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We propose a strategy for perfect state transfer in spin chains based on the use of an unmodulated coupling
Hamiltonian whose coefficients are explicitly time dependent. We show that, if specific and nondemanding
conditions are satisfied by the temporal behavior of the coupling strengths, our model allows perfect state
transfer. The paradigm put forward by our proposal holds the promises to set an alternative standard to the use of
clever encoding and coupling-strength engineering for perfect state transfer.
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I. INTRODUCTION

Multiple-spin systems, in particular spin chains, have
recently been the object of extensive studies. From the
quantum-information processing (QIP) viewpoint, such sys-
tems embody valuable media for quantum protocols. In
fact, it has been found that specific forms of built-in and
permanent intra-register couplings, such as those typical of
spin-chain models, could be used for the purposes of quantum
computation [1] and communication in quantum networks.
This second possibility is particularly interesting. In fact, while
photons are ideal candidates for the long-haul transmission
of information among different local nodes [2], their use
in hybrid architectures for quantum networks (where the
nodes are embodied by matter-like systems) requires the use
of quantum interfaces. Despite the impressive experimental
successes reported in this area, the realization of an interface
is usually accompanied by technical problems and errors in
transmission. On the other hand, for short-distance quantum
communication, an alternative arrangement where information
carriers and processors are embodied by physical systems
having the same nature could be more advantageous. In the
seminal work in Ref. [3], the idea of using spin chains as
quantum wires has been proposed as a way to avoid the
interfacing problems mentioned above. The original idea has
then been extended along various directions (for more details,
see Ref. [4]). In particular, Refs. [S] showed that, by properly
engineering the strength of the couplings in the chain, perfect
state transfer could be achieved. A proposal to bypass the
initialization of the medium by means of local operations and
measurements on the extremal spins of the chain has been
recently put forward [6]. A similar result can be obtained by
properly encoding the state to transmit in two spins at one end
of the chain [7].

Here, an alternative strategy to the one proposed in Ref. [5]
is presented. Instead of the pre-arrangement of the interaction
strengths across the chain, we consider a uniform distribution
of time-dependent couplings. We show that perfect transfer of
information is achieved in our time-dependent architecture as
well and that a formal mapping of the dynamics achieved in
the two models is in order, thus letting our proposal emerge
as an alternative paradigm for perfect quantum state transfer.
We also study a scenario where the coupling strengths of the
Hamiltonian are constant, while an external time-dependent
magnetic field is used in order to provide the necessary
temporal modulation required for information transmission.
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We believe that the introduction of a time-dependent term in
the intra-chain couplings allows to bypass the intrinsic rigidity
of protocols based on unmodulated and pre-engineered spin
media. In fact, it is usually the case that spin-chain models
are arranged so as to implement a specific communication or
computational task and cannot be “recycled” and used for a
different one. Moreover, should an experimentally prepared
pattern of coupling strengths be found not accurate enough,
the whole medium should be discarded (unless a nonideal
performance of the quantum protocol could be tolerated).
Differently, by allowing the presence of time-dependent
Hamiltonian terms, a more dynamical “adjustment” of the
medium performances would be possible by implementing a
simple feedback loop: state transmission can be tested using
a given functional form of the time-dependent terms of the
Hamiltonian and, according to the results, this can be tuned so
as to converge toward better performances. A time-dependent
scheme for quantum state transfer has been discussed by
Lyakhov and Bruder in Ref. [8]. Building up on general result
described in Ref. [9], they only let the first and last spin-pair of
a chain to experience time-dependent couplings. Our scheme,
on the other hand, is different as we either consider a full set of
time-dependent interaction strengths or a fully homogeneous
pattern of constant couplings with a time-dependent external
magnetic field.

The remainder of this article is organized as follows. In
Sec. II we describe the model used in our proposal. In
Sec. Il we shortly review the main features of the information-
flux approach, which is the main tool used in our investigation,
and adapt it to our time-dependent analysis. Section IV
illustrates the way we obtain perfect state transfer when the
coupling strengths depend on the interaction time via sharply
rising or lowering pulses, while Sec. V is dedicated to the
investigation of a much more realistic setting that considers
finite rising times and pulse duration. In Sec. VI, the proposed
model is exploited in order to create a genuine multipartite
entangled state. Finally, Sec. VII summarizes our results.

II. THE MODEL

The system we analyze is an open spin-chain of N elements,
whose Hamiltonian reads

N—-1 N
A= [LOX X+ OV Y]+ Y B®Zi. (1)
i=1

i=1
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Here, J,(¢) and J,(¢) are the coupling strengths of the pairwise
interaction between adjacent spins and B(¢) is a magnetic field.
In our notation, X, ¥, and Z denote respectively the x, y, and
z Pauli matrix. For the sake of simplicity, we consider N as
an odd number. However, all the results presented here can
be straightforwardly adapted to the case of an even number of
spins in the chain. Physical units are chosen throughout the
article so that 7 = 1. It is important to note that the inter-spin
couplings and the amplitude of the magnetic field are site
independent. This is a feature that differenciates the system at
hand from a few previous proposals for perfect state transfer
available in the literature [5—7,10]. Although Eq. (1) is spatially
unmodulated (in analogy with Ref. [3]), the price to pay in
order to achieve unit transfer fidelity for any length of the
chain is the time dependence of the interaction strengths. We
will show later in this article that such a request can also be
relaxed: perfect state transfer can be achieved even if only
the magnetic field is time dependent while any other term is
constant.

Equation (1) does not preserve the number of spin exci-
tations as it does not commute with the total z component
of the spin of the system. Frequently, when one faces the
case of dynamics ruled by spin-preserving models, on the
assumption of proper boundary conditions, it is convenient
to diagonalize the coupling Hamiltonian by means of a
sequence of operation comprising Wigner-Jordan, Fourier, and
Bogoliubov transforms [11]. In our case, due to the spin-non-
preserving nature of A, the mutual coupling among sectors of
the Hilbert space labeled by different quantum spin numbers
has to be considered. Rather than applying techniques for the
exact diagonalization of Eq. (1), here we tackle the evolution of
the system by means of an information-flux approach, which
is specifically designed for multispin interactions [12,13]. Our
method does not rely on the explicit analysis of the energy
spectrum of the chain and allows us to gather an intuitive
picture of the dynamics at hand. Such an approach has already
proved its flexibility and efficiency in identifying Hamiltonian
configurations suitable for state transfer and entanglement
generation [6,10,14].

III. INFORMATION-FLUX APPROACH

The information-flux approach requires the time-evolved
form of specific operators O; in the Heisenberg picture, which
is given by

O,y =UMD'0;U), )

with Z(¢) the time evolution operator, O0=2X,Y,Z and
j=1,..., N. Using this method, one is able to understand
the dependence of O ;(t) on any Oy and design the proper
set of interactions in such a way that it becomes possible to
drive a desired evolution by means of engineered quantum
interference [12]. In our case, we will exploit the time
dependence of the couplings in order to induce precisely this
effect.

Our task here is the transmission of quantum information
from the first spin to the last one in the chain. This requires the
study of Oy (r)’s, which can be decomposed into the operator
basis built out of all possible tensor products of {fi, X i l?i, Z,-}
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with I; the 2 x 2 identity operator applied to spin i. We have

3 1000l Oflde). ()

0'=X,Y,Z,1

(Wo|On ()| Wo) =

where |Wo) = |¢o); ® |Y¥o), u is the initial state of the whole
chain, the first spin being in |¢); and the rest of the chain in
|Y0),  (this definition can be easily generalized to the case of
mixed states of the chain). The coefficient Z9©'(¢) is defined as
the information flux at time ¢ from 01 to O ~ [12]. If our system
achieves |Z99'| = 1 when O’ = O and for O = X, Y, Z, we
have perfect | — N state transfer.

We can determine which are the terms of the operator
basis that are involved in the decomposition of Oy(t)’s by
representing such operators in an oriented weighted graph,
whose construction is straightforward. Each node of the graph
corresponds to an operator involved in the decomposition. If
the interest is focused on the evolution of Oy, it should occupy
the first node of the graph. Any operator resulting from the
commutators of O n with the Hamiltonian should be included
in the graph and linked to it with an oriented edge. These
steps are repeated as necessary and the construction process
ends when no new operator is created on commutation. A
numerical weight, determined by the performed commutations
and needed in order to calculate the information flux, is
attached to each edge of the graph. Finally, an outgoing
(incoming) edge corresponds to a +(—) sign. Due to the
particular form of H in Eq. (1), Xy and Yy will generate
the oriented graph shown in Fig. 1 (where the case N = 5 has
been considered). Clearly, Yy already appears in the graph
corresponding to Xy and we do not need to construct a
dedicated graph for it.

For the sake of clarity, here we show how to evaluate the
information flux for a time-independent Hamiltonian such
as Eq. (1) for J, ,(t) = J;,,. The method can be explicitly
extended to any time-dependent model. However, in our
numerical analysis we divide the total time of the evolution in
a series of short steps within which the Hamiltonian is taken as
constant. In this way, in the limit of a large number of steps and
correspondingly short time steps, the flux of information can be
accurately evaluated by means of only a light computational
effort. A cutoff in the number of considered temporal steps
is chosen so as to have no noticeable difference in the
results if a larger number is taken. For a time-independent

Hamiltonian, O;(t) = oM 0; ¢~ and, by means of the

FIG. 1. (Color online) Oriented graph describing how the op-
erators Xs and Y5 evolve in the Heisenberg picture. The operators
within each circle (a node) give rise to their nearest neighbors on
commutation with H in Eq. (1). The oriented edges connect such
nodes. The corresponding coefficients are also shown and an outgoing
(incoming) edge with respect to a node implies a +(—) sign. Black,
light green, and dark red edges are associated respectively with B,
Jy, and J, interaction terms.
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operator expansion formula [15], we have

k
o,0-Y. W a0, @)

k=0

with G (O ;) the nested commutator of order k between H and
Oj and é()(OAJ) = Oj

Here, for the sake of a clear presentation of our proposal
and without loss of generality, we focus on the case of N =5
(the case of an arbitrary N being easily extrapolated from our
example) and study the dynamics of X5 under the model in
Eq. (1). The terms in the operator expansion are deduced by

Ci(Xs) = [H, Xs] = —2i J, Y425 + 2i B Vs,
Co(Xs) = [H, [H, Xs1) = 2iBQ2i J; X475 — 2i B Xs)
—2i J,(2i Jy X5 +2i J, X3Z2425 — 2i B X4Z5),

&)

Clearly, the only operators involved in this iterative sequence
are those in the graph of Fig. 1. Therefore, it is possible to
write the evolved operators Xs(f) as

Xs(t) = a1 (O Xs + (Vs Zs + a3() X324 Zs

AAAAA

+ay(1)V2 232475 + as(t)X 122232475
+a6(t)Ys + a7 () XaZs + ag(t) Y3 Z4 Zs

tao()X2232425 + ar0()Y1 22252425 (6)
When the parameters o(¢) cannot be analytically evaluated
due to the difficulties of the evolution, it is still possible to
approximate them by means of recurrence formulas. We have

M
2
a;(t) ~ %)?, )
1=0

where M is a proper cutoff and
1 -1 -1
o = 1,0 + Bl

/ -1 - -1
o = Jya{ " + Jea{ " — Bai Y, ©)

witha” = 0 (1) for j # 1(j = 1).Itis immediate to note that

these recurrence formulas come directly from the commutation
rules in Eq. (5). They can thus be easily derived from the graph
in Fig. 1. The same formulas, but with the initial conditions

(0) =0 (1) for j # 6 (j = 6), describe the evolution of the

operator ¥s. The approach described so far constitutes the basis
for the analysis of perfect quantum state transfer via temporally
controlled information kicking, which is the focus of the next
section.

IV. THE IDEAL CASE

Let us study the action of 7{ in Eq. (1) when only one of
the inter-spin coupling terms differs from zero. The graph in
Fig. 1 shows that, in these conditions, every node is linked to
just one nearest neighbor. In fact, the full oriented graph for the
information flux analysis corresponding to Eq. (1) can be seen
as the juxtaposition of three mutually disconnected subgraphs,
each associated with only one of the coupling terms in # and
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FIG. 2. (Color online) “Operator jumps” induced by HAin Eq. (1),
when J, and J, are alternately different from zero. J, (J,) is nonzero
in the time intervals #; with an odd (even) value of i, and its integral
over each of these intervals is equal to 7 /4.

represented by a different color in Fig. 1. It is easy to track the
operator dynamics associated with these configurations. Let
us consider, for instance, the case B(t) # 0 and J; ,(t) = 0Vt.
Figure 1 (black color) shows that X5 and ¥’s are mutually linked
and, by using the formal quantitative analysis of the previous
section, we have

As(t) = cos[2B(1)]1X s + sin[28(1)] s,
Vs(t) = —sin[2B(1)]1Xs + cos[2B()]Ys

with (1) = [, B(t)dt'. Clearly, an isolated node in a graph
corresponds to an operator that is constant in time [for
instance, 2?5(t) = Xs when J, #0, J, = B =0, as in Fig.
1 (light green)]. This result is key to our investigation. If
we let the interaction terms be alternatively nonzero for a
time window [0, 7] such that 8(t) = 7 /4, the action of H in
Eq. (1) will correspond to kicks of information between pairs
of connected nodes of the graphs discussed above. In Fig. 2
we show an example for J, ,(f) being alternately nonzero

for five time intervals such that f Y J(ehdt = /4 for
j=173, S[f” Jy(thdt' = m /4 for j _2 4], with J,(t) =0
[Jy() =0] whenever Jy(t) # 0 [Jx(t) # 0]. The negligibility
of the mutual overlaps of the coupling functions ensures
that the information kicks occur according to the ordered
scheme in Fig. 2. A similar transport of information from
the leftmost to the rightmost part of the graph is achieved by
kicking information using a pattern given by fixing J, =0
(Jy =0) and alternately changing the amplitude of J, (Jy)
and B in a way so as to satisfy the conditions stated above.
After a sequence of N (for time-dependent J, and Jy) or
2N — 1 kicks (for time-dependent B and either J; or Jy), one
obtains

€))

Xs(t%) = X1 222524 Zs,

. (10
Vs5(t*) = Y1Z,2324Zs,

where 7* is the total time of the evolution. By initially
preparing the jth spin of the chain (except the first) in an
eigenstate of Z j» there is a complete end-to-end transport
of information across the chain. This evolution interaction
can thus be exploited for a perfect state transfer exactly as
it happens for the Hamiltonian model of Ref. [5]. Quite
interestingly, any other state-transfer protocol relying on
the same information-flux structure, as those in Refs. [6,7],
can be mapped into the very same temporal pattern of
information kicking illustrated here. This is the main result
of our investigation, proving that an alternative to the standard
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architecture of properly arranged interaction-strength patterns
for quantum state transfer is actually possible. The key is
the introduction of an alternated series of nonoverlapping
temporal kicks of information. The equivalence of the two
scenarios has here been proven in terms of an isomorphism of
the respective information fluxes and is, as such, completely
general. Depending on the details of a specific practical
realization of the intra-chain couplings, temporal control
of the form highlighted here can be more convenient than
prefabrication of a specific pattern of static coupling strengths.
This is the case, for instance, for quasi-unidimensional optical
lattices loaded with neutral atoms, where inter-site couplings
are achievable in a time-controlled way via external optical
potentials or cold atomic collisions. In perspective, this could
also be a viable option in solid-state structures (such as arrays
of Josephson junctions), where fabrication of exactly the
pattern required for ideal state transfer would be demanding (if
not prohibitive) already at moderate chain lengths. Achieving
control via proper voltage/magnetic pulses inducing time-
controlled information kicks would be a possibility to exploit
instead.

V. THE REALISTIC CASE

In order to go beyond the idealization of the scheme
assessed in the previous section and make our analysis closer
to more realistic situations, the ideal conditions on the pattern
of time-dependent couplings invoked before will be relaxed
here. Let us first consider J,(t) = 0Vt with J,(¢) and B(¢)
following the behavior dictated by

Jx(t) = Jmax[Sin(t + 77/4)]ma
B(t) = Bmax[cos(t + 7 /4)]",

(1)

where J,,ux = By are the maximum values of J,(¢) and B(¢)
(properly chosen in order to satisfy the integral condition)
and m is an even number. Pulse shapes of this form (for
moderate values of m) are routinely generated by commercial
pulse generators. A large value of m obviously implies small
overlap between the two coupling functions. A period of
27 will correspond to a “horizontal” and a “vertical” kick
in the associated operator graph. For a numerical analysis
of the information-flux behavior under the action of this
time-dependent Hamiltonian, we divided the total time interval
[0, 2N 7] in short steps. Within each of them, both J,(¢) and
B(t) are taken as constant and numerically equal to the average
values they assume in the respective time window. In this
way, the recurrence formulas presented in Sec. III allow us
to estimate the evolution of X N Or Yy for the duration of the
step. Clearly, the shorter is the time step, the more accurate
is the estimate. The method is then iterated for each step and
the total evolution of X N Oor )A’N is finally reconstructed. As the
number of operators involved in each decomposition is equal
to 2N, a light computational power is required.

In order to evaluate the performance of our scheme,
both the coefficient ay(t), attached to X,Z,--- Zy in the
decomposition of Q?N(t), and a,n(¢), attached to f/l 22 cee ZN
in the decomposition of )7N(t), should be studied. However,
one can equally well characterize the whole state transfer
process simply by considering o () only. The maximum value
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FIG. 3. Maximum value of «ay(¢) against the number of spins N
in the chain. The value of m in Eq. (11) is respectively equal to 4
[panel (a)] and 6 [panel (b)].

of an (1) for two values of m is studied against N in Figs. 3(a)
and 3(b). It is matter of performing an explicit calculation to
see that the maximum of o,y (¢) follows similar behaviors.
We then quantify the mean transmission fidelity F(N, t) by
averaging the state fidelity (Vin|on(?)|¥in) between a pure
input state |i,) to transfer and the state py(t) of spin N at
time 7. By assuming a uniform distribution of |yr,)’s [3], we
find

F(N,2N7m) = {[1 4+ ay@N7)(3 + fay@Nm)]. (12

For instance, if we take m = 6, we obtain for any length
of the chain N < 25 a value of F(N,Q.NT[) > (0.984. As
an(2Nm) — 1, the average fidelity converges to 1, resulting
in perfect state transfer.

The ability to temporally control both J, and B can,
however, be experimentally demanding. In particular, while
the arrangement of external potentials with a desired time
dependence can be relatively straightforward, this might not
be the case for J,(¢)’s, which are in general determined by
coupling mechanisms internal to the chain itself and hardly
controllable with the degree of accuracy required by our
scheme. We thus make our requests lighter by taking J, as
constant and allowing a time dependence only for the external
magnetic field. Obviously, it is formally the same to take a
constant B with time-varying J,(¢). However, pragmatically
our choice seems to us to be the least demanding. We thus
adapt the strategy assessed before to the case of J, = Jeonst-
Our quantitative study shows that a slight modification to the
sinusoidal trend described before is sufficient to retain the
efficiency of the protocol. We take well-spaced square-shaped
pulses for B(t) as shown in Fig. 4. The parameter § quantifies

1.2
1.0
0.8}
0.6f
0.4+
0.2}

B(b), Jx(1)

I A

0 T T n 27 Rl
2 2 2

Jt

FIG. 4. (Color online) Temporal behavior of B (red line) and J,
(blue line) for a value of § = 5. The quantities plotted in the vertical
axis are in units of J.
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0.99 ¢ °

0.98 ¢

ay (2nN)

0.97 ¢

0.96 1

1 1 1 1

5 10 15 20
)

FIG. 5. Maximum value of oy (¢) against the parameter é for a
chain with N = 5 spins.

the width of magnetic field pulses. It can be roughly seen as
half of the overall period divided by the time in which B is close
to its maximum value. Clearly, a large value of § corresponds
to a more ideal case, as the overlap between the two functions
is smaller, hence affecting the maximum value that o () can
achieve and, in turn, the transfer fidelity. The dependence of
an(2Nm) on § is shown in Fig. 5 for N = 5. The fidelity
F(5,10m) is already larger than 0.99 for § = 8. Of course,
the effect of the overlap between the two functions depends
on N: the longer the chain, the lower the transmission fidelity.
The dependence of the fidelity on the length of the chain is
plotted in Fig. 6. We note that, for N up to 15, a value of
8 = 16 is large enough to obtain the maximum of oy ~ 0.96
(corresponding to F ~ 0.974).

To give a complete overview of the protocol, one can
finally analyze, for a fixed §, the behavior of the maximum
of oy against N. The case of § = 20 has been considered,
and the results are shown in Fig. 7. In these conditions, the
corresponding transmission fidelity for a chain with N = 25
spins is ~0.947.

We have also studied the case in which the nonzero
interaction terms are J, and J,, with B = 0. The transmission
fidelity is larger than the one obtained with nonzero J, (J,)
and B, as the number of kicks required is smaller and the
effect of the overlap is thus reduced. However, we presented
the results for nonzero J, (Jy) and B as we consider the choice
of a time-dependent magnetic field the least demanding from
an experimental point of view.

1.0 +

09 r

0.8 1

Oly (27'EN)

0.7

0.6

1 1 1

5 10 15 20
5

FIG. 6. (Color online) Maximum of o (¢) against the parameter
8 for N = 2k + 1 with k = 2 — 7 (going from the top to the bottom
curve).
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FIG. 7. (Color online) Maximum of «y(¢) against the length of
the chain N for § = 20.

VI. GENERATION OF MULTIPARTITE ENTANGLEMENT

In this section we discuss another interesting aspect of the
proposed model, namely the possibility to generate genuine
multipartite entanglement. Bipartite as well as multipartite
entanglement creation in spin chains has been recently studied
from different points of view. For instance, one can generate
entanglement by means of a proper pattern of coupling
parameters [14], by driving the evolution through a resonant
interaction [16], by performing a global quench [17], or by
leaving two empty sites in a uniformly filled chain [18]. By
assuming the ability to initialize the state of the chain before the
application of the pulse sequence in the protocol proposed in
this article (we necessarily have more demanding requirements
for this particular task), Greenberger-Horne-Zeilinger (GHZ)
states can be generated [19]. Such a resource is well known
to be useful for multiagent protocols for distributed QIP-like
quantum secret sharing, remote implementation of unknown
operations and quantum average estimation [20]. Let us
consider again the Hamiltonian /{ in Eq. (1) under the ideal
conditions mentioned above. It is interesting to notice that,
after the proper kicking of information, the evolution of all the
spin operators associated with the elements of the chain have
exactly the same form as those obtained by using the model
proposed in Refs. [5,6].

We now want to evaluate the dynamics of a particular pure
state of the chain under the action of this Hamiltonian. We
will need to abandon the assumption that at most a single
spin excitation populates the system. It is straightforward
to check that, whenever spin i is in an eigenstate of Z,-,
the corresponding symmetric spin N —i + 1 will end up in
the same state. Whenever two or more spins are initially in
eigenstates of X or ¥, the corresponding symmetric spins will
end up in an entangled state. Let us consider, for definiteness,
an even number of spins. We call {ay, ay, ..., a,} the indices
corresponding to spins initially prepared in eigenstates |d),, =
0, 1), of Z and {by, by, ..., b,} those labeling spins initially
prepared in eigenstates |d);,, = |+, —) p; Of X (the analysis can
be straightforwardly generalized to the case of odd number of
spins and eigenstates of ¥'). The initial state of the chain is thus

Wo) = @) |1d, d)api =1,....n). (13)
{

a;,bi}

022319-5
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It is matter of a straightforward calculation to see that, in this
case, the final-state corresponds to a mirror-inversion operation
on the state

1 ~ N
|\If(t)>=7®|d>a,, ® | Q) ), +i(—1)' Q) Zs,|d), | -
2 {a;} {bi} {bi}

(14)

with [ = 0, 1 depending on the actual form of |W,). Clearly,
|W(t)) is the tensor product of a separable state for spins
{a1,as,...,a,} and an m-particle GHZ-like state for spins
{b1, by, ...,by}.

VII. REMARKS

By means of the information flux approach, we have
presented a new strategy for obtaining perfect state transfer
in a finite, open chain of spins. We have shown that the
evolution of spin operators under the action of a site-dependent
Hamiltonian that is already known to allow perfect state
transfer can be mimicked by the use of a homogeneous

PHYSICAL REVIEW A 81, 022319 (2010)

time-dependent Hamiltonian. The engineering of the coupling
strengths, necessary in the first scenario, is thus converted
to a temporal arrangement of the interaction terms. We
have discussed a particularly interesting case where such
a time dependence can be reduced to the requirement of
just a nonconstant magnetic field affecting the spins of the
chain. Interestingly, this very same model can also be used
in order to create a GHZ-like entangled state shared by a
subset of spins of our choice, leaving all the other spins in
a separable state. We believe that our proposal to achieve
perfect state transfer and quantum correlation sharing in many-
body registers of interacting spins widens the possibilities
for efficient and nondemanding short/medium-haul quantum
communication.

ACKNOWLEDGMENTS

We acknowledge support from the UK EPSRC and QIPIRC.
C.D.F.is supported by the Irish Research Council for Science,
Engineering and Technology. M.P. is supported by EPSRC
(EP/G004579/1).

[1] S. C. Benjamin and S. Bose, Phys. Rev. Lett. 90, 247901 (2003).

[2] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and
G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

[3] S. Bose, Phys. Rev. Lett. 91, 207901 (2003).

[4] S. Bose, Contemp. Phys. 48, 13 (2007).

[5] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys. Rev.
Lett. 92, 187902 (2004); C. Albanese, M. Christandl, N. Datta,
and A. Ekert, ibid. 93, 230502 (2004); G. M. Nikolopoulos, D.
Petrosyan, and P. Lambropoulos, Europhys. Lett. 65,297 (2004);
J. Phys. Condens. Matter 16, 4991 (2004); M. Christandl, N.
Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl, Phys.
Rev. A 71, 032312 (2005).

[6] C. Di Franco, M. Paternostro, and M. S. Kim, Phys. Rev. Lett.
101, 230502 (2008).

[7] M. Markiewicz and M. Wiesniak, Phys. Rev. A 79, 054304
(2009).

[81 A. O. Lyakhov and C. Bruder, Phys. Rev. B 74, 235303
(2006).

[9] A. Wojcik, T. Luczak, P. Kurzynski, A. Grudka, T. Gdala, and
M. Bednarska, Phys. Rev. A 72, 034303 (2005).

[10] C. Di Franco, M. Paternostro, D. I. Tsomokos, and S. F. Huelga,
Phys. Rev. A 77, 062337 (2008).

[11] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).

[12] C. Di Franco, M. Paternostro, G. M. Palma, and M. S. Kim,
Phys. Rev. A 76, 042316 (2007).

[13] C. Di Franco, M. Paternostro, and G. M. Palma, Int. J. Quantum.
Inform. 6, Supp. 1, 659 (2008).

[14] C. Di Franco, M. Paternostro, and M. S. Kim, Phys. Rev. A 77,
020303(R) (2008).

[15] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

[16] F. Galve, D. Zueco, S. Kohler, E. Lutz, and P. Hinggi, Phys.
Rev. A 79, 032332 (2009).

[17] H. Wichterich and S. Bose, Phys. Rev. A 79, 060302(R)
(2009).

[18] G. Gualdi, I. Marzoli, and P. Tombesi, e-print arXiv:0812.2404.

[19] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell
Theorem, Quantum Theory, and Conceptions of the Universe,
edited by M. Kafatos (Kluwer, Dordrecht, 1989), p. 69.

[20] M. Hillery, V. BuZek, and A. Berthiaume, Phys. Rev. A 59, 1829
(1999); C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer,
M. Zukowski, and H. Weinfurter, Phys. Rev. Lett. 95, 230505
(2005); A. M. Wang, Phys. Rev. A 75, 062323 (2007); C. Di
Franco, M. Paternostro, and M. S. Kim, ibid. 75, 052316 (2007).

022319-6



