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Low-frequency fluctuations in a semiconductor laser with phase conjugate feedback

D. O’Brien, G. Huyet, and J. G. McInerney
Physics Department, National University of Ireland, University College, Cork, Ireland

~Received 30 January 2001; published 9 July 2001!

We analyze the dynamics of a semiconductor laser with phase conjugate optical feedback, using numerical
simulations based on rate equations for the complex amplitude of the electric field and the carrier density. From
this analysis we observe the presence of low-frequency fluctuations which are similar to those observed in a
semiconductor laser with conventional optical feedback. The similarities and differences between phase con-
jugate and conventional optical feedback are discussed, and a mechanism for the appearance of low-frequency
fluctuations in a semiconductor laser with phase conjugate feedback is suggested.
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Semiconductor lasers with external optical feedback have
been studied in order to enhance laser properties such as the
spectral linewidth and stability, and have also proved useful
in understanding time-delayed dynamical systems. Several
different regimes have been identified, corresponding to vari-
ous feedback levels for conventional optical feedback. Many
of the same characteristics found in the case of conventional
optical feedback have also been observed in lasers with
phase conjugate feedback, such as enhancement of the laser
linewidth, and frequency locking@1#. The phase conjugate
feedback system displays a richer dynamical behavior than
conventional optical feedback@2#, and is superior to conven-
tional feedback with regard to linewidth reduction, as the
system displays both frequency and phase locking@1#. Low-
frequency fluctuations very similar to those observed in con-
ventional feedback were also recently observed experimen-
tally in semiconductor lasers with phase conjugate feedback
@3#.

Low-frequency fluctuations~LFF! in semiconductor la-
sers with conventional optical feedback have been the sub-
ject of many numerical studies within the framework of the
time-delayed Lang-Kobayashi rate equations@4#. It is now
well accepted that low-frequency fluctuations are the result
of a chaotic itinerancy between destabilized external cavity
modes@5#. As a result, fast dynamics, associated with the
destabilized external cavity modes, occur together with the
slow dynamics.

Here we present numerical results obtained for a semicon-
ductor laser with phase conjugate optical feedback. We ob-
serve both low- and high-frequency dynamics similar to
those observed with conventional optical feedback. The low-
frequency fluctuations correspond to power dropouts, while
the high-frequency fluctuations are associated with fast
pulses in the power. Due to the absence of conventional ex-
ternal cavity modes in phase conjugate feedback, current
models do not predict this behavior. We also perform a linear
stability analysis on the system, and discuss the nature of the
solutions with respect to LFF.

The theoretical model used for describing a semiconduc-
tor laser with phase conjugate optical feedback is a modified
version of the well-known Lang-Kobayashi~LK !-equation
@2,4# for feedback in semiconductor lasers, and may be ex-
pressed in terms of the complex amplitude of the electric
field E(t), and the carrier densityN(t) in dimensionless vari-
ables,

Ė5k~11 ia!~N21!E1gE* ~ t2t!,

Ṅ52
1

ts
~N2J1uEu2N!, ~1!

wherek is the field decay rate,ts is the electron lifetime,a
is the linewidth enhancement factor,J is the pumping param-
eter, g represents the feedback level, andt is the external
cavity round trip time.

These equations assume a single-laser-mode operation.
We have neglected the reinjection of light after multiple re-
flections in the external cavity, and so we are analyzing a
weak feedback regime. If multiple reflections were included,
we would expect to see competing effects of conventional
LFF occurring at twice the external cavity round trip time.
The finite response time of the phase conjugate mirror was
not included in this description, as the main objective of this
work is to identify the main features of the dynamics.

If we neglect fluctuations in the amplitude of the electric
field and in the carrier density, Eqs.~1! reduce to a single-
phase equation, which reads

ẇ5gA11a2 sin@w~ t !1w~ t2t!1arctan~a!#. ~2!

The steady-state solutions of this equation, obtained forẇ
50, correspond to w(t)1w(t1t)1arctana52w(t)
1arctana52pn, wheren is an integer. It is therefore useful
to introduce the mode parameterm defined as

m5
w~ t !1w~ t2t!1arctana

2p
, ~3!

which is an integer for the steady-state solutions. A similar
variable, called the mode number, was introduced in Ref.@6#
to describe the dynamics of a semiconductor laser with con-
ventional feedback, so it is an integer when the laser operates
on a single external cavity mode. It is, however, worth noting
that conventional external cavity modes do not exist for
phase conjugate optical feedback.

Numerical solutions of Eqs.~1!, integrated with a fourth-
order Runge-Kutta algorithm, are depicted in Figs. 1 and 2.
The parameter values used werek51, a55, ts5200, J
51, t51000, andg55, although the observed features of
the dynamics occur over a wide parameter range.
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Figure 1 shows the low-frequency dynamics in the power,
the carrier density, and the mode parameterm. We see clear
dropouts in the laser intensity, similar to those observed in
conventional optical feedback, while the mode parameter

shows a mean drift together with a slow modulation which
corresponds to the power dropouts. The mean drift in the
mode number is a result of the laser operating at a frequency
lower than the solitary laser frequency.

In Fig. 2 we plot the fast dynamics, again looking at the
carrier density, the power, and the mode parameter. The tem-

FIG. 1. Low-frequency dynamics filtered at the round-trip time
for power (P), carrier density (N), and mode parameter (m), vs
time/t.

FIG. 2. High-frequency dynamics: power (P), carrier density
(N), and mode parameter (m), vs time/t.
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poral evolution of the mode parameter consists of periods of
quasistationary behavior near the steady-state solutions, fol-
lowed by fast jumps. These jumps correspond to changes of
m61, with a general trend toward lower values ofm.

This behavior is very similar to that observed with con-
ventional optical feedback. The usual interpretation for low-
frequency fluctuations observed in the LK equations involves
chaotic itinerancy among external cavity modes@5,7#. In this
picture, the solitary laser relaxation oscillations become un-
damped under the influence of optical feedback, generating
limit cycles around the external cavity modes. Each limit
cycle may become unstable for certain parameter values,
leading to a chaotic attractor via a quasiperiodic, or period-
doubling route, to chaos. These chaotic attractors may also
merge to generate the LFF chaotic attractor. A simple picture
of the route to LFF can be obtained by reducing the LK
equations to a three-dimensional dynamical system@8#.

In the case of phase conjugate feedback, there are no con-
ventional external cavity modes. Equations~1! have only five
steady-state solutions. The first is associated with the nonlas-
ing operation, while two solutions are always unstable above
the threshold, and two solutions are stable for certain levels
of the feedback and pump parameters. An analogy between
conventional and phase conjugate feedback can, however, be
drawn in order to explain the low-frequency fluctuation ob-
served in both sets of equations. From the general features of
time delay differential equations, one can expect multiple
resonances when a Hopf bifurcation occurs under the influ-
ence of delay. In the case of conventional feedback, this
leads to the appearance of external cavity modes. For phase
conjugate feedback, the Hopf bifurcation which destabilizes
the continuous wave operation should present similar fea-
tures. Here the complex solutions of characteristic equations
having positive real parts will play the role of external cavity
modes.

Let us consider the stability analysis of one of the steady-
state solutions which are stable for low feedback levels. For
very low feedback levels, the stability analysis provides three
solutions, one negative real solution, and two complex con-
jugate solutions associated with the solitary laser relaxation

oscillations. When the feedback level is increased, the relax-
ation oscillations become undamped as their real parts be-
come positive. Other pairs of complex conjugate solutions
may also appear, giving rise to multiple resonances. This
generates a whole family of roots with a positive real part,
with their imaginary parts separated by 2p/t @9#, as shown
in Fig. 3.

These roots are analogous to the external cavity modes for
conventional feedback. A scenario leading to the appearance
of LFF from these solutions is therefore possible.

An instability similar to the usual LFF instability can
therefore be observed among the nonconventional external
cavity modes for certain parameter ranges. To verify this
conjecture, we compared the amplitude of the frequency
fluctuations with the number of solutions of the characteristic
equation having a positive real part.

Looking at the spectral evolution of the system, the aver-
age instantaneous frequency over the course of one round
trip is

FIG. 3. Distribution of eigenvalue solutions to the characteristic
equation in the complex plane, for parameter values corresponding
to the LFF regime.

FIG. 4. Temporal evolution of the average instantaneous optical
frequencyh.

FIG. 5. Comparing the number of solutions to the characteristic
equation with a positive real part~resonances in the power spec-
trum! ~solid line! to the drift in the mean optical frequencyh
~dashed line!.

BRIEF REPORTS PHYSICAL REVIEW A 64 025802

025802-3



h5^ẇ&5
1

tEt2t

t

ẇ~ t !dt5
w~ t !2w~ t2t!

t
. ~4!

Figure 4 shows the evolution ofh as a function of time.
The system changes optical frequency drastically at a power
dropout. After a power dropout the system is at the solitary
laser frequency. There is then a steady drift away from the
solitary laser frequency as the system recovers, and this drift
continues until a critical point is reached. At this point, it
collapses back to the solitary laser frequency.

In order to calculate the amplitude of the fluctuation ofh
~average instantaneous optical frequency!, we compute the
root-mean-square ofh, and assume it is a triangular wave to
calculate the peak-to-peak value. This method is more reli-
able than directly measuring the peak-to-peak value from the
time trace. The result of this calculation is shown in Fig. 5
together with the number of roots of the characteristic equa-
tion with a positive real parts for different feedback levels.
We note that there is very good agreement between the
curves over a wide range of feedback levels. This agreement
was also checked for different values of the electron lifetime.

These observations indicate that the underlying physics of

low-frequency fluctuations is similar to that observed in the
Lang-Kobayashi equations for conventional optical feed-
back. Although the two systems differ in many ways, the
main features of LFF are observed in both systems. For in-
stance, the existence of external cavity modes with conven-
tional feedback is closely connected with the phase invari-
ance of the LK equation. This phase invariance is not present
in phase conjugate feedback, and therefore does not play a
major role in the underlying mechanism for the observation
of LFF’s. This suggests that the mechanism responsible for
generating LFF in a time-delay dynamical system is more
general than previously seen in conventional feedback. The
slow dynamics of the carrier dynamics and the time delay
seem to be the two most important ingredient for these fluc-
tuations.
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