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 Dissolved oxygen in shallow subtidal of MPA ranged from hypoxia to hyperoxia.  

 Daytime conditions were hyperoxic at or near the shore and normoxic offshore.  

 Shallow-water, under-rock communities were often hypoxic. 

 At night, shallow water habitats were hypoxic to anoxic during calm weather.  
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ABSTRACT   11 

The benthos of Lough Hyne (Europe’s first marine reserve) in SW Ireland has changed dramatically in the past 12 

decade with declining invertebrate communities and proliferating ephemeral macroalgae. In summer 2011 and 13 

2012, we measured dissolved oxygen (DO) levels on shallow subtidal rocky shores of the lough and recorded 14 

both benthic hypoxia (<2 mg O2 L
-1

) and hyperoxia (~10–16 mg O2 L
-1

). In late summer 2013, we 15 

systematically characterized the spatial and temporal patterns of DO in the lough seawater. Daytime DO levels 16 

were hyperoxic either at or near the rocky shore, declined with increased distance for the first 5 m offshore, then 17 

stabilized at normoxic levels (~8 mg O2 L
-1

). DO levels above and below rocks were variable and often showed 18 

large differences (max. difference of 15.6 mg O2 L
-1

), particularly at rocky shore sites with low current flow. At 19 

night, the DO in shallow water declined, becoming hypoxic to anoxic during calm weather. These extreme 20 

oxygen fluctuations (i) are amongst the first records to report severe conditions within Irish coastal waters and 21 

(ii) could contribute to the known recent decline in benthic invertebrate diversity within the marine reserve.    22 

 23 
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 30 

1. Introduction 31 

The proliferation of (1) ephemeral macroalgae (particularly ulvoids and ectocarpoids) and (2) 32 

microalgal/cyanobacterial biofilms has been documented in aquatic systems around the world in response to 33 

increased anthropogenic nutrients (fertilizers, sewage, etc.) [1-3]. Such algal and bacterial blooms produce 34 

extremes in dissolved oxygen (DO) by their high rate of photosynthesis during the day (producing hyperoxia), 35 

and the dominance of respiration at night (causing hypoxia).  36 

Hyperoxic conditions (oxygen concentrations higher than in air-saturated seawater) can reduce activity 37 

levels, alter behavior, and reduce growth, fecundity, and survival of invertebrates [4-13]. Hyperoxia can also 38 

cause gas bubble disease in many types of fishes and invertebrates [14-18]. Adverse effects occur at super-39 

saturation levels as low as 108-115% [5, 6].  The Irish guidelines for bathing waters (S.I. No. 155 of 1992) are 40 

<120% air saturation. The biotic consequences of naturally occurring values of 150–200% air saturation merit 41 

ecological study, particularly in marine reserves, SACs (Special Areas of Conservation), and other ecologically 42 

or economically sensitive areas.  43 

Hypoxic and/or anoxic conditions can be lethal for both larval and adult invertebrates and fishes (e.g., [19-44 

28]). Although supersaturation of dissolved gases has been traditionally studied in artificial systems such as in 45 

aquaculture ponds and stream raceways, or around dams and power-plant outflows [14], both conditions (hyper- 46 

and hypoxia) may also occur in ‘natural’ aquatic systems such as seagrass beds or macroalgal stands.  47 

Extreme dissolved oxygen fluctuations have been reported for freshwater lakes [29], intertidal rockpools 48 

[18, 30-31], in various cnidarian-algal symbioses [32-35], near the surface of seaweed [36-39], and in shallow 49 

marine waters [12, 24, 40-41]. Hypoxia has also been extensively reviewed for (i) stratified lakes, fiords, and 50 

sea loughs, (ii) estuaries and inlets, and (iii) the oxygen minimum zone in deep water [42-47].  51 

Researchers from the Irish Environmental Protection Agency found no evidence of summer hypoxia to 52 

anoxia in 95 coastal water bodies surveyed in Ireland (including several sites in County Cork) between 2003 and 53 

2007 [48], although 10 were considered oxygen-deficient (2–6 mg O2 L
-1

). Furthermore, a later analysis of Irish 54 

coastal and shelf waters in summer 2001 to 2009 reported the lowest seabed DO levels of about 6.3 mg O2 L
-1

 55 

(70% air saturation) [49]. Recently proposed Irish standards of DO in fully marine coastal waters range from 56 

about 6.3 to 10 mg O2 L
-1

 [50]. Yet the fully marine Lough Hyne in County Cork [42-47] and the brackish 57 

Arbear Salt Lake in County Galway [51] are both known to show periodic hypoxia (<2 mg L
-1

) and anoxia (0 58 

mg L
-1

). Because coastal hypoxia has not commonly been reported for Irish rocky shores and because Lough 59 
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Hyne is an ecologically significant and internationally outstanding marine reserve [52-59], we embarked on a 60 

comprehensive program to quantify the large-scale and small-scale variations in the lough’s shallow-water 61 

oxygen dynamics and to consider the ecological ramifications of such fluctuations.  62 

Past research has been conducted on the oxygen tolerances of several ecologically significantly species that 63 

occur in the lough. For example, the embryos of the purple sea urchin (Paracentrotus lividus) are standardly 64 

used to assess European coastal water quality [60]; although embryos, larvae, and juveniles exhibit a high 65 

tolerance to low DO levels, survival and growth significantly decreases at <2 mg L
-1

 [60, Trowbridge et al., 66 

unpub. data]. Furthermore, the green urchin in Norway was ‘unable to maintain high gonad growth’ under DO 67 

conditions of 4 and 6 mg L
-1

 [61]. Juvenile spiny starfish (Marthasterias glacialis) exhibit reduced movement of 68 

podia, tenacity to substratum, and survival during 1-2 day exposures to hypoxia (Trowbridge et al., unpubl. 69 

data). Sessile suspension feeders such as cup corals, jewel anemones, and octocorals are uncommon in Lough 70 

Hyne habitats with DO values <5-6 mg L
-1

 [62, 63].  The relationship between low DO levels and species 71 

mortality has already been established in Europe and elsewhere [21-22, 24, 27, 41, 44-45]; we investigated the 72 

severity of the DO problems in Lough Hyne in the present study. 73 

We addressed two over-arching research questions.  First, do hyperoxic and/or hypoxic conditions occur 74 

only along the rocky shoreline or also offshore into the body of the lough? The spatial extent of extreme DO 75 

levels would indicate which organisms could be affected: benthic invertebrates, fishes, and seaweed in shallow 76 

water or larvae, fishes, and other organisms in the water column offshore. Second, are shallow-water DO 77 

conditions within known lethal limits of marine species, particularly ecologically significant ones such as P. 78 

lividus?  79 

 80 

2. Material and Methods 81 

2.1 Sea lough 82 

Lough Hyne (51°30′ N, 9°17′ W) is a semi-enclosed, fully marine sea lough in County Cork, southwest 83 

Ireland. The lough is ~0.8 km long and ~0.5 km wide, has negligible freshwater input (salinity is generally 34 to 84 

35), and is connected to the Atlantic Ocean by a shallow, narrow (25 m wide at high tide, 12 m at low tide) 85 

channel called the Rapids (Fig. 1). The tidal range within the lough is about a meter and appreciably larger 86 

outside (below the Rapids) [64]. The shallow sill in the Rapids restricts water flow into/out of the lough. The 87 

estimated flushing rate ranges between 12.5 and 41 days for the seawater above the thermocline [64-65]. Recent 88 

nutrient research [65] demonstrated significantly elevated nutrients relative to the 1990s [65-66]. Furthermore, 89 
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the mass mortality of purple urchins has released macroalgae, both perennials and ephemerals, from grazing by 90 

a species previously described as a crucial and ecologically significant herbivore [53, 67].  91 

The lough forms two different basins interconnected by the deep (48 m) Western Trough and shallow (1-2 92 

m) eastern channel (Fig. 1). The south basin is nearest to the tidal rapids where seawater enters and exits the 93 

lough, whereas the north basin is partially separated from the south by Castle Island. The Western Trough 94 

becomes seasonally stratified with summer anoxia below the thermocline [42-44] and causes migration of 95 

mobile megafauna [68].  96 

Discrete topographical and habitat units were designated in the 1930s on the shoreline (Fig. 1). These 108 97 

marked sectors within the lough are still used because handheld GPS devices have difficulty obtaining satellite 98 

signals in several areas of the lough. The specific locations are designated by shore (west, south, east, north, and 99 

island) and sector numbers. Monitoring sites (10-m of shoreline) were established by Ebling et al. [69] and 100 

relocated and resurveyed by Little et al. [70]. Ten sites (of the original 20) have been surveyed for >30 target 101 

species every year since the early 1990s [71-74]. Thus, the rocky shores of the lough have been extensively 102 

studied.  103 

 104 

2.2 Spatial variation in dissolved oxygen 105 

 106 

2.2.1 Onshore-offshore profiles 107 

To determine how spatially localized DO values were, one site was selected on each shore of the lough 108 

(north, south, east, and west) and a 50-m transect was laid out perpendicular to the shore at the chosen site. This 109 

procedure was repeated, with three transects being completed per day on two different occasions (27 Aug and 110 

13 Sep 2013) (Fig. 1a). For the first five meters offshore, physical measurements (water temperature, dissolved 111 

oxygen concentration [mg O2 L
-1

], and depth of the benthos) were taken every meter, using a recently calibrated 112 

optical YSI ProODO™ probe, meter stick (shallow depths) and a hand-held, high-frequency digital depth 113 

sounder (>1 m depths). From 5 m to 50 m offshore, the water column was generally deep enough (>0.5 m) that 114 

the ephemeral algae were patchy (or absent) and physical measurements were taken every 5 m. For each 115 

location, DO readings were taken at water depths of 1 cm (‘surface’) and 15 cm (‘subsurface’). Each transect 116 

took about 20 min and was done between 1400 and 1600 h.  117 

To analyze these profiles, we considered how DO (dependent variable) varied with four independent 118 

variables (monitoring site, distance offshore, sampling depth, and bottom depth) by using a general linear model 119 
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(GLM) test. The assumptions of this analysis were assessed as follows. (i) DO readings were assumed to be 120 

independent given the continuous water movement within the lough. (ii) Collinearity was investigated by 121 

determining which variables were strongly correlated. Because distance offshore and bottom depth were 122 

significantly correlated (Pearson’s correlation, r = 0.826, n = 180, p < 0.001), we dropped the latter variable 123 

from our tested model. (iii) We inspected the residuals to ensure there was no problem with variances. Because 124 

the residuals were problematic for the surface DO, subsurface DO, and the combined data, we used non-125 

parametric Spearman rank correlations to test how DO varied with distance offshore for surface and subsurface 126 

sampling locations.  127 

DO profiles were conducted on both sides of all 10 long-term monitoring sites (Fig. 1b) of Little et al. [70-128 

72]. The same methods used in the 50-m profiles (above) were repeated for the 5-m profile study, though 129 

measurements were taken only from 0 to 5 m offshore. For every meter offshore, DO readings were taken at 130 

depths of 1 and 15 cm, and the depth of the sea bed was recorded. Each transect took about 10 min and was 131 

done between 1030 and 1630 h. To analyze these profiles, we considered the same three assumptions as above.  132 

Because distance offshore and bottom depth were again significantly correlated (Pearson correlation, r = 0.614, 133 

n = 120, p < 0.001), we removed the latter variable from our tested model. Furthermore, because DO at surface 134 

and subsurface depths were highly correlated (r = 0.954, n = 107, p < 0.001), we simplified our model to two 135 

independent variables: site and distance offshore. As before, we inspected the residuals; after confirming there 136 

was no problem with variances, we conducted a 2-factor GLM with site and distance offshore as factors. 137 

 138 

2.2.2 Above and below rocks 139 

In August and September 2011, we noted that several long-term monitoring sites were becoming hypoxic to 140 

anoxic, particularly under shallow subtidal rocks. Therefore, we selected two sites that had appeared most 141 

oxygen-stressed, namely East Castle (sector I9) and East Goleen (W36). We measured DO concentrations 142 

directly below the water surface, above the seaweed patches, in the middle of seaweed clumps, and then directly 143 

above and below small slabs of rocks (10 per site) directly next to the monitoring sites. Rocks were lifted as 144 

little as possible (<5 cm off the benthos) to limit water flow and, thus, changes in DO values.  145 

In August and September 2013, oxygen levels above and under rocks were again measured, but more 146 

comprehensively. We selected 5 of the 10 long-term monitoring sites (Fig. 1d): East Castle (sector I9), North 147 

Labhra (I1), Codium Bay (S16), SE Labhra (I15), and Westwood South (W21/22). To avoid disturbing the 148 

monitoring sites, we sampled rocks in 3-m sections directly adjacent to the sites. DO readings were taken 1 cm 149 



 

6 
 

above the selected rocks and then immediately under the same rocks during daytime low tides. Rocks were 150 

selected to have roughly the same surface area (approx. 400 cm
2
) when viewed from above and to be lying on 151 

top of other rocks, thus ensuring that the oxygen probe did not penetrate benthic sediment. A minimum of 10 152 

rocks were selected in the 3-m section laterally flanking each site, for a total of at least 20 rocks per site. This 153 

design allowed for a comparison of small-scale variability within sites as well as large-scale variability among 154 

sites. All measurements were taken at or near daytime low tide between 1030 and 1630 h to ensure that the 155 

selected rocks were in the shallow subtidal region. Because cloud cover and weather was more important than 156 

time of day during the late morning to late afternoon period, we did not include time of day as a factor in the 157 

analysis. To analyze the resulting DO values, we used a 2-way ANOVA statistical design with site and side 158 

(right vs. left) as factors and water depth as a covariate.  159 

 160 

2.4 Temporal variation in dissolved oxygen 161 

To document nocturnal and diurnal variation, we measured DO (in mg O2 L
-1

) with the YSI optical probe at 162 

4-h intervals through a 24-h period in mid-summer (19–20 July 2012) at two sites: (a) North shore in sector N6 163 

and (b) West shore at sector W6 (Fig. 1c). We also recorded surface temperature and range of depths at which 164 

measurements were made (60–110 cm overall). At both sites there was patchy ulvoid seaweed, distributed down 165 

to a depth of about 1 m below low tide level, thus forming a band covering the intertidal and a portion of the 166 

subtidal. This green seaweed was interspersed with dead ephemeral algae and gravelly substratum. All of our 167 

‘tuft’ measurements were in ulvoid beds. We obtained wind speed data from Met Éireann for the nearby Sherkin 168 

Island for this time period as a relative measure of wind disturbance at the lough. 169 

To determine whether the mid-summer oxygen extremes would persist in late summer, we deployed a 170 

recently calibrated HOBO oxygen data logger (U26-001 by Onset) for 24 h. First, we set the sensor near the top 171 

of the Rapids (sector S16, Fig. 1c) during 16–17 September 2013. Second, we deployed the sensor on the North 172 

Shore (sector N11, Fig. 1c) during 19–20 September. In both cases, the sensor was set to record every 15 min, 173 

then attached to bricks with cable ties, and placed in shallow subtidal areas (ca. 1 m deep at low tide). We again 174 

obtained wind speed data from Met Éireann for the nearby Sherkin Island as a relative measure of wind 175 

disturbance at the lough.  176 

 177 

3. Results 178 

3.1 Spatial variation in dissolved oxygen 179 
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3.1.1 Onshore-offshore profiles 180 

In 2013, daytime DO levels were markedly hyperoxic (up to 14 mg O2 L
-1

) either at or near the shore. DO 181 

levels declined with increased distance from shore in the first 5 m (Fig. 2a-b); then oxygen stabilized at 182 

normoxic levels (~8 mg O2 L
-1

). The effect of distance offshore was highly significant (Spearman rank 183 

correlation, rs = -0.769, n = 90, p <0.001 for surface water (1 cm); rs = -0.797, n = 84, p <0.001 for subsurface 184 

water (15 cm)). We noted these results generally reflected the underlying distribution of benthic macroalgae 185 

(perennial and ephemeral) in the nearshore environment although unfortunately we did not quantify the presence 186 

or absence of algae at the time.  187 

There was significant spatial variation in DO values measured at the 10 monitoring sites in 2013. Most of 188 

the variation was among sites (F(9,60) = 28.5, p < 0.001) with Boundary Bay (E14), East Castle (I9) and SE 189 

Labhra (I15) having the highest DO values. There were also highly significant differences in DO with distance 190 

(0 to 5 m) from shore (F(5,60) = 10.7, p < 0.001) with maximal DO typically at 1 m from the shoreline and a 191 

decline to normoxic conditions by 5 m.  Site and distance from shore accounted for 85% of the variation in DO 192 

values measured.  193 

 194 

3.1.2 Above and below rocks 195 

In 2011, the mean DO values in the water column, at the water/macroalgal interface, and on the benthos 196 

were slightly hyperoxic, but <10 mg O2 L
-1 

(Fig. 3a). In the middle of the ephemeral algal beds (mostly the 197 

phaeophytes Stilophora and ectocarpoids), DO values were on average 13–14 mg O2 L
-1

 with considerable 198 

variation. All these values were substantially greater than those under the rocks (mean <1 mg O2 L
-1

) at East 199 

Castle and East Goleen sites (Fig. 3a).  200 

In 2013, differences in DO levels above and below rocks were variable but often large—with a maximum 201 

difference for an individual rock of 15.6 mg O2 L
-1

. SE Labhra and Westwood South had smaller differences in 202 

oxygen levels above and below rocks than East Castle, North Labhra, and Codium Bay (Fig. 3b). The former 203 

two sites had higher flow rates than the latter three sites (Trowbridge, unpubl.data). There were six rocks that 204 

were hypoxic (<2 mg O2 L
-1

) or anoxic underneath; all of these rocks were at the latter three sites. In general, 205 

however, the low-oxygen conditions were not as extreme during the 2013 sampling as during the 2011 survey 206 

(see East Castle in Fig. 3). 207 

There were highly significant differences in DO levels above rocks among the 5 study sites (ANOVA, 208 

F(4,90) = 76.3, p < 0.001). Although there was no significant main effect of local scale (right vs. left side of study 209 
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site, F(1,90) = 1.6, p = 0.210), there was a highly significant interaction effect (F(4,90) = 6.3, p < 0.001). The water 210 

depth of the benthos was not a significant factor (F(1,90) = 1.9, p = 0.170) explaining DO levels above rocks. 211 

Below rocks, however, both site and side of site (right vs. left) were significant factors (p = 0.001 and 0.003, 212 

respectively), whereas the interaction and water depth were not (p = 0.276 and 0.059, respectively).  213 

 214 

3.2 Temporal variation 215 

In July 2012, DO levels fluctuated widely with time of day (by up to 12 mg O2 L
-1

), but the results were 216 

consistent between the two sites (Fig. 4). In late morning (1100 h BST), the ephemeral algae and interface above 217 

them were very hyperoxic, but the surface water was close to normoxic. At 1500 h and 1900 h, the whole water 218 

column was hyperoxic. An hour after sunset (2300 h) the algae had become suboxic, while the surface water 219 

remained rather hyperoxic. At 0300 h, the seaweed environment was hypoxic and the water column above it 220 

also exhibited reduced DO (though only slightly at the surface some 50–80 cm above). Even 1 hour after 221 

sunrise, the seaweed DO was still substantially reduced on the north shore. The mean wind speed (at nearby 222 

Sherkin Island) during this period was 12.7 km h
-1

. 223 

The magnitude of temporal fluctuations of DO varied with weather during our 2013 HOBO sampling (Fig. 224 

5). During the 16–17 Sep. survey (Fig. 5b), diurnal-nocturnal fluctuations in DO were not very large: the water 225 

was hyperoxic in the day but normoxic at night at Codium Bay on the south shore (S16). Extremely strong 226 

winds developed in late afternoon and, despite the steep hills around Lough Hyne, produced large waves in the 227 

lough that lasted throughout the night and next morning. The mean wind speed recorded at the nearby Sherkin 228 

Island weather station was 37.5 km h
-1

. Calmer conditions (wind speed 21.5 km h
-1

) occurred during the 19-20 229 

Sep. survey (Fig. 5a), and daytime hyperoxia (up to 16 mg O2 L
-1

) was recorded on the north shore (N11) and 230 

hypoxia to anoxia developed at night. In the middle of the night, oxygen levels rose (during the low tide) before 231 

returning to hypoxia. Even though the sensor remained submerged, the water was shallow enough (ca. 0.5 m) 232 

that oxygenation may have occurred across the air-water interface. As the tide level subsequently rose, the water 233 

at the benthos became hypoxic again until after sunrise (Fig. 5a). This calm-weather pattern of DO was similar 234 

to our mid-summer 2012 results (Fig. 4).  235 

 236 

4. Discussion 237 

4.1 Spatial patterns 238 
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Extreme oxygen conditions (hyperoxia and/or hypoxia) occurred along the shoreline of Lough Hyne but not 239 

offshore into the body of the lough (the epilimnion). DO levels exhibited both small-scale and large-scale 240 

differences. This type of variation was expected, as the amount of ephemeral algae and benthic biofilms varied 241 

within and among sites, based on physical differences among sites [63]. Shore slope (of the shallow subtidal) 242 

varied among sites from 3.4° to 41.5° from the horizontal; fetch varied from 34 m to 884 m; aspect varied from 243 

60° to 345° (from a north compass bearing); and four sites had tree canopy reducing light levels whereas six 244 

sites did not. Furthermore, some sites were relatively similar on the two ends whereas others (such as Boundary 245 

Bay) had dramatically different depth profiles and current flows at either end of the 10-m wide sites.  246 

Fluctuations in local DO levels could, in turn, influence benthic community structure. If these fluctuations 247 

occur with a great enough frequency and/or amplitude, the entirety of Lough Hyne’s shallow subtidal 248 

community could be altered (see review by Diaz and Rosenberg [24] regarding predicted biotic effects). Such 249 

alteration has already started since the early 2000s: (1) unprecedented proliferation of ephemeral algae and (2) 250 

massive mortality of suspension feeders (sponges, bryozoans, hydroids), and mobile invertebrates [63,  Little 251 

and Trowbridge, pers. obs.]. Mobile animals subjected to stressful conditions may be driven into deeper water or 252 

away from the shore comparable to the habitat compression caused by seasonal anoxia below the thermocline 253 

[68]. Several Atlantic and Pacific urchin species exhibit significantly reduced growth, gonad development, and 254 

survival as well as abnormal embryonic and larval development under hypoxic conditions [60-61, 75]. The DO 255 

levels at night on the shore as well as under shallow subtidal rocks in Lough Hyne (Fig. 3-5) were clearly low 256 

enough to negatively affect purple urchins and juvenile starfish that dwell there and to have negative effects on 257 

urchin reproduction, embryonic and larval development, and juvenile recruitment.  258 

Habitat degradation and oxygen fluctuations within the lough may have contributed to the mass mortality of 259 

urchins in the lough [71-73]as well as the demise of many sessile invertebrates. While snorkelling in late 260 

summer, we have frequently seen (1) large lobsters that have emerged from their lairs onto shallow-water, 261 

defaunated benches during the daytime as well as (2) rotting remains of purple urchins, large crabs, and other 262 

ecologically significant consumers. These types of observations are reminiscent of the ‘graveyard phenomenon’ 263 

described by Stachowitsch [76-77] for the mass mortalities of macro-epifaunal communities in the Gulf of 264 

Trieste in the Adriatic Sea.            265 

However, not all invertebrates are negatively affected by ephemeral algal blooms. For example, Waheed 266 

[78] experimentally demonstrated that some species derived refuge from predators within ectocarpoid blooms. 267 

How hypoxia will affect larval recruitment and energy transfer up through the food web will depend on two 268 
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factors: (1) oxygen tolerance as well as (2) prey vs predator stress tolerance. With respect to the former, 269 

hypoxic-tolerant species may continue to settle and survive; our preliminary acrylic plate experiments indicated 270 

that some errant polychaetes and barnacles settled more abundantly in the presence of ephemeral algae than in 271 

their absence (both algal removal and unmanipulated control); bivalves and bryozoans, however, showed the 272 

opposite response. With respect to the latter issue, when prey species are more vulnerable to stress than their 273 

predators are, the resulting outcomes of species interactions would differ from when predators are more 274 

vulnerable than prey (e.g. prey-stress vs. consumer-stress models of Menge and Olson [79]).   275 

In their review of supersaturation in aquatic systems, Weitkamp and Katz [14] acknowledged that 276 

photosynthesis could contribute to supersaturated water and, thus, to gas bubble disease. The DO values 277 

documented in Lough Hyne substantially exceed US and Irish Environmental Protection Authority 278 

supersaturation standards. Because Lough Hyne is a marine reserve with significant fish, invertebrate, and 279 

seaweed communities [52-59], the frequency and magnitude of hyperoxic and hypoxic events is of considerable 280 

conservation concern, particularly given the preservation objectives of the National Parks and Wildlife Service 281 

[59]. Comparable oxygen problems and conservation concerns have been reported for seagrass meadows in 282 

Barloge Creek (Trowbridge et al., unpublished data) and elsewhere [80]. The generality of these DO results to 283 

other systems depends on coastal configuration; many geographic regions have highly convoluted coastlines 284 

forming semi-enclosed bays, estuaries, loughs, sloughs, etc. that would be susceptible to eutrophication-driven 285 

hypoxia and hyperoxia. Diaz and Rosenberg [24] reported that >400 coastal systems in the world were dead 286 

zones associated with eutrophication: it is a general phenomenon.  287 

 288 

4.2 Temporal patterns 289 

Diel-cycling hypoxia has been reported in several systems. In Lough Hyne, when weather conditions were 290 

calm (Fig. 4 and Fig. 5b), benthic species in nearshore habitats experience extreme DO conditions that could be 291 

lethal/sublethal to sessile biota. Alternatively, extreme hypoxia might drive animals out of the degraded habitats. 292 

Strong winds and waves coincided with the 16–17 Sep 2013 sampling (Fig. 5a) and do not reflect normal low-293 

flow conditions of mid-summer at Lough Hyne. Winds mixed the water in the shallow subtidal, moderating the 294 

hyperoxia and hypoxia. If winds and/or water currents were strong enough, DO levels which were typically 295 

elevated above ephemeral algae and depressed below it could be homogenized, with likely beneficial effects on 296 

the subtidal benthic communities. In other regions, Breitburg [81] reported that wind and tides influenced the 297 

severity of hypoxic events, and Tyler and Targett [82] reported tidal-related variation in DO extremes. Further 298 



 

11 
 

studies are needed to gain a greater understanding of how shallow subtidal DO levels vary temporally. We 299 

hypothesize that wind waves will ameliorate potential hypoxia, whereas calm spells will exacerbate the stress in 300 

low-energy systems with long residence times of seawater (e.g. Lough Hyne). 301 

Late summer to early autumn conditions may be extreme but what about the rest of the year? Our ongoing 302 

temporal analysis of DO at several sites has indicated extreme DO fluctuations for much of the year. For 303 

example, fluctuations at one site in April 2014 ranged from <1 to >20 mg O2 L
-1

 within a 24-hour period 304 

(Plowman et al., unpublished data). While mobile animals (fishes and invertebrates) can move offshore to avoid 305 

the stressful conditions, sessile invertebrates such as sponges, ascidians, hydroids, and bryozoans will be 306 

subjected to sublethal /lethal conditions. Field experiments are ongoing to evaluate how such hypoxia and 307 

hyperoxia affect larval settlement and adult survivorship (Trowbridge et al., unpublished data). The primary 308 

objective of the present study was to demonstrate the severity of DO problems within Ireland’s only marine 309 

reserve and Europe’s first one.     310 

Recovery from hypoxia is influenced by three factors: reduced nutrient enrichment, stratification of the 311 

water, and freshwater runoff [24]. In Lough Hyne—and many other coastal systems—the nutrient enrichment is 312 

apparently not autochthonous [65], so reduction is not under local control. The strength of shallow-water 313 

stratification depends largely on weather. Finally, although Lough Hyne has little freshwater input, unusually 314 

wet years do result in localized ulvoid blooms that exacerbate the oxygen dynamics. Potential remedial 315 

measures include the restocking of purple sea urchins (Paracentrotus lividus) into Lough Hyne to control the 316 

macroalgae. However, the efficacy of such restoration efforts would be dependent on the (i) absence of urchin 317 

pathogens and (ii) effective enforcement of the “no-take” regulations of urchins and other shellfish. Without 318 

intervention, the high nutrient levels and lack of effective grazers will probably continue, leading to alternating 319 

hypoxia and hyperoxia in the reserve, with negative consequences for the lough’s shallow-water ecosystem.   320 
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 514 

Figure Legends 515 

Fig. 1. Map of Lough Hyne in SW Ireland (modified from map 4 of Myers et al. 1991). Intertidal zone (stippled) 516 

and shallow subtidal habitats are subdivided into 108 topographically discrete sectors designated by shore (W, 517 

west; S, south; E, east, N, north; I, island) and sector number. a Location of 50-m transects surveyed in 2013. b 518 

Location of 5-m transects sampled in 2013. c Location of temporal variation in sampling with continuously-519 

recording HOBO sensor and a YSI hand-held sensor. d Location of monitoring of oxygen levels above and 520 

below rocks in 2013.  521 

  522 

Fig. 2. Spatial variation of DO levels recorded along an onshore-offshore transect on a 27 Aug 2013 and b 13 523 

Sep 2013 from different locations around the shore of Lough Hyne. Site codes refer to Renouf sector locations 524 

(see Fig. 1).  525 

 526 

Fig. 3. Observed differences in dissolved oxygen concentrations above and below selected rocks in a Aug/Sep 527 

2011 (n = 10 rocks/site) and b Aug/Sep 2013 (n = 20 rocks/site) at long-term monitoring sites in Lough Hyne, 528 

SW Ireland. Error bars represent SE and the dashed vertical line indicates oxygen saturation in air.  529 

 530 

Fig. 4. Temporal variation in dissolved oxygen levels on 19-20 July 2012. Results are based on 6 replicate 531 

measurements per site, every 4 hours. Error bars denote ± 1 SE; in several cases, error bars are smaller than data 532 

symbol. Site codes refer to sector locations (see Fig. 1). Surface, water surface; interface, water-algal interface; 533 

tuft, inside clump of algae.  534 

 535 

Fig. 5. Temporal variation in dissolved oxygen levels: a North shore (N11) on 19–20 Sep 2013 and b Codium 536 

Bay (S16) on 16–17 Sep 2013. Site codes refer to sector locations (see Fig. 1). Data based on HOBO data logger 537 

values recorded every 15 min. The horizontal dashed lines indicate hypoxic conditions and gray box denotes 538 

nighttime.  539 
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