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Coherent transport by adiabatic passage on atom chips
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Adiabatic techniques offer some of the most promising tools for achieving high-fidelity control of the center-
of-mass degree of freedom of single atoms. Because the main requirement of these techniques is to follow
an eigenstate of the system, constraints on timing and field strength stability are usually low, especially for
trapped systems. In this paper we present a detailed example of a technique to adiabatically transport a single
atom between different waveguides on an atom chip. To ensure that all conditions are fulfilled, we carry out
fully three-dimensional simulations of the system, using experimentally realistic parameters. We also detail our
method for simulating the system in very reasonable time scales on a consumer desktop machine by leveraging
the power of graphics-processing-unit computing.
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I. INTRODUCTION

Recent experimental progress in trapping and controlling
all degrees of freedom of single atoms and ions has allowed
us to test and explore the fundamentals of quantum mechanics
at a completely new level [1,2]. In fact, progress has been so
dramatic that application of the laws of single- and few-particle
quantum mechanics to areas such as quantum information and
quantum metrology has come into experimental reach [3,4].

While control over the internal degrees of freedom of atoms
is a highly advanced field, significant progress in developing
techniques to coherently control the external degrees of
freedom to the same level has only recently been achieved. One
class of techniques that can offer high fidelities are adiabatic
processes, and recently a technique called coherent tunneling
by adiabatic passage (CTAP) was shown to be a very promising
tool for controlling the quantized center-of-mass state of a
single particle trapped in a microtrap [5]. CTAP is designed to
transfer populations between microtraps at high fidelities while
being robust to variations in the system parameters. Although
the physics of CTAP is well understood, the process has yet to
be observed experimentally and several realistic systems have
recently been proposed [6–8].

Coherent transport between microtraps can be facilitated
via tunneling and the tunneling rates can be controlled by
moving the centers of the individual traps relative to each other.
While this requires dynamical potentials, a similar system
with static potentials can be constructed by considering three
parallel running waveguides with spatially varying coupling
strength between them and an atom which travels along these
guides [6]. Recently, in our previous work, a realistic atom
chip system of this kind was considered [9]; however, the
simulations were limited to two dimensions.

While the transversal dynamics in a system of waveguides
can be well described in a two-dimensional model, effects
stemming from bending, longitudinal dispersion, and the lack
of stationary states in the z direction cannot be accounted
for. To overcome these limitations and understand the total
dynamics of a waveguide system, it is necessary to carry out a
fully three-dimensional simulation.

We therefore present here, an analysis of a system com-
posed of three waveguides by taking the full dynamics in

all three spatial directions into account and using realistic
experimental parameters. The latter is important as most
treatments of the problem in recent years have assumed
idealized trapping potentials that guarantee resonance between
the individual traps at any moment in time. By carrying out
three-dimensional simulations which account for all possible
dynamics, we show that CTAP is indeed a suitable technique
for use in waveguides on atom chips.

By today, fully three-dimensional simulations of the
Schrödinger equation in the context of atomic transport are
still rare [10]. The computational resources needed are very
large and have traditionally required the power of large
supercomputers. Recently it was shown that the emerging tech-
nique of graphics-processing-unit (GPU) computing allows
tremendous speedup of many numerical techniques including
the fast Fourier transform (FFT) [11], which is the main
numerical tool that we require. By making use of this, we
have been able to perform the simulations of this extensive
atomic system with one consumer desktop PC using the
CUDA programming model and numerical libraries, on very
reasonable time scales.

The structure of this paper is as follows. In Sec. II we
briefly review the CTAP process in waveguide systems and
in Sec. III we describe the atom chip potentials we are
simulating. In Sec. IV we discuss our implementation of
CUDA and MPI (message passing interface) codes and examine
the performance benefits in each case. Our results of the
three-dimensional simulations and the evidence that CTAP
can be observed will be presented and discussed in Sec. V.
Finally we conclude in Sec. VI.

II. COHERENT TUNNELING BY ADIABATIC PASSAGE

Let us first briefly review the CTAP process by considering
an atom trapped in a linear system of three identical, one-
dimensional microtraps [5]. Assuming that the atom is in its
center-of-mass ground state in the trap on the left-hand side
|L〉, it can reach the ground states of the other two traps |M〉
and |R〉 through coherent tunneling described by the strength
JLM for the transition |L〉 → |M〉 and JMR for |M〉 → |R〉. In
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this basis the Hamiltonian is given by

H (t) = h̄

⎛
⎜⎝

0 −JLM (t) 0

−JLM (t) 0 −JMR(t)

0 −JMR(t) 0

⎞
⎟⎠, (1)

where the energy of the trap ground states was renormalized
to zero. The tunneling strengths are assumed to be time
dependent, which can be achieved by increasing or decreasing
the distances between neighboring traps dLM (t) and dMR(t).
The eigenstates of the Hamiltonian (1) are well known [2] and
of particular interest for adiabatic transport is the so-called
dark state

|d〉 = cos θ |L〉 − sin θ |R〉, (2)

in which the mixing angle θ is given as a function of the
tunneling strengths as

tan θ = JLM/JMR. (3)

This state has a nondegenerate zero eigenvalue, and an
adiabatic evolution will therefore guarantee that the system,
once prepared in |d〉, will always stay in it. Note that the only
contribution of |M〉 to |d〉 is through the mixing angle and that
the system has zero probability to be found in |M〉 at any time.

The CTAP process can now be understood by considering
an atom initially in the state |L〉. Increasing and decreasing
JMR before JLM , which is counterintuitive to traditional
tunneling schemes, continuously decreases the population in
state |L〉 and increases the population in state |R〉, leading to
a 100% transfer at the end of the process.

Adapting this process to a system of waveguides is now
straightforward. The temporal dependence of the tunneling
strength in Eq. (1) can be replaced by a spatial one through
suitable adjustment of the distance between neighboring
waveguides as a function of the direction the particle travels
in (see Fig. 1 for a schematic view) [6].

There are, however, several conditions that both the mi-
crotrap and the waveguide system must fulfill for the CTAP
dynamics to occur. First, the process must be adiabatic with

FIG. 1. (Color online) Schematic of the suggested setup for
observing the CTAP process in a system of waveguides. Note that
the asymmetric approach of the outer wires to the middle wire is
exaggerated, so that the counterintuitive arrangement is visible. The
atom is initially located in the left guide and, due to the presence of
a harmonic oscillator potential Vz in the z direction, travels along the
direction indicated by the red solid arrow. We also show the expected
position of the atom at t = π/ωz in the right-hand-side guide and
indicate the orientation of the bias field, Bb, and the applied field, Bip

(purple dashed arrows).

respect to the other relevant energy scales in the system. For
the waveguide system this means the whole process has to be
slower than the inverse of the approximate transverse trapping
frequencies of the guides. As typical numbers for such guides
are in the kHz regime, this means that the time allowed for
the atom to travel along the chip can be much shorter than
a typical system’s lifetime. The second condition which has
to be fulfilled, as previously mentioned, is that all trapping
states are in resonance at any point in time, which is difficult
to achieve once the potentials of the individual guides start to
overlap. However, we will demonstrate in the next section how
a waveguide setup on an atom chip is a realistic experimental
system in which this resonance condition can be fulfilled to a
good approximation.

III. ATOM CHIPS

Atom chips are versatile experimental tools that are by
today used extensively in experiments with ultracold atoms
[12,13]. A small current flowing through nanofabricated wires
on the substrate produces a magnetic field gradient in such a
way that cold atoms can be trapped very close to the surface.
Because the layout of the nanowires can be chosen during the
chip’s production process, atom chips have been used in many
cold-atom experiments to produce microtraps, interferometers,
and waveguides [12,14–16]. Here we will take advantage
of this versatility to consider waveguides in the geometry
indicated in Fig. 1 and develop a procedure which will allow
us to observe high-fidelity transport based on CTAP.

Let us briefly review the basic description and properties
of atom chip trapping. The magnetic potential B at position
r generated by a typical nanowire on an atom chip can be
described by the Biot-Savart law

B = μ0I

4π

∮
dl × r̂

r2
, (4)

where I is the current in the wire, μ0 the vacuum permeability,
r̂ the unit vector in the direction of r, and dl the differential
length of the wire carrying current I . For this expression to be
valid, however, we have to assume that the thickness of the wire
is negligible, which is a good approximation as long as we are
using the properties of the field at a sufficient distance above
the chip’s surface. To achieve this and to lift the field minima
above the nanowires for the desired waveguide structure, a
homogeneous magnetic bias field Bb can be applied orthogonal
to the current flow. This raises the potential minimum to a
height above the wire given by

r0 = μ0

2π

I

Bb

. (5)

Finally, to lift the degeneracy of the spin states of the atoms and
avoid losses due to spin flips at the center of the waveguide a
further magnetic field Bip parallel to the direction of the wires
is usually applied.

An example of the waveguide potentials resulting from
this model for 6Li atoms and for experimentally realistic
parameters is shown in Fig. 2. If an atom is initially located
in the left waveguide and travels in the positive z direction,
these waveguides provide the desired counterintuitive tunnel
coupling needed for CTAP. To give the atom momentum to
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FIG. 2. (Color online) Isosurfaces of the waveguides created on
an atom chip with the direction of propagation indicated by the blue
solid arrow (for clarity Vz = 0 in this plot). The dimensions of the
interesting area on the chip we simulate are 20 μm ×1000 μm (x × z)
and we take a height (y direction) above the chip of 4 μm into account.
The three wires are initially equally separated by 7 μm and their
distance at the position of closest approach is 4.3 μm. The left wire
remains straight initially for a distance of 50 μm, which produces
an asymmetry in the point of closest approach of the left and right
wires to the middle wire as indicated by ξ . The bias and applied fields
(indicated by the green dashed arrows) are Bb = 140 × 10−4 T and
Bip = 300 × 10−4 T. In (a) the currents of the left, middle, and right
wires are IL = IM = IR = 0.1 A, respectively, and in (b) the currents
of the left and right wires are IL = IR = 0.1 A and the middle wire
current is reduced to IM = 0.07 A.

travel along the wires we add an additional harmonic oscillator
potential Vz of frequency ωz along the z direction, which is
centered at the middle of the chip (see Fig. 1). This will also
lead to a refocusing of the traveling wave packet at the classical
turning point on the other side of the chip and help to clearly
determine the position of the atom.

To ensure that the process is adiabatic and the atom remains
in the dark state of the system at all times, the total time for the
process has to be much larger than the inverse of the transverse
trapping frequencies of the individual waveguides. By approx-
imating the potentials to have a harmonic oscillator shape in
the transverse direction, we find the inverse of the relevant fre-
quency to be of the order of f −1

HO ≈ 0.2 ms, and by choosing the
trapping frequency of the harmonic oscillator in the z direction

to be ωz = 2π × 5 Hz, the total time taken for the process (half
an oscillation) is 0.1 s. This allows the adiabaticity condition
to be clearly fulfilled at any point during the evolution.

Finally, the bend in the wires will lead to a potential from
the currents in the z direction, which requires the atom to have
enough kinetic energy to overcome it and therefore sets an
upper bound to the adiabaticity that can be reached. However,
this effect can be reduced by increasing the length of the
atom chip (z direction) and therefore reducing the curvature
of the wires. From our simulations, we find that the kinetic
energy resulting from locating an atom initially at the edge of
a chip that is zmax = 1000 μm long allows us to successfully
propagate the atom though the waveguides using the harmonic
trap described above.

IV. MPI AND CUDA

To simulate the propagation of the atom along the
waveguide we solve the three-dimensional time-dependent
Schrödinger equation using the well known Fourier split-
operator method [17]. A typical numerical implementation
of this method requires the use of four Fourier transforms
followed by three complex multiplications for each time step.
The numerical library we make use of to perform the Fourier
transforms is the well known FFTW library, and its GPU
implementation CUFFT [18].

Performing three-dimensional Fourier transforms is the
most intensive part of our code with the length of time required
to perform one iteration of the split operator method depending
heavily upon the size of the numerical grid. As discussed in the
previous section, the atom chip has a relatively large extension
in the z direction (zmax = 1000 μm) compared to the other
dimensions. Since the maximum value of the momentum grid
is defined as pmax = πNz

zmax
we require a large number of points,

Nz, for our grid to be large enough to resolve the longitudinal
momentum stemming from the external harmonic oscillator
potential. This is the main reason that the computational
resources required to simulate the system are quite substantial.

A. GPU computing

To overcome the numerical barrier presented by this
system we turn to the relatively new computing paradigm
of GPU computing. Whereas traditional computers perform
computations using the central processing unit (CPU), GPU
computing allows some of the work to be off loaded to the
graphics processor. GPUs are inherently single-instruction,
multiple-data (SIMD) devices, designed for operating upon a
large data set at a given time with a single task, such as a two-
dimensional grid of pixels. Due to their parallel nature, GPUs
can perform better than CPUs for certain types of calculations.
One example where they offer large performance gains are
fast Fourier transformations and it was recently shown that
the Fourier split-operator method can be accelerated using
GPU computation [11]. This performance increase offers the
numerical power needed to simulate the above system and we
have implemented the algorithms for split-operator evolution
of the Schrödinger equation with C, CUDA, and Nvidia’s CUFFT

libraries for the Fourier transforms.
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TABLE I. Approximate times taken to simulate the propagation
of an atom through our atom chip system on both GPU and CPU.

Device No. devices Timing Rel. improvement

CPU (MPI) 8 ∼6 Hr 1.0×
16 ∼4 Hr 1.5×
32 ∼1.5 Hr 4.0×
64 ∼1 Hr 6.0×

GPU 1 ∼1 Hr 6.0×

B. Performance

To demonstrate the performance offered by GPU computing
we compare it to using FFTW with MPI, a more traditional CPU-
based method. The MPI implementation allows the code to be
run across multiple machines, benefiting from the parallelism
which may be offered by a supercomputing cluster. Although
MPI-enabled FFTW is fast and supports extremely large grid
sizes, it requires computer-cluster access of a significant size
to be a viable option.

To effectively simulate the CTAP process and accurately
resolve the momentum, our code requires a grid size of
256 × 64 × 1024 (x × y × z). For accurate time evolution,
a time step of �t = 1 × 10−6 s was found to be adequate.
For the GPU simulations, the test system was an Intel
Core i7 2600K CPU at stock frequency, 8 GB double data
rate type three (DDR3) memory operating at 1600 MHz,
7200 rpm hard disk drive (HDD), Nvidia GeForce GTX 580
with 3 GB of onboard memory running at 783 MHz GPU
core frequency, 1566 MHz shader processor frequency, and
2010 MHz memory frequency. For all simulations the desktop
was running the Ubuntu 11.10 64-bit operating system and
all calculations were performed in double precision (64-bit
floating point) where applicable. For the CPU simulations we
utilized the supercomputers at the Irish Centre of High-End
Computing (ICHEC).

Table I shows the approximate timings for the completion
of runs on GPU and CPU. As one can see, not only does
GPU computing offer a sixfold improvement over a single
CPU, it also allows us to achieve a performance level which
is comparable to a 64 core CPU. Such performance has
previously been restricted to high powered supercomputers.
Having such computational power available to a single user
on a desktop computer allows us to obtain a large volume
of simulated data on a much shorter time scale rather than
through the use of a shared resource CPU-based computer
cluster. Additionally, a second GPU card added to the system
allowed concurrent runs of the code, which effectively halved
the overall time required for a large number of simulations.
It is also worth mentioning that moving computations over
to the GPU of the system frees up the CPU and a large
part of the system memory to be used for other tasks
that would have previously been inhibited by CPU bound
computations.

V. 3D SIMULATIONS

In the following section we present a set of typical results
from the GPU-accelerated three-dimensional (3D) simulations
we carried out over a large range of experimentally controllable

FIG. 3. (Color online) Contour plot of the waveguides at 500 μm
along the -axis. Panel (a) shows the deformation of the waveguides
when all currents are equal, IL = IM = IR = 0.1 A, and panel (b)
shows how this effect can be mitigated by using a reduced middle-wire
current of IM = 0.07 A, while the current in the outer wires remain
at IL = IR = 0.1 A.

parameters and show that the atom chip allows the CTAP
process to take place. All parameters for our atom chip are the
same as in Fig. 2 unless otherwise stated.

Our simulations start out with a single 6Li atom which is
initially located in the left waveguide. Its transversal wave
function corresponds to the ground state of the potential
in the transversal direction (determined numerically) and
longitudinally we assume a Gaussian profile of similar width.
We then evolve this initial state in time, and due to the
longitudinal harmonic oscillator potential centered at the
middle of the atom chip (z = 500 μm), the atom starts to
propagate along the waveguide.

Initially the wires are far enough away from each other
for each waveguide to be approximately given by the current
of the wire closest to it and if all currents are identical, the
waveguides are in resonance. However, once the wires start
approaching each other, the respective magnetic fields add
and create waveguide potentials of unequal size [see Figs. 2(a)
and 3(a)]. This drives the transversal ground states of the guides
out of resonance and the conditions for observing the CTAP
process are no longer given.

However, atom chips offer an intriguingly straightforward
way to adjust for this, as the current in each wire can be
individually (and even time-dependently) controlled. This can
be used to compensate for effects stemming from the potentials
overlapping and ensure resonance between the waveguides [9].
While one can imagine a numerically optimized algorithm
that adjusts the currents in a time-dependent manner based
on the position of the center-of-mass of the atom, here we
will show that a much simpler approach, which maintains the
simplicity of all currents being constant in time, is already
sufficient. We suggest reducing the current in the middle
wire so that in the crucial coupling region, where the mag-
netic fields from neighboring waveguides have the strongest
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(a)

(b)

FIG. 4. (Color online) The population in the left (blue dashed
line), middle (green dot-dash line) and right (red solid line) waveg-
uides as a function of time for (a) the counter-intuitive waveguide
arrangement and (b) the intuitive, direct tunneling one. The current
in the middle wire is reduced to IM = 0.07A.

influence on each other, the waveguides are approximately
resonant.

To demonstrate the effect of this adjustment we show in
Fig. 3 a transversal cut through the system at the middle of
the chip (z = 500 μm) for the case where (a) all three currents
are identical (I = 0.1 A) and (b) the current in the middle
wire is reduced (IM = 0.07 A). One can clearly see that the
transversal shape of the waveguides is very similar for the
case of the reduced center current, which indicates that this
approach can lead to enhanced resonance between the guides.

In the areas where the guides are farther away from each
other, however, the reduced current in the middle wire will have
the opposite effect and reduce the quality of the resonance.
This can clearly be seen from the iso-potential surface plot in
Fig. 2(b). Yet, since the tunneling in these areas is small, it has
only a negligible influence on the CTAP process and we will
in the following demonstrate that the near resonant setup of
Fig. 3(b) allows us to observe the CTAP process.

In Fig. 4 we show the population in each waveguide as
a function of time for an atom chip with reduced current
in the central wire. The results in Fig. 4(a) are obtained
for the situations where the wires are arranged such that
the counterintuitive tunneling sequence takes place and full
transfer from the initial guide into the final guide is clearly
visible. Only a small population in the central guide appears
halfway through the process, and while the ideal CTAP process

FIG. 5. (Color online) The density of the atomic state at t = 0.048
for (a) the counterintuitive setup and (b) the intuitive one. The current
in the middle wire is IM = 0.07 A in both cases.

does not allow for population in the central trap at any time,
the limited adiabaticity and resonance of the simulated setup
leads to this temporary deviation. However, it has no effect on
the final state.

In contrast to this, and confirming that the large fidelity
of the transport process above is due to CTAP, we show
in Fig. 4(b) the results for an intuitive arrangement of the
waveguides on the atom chip. As is clearly visible, this does
not produce high-fidelity population transfer to the guide on
the right-hand side, but rather leads to a split of the probability
between the middle and the right-hand-side wire.

While Fig. 4 only gives an indication of the ongoing process
as a function of time, the presence of the CTAP process for the
counterintuitively arranged wires can also be inferred from
looking at the atomic probability distribution in real space.
For this we show in Fig. 5 the density of the atomic state
in the x and z planes at t = 0.048 s integrated over the y

direction. At this time the atomic wave packet is in the region
where the tunneling interaction between all three waveguides
is large and clear differences between the two situations are
visible. Figure 5(a) shows the counterintuitive situation where
the wave packet can be seen to follow the dark state with only
a negligible population component in the middle waveguide.
In contrast, Fig. 5(b) shows the intuitive setup, in which the
population is distributed between all three waveguides and
clear signatures of Rabi oscillations due to the direct tunneling
are clearly visible.

It is exactly these Rabi oscillations in the intuitive process
that lead to the time dependence of the final population in each
waveguide and therefore a strong dependence of the outcome
on small changes in the system parameters. This can be seen
when examining Fig. 6, where we show the final population
in the right-hand-side waveguide as a function of the current
in the middle wire IM . For the intuitive process (blue dashed
line), the final population varies significantly with changing
IM , whereas the counterintuitive setup (red solid line) is very
robust to these changes, with the fidelity of population transfer
never dropping below 0.98. This is another indication that the
transfer is due to CTAP.

From Fig. 6 it is also clear that, while there are large
oscillations in the fidelity of the intuitive process, there is
an upward trend in the fidelity of the process towards unity
as the current in the middle wire increases. However, at these
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FIG. 6. (Color online) The final population in the target waveg-
uide for both the CTAP (red solid line) and intuitive (blue dashed
line) processes, for values of IM = 0.0672 A to IM = 0.0761 A in
steps of 0.001 A.

higher values of the middle-wire current, the waveguides are
no longer resonant at all times and one would expect that
neither the CTAP nor the intuitive processes would lead to
high-fidelity transfer. Nevertheless, the simulations show that
this is not the case.

We conjecture that in the regime of larger currents in
the middle wire the population transfer is due to Stark-shift-
chirped rapid-adiabatic passage (SCRAP) [19]. In this process
a time-dependent shift of the energy of the intermediate state
in the traditional three-level arrangement allows high-fidelity
population transfer between two states, independent of being
in the intuitive or counterintuitive situation. A translation of
this to the spatial realm is straightforward: the approach and
retreat of the outer wires from the middle one shift the energy
of the central waveguide in a spatially dependent manner. This
effect is the topic of a future investigation.

VI. CONCLUSIONS

We have performed fully three-dimensional simulations of
an experimentally realistic waveguide system on an atom chip,
where the arrangements of the wires produce spatial-dependent
tunnel couplings between the waveguides. These simulations
were done by implementing the CUFFT library provided by
Nvidia, which made this problem numerically tractable on a
desktop computer.

Using a simple method for controlling the resonance as the
waveguides are brought close together, we have demonstrated
that a counterintuitive approach of the outer wires to the middle
allows us to observe high fidelity and robust transfer between
the wires due to CTAP. In contrast, for intuitively coupled
waveguides, where direct tunneling between them is allowed
to occur, significant Rabi oscillations between all guides exist.
This makes the transfer process highly sensitive to the system
parameters. While a large number of theoretical works on
CTAP exist, the analysis presented offers a direct way for
experimental observation and confirmation of the effect.

Finally, we have also seen an indication that waveguide
systems might be natural systems for observing the SCRAP
protocol and a detailed investigation will be the topic of a
future work. While we have used the numerical methods
described here to perform three-dimensional simulations, they
can actually be used in any number of dimensions, where
they still offer large performance gains over standard CPU
approaches.
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