surfaces. Therefore, eaehconst
surface is a CMC slice. and soC is negative in the lower quadrant.
The trace of the extrinsic curvatuen the upper quad-
rand is given by IV. THE EMBEDDING OF CMC SLICES
IN SCHWARZSCHILD SPACETIME
K= ﬂ (21) In addition to the cylindrical CMC slices described in Sec.
vamri—r# I, there are many other spherically symmetric ones. In this
section, we will discuss how they run through the spacetime.
This is large and positive near2m, zero atr =3m/2, and The first comprehensive analysis of CMC slices in
becomes large and negative rabecomes small. This trans- Schwarzschild spacetime appeared5h The analysis given
forms into here closely follows the analysis of the related problem of
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maximal slices (tK=0) in the Schwarzschild solution given t=t—h(r), t=t+h(r),

in [6]. Let us start off with the Schwarzschild metric

2m dr? T=r. r=r.
dsz=—(1——)dt2+
r 2m
r =0, 0=0,
+r2(d6?+sirfod¢?), (27

and look at the slice given by=h(r), whereh(r), for ob-
vious reasons, is called the height function. One way of un- o
derstanding the geometry of this slice is to make the follow-where thet=0 surface is the slice in which we are inter-

ing coordinate transformation: ested. The transformed metric becomes
2m 2m
- 1-—], -h'|1-— 0 0
r r
_ il m 2m\| 1! w21 2m 0 0
9= — Bt e - ,
0 0 r? 0
0 0 0 rZsirfg
2m\| 1 2m
-l1-—] +h')l1-—]|, —-h'|{1-—] O 0
r r
2m 2m
—h'|1-—], 1-— 0 0
_ r r
my _—
g 1 1
0 0 2 0
0 0 !
rlsirfe

whereh’ =¢gh/dr. The intrinsic metric is given by 2m\ 1 2m 2m
1-—| —h'? 1= —|h"[1-—],00
2m)\ ! 2m p
_ I _Rh2l1_ = 2 n*=
ds’=|| 1 ; h (1 ; ) dr om 1 om
2 2 nZ 2 1= T _hlz l_T
+r2(dg°+sinrod¢?). 28
( ¢°) (28) 31
The lapseN of this slicing is given by
om\ -1 om\1-12 Given any three-slice in the four-manifold, we can drag it
N= {( 1— _) — h'Z( — _” , (29 along by the Killing vector. This will give a slicing where the
time translation is along the Killing vector. It is this slicing
) that is generated by the coordinate transformation above.
the shiftN, by Therefore, theN and N, defined by Eqs(29) and (30) are
nothing more than the projections of the Killing vector per-
N.= —h’(l— 2_m 0 0} (30) pendicular to and onto the given slice. Of course, the slicing
é r) given by dragging along the Killing vector cannot form a
foliation because the Killing vector has a fixed point on the
and the future-pointing unit normal by bifurcation sphere.
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The mean curvature of thie=0 slice is given by Finally, we can find the extrinsic curvature of the slice by
using
1
K=nj,=——=H-gn")
m —dg m agab
ZNKabZ?_ Na;p—Np;as 37

_ . (32 and we recover Eq$16)—(20).
r2’ \/( Zm) -1 ( Zm) When we look at Eq(35), it is clear that the right-hand
1-—| —-h'?1-—

side does not decay for largeand thus the integral must

diverge as we approach infinity. This is not surprising as we

) ) ) ) expect the CMC slices to go to null infinity.

If K is a constant, this can be integrated to give This agrees with the behavior of the spherical CMC slices
in Minkowski space. Consider the mass hyperbolgiet r?

2m =9/K? in flat spacetime. If we choose the one which goes to

hr( 1— _) future null infinity, then the future-pointing timelike normal

is n“=(t,r)/\t?>—r?, where we have to choose the positive

3 r2 \/( 2m>1 o B3 100t of VEZ—r%. We then find tK=n®=3/t?—r?=|K|
T

>0. To find out where on null infinity the slice ends up, we
need to introduce null coordinates= (t+r)/2u=(t—r)/2.

) ) _ _ Using t=r\1+9/r?K?~r+9/2rK?, it is clear that asv
whefeC is a constant of integration. In turn, this can be _ o y~9/K2-0. If we time-translate it to tto)2=r2
manipulated to give +9/K2, we findu—t,. Therefore, it slides up null infinity.

If we look at Eq. (35 for large r, we see thath’

~r/\Jo/K?+r2. The integral of this i1~ J9/K?+r?, which

-1
(1_2_m) _h/z(l_z_m): 1 5, is in complete agreement with the flat space expression.
r r _2m) [Kr C Therefore, the slices remain spacelike but go null infinity as
r 3 r? r—oo. Further, ifK>0, the slices all go to future null infin-

(34 ity, whereas ifK <0 the slices go to past null infinity.
One place we can find interesting information, without

and hence solving for h, is by looking at the expression for the mean
curvature of the spherical two-surfaces. In particular, we
know that
Kr C
) 3 2 a8
"= . 35 22 )
2m 2m Kr C\2 pre 2m| [Kr C
N el TR e

If one could integrate this one more time and fin(t) in  Therefore, the polynomial on the right-hand side of B38)
closed form, we would have a complete description of themust be non-negative. Further, we know that the zeros of the
slices. We cannot do so. Nevertheless, we can extract a sigolynomial are the points wheqg=0 and therefore are the
nificant amount of information from Ed35) as it stands. extrema of the area of the round two-spheres as embedded
First, from the expressions E@28), Eq. (29), and Eq. surfaces in the three-slice.
(30) it is clear that the intrinsic metric, the lapse, and the Let us first fix someK>0 and see what happens as we
shift depend only orh’. Thus we get vary C. (The cases wher€ <0 are remarkably similgrFirst
consider the case whef@=0. This is the so-called umbili-
cal slice, whereK,,>g,,. In this case the polynomial re-
_pr \/ 2m\ [Kr C\? duces to 2m/r+K?r?/9. This is a cubic equation with
N 1 3 2/ only one real root, call it,,. Outsider =r, the polynomial
is positive; inside it, it is negative. It is clear that<2m and

C  Kr thatr,=2m if K=0. Therefore, we know that the umbilical
- —= slice withK>0 starts out at future null infinity, comes in to
r 3 a minimum atr =r,, and then passes out to the other future
N, = om Kr C\2 (36) null infinity. The obvious question is whether this occurs
\/( 1— — |+ —— _) above or below the bifurcation sphere.
r 3 r? To settle this, we need to look at the optical scalars9)
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om Kr C\2 Kr C As C increases even further,, will start to decrease
w+=2\/<1—7) +(?— r_z) +2(?_r_2) (39  again while the CMC slice continues to move forward in
time and passes through the throat above the bifurcation
and point. As C increases, we find that,s increases so that the
CMC slicing that begins and ends at the future singularity
2m Kr C\?2 Kr C moves backwards in time. The minimum of the polynomial
2 \/( - T) (?— r_z) - ( 3~ r_z)- (400 rises up and the two roots,, andr s, will approach each
other asC approaches the critical valu=C] . For this

_ ) ] _ value ofC, the polynomial is everywhere positive except at
These are essentially the null expansions in the outgoings,e point. This will be at a radius we ca. . This wil
. N

future and outgoing-past directions, respectively. They ar%atisWR+>3m/2. R; is nothing more than the larger of the
both positive in Minkowski space and in the exterior regimestWO rootg of E (22)*andC+ is the value ofC aiven by E
of the Schwarzschild solution. Since the product satisfie 9 * 9 Y EQ.

©,w_l4=1—2mr, one or the other becomes negative in?zs). This is because the cylindrical CMC slices act as bar-

the interior quadrants of the Schwarzschild solution. It turnd ®'s O the noncylmdgcal CMC slices.

out that the upper quadrant satisfies <0,w_ >0 while in d ASI c T\pproaci‘_h%@* ’I eaqh of tThr? two CfMC S“C"e.s fW'I!{
the lower quadrant we havwe_<0,w,>0. Itis clear that at evelop long cylindrical regions. The one from null infinity

. . . + .
r=2m, whenK>0 andC=0, w_ goes negative while . will run along, but just above, the surface witkr R, while

remains positive. Therefore, the umbilical sli¢eith K  the one fromr=0 will run just below. The closer to the
>0) must pass through the lower quadrant. Therefore, if'itical value, t+he longer the cylinders. _
starts at future null infinity, comes down so as to cross the WhenC=C, , we geta sudden change. Instead of having
t=0 axis, passes through the Schwarzschild throat below th/0 solutions with long cylinders, we have five. Two come
bifurcation point to some minimum radiug, and then rises from the left and right null infinity, respectively, and asymp-
up again to the other future null infinity. tote (from above to infinite cylinders of radius =R, . Two
Let us now holdK>0 fixed but changeC so as to be oOthers come, left and right, from=0 and asymptote from
slightly larger than zero. Now the polynomial becomes sixthbelow to the same cylinders. The fifth solution is the
order with two roots, which we call s (ms=max.-small) =R, cylinder itself.
andr,, (ml=min.-large). Near =0, the dominant term is WhenC exceeds the critical value, we get another change.
the positive ternC?/r* so the polynomial starts off large and The polynomial becomes everywhere positive. This means
positive while the next term is the negative2m/r, which  that the CMC slice cannot have any extremum. It must run
pulls it negative at =r . with r o~ 3/C2/2m. We know that  all the way fromr=0 tor=c. If C>C,’, we will have two
the polynomial must become positive before 2m and the =~ CMC slices, one from the left future null infinity which runs
K2r?/9 term does just that at, with r,,~r,. If C>0, then into the future singularity and a mirror one from the right
the effect of theC term is to diminish the effectiveness of the future null infinity.
K2 term, so we get thaty,>r, while if C<0 we getr Starting from the umbilical slice, holding fixed, and
<r,. Therefore, fork >0 andC>0 (but smal) we have letting C become negative, we get the opposite behavior. The
two different regimes in which the po|ynomia| is positive_ slice from null |nf|n|ty to null |nf|n|ty moves backwards in
One is for smallr, which represents a CMC slice that startstime, while a new CMC slice emerges from the past singu-
atr=0, expands out td,,c, which is the maximum area, larity and goes back to it. AS approaches a negative critical
and then contracts again backrte 0. value C,_ , the two roots of the polynomial approach one
When we look at the null expansions, it is clear that whenanother and coincide at a radil&, <3m/2. This is the
C>0 for smallr we have thatw, <0,0_>0, so it must be smaller root of Eq(22) andC, is the value ofC given by
in the upper quadrant. Hence whén>0 the smallr slice  Eg. (26).
comes out of and goes back to the future singularity while We conjecture that the slicings we have described for
the other slice runs from future null infinity to future null fixed K and forC in the rangeC, <C<C, form three sepa-
infinity and passes through the center at a slightly largefate foliations: one for <R, near the past singularity, one
radius than the umbilical one. Thus it runs to the future of thefor r <R near the future singularity, and the third formed
umbilical slice and crosses closer to the bifurcation sphereyy the slices that run from one null infinity to the other. We

As C increases away from zero we continue to have tWorther conjecture that these three foliations cover the entire
CMC slices, one which comes from the future singularity outextended spacetime.

to some small radius,,e~3/C?/2m and the other which goes
from future null infinity to future null infinity but will be
slightly to the future of the umbilical slice. We find,

w_=

monotically increases a8 does untilC=8Km?3/3. For this V. DIFFERENTIATING THE HEIGHT FUNCTION
value ofC, it is easy to show that,,;=2m so that this CMC
slice will pass through the bifurcation point. Let us consider the foliation that runs from null infinity to

IncreasingC acts like a time translation near infinity. null infinity. Each slice has the same valuekobut C spans
From what happens in Minkowski space, we expect the slican interval. We could use the value 6fas a label on the
to slide up along null infinity. slices, but we want to use some time coordinate as a label.
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The obvious choice is the “time at infinity.” This is given by two roots of the polynomial coincide, and the slope of the
tangent to the polynomial at=r,, goes to zero. The integral
Kr C close tor,, approximates'adx/\/sx, wherea is some con-
( )d stant ands is the slope. Integrating this over some small but
finite fixed interval (0AXx), we get a contribution tar of

T(C):j . . o )
rm|( Zm) \/ om (Kr C)Z aJAx/2\s. As s—0, this contribution becomes unbound

edly large. Therefore, we get “collapse of the lapse” in the
interior. The foliation moves only a finite distance at the
3 center to reach=R, while the passage of “time at infinity”
(K_r . C) dr becomes unboundedly large.
At the critical point, both 1’ and the first derivative of

3 > 1/h’ vanish at the throat. The coefficient in the exponential
Kr decay is nothing more than the second derivative bf Bt

) the critical point. This is the dominant term in any expansion
of the time function near the critical point. The rest of this
paper is devoted to demonstrating this.
We wish to investigate the behavior of the central lapse.
[6] we discussed the situation where we had a foliation
pefined by some time function with lapse«. Say we are
given a vector fieldé#. The projection of¢ normal to the
time slice(call it N) is given by

(41)

This has three divergences. The first is due to the (]ln
—2m/r), which diverges at the horizon. This can be inte-
grated through in the Cauchy principal value sense. A simila
divergence arose if6]. The second is due to the fact that the
polynomial inside the square root vanishes aft ;. This is
the definition ofr . This is not a problem because the poly-
nomial goes to zero linearly at,;. Therefore, the integral is N=a&*V, r=a=N(&V, 7)1, (44)
of the form fdx/\/x, which is regular ak=0. g .
The third divergence is due to the fact that the integral
itself diverges as—cc. This has to be because the slice goedf we choose¢ to be the Killing vector, we know wha\l is

to null infinity. To leading order the integral becomes from Eq.(29) and we can also write
rdr , 9 by 1o d7r\ " tdh
mf Ve 42) @07 =(55) ge| =
— 42
k2" _[gr) dn .
=lgc ac (45

which is just the flat spacetime mass hyperboloid. If we want r

a finite time label on the CMC slices, the obvious thing to do

Would_ be to subtract off the Ieading flat space div_erge_nt &X- To evaluate expressiof#5) we need to differentiate the
pression. Unfortunately, the difference still logarithmically height function with respect t€. This looks to be highly

diverges(like 2mInr). If we want a finite expression, it is ,npleasant. The square root in the denominator is promoted
better to subtract off the height function of some favorediy 3/» power so the integral has a tedw/x32 which di-

slice. Qf the _foliation itielf. Qne obvious choice is to pic_k the verges at the origin. Further,, depends orC so there will
umbilical slice (the C=0 slice. Therefore, a natural ime 5155 he an end-point variation. This will take the integrand

label is given by (which is infinite outside the integral sign. We knos/dC
Kr3 must be finite so these infinities must cancel. A very similar
(——C)dr problem arose if6] and a way was found around it. This
o 3 essentially involved an integration by parts before differenti-
7(C)= 3 > ating and much more malleable expressions were found. We
i (1_ ZLn) \/r“ . K_V_C) can repeat this trick.
r We begin by defining the following function:
Kr3
—dr Kr3 271/2
* [r4—2mr3+ ——C) } dr
_ j . (43 3
fy 2m Kr3\? J:—f o (46)
(1_T) ré—2mr3+ —) 1__)
r

This, from the argument given above, is finite for &ll
<C,.AsC—C,, we have that,,—R, . At this point, the  This is constructed so thaltl/dC=h. Now rewriteJ as
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d Kr3 271312
— | 4= 34|
. Zf dr[r 2mre+ 3 C) } dr ,
-3 2m Kr3 ' 7
1— —|| 4r3-=6mr?+2Kr?|—-C
r 3
This now can be integrated by parts to give
KI’3 213/2
4__ 3 -
. 5 [r 2mr>+ 3 C)}
-3 2m Kr3
1— —|| 4r3—6mr?+2Kr?—-C
r 3
2 Kr3 2 3/2d 1
-z 4_ 3. _
+3f[r 2mre+ 3 ) } ar om K3 dr. (48)
1-— 4r3—6mr2+2Kr2T—C

We need to differentiate this twice with respectGdo getdh/dC. We will do this in two parts. Let us call the not-integral part
J; and the integral,.

We get
Kr3 21172/ 3 Kr3 21302
4_ 3. [ ~ 4_ 3 [ 2
dJl_ [r 2mre+ 3 C } ( 3 C) 4 [r 2mre+ 3 C) } Kr 20
dc 2m Kr3 3 2m Kr3 2 (49
1— —||4r3—6mr2+2Kr3—-C 1— —|| 4r3—6mr2+2Kr3——-C
r 3 r 3
. ) 5 Kr3 C 21-1/2 Kr3 C 2 . ) 5 Kr3 C 211/2
dle_Zf‘”"*T‘ R roemrtl T
dc? 2m Kr3 2m Krs
1— —||4r3—6mr2+2Krj——-C 1— —|| 4r3—6mr2+2Kr3——-C
r 3 r 3
r3 21112 Kr3 Kr3 21302
4_ 3 [ 2l ™M 4_ I A 2.4
re=2mr°+ 3 C } Kr ( 3 C) 16 [r 2mr +( 3 C) } Ker
+8 7 (50

K 3 3
4r3—6mr2+ 2Kr2[T—CD

)2 3 ( Zm)

1_ R
r

One interesting property a”J, /dC? is that it vanishes for large This means that it does not contributedte’d C. Note also

that the first term ird2J, /dC? diverges as —r,. However, we must remember that to compatae multiply by N, which

goes to zero in the matching fashion so that everything is regular. Further, only the first term is finite at the throat; all the other

ones vanish.

Now we can work out

2m Kr
1- T)(4r3—6mr2+2Krz[T—C

2

—-C

Kr3
3

dh
N_
dC

=2 : (51)

; 2m Kr3 fmi
mi r?l 1— —|| 4r®—6mr?+2Kr? - C
r

From the definition of ,, as the zero of the polynomial, E(B8), it is clear that

Krs 2 Krs
(T_C> =2mré=r?), (T_C) =—v@mr-rY), . (52)

ml ml

From Eq.(21) we have thakK= (2R, —3m)/\/2m§ - R*Z. When these are substituted into Ef1), we get
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dh 1
N—| = . 53
dCj, 2m— 4 59
™ 2r—3m—(2R,—3m) \/ ——=——
(2R, ) 2mRE —R;
A natural variable to uséas in[6]) is §=r,—R, . We then get
dh 1 2mR, —R2
dc|, | (3m—2R,) (2R, —8mR, +9m*) S
2mR, —R?
The polynomial
Kr3
D=4r3-6mr?+2Kr? T_C (55)

in Eq. (51) is the first derivative of the sextic polynomial of E®8). In general it does not vanish gt,. However, we can
see that

pmor2| 24 CM-2R) 56
S 2mR, —R? (56)
and thus, as expected, goes to zer€CasC, .
Now we need to look at the integral part dfs this is what gives ud7/dC,
K24 2.3
5 Krd 232 —3r¥+7mr— 5 —3m?+ 3 F(Kr—mK)C
= 4_ 34—
J, ?J[r 2mro+ 3 C)} . ) K25 ) K 5 >dr, (57
2re—=7mr+ +6mr— 3 +(2mKr—Kr9)C
5 5K’ 4mK?r®
dJ, Kr3 2112/ i 3 =3re+7mr— 6 —3m°+ 3 + (Kr—mK)C
e _ 4__ 3 - _
ic Zf[r 2mro+ 3 CH ( 3 C) . ) K5 5 K ) sdr
2r°=7mr +T+6m r— 3 +(2mKr—Kr4)C
2 . [Kr® 2132 (Kr—mK)
+§ r4_2mr + T_C 75 7 zdr
r
[2r3—7mr2+ 3 +6m?r — 3 +(2mKr—Kr2)C}
5 5K’ 4mK*r® )
4 K3 2132 —3rc+7mr— —3m -+ 3 +(Kr—mK)C | (2mKr—Kr*)
_§J{r4_2mr3+(T—C) } ~— 23 3 dr,
[2r3—7mr2+ 3 +6mr— 3 +(2mKr—Kr2)C}
(58)
d2J2_ dr_+zj°° 4 omrds Kr3 c 2|-12(Kr3 c 2
dcz_dc- "4, " M 3
) 5Kt 4mK?r®
—3rc+7mr— —3m*+ 3 +(Kr—mK)C
X . ) K5 ) K 5 >dr+ eight other terms. (59
2r°=7mr +T+6m r— 3 +(2mKr—Kr4)C

All the nine terms in Eq(59) fall off like 1/r3. Therefore, each of these terms is finite. We also know dhétiC—» as
C—C, . The term we have isolated is the term which generates this behavior. All the other terms remain finite. To estimate
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the blowup, we need to understand the behavior of it mgar It is useful to shift the origin of coordinates to=r .
=R, . Therefore, we defing=r—R, . We knowK= (2R, —3m)/\/2m§ — R*Z and we also writeC=C, — ¢, whereC,

=(BmR -R*)/3,2mR —RZ.

We now write out the polynomial Eq38) in terms of R, ,m,y,z) to give

. :2R§—8mRi+9m2R* , 12R-56R,m+54m* _ 17R;—54mR, +45m”

re 2m-R, Y 7 3em-ry) Y 3zazm-r,)
4Ri—12R*m+9m2[6R 5 y6) 2R} -4RZm 4R,—6m (3R2y 4 3R,y24 4] (60
+ Y —————— et et —— + +y%le.
9R; (2m—R,) Y PR, R 3y2mR, Ry I

The polynomial begins at? because we know that when=0, both the polynomial itself and its first derivative vanish at
y=0. More generally, we know that the polynomial vanishes wten,,,, i.e., wheny=r,—R, = 6. If € is small, and if we
are close to the critical value, then

2R3 —8mR2 +9m°R 2R3 —4R%m 2R? —8mR: + 9m?R?
u 5 F_éR L L e~ 0= e~ ——— 3RE = 5 (61)
m-R, V2mR, —R2 (4R2m-2R3)\2mR, —RZ
Further, near =r,, we find that the polynomial approximates
2R® —8mR + 9m°R
R SR X (y2—8?). (62
*
The polynomialD of Eq. (55) is the first derivative of Eq(60). Thus we have
2R3 —8mR +9m’R
D~2—"— ~y+0(y?) (63)
*
and
dD 2R3 -8mR:+9m°R
=2—= R X +O(y). (64)

ar 2 2m-R,

We also need to approximate the other terms in (G§). The denominator equals £12m/r)2D?/4. When we write this out
in terms of R, ,m,y), we get

22921 0(y?). (65)

Zm) 22R3 —8mR: +9m?R

3. e ==
2r (1 Im-R,

r

The polynomial in the numerator of E(G9) is

1d 1 2m b 66
“2ar |\ 1)) 69
Therefore,
1 2m) 2R3 —8mR + 9m’R
—3r24...=—_ [ — * *+
3r2+ 5|1 ) SR, o(y). (67)

Therefore, the term in E¢59) which blows up ass—0 is dominated by

Kr3 2
w(T_C) 2m-R, ¥ 1
(68)

dz\]z_ dr f d
2R 8mR +9mR, | 27—

acz~dc- "), 2m

r

We know that
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Krs3 2
(T‘C> .
~R
2m *
T
and
f 1 B \/yz— 82
y2 y2_52 y52 )
Therefore, we have
d?J, dr 2m—R, 32R4
dc? dC (2R -8mR+9m’R,| &

VI. COLLAPSE OF THE LAPSE

PHYSICAL REVIEW D 68, 124019 (2003

(69

(70)

(71)

We now have calculated the various terms necessary to compute the central lapse. F(6#), kg have

Ndh 2mR, —R?
Ty 2 2\ s"
dC|, ~ (2R;—8mR,+9m%)5

From Eq.(61), we have

2R2 —8mR, +9m?

e=C,—C~= 2,
* (4m-2R,)y2mR, —R?
We also have, from Eq71),
dr 2m—-R, 2R
dC (2R} -8mRE+9m?R,| &

We can differentiate Eq.73) to get

dC

dc_ 2R2 —8mR, +9m? 5
dé  (2m-R,)\2ma—RZ

We multiply Eq.(74) by Eq.(75) to get

dr dC_dr R? v2q
dCds ds |2R2-8mR,+9m?| &
Integrating Eq(76) gives
T=— Ri 1/2In ot+A
2R2 —8mR, +9m? '
whereA is a constant, or
2R%2 —8mR, +9m?| 2
5=ex;{—( * R4Rk (7—A)|.
*
From Eq.(45), we have
B dr _1Ndh
“=lgc/ Nac|

(72)

(73

(74)

(75

(76)

(77

(78)

(79

Therefore, to compute the central lapse we need to dividg ) .by Eq.(74) to get
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dr\~! dh 2m—R,

PHYSICAL REVIEW D 68, 124019 (2003

a=|=-—=| N==| =
(dc) dc‘r 2R3 —8mR +9m°R, |

On substituting in Eq(78), we get

2R2 —8mR, +9m?
a=Bexp — 1
R*

1/2

: (81)

T

whereB is a constant which equals
2 12
2R —8mR, +9m?

2mR. — R}

X ex;{

We have not evaluate8l, so we cannot computs.
It is clear from Eq.(78) that A sets the zero of. When

2RZ —8mR, +9m?| 2
» —8MR, ) @

Al.
Ry

[2R; —8mR, +9m"R, |¥? 5 (2RI —8mR, +9m?| ¥?
2m—R,

= 5. (80

*

2mR —R?

The calculation here is closely modeled on the computa-
tion of the critical exponent for the maximal foliation given
in [6]. This allows us to perform a number of internal con-
sistency checks at various points in the calculation by reduc-
ing to theK=0 situation. We get agreement at each stage.
This agreement is not trivial because the key integration by
parts to obtain an explicitly finite derivative dfdiffers in
the two cases.

VII. CMC FOLIATIONS AS DYNAMICAL SOLUTIONS

In this sequel, we get CMC foliations by solving Einstein
equations in a particular gauge. A crucial role is played by a
condition[Eq. (90) below] imposed on the lapse. While this
method is completely equivalent to the preceding more geo-

we compute the collapse of the lapse for the maximal casemetric approach, it seems to be more straightforward and
the moment of time symmetry slice sets a natural zero for théechnically simpler. We focus on the concise derivation of
time function. In the CMC case we discuss here, we cannathe explicit CMC foliation near the critical point of the CMC
use the Killing time at infinity because it is infinite. As dis- foliation. The final result is identical to the result derived
cussed in the beginning of Sec. V, we have to normalize it byarlier.
setting the zero of time to be that of the umbilical slice, the The constant mean curvature foliations have been recently
slice which hasC=0. In some sense, this is the analogue ofinvestigated numerically in the simulation of a single spheri-
the moment of time symmetry slice, but at the same time it isally symmetric black hol¢11]. We hope that our analytic
somewhat arbitrary. This arbitrariness will be reflected in theresults appear helpful in the verification of the numerical
constantA. It is also quite difficult to compute. We would schemes.
need to evaluate the integr@?3) as we approach the critical
slice. The leading term should agree with Eg7), but we
also need to compute the next term, which will giveAls
This indicates a different way of computing the exponent.  The notation is the same as in the preceding part. We
Let us look ath” as given by Eq(35), or rather, let us Iook  §efine
at 1h'? near the critical point,

A. CMC slicing of the Schwarzschild spacetime

2 (pR)? 4[1 —2m+ KR C)T (86)
1 2RZ-8mR,+9m? pR)*=4/1- -2/ |
Rk S RA3 R
h/2 R*
. . . —
When this is substituted into E¢43), we get y(R,t)=1+8&th drrsps (87)
R
@~ i Y e
7(0) =~ —_—
5 \2R2 —8mR, +9m? \y?— & and
We have
d N= Y (88)
y =y—.
v+ == —In 6. 85 2

Therefore, we reproduce E(7). Heremis the massK (the trace of the extrinsic curvatyris
There are many ways of deriving the critical exponent. Ina constant, an€ is a time-dependent parameter which mea-

what follows, we offer a very different derivation, based onsures the transverse part of the extrinsic curvature.

an explicit formula for the lapse function for spherical CMC  The Schwarzschild line element, expressed in terms of

slices. The computation given here and the calculation thereoordinates adapted to the constant mean curvature foliation,

entirely agree. is given by[10]
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C K This construction breaks down whé®, ceases to be a
KR C\2 R 3 simple zero ofp?, since expressions appearing in E¢l)
ds?=— dtz{ N2— 'yz( ———5| |+4N dtdR and(93) become unboundedly large. The goal of this paper is
3 R p°’R to show the asymptotic behavior of the lapse at the critical
4 minimal surface.
+ (pR)zdR2+ R2d0?2. (89)

C. The evolution of C near critical point

The hypersurfaces of constant time are CMC slices, |etC, andR, be degenerate, that is, such that the zero
asymptotic to the CMC slices of Minkowskian geometry. ¢ p? ceases to be simple. In this case, bptnd its deriva-
tive dgp vanish; that means that

B. Elliptic slicing condition
2m 2KC, K2R? 2

A minimal surface is a locus of points defined by the +—-=0
conditionp=0. Choose a CMC Cauchy hypersurfatg of R. 3R 9 R,
the extended Schwarzschild manifold corresponding to a pa-
rameterC and letR, be an areal radius corresponding to a 2KC. 2K2R3 4C2
simple zero ofp?; that is, p?(Rg)=0 but Jgp?|g #0. Fur- 2m+ — ¥+ 5 * - R3* =0. (94)
thermore, assume that *
;N . Ofne can easily show, £, andR, are critical, that the sign
\/5 ) (90 0
0
2 3
atR,. The condition(90) yields p=—2C,+3KR; (95
HC= 8I(Ry)’ (91)  is the same as the sign efC, .
0 There exist critical values o, that are positiveC, ) or
Here negative C, _). For definiteness, we shall consider only the
case wherC(t=0)>C, _, therefore the only limiting case
C? K?? we consider is that witlC— C; . (That choice corresponds
dr 6r_4 T3 to a foliation formed by leaves connecting two null infinities
I(RO)EJR (920 which moves forward in time—see the discussion in Sec.

— IV.) For simplicity, we will drop the “+” suffix and C, will
3 9 r mean a positive critical parameter. From the dynamical equa-
tion (91) it follows that C can only increase.

Next, let us introduce the notation

Pr 2KC 2K 4C%\%
2m+

The value of the lapse functidw at the minimal surface, that
is, at the areal radiuR,, can be shown to be equlsing
Egs.(86)—(88)] to

e=C, —C,
dcC 1
m+ ?‘i‘ —9 —Zﬁg

where boths and e are positive and small.

The lapseN is strictly positive at the minimal surface corre-  1he equatiorp(Ro) =0 yields a nonlinear algebraic equa-
sponding to a simple zerR,. Equations(86)—(88) imply ~ ton whose truncation gives

thatN(R)>N(Ry) if R>R, and therefore the lapse exists on

all of 3. Equation(91) dictates the rate of change of the 5°A+eB=0. 97
parameterC. It is clear that one can uniquely construct a

foliation of a part of the extended Schwarzschild geometryHere AEZRi +K2Ri . Equation (97) is in fact the

by imposing the conditio{90) at minimal surfaces on all | yapunov-Schmidt reduced equation constructed according

slices to the future of a given one. The leaves of the resultingy the standard rulegL2]. Therefore, in the vicinity of the
foliation connect two null infinities of the extended critical point we have

Schwarzschild spacetime. This gives us a cuRgt) of
zeros of the mean curvatuge It is evident, just by inspect- —
ing the explicit solution presented above, that the line run- 5=/ '86_
ning along the locations of minimal surfac&g(t) can be A
arranged to be smooth. It can be chosen to coincide with the

“vertical” t=0 axis in standard Schwarzschild coordinates. The functionp can be expressed in a form

(99)
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pr | Ro
5= 1-

C?(R, R R3
Rg(r r2 s 3

KO

K? 2 2
+—(rR0+r —2Rp)
Ro

112
(99

The insertion of Eqs(96), (98), and(99) into Eq. (92) and

the change of the integration variable yo=+1—(Ry/r)
yield after a simple but tedious algebra

1(Ro) \/R_fld F1 (100
0 *Jo Y Vot yRy(rot y2Fg)?
Here the function$,, F,, andF5 are given by
K2R?  6C2
Fl(y)_s(l_y2)4 R (1-y%?
KERI(3-2y) €L
- - 4
o 2KPRE 4cCk
3(y) (3 3y +y ) 9(1 y2)3 ' R3 ?
(10D
while k reads
2K2RZ  12C2
K=—3 + RT (102

*

D. Limiting behavior of the foliation

The asymptotic behavior of will be dominated by the
1/62 part of 1 (R,). As will be shown laterC tends exponen-

PHYSICAL REVIEW D 68, 124019 (2003

jd
\/1+Tzz(1+R kz%)?
VKR, (=
*f dz
2 0

(104
z
1+ —(1+2%)?
2( )
The integral
l,= f dz
0 z
+—(1+2%)2
2( )
can be explicitly evaluated and give®/2.
In summary, near the critical point we have
JR, 2 R,A
l(RO) 252I 46 3/2|ﬂ| (105)

The insertion of Eqs(96) and (105) into Eqg. (91) yields

die=—Te, (106
where
1B
=— 10
2V2AR. (107

Equation(106) immediately implies that approaches 0 ex-
ponentially as

e(t)=€pe ', (108
where €, is an initial value of the parameter. Taking into

account relationg96) and (98), one can conclude that the
parameteC and the minimal radiuR, tend exponentially to

tially to C, ; the attenuation factor in the exponent dependgheir critical valuesC, andR, , respectively.

only on the leading term of(Rg). It is useful to definez
=y/\k8. Then one obtainsl(Ry)=(VR,/x?8?)Xly,
where

1«8
| d= dz
0

F1(Vx52)
V1+22F(Vk62) 1+ 22 F o \/EZ))ZI

(103

One can split the mtegralfl’” into
l/\ fl/\/(_] f]-/\

N1 ks

two parts:

approaches zero. Therefore;~R, /2, F,~R, «/2, and
Fs;~R, «. Thus the first integraland also the integrdl) is
well approximated by

It is easy to check that the con-
tnbutlon coming from the second integral goes to zera@yas

Finally, coIIectmg the above information and putting it
into Eq. (93), we obtain the asymptotic behavior of the lapse
function near the critical point,

N=Nge "2, (109
This is exactly the same result as that obtained in Sec. VI; in
order to show equivalence, use expressions for the extrinsic
curvatures(valid in the upper quadrant of the extended
Schwarzschild geometyy which imply K=(2R, —3m)/
V2mRE —R? and C, =(3mR —R*)/\2RE—R?. In the
case of maximal slicingKk=0), the decay constait/2 is
equal to 4/(3/6), in agreement with the analytic derivation
of [6] and close to the numerical result ¢i.3]. The
asymptotic behavior of andp in a region close to the line
Rq is given by
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o tI/4 that no such foliations with varyinf exist in the Schwarzs-
y=yg———, child solution.
Ro A first try would be to consider the slicing where one
1- r change«K while keepingC fixed. Such slices always cross

each other. Consider two slices, one with-0,C=0 (this is
the standard moment-of-time-symmetry; 0, slice through
—tr/4 (110 the SchV\_/arzschiId solu_tic)rand the ot_her witlrK=1,C=0.
' As we discussed previously, this slice starts at future null
infinity, crosses in the middle below the bifurcation point,
Here yy and py are initial values ofyy1—(R,/r) and and rises up again to the other future null infinity. This slice
pr/[2J1—(R, /r)], respectively. The four constants crosses the first slice twice. Choosing a different, fixed value
(€0, No, vo, andpg) can be expressed in terms of one freeof C will not change this behavior. Therefore, if we want a
parameter(say, €,) and A,B,x. Equations(88), (100, foliation with varyingK, we need_ a nonconstg@t -
(108—(110), and C=C, — e suffice to construct the One almost has such a foliation. Consider the slicing
metric (89) near the lineRy(t) of minimal surfaces. where one changds while simultaneously changing such
that C=8m>K/3. Each of these slices has its throatRat
=2m. Each of these slices runs through the bifurcation point
and so they must all touch there. They do not cross, however,
As is clear from the discussion, one has three paramete®Nd this is their only point of contact. This slicing covers all
to play with in constructing spherical CMC foliations or slic- Of the left and right quadrants. One might hope that by
ings in the Schwarzschild solution. One can chakgene  Slightly changingC, one could spread the slices apart along
can change€, and one can drag a slice along the “timelike” the verticalt=0 axis and thus convert this slicing into a
Killing vector. Of course, one can change more than one ofoliation. This cannot be done, as we show below, if we want

these at once. The foliation we have focused on is one wher@ @llow K to be unboundedly large.

5~ Po 1-

VIIl. FOLIATIONS WITH NONCONSTANT  K?

we keptK fixed, changed, and eliminated the Killing free- The _standard vyork on the way CMC slices act as barriers
dom by considering the slices where the minimal surfacd"3S written by Brill and Flaherty14]. Among other results,
coincided with thet=0 axis in standard coordinates. they show that two slices with the same valuekotannot

We could consider any one of these slices and drag jfouch at a single point. Further, if two CMC slices do touch
along the Killing vector. For the slices which run from null at one point, the slice to th_e f“t“"? f.““St have a 'afg?r value
infinity to null infinity, one with|C| small, one would get a of K than the other one. This restriction strongly restricts the
slicing which looks somewhat like the standarelconst slic- behavior of CMC slices in the Schwarzschild solution.

ing of the Schwarzschild solution. It would rise up along oneS rI;et us ﬁfjumle t_that vk\:.e hhaglet a gMStr]:O“atlon OI af
null infinity and sink down on the other while the throat ran chwarzschiid soution which starts off at the moment o

along one of theR=const lines in either the upper or lower “”!e symmetry S”(.:e anq moves up. C.o.nsider one slice of this
quadrant. These would not form a foliation. Each incefOI'at'gn' This slice ‘will - have positiveK=Ks and C
crosses each other in the interior, and the lapse function wilf” 8m K/3. T_h's .sl|ce \.N'” hgve a thrpat with Some radius
vanish on the throat and be positive on one side and negati\}%s' Th‘? cyl|r_1dr|cal slice with this given radius is aiso a
on the other. If we drag one of the slices which runs fromEMC slice (W'th. K=K,, say and touches the other CMC
null infinity to the singularity(one with|C| large) along the slice at one point, the throat. Therefore_, we must have that
Killing vector, we get a foliation. The slices do not cross, butKs=Ki. Since We assume we have a foliation, we must have
each one ends on thR=0 singularity. Such a foliation thatRg monotonically decreases and hence &solt passes
would cover the upper half of the right-hand quadrant and alfirough zero aRs=3m/2. However, we expecKs to be
of the upper quadrant if one pickéd>0 andC>0. Other Increasing as the follatlpn moves forward in tlmg so we will
patches could be covered by choosing other optionskfor €ventually run into a situation whei€s=Kj, which Brill
andC. and Flaherty forbid. Therefore, any spherical CMC foliation
In closed cosmologies, on the other hand, we are used @f the Schwarzschild solution cannot have unboundedly
CMC foliations where the value df changes. If the cosmol- 12r9€ values oK.
ogy goes from a big bang to a big crunch, we might expect to
have a foliation which goes frorK = +o0 at the big bang
through K=0, the moment of maximum expansion, and E.M. has been partially supported by the KBN Grant No.
monotonically toK = —oo, the big crunch. It can be shown 2 PO3B 00623.
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