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We give a detailed description of the constant mean curvature foliations in Schwarzschild spacetime, show
that the lapse collapses exponentially, and compute the exponent.
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I. INTRODUCTION

In the analysis of general relativity as a Hamiltonian sys-
tem @1#, one chooses a time function and considers the folia-
tion of the spacetime by the slices of constant time. Two
natural geometrical quantities arise on such spacelike three-
slices. One is the intrinsic three-metric, usuallygab , and the
other is the extrinsic curvatureKab, the derivative ofgab
along the normal to the slice. They are related by the con-
straints, which in a vacuum spacetime read

R (3)2KabKab1~ tr K !250, ~1!

¹aKab2gab¹atr K50, ~2!

where R (3) is the three-scalar curvature. Given the initial
data, one chooses, essentially arbitrarily, the lapseN and the
shift Ni , which determine the magnitude and direction of the
unit time vector relative to the normal to the slice.

One can now write the evolution equations for the intrin-
sic metric and extrinsic curvature in vacuum: e.g.@2# ~the
reader should be warned that we follow Wald@3# in our
definition of the extrinsic curvature, not@1#; positive K
means increasing volume to the future!,

] tgab52NKab1Na;b1Nb;a , ~3!

] tKab5N;ab2N~Rab22Ka
dKbd1Kabtr K !

1Kab;cN
c1KacN;b

c 1KcbN;a
c . ~4!

Let us stress that we are using the convention of signs that
gives trK51n;a

a , wherena is the timelike unit normal to
the slice and] tAg5Ag(N tr K1N;a

a ). In other words, a
positive trK means expansion. It is often useful to specify
the foliation, and thus the time, by placing a condition on the
extrinsic curvature. A very popular choice is to demand that
the trace of the extrinsic curvature be constant on each slice
~‘‘CMC slicing’’ ! @4#.

In this paper, we investigate the CMC slices of the ex-
tended Schwarzschild solution. The manifold consists of four
segments, each of which can be covered by the standard
Schwarzschild metric

ds252S 12
2m

r Ddt21
dr2

12
2m

r

1r 2~du21sin2udf2!, ~5!

wheret is the ‘‘static’’ Killing vector andr is the ‘‘areal’’ or
‘‘Schwarzschild’’ radius. In the left and right zones,t is time-
like andr .2m is spacelike. In the bottom zone,r is timelike
and runs forward from the past singularity atr 50 to r
52m. In the top zone,r is also timelike and runs forward
from r 52m to the future singularity, also atr 50. We do not
seek the most general CMC slices. We are looking for those
CMC slices which inherit the underlying spherical symmetry
of the given spacetime.

There are two complementary ways of analyzing this
problem. One way is to assume that one is given initial data
~the intrinsic metric and extrinsic curvature!, both parts of
which have the desired symmetry. It turns out that one can
explicitly solve the constraints. From the momentum con-
straint, Eq.~2!, it is clear that the extrinsic curvature must be
just a sum of the trace term and a part which is both trace-
and divergence-free@transverse–trace-free~TT!#. There ex-
ists a unique spherically symmetric TT tensor. Therefore, the
extrinsic curvature can be written down with just two free
parameters. On substituting into the Hamiltonian constraint,
Eq. ~1!, one discovers—see Sec. VII—that this also can be
solved explicitly.

The alternative approach is to take the given spacetime
and make a coordinate transformation in the (t,r ) plane only,
given by t5h(r ), leaving the rest untouched.h(r ) is called
the height function. One now imposes the condition that the
t850 slice be CMC. This gives a second-order equation for
the height function which can be integrated explicitly once.
This is enough to evaluate the intrinsic metric and extrinsic
curvature of the slice, and, of course, they agree with the
expressions obtained using the first approach.

One then can work out how these slices fit into the given
spacetime and construct interesting CMC foliations. One
ends up with a first-order equation for the height function
which cannot be integrated explicitly. Nevertheless, one can
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make qualitative statements about the location of the slices.
In this paper, we focus on a particular class of slicings in
which we fix the value of trK and vary the parameter defin-
ing the amount of the TT component in the extrinsic curva-
ture. For small values of the parameter we have two folia-
tions, one which runs from one infinity to the other, and one
which emerges and returns to one of the singularities. As the
parameter increases, the leaves of the foliations approach one
another, and at a critical value of the parameter, they touch.
For values of the parameter greater than the critical one, the
nature of the CMC slices changes. They all now run from
infinity into the singularity.

In this paper, we focus on the behavior of the slices as
they approach the critical value. We find the classic ‘‘col-
lapse of the lapse’’ phenomenon. Further, by looking care-
fully at the first-order equation for the height function, we
obtain an explicit expression for how the lapse decays near
criticality. The first part of this paper~Secs. III–VI! draws
very heavily on the analysis given in@6# of the collapse of
the lapse for maximal slices of the Schwarzschild solution.

II. EXTRINSIC AND INTRINSIC GEOMETRY OF CMC
SLICES

We can generate an essentially general spherically sym-
metric slicing of the Schwarzschild solution by making a
coordinate transformationt85t8(t,r ),r 85r 8(t,r ). This will
give us a spacetime metric of the form

ds252gt8t8dt821Nr 8dt8dr81gr 8r 8dr82

1r 2@du21sin2~u!df2#. ~6!

We have thatgt8t8 , Nr 8 , andgr 8r 8 are functions oft8 andr 8.
The coefficientr 2 in front of the two-metric is the original,
Schwarzschild, coordinater 2 but can be viewed as a function
of t8 andr 8 as well. We can make a further coordinate trans-
formation of the formr 95r 9(t8,r 8), leaving t8 unchanged.
This has the effect of changing ther 8 coordinate within each
slice but leaving the slicing unchanged. This kind of trans-
formation can be used to arrange that“t8•“r 950. This is
equivalent to dragging ther 8 coordinate along the normal to
the slicing and thus sets the shift to zero. This will give us a
spacetime metric,

ds252N2dt821gr 9r 9dr921r 2@du21sin2~u!df2#. ~7!

On any one given slice, we can arrange thatr 95r , the origi-
nal Schwarzschild coordinate. However, when one tries to
propagate this condition, one discovers that in general it is
not compatible with vanishing shift. Therefore, one can have
a metric of the form~6! with r 85r or a metric of the form
~7! with zero shift, but not both. Another choice would be to
set gr 8r 851, i.e., to choose ther 8 coordinate as the proper
distance along the slice. Again, this is not compatible with
vanishing shift. One advantage that the ‘‘proper distance’’
coordinate choice has over the ‘‘r 85r ’’ gauge is that, so long
as the slice remains spacelike, the proper distance gauge al-
ways remains regular while the ‘‘r 85r ’’ choice may well
have coordinate singularities. However, in this paper we will

largely stick to the metric form~7! and ignore questions such
as the ‘‘best’’ choice of spatial coordinate.

To simplify the notation, we will write the line element as

ds252N2dt21adr21R2@du21sin2~u!df2#, ~8!

where the written (t,r ) arenot the original (t,r ) while R is
the originalr. The geometry oft5const slices is encoded in
two places. One is the dependence ofa on r and the other is
the relationship betweenR and r. This second piece is con-
tained in the mean curvature of the surfaces of constantr as
embedded two-surfaces in the spatial three-geometry,

p5
2

AaR

dR

dr
.

The only nonzero~three! extrinsic curvature components
with mixed-case indices are

Kr
r5

] ta

2aN
, Ku

u5Kf
f5

] tR

RN
5

1

2
~ tr K2Kr

r !. ~9!

These can be viewed as evolution equations fora andR. The
evolution equations for the extrinsic curvature can most
compactly be written as

] ttr K5¹i¹
iN2K j

i Ki
jN, ~10!

] t~ tr K2Kr
r !5NRr

(3)r2NKi
jK j

i 1NKr
r tr K1

p] rN

Aa
.

~11!

The form of the three-dimensional Ricci curvature com-
ponentRr

(3)r is

Rr
(3)r52

] r~pR!

AaR
, ~12!

while the three-dimensional scalar curvatureR(3) is

R(3)52
2] r~pR!

RAa
2

~pR!2

2R2 1
2

R2 . ~13!

It turns out that the momentum constraint can be written as

] r~Kr
r2tr K !52

3

2
pKr

r1
1

2
p tr K, ~14!

and the Hamiltonian constraint is

1

AaR
] r~pR!52

3

4
~Kr

r !22
1

4
p21

1

R2

1
1

2
tr KKr

r1
1

4
~ tr K !2. ~15!

We are interested in finding surfaces which have trK
5const, where trK5(1/N)] tln(AaR2) is the fractional rate
of change of a coordinate volume during the temporal evo-
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lution. Assume thatK[tr K is constant on a fixed Cauchy
hypersurface. Then the momentum constraint~14! is easily
solved by

Kr
r5

K

3
1

2C

R3 , ~16!

whereC is again a constant on the chosen Cauchy slice. The
other components of the extrinsic curvature are

Ku
u5Kf

f5
K

3
2

C

R3 . ~17!

This can be recognized as a combination of the trace term
plus the unique spherically symmetric TT tensor, the terms
with coefficientC. Therefore, CMC slices of the Schwarz-
schild solution are completely defined by the two parameters
K andC. The only residual freedom is the ability to drag any
surface along the Killing vector without disturbing either the
intrinsic or extrinsic geometry.

The insertion of Eqs.~16!,~17! into the Hamiltonian con-
straint leads, after some minor manipulation, to the equation

] rFR

4
~pR!22R2

C2

R32
K2

9
R3G50. ~18!

Equation~18! is solved by

~pR!254F12
b

R
1S KR

3
2

C

R2D 2G . ~19!

Here b is essentially the integration constant, modified by
completing the square ofK andC related terms. It is easy to
show thatb52m. If ‘‘ r ’’ is replaced by the ‘‘areal radiusR,’’
then one findsa54/(pR)2. Notice also that the three-
dimensional line elements in such a case read

ds(3)
2 5

4

~pR!2 dR21R2@du21sin2~u!df2#. ~20!

III. THE CYLINDRICAL CMC SLICES
OF SCHWARZSCHILD SPACETIME

In the upper and lower quadrants of Schwarzschild space-
time, the Killing vector is spacelike and runs along ther
5const surfaces. Since everything is constant along the Kill-
ing vector, the trace of the extrinsic curvature is preserved
along these cylindrical surfaces. Therefore, eachr 5const
surface is a CMC slice.

The trace of the extrinsic curvature~in the upper quad-
rant! is given by

K5
2r 23m

A2mr32r 4
. ~21!

This is large and positive nearr 52m, zero atr 53m/2, and
becomes large and negative asr becomes small. This trans-
forms into

r 422mr31
~2r 23m!2

K2 50. ~22!

This is a quartic equation with two real roots. One lies
between r 52m and r 53m/2 and the other betweenr
53m/2 andr 50. This is clear by looking for the extrema of
the quartic. To find these, we just differentiate to get

4r 326mr214
2r 23m

K2
52~2r 23m!S r 1

2

K2D50.

~23!

Therefore, it has only one minima~at r 53m/2) and the
quartic is negative there. Hence it has two real roots, one on
each side ofr 53m/2. On substituting back into Eq.~21! it is
clear that the solution of Eq.~22! with r .3m/2 hasK.0
and the solution withr ,3m/2 hasK,0.

In the lower quadrant, things are somewhat different. The
trace of the extrinsic curvature is now given by

K5
3m22r

A2mr32r 4
. ~24!

This is because, in the upper quadrant, the future is in the
direction of decreasingr, while in the lower quadrant the
future is in the direction of increasingr. This is now large
and positive nearr 50, zero atr 53m/2, and becomes large
and negative asr approaches 2m. We get the same quartic,
Eq. ~22!, with the same roots, but now with the order re-
versed. The root which is less than 3m/2 corresponds toK
.0, while the other root hasK,0.

Given r, we can work out, from Eq.~21!, the value of the
trace of the extrinsic curvature. We can, in fact, work out the
entire extrinsic curvature and evaluate the constantC associ-
ated with these cylindrical CMC slices. In the upper quadrant
we get

C5
3mr32r 4

3A2mr32r 4
. ~25!

Therefore,C.0 on each of these slices.
In the bottom quadrant, the extrinsic curvature picks up a

minus sign. Therefore, for the cylindrical CMC slices we get

K5
2r 23m

A2mr32r 4
, C5

r 423mr3

3A2mr32r 4
, ~26!

and soC is negative in the lower quadrant.

IV. THE EMBEDDING OF CMC SLICES
IN SCHWARZSCHILD SPACETIME

In addition to the cylindrical CMC slices described in Sec.
III, there are many other spherically symmetric ones. In this
section, we will discuss how they run through the spacetime.

The first comprehensive analysis of CMC slices in
Schwarzschild spacetime appeared in@5#. The analysis given
here closely follows the analysis of the related problem of
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maximal slices (trK50) in the Schwarzschild solution given
in @6#. Let us start off with the Schwarzschild metric

ds252S 12
2m

r Ddt21
dr2

12
2m

r

1r 2~du21sin2udf2!, ~27!

and look at the slice given byt5h(r ), whereh(r ), for ob-
vious reasons, is called the height function. One way of un-
derstanding the geometry of this slice is to make the follow-
ing coordinate transformation:

t̄ 5t2h~r !, t5 t̄ 1h~ r̄ !,

r̄ 5r , r 5 r̄ ,

ū5u, u5 ū,

f̄5f, f5f̄,

where thet̄ 50 surface is the slice in which we are inter-
ested. The transformed metric becomes

ḡmn5S 2S 12
2m

r D , 2h8S 12
2m

r D 0 0

2h8S 12
2m

r D , S 12
2m

r D 21

2h82S 12
2m

r D 0 0

0 0 r 2 0

0 0 0 r 2sin2u

D ,

ḡmn5S 2S 12
2m

r D 21

1h82S 12
2m

r D , 2h8S 12
2m

r D 0 0

2h8S 12
2m

r D , S 12
2m

r D 0 0

0 0
1

r 2 0

0 0 0
1

r 2sin2u

D ,

whereh85]h/]r . The intrinsic metric is given by

ds25F S 12
2m

r D 21

2h82S 12
2m

r D Gdr2

1r 2~du21sin2udf2!. ~28!

The lapseN of this slicing is given by

N5F S 12
2m

r D 21

2h82S 12
2m

r D G21/2

, ~29!

the shiftNa by

Na5F2h8S 12
2m

r D ,0,0G , ~30!

and the future-pointing unit normal by

nm5

F S 12
2m

r
D 21

2h82S 12
2m

r
D ,h8S 12

2m

r
D ,0,0G

AS 12
2m

r
D 21

2h82S 12
2m

r
D

.

~31!

Given any three-slice in the four-manifold, we can drag it
along by the Killing vector. This will give a slicing where the
time translation is along the Killing vector. It is this slicing
that is generated by the coordinate transformation above.
Therefore, theN and Na defined by Eqs.~29! and ~30! are
nothing more than the projections of the Killing vector per-
pendicular to and onto the given slice. Of course, the slicing
given by dragging along the Killing vector cannot form a
foliation because the Killing vector has a fixed point on the
bifurcation sphere.
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The mean curvature of thet̄ 50 slice is given by

K5n;m
m 5

1

A2g
~A2gnm! ,m

5
1

r 2 ] rF r 2h8S 12
2m

r
D

AS 12
2m

r
D 21

2h82S 12
2m

r
D G . ~32!

If K is a constant, this can be integrated to give

Kr

3
2

C

r 2 5

h8S 12
2m

r
D

AS 12
2m

r
D 21

2h82S 12
2m

r
D

, ~33!

where C is a constant of integration. In turn, this can be
manipulated to give

S 12
2m

r D 21

2h82S 12
2m

r D5
1

S 12
2m

r D1S Kr

3
2

C

r 2D 2 ,

~34!

and hence

h85

Kr

3
2

C

r 2

S 12
2m

r
DAS 12

2m

r
D 1S Kr

3
2

C

r 2D 2
. ~35!

If one could integrate this one more time and findh(r ) in
closed form, we would have a complete description of the
slices. We cannot do so. Nevertheless, we can extract a sig-
nificant amount of information from Eq.~35! as it stands.

First, from the expressions Eq.~28!, Eq. ~29!, and Eq.
~30! it is clear that the intrinsic metric, the lapse, and the
shift depend only onh8. Thus we get

N5
pr

2
5AS 12

2m

r
D 1S Kr

3
2

C

r 2D 2

,

Nr5

C

r 2 2
Kr

3

AS 12
2m

r
D 1S Kr

3
2

C

r 2D 2
. ~36!

Finally, we can find the extrinsic curvature of the slice by
using

2NKab5
]gab

] t̄
2Na;b2Nb;a , ~37!

and we recover Eqs.~16!–~20!.
When we look at Eq.~35!, it is clear that the right-hand

side does not decay for larger and thus the integral must
diverge as we approach infinity. This is not surprising as we
expect the CMC slices to go to null infinity.

This agrees with the behavior of the spherical CMC slices
in Minkowski space. Consider the mass hyperboloidt22r 2

59/K2 in flat spacetime. If we choose the one which goes to
future null infinity, then the future-pointing timelike normal
is na5(t,r )/At22r 2, where we have to choose the positive
root of At22r 2. We then find trK5n;a

a 53/At22r 25uKu
.0. To find out where on null infinity the slice ends up, we
need to introduce null coordinatesv5(t1r )/2,u5(t2r )/2.
Using t5rA119/r 2K2'r 19/2rK 2, it is clear that asv
→`,u'9/rK 2→0. If we time-translate it to (t2t0)25r 2

19/K2, we findu→t0. Therefore, it slides up null infinity.
If we look at Eq. ~35! for large r, we see thath8

'r /A9/K21r 2. The integral of this ish'A9/K21r 2, which
is in complete agreement with the flat space expression.
Therefore, the slices remain spacelike but go null infinity as
r→`. Further, ifK.0, the slices all go to future null infin-
ity, whereas ifK,0 the slices go to past null infinity.

One place we can find interesting information, without
solving for h, is by looking at the expression for the mean
curvature of the spherical two-surfaces. In particular, we
know that

p2r 2

4
5S 12

2m

r D1S Kr

3
2

C

r 2D 2

>0. ~38!

Therefore, the polynomial on the right-hand side of Eq.~38!
must be non-negative. Further, we know that the zeros of the
polynomial are the points wherep50 and therefore are the
extrema of the area of the round two-spheres as embedded
surfaces in the three-slice.

Let us first fix someK.0 and see what happens as we
vary C. ~The cases whereK,0 are remarkably similar.! First
consider the case whereC50. This is the so-called umbili-
cal slice, whereKab}gab . In this case the polynomial re-
duces to 122m/r 1K2r 2/9. This is a cubic equation with
only one real root, call itr u . Outsider 5r u , the polynomial
is positive; inside it, it is negative. It is clear thatr u<2m and
that r u52m if K50. Therefore, we know that the umbilical
slice with K.0 starts out at future null infinity, comes in to
a minimum atr 5r u , and then passes out to the other future
null infinity. The obvious question is whether this occurs
above or below the bifurcation sphere.

To settle this, we need to look at the optical scalars@7–9#
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v152AS 12
2m

r D1S Kr

3
2

C

r 2D 2

12S Kr

3
2

C

r 2D ~39!

and

v252AS 12
2m

r D1S Kr

3
2

C

r 2D 2

22S Kr

3
2

C

r 2D . ~40!

These are essentially the null expansions in the outgoing-
future and outgoing-past directions, respectively. They are
both positive in Minkowski space and in the exterior regimes
of the Schwarzschild solution. Since the product satisfies
v1v2/45122m/r , one or the other becomes negative in
the interior quadrants of the Schwarzschild solution. It turns
out that the upper quadrant satisfiesv1,0,v2.0 while in
the lower quadrant we havev2,0,v1.0. It is clear that at
r 52m, whenK.0 andC50, v2 goes negative whilev1

remains positive. Therefore, the umbilical slice~with K
.0) must pass through the lower quadrant. Therefore, it
starts at future null infinity, comes down so as to cross the
t50 axis, passes through the Schwarzschild throat below the
bifurcation point to some minimum radiusr u , and then rises
up again to the other future null infinity.

Let us now holdK.0 fixed but changeC so as to be
slightly larger than zero. Now the polynomial becomes sixth
order with two roots, which we callr ms (ms5max.-small)
and r ml (ml5min.-large). Nearr 50, the dominant term is
the positive termC2/r 4 so the polynomial starts off large and
positive while the next term is the negative22m/r , which
pulls it negative atr 5r ms with r ms'A3 C2/2m . We know that
the polynomial must become positive beforer 52m and the
K2r 2/9 term does just that atr ml with r ml'r u . If C.0, then
the effect of theC term is to diminish the effectiveness of the
K2 term, so we get thatr ml.r u while if C,0 we getr ml
,r u . Therefore, forK.0 and C.0 ~but small! we have
two different regimes in which the polynomial is positive.
One is for smallr, which represents a CMC slice that starts
at r 50, expands out tor ms, which is the maximum area,
and then contracts again back tor 50.

When we look at the null expansions, it is clear that when
C.0 for smallr we have thatv1,0,v2.0, so it must be
in the upper quadrant. Hence whenC.0 the smallr slice
comes out of and goes back to the future singularity while
the other slice runs from future null infinity to future null
infinity and passes through the center at a slightly larger
radius than the umbilical one. Thus it runs to the future of the
umbilical slice and crosses closer to the bifurcation sphere.
As C increases away from zero we continue to have two
CMC slices, one which comes from the future singularity out
to some small radiusr ms'A3 C2/2m and the other which goes
from future null infinity to future null infinity but will be
slightly to the future of the umbilical slice. We findr ml
monotically increases asC does untilC58Km3/3. For this
value ofC, it is easy to show thatr ml52m so that this CMC
slice will pass through the bifurcation point.

IncreasingC acts like a time translation near infinity.
From what happens in Minkowski space, we expect the slice
to slide up along null infinity.

As C increases even further,r ml will start to decrease
again while the CMC slice continues to move forward in
time and passes through the throat above the bifurcation
point. As C increases, we find thatr ms increases so that the
CMC slicing that begins and ends at the future singularity
moves backwards in time. The minimum of the polynomial
rises up and the two roots,r ml and r ms, will approach each
other asC approaches the critical valueC5C

*
1 . For this

value ofC, the polynomial is everywhere positive except at
one point. This will be at a radius we callR

*
1 . This will

satisfyR
*
1.3m/2. R

*
1 is nothing more than the larger of the

two roots of Eq.~22! andC
*
1 is the value ofC given by Eq.

~25!. This is because the cylindrical CMC slices act as bar-
riers to the noncylindrical CMC slices.

As C approachesC
*
1 , each of the two CMC slices will

develop long cylindrical regions. The one from null infinity
will run along, but just above, the surface withr 5R

*
1 while

the one fromr 50 will run just below. The closer to the
critical value, the longer the cylinders.

WhenC5C
*
1 , we get a sudden change. Instead of having

two solutions with long cylinders, we have five. Two come
from the left and right null infinity, respectively, and asymp-
tote ~from above! to infinite cylinders of radiusr 5R

*
1 . Two

others come, left and right, fromr 50 and asymptote from
below to the same cylinders. The fifth solution is ther
5R

*
1 cylinder itself.

WhenC exceeds the critical value, we get another change.
The polynomial becomes everywhere positive. This means
that the CMC slice cannot have any extremum. It must run
all the way fromr 50 to r 5`. If C.C

*
1 , we will have two

CMC slices, one from the left future null infinity which runs
into the future singularity and a mirror one from the right
future null infinity.

Starting from the umbilical slice, holdingK fixed, and
letting C become negative, we get the opposite behavior. The
slice from null infinity to null infinity moves backwards in
time, while a new CMC slice emerges from the past singu-
larity and goes back to it. AsC approaches a negative critical
value C

*
2 , the two roots of the polynomial approach one

another and coincide at a radiusR
*
2,3m/2. This is the

smaller root of Eq.~22! andC
*
2 is the value ofC given by

Eq. ~26!.
We conjecture that the slicings we have described for

fixed K and forC in the rangeC
*
2,C,C

*
1 form three sepa-

rate foliations: one forr ,R
*
2 near the past singularity, one

for r ,R
*
1 near the future singularity, and the third formed

by the slices that run from one null infinity to the other. We
further conjecture that these three foliations cover the entire
extended spacetime.

V. DIFFERENTIATING THE HEIGHT FUNCTION

Let us consider the foliation that runs from null infinity to
null infinity. Each slice has the same value ofK but C spans
an interval. We could use the value ofC as a label on the
slices, but we want to use some time coordinate as a label.
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The obvious choice is the ‘‘time at infinity.’’ This is given by

t~C!5E
r ml

`
S Kr

3
2

C

r 2D dr

S 12
2m

r
DA12

2m

r
1S Kr

3
2

C

r 2D 2

5E
r ml

`
S Kr 3

3
2CD dr

S 12
2m

r
DAr 422mr31S Kr 3

3
2CD 2

.

~41!

This has three divergences. The first is due to the (1
22m/r ), which diverges at the horizon. This can be inte-
grated through in the Cauchy principal value sense. A similar
divergence arose in@6#. The second is due to the fact that the
polynomial inside the square root vanishes atr 5r ml . This is
the definition ofr ml . This is not a problem because the poly-
nomial goes to zero linearly atr ml . Therefore, the integral is
of the form*dx/Ax, which is regular atx50.

The third divergence is due to the fact that the integral
itself diverges asr→`. This has to be because the slice goes
to null infinity. To leading order the integral becomes

t'E rdr

A 9

K2 1r 2

5Ar 21
9

K2, ~42!

which is just the flat spacetime mass hyperboloid. If we want
a finite time label on the CMC slices, the obvious thing to do
would be to subtract off the leading flat space divergent ex-
pression. Unfortunately, the difference still logarithmically
diverges~like 2m ln r). If we want a finite expression, it is
better to subtract off the height function of some favored
slice of the foliation itself. One obvious choice is to pick the
umbilical slice ~the C50 slice!. Therefore, a natural time
label is given by

t~C!5E
r ml

`
S Kr 3

3
2CD dr

S 12
2m

r
DAr 422mr31S Kr 3

3
2CD 2

2E
r u

`

Kr 3

3
dr

S 12
2m

r
DAr 422mr31S Kr 3

3
D 2

. ~43!

This, from the argument given above, is finite for allC
,C* . As C→C* , we have thatr ml→R* . At this point, the

two roots of the polynomial coincide, and the slope of the
tangent to the polynomial atr 5r ml goes to zero. The integral
close tor ml approximates*adx/Asx, wherea is some con-
stant ands is the slope. Integrating this over some small but
finite fixed interval (0,Dx), we get a contribution tot of
aADx/2As. As s→0, this contribution becomes unbound-
edly large. Therefore, we get ‘‘collapse of the lapse’’ in the
interior. The foliation moves only a finite distance at the
center to reachr 5R* while the passage of ‘‘time at infinity’’
becomes unboundedly large.

At the critical point, both 1/h8 and the first derivative of
1/h8 vanish at the throat. The coefficient in the exponential
decay is nothing more than the second derivative of 1/h8 at
the critical point. This is the dominant term in any expansion
of the time function near the critical point. The rest of this
paper is devoted to demonstrating this.

We wish to investigate the behavior of the central lapse.
In @6# we discussed the situation where we had a foliation
defined by some time functiont with lapsea. Say we are
given a vector fieldjm. The projection ofj normal to the
time slice~call it N) is given by

N5ajm¹mt⇒a5N~jm¹mt!21. ~44!

If we choosej to be the Killing vector, we know whatN is
from Eq. ~29! and we can also write

~jm¹mt!215S dt

dCD 21 dh

dCU
r

⇒a

5S dt

dCD 21

N
dh

dCU
r

. ~45!

To evaluate expression~45! we need to differentiate the
height function with respect toC. This looks to be highly
unpleasant. The square root in the denominator is promoted
to 3/2 power so the integral has a termdx/x3/2 which di-
verges at the origin. Further,r ml depends onC so there will
also be an end-point variation. This will take the integrand
~which is infinite! outside the integral sign. We knowdt/dC
must be finite so these infinities must cancel. A very similar
problem arose in@6# and a way was found around it. This
essentially involved an integration by parts before differenti-
ating and much more malleable expressions were found. We
can repeat this trick.

We begin by defining the following function:

J52E F r 422mr31S Kr 3

3
2CD 2G1/2

dr

S 12
2m

r D . ~46!

This is constructed so thatdJ/dC5h. Now rewriteJ as
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J52
2

3E
d

dr F r 422mr31S Kr 3

3
2CD 2G3/2

dr

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D . ~47!

This now can be integrated by parts to give

J52
2

3

F r 422mr31S Kr 3

3
2CD 2G3/2

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D

1
2

3E F r 422mr31S Kr 3

3
2CD 2G3/2 d

drF 1

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D Gdr. ~48!

We need to differentiate this twice with respect toC to getdh/dC. We will do this in two parts. Let us call the not-integral part
J1 and the integralJ2.

We get

dJ1

dC
52

F r 422mr31S Kr 3

3
2CD 2G1/2S Kr 3

3
2CD

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D 2

4

3

F r 422mr31S Kr 3

3
2CD 2G3/2

Kr 2

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D 2 , ~49!

d2J1

dC2522
F r 422mr31S Kr 3

3
2CD 2G21/2S Kr 3

3
2CD 2

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D 22

F r 422mr31S Kr 3

3
2CD 2G1/2

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D

18
F r 422mr31S Kr 3

3
2CD 2G1/2

Kr 2S Kr 3

3
2CD

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D 2 2

16

3

F r 422mr31S Kr 3

3
2CD 2G3/2

K2r 4

S 12
2m

r D S 4r 326mr212Kr 2FKr 3

3
2CG D 3 . ~50!

One interesting property ofd2J1 /dC2 is that it vanishes for larger. This means that it does not contribute todt/dC. Note also
that the first term ind2J1 /dC2 diverges asr→r ml . However, we must remember that to computea we multiply byN, which
goes to zero in the matching fashion so that everything is regular. Further, only the first term is finite at the throat; all the other
ones vanish.

Now we can work out

N
dh

dC
U

r ml

522

S Kr 3

3
2CD 2

r 2S 12
2m

r
D S 4r 326mr212Kr 2FKr 3

3
2CG D r ml

. ~51!

From the definition ofr ml as the zero of the polynomial, Eq.~38!, it is clear that

S Kr 3

3
2CD

r ml

2

5~2mr32r 4!r ml
, S Kr 3

3
2CD

r ml

52A~2mr32r 4!r ml
. ~52!

From Eq.~21! we have thatK5(2R* 23m)/A2mR
*
3 2R

*
4 . When these are substituted into Eq.~51!, we get
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N
dh

dC
U

r ml

5
1

2r 23m2~2R* 23m!A 2mr32r 4

2mR
*
3 2R

*
4

r ml
. ~53!

A natural variable to use~as in @6#! is d5r ml2R* . We then get

N
dh

dCU
r ml

'
1

F21
~3m22R* !2

2mR* 2R
*
2 Gd 5

2mR* 2R
*
2

~2R
*
2 28mR* 19m2!d

. ~54!

The polynomial

D54r 326mr212Kr 2FKr 3

3
2CG ~55!

in Eq. ~51! is the first derivative of the sextic polynomial of Eq.~38!. In general it does not vanish atr ml . However, we can
see that

D'2R
*
2 F21

~3m22R* !2

2mR* 2R
*
2 Gd ~56!

and thus, as expected, goes to zero asC→C* .
Now we need to look at the integral part ofJ as this is what gives usdt/dC,

J25
2

3E F r 422mr31S Kr 3

3
2CD 2G3/2 23r 217mr2

5K2r 4

6
23m21

4mK2r 3

3
1~Kr 2mK!C

F2r 327mr21
K2r 5

3
16m2r 2

2mKr4

3
1~2mKr2Kr 2!CG2 dr, ~57!

dJ2

dC
522E F r 422mr31S Kr 3

3
2CD 2G1/2S Kr 3

3
2CD 23r 217mr2

5K2r 4

6
23m21

4mK2r 3

3
1~Kr 2mK!C

F2r 327mr21
Kr 5

3
16m2r 2

2mKr4

3
1~2mKr2Kr 2!CG2 dr

1
2

3E F r 422mr31S Kr 3

3
2CD 2G3/2 ~Kr 2mK!

F2r 327mr21
K2r 5

3
16m2r 2

2mK2r 4

3
1~2mKr2Kr 2!CG2 dr

2
4

3E F r 422mr31S Kr 3

3
2CD 2G3/2S 23r 217mr2

5K2r 4

6
23m21

4mK2r 3

3
1~Kr 2mK!CD ~2mKr2Kr 2!

F2r 327mr21
K2r 5

3
16m2r 2

2mK2r 4

3
1~2mKr2Kr 2!CG3 dr,

~58!

d2J2

dC25
dt

dC
512E

r ml

` F r 422mr31S Kr 3

3
2CD 2G21/2S Kr 3

3
2CD 2

3

23r 217mr2
5K2r 4

6
23m21

4mK2r 3

3
1~Kr 2mK!C

F2r 327mr21
Kr 5

3
16m2r 2

2mKr4

3
1~2mKr2Kr 2!CG2 dr1eight other terms. ~59!

All the nine terms in Eq.~59! fall off like 1/r 3. Therefore, each of these terms is finite. We also know thatdt/dC→` as
C→C* . The term we have isolated is the term which generates this behavior. All the other terms remain finite. To estimate
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the blowup, we need to understand the behavior of it nearr ml . It is useful to shift the origin of coordinates tor 5r crit

5R* . Therefore, we definey5r 2R* . We knowK5(2R* 23m)/A2mR
*
3 2R

*
4 and we also writeC5C* 2e, whereC*

5(3mR
*
3 2R

*
4 )/3A2mR

*
3 2R

*
4 .

We now write out the polynomial Eq.~38! in terms of (R* ,m,y,z) to give

r 4
•••5

2R
*
3 28mR

*
2 19m2R*

2m2R*
y21

12R
*
2 256R* m154m2

3~2m2R* !
y31

17R
*
2 254mR* 145m2

3a~2m2R* !
y4

1
4R

*
2 212R* m19m2

9R
*
3 ~2m2R* !

@6R* y51y6#1
2R

*
3 24R

*
2 m

A2mR* 2R
*
2

e1e21
4R* 26m

3A2mR* 2R
*
2 @3R

*
2 y13R* y21y3#e. ~60!

The polynomial begins aty2 because we know that whene50, both the polynomial itself and its first derivative vanish at
y50. More generally, we know that the polynomial vanishes whenr 5r ml , i.e., wheny5r ml2R* 5d. If e is small, and if we
are close to the critical value, then

2R
*
3 28mR

*
2 19m2R*

2m2R*
d21

2R
*
3 24R

*
2 m

A2mR* 2R
*
2

e'0⇒e'
2R

*
4 28mR

*
3 19m2R

*
2

~4R
*
2 m22R

*
3 !A2mR* 2R

*
2

d2. ~61!

Further, nearr 5r ml , we find that the polynomial approximates

r 4
•••5

2R
*
3 28mR

*
2 19m2R*

2m2R*
~y22d2!. ~62!

The polynomialD of Eq. ~55! is the first derivative of Eq.~60!. Thus we have

D'2
2R

*
3 28mR

*
2 19m2R*

2m2R*
y1O~y2! ~63!

and

dD

dr
52

2R
*
3 28mR

*
2 19m2R*

2m2R*
1O~y!. ~64!

We also need to approximate the other terms in Eq.~59!. The denominator equals (122m/r )2D2/4. When we write this out
in terms of (R* ,m,y), we get

2r 3
•••'S 12

2m

r D 22R
*
3 28mR

*
2 19m2R*

2m2R*

2y21O~y3!. ~65!

The polynomial in the numerator of Eq.~59! is

2
1

2

d

dr F S 12
2m

r DDG . ~66!

Therefore,

23r 21•••52
1

2 S 12
2m

r D 2R
*
3 28mR

*
2 19m2R*

2m2R*
1O~y!. ~67!

Therefore, the term in Eq.~59! which blows up asd→0 is dominated by

d2J2

dC2 5
dt

dC
'1E

d

`S Kr 3

3
2CD 2

2m

r
21

S 2m2R*
2R

*
3 28mR

*
2 19m2R*

D 3/2 1

y2Ay22d2
dy. ~68!

We know that

E. MALEC AND N. Ó MURCHADHA PHYSICAL REVIEW D 68, 124019 ~2003!

124019-10



S Kr 3

3
2CD 2

2m

r
21

'R
*
4 ~69!

and

E 1

y2Ay22d2
dy5

Ay22d2

yd2
. ~70!

Therefore, we have

d2J2

dC2 5
dt

dC
'S 2m2R*

2R
*
3 28mR

*
2 19m2R*

D 3/2R
*
4

d2 . ~71!

VI. COLLAPSE OF THE LAPSE

We now have calculated the various terms necessary to compute the central lapse. From Eq.~54!, we have

N
dh

dCU
r ml

'
2mR* 2R

*
2

~2R
*
2 28mR* 19m2!d

. ~72!

From Eq.~61!, we have

e5C* 2C'
2R

*
2 28mR* 19m2

~4m22R* !A2mR* 2R
*
2

d2. ~73!

We also have, from Eq.~71!,

dt

dC
'S 2m2R*

2R
*
3 28mR

*
2 19m2R*

D 3/2R
*
4

d2 . ~74!

We can differentiate Eq.~73! to get

dC

dd
'2

2R
*
2 28mR* 19m2

~2m2R* !A2ma2R
*
2

d. ~75!

We multiply Eq.~74! by Eq. ~75! to get

dt

dC

dC

dd
5

dt

dd
'2S R

*
4

2R
*
2 28mR* 19m2D 1/21

d
. ~76!

Integrating Eq.~76! gives

t52S R
*
4

2R
*
2 28mR* 19m2D 1/2

ln d1A, ~77!

whereA is a constant, or

d5expF2S 2R
*
2 28mR* 19m2

R
*
4 D 1/2

~t2A!G . ~78!

From Eq.~45!, we have

a5S dt

dCD 21

N
dh

dCU
r

. ~79!

Therefore, to compute the central lapse we need to divide Eq.~72! by Eq. ~74! to get
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a5S dt

dCD 21

N
dh

dCU
r

5
2m2R*

2R
*
3 28mR

*
2 19m2R*

S 2R
*
3 28mR

*
2 19m2R*

2m2R*
D 3/2 d

R
*
2 5S 2R

*
2 28mR* 19m2

2mR
*
3 2R

*
4 D 1/2

d. ~80!

On substituting in Eq.~78!, we get

a5B expF2S 2R
*
2 28mR* 19m2

R
*
4 D 1/2

tG , ~81!

whereB is a constant which equals

B5S 2R
*
2 28mR* 19m2

2mR
*
3 2R

*
4 D 1/2

3expF S 2R
*
2 28mR* 19m2

R
*
4 D 1/2

AG . ~82!

We have not evaluatedA, so we cannot computeB.
It is clear from Eq.~78! that A sets the zero oft. When

we compute the collapse of the lapse for the maximal case,
the moment of time symmetry slice sets a natural zero for the
time function. In the CMC case we discuss here, we cannot
use the Killing time at infinity because it is infinite. As dis-
cussed in the beginning of Sec. V, we have to normalize it by
setting the zero of time to be that of the umbilical slice, the
slice which hasC50. In some sense, this is the analogue of
the moment of time symmetry slice, but at the same time it is
somewhat arbitrary. This arbitrariness will be reflected in the
constantA. It is also quite difficult to compute. We would
need to evaluate the integral~43! as we approach the critical
slice. The leading term should agree with Eq.~77!, but we
also need to compute the next term, which will give usA.

This indicates a different way of computing the exponent.
Let us look ath8 as given by Eq.~35!, or rather, let us look
at 1/h82 near the critical point,

1

h82
'

2R
*
2 28mR* 19m2

R
*
4 ~y22d2!. ~83!

When this is substituted into Eq.~43!, we get

t~d!'E
d

R
*
2

A2R
*
2 28mR* 19m2

dy

Ay22d2
. ~84!

We have

E
d

dy

Ay22d2
5 lnuy1Ay22d2ud52 ln d. ~85!

Therefore, we reproduce Eq.~77!.
There are many ways of deriving the critical exponent. In

what follows, we offer a very different derivation, based on
an explicit formula for the lapse function for spherical CMC
slices. The computation given here and the calculation there
entirely agree.

The calculation here is closely modeled on the computa-
tion of the critical exponent for the maximal foliation given
in @6#. This allows us to perform a number of internal con-
sistency checks at various points in the calculation by reduc-
ing to theK50 situation. We get agreement at each stage.
This agreement is not trivial because the key integration by
parts to obtain an explicitly finite derivative ofJ differs in
the two cases.

VII. CMC FOLIATIONS AS DYNAMICAL SOLUTIONS

In this sequel, we get CMC foliations by solving Einstein
equations in a particular gauge. A crucial role is played by a
condition@Eq. ~90! below# imposed on the lapse. While this
method is completely equivalent to the preceding more geo-
metric approach, it seems to be more straightforward and
technically simpler. We focus on the concise derivation of
the explicit CMC foliation near the critical point of the CMC
foliation. The final result is identical to the result derived
earlier.

The constant mean curvature foliations have been recently
investigated numerically in the simulation of a single spheri-
cally symmetric black hole@11#. We hope that our analytic
results appear helpful in the verification of the numerical
schemes.

A. CMC slicing of the Schwarzschild spacetime

The notation is the same as in the preceding part. We
define

~pR!254F12
2m

R
1S KR

3
2

C

R2D 2G , ~86!

g~R,t !5118] tCE
R

`

dr
1

r 5p3 ~87!

and

N5g
pR

2
. ~88!

Herem is the mass,K ~the trace of the extrinsic curvature! is
a constant, andC is a time-dependent parameter which mea-
sures the transverse part of the extrinsic curvature.

The Schwarzschild line element, expressed in terms of
coordinates adapted to the constant mean curvature foliation,
is given by@10#
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ds252dt2FN22g2S KR

3
2

C

R2D 2G14N

C

R3 2
K

3

p2R
dtdR

1
4

~pR!2 dR21R2dV2. ~89!

The hypersurfaces of constant time are CMC slices,
asymptotic to the CMC slices of Minkowskian geometry.

B. Elliptic slicing condition

A minimal surface is a locus of points defined by the
conditionp50. Choose a CMC Cauchy hypersurfaceSC of
the extended Schwarzschild manifold corresponding to a pa-
rameterC and letR0 be an areal radius corresponding to a
simple zero ofp2; that is,p2(R0)50 but ]Rp2uR0

Þ0. Fur-
thermore, assume that

] rN

Aa
U

R0

50 ~90!

at R0. The condition~90! yields

] tC5
1

8I ~R0!
. ~91!

Here

I ~R0![E
R0

dr

pr

6
C2

r 4 1
K2r 2

3

S 2m1
2KC

3
1

2K2r 2

9
2

4C2

r 3 D 2 . ~92!

The value of the lapse functionN at the minimal surface, that
is, at the areal radiusR0, can be shown to be equal@using
Eqs.~86!–~88!# to

N5
dC

dt

1

m1
KC

3
1

K2R0
3

9
22

C2

R0
3

. ~93!

The lapseN is strictly positive at the minimal surface corre-
sponding to a simple zeroR0. Equations~86!–~88! imply
thatN(R).N(R0) if R.R0 and therefore the lapse exists on
all of SC . Equation~91! dictates the rate of change of the
parameterC. It is clear that one can uniquely construct a
foliation of a part of the extended Schwarzschild geometry
by imposing the condition~90! at minimal surfaces on all
slices to the future of a given one. The leaves of the resulting
foliation connect two null infinities of the extended
Schwarzschild spacetime. This gives us a curveR0(t) of
zeros of the mean curvaturep. It is evident, just by inspect-
ing the explicit solution presented above, that the line run-
ning along the locations of minimal surfacesR0(t) can be
arranged to be smooth. It can be chosen to coincide with the
‘‘vertical’’ t50 axis in standard Schwarzschild coordinates.

This construction breaks down whenR0 ceases to be a
simple zero ofp2, since expressions appearing in Eqs.~91!
and~93! become unboundedly large. The goal of this paper is
to show the asymptotic behavior of the lapse at the critical
minimal surface.

C. The evolution of C near critical point

Let C* andR* be degenerate, that is, such that the zero
of p2 ceases to be simple. In this case, bothp and its deriva-
tive ]Rp vanish; that means that

12
2m

R*
2

2KC*
3R*

1
K2R

*
2

9
1

C2

R
*
4 50,

2m1
2KC*

3
1

2K2R
*
3

9
2

4C
*
2

R
*
3 50. ~94!

One can easily show, ifC* andR* are critical, that the sign
of

b[22C* 1
2

3
KR

*
3 ~95!

is the same as the sign of2C* .
There exist critical values ofC* that are positive (C

*
1) or

negative (C* 2). For definiteness, we shall consider only the
case whenC(t50).C* 2 , therefore the only limiting case
we consider is that withC→C

*
1 . ~That choice corresponds

to a foliation formed by leaves connecting two null infinities
which moves forward in time—see the discussion in Sec.
IV.! For simplicity, we will drop the ‘‘1’’ suffix and C* will
mean a positive critical parameter. From the dynamical equa-
tion ~91! it follows that C can only increase.

Next, let us introduce the notation

e[C* 2C,

R0[R* 1d, ~96!

where bothd ande are positive and small.
The equationp(R0)50 yields a nonlinear algebraic equa-

tion whose truncation gives

d2A1eb50. ~97!

Here A[2R
*
2 1K2R

*
4 . Equation ~97! is in fact the

Lyapunov-Schmidt reduced equation constructed according
to the standard rules@12#. Therefore, in the vicinity of the
critical point we have

d5A2be

A
. ~98!

The functionp can be expressed in a form
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pr

2
5A12

R0

r Fkd

R0
1

K2

9
~rR01r 222R0

2!

2
C2

R0
4 S R0

r
1

R0
2

r 2 1
R0

3

r 3 23D G1/2

. ~99!

The insertion of Eqs.~96!, ~98!, and ~99! into Eq. ~92! and
the change of the integration variable toy5A12(R0 /r )
yield after a simple but tedious algebra

I ~R0!'AR* E0

1

dy
F1

Akd1y2F2~kd1y2F3!2
. ~100!

Here the functionsF1 , F2, andF3 are given by

F1~y!5
K2R

*
3

3~12y2!4 1
6C

*
2

R
*
3 ~12y2!2,

F2~y!5
K2R

*
3 ~322y2!

9~12y2!2 1
C

*
2

R
*
3 ~624y21y4!,

F3~y!5~323y21y4!S 2K2R
*
3

9~12y2!31
4C

*
2

R
*
3 D ,

~101!

while k reads

k5
2K2R

*
2

3
1

12C
*
2

R
*
4 . ~102!

D. Limiting behavior of the foliation

The asymptotic behavior ofC will be dominated by the
1/d2 part of I (R0). As will be shown later,C tends exponen-
tially to C* ; the attenuation factor in the exponent depends
only on the leading term ofI (R0). It is useful to definez
5y/Akd. Then one obtains I (R0)5(AR* /k2d2)3I d ,
where

I d[E
0

1/Akd
dz

F1~Akdz!

A11z2 F2~Akdz!„11z2 F3~Akdz!…2
.

~103!

One can split the integral*0
1/Akd into two parts:

*0
1/Akd5*0

1/A104kd1*
1/A104kd
1/Akd

. It is easy to check that the con-
tribution coming from the second integral goes to zero asd
approaches zero. Therefore,F1'R* k/2, F2'R* k/2, and
F3'R* k. Thus the first integral~and also the integralI d) is
well approximated by

I 5
kR*

2
E

0

`

dz
1

A11
R* k

2
z2~11R* kz2!2

5
AkR*

2
E

0

`

dz
1

A11
z2

2
~11z2!2

. ~104!

The integral

I z5E
0

`

dz
1

A11
z2

2
~11z2!2

can be explicitly evaluated and givesA2/2.
In summary, near the critical point we have

I ~R0!5
AR*
k2d2I'

A2

4e

R* A

k3/2ubu
. ~105!

The insertion of Eqs.~96! and ~105! into Eq. ~91! yields

] te52Ge, ~106!

where

G5
ubuk3/2

2A2AR*
. ~107!

Equation~106! immediately implies thate approaches 0 ex-
ponentially as

e~ t !5e0e2tG, ~108!

where e0 is an initial value of the parameter. Taking into
account relations~96! and ~98!, one can conclude that the
parameterC and the minimal radiusR0 tend exponentially to
their critical valuesC* andR* , respectively.

Finally, collecting the above information and putting it
into Eq.~93!, we obtain the asymptotic behavior of the lapse
function near the critical point,

N5N0e2tG/2. ~109!

This is exactly the same result as that obtained in Sec. VI; in
order to show equivalence, use expressions for the extrinsic
curvatures~valid in the upper quadrant of the extended
Schwarzschild geometry!, which imply K5(2R* 23m)/
A2mR

*
3 2R

*
4 and C* 5(3mR

*
3 2R

*
4 )/A2R

*
3 2R

*
4 . In the

case of maximal slicing (K50), the decay constantG/2 is
equal to 4/(3A6), in agreement with the analytic derivation
of @6# and close to the numerical result of@13#. The
asymptotic behavior ofg andp in a region close to the line
R0 is given by
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g5g0

e2tG/4

A12
R0

r

,

pr

2
5p0A12

R0

r
e2tG/4. ~110!

Here g0 and p0 are initial values ofgA12(R* /r ) and
pr/@2A12(R* /r )#, respectively. The four constants
(e0 , N0 , g0, andp0) can be expressed in terms of one free
parameter ~say, e0) and A,b,k. Equations ~88!, ~100!,
~108!–~110!, and C5C* 2e0e2tG suffice to construct the
metric ~89! near the lineR0(t) of minimal surfaces.

VIII. FOLIATIONS WITH NONCONSTANT K?

As is clear from the discussion, one has three parameters
to play with in constructing spherical CMC foliations or slic-
ings in the Schwarzschild solution. One can changeK, one
can changeC, and one can drag a slice along the ‘‘timelike’’
Killing vector. Of course, one can change more than one of
these at once. The foliation we have focused on is one where
we keptK fixed, changedC, and eliminated the Killing free-
dom by considering the slices where the minimal surface
coincided with thet50 axis in standard coordinates.

We could consider any one of these slices and drag it
along the Killing vector. For the slices which run from null
infinity to null infinity, one with uCu small, one would get a
slicing which looks somewhat like the standardt5const slic-
ing of the Schwarzschild solution. It would rise up along one
null infinity and sink down on the other while the throat ran
along one of theR5const lines in either the upper or lower
quadrant. These would not form a foliation. Each slice
crosses each other in the interior, and the lapse function will
vanish on the throat and be positive on one side and negative
on the other. If we drag one of the slices which runs from
null infinity to the singularity~one with uCu large! along the
Killing vector, we get a foliation. The slices do not cross, but
each one ends on theR50 singularity. Such a foliation
would cover the upper half of the right-hand quadrant and all
of the upper quadrant if one pickedK.0 andC.0. Other
patches could be covered by choosing other options forK
andC.

In closed cosmologies, on the other hand, we are used to
CMC foliations where the value ofK changes. If the cosmol-
ogy goes from a big bang to a big crunch, we might expect to
have a foliation which goes fromK51` at the big bang
through K50, the moment of maximum expansion, and
monotonically toK52`, the big crunch. It can be shown

that no such foliations with varyingK exist in the Schwarzs-
child solution.

A first try would be to consider the slicing where one
changesK while keepingC fixed. Such slices always cross
each other. Consider two slices, one withK50,C50 ~this is
the standard moment-of-time-symmetry,t50, slice through
the Schwarzschild solution! and the other withK51,C50.
As we discussed previously, this slice starts at future null
infinity, crosses in the middle below the bifurcation point,
and rises up again to the other future null infinity. This slice
crosses the first slice twice. Choosing a different, fixed value
of C will not change this behavior. Therefore, if we want a
foliation with varyingK, we need a nonconstantC.

One almost has such a foliation. Consider the slicing
where one changesK while simultaneously changingC such
that C58m3K/3. Each of these slices has its throat atR
52m. Each of these slices runs through the bifurcation point
and so they must all touch there. They do not cross, however,
and this is their only point of contact. This slicing covers all
of the left and right quadrants. One might hope that by
slightly changingC, one could spread the slices apart along
the vertical t50 axis and thus convert this slicing into a
foliation. This cannot be done, as we show below, if we want
to allow K to be unboundedly large.

The standard work on the way CMC slices act as barriers
was written by Brill and Flaherty@14#. Among other results,
they show that two slices with the same value ofK cannot
touch at a single point. Further, if two CMC slices do touch
at one point, the slice to the future must have a larger value
of K than the other one. This restriction strongly restricts the
behavior of CMC slices in the Schwarzschild solution.

Let us assume that we have a CMC foliation of a
Schwarzschild solution which starts off at the moment of
time symmetry slice and moves up. Consider one slice of this
foliation. This slice will have positiveK5KS and C
.8m3K/3. This slice will have a throat with some radius
RS . The cylindrical slice with this given radius is also a
CMC slice ~with K5K1, say! and touches the other CMC
slice at one point, the throat. Therefore, we must have that
KS,K1. Since we assume we have a foliation, we must have
thatRS monotonically decreases and hence alsoK1. It passes
through zero atRS53m/2. However, we expectKS to be
increasing as the foliation moves forward in time so we will
eventually run into a situation whereKS5K1, which Brill
and Flaherty forbid. Therefore, any spherical CMC foliation
of the Schwarzschild solution cannot have unboundedly
large values ofK.
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