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Vortex entanglement in Bose-Einstein condensates coupled to Laguerre-Gauss beams
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We study the establishment of vortex entanglement in remote Bose-Einstein condensates (BECs). We consider
a two-mode photonic resource entangled in its orbital angular momentum (OAM) degree of freedom and, by
exploiting the process of light-to-BEC OAM transfer, demonstrate that such entanglement can be efficiently
passed to the matterlike systems. Our proposal thus represents a building block for novel dissipation-free and
long-memory communication channels based on OAM. We discuss issues of practical realizability, stressing
the feasibility of our scheme, and present an operative technique for the indirect inference of the set vortex
entanglement.
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I. INTRODUCTION

The rich variety of coherently exploitable degrees of free-
dom with which a photonic system is endowed has been exten-
sively used in recent years in order to demonstrate the building
blocks of quantum technology protocols, including quantum
cryptography [1], quantum repeaters [2], teleportation, and
quantum computing [3]. In this context, the exploitation of
orbital angular momentum (OAM) carried by light is settling
as a new and exciting opportunity for coherent manipulation
at the classical and quantum levels [4]. High-density data
transmission [5], activation of micromachines, and optical
tweezers [6] are among the most prominent applications of
optical OAM so far.

In addition, the field of quantum information processing
has now started exploiting the additional opportunities offered
by this photonic degree of freedom for communication and
manipulation purposes. It has been shown that it is possible
to create OAM-entangled photons by means of a routinely
used setup such as spontaneous parametric down-conversion
(SPDC) [7]. This has triggered a plethora of studies on
how to generate, manipulate, and detect nonclassical states
of OAM [8], culminating in the demonstration of Bell’s
inequality violation by OAM-entangled two-photon states [9],
the introduction of so-called hyperentangled states [10], the
design of quantum cryptographic schemes based on higher-
dimensional systems [11], and the transfer of OAM states
from light to matterlike systems [12].

In particular, the latter scenario holds the potential for the
realization of experimentally feasible longtime quantum mem-
ories embodied by superfluid rotational states of Bose-Einstein
condensates (BECs) [12–16]. The spatial coherence intrinsic in
a BEC allows for a superfluid vortex state in which the bosons
in the condensate have a well-defined and quantized OAM,
which offers a perfect match with rotating photon carriers.
Along the seminal lines traced by the experiments in [12], a
few theoretical proposals for the light-to-vortex state transfer
have been presented [13–16]. Here we close the circle of these
proposals and show that it is possible to create entanglement
between two spatially separated BECs by transferring OAM
from entangled photon resources to the condensates. We
propose a simple and efficient scheme to achieve this goal using
experimentally achievable parameters and routinely produced

OAM-entangled light resources. On a different level, our study
proposes a scheme that is able to transfer (with, in principle,
100% efficiency) higher dimensional entanglement between
two independent systems by means of bilocal interactions,
thus contributing to an area that is witnessing theoretical and
experimental interest (see Choi et al. [2] and Ref. [17]).

The article is organized as follows. In Sec. II, we introduce
the idea behind our proposal and address the Hamiltonian
for the OAM entanglement transfer. The key part will be
the introduction of an adiabatic Hamiltonian involving Raman
processes where photonic OAM quanta are used in order to
put a single BEC into a vortex state with nonzero winding
number. Section III represents the core of our proposal by
providing a clear physical picture of the process discussed
previously and assessing the quantitative performance of the
light-to-BEC entanglement transfer. By starting from an OAM-
carrying photonic state, we show that significant vortex-vortex
entanglement is established by our scheme for experimentally
realistic parameters. Section IV describes realistic techniques
for the inference of such quantum correlations based on the
reverse of the map addressed here. Finally, in Sec. V, we
summarize our findings and open up perspectives for further
development. A few technical steps that complement the
quantitative analysis presented in the body of the article are
contained in the appendix.

II. THE MODEL

Let us start by presenting the model used in order to
describe the light-to-BEC transfer of entanglement. We shall
see that a key point in this mechanism resides in the collective
coupling of the atoms belonging to one of the BECs to the
respective light field. Together with the indistinguishability of
the resource photons, this permits us to entangle the two BECs.
We consider two spatially separated and trapped BECs, each
with NI

0 (I = A,B) 87Rb atoms and let each of them interact
with one of the field modes of an OAM-entangled two-photon
state (see the sketch in Fig. 1). Such a photonic resource can be
produced, for instance, by type I parametric down-conversion
of a Gaussian laser beam, which is an OAM-preserving
process: The sum of the OAM carried by the entangled signal
and idler mode produced by a laser-pumped nonlinear crystal
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FIG. 1. (Color online) Sketch of the proposed setup. An OAM-
entangled two-photon state is produced by SPDC of a Gaussian pump.
Each output mode interacts with a respective trapped BEC, which is
also pumped by an intense field with no OAM. The local matter-light
interaction transfers the OAM entanglement from the field modes to
the condensates’ rotational degree of freedom.

equals the OAM initially carried by the pump [7]. In this article,
we shall consider a two-photon state produced by SPDC of a
laser beam with no-OAM (i.e., prepared in a Gaussian spatial
mode). This implies that the output modes, here labeled as α

and β, carry opposite OAM and enter the state

|�〉αβ � C0|10〉α|10〉β + C1,−1|11〉α|1−1〉β
+C−1,1|1−1〉α|11〉β. (1)

Here |nk〉α indicates an n-photon state populating mode α

and carrying OAM equal to h̄k. Moreover, the presence of
|10〉α|10〉β in |�〉αβ accounts for a residual component with no
OAM and |C0|2 + |C1,−1|2 + |C−1,1|2 � 1 (having neglected
components with higher OAM, which are very weakly pop-
ulated at moderate pump intensities). The main idea behind
our proposal is that the arrangement of a locally assisted
OAM transfer from a light mode to the respective BEC would
also allow for the transfer of quantum correlations, therefore
constructing an effective entangled channel involving remote
matter systems.

The basic building block for the transfer is an off-resonant
double Raman scattering process. We consider each individual
atom as a six-level system, shown in Fig. 2. The energy scheme
comprises a ground-state triplet made out of a nonrotating state
|0〉 and two other states, indicated as |±1〉, having angular
momentum ±h̄. The elements of excited-state triplet |e〉 and
|e′〉 are linked to |±1〉 by two classical pumps, while the field
modes in |�〉αβ drive the |0〉 ↔ |E,e,e′〉 transitions. In what
follows, � and �0 indicate the one-photon Raman detunings,
which are set by appropriately choosing the frequencies of
the driving fields. The classical pumps are taken to have a
Gaussian spatial profile so that photons scattered in the |e〉 ↔
|1〉 and |e′〉 ↔ |−1〉 transitions carry no OAM. Together with
the conditions on the OAM properties of Eq. (1), this ensures

FIG. 2. (Color online) Six-level configuration for OAM transfer.
We show a schematic of the relevant energy levels of a single 87Rb
atom interacting with Laguerre-Gauss driving fields and classical
Gaussian pumps with frequency ωp . The ground-state triplet com-
prises states having angular momentum 0 and ±h̄. The excited-state
triplet is adiabatically eliminated from the dynamics by a double
off-resonant Raman transition with the one-photon detunings �

and �0. Two-photon detunings δ±1 are also introduced for the
stabilization of the entanglement-transfer process. The component
in Eq. (1) carrying zero OAM (being in a Hermite-Gauss spatial
mode) drives off-resonantly the |0〉 ↔ |E〉 transition.

that an atom undergoing the two-photon Raman transition from
state |0〉 to |±1〉 (as shown in Fig. 2) acquires an OAM exactly
equal to ±h̄.

We now introduce the second-quantized matter field
operators ψ̂I,j (r), obeying the bosonic commutation rules
[ψ̂I,i(r),ψ̂†

J,j (r′)] = δI,J δi,j δ(r − r′). Here I,J = A,B are la-
bels for the BECs, while i,j = 0, ± 1,E,e,e′ refer to the
atomic states. As for the photonic part of our system, standard
commutation relations [ĉnI ,k,ĉ

†
nJ ,k′] = δnI ,nJ

δk,k′ involving the

creation (annihilation) operator ĉ
†
nI ,k

(ĉnI ,k) hold. Here nA = α

(nB = β) refers to the photonic mode α (β) that interacts with
condensate A (B). Finally, k,k′ = ±1,0 refers to the OAM
degree of freedom of the photon.

Besides the term describing the energy of the free photonic
fields, the Hamiltonian of the system consists of the following
four terms:

Ĥ = Ĥa + Ĥaa + Ĥad + Ĥap, (2)

which we now address in detail. The first two terms describe
the properties of the trapped BECs and are given by

Ĥa =
∑
I,j

∫
VI

dr ψ̂
†
I,j (r)

(
− h̄2

2m
∇2

I + VI,j (r)

)
ψ̂I,j (r), (3)

Ĥaa = 1

2

∑
I,j,j ′

ηI
j,j ′

∫
VI

dr ψ̂
†
I,j (r) ψ̂

†
I,j ′ (r) ψ̂I,j ′ (r) ψ̂I,j (r).

(4)

In all the preceding, VI is the quantization volume for the
light-matter interaction involving condensate I . The VI,j (r)s
are the state-dependent atomic trapping potentials, ηI

j,j ′ =
(4πh̄2/m)aI

j,j ′ accounts for the collisional energy between
two atoms (of mass m) in states j and j ′, and aI

j,j ′ is the
corresponding s-wave scattering length. As will be clarified
later on, the excited triplet {E,e,e′} can be adiabatically
eliminated from the dynamics of the atomic system. Therefore,
by assuming no initial population of these states, we can
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simplify our treatment and take aI
j,E = aI

j,e = aI
j,e′ = 0 for

j = 0,±1. The third term in Eq. (2) describes the interaction
between BEC I and the quantized field mode nI and can be
written as

Ĥad =
∑

I=A,B

[
χI,0 ĉnI ,0

∫
VI

dr ψ̂
†
I,E(r)ψ̂I,0(r)AnI ,0(r)

+χI,1ĉnI ,1

∫
VI

dr ψ̂
†
I,e(r)ψ̂I,0(r)AI,1(r)

+χI,−1ĉnI ,−1

∫
VI

dr ψ̂
†
I,e′ (r)ψ̂I,0(r)AI,−1(r)

]
+ H.c.

(5)

The coefficients χI,k(k = 0,±1) are the effective dipole
moments associated with the transitions depicted in Fig. 2.
The functions AnI ,k(r) describe the spatial shape of the states
entering |�〉αβ , and we choose them to be

AnI ,0(r) = i

√
h̄ω0

2ε0VI

eikzze
− r2

W2 ,

(6)

AnI ,±1(r) = i

√
h̄ω±1

2ε0VI

(√
2r

W

)|1|
e±iφeikzze

− r2

W2 .

Here ε0 is the vacuum permeability. While the first of these
equations refers to a field mode having a Gaussian spatial
profile, the second describes OAM-carrying Laguerre-Gauss
beams. We assume that the beam-waist W is larger than any
linear dimension of the BECs so that the Gaussian part of
the function reduces to a constant. This approximation also
ensures the collective nature of the interaction between the
fields and the atoms belonging to a given BEC. The last term
in Ĥ describes the coupling between the classical pumps and
the BECs:

Ĥap =
∑

I=A,B

[
h̄I e

−iωI t

∫
VI

dr ψ̂
†
I,e(r)ψ̂I,1(r)eikI ·r

+ h̄I e
−iωI t

∫
VI

dr ψ̂
†
I,e′ (r)ψ̂I,−1(r)eikI ·r

]
+ H.c.

(7)

The coefficients I are the Rabi frequencies for the matter-
pump interactions. Moreover, we initially prepare each con-
densate in the atomic state |0〉 by means of optical pumping
techniques, for instance, in such a way that the excited
triplet can be considered as empty. We now proceed with the
adiabatic elimination of the excited states under the assumption
of large single-photon detunings � and �0 (with respect
to the typical coupling rates entering Ĥaa , Ĥad , and Ĥap).
We take the time evolution due to the fields to be faster
than the center-of-mass motion of the atom when in one of
the excited levels so that we can neglect the free atomic
Hamiltonian for these states. We move to a proper rotating
frame where we redefine the excited-state (ground-state) mat-
ter field operators as ψ̂I,e = ˆ̃ψI,ee

−iωl t , ψ̂I,e′ = ˆ̃ψI,e′e−iω−1t ,

and ψ̂I,E = ˆ̃ψI,Ee−iω0t ( ˆ̃ψI,k = e−iωI t ψ̂I,k) and the photonic
operators as ˆ̃cI,k(t) = eiωI t ĉI,k (with k = 0,±1). Following the
work of Marzlin et al. [13] and Kapale and Dowling [15], we

explicitly allow for two-photon Raman detunings δ±1(t) =
ωl − ωp(t) − ω̃±1 (see Fig. 2), which help in the stabilization
of the transfer process (see also Ref. [14]). Here h̄ω̃±1 are
the actual energies of the rotating atomic states. In fact, one
can intuitively understand the necessity for a time-dependent
two-photon detuning as a result of the adiabatic elimination of
the excited triplet and the existence of interatomic collisions,
which change the energies of the atom in time. Therefore, in
order to achieve efficient transfer of OAM entanglement, we
need a “chirped” frequency of the pump fields that allows us
to track and compensate for the change in energy levels. The
technical details behind the adiabatic elimination sketched here
are presented in the appendix.

We thus arrive at the effective Hamiltonian Ĥeff = ˆ̃Ha +
Ĥaa + ˆ̃H int for the description of the adiabatic interaction
between light and BECs, where

ˆ̃Ha =
∑
I,j

∫
VI

dr ˆ̃ψ
†
I,j (r)

[
− h̄2

2m
∇2

I + VI,j (r) + εj (t)

]
ˆ̃ψI,j (r),

(8)
ˆ̃H int =

∑
I,k

[
ˆ̃cnI ,k

∫
VI

drCnI ,k(r) ˆ̃ψ
†
I,k(r) ˆ̃ψI,0(r) + H.c.

+ ˆ̃c
†
nI ,k

ˆ̃cnI ,k

∫
VI

dr
χ2

I,l|AnI ,k(r)|2
�I

ˆ̃ψ
†
I,0(r) ˆ̃ψI,0(r)

]

+
∑

I

ĉ
†
nI ,0

ˆ̃cnI ,0

∫
VI

dr
χ2

I,0|AnI ,0(r)|2
�I,0

ˆ̃ψ
†
I,0(r) ˆ̃ψI,0(r).

(9)

In Eq. (8), j = 0,±1 should be taken, while in Eq. (9), it is
k = ±1. Moreover, we have introduced the coupling coeffi-
cient CnI ,k(r) = (h̄∗

I χI,k/�I )AnI ,k(r)e−ikI ·r and the energies
εj (t) such that ε0(t) = h̄ωI and ε±1(t) = h̄[ω±1 − δ±1(t) −
ω̃±1]. The term describing interparticle collisions Ĥaa remains
identical to Eq. (4). The interpretation of the form taken by
Ĥeff is straightforward. While Eq. (8) describes the energy
of the noninteracting matter part of the system, modified by
the introduction of δ±-related terms, Eq. (9) accounts for the
light-matter interaction and includes the dynamical ac Stark
shift effect arising from the adiabatic elimination. In particular,
the first term in ˆ̃H int describes a three-mode interaction where
photonic excitations are used in order to perform an atomic
transition between ground-triplet states. This is the key to our
analysis on OAM entanglement transfer and the starting point
of our quantitative study.

III. THREE-MODE EXPANSION AND LIGHT-INDUCED
TRANSFER OF OAM ENTANGLEMENT

A. Bosonic-mode expansion

In order to fix the ideas and discuss an experimentally
relevant case, we consider the anisotropic harmonic trap
potential VI (r,z) = (m/2)(ω2

r r
2 + ω2

zz
2) for each of the BECs

used in our proposal. Here ωz(ωr ) is the frequency of the trap
along the longitudinal (radial) direction. In order to be able
to neglect any longitudinal excitations, we assume ωz � ωr

so that each BEC is confined in a pancakelike structure. In
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the limit where the interatomic collisions are very small, the
cylindrical symmetry of the problem allows us to describe
the center of mass of one atom in a BEC by means of the
set of eigenstates (θ is the angular coordinate of a cylindrical
reference frame)

φI,0(r,z) = 1

π
3
4 ar

√
az

e
− 1

2

(
r2

a2
t

+ z2

a2
z

)
,

(10)

φI,±1(r,z,θ ) = 1

ar

re±iθφI,0(r,z),

with associated eigenvalues El = h̄ωz/2 + h̄(|1| + 1)ωr . Here
az,r are the characteristic lengths of the harmonic motion along
the longitudinal and radial directions. The description provided
by the eigenfunctions [Eqs. (10)] remains valid under the
assumption of dilute BECs so that their ground states result
from the simple tensor product of the single-particle states
φI,0(r,z). This is a good approximation as long as NIaI

j,j ′ 	 az

[18], implying that the scattered part of the single-particle wave
function contributes with only a small correction to the wave
function of the noninteracting case. In order to provide a better
picture of the anticipated three-mode interaction depicted
in Eq. (9), we now define new bosonic operators b̂I,j and
b̂
†
I,j for the matterlike part of our system as (omitting the

tilde from now on for readability) ψ̂I,j (r) = φI,j (r)b̂I,j . By
using the orthogonality of the φI,j (r) and the commutation
relations valid for ψ̂(r)s, it is straightforward to find that
[b̂I,i ,b̂

†
I,j ] = δi,j . Inserting these definitions into the effective

Hamiltonian, we obtain a much simplified and self-evident
picture of the process through

Ĥa =
∑
I,k

[EI,0 + |k|h̄ωr + εk(t)]b̂†I,kb̂I,k,

Ĥaa = 1

2

∑
I,j,j ′

ξ I
j,j ′ b̂

†
I,j b̂

†
I,j ′ b̂I,j ′ b̂I,j ,

(11)
Ĥint =

∑
I,k=l,−1

(gI,kb̂
†
I,kb̂I,0ĉnI ,k + H.c.)

+ b̂
†
I,0b̂I,0

∑
I,k

ρI,kĉ
†
nI ,k

ĉnI ,k,

where each coefficient can be expressed in terms of the
noninteracting wave functions, as shown in Table I.

TABLE I. Coupling rates in the effective Hamiltonian after
the introduction of the effective matterlike bosonic operators [see
Eqs. (11)] and their expressions in terms of the noninteracting atomic
wave function for a pancakelike potential.

Coefficient Corresponding expression

EI,0

∫
VI

drφ∗
I,0(r)[− h̄2

2m
∇2

I + VI,j (r)]φI,0(r)

gI,k

∫
VI

drCnI ,k(r)φ∗
I,k(r)φI,0(r)

ρI,0

∫
VI

dr
χ2

I,0|AnI ,0(r)|2
�I,0

|φI,0(r)|2

ρI,1

∫
VI

dr
χ2

I,1|AnI ,1(r)|2
�I

|φI,0(r)|2

ξ I
j,j ′ ηI

j,j ′
∫
VI

dr|φI,j (r)|2|φI,j ′ (r)|2

The effect of the light-matter coupling is now manifest:
besides the ac Stark shifts proportional to ρI,j , Ĥint consists
of a scattering process at a rate gI,k where the annihilation
(creation) of a photon of angular momentum k is accompanied
by the Raman transition |0〉I → |k〉I (|k〉I → |0〉I ). Such a
mechanism, which would determine a perfect transfer of OAM
from the light resource to the BECs, is disturbed by the
interatomic collisions in Ĥaa and should also take into account
the modifications induced by the dynamical shifts in Ĥa,int. The
creation of inter-BEC OAM entanglement is thus a trade-off
between these various processes. The task of Sec. III B is
precisely the quantitative assessment of such a trade-off. It
is worth remarking here that in virtue of the definitions of
εk(t), the term |k|h̄ωr + εk(t) appearing in the energy of
the rotating states with j = ±1 is explicitly dependent on
the two-photon Raman detunings δk(t) and takes the form
h̄(ωk − δk − ω̃k + |k|ωr ). When the interactions considered in
our scheme are included, the energy levels are shifted so that
the shift ω̃k − |k|ωr �= 0 is in general nonzero and, possibly,
time-dependent. In what follows, we shall assume that such a
shift occurs linearly in time.

B. Entanglement transfer process

As discussed in Sec. II, we assume an initial preparation
where the atomic excited triplet is empty and all the atoms
in each BEC populate |0〉I . We indicate such a collective
atomic state as |NI

0 〉I , which condenses information on
the population of level |0〉I and |±1〉I . On the other
hand, the OAM-entangled photonic resource is taken as
prepared in the experimentally realistic state |�Z〉αβ =
(1/

√
3)(|10,10〉αβ + |11,1−1〉αβ + |1−1,11〉αβ). (Here we put

the label Z, which refers to the state obtained by Zeilinger
and coworkers.) In Refs. [7,9], it was shown that two-photon
multidimensional OAM-entangled states generated by means
of SPDC can be effectively distilled into states very close to
|�Z〉αβ , thus making the contributions coming from states
having higher OAM negligible.1 This effectively makes the
Hilbert space spanned by photonic OAM states isomorphic
to that of a spin-1 particle, or qutrit, so that |�Z〉αβ describes
a maximally entangled two-qutrit state. The initial state is
thus taken to be |�(0)〉ABαβ = |NA

0 ,NB
0 〉AB |�Z〉αβ , whose

dynamics under Eqs. (11) are now evaluated in a rotating
frame defined according to Eq. (A2) (see the appendix).

It is straightforward to verify that when starting from
|�(0)〉ABαβ as given earlier, the evolved state |�(t)〉ABαβ

obtained on use of the effective Hamiltonian in Eqs. (11)

1By means of continuously pumped cavity-enhanced SPDC, which
is a customary method for the generation of photonic resources
for atomic memories and quantum repeaters, one can have highly
monochromatic twin-beam states in spatially very spread single-
photon wave packets carrying the desired value of angular momen-
tum. Such states can be treated, for all practical purposes, as plane
waves in our calculations. However, it is straightforward to adapt our
formalism to the case of pulsed SPDC by making the Rabi frequencies
appearing in Ĥeff explicitly time-dependent to incorporate the form
of the photonic wave packet.
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lies entirely in a nine-dimensional sector of the Hilbert space
spanned by the states

|�〉0 = ∣∣NA
0

〉
A

∣∣NB
0

〉
B
|10〉α|10〉β,

|�〉1 = ∣∣NA
0

〉
A

∣∣NB
0

〉
B
|11〉α|1−1〉β,

|�〉2 = ∣∣NA
0

〉
A

∣∣NB
0

〉
B
|1−1〉α|11〉β,

|�〉3 = ∣∣NA
0 − 1,11

〉
A

∣∣NB
0

〉
B
|0〉α|1−1〉β,

|�〉4 = ∣∣NA
0 − 1,1−1

〉
A

∣∣NB
0

〉
B
|0〉α|11〉β, (12)

|�〉5 = ∣∣NA
0

〉
A

∣∣NB
0 − 1,11

〉
B
|1−1〉α|0〉β,

|�〉6 = ∣∣NA
0

〉
A

∣∣NB
0 − 1,1−1

〉
B
|11〉α|0〉β,

|�〉7 = ∣∣NA
0 − 1,11

〉
A

∣∣NB
0 − 1,1−1

〉
B
|0〉α|0β,

|�〉8 = ∣∣NA
0 − 1,1−1

〉
A

∣∣NB
0 − 1,11

〉
B
|0〉α|0〉β.

The notation used here is such that |NI
0 − s,sk〉I indicates

a state where s atoms populate an atomic eigenstate of the
angular momentum with eigenvalue kh̄, while NI

0 − s atoms
populate the state |0〉I having zero OAM. It is worth stressing
that the number and structure of the states involved in the
evolution of a given initial state are strongly dependent on
the total initial angular momentum carried by the latter. In
fact, our effective Hamiltonian preserves the total light-matter
OAM. This property implies that the dynamically evolved state
of the system should be written as

|�(t)〉ABαβ =
8∑

i=0

fi(t)|�i〉, (13)

with numerical coefficients fi(t) such that
∑

i |fi(t)|2 =1. The
analytic solution of such a dynamics is a formidable problem,
and we thus resort to a numerical investigation in order to
infer the behavior of fi(t)s. To find the coefficients {fi(t)},
we have numerically solved the Schrödinger equation using
the Hamiltonian in Eqs. (11).2 We have explored a wide
range of parameters, including the case where the system
is symmetric under the exchange of the two BECs, finding
qualitatively similar results. In the following, we concentrate
on the symmetric case and use the parameters listed in the
caption of Fig. 3, which shows that a complete transfer of OAM
from the photonic state to the BECs is possible, in analogy
with the semiclassical case approached in Refs. [13–15].
The (dashed) green curve shows the temporal dynamics of
the probabilities |f1,2(t)|2, whereas the (solid) yellow curve
depicts |f7,8(t)|2 for a given set of the relevant physical
parameters and a specific choice for the functional form of the
chirped two-photon detunings. These two sets of probabilities
are almost mutually mirror symmetric. Damped oscillations
are superimposed to a monotonic behavior induced by the

2We have verified the validity of the description given by the
adiabatic Hamiltonian Ĥeff by numerically solving the full problem
represented by Eq. (2) for the same initial state and using parameters
validating the use of the effective coupling model. We have checked
that the normalization of the state vector spanned by the states in
Eq. (12) is maintained within the time window used for our study,
thus showing negligible leakage outside the relevant sector of the
Hilbert space.

FIG. 3. (Color online) Evolution of the state probabilities |fi(t)|2
against the interaction time t (in microseconds) for NI

0 = 105

atoms per condensate. Here f I
j,j ′ = 5 nm, I = 27.5 kHz, χI,±1 =

1.18 kHz, � = 90 kHz, and the two-photon detunings having the
functional form δ±1(t) = 2I (1 − I t/2) − ωt . The trap frequencies
are ωt = 70 Hz and ωz = 500 Hz. The photonic resource is tailored
at a wavelength of 702 nm at an angle of 4◦ off the initial pumping
Gaussian beam’s axis.

compensation arising from the chirped detunings [in our
case, δ±1(t) = 2I (1 − I t/2) − ωt ]. The low-lying (dotted)
red curve is for |f3,4,5,6|2, whose corresponding states only
marginally contribute to the evolution of the system. Finally,
the (dash-dotted) horizontal blue line shows the probability
|f0(t)|2, which does not change in time as |�0〉 is an eigenstate
of the effective Hamiltonian. As we shall see, this gives a lower
limit for the population of the ground state of the reduced
density matrix for the two BECs.

In fact, a plot of the populations of the BECs’ reduced den-
sity matrix, ρAB(t) = Trαβ(|�(t)〉ABαβ〈�(t)|), shows that the
state |NA

0 〉A|NB
0 〉B has always a finite occupation probability.

This is due to the unavoidable presence of photons carrying
no OAM that continuously project the two BECs onto their
ground states.

    0     200     400     600     800
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FIG. 4. (Color online) Time behavior of the populations of
the atomic states in ρAB (t) = Trαβ (|�(t)〉ABαβ〈�(t)|). The same
parameters as in Fig. 3 have been used here. The (dashed) green
curve is for |NA

0 ,NB
0 〉AB , and the (solid) yellow curve is for state

|B〉. The low-lying (dotted) red curves represent the probability that
the remaining two-BEC basis states are excited. The incomplete
population transfer from |0〉I to |±1〉I (I = A,B) is due to the
zero-OAM terms in |�Z〉αβ .
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The (solid) yellow curve in Fig. 4 shows the
population of the state |B〉= (|NA

0 −1,11〉|NB
0 −1,1−1〉+

|NA
0 −1,1−1〉|NB

0 −1,11〉)/
√

2 (we have omitted the BEC label
as no ambiguity exists), which shows OAM entanglement
between the BECs. Clearly the OAM entanglement transfer
generates quite a large component of |B〉 in the reduced two-
BEC state. This arises from the OAM-carrying components
in the photonic resource and the efficiency of the population-
transfer process. The introduction of this state allows us to
draw a clear and compact picture of the asymptotic form of
the map M̂t transforming photonic OAM entanglement into
matterlike entanglement via bilocal far off-resonant double
Raman coupling. By neglecting the very small components
associated with the remaining excited two BEC states (dotted
red line in Fig. 4) and collecting the remaining terms into a
diagonal density matrix, this is approximately given by

lim
t→∞M̂t

(∣∣NA
0 ,NB

0

〉
AB

〈
NA

0 ,NB
0

∣∣)
� 1

3

(
2|B〉AB〈B| + ∣∣NA

0 ,NB
0

〉
AB

〈
NA

0 ,NB
0

∣∣). (14)

Such a formal asymptotic map also explains that we can
formally infer the properties of the reduced two-vortex density
matrix by treating it as the state of two (in general entangled)
qutrits.

C. Assessment of entanglement

We are now in a position to quantitatively estimate the
amount of vortex entanglement set between the BECs. In
order to tackle this point, our approach will be twofold.
First, we study the time evolution of the linearized entropy
SL(ρAB(t)) = (9/8){1 − Tr[ρAB(t)]} [19] of the BEC density
matrix. As SL is a good measure of the purity of a state
(it achieves 0 for perfectly pure states and 1 for statistical
mixtures), this will give us an indication of the residual
entanglement set between the photonic and matterlike parts
of the system: as the dynamics set by Ĥeff are unitary,
the entanglement initially present in the photonic state has
to be conserved when the whole state of the matter-light
system is considered. Needless to say, such entanglement can
be transferred from the photonic subsystem to the atomic
one and/or vice versa, and a transient can well exist where
the two are almost separable. Such a situation would be
witnessed by a small value of SL and correspond to either
large or small values of BEC entanglement, with minimal
photon-atom quantum correlations. We have determined the
form of SL as a function of time, which is shown in Fig. 5. As
expected, at exactly the time when the populations of the OAM
carrying the atomic system become nonzero, the linear entropy
changes its behavior, signaling a maximum of mixedness of the
light-matter state. This simply implies that for t ∈ [400,500]
µs, the two subsystems are correlated in a nonclassical sense.
If time increases further, SL evidently decreases, witnessing
a reduction in the light-matter entanglement. Because of
the conservation of entanglement discussed earlier, this is
the region in which we are interested as it could well
be the case that in this long time window, significant intervortex
entanglement is set at the expense of the initial all-optical one
and the transient matter-light correlations highlighted here.

0.1

0.3

0.5

0.7

0 200 400 600   800

FIG. 5. (Color online) Linear entropy SL(ρAB ) against time t (in
microseconds). The same parameters as in Fig. 3 have been used here.

We quantitatively confirm our expectations by studying
the negativity [20,21], an entanglement measure based on
the violation of the positivity of partial transposition (PPT)
criterion for separability of a state. Negativity is defined as [21]

N [ρAB(t)] = −2
∑

k

λ−
k , (15)

where λ−
k are the negative eigenvalues of the partially trans-

posed density matrix with respect to one of the BEC systems.
The results are shown in Fig. 6.

As expected, the region of large intervortex entanglement
corresponds to the range of interaction times when the
linearized entropy decreases toward a steady-state value. We
point out that the wavy behavior of the curve in Fig. 6 as
well as in the other figures of this article is due to the
interatomic scattering. This is confirmed by the plot shown
in the inset of Fig. 6, where an asymmetric case is studied. The
comparison between symmetric and asymmetric cases shows
that a mismatched number of atoms in the two BECs results
in a change in the oscillatory behavior of the curve describing
the time evolution of the transferred entanglement. On the
other hand, mismatched Rabi frequencies only determine a

0.0

0.2

0.4

0.6

0 200 400 600   800

   0    4     8

0.6

FIG. 6. (Color online) Negativity N (ρAB ) against the interaction
time t (in microseconds). The same parameters as in Fig. 3 have been
used here. We obtain a maximum of entanglement in correspondence
of the range of decreasing trend of SL(ρAB (t)), which witnesses a
larger purity of the two-vortex state and smaller quantum correlations
between light and matter. Inset shows negativity against t for NA

0 =
10NB

0 = 104 and B = 10 A = 27.5 kHz. Other parameters are as
in Fig. 3.
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change in the temporal scale of the entanglement dynamics.
The degree of transferred entanglement is only mildly affected,
which demonstrates the robustness of our protocol to such
effects. The efficiency of our protocol does not depend on
the assumption of symmetry under the exchange of the
condensates and is retained in a wide range of the relevant
parameters. Therefore, for the sake of convenience and without
affecting the generality of our results, in what follows, we
restrict our attention to the symmetric case.

As discussed earlier, quite a large value of entanglement is
set between the vortex states of the two condensates, although
a maximally entangled state [achieving N (ρAB) = 1] is not
reached. We stress that this is not a limitation of our scheme
but, on the contrary, an effect of the zero-OAM component in
the photonic resource |�Zαβ〉. Such a detrimental contribution
can be removed from the BEC’s reduced state (and its
properties) by resorting to an “active” approach where, instead
of discarding the state of light after the interaction with the
condensates, we properly postselect its state. On inspection of
|�7,8〉 in Eqs. (12), it is straightforward to see that state |B〉AB is
associated with modes 1 and 2 in the vacuum state. On the other
hand, the entanglement-spoiling component |nA

0 ,nB
0 〉AB would

bring about photons in both the modes. It is therefore sufficient
to use a standard Geiger-like avalanche photodetector per
mode, which discriminates the vacuum from the presence of
any nonzero number of photons in a field, in order to operate
the optimal postselection of the BEC state: By registering no
click at both the photodetectors, we project the state of A and
B onto the maximally entangled state |B〉. It is in fact worth
stressing that by effectively excluding the possibility that the
atoms occupy state |0〉I , the postselection procedure further
reduces the dimension of the relevant Hilbert space spanned
by each vortex state to a bidimensional one, thus leaving us
with two effective qubits.

IV. DETECTION OF VORTEX ENTANGLEMENT

In this section, we describe a method for the detection
of the vortex entanglement created by the preceding process.
Given the low excitation level of our protocol, the usual matter-
wave interference is not helpful, and we instead propose an
approach based on the inversion of the process addressed here
for light-to-BEC entanglement transfer. After generation of a
two-vortex entangled state (as described in Sec. III), the OAM-
transferring interaction should be stopped. We thus assume that
the pump fields have been turned off (or set far off-resonant
with respect to the frequency of the transitions they guide) so
as not to perturb the entangled states of the vortices. The time-
reversal nature of our protocol makes it intuitive to understand
that if we now reinstate such pumps, photons will be scattered
into two Laguerre-Gauss modes at the frequency of the |0〉I ↔
|e,e′〉 transition, thus writing back the two-vortex state onto
light fields. One can then apply state-property reconstruction
techniques, including testing Bell’s inequality violation for
bipartite states of effective three-level particles [22]. However,
the success of such tests is usually very sensitive to the form of
the state under scrutiny and the level of nonideality affecting
it. We thus resort to a specific and quite promising way to infer
the properties of the state we have generated based on Wigner
function reconstruction, which is possible by using computer-

FIG. 7. (Color online) Analysis of the Wigner function for ρAB (t).
(a) The blue circle shows a projection of the Wigner function on the
unit circle for t = 0, while the red butterfly structure is associated
with t � 800 µs, where OAM entanglement has been transferred.
(b, c) We plot W (0,θA,0,θB ) at the two instants of time considered
for (a). Notice the different vertical-axis scales in the two plots. The
visibility of the fringes of interference in the Wigner function is an
indication of quantum correlations.

generated holograms [7] and homodyne-like measurements
[23].

Theoretically, the Wigner function for the OAM state of a
photon has been defined in the discrete cylinder Z × C1 (C1 is
the unitary circle), representing the phase space for the OAM
operator and its canonically conjugate operator θ̂ . In Ref. [24],
it has been shown that the study of the Wigner function for
an OAM state gives information both on the various OAM
eigenstates involved in the description of the state and on their
relative phases. We define the two-mode Wigner function as

W (lA,θA,lB,θB) = Tr[ŵ(lA,θA) ⊗ ŵ(lB,θB)ρAB], (16)

where we have introduced the kernel ŵ(lI ,θI ) (I = A,B)
mapping quantum states in phase space [24] in a way
completely analogous to the continuous position-momentum
phase space. In Fig. 7(a), we compare the Wigner function
W (0,θ,0,0) associated with ρAB(t) when the entanglement
transfer has not occurred (wide blue circle) to what is achieved
at long-enough t , where the map M̂t has been implemented
[inner (red) butterfly-like structure]. The difference due to
the coherence established between two-mode orthogonal
eigenstates of the OAM operator in the entangled state ρAB

is striking. Moreover, from Figs. 7(b) and 7(c), we find that
W (0,θA,0,θB ) exhibits oscillations whose amplitude depends
on the relative phase between the states |B〉 and |D〉. The
curves shown in Figs. 7(b) and 7(c) are associated with
the same interaction time as the circular and butterfly-like
structures shown in Fig. 7(a), respectively, which demonstrates
that the oscillation amplitudes depend on the populations of
these states. Remarkably, the analysis of W (lA,θA,lB,θB) for
incoherent superpositions of OAM eigenstates results in a
flat distribution. Therefore, by experimentally reconstructing
the Wigner function, one can determine the inference of
entanglement in the associated OAM state. Any deviation from
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flat distributions typical of incoherent superpositions implies
coherence in the bipartite state, although not entanglement.
Methods based on the inverse Radon transform [25] could
then be used in order to achieve full information on the
state and, eventually, the entanglement set by the transfer
mechanism.

V. CONCLUSIONS AND OUTLOOK

We have shown that vortex states of spatially remote,
nonisotropically trapped BECs can be entangled by means
of bilocal OAM-transfer processes and quantum correlated
photonic resources. The amount of vortex entanglement set
by our scheme can be quite considerable and appears to
be limited only by the zero-OAM carrying component in
the photonic resource. While such a bottleneck can be
actively bypassed by means of postselection, as described in
Sec. III, we are currently working on a modification of our
protocol based on the use of other forms of the entangled
photon pair [26]. The difference between the two-vortex state
achieved by our scheme and a classical admixture of OAM
eigenstates (without coherence and thus entanglement) can be
revealed by a straigthforward state-retrieval process and the
reconstruction of the OAM-state Wigner function. We believe
that the superfluid phase of a BEC, together with virtually
frictionless rotational states of light-induced vortices, can be
reliably exploited in order to set a promising scenario for
the storage of quantum information and the distribution of
quantum-correlated channels for communication.
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APPENDIX

In this appendix, we present the calculations which lead to
the expression of the effective Hamiltonian in Sec. II. The
first step is the adiabatic elimination of the excited triplet
{|E〉,|e〉,|e′〉}, which we perform by defining the rotating-
picture new matter field operators ψ̂I,e = ˆ̃ψI,ee

−iωl t , ψ̂I,e′ =
ˆ̃ψI,e′e−iω−1t e ψ̂I,E = ˆ̃ψI,Ee−iω0t , with { ˆ̃ψI,E, ˆ̃ψI,e,

ˆ̃ψI,e′ } taken
as time-independent. Such operators are then used in the
Heisenberg equations for the dynamics of the excited-triplet
states. One finds

ˆ̃ψI,E(r) = χI,0AnI ,0(r)

h̄�I,0
eiω0t ĉnI ,0ψ̂I,0(r),

ˆ̃ψI,e(r) = I

�I

eikI ·re−i(ωI −ω1)t ψ̂I,1(r)

+ χI,1AnI ,1(r)

h̄�I

eiω1t ĉnI ,1ψ̂I,0(r), (A1)

ˆ̃ψI,e′ (r) = I

�I

eikI ·r e−i(ωI −ω−1)t ψ̂I,−1(r)

+ χI,−1AnI ,−1(r)

h̄�I

eiω−1t ĉnI ,−1ψ̂I,0(r),

where we have defined the single-photon detunings �I,0 =
ω0 − ωI,E ,�I = ωl − ωI,e. In order to explicitly include the
chirped two-photon Raman detunings, which are crucial in
the stabilization of the transfer process, we define new field
operators in a rotating frame defined by the Hermitian operator
Ô =∑

I,k ωI [ψ̂†
I,k(r,t)ψ̂I,k(r,t) − ĉ

†
nI ,k

ĉnI ,k]. Explicitly, ˆ̃ψI,k

(r,t) = eiÔt ψ̂I,k(r,t)e−iÔt = e−iωI t ψ̂I,k(r,t), while the pho-
tonic operators become ˆ̃cnI ,k = eiÔt ĉnI ,ke

−iÔt = eiωI t ĉnI ,k .
Defining the free Hamiltonians H

I,k
0 = −h̄2∇2

I /(2m) +
VI,k(r) and with the help of Eqs. (A1), we finally get

ih̄
d

dt
ˆ̃ψI,0(r)

=
[
Ĥ

I,0
0 + h̄ωI +

∑
j

ηI
j,0

ˆ̃ψ
†
I,j (r) ˆ̃ψI,j (r)

+ χ2
I,0|AnI ,0(r)|2

h̄�I,0

ˆ̃c
†
nI ,0

ˆ̃cnI ,0 + χ2
I,1|AnI ,1(r)|2

h̄�I

ˆ̃c
†
nI ,1

ˆ̃cnI ,1

+ χ2
I,−1|AnI ,−1(r)|2

h̄�I

ˆ̃c
†
nI ,−1

ˆ̃cnI ,−1

]
ˆ̃ψI,0(r)

+ I,1χ
∗
I,0

�I

A ∗
nI ,1(r)eikI ·r ˆ̃c

†
nI ,1

ˆ̃ψI,1(r)

+ Iχ
∗
I,−1

�I

A ∗
nI ,−1(r)eikI ·r ˆ̃c

†
nI ,−1

ˆ̃ψI,−1(r) (A2)

ih̄
d

dt
ˆ̃ψI,1(r) =

[
Ĥ

I,1
0 + h̄(ω1 − δ1 − ω̃1) + h̄|I |2

�I

+
∑

j

ηI
j,1

ˆ̃ψ
†
I,j (r) ˆ̃ψI,j (r)

]
ˆ̃ψI,1(r)

+ ∗
I χI,1

�I

AnI ,1(r)e−ikI ·r ˆ̃cnI ,1
ˆ̃ψI,0(r), (A3)

ih̄
d

dt
ˆ̃cnI ,0

=
[
−h̄ωI +

∫
VI

dr
χ2

I,0|AnI ,0(r)|2
h̄�I,0

ψ̂
†
I,0(r)ψ̂I,0(r)

]
ˆ̃cnI ,0,

(A4)

ih̄
d

dt
ˆ̃cnI ,1 =

[
−h̄ωI +

∫
VI

dr
χ2

I,1|AnI ,1(r)|2
h̄�I

ψ̂
†
I,0(r)ψ̂I,0(r)

]
ˆ̃cnI ,1

+
∫
VI

dr
Iχ

∗
I,1

�I

A ∗
nI ,1(r)eikI ·r ˆ̃ψ

†
I,0(r) ˆ̃ψI,1(r).

(A5)

From these expressions, it is straightforward to define the
effective interaction Hamiltonian Ĥeff used throughout the
article.
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ibid. 74, 042303 (2006); D. Cavalcanti, J. G. Oliveira Jr., J. G.
Peixoto de Faria, M. O. Terra Cunha, and M. França Santos,
ibid. 74, 042328 (2006).

[18] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Oxford Science, Oxford, 2003).

[19] S. Bose and V. Vedral, Phys. Rev. A 61, 040101(R)
(2000).

[20] A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki,
P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1
(1996).

[21] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein,
Phys. Rev. A 58, 883 (1998); G. Vidal and R. F. Werner, ibid.
65, 032314 (2002).

[22] D. Kaszlikowski, L. C. Kwek, J. L. Chen, M. Zukowski, and
C. H. Oh, Phys. Rev. A 65, 032118 (2002); D. Collins, N. Gisin,
N. Linden, S. Massar, and S. Popescu, Phys. Rev. Lett. 88,
040404 (2002); A. Acı́n, T. Durt, N. Gisin, and J. I. Latorre,
Phys. Rev. A 65, 052325 (2002).
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