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Ion chains are promising platforms for studying and simulating quantum reservoirs. One interesting feature
is that their vibrational modes can mediate entanglement between two objects which are coupled through the
vibrational modes of the chain. In this work we analyze entanglement between the transverse vibrations of two
heavy impurity defects embedded in an ion chain, which is generated by the coupling with the chain vibrations.
We verify general scaling properties of the defect dynamics and demonstrate that entanglement between the
defects can be a stationary feature of these dynamics. We then analyze entanglement in chains composed of tens
of ions and propose a measurement scheme which allows one to verify the existence of the predicted entangled
state.
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I. INTRODUCTION

Irreversibility characterizes everyday life and is closely
connected to the disappearance of quantum mechanical fea-
tures in macroscopic objects. Microscopic descriptions of
noise and dissipation usually start from a fully quantum
mechanical model and have been discussed over the years
in several seminal works [1–7]. Recently, several studies have
focused on thermalization in closed quantum systems [8–14],
paying particular attention to the dynamics of many-body
systems where thermalization does not occur [8,13].

In this paper we consider a specific closed many-body
system, which consists of a chain of ions in a linear Paul
trap that couple via the repulsive Coulomb interaction [15,16].
Two impurity defects, here two ions of larger mass, are placed
within the chain as illustrated in Fig. 1, and couple with one
another via the axial vibrations of the ion chain. In our model
the displacement of an ion from its equilibrium position is
described by quadratic terms in the expansion of the Coulomb
potential. In this regime the dynamics are integrable and re-
currences are observed on time scales determined by the finite
system size. However, since the coupling between the axial
and transversal vibrations is a tunable parameter, the time
scales between the appearance of (quasi)thermalization and
recurrence are well separated and as a result the chain
effectively acts as a thermal reservoir for each component.
This behavior agrees with the predictions of previous works,
which studied thermalization of a component of a harmonic
chain with nearest-neighbor interactions [3–5,17].

In the precursors of this work we have shown that the
vibrational modes of a chain can also mediate entanglement
between two impurity defects embedded in the chain. This
entanglement is protected by spatial symmetries of the chain,
it is robust against variations in the chain size, and it can
survive for times of the order of the recurrence time [17,18].
In Ref. [19] it was also found in a chain of ions interacting
with the Coulomb long-range repulsion, assuming that the ions
were uniformly spaced. Even if it exhibits several analogies,
the entanglement dynamics found here cannot be put in direct
connection with the ones in a chain with nearest-neighbor
coupling. Moreover, typically the ion chain is realized in linear

Paul traps, which impose a nonuniform density distribution:
Bloch theorem does not apply. Finally, the dynamics discussed
in Refs. [17–19] are strictly valid for chains of hundreds of
ions: Only in this limit is the recurrence time sufficiently
long so that entanglement is a (quasi)stationary feature. In
experiments, however, the number of particles is typically of
several tens to a maximum of a hundred; it is thus legitimate
to ask whether such dynamics could be observed. The purpose
of this work is to address these open questions: It elucidates
the underlying mechanism which generates entanglement
between two heavy impurity defects in an ion chain, it presents
a systematic study of the parameter regimes under which
entanglement is found, and it identifies its feature in chains
of tens of ions, which are at the borderline of the validity of
the theory discussed in Refs. [17–19].

This work is organized as follows. In Sec. II we briefly
review the basic features of entanglement generation in models
of coupled oscillators with nearest-neighbor interactions. We
then move to consider the experimentally realizable system
of a linear chain of ions containing two defects in Sec. III
and characterize such a chain as a quantum reservoir. The
entanglement between the two defect ions is numerically
investigated in Sec. IV as a function of the chain size, of
the initial squeezing, and of the distance between the defects.
We analyze the dynamics for small chains numerically and
propose a measurement scheme for the defect states. Finally,
conclusions are drawn in Sec. V.

II. STATIONARY ENTANGLEMENT IN A
CHAIN OF OSCILLATORS

In this section we briefly review the features of a simple
microscopic model that allows one to study the entanglement
generation between two oscillators via the interaction with
a reservoir. The theory presented here has been extensively
discussed in Refs. [17,18]. Elaborating from the knowledge
developed in these previous works, we show with simple
equations how normal modes, whose oscillations are localized
at the defects positions, play an important role in entangling
them. These concepts will be important in order to understand
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FIG. 1. (Color online) Two heavy ions are embedded in a linear
chain of lighter ions. The transverse modes of the heavy ions are
coupled to the axial modes of the chain by means of an external
force (such as a dipole force). This can lead to the creation of robust
entanglement between the transverse modes in the stationary state of
the system.

the dynamics observed for ions interacting with long-range
Coulomb repulsion.

A. Ion chain with nearest-neighbour coupling

We consider a chain of N + 2 oscillators that couple with
nearest-neighbor interaction. Among these, N oscillators have
mass m and form a homogeneous linear chain with interparticle
distance a and coupling strength κ . The two additional defects
have mass M and are confined by a harmonic potential
with trap frequency �. We denote Xμ as the position of
the defect particles (μ = 1,2), and xi as the displacement of
the chain particles from their respective equilibrium positions
x

(0)
i = ia. Here i = ±1, . . . , ± A with A = N/2 for N even,

and i = 0, ± 1, . . . , ± A with A = (N − 1)/2 for N odd. The
corresponding canonically conjugated momenta are Pμ and
pi , with nonvanishing commutation relations [Xμ,Pμ] = i�
and [xi,pi] = i�. The defects couple with the same strength γ

to the oscillators at positions xn and x−n.
The Hamiltonian determining the dynamics of the closed

system can then be written as

H = HS + HB + HI , (1)

where the free Hamiltonians for the two defect oscillators
(the system) and for the N chain oscillators (the reservoir) are
given by

HS =
2∑

μ=1

[
P 2

μ

2M
+ 1

2
M�2X2

μ

]
, (2)

HB =
N∑

i=1

[
p2

i

2m
+ m

2
ω2 x2

i

]
+ κ

2

N−1∑
i=1

(xi − xi+1)2. (3)

Here ω denotes the frequency of a harmonic potential of the
Paul trap. The interaction Hamiltonian, which couples the
system and bath oscillators, is assumed to be instantly switched
on at t = 0 and for t > 0 takes the form

HI = γ

2
[(X1 − xn)2 + (X2 − x−n)2]. (4)

In the following we assume N to be odd, which is a convenient
choice for chains of finite length and which does not effect the
dynamics occurring in the chain bulk. We note that the latter
can therefore also be used to characterize the thermodynamic
limit N → ∞.

In the presence of only one defect oscillator the above model
is a generalization of models previously discussed by Rubin [5]
and Ullerma [4]. They showed that a chain, which is initially

prepared in a thermal state, can act as a thermal bath for a
single defect under conditions which involve the mass ratio
M/m, the strength of the coupling, and the time scales over
which the dynamics are analyzed. In the following we discuss
how this effect is modified in the presence of two defects. For
this purpose it is convenient to recast the Hamiltonian in a
coordinate system which highlights the symmetry properties
of the dynamics.

B. Localized modes and entanglement

Let us introduce center of mass (c.m.) and relative coordi-
nates for the defect and chain particles as

X± = (X1 ± X2)/
√

2, (5)

xj,± = (xj ± x−j )/
√

2, (6)

where ± indicates even or odd parity under mirror reflection
about the chain center, x

(0)
0 . The corresponding canonically

conjugate momenta are P± = (P1 ± P2)/
√

2 for the defects
and pj,± = (pj ± p−j )/

√
2 for the chain oscillators. With this

representation, and assuming that the defects are within the
bulk of the chain and finite-size effects can be neglected, the
Hamiltonian (1) can be written as H = H+ + H−, where

H± = HS,± + HB,± + γX±xj,± ,

and

HB,± =
A∑

j±=0

[
p2

j,±
2m

+ m

2
ω2 x2

j,±

]

+
A−1∑
j±=0

1

2
κ(xj,± − xj+1,±)2 + γ

2
x2

n,± , (7)

HS,± = P 2
±

2M
+ 1

2
M�2

γ X2
± . (8)

Here �γ =
√

�2 + γ /M is a shifted trap frequency and by
definition x0 = x0,+/

√
2, while x0,− = 0. One can note that

the Hamiltonian terms are either symmetric (even parity)
or antisymmetric (odd parity) and the sets of symmetric
and antisymmetric coordinates therefore form two separate,
uncoupled systems.

If both defects couple to the same chain particle, i.e., n = 0,
the above equations show that only the defect c.m. coordinate
couples to the symmetric coordinates of the chain, while the
defect relative motion is perfectly decoupled and thus it is an
eigenmode of the whole system at frequency �γ . Therefore,
under the conditions for which the chain acts as thermal bath
for a single defect, it will induce thermalization of the c.m.
mode of the defect particle and possible initial correlations
between it and the relative motion of the defects are washed
out. After a transient time the relative motion of the defects
will therefore be in a state that is solely determined by the
initially prepared state, while the c.m. will be in a thermal
state at temperature T . This dynamic is the key element for
entanglement generation between the oscillators. For instance,
it can be shown that, if the relative motion is in a squeezed
state and the temperature of the c.m. is sufficiently low, the
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FIG. 2. (Color online) The c.m. and relative coordinates X± =
(X1 ± X2)/

√
2 of the two defects are shown, which couple to two

different reservoirs given by the coordinates xi,± = (xi ± x−i)/
√

2.

product of the two orthogonal quadratures �X−�P+ (here
taken in the reference frame rotating at the oscillator frequency
�γ ) can be below the standard quantum limit so that the two
defects are two-mode squeezed and thus entangled [20–22].
The squeezing of the relative motion can result from preparing
each individual defect oscillator in a squeezed state at time
t = 0. This situation has been extensively analyzed in Ref. [17]
and is based on the existence of spatially localized eigenmodes,
which can be considered a realization of decoherence-free
subspaces [23].

In the following we consider the situation in which the
two oscillators are at a finite distance d = 2n for N even
and d = 2n − 1 for N odd. This scenario is shown in Fig. 2
where the c.m. and relative coordinates of the defects couple
to two separate environments, composed of the chain of
symmetric and antisymmetric displacements, respectively. For
n �= 0, when the impurity defects couple to different chain
particles, there exists no eigenmode of the chain which solely
involves displacements of the impurity defects. Nonetheless,
the presence of the impurity defects breaks the discrete
translational invariance of the chain and gives rise to localized
modes which under certain conditions can be eigenmodes of
the chain. This can be verified by analyzing the structure of
the equations of motion. Consider for instance the equation of
motion of oscillator xn,+

ẍn,+ = −
(
ω2 + κ

m

)
xn,+

− γ + κ

m
(xn,+ − Q+) + κ

m
xn+1,+ , (9)

where Q+ ∝ (γX+ + κxn−1,+). It is simple to show that one
can construct a mode QD

j , which is a superposition of X+
and x0,+,x1,+, . . . ,xn−1,+ and which is orthogonal to Q+ in
the Riemannian space with metric tensor M, where M is a
diagonal matrix whose diagonal corresponds to (M,m, . . . ,m)
for the array (X+,x0,+, . . . ,xn,+) [24]. One can construct n

such modes. However, only one specific mode QD
j0

can be an
eigenmode of the dynamics. This happens when the frequency
of the defect oscillator, �γ , matches a specific value ω+

j0
[18].

For instance, when n = 1 one finds the localized mode
QD ∝ (κ

√
m/MX+ − γ x1,+), which is an eigenmode of the

composite dynamics when �γ =
√

ω2 + κ/m. Analogous
considerations can be made for the relative motion.

Having identified the localized modes, then the generation
of entanglement between the two defect oscillators follows a
similar route as the one described when the defects couple to
the same chain particle. There are, however, two important
differences. First, the projection of the defect oscillators into
the decoupled mode is now smaller and therefore the initial

squeezing only partly determines the variance of each com-
posite quadrature. Moreover, the variance of each composite
quadrature is also determined by the initial temperature of the
chain, since there is a finite projection of the chain thermal
state onto the decoupled mode (through the interposed chain
oscillators). This limits the amount of entanglement one can
reach when the oscillators are at a finite distance. In Sec. IV C
we provide results for specific parameters.

C. Discussion

The stationary properties of the system above have been
analyzed in [17,18] and shown to be independent of the chain
size and therefore applicable to the thermodynamic limit. The
reason is that the localized modes involve just the defect
oscillators and the interposed chain particles and do not depend
on the length of the chain as long as finite-size effects can
be neglected. Entanglement in a chain of identical oscillators
has also been investigated and in Refs. [25,26] the authors
characterized the entanglement between two components at
steady state. Studies on dynamical effects have highlighted
the existence of entanglement between the ions at the chain
edges [27]; however, this is not a stationary effect, as it vanishes
in the thermodynamic limit for infinitely long chains.

Entanglement generation between two physical systems,
such as spins or oscillators, has also been discussed by
modeling the bath using the Born-Markov master equation
in quantum-optical systems [28,29] or by resorting to phe-
nomenological models; see, for instance, Refs. [30–33]. In
our model, one could consider to derive a master equation
describing the dynamics of the two defects. Due to the
presence of the localized mode, the bath of oscillators we
consider is non-Markovian. A possible approach is to identify
the localized eigenmode as a pseudomode coupling with
the defects and thus analyze the dynamics using methods
developed in Ref. [34]. It is further interesting to consider
measures of non-Markovianity for our system, as the ones
proposed in Ref. [35–37] and applied in similar settings in
Ref. [38].

III. ION COULOMB CHAIN WITH IMPURITY DEFECTS

We now turn to investigate entanglement generation be-
tween two impurity defects embedded in a chain of trapped
ions. With respect to the previous simplified model, the
particles now interact via the long-range Coulomb repulsion.
Moreover, they are generally confined in external potentials,
which make the ion density inhomogeneous. A simple picture
in terms of localized modes does not strictly apply; neverthe-
less we show that this model already provides a useful guidance
to understand the dynamics in an ion chain, even for a small
number (ten) of ions.

Before we start, let us comment on previous work. In
Ref. [39] entanglement transfer between the transverse modes
of the ions was analyzed. In Ref. [40] it was shown that
stationary entanglement between two ions at opposite edges
of a cluster composed of three aligned ions can be created.
In this latter work the thermal bath was effectively provided
by continuous sympathetic cooling of the central ion and the
effective energy transfer into the modes of the electromagnetic
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field gave rise to a dynamics analogous to thermalization. In
the current work, instead, the bath is microscopically modeled
by the lighter ions of the chain and this is what we discuss in
the present section.

A. An ion Coulomb chain in a linear Paul trap

We consider N ions with equal charge Q, which are
confined in a linear Paul trap at positions rj = (xj ,yj ,zj ). The
trap secular potential reads

Vtrap(rj) = (
U‖z2

j + U⊥,j

(
x2

j + y2
j

))
/2, (10)

where U‖ and U⊥,j determine the strength of the axial and
transverse potentials. The latter is generated by a radio-
frequency trap and depends on the ion mass mj via the relation

U⊥(mj ) = (U0/mj − U‖)/2.

Here,
√

U0 = Qχ/(
√

2�rf ), with �rf being the radio-field
frequency and χ being a constant depending on the trap geome-
try [41]. Ions of different masses therefore experience different
transverse trapping frequencies, and this mass dependence will
be key for the desired dynamics.

When the ions are laser cooled, they crystallize at the
equilibrium positions of the total potential given by Vtrap(r)
and the mutual Coulomb repulsion

V =
N∑

j=1

Vtrap(rj) + Q2

8πε0

∑
j �=i

1

|r i − rj | . (11)

Here we choose the trap aspect ratio ε = U⊥(m)/U‖ to be
sufficiently large, so that the ions crystallize along the z axis
at the equilibrium positions z

(0)
j , which are the solutions to

U‖z
(0)
j + Q2

4πε0

⎛
⎝j−1∑

i=1

1(
z

(0)
i − z

(0)
j

)2 −
N∑

i=j+1

1(
z

(0)
i − z

(0)
j

)2

⎞
⎠

= 0. (12)

Note that in the longitudinal direction none of the parameters
depend on the ions mass and that the resulting interparticle
distance at equilibrium is not uniform [42,43]. Therefore, to
ensure that the Hamiltonian is symmetric with respect to mirror
reflection about the chain center, which is a prerequisite for
the existence of localized eigenmodes involving the defect
oscillations, the defect modes have to be placed symmetrically
with respect to the chain center [44]. In Fig. 3(a) we show how
the distance between pairs of defect ions scales as a function
of the number of interposed ions. While for a large system
a certain robustness with respect to the exact positioning of
the defects can be expected, in a small system the defects
have to be precisely located. This requirement is relaxed in
settings in which the ions are axially equidistantly spaced,
for example, in a chain of ions at the central axis of a three-
dimensional crystal [45] or when the ions are confined by
means of anharmonic potentials [46,47].

B. Coupled oscillators

We now assume that the chain has been prepared at a tem-
perature T such that the ions carry out harmonic oscillations

0 200 4000

10

20

30

40

50

d

z(
0) d

(a) (b)

FIG. 3. (Color online) (a) Equilibrium distance z
(0)
d = z(0)

n − z
(0)
−n

between symmetrically placed pairs of ions in a linear Paul trap as
a function of the ions’ dimensionless relative position d = 2n (solid
line). The distance zd is in units of the interparticle distance a at the
chain center and has been evaluated for N = 400 ions. The dashed
line represents the distance when the ion distribution is uniform and
equally spaced by the interparticle distance a. Around the trap center
the spacing in a linear Paul trap is well approximated by constant ion
spacing (and is fitted by ≈2.29N−0.596 [43]). (b) Axial and transverse
spectrum of a chain composed of Ca+ ions in a linear Paul trap, which
has two In+ ions embedded in it. The distance between the calcium
ions is d = 14 and the mass ratio in this system is M/m = 2.87 [48].
The solid (dashed) line corresponds to the eigenfrequencies ωk of
H⊥ (H‖) and is plotted as a function of the quasimomentum k (in
units of π/a). The frequencies are scaled in units of ω‖ = √

U‖/m

and U⊥(m)/U‖ 
 416 for any N according to Eq. (18). The isolated
transverse frequencies (see dashed circle) almost coincide with the
frequency of the defects’ transverse potential.

around their equilibrium positions r (0)
j = (0,0,z

(0)
j ). The poten-

tial can hence be described by its harmonic approximation, and
under this condition, axial and transverse dynamics decouple.
The Hamiltonian can then be written as

H0 = H‖ + H
(x)
⊥ + H

(y)
⊥ , (13)

with

H‖ =
N∑

j=1

(
p2

q,j

2mj

+ 1

2

N∑
k=1

V
‖
jk qj qk

)
, (14)

H
(x)
⊥ =

N∑
j=1

(
p2

x,j

2mj

+ 1

2

N∑
k=1

V ⊥
jk xj xk

)
. (15)

Here qj = zj − z
(0)
j and pj,α are the α = x,y,q components

of the momentum pj of ion j . The components of the axial
and transverse potentials read, respectively,

V
‖
jk =

⎛
⎝U‖ +

∑
l �=j

Kj l

⎞
⎠ δjk − (1 − δjk)Kjk, (16)

V ⊥
jk =

⎛
⎝U⊥,j − 1

2

∑
l �=j

Kj l

⎞
⎠ δjk + (1 − δjk)

Kjk

2
, (17)

where δjk is the Kronecker δ, while Kj,� = 2Q2/(4πε0 |z(0)
j −

z
(0)
� |3) are the couplings due to the Coulomb repulsion [44].
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The Hamiltonian term H
(y)
⊥ is found from H

(x)
⊥ by replacing

xj → yj .
In Fig. 3(b) we show the eigenfrequency spectrum for a

chain composed of N − 2 Ca+ ions, into which two In+ ions
are embedded such that 14 calcium ions are interposed. This
system has a mass ratio of M/m ≈ 2.87 [48] and in order to
be able to easily compare results for chains of different length
we rescale ω‖ = √

U‖/m so that [44]

ω‖(N ) = ωref
ln N

N
, (18)

where ωref = 2π × 659.6 kHz is a reference axial trap
frequency, which we have chosen such that the interparticle
distance at the center of the chain is constant for all N

and therefore the dispersion relation remains invariant as N

is varied. The spectrum consists of two degenerate normal
frequencies of the transverse modes (TM), which appear
separate from the continuum (four isolated frequencies in total,
two for each transverse spectra). They correspond to normal
modes localized around the position of the two defects and
occur due to the mass dependence of the transverse, radio-
frequency potential. By varying the mass ratio μ = M/m or
the trap aspect ratio ε, these localized frequencies can be tuned
and for large enough separation of the continuum part from
the TM spectrum, the dynamics of these two modes decouple
from the rest of the transverse chain. The largest amplitudes
are observed at the position of the defect ions and their first
neighbors (see Fig. 4), while all other ions are essentially
unaffected. We note that these degenerate modes are either
symmetric or antisymmetric with respect to reflection about
the chain center.

In order to realize a dynamics analogous to the one
sketched in the previous section, we need to introduce a
coupling between the transverse defect modes and the axial
ones. Furthermore, the frequency of the radial defect modes
needs to fall into the same range as the band of the axial
excitations [see Fig. 3(b)]. The second condition can be
easily achieved by appropriately choosing the mass ratio
and the trap confinement. Moreover, while anharmonicities
(i.e., higher order terms of the Taylor expansion of the
Coulomb interaction) can give rise to a non-negligible coupling

(a) (b)

FIG. 4. Spatial distribution of the isolated modes along the ion
chain with dimensionless mode number n for two defects separated
by d = 8 in a chain of size N = 400. The figure shows (a) the
antisymmetric relative positions mode and (b) the symmetric c.m.
mode. Apart for the defects positions, only the first neighbors
contribute significantly to the mode dynamics. Ions outside the plotted
region also possess no overlap with the isolated modes.

between the radial defect vibration and the axial vibrations, for
sufficiently cold atoms, these only become important over time
scales longer than the revival time of the Gaussian dynamics.
A coupling like the one given in Eq. (4), however, can originate
from the interaction with a standing-wave laser field in the x-z
plane, which is switched on at time t = 0 and dispersively
couples with an internal transition of the impurity defect ions.
When the node of the laser standing wave coincides with the
equilibrium positions of the defect ions, the chain dynamics in
the Lamb-Dicke regime [49] is governed by the Hamiltonian

H = H0 + HI (t),

where

HI (t) = γ (t)

2
[(x−n − q−n)2 + (xn − qn)2] , (19)

with γ (t) = γ (t) being an effective coupling strength and
(t) the Heaviside function. This local coupling allows an
excitation in the defects’ TMs to also excite their axial degree
of freedom, which in turn generates a phononic excitation in
the axial direction. Note that the dynamics in the y direction
is decoupled and therefore ignored in the following.

C. Initial state and Gaussian dynamics

With this picture in mind, our goal will be to entangle the
two defects’ TMs through their interaction with a reservoir
provided by the axial phonons. The initial states of the
axial modes of the chain are prepared by Doppler cooling,
so that the density matrix for the axial oscillators reads
ρR(T ) = exp(−HR/kBT )/Z, where kB is the Boltzmann
constant, T is the temperature characterizing the dynamical
steady state obtained by laser cooling [50], HR ≡ H‖ is
the reservoir Hamiltonian, and Z = Tr[exp(−HR/kBT )] its
partition function. The TMs of the defect are initially prepared
in the ground state of the transverse oscillator through
sideband cooling [51] and then converted into squeezed pure
states [51,52], described by the density matrix ρ(1)

n (s) ⊗
ρ

(2)
−n(s), with a real-valued squeezing parameter s and variances

�q2
n = �q2

−n = x2
0e−2s/2, �p2

q,n = �p2
q,−n = p2

0e
2s/2. Here

x0 = √
�/Mω⊥ is the size of the defect ground state in the

transverse direction with frequency ω⊥ = √
U⊥(M)/M and

p0 = �/x0 is the associated momentum [53]. The initial state
of the composite system is then

�(0) = ρ(1)
n (s) ⊗ ρ

(2)
−n(s) ⊗ ρR(T ) . (20)

Under the prescribed Hamiltonian, H0, the states of the defects
(as well as the reservoirs) remain Gaussian and are therefore
fully characterized by their first moments and covariance
matrix �ij = 1

2 〈ξiξj + ξj ξi〉 − 〈ξi〉〈ξj 〉, with i,j ∈ {1,2,3,4}
and ξ = (qj1 ,pj1,q ,qj2 ,pj2,q) [54]. Logarithmic negativity can
thus be used to quantify entanglement between the defects,
according to

EN = max{0, − ln(2ν̃−)}, (21)

where ν̃− is the smallest symplectic eigenvalue of the partial
transpose of the covariance matrix � [55].
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D. Mirror reflection symmetry

Let us consider that the defects are placed symmetrically
with respect to the trap center, so that we can use c.m. and
relative coordinates for pairs of ions

qj,± = (qj ± q−j )/
√

2, (22)

xj,± = (xj ± x−j )/
√

2, (23)

where the index + (−) indicate c.m. (relative) motion and their
conjugate momenta are defined accordingly. As before, the full
Hamiltonian decouples in these new variables and can then be
written as H = H+ + H− with

H± = H±
‖ + H±

⊥ + H±
I , (24)

and where H+
I and H−

I are the coupling terms between
the axial and transverse directions. The nonlocal dynamics
between the defects can therefore be described by two
independent couplings to individual environments. In the
presence of the coupling laser the axial potential, (V (γ )

‖ )jk =
(V‖)jk + γ δjk(δj,n + δj,−n), still decouples into a c.m. and
a relative part, V

(γ )
‖,±, and by introducing the mass-weighted

coordinates q ′
j,± = √

mjqj,±, the corresponding potential

(V (γ )
‖ )′jk = (V (γ )

‖ )jk/
√

mjmk can be diagonalized by means
of an orthogonal matrix [24]. The eigenvalue problem is now
equivalent to the one of N identical ions of unit mass

H
(γ )
‖,± =

N∑
j=1

(
[ρq,±]2

j

2
+

(
ω

(γ )
±,j

)2
[χ±]2

j

2

)
, (25)

where (ω(γ )
±,1, . . . ,ω

(γ )
±,N ) denote the eigenfrequencies of V

(γ )′
‖,±

and O‖,± is the orthogonal matrix which brings V
(γ )′
‖,± into a

diagonal form. The eigenpositions and momenta are given by
[χ±]j = ∑

k[OT
‖,±]jk[q ′

±]k and [ρq,±]k = ∑
k[OT

‖,±]jk[p′
q,±]k .

The transverse coordinate is equivalently diagonalized.

E. Spectral density

Some insight into the dynamics can be gained by using
the generalized quantum Langevin equations of motions for
X± ≡ x±,n, which can be obtained by formally eliminating
the other variables [6]

d2X±
dt2

+
∫ t

0
dt ′�±(t − t ′)

dx±,n

dt ′
+ (1 − �±(0))X±(t)

= F±(t) − �±(t)X±(0) . (26)

Here, �±(t) is the memory-friction kernel for the symmetric
(+) and antisymmetric (−) modes for t � 0 (it vanishes for
t < 0), which is the sum of the memory-friction kernels due
to the coupling with the axial and transverse modes,

�±(t) = �‖,±(t) + �⊥,±(t). (27)

Without a loss of generality, we focus for the present
discussion on the properties of the reservoir constituted by the
axial modes. This assumption is justified by the observation
that the defect modes are within the axial band, while there is a
gap separating the defect oscillators from the other transverse
excitations (note that when reporting numerical results we
include all couplings). Also for brevity we just discuss the

c.m. case in the following, as the formalism is equivalent for
the relative coordinate.

The memory-friction kernel in the axial direction for the
c.m. mode is

�‖,+(t) =
N∑

j=1

(γ+,j )2

m
(
ω

(γ )
+,j

)2 cos
(
ω

(γ )
+,j t

)
, (28)

where the new coupling strengths are defined from the
eigenvectors of Eq. (25) as γ+,j = γ [OT

‖,+]jn (for defect ions at
positions n and −n). The operator F+(t) = F‖,+(t) + F⊥,+(t)
is similarly decomposed into the contribution of the Langevin
force due to the axial and the transversal modes, respectively.
In particular,

F‖,+(t) =
N∑

j=1

[
γ+,j cos

(
ω

(γ )
+,j t

)
[χ+(0)]j

+ γ+,j sin
(
ω

(γ )
+,j t

)
mω

(γ )
+,j

[ρq,+(0)]j

]
. (29)

The influence of the interaction with the reservoir can be
characterized by the environmental spectral density, which is
given by the Fourier cosine-transform of the memory-friction
kernel

J+(ω) = ω

∫ ∞

0
�‖,+(t) cos(ωt)dt

= π

2

A∑
j=0

(γ+,j )2

m(ω+,j )2
δ(ω − ω+,j ), (30)

where J+(ω) and the equivalent equation for J−(ω) account
for the distinct interactions of the center-of-mass and relative
defect TMs with the axial modes of the chain. For two defects
separated by d = 14 these spectral densities are shown in
Fig. 5 and the clearly visible zeros are a manifestation of the
existence of eigenmodes which are localized excitations within

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

ω

J ±(
ω
)

FIG. 5. (Color online) Spectral densities (in units of U‖) as a
function of the frequency. The defects are separated by d = 14 ions
of the other species and the number of ions composing the chain is
N > d . The solid (dashed) line corresponds to J+(ω) [J−(ω)].
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(a) (b)

FIG. 6. (a) Expectation values of �x2 for the relative (gray
line) and c.m. (black line) motions as a function of time (in units
of ω−1

‖ ). The parameters are N = 800, γ = 1.9 × 103U‖, d = 18,

T = �ω⊥/kB and the defects frequency is set to ω
(2)
− , corresponding

to a zero of the spectral density. (b) Expectation value of �x2 for the
c.m. motion at the steady state as a function of the initial temperature
of the chain T (in units of kB

�ω‖ ).

the chain. This means that at the frequency values ω
(�)
+ [ω(�)

− ]
associated with these zeros, the c.m. (relative) motion of the
defects effectively decouples from the environment, analogous
to the effect described in Sec. II.

F. Relevant time scales

In the following we analyze the defects dynamics by
integrating Eqs. (26) for the case where the frequency of the
defect oscillators is such that the axial spectral density vanishes
for X−. We are in particular interested in the behavior of the
expectation values of the first and second moments of X+ and
X− and in Fig. 6 we show their evolution in time for a certain
parameter choice. The defect frequency is chosen to match
that of the second zero, ω

(2)
− , of the relative spectral density

J−(ω), and for times shorter than the revival time, the c.m.
motion can be seen to reach a thermal quasisteady state with
zero mean transverse position and finite variance determined
by the temperature T .

Figure 6(a) allows us to identify two characteristic times
scales: (i) the thermalization time tth, representing the time
needed for the moments of the c.m. defect to reach quasisteady
values, and (ii) the revival time trev, at which finite-size
effects take this defect out of thermal equilibrium. Tuning the
parameters to ensure a regime for which tth � trev then allows
one to make statements which are valid in the thermodynamic
limit. In Fig. 6(b) the average of the expectation value of
�x2 is shown after thermalization as a function of the initial
temperature of the bulk and a linear increase for higher
temperatures is visible. The hyperbolic cotangent dependence
of �x2 on T , evident in Fig. 6(b), confirms the expected
thermalization of the c.m. motion [17]. We note that while the
(nonlocal) c.m./relative variables may reach a thermal state,
this will not be true for the defect ions themselves as their
dynamics also depends on the uncoupled, protected mode.

IV. RESULTS

To characterize the dynamics of the quantum correlations
between the defects, we focus first on the behavior in long

chains in order to understand scaling with the size of the bulk.
We then consider shorter chains, composed of tens of ions,
and show that quantum state preparation—such as squeezing
of the transverse modes of the defects and laser cooling of the
rest of the chain—are the only relevant conditions for creating
entanglement between the impurity ions.

Since the initial defect state is Gaussian and the Hamilto-
nian quadratic, we use the logarithmic negativity EN , Eq. (21),
to quantify the quantum correlations between the defects.
We also present results related to the average logarithmic
negativity EN , which is defined as

EN = 1

n

n∑
i=1

EN (t̄i) , (31)

where n is the number of time steps calculated in the interval
tth < t̄ < trev. Convergence of this mean value was tested
rigorously as a function of n over this interval.

A. A reservoir can entangle two distant defects

As a benchmark, we start by analyzing the entanglement
generation when there is no coupling between axial and
transverse modes, i.e., γ = 0 and for time scales on which
anharmonicities can be neglected. In this limit the evolution
of the transverse modes of the defects is determined by the
Hamiltonian H⊥, Eq. (15), alone and we note that the two
defect modes are directly coupled through the fluctuations
of the Coulomb interaction about the equilibrium positions,
which scale with their mutual distance R12 as 1/R3

12.
This situation can be modeled by two isolated defects whose

vibrations are coupled by a spring of strengthK ∝ 1/R3
12. If the

two defects are initially in a squeezed state, the interaction will
lead to beam-splitter dynamics and create two-mode squeezing
as a function of time. Unitarity, however, will make this process
periodic with a period determined by K. For a time interval in
which the correlations steadily increase, we show the resulting
logarithmic negativity for two isolated ions at a distance d =
18 in Fig. 7(a) (dashed line).

If we consider the two ions embedded in a chain of lighter
particles, the frequency of the defect ions is separated from the
transverse frequencies of the rest of the chain by a gap, and
the associated modes are naturally decoupled from the rest of
the transverse dynamics and mainly overlap with the localized
normal modes of the chain. There is, however, a remaining
finite overlap with nonlocalized transverse modes of the chain,
which leads to a residual coupling. The resulting entanglement
dynamics, as shown by the gray line in Figure 7(a) for a chain
of N = 800, demonstrates that the presence of the transverse
environment therefore adds small amplitude oscillations to the
unitary entanglement evolution and also tends to decrease its
magnitude.

Let us now assume that at t = 0 the coupling between the
defects transverse oscillations with the axial modes is switched
on. This leads to a rapid growth of the quantum correlations
between the defect ions and the corresponding logarithmic
negativity [see black line in Figure 7(a)] and an increase almost
tenfold with respect to the value obtained using direct Coulomb
coupling only. We note that this kind of dynamics can be
observed for any distance larger than d > 3.
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FIG. 7. (Color online) (a) Logarithmic negativity as a function of time (in units of ω−1
‖ ) for a chain of N = 800 ions and d = 18 for an initial

squeezing of s = 1.5. The solid black line displays EN (t) in the presence of laser coupling with strength γ = 1.9 × 103U‖. For comparison
the logarithmic negativity with no laser coupling (γ = 0) is shown (light gray line) where the sole contribution of the transverse chain is seen
to add small amplitude oscillations. Also shown is the entanglement generated between two isolated defects at the same distance (dashed gray
line). (b) Comparison between the logarithmic negativity generated using the equilibrium positions determined by Eq. (12) (black line) and by
assuming equally spaced ions such that an = zn+1 − zn is constant (dark gray line). In both cases the distance between the defects is d = 18
and N = 800 with γ = 3.5U‖. The defect frequencies are matched to the frequency ω

(2)
+ at which the spectral density J+(ω) vanishes. (c) EN

vs time for different chain lengths N = 600 (blue [gray]), N = 700 (red [gray]), and N = 800 (black). The defects frequencies are matched to
ω

(2)
− and γ is the same as in panel (b), while the time is in units of ω‖(N )−1 (note that to each value of N corresponds a different unit of time).

To ensure that the ion spacing in the center of the chain is the same for each N the trap frequency is modified according to Eq. (18).

It is insightful to compare the results obtained above, which
were calculated assuming that the ions form a chain in a linear
Paul trap, with the ones found when the ions are assumed to
be equally spaced in the axial direction [19]. The logarithmic
negativities for both cases are shown in Fig. 7(b) and one can
clearly see that the average steady-state entanglement created
is comparable, even though slightly reduced in the linear Paul
trap setting. However, the revival time trev, at which finite-size
effects start to play a role, is doubled in the Paul trap, which
can be understood by realizing that the interparticle distance at
the chain center in the trap is equal to the interparticle distance
in the case of equidistant ions. The increased interparticle
distance far from the chain center in a harmonic trap suggests
that the shorter wavelength modes are localized at the chain
center, while the overlap with modes that oscillate away from
the center is smaller than in the case of a uniform chain. This
explains the longer revival time.

Finally, in Fig. 7(c) we show the behavior of the logarithmic
negativity for increasing particle number. One can clearly see
that the (quasi)steady-state value reached does not change
as N becomes larger, which allows us to extrapolate to the
thermodynamic limit and the entanglement reached between
two defects embedded in a macroscopic bulk. While the large
numbers of ions considered in this plot are so far difficult to
achieve in linear-Paul traps, this result shows that entanglement
could be observed at equilibrium in a solid-state environment,
provided that spatially localized normal modes involving the
defects characterize the dynamics of the bulk.

B. Dependence on the initial state

The results shown so far demonstrate that entanglement
can be efficiently generated in the system described above.
Two important prerequisites are that the defects are initially
prepared in a squeezed state and that the chain is sufficiently
cold when the defects are at a distance d > 0. Let us first
examine the dependence on the initial squeezing and assume
the chain to be at a sufficiently low temperature.

The dependence of bath-mediated entanglement on the
initial squeezing of the entangled objects was already pointed
out and discussed in various settings [17–19,31]. It can be
understood in terms of nonunitary beam-splitter dynamics, in
which the degrees of freedom of two nonclassical input states
(which can be separable) mix and thereby generate quantum
correlations. When both defects couple to the same position in
the chain, a larger value of the initial squeezing leads to larger
entanglement. In our model the squeezing of the defects state
at t = 0+ is the result of the combined action of (i) the initial
state preparation (whose squeezing parameter is given by s)
and (ii) of the quench performed at t = 0 by switching on the
laser (which also gives rise to a sudden quench of the defect
potentials).

In Fig. 8(a) we display the average logarithmic negativity,
EN , as a function of the initial squeezing parameter s and for
chains of different sizes, assuming the interparticle distance
to be uniform. This ensures that the defects are at the same
distance regardless of how many ions are in the chain, allowing
for easier comparison of the effect of the chain size on the
average entanglement. We first note that the curves all vanish
at the same value of s =: s0 > 0, where the initial squeezing
of the defects and the one due to the quench mutually cancel.
This effect was also reported in Ref. [18]. At either side of
this point EN reaches a maximum and then starts to decrease.
This decrease is more pronounced for smaller sizes and is
due to the fact that for the considered parameters the initial
energy of the defect oscillators, Es = 2(sinh2(s) + 1

2 )�ω⊥, is
comparable to the thermal energy of the rest of the chain,
Echain = ∑N

j=1(〈n(ωj )〉 + 1
2 )�ωj , with 〈n(ωj )〉 = (e�ωj /κBT −

1)−1. This excess energy causes the second moments of the
impurity to undergo large amplitude oscillations, which results
in large amplitude oscillations of the logarithmic negativity. To
avoid this scenario one can place a constraint on the allowed
initial squeezing of the defects as

Es

N
� Echain

N
. (32)
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FIG. 8. (Color online) (a) Average logarithmic negativity EN as a
function of initial squeezing s of the defects’ transverse motion. Chain
sizes of N = 600 (dot-dashed line), 900 (dashed line), and 1200 (solid
line) are shown. (b) The scaled energy imparted by the squeezed
states Es/N as a function of the initial squeezing s for N = 600
(black), N = 900 (green [gray]), and N = 1200 (red [gray]). The
scaled energy of the chains Echain/N is shown for comparison (dashed
line). In both figures the spacing is constant between the ions for all
N and they are scaled with respect to the minimum spacing between
ions in an N = 1200 ion chain such that a = 2.29(N )−0.596. The
parameters used are d = 18 and γ = 4 × 103U‖ and the frequency
of the defects is set to ω

(2)
− .

In Fig. 8(b) the scaled energy of the squeezed states (solid lines)
is seen to exceed the scaled energy of the chain (dashed line)
for s > 3. For larger chains the effect of the large squeezing
is reduced and one can infer that it becomes negligible in the
thermodynamic limit.

The dependence on the initial temperature is intimately
related to the distance d between the defects, and we discuss
this dependence in the following.

C. Dependence on the distance

To determine the scaling of entanglement as a function
of d, we numerically determine the logarithmic negativity at
the quasisteady state for a large chain of N = 800 ions in
which the relative motion of the defects contributes to the
oscillations of a localized eigenmode (thus, the frequency of
the defect oscillators coincide with a value ω

(�)
− at which the

spectral density J−(ω(�)
− ) = 0). It can be seen from Fig. 9(a)

that an entangled (quasi)steady state is reached for the cases of
d = 12 (blue [top]), 14 (green [middle]), and 16 (red [bottom]
curve) and for � = 2, so that �γ = ω

(2)
− . However, the time at

which it is established varies.
The mean value EN of the entanglement over the

(quasi)steady state is shown in Fig. 9(b) and can be seen to
vary with d. Different colours correspond to different zeros
of J−(ω(�)

− ) and show that entanglement production can be
optimized by proper choice of the roots of the spectral density,
ω

(�)
± , to which the defects’ frequency is tuned. The optimal

choice of � as a function of the distance d between the impurity
defects is indicated by the solid black line. Note that for the
chosen parameters, no entanglement is present in the steady
state for the first node ω

(1)
− , while for any given distance it

increases with �. On the other hand, the time necessary for
reaching the steady state also grows with �; hence for localized
normal modes with a large eigenfrequency ω

(�)
− , the dynamics
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FIG. 9. (Color online) (a) Logarithmic negativity as a function
of time (in units of ω−1

‖ ) with varying distances d = 12 (blue [top]),
14 (green [middle]), and 16 (red [bottom]). The parameters are N =
800, T = 0, s = 1.5, and coupling strength γ = 1.9 × 103U‖. The
defects frequencies are matched to ω

(2)
− . (b) Average steady-state

entanglement EN as a function of the defects’ mutual distance. Solid
lines connect EN when decoupling via the same �th zero of J −(ω).
� = 2 (from left to right) (blue), 3 (green), 4 (red), 5 (cyan), and 6
(magenta). The solid black line shows the maximum EN .

of entanglement may not exhibit separation of time scales:
Finite-size effects become evident before a constant value
of the entanglement negativity has been reached. This is not
necessarily bad. In fact, as observed in Ref. [27] and as we
discuss in the next section, finite-size effects can increase the
amount of entanglement between the defects, even though for
a comparatively shorter interval of time.

Therefore, assuming that one can optimize the dynamics by
tuning the frequencies of the defect oscillators such that they
match the optimal localized normal mode, the dependence
of the asymptotic value of entanglement on the distance
seems to follow a power law behavior. This can be verified
using the model of coupled oscillators with nearest-neigbour
interaction, which is discussed extensively in Refs. [17,18]
and summarized in Sec. II. In Fig. 10 we show the behavior of
entanglement as a function of the distance when (a) the c.m.
motion and (b) the relative motion of the defects participate in
a localized eigenmode. The values of � correspond to the roots
ω(�) at which the corresponding spectral density vanishes, such

FIG. 10. Distance dependence of the minimal logarithmic nega-
tivity, EN,min = min(EN (t̄)) for tth < t̄ < trev, with the distance d for
a chain of coupled oscillators with nearest-neighbour interactions.
The behaviors for the decoupled collective mode of the c.m. (a) and
the relative motion (b) are shown. The decoupling is achieved with
the help of the �th zero of the spectral density J+(ω) (a) and J−(ω)
(b), respectively. The parameters chosen are m/M = 0.5, γ = 0.1κ ,
κ = 1M�2

γ ; see Sec. II A. The initial temperature is T = 0 and the
squeezing is s = 1.
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that �γ = ω(�). Comparison with the result using the Coulomb
interaction demonstrates that the power law decay is found for
both the long-range (Coulomb) and the short-range interacting
models. It is thus a feature related to the properties of the
localized normal modes and their coupling with the rest of the
chain.

It is interesting to compare this result with previous
studies on bath-mediated entanglement in linear chains of
oscillators. There, it was shown that entanglement decays
quickly on the length scale of the order of the interparticle
distance [25,26,32]. These works, however, considered chains
which possess discrete translational symmetry, while in our
case the presence of the defect ions gives rise to a set of
localized normal modes involving the defects and the ions
between them. These modes are the key elements at the basis
of the creation of the decoherence-free subspace, which allows
for entanglement creation, and show that the dynamics of this
entanglement generation is intrinsically related with the lattice
symmetries.

Further calculations show that the entanglement decay
with distance is faster with increasing temperature. In fact,
the temperature also determines the variances of the chain
oscillators which participate in the localized normal mode
and which are easily identified (in the oscillator chain with
nearest-neighbor interactions) as the oscillators interposed
between the two defects. As the distance between the defects
becomes larger, the number of these oscillators increases
and therefore the effect of the chain’s temperature is more
significant, which results from the initial squeezing of the
defects and the thermal excitation of the interposed oscillators.
Already at T = 0, the initial variance of the localized modes is
pushed close to the standard quantum limit for large distances.
In addition, a number of eigenmodes, which are thermally
occupied, have a finite overlap with the defect oscillators and
contribute to the variance of both relative and center-of-mass
oscillators, thus diminishing the resulting entanglement.

D. Small chains

We now turn to systems which have been realized in
experimental setups consisting of tens of ions forming a chain
in a linear Paul trap. In particular we consider a chain of
N = 50 ions at finite temperatures, in which two defects
are embedded at a distance d = 4 and, in the second case,
d = 6 from each other (i.e., four and six ions, respectively,
are interposed). For systems of this size, finite-size effects
become relevant on short time scales, which can be seen
from Fig. 11, where we show the dynamics of the logarithmic
negativity for a time scale of the order of the revival time: The
average value of entanglement either monotonously increases
or decreases and no (quasi)steady state is reached. In both
cases, the coupling with the axial modes gives rise to a tenfold
increase of the logarithmic negativity at each instant of time
(after a finite transient), when compared to the value due to
the direct Coulomb coupling within the transverse chain.

For chains consisting of N = 10 ions one can also take
advantage of the finite-size effect to generate entanglement.
The results are shown in Fig. 12 for d = 2 and d = 4 for
two different temperatures. For comparison the case of zero
laser coupling is shown as gray and black lines for the same

(a) (b)

FIG. 11. (Color online) Logarithmic negativity as a function of
time (in units of ω−1

‖ ) for N = 50, initial squeezing s = 0.5 (black)
and s = 1 (red [gray]) while the chain is initially prepared at T =
8�ω‖/kB = 10 μK. The coupling strength is γ = 13.6U‖ and the
defects are tuned to ω

(2)
− . Panel (a) corresponds to the distance d = 4

and panel (b) to d = 6. For comparison the entanglement is also
shown when γ = 0 for s = 0.5 (gray [top] lines) and s = 1 (green
[bottom] lines).

temperatures. The oscillatory nature of EN is clearly visible
when the c.m. motion is decoupled [Figs. 12(a) and 12(b)]
but is less evident when the relative motion is decoupled
[Fig. 12(c)]. The coupling with the axial modes changes the
frequency of the oscillations of EN and gives rise to a dynamics
similar to the beam-splitter coupling generated by the direct
interaction, as can be seen by comparing the curves obtained
with and without the coupling laser.

E. Entanglement measurement

The quantum states of a single oscillator can be measured
by means of an ancillary qubit [56–59], which in the case of an
ion chain can be the electronic spin of the ions. The measured
statistics of the spin operators then give direct information
of the oscillators quasiprobability functions. Measurements of
the bath non-Markovianity have been proposed by means of
two qubits [60,61], and specific realizations for ion chains
have been discussed. Entanglement measurements, however,
present an additional challenge as they are not accessible from
single ion statistics and require correlated measurements on
the system. Several methods, however, have been developed
in recent years [57,58,62] and here we present a method which
extends the single-oscillator state determination introduced in
Ref. [63].

To determine the state of the transverse modes of the
two defects we assume that one can locally couple spin
and motional degrees of freedom of each defect ion by
implementing the interaction Hamiltonian

H int
i=1,2 = gi(t)σ

z
i (aie

−i�i t + a
†
i e

i�i t ) ,

where i labels the defect ions, ai (a†
i ) is the creation (annihi-

lation) operator for the transverse mode i with frequency �i ,
and σ

x,y,z

i are the Pauli operators acting on the ith spin. Setting
the initial spin state of each ion to be an eigenstate of the σx

operator with eigenvalue +1, one can check that, by measuring
the expectation value of the correlated spins operators

〈T 〉 = 〈σx ⊗ σx − σy ⊗ σy + iσ x ⊗ σy + iσ y ⊗ σx〉 ,
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FIG. 12. (Color online) Logarithmic negativity as a function of time (in units of ω−1
‖ ) for N = 10, when the transverse modes have been

cooled to the ground state. The chain is initially prepared at temperatures T = 0.8�ω‖/kB = 1 μK (green [top] lines) and T = 4�ω‖/kB = 5 μK
(red [bottom] lines). The coupling strength is γ = 0.5mω2

‖ in all cases. For comparison the cases for γ = 0 are shown for T = 1 μK (gray)

and T = 5 μK (black). Panel (a) shows d = 2, panel (b) shows d = 4, and the defects are tuned to ω
(1)
+ . Panel (c) shows d = 4 for the case

where the defects are tuned to ω
(2)
− .

one obtains a measurement of the characteristic function χ ,
which reads

χρ(α,β) = Tr[ρ(t) Dj1 (α) ⊗ Dj2 (β)] (33)

= 4〈T 〉(t). (34)

Here, ρ(t) is the density matrix of the two transverse oscillators
at time t , D are displacement operators acting on the defects
TM, and

α(t) = 2i

∫ t

0
dt ′gj1 (t ′)ei�j1 t ′ , (35)

β(t) = 2i

∫ t

0
dt ′gj2 (t ′)ei�j2 t ′ . (36)

Access to the entire phase space and, consequently, full
reconstruction of the oscillators state and its entanglement
properties is thus possible by properly designed coupling
profiles. For the dynamics of the defect ions, which are
Gaussian states and therefore fully described by their low-
order moments, it is sufficient to probe their characteristic
function close to the phase-space origin. We remark that this
scheme demands neither interaction of the distant systems to
a common ancilla [58] nor prior displacement operations on
the oscillator states [57,62].

V. CONCLUSIONS

We have theoretically analyzed the generation of entan-
glement between two impurity defects embedded in an ion
chain in a linear Paul trap. In this work we have shown
that parameter regimes exist for which entanglement can be
maintained over large time intervals, with values oscillating
around a finite mean value. The predicted entanglement is
robust against fluctuations in the system parameters, such as
the size and the elapsed time, as long as finite-size effects
can be neglected. This therefore suggests that entanglement
can be encountered in macroscopic bulk systems as well.
While the explored regimes include cases which are out of
reach for current experiments with trapped ions, the entangling
dynamics analyzed here can be encountered in other physi-
cal platforms as well, for example optomechanical systems

[64–67]. The key ingredients required are the presence of
nonlocal, decoherence-free subspaces (zeroes of the spectral
densities) which partially protect the initial information. In
addition, the ability to tune the frequencies of the defects to an
appropriate zero of the spectral density is required.

Beyond possible applications for quantum technologies,
this analysis highlights the conditions for identifying quantum
mechanical features in mesoscopic bulks. Important conditions
we have identified are the capability to cool the bulk to a
very low temperature, which needs to be smaller than the
defect frequency, and the ability to tune the defect oscillator
frequency to a specific localized normal mode of the bulk.
This latter condition requires first a spatial homogeneity of the
bulk over the distance between the two defects as well as the
possibility to spectrally resolve the individual localized modes
eigenfrequencies. These conditions become obviously more
demanding as the distance is increased, since the frequency
distribution of localized eigenmodes becomes denser within
the band. However, this issue could be overcome by applying
local time-dependent operations [68].

We finally remark that, while the dynamics we have
considered here is fully Gaussian, it would be interesting
to include non-Gaussian elements, such as nonlinearities and
initially non-Gaussian states, as these may alter the amount
of quantum correlations between the defects [54]. Further
analysis may also include the effect of the chain close to
a structural instability, such as the zigzag transition [69].
Here, in fact, modes localized at the chain center drive the
transition and could be used as resources for establishing
entanglement between distant points of a network based on
solid-state devices.
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