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Small numbers of vortices in anisotropic traps

S. McEndoo* and Th. Busch
Department of Physics, University College Cork, Cork, Republic of Ireland

�Received 25 February 2009; published 12 May 2009�

We investigate the appearance of vortices and vortex lattices in two-dimensional, anisotropic, and rotating
Bose-Einstein condensates. Once the anisotropy reaches a critical value, the positions of the vortex cores in the
ground state are no longer given by an Abrikosov lattice geometry but by a linear arrangement. Using a
variational approach, we determine the critical stirring frequency for a single vortex as well as the equilibrium
positions of a small number of vortices.

DOI: 10.1103/PhysRevA.79.053616 PACS number�s�: 03.75.Kk, 67.85.�d

I. INTRODUCTION

Quantized vortices are one of the hallmarks of superflu-
idity and the first observation of vortex lattices in liquid 4He
�1�, and more recently in gaseous Bose-Einstein condensates
�2,3�, has led to a large interest in studying their ground
states and dynamical properties. Gaseous Bose-Einstein con-
densates are particularly well suited to the study of vortices,
as their internal and external system parameters, such as the
interatomic scattering length or the density, can be experi-
mentally controlled. This allows access to study a large range
of vortex states in different parameter regimes.

The structure of a ground-state vortex lattice is given by
the demand to minimize the energy of the system, under the
condition of fixed angular momentum. For large angular mo-
mentum, this is best done by forming an Abrikosov �triangu-
lar� lattice of charge one vortices �3,4�. In different parameter
regimes, however, other lattice structures have been shown
to appear: symmetry preserving annular arrangements for
small condensates �5�, rectangular lattices in traps with weak,
superposed optical lattices �6�, giant vortices in combined
harmonic and quartic traps �7�, and linear arrangements in
atomic waveguide structures �8�.

While vortices are interesting from a fundamental point of
view �9,10�, it has recently been pointed out that the winding
number of a single vortex can be engineered to create a to-
pologically stable quantum bit for applications in quantum
information �11,12�. Hallwood et al. �13� showed that to cre-
ate proper macroscopic superposition states of angular mo-
mentum one needs to identify states which are close in en-
ergy, strongly coupling, and—at the same time—well
separated from any other states. While these are difficult con-
ditions to fulfill in gaseous Bose-Einstein condensates with
short-range interactions, the promise of long-lived qubits
makes the effort worthwhile.

A second fundamental building block of quantum infor-
mation processing is the ability to measure and control the
interaction between two qubits. While interactions between
vortices can be studied in Abrikosov lattices, it would be of
advantage to find a geometry with a lower number of nearest
neighbors. Two recent works have shown that systems where
each vortex has only two nearest neighbors can be created in

atomic waveguide structure �8,14� or in anisotropic harmonic
traps in the limit of weak interactions �15�.

Here we extend the two works above by considering a
Bose-Einstein condensate deep in the nonlinear regime
�Thomas-Fermi �TF� limit� and trapped in an anisotropic
trap. By numerically determining the minimum-energy state,
we find that for relatively small aspect ratios ��2 and mod-
erate rotational frequencies, the rotating Abrikosov lattice is
no longer the ground state of the condensate and, instead, a
linear crystal of vortices is formed along the soft axis of the
trap. Taking advantage of the symmetry of the system, we
devise an ansatz for a variational calculation in order to pre-
dict ground-state properties of the system. We investigate the
critical stirring frequencies needed to move from the l=0 to
l=1 state and the locations in the lattice for a small number
of vortices of equal rotational charge. Note that anisotropic
traps in the strong rotation limit have recently been investi-
gated in �14,16�.

The paper is organized as follows. In Sec. II we introduce
our variational wave function and calculate the energy of the
system as a function of anisotropy. In Sec. III we determine
the critical stirring frequencies for local and global stability
of a single vortex in an anisotropic trap and in Sec. IV we
calculate the ground-state structure of a vortex crystal with a
small number of vortices. In Sec. V we briefly discuss the
dynamics of a linear vortex crystal in an anisotropic trap. In
Sec. VI we conclude.

II. VARIATIONAL CALCULATION

A. Energy functional

We consider a condensate of N atoms with atomic mass m
and scattering length asc trapped in a potential U�r� that is
rotating at frequency �. The energy functional for such a
system is given by

E���,�� =� d2rdz���−
�2

2m
�2 + U�r� − � · L��

+
Ng3D

2
� d2rdz���4, �1�

where L is the angular-momentum operator, g3D
=4��2asc /m is the coupling constant, and 	d3r���2=1. Find-
ing the equilibrium states for the above functional in all gen-*smcendoo@phys.ucc.ie
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erality is a formidable task and beyond our analytical as well
as numerical capabilities. We will, therefore, in the following
make some assumptions on the symmetry of our system.

First, we will consider rotation around one of the major
axes only. Therefore, by choosing the angular-momentum
operator to be Lz, we can separate the wave function into the
xy plane and the z direction as ��x ,y ,z�=��x ,y���z�. Since
the contributions to the energy functional from the kinetic,
potential, and rotational energies from ��z� are constant, we
need only consider the contributions made to the coupling
constant from the third dimension. In the following, we will
therefore make the assumption that the wave function in the
z direction is in the Thomas-Fermi limit and rescale the cou-
pling constant as g2D=g3D�m	z /2���1/2. This creates an ef-
fective two-dimensional Hamiltonian to work with. Specify-
ing the anisotropy of the harmonic trapping potential in the
xy plane by the parameter �, we get the following energy
functional:

E���,�� =� d2r���−
�2

2m
�2 +

m	2

2
�x2 + �2y2� − �Lz��

+
Ng2D

2
� d2r���4. �2�

B. Variational ansatz

In order to find a good variational ansatz, we need to
consider both the effect the angular momentum has on the
density of the condensate and the contribution to the phase of
the condensate. A convenient and transparent way of doing
this is to use the quantum hydrodynamic form and split the
wave function into its modulus and phase �17�

��x,y� = ���eiS. �3�

Considering the modulus first, we find that—in the Thomas-
Fermi limit of large particle numbers—a condensate carrying
vortices can be characterized by two length scales. The first
is the overall condensate size and is given by the Thomas-
Fermi radius �18�

R =
 2


m	2 , �4�

where 
 is the chemical potential of the system including the
vortex lattice. The size of the vortex cores gives the second
characteristic length scale. For an isotropic trap, this is given
by �19�

rcore �
 �2

m

, �5�

and we will show later that this is still a valid expression in
the anisotropic case. Since with increasing particle number
these quantities are inversely proportional to each other, we
can separate our ansatz with respect to these two scales as

� = �TF�VL. �6�

The Thomas-Fermi part �TF describes the background cloud
and is given by the well-known expression

�TF = � 1

Ng
�
 −

m	2

2
�x2 + �2y2��1/2

. �7�

The vortices are described by the function �VL, which will
only deviate from unity close to the individual vortex cores
and for which we will use a product of tanh functions of
variable width �=1 /rcore �19�. The full ansatz for the wave-
function modulus therefore reads as

��� = �TF�
k=1

n

tanh���r� − ak
�R�� , �8�

and describes n vortices located at ak
�. Note that the vortex

positions are scaled in units of the Thomas-Fermi radius in
the soft direction R, which lets us restrict our values of ak to
between 0 �trap center� and 1 �condensate edge in the soft
direction�. We also define 
0 to be the chemical potential of
a condensate with no vortices


0 =
m	2Ng�

�
. �9�

To further reduce the number of free variables in the energy
functional, we will assume that we are in the anisotropic
limit in which the vortices are forming a linear lattice �8,15�.
While this assumption at first glance looks only reasonable
for extremely anisotropic systems where the Thomas-Fermi
radius is on the order of the vortex core diameter, we have
found through numerical simulations that linear crystals are
already present for medium anisotropies if the number of
vortices is small. This can be qualitatively understood by
realizing that the anisotropies lead to extended low-density
areas in the soft direction and an alignment along this axis
therefore minimizes the vortex self-energies as well as inter-
actions. In Fig. 1�a�, we show the standard deviation of the
vortex core positions from y=0 for a system of five vortices
as a function of anisotropy. For an isotropic trap, the vortices

FIG. 1. �Color online� Numerical simulations for a 87Rb gas of
N=107 atoms with asc=4.67�10−9 m and trapping frequency 	
=20� s−1. �a� Standard deviation y of the vortices from the x axis
for 1���2. For ��1.9, the vortices form a linear crystal and
y =0. ��b�–�d�� Ground states for a condensate with parameters as
above in a trap with aspect ratio of �=2.5. Each plot spans a range
of −36 
m�x�36 
m and −11 
m�y�11 
m. �b� Ground-
state density for condensate rotating at �=0.7	 showing six vorti-
ces. �c� Ground-state density for condensate rotating at �=0.65	
showing five vortices. �d� Phase of the cloud shown in �c�. The
correspondence between the phase singularities and the density dips
is indicated.
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form a triangular arrangement, which with increasing values
of � becomes squeezed along the tight direction. For the
relative moderate value of �=1.9, the standard deviation y
goes to zero and remains there for all higher values of aniso-
tropy. Figures 1�b�–1�d� show these numerically determined
ground states for an even and an odd number of vortices,
illustrating this linear geometry. Therefore, we assume that

ak
�= �ak ,0�, i.e., the vortices sit along the x axis of the trap.
Furthermore, due to the symmetry of the system, we can
assume that for even numbers of vortices, vortex pairs are
located at �ak ,0� and �−ak ,0� and for odd numbers of vorti-
ces, a single vortex will sit at the center of the trap and the
remaining vortices will pair off as in the even case.

Finally, the phase itself can be broken up into the phase of
the condensate without vortices S0 and the phase from each
vortex core of charge qk

S�x,y� = S0�x,y� + �
k=1

n

qk�k. �10�

The first part describes the phase of the anisotropic conden-
sate under rotation without vortices and is given by �19,20�

S0�x,y� = −
m�

�

	x
2 − 	y

2

	x
2 + 	y

2xy . �11�

Since in our system the vortices are sitting along a single line
along which the phase is constant, we can neglect this con-
tribution to the phase and take

S = �
k=1

n

qk�k. �12�

C. Variational energies

Having defined the ansatz and energy functional in the
last section, we can now calculate and minimize the different
energies involved. All our results for single- and two-vortex
systems match up with recent work by Castin and Dum �19�
in the isotropic limit.

1. Kinetic energy

Since we assume our system to be in the Thomas-Fermi
limit, we will neglect the spatial variation in the background
condensate cloud when calculating the kinetic energy. We
can then rewrite tanh2�x�=1−sech2�x� and take advantage of
the fact that sech2�x� is nonzero only within a small distance
from the vortex core. This allows us to neglect all terms that
involve products of two different vortex cores, i.e., terms of
the form sech2�xi�sech2�xj�, �i� j� and leaves us the follow-
ing expression for the kinetic energy �19�:

Ekin =
�2

2m
� d3r��TF�2�

k=1

n

tanh2���r� − ak
�R����� �k�2

+
�2

2m
� d3r��TF�2�

k=1

n

�2�tanh���r� − ak
�R���2

+
�2

2m
� d3r��TF�2�

k=1

n

�
k��k

qkqk��
� �k · �� �k�. �13�

The first two terms describe contributions from single vorti-
ces and the last one accounts for the contributions from two
vortices. As expected from our ansatz, the anisotropy is com-
pletely contained in the Thomas-Fermi parts. The single-
vortex terms can be straightforwardly integrated to give

Ekin1
= �

k=1

n
�2	2


0
�1 − ak

2��ln��2R2� +
1

2
ln�1 − ak

2� − c�
− �

k=1

n
�2	2


0

1 − ak
2�− 5 + �� + �

2�1 + ��
, �14�

where c= �4 ln�2�−1� /6 is a constant. The remaining term
Ekin2

cannot be integrated analytically and we will solve it
numerically when discussing interacting vortex systems be-
low.

2. Potential and rotational energies

The potential and rotational energies are given by

Epot = �
k=1

n � d2r���2�m	2

2
�x2 + �2y2� +

Ng

2
���2� , �15�

Erot = − �
k=1

n

��� d2r��TF�2�x
�

�y
− y

�

�x
�qk�k, �16�

and can be integrated to give

Epot = �
k=1

n

2
0c
�1 − ak

2�
�2R2 , �17�

Erot = − �
k=1

n
q��

2

�2�3 − 4ak
2� − 1

�3 . �18�

To be able to calculate the rotational integral, we have made
one further approximation by considering only the area
traced out by a circle around the vortex whose radius is the
same size as the trap in the tight direction. This means that
we only take into account the cylindrically symmetric con-
tribution to the phase close to the vortex and neglect the
asymmetric contributions from the low-density edges of the
cloud �20�.

The total energy of the system can now be expressed as

E =
2
0

3
+ �

k=1

n

W�ak� + �
k=1

n

�
k��k

n

I�ak,ak�� , �19�

where the single-vortex self-energy is given by
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W�a� = Ekin1
+ Epot + Erot

=
�2	2


0
�1 − a2��ln��2R2� +

1

2
ln�1 − a2� − c�

−
�2	2


0

1 − a2�� − 5� + �

2�1 + ��

+ 2
0c
�1 − a2�

�2R2 +
q��

2

1 − �2�3 − 4a2�
�3 , �20�

and the interaction between two vortices of identical charge
qk=qk�= �1�k�k�� can be found from

I�ak,ak�� = Ekin2
=

�2

2m
� d2r��TF�2�� �ak

� · �� �ak�
� . �21�

III. CRITICAL STIRRING FREQUENCY FOR A SINGLE
VORTEX

Let us first consider the critical frequency for a single-
vortex state to become the stable ground state of the trap.
Two factors have to be taken into account, namely, the exis-
tence of two different trapping frequencies and the fact that
the lower one sets an upper limit for the rotational stability in
a harmonic potential. To study the physics of a single vortex,
we need only consider the vortex self-energy W. We there-
fore minimize Eq. �20� first with respect to � and find that
the size of a vortex core is related only to the chemical po-
tential of the cloud at the site of the vortex �19�

��R�2 = 4c�1 − a2�

0

2

�2	2 . �22�

In particular, we note that this expression is independent of
the strength of the anisotropy which justifies our earlier as-
sumption that we can separate two length scales in the sys-
tem. Using Eq. �22�, we can then express the self-energy as

W =
�2	2


0
�1 − a2��ln�2
c
0

�	
� +

1

2
ln�1 − a2� + c�

+
�2	2


0
�3a2��2 − 5� −

3a2

1 + �
� +

q��

2

1 − �2�3 − 4a2�
�3 ,

�23�

where again the first line corresponds to the kinetic energy,
the second corresponds to the potential energy, and the third
corresponds to the rotational energy. From this expression
for the energy, we can derive the two critical stirring frequen-
cies �l and �g, corresponding to the appearance of a local
and global energy minimum, respectively.

The local minimum corresponds to the point where W
changes from having a local maximum to a local minimum
at the center of the trap and is found by setting �a

2W=0 at
a=0,

�l =
�	2


0

2�3

3�2 − 1
ln�C
0

�	
� , �24�

where C=2
cec. For this value of the stirring frequency, a
vortex becomes locally stable in the condensate.

The global minimum is the frequency for which the en-
ergy of the condensate with a vortex at the center has lower
energy than the condensate without the vortex, i.e., W=0 at
a=0,

�g =
�	2


0

�

2
�4 + �

1 + �
+ ln�C
0

�	
�� . �25�

Both quantities are shown in Fig. 2 as a function of aniso-
tropy. One can see that both expressions above are not
simple extensions of the isotropic version, as they do not
scale linearly with �. This agrees with earlier results showing
the appearance of irrotational velocity fields in rotating an-
isotropic traps before vortex nucleation �20� and the increase
in the critical frequencies as a function of anisotropy for
small ��1.2 �21�.

IV. EQUILIBRIUM LATTICE POSITIONS

In the following, we will calculate the equilibrium posi-
tions of small numbers of vortices in anisotropic traps as a
function of anisotropy. While for symmetry reasons a stable
single vortex will sit in the center of the harmonic trap, the
positions of larger numbers of vortices are determined by a
complex interplay between the single vortex energies of Eq.
�20� and the vortex-vortex interactions given by Eq. �21�. As
argued above, we will assume that the vortices are arranged
in a linear crystal which is aligned along the x axis and
symmetric with respect to the y axis of the trap.

For two vortices of equal charge and located at �a, the
integral for the vortex-vortex interaction �21� can be explic-
itly written out as

I =
�2

2m
� d2r��TF�2

x2 + y2 − a2

��x − a�2 + y2���x + a�2 + y2�
. �26�

This expression cannot be fully integrated analytically and
we therefore minimize the complete energy functional nu-
merical with respect to the vortex positions �a. The results
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FIG. 2. Critical frequency for a single vortex as a function of
aspect ratio �. Stirring frequencies are defined in terms of the trap-
ping frequency in the soft direction 	. For stirring frequencies
greater than 	, the cloud becomes unstable. N=1�105, 	
=20� s−1, and asc=4.67�10−9 m is the s-wave scattering length
for 87Rb.
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are shown for different rotational frequencies in Fig. 3 as a
function of anisotropy. The regions in which the two-vortex
molecule is the stable ground state of the system are marked
by the black parts of the curve. As the above minimization
procedure does not give any information about the stability
of the system, we have determined these areas through nu-
merical ground-state calculations. Note that they are only
indicative though, since pinning down exact borders is a
challenging numerical task beyond our capabilities. Also
note that we display real units here, since the Thomas-Fermi
radius changes as a function of the rotation frequency.

The first thing one can see from Fig. 3 is that with in-
creasing anisotropy, the vortices are moving away from the
trap center. This behavior is a reaction to the increased non-
linearities due to the tighter potential in the transversal direc-
tion, which has the effect of higher single-vortex energies as
well as vortex-vortex interactions. Increasing the rotation fre-
quency has the opposite effect, as one can see from the rela-
tive position of the three curves displayed. Faster rotation,
i.e., larger �, leads to an increased Thomas-Fermi radius in
the soft direction and allows for lower densities near the
center. The vortices therefore move back toward the center.
The detailed form of this behavior for continuous � is shown
in Fig. 4.

For the three-vortex case, we again use the symmetry ar-
gument to choose an ansatz in which the central vortex is
located at �0,0� and the other vortices are located at ��a ,0�.
We now have included the interaction between all three vor-
tices, giving us three integrals, two of which will be identical
due to the symmetry. Figure 5 shows the location of the outer
vortices as a function of the aspect ratio. As with the two-
vortex case, the vortices settle further away from the center
the more anisotropic the trap is; however the distance is
larger than in the previous case. This is clearly due to the
addition of the repulsive center vortex and when comparing

the two- and three-vortex cases, one can see that the distance
from the center is about doubled. This indicates that for at
least small numbers of vortices within the TF cloud, the dis-
tance between two vortices is almost constant and which
confirms the overall trend that can be seen from the simula-
tions shown in Fig. 1. This behavior is also known from the
two-dimensional Abrikosov lattices �4� and has been found
in waveguides ��=�� �8,14�. For larger stirring frequencies
in the lowest Landau level �LLL� limit, this behavior does
not hold �16�. Again, as in the two-vortex case and for the
same reason, the vortices move inward with increasing trap-
ping frequency �see Fig. 6�.

It is easy to see how this method can be expanded for
larger numbers of vortices, taking advantage of the symme-
try of the system. However, the number of interaction terms
required for N vortices is N�N−1� /2, requiring increased
computational power and time.
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FIG. 3. Distance of each vortex in a vortex pair from the center
of the trap as a function of aspect ratio. The results are shown for a
gas of N=1�105 atoms of 87Rb. The trapping frequency is given
by 	=20� s−1 and we display three different rotational frequencies
�=0.4	, 0.6	, and 0.8	. The regions in which the two-vortex state
is stable is marked by the black part of the graphs. Note that two
vortices may be stable for a range of stirring frequencies and aspect
ratios which leads to the indicated overlap.
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V. VORTEX DYNAMICS

While the above determines the ground state of the con-
densate, it does not guarantee that the dynamical evolution
maintains the linear shape of the vortex crystal over time. In
fact, the force on a vortex in an inhomogeneous potential is
directed perpendicular to the gradient of the potential and
one can therefore expect movement of each vortex along an
equipotential line of the trap. While in an isotropic trap this
would lead to a simple rotation of the linear crystal around
the center of the trap, in an anisotropic trap this leads to a
change in relative distance between two vortices. Shorter dis-
tances, however, mean larger repulsive forces and one can
see that beyond a critical anisotropy the vortices will be un-
able to pass each other along the perpendicular direction and
will therefore maintain the linear crystal structure.

While the dynamical evolution is not the topic of the cur-
rent work, we have confirmed the above intuition by simu-
lating the dynamical behavior of our system for a wide range
of parameters and anisotropies. In Fig. 7 we show the trajec-
tories of five vortex cores in a trap with an anisotropy pa-
rameter of �=2.5 for a duration of t=3.5 s. One can see that
the vortices move around in the vicinity of their original
position; however they are not able to pass each other out. In
fact, the linear shape of the vortex crystal is maintained at
any time and we do not even observe any bending. At some
point, for even longer time scales, the backaction of the vor-
tex movement will lead to excitations of the background den-

sity and an exchange in vortex position might happen. This
will be the investigation of a future work.

VI. CONCLUSION

Our work fills the gap between two recent investigations
into vortex lattice structures in anisotropic traps: one in the
low-density limit �15� and the other in the fast rotational
limit �16�. We have shown numerically that a small change in
the anisotropy of a moderately rotating anisotropic Bose-
Einstein condensate in the Thomas-Fermi limit changes the
geometry of vortex lattice from hexagonal to linear and we
have presented a variational analysis of such a system. Using
the simple symmetry of the linear geometry, we have devised
a straightforward ansatz in the Thomas-Fermi limit, which
allowed us to split the energy function into single-vortex
terms and two-vortex interaction terms. From this we have
been able to determine the critical frequency for the creation
of a single vortex and found that as the aspect ratio increases,
the critical stirring frequency increases.

Minimizing the energy functional for two- and three-
vortex states, we were able to determine the exact positions
of the vortex cores. This is a very tedious exercise for direct
numerical treatments, as many vortex lattices configurations
have energies closely related to each other. We found that the
distance of the vortices from the center increases with in-
creasing aspect ratio; however, it decreases as the stirring
frequency increases. At least for systems with small numbers
of vortices, we found that the distance between neighboring
cores is effectively constant.

Finally, we briefly addressed the dynamical behavior of a
linear vortex crystal and showed that for sufficiently aniso-
tropic traps the linear crystal geometry is maintained for very
long time scales.
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