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Summary 
Hepatitis C Virus (HCV), an RNA virus, is one of the leading causes of cirrhosis worldwide and, remains 

the leading indication for orthoptic liver transplantation in the United States. 

Dual treatment with pegylated interferon and ribavirin has until 2010 been the mainstay of treatment. 

The emergence of newer agents with direct activity against specific virus proteins has revolutionised 

HCV treatment but, the high cost of these medications are likely to prevent universal access, 

particularly in developing countries and, strategies to optimise response to cheaper combination 

treatments are required. The Irish Hepatitis C outcomes research network (ICORN) has proposed a 

target of 2025 for the complete eradication of Hepatitis C from Ireland. 

HCV replicates in an error prone fashion resulting in mutant progeny known as quasispecies(QS), 

thought to form an important mechanism of host immune evasion in the establishment and 

maintenance of chronic infection, which develops in 50-80% of those acutely infected. 

HCV has three hypervariable regions (sections of the virus genome that appear to tolerate higher 

substitution rates) and one of these, Hypervariable region 1 (HVR1) has been recognised as a major 

target of the adaptive immune response. HVR1 quasispecies complexity and diversity have been 

implicated as predictive of response to dual therapy. Little, however, is known about the natural 

history of these parameters in chronic infection. 

We discuss evolutionary concepts and how they apply to quasispecies and hypothesise how viruses 

might select a setting appropriate mutation rate in order to optimise adaptation, advancing the theory 

of replicative homeostasis. 

We prospectively study 23 patients with chronic HCV infections and, differing degrees of liver fibrosis 

fortnightly for a 16 week period prior to commencement of treatment. Using amplicon sequencing, 

cloning and next generation sequencing we explore the behaviour of HVR1 QS, establishing the utility 

of each technique in describing QS change.  

We identify variable and unpredictable HVR1 change in our cloning data which precludes the use of 

these metrics in pre treatment prediction models. HVR1 change is far greater in non cirrhotic patients 

and the transition to cirrhosis appears to be associated with a change from positive to purifying 

selection. Using molecular clock techniques we illustrate differing substitution rates within HVR1 

among cirrhotic and non cirrhotic patients.  
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We identify, by including an additional retrospective sample, that the patterns we describe are 

sustained over prolonged periods and further clarify the mode and tempo of HVR1 change by 

estimating the substitution rates. 

Using next generation sequencing techniques we identify similar patterns of HCV change when 

compared with our cloning data. However, the sequence depth provided permits the description of 

time specific network of HVR1 clones, all connected by a single amino acid substitution to a central 

node.   

By separating our samples into immunoglobulin bound and free fractions we describe the importance 

of host immune mediated change driving the changes seen in our pyrosequencing and cloning data. 

Finally, using known viral and host molecular markers predictive of treatment response we explore 

unsuccessfully for models predictive of treatment response.  
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Shake it Off 

Regrets collect like old friends 

Here to relive your darkest moments 

I can see no way, I can see no way 

And all of the ghouls come out to play 

And every demon wants his pound of flesh 

But I like to keep some things to myself 

I like to keep my issues strong 

It's always darkest before the dawn 

And I've been a fool and I've been blind 

I can never leave the past behind 

I can see no way, I can see no way 

I'm always dragging that horse around 

And it's hard to dance with a devil on your back 
So shake him off 

I tried to dance with the devil on your back 

And given half the chance would I take any of it back 

It's a final mess but it's left me so empty 

It's always darkest before the dawn 

And I'm damned if I do and I'm damned if I don't 

So here's to drinks in the dark at the end of my road 

And I'm ready to suffer and I'm ready to hope 

 

And it's hard to dance with a devil on your back 

So shake him off        F. Welch 
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Chapter 1 –  

Molecular Virology of Hepatitis C Virus 

Predicting response to pegylated interferon and ribavirin using Hepatitis C quasispecies 
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1.1 Background to Hepatitis C Virus 

1.1.1 Introduction 

Hepatitis C is a positive stranded RNA virus, the first member of the Hepacvirus genus which includes 

related viruses hosted by bats, primates, rodents, horses, and cows, all members of the Flaviviridae 

family of viruses. Initial observations describing patterns of infective hepatitis described two differing 

patterns, one with a short incubation period which was enterally transmitted and a second 

parenterally transmitted infection which had a longer incubation period(1). With the isolation and 

identification of two major causative agents, Hepatitis A an RNA virus within the Picornavirus family 

and Hepatitis B virus a DNA virus from the Hepnaviridae family it became clear that further infective 

agents were causing a proportion of the chronic infective hepatitis. Hepatitis C virus had as a result 

been previously included under the umbrella term of non A non B hepatitis (NANB) prior to the 

isolation and identification of the causative agent by Michael Houghton’s group at Chiron group in 

1989(2). With the development of robust serological testing it emerged that HCV was responsible for 

up to 90% of NANB hepatitis with the majority of the remainder accounted for by Hepatitis E and 

Hepatitis G infection(3, 4).  

 

1.1.2 Classification 

Hepatitis C was placed within the Flaviviridae family of viruses, which includes Flaviviruses, and 

Pestiviruses, due to overall similarities in the genomic structure and replication strategies. The 

Flaviridae family comprises up to 80 known viruses divided into three genera with antigenically distinct 

characteristics(5): 

Flavivirus 

Flaviviruses are tick borne RNA viruses and include Yellow Fever, Dengue, and Japanese Encephalitis 

Virus(5). 

Pestivirus 

This genus includes a number of RNA viruses that infect ruminant animals and include Bovine Viral 

Diarrhoea Virus 1 and 2, Classical Swine Fever Virus, and Border Disease Virus which affects sheep(6). 

Hepacvirus 

Hepatitis C virus was until recently the only virus in this genus, though GB B virus a positively stranded 

RNA virus of marked similarity to HCV has been recently included as a second member(7). There are 
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three GB viruses (A ,B ,C) and GB virus B is the one with most sequence identity (28%) to HCV(8). GB 

B virus is hepatotropic and can infect a number of monkey species, though the true host remains 

unknown(9). Gb-B virus has been proposed as a potential model for studying HCV and a chimeric 

HCV/GB-B construct has recently been patented(10). GB-C virus is lymphotropic and recent data has 

suggested that co infection with HIV may reduce the pathogenicity of HIV(11). 

1.1.3 Hepatitis C Genotypes 

Early studies of HCV genomic composition demonstrated marked heterogeneity in nucleotide 

sequences. This prompted the subdivision of the genus into 11 differing genotypes but due to variable 

techniques used to define these, the redefinition of HCV into a universally accepted classification has 

been undertaken(12). As a result HCV was divided into 6 genotypes differing from each other by 31-

33% at the nucleotide level. Within each genotype there are subtypes which differ by 20-25% at a 

nucleotide level(13). Subsequent study has resulted in the description 7 genotypes and 67 subtypes 

of HCV in the most recent classification(14). 

1.1.4 Clinical Relevance of HCV Genotypes 

HCV genotypes have important clinical implications with differing genotypes associated with differing 

patterns of HCV disease progression and treatment response. In addition to requiring treatment for 

twice as long as genotypes 2 and 3, genotypes 1 and 4 respond to combination pegylated interferon 

plus ribavirin in 30-42% of cases whereas genotypes 2 and 3 achieve sustained response to treatment 

in 70-80%(15) (Fig 1.). Recent efforts do describe the evolution of HCV genotypes suggest that the 

most interferon resistant genotypes (1 and 4) may represent the most recent evolutionary change in 

HCV(16). Additionally genotype 3 is strongly associated with abnormal lipid metabolism leading to 

hepatic steatosis, a major risk factor for developing fibrotic liver disease(17). Retrospective analysis of 

patients who became infected by multiple blood transfusion or through intra venous drug use (IVDU) 

suggest that infection with multiple genotypes may occur in up to 19% and 3-9% of cases, 

respectively(18, 19).  

The first significant advance in HCV treatment since the development of pegylated interferon and 

ribavirin occurred with the release in 2011 of telaprevir and boceprevir. These directly acting HCV 

protease inhibitors demonstrated significant efficacy against genotype 1 and have demonstrated 

potential efficacy in genotype 2 but no efficacy in genotype 3(20). These first generation protease 

inhibitors were beset by significant side effects and associated with significant adverse events in 

patients with advanced liver disease, including a number of mortalities and have subsequently been 

replaced with next generation protease inhibitors and polymerase inhibitors with improved pan 

genotypic response rates and more favourable side effect profiles, though the improvements in 
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genotype 3 patients have been modest, particularly in cirrhotic patients(Fig. 1). Combination 

treatments have, for the first time, resulted in interferon free regimens for most genotypes(21-24). 

 

Fig 1. Advances in treatments and response rates to HCV treatment in genotype1 and 3 patients with 

and without cirrhosis. 

1.1.5 Geographical Distribution of Genotypes 

With increasing population migration the geographical distribution of HCV genotypes is continually 

changing, most especially in destination countries such as the United States and in Western Europe. 

Genotype 1 accounts for a high proportion of infections in the United States and Central Africa where 

genotype 4 is also high in prevalence. Western Africa has a high prevalence of genotype 2 and 

genotypes 3 and 6 are most commonly seen in South and Eastern Asia(13). 

 

1.1.6 Origins of HCV 

The date of introduction of HCV to the human population remains unclear with estimates ranging from 

several hundred to several thousand years. Evidence from the number of genotype 2 and 6 variants 
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in Central/Western Sub-Saharan Africa and South East Asia respectively point to long term endemic 

infection(25, 26).  

1.1.7 Recombination 

Although most HCV can be classified into the 7 genotypes described in the most recent classification 

of HCV, a number of replication viable variants made up of recombined sequences from different 

genotypes have been described. First identified in a 2k/1b recombinant in Russia, recombination 

challenged original theories that HCV evolution occurred mainly by the accumulation of point 

mutations and provides insight into how the new genotypes are likely to emerge as it potentially 

facilitates the exploration of remote sequence space(27). Quantification of intra-host recombination 

events is challenging, but evidence of intergenotypic recombination in affecting other genotypes Peru, 

Ireland, The Philippines and Uzbekistan suggest that recombination is more common than previously 

assumed(27-31).  

  

1.1.8 HCV Epidemiology 

Estimating the global burden of hepatitis C has proven challenging but, it is estimated to chronically 

infect 120-170 million worldwide, roughly equivalent to 3% worldwide prevalence with a significant 

proportion unaware of their infection(32).  

Precisely quantifying hepatitis C prevalence is challenging for a number of reasons. 

1. Many estimates of prevalence are based on seropositivity within at risk populations and large 

scale population studies are rare, particularly in developing countries.  

2. In countries where recreational intravenous drug use has become the predominant mode of 

transmission, limited interaction with healthcare professionals in this cohort may serve to 

underestimate prevalence. The use of outreach programmes and screening of active users at 

drug centres appears to offer the prospect of improving estimates of HCV prevalence among 

these patients (33-35). 

3. Few patients develop clinically obvious acute infection and as a result few patients present to 

health care providers at the time of initial infection.  

HCV is now the leading indication for liver transplantation in the US. Extrapolation of the healthcare 

costs associated with HCV projects healthcare related costs arising from the complications of HCV 

infection will rise from $6.5 billion in 2014 to a peak of $9.1 billion in 2024 with the current costs of 

eradication in the United States estimated at $80.1 billion(32, 36, 37). 
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1.1.9 Mode of Transmission 

Hepatitis C is transmitted through bodily fluids, predominantly blood or blood products and sexual 

transmission among long term monogamous partners is unusual. Prior to the identification of HCV, 

blood transfusion of blood and blood products resulted in up to 40,000 iatrogenic infections per 

annum in the United States alone. With the advent of serological testing and the availability of 

screening tests there has been a change in the pattern of transmission in many developed countries 

with the rise in intravenous drug use supplanting iatrogenic infection. Nonetheless, the failure to 

implement (or the haphazard implementation of) adequate blood product screening and the 

widespread reuse of hypodermic needles in healthcare settings has meant that iatrogenic remains a 

significant mode of transmission in many developing countries. IVDU has replaced iatrogenic infection 

as the main cause of infection in Europe, North America, and Australia(32). 

One of the challenges noted in explaining HCV spread is identifying how the virus was spread in the 

absence of a known animal host and before the advent of modern healthcare practices in the 

twentieth century. Indeed, studies of HCV genetics in certain areas of Sub Saharan Africa suggest 

endemic HCV infection may have been present in the population for several centuries. Ritual tattooing 

and certain religious practices such as circumcision have been implicated in both historical and 

ongoing transmission of HCV, as indeed, has insect bite born transmission. As HCV is unable to infect 

or replicate in arthropods, this would require the rapid transfer of virions carried in arthropod 

mouthparts(38).   

1.1.10 Iatrogenic Hepatitis C Infection in Ireland 

In Ireland, an estimated 1000 Irish women were exposed to HCV contaminated anti-D immunoglobulin 

between 1977 and 1978. The exposure first came to light following the introduction of blood product 

screening in 1991 which demonstrated an abnormally high proportion of Rhesus negative donors with 

anti HCV antibodies. Retrospective review of donor medical histories indicated that almost all had 

received anti D immunoglobulin between 1977 and 1978. (39, 40) The source of the outbreak was 

subsequently isolated to a plasma donor who had been diagnosed with infectious hepatitis. The 

inoculate was subsequently isolated and is regarded as a unique instance worldwide of a known time 

of infection of a specific HCV genome and it has been proposed as suitable for gaining insight into HCV 

evolution and natural history. Follow up clinical data on this cohort indicated limited progression of 

liver disease with as few as 2% developing cirrhosis at 17 years post exposure(41).  Coinciding with the 

discovery of the initial Anti-D immunoglobulin associated outbreak, a second exposure dating to the 

period between 1991 and 1994 affecting 44 women was identified(42). 
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A second large cohort of 2,867 women with iatrogenic exposure to HCV via contaminated Anti-D 

immunoglobulin between 1977 and 1978 in the former East Germany has been followed up with 25 

year clinical follow up data available. This group demonstrated comparable rates of RNA positivity 

(46%) and a low rate of cirrhosis development (0.5%), only one hepatocellular carcinoma and a HCV 

related mortality rate of 0.5%(43).   

1.1.11 HCV in Egypt 

Egypt has the world’s highest seropositivity prevalence at 22% with rates as high as 55% in certain 

population demographics(44). This epidemic has been attributed to the reuse of hypodermic needles 

during a national anti schistosomal treatment programme undertaken between 1960 and 1980(45). It 

is estimated that as a result, there will be more than 117,000 deaths from hepatocellular carcinoma 

attributable to HCV in Egypt between 2008 and 2028(46). 

 

1.2 Natural History of Hepatitis C Infection  

1.2.1 Acute Hepatitis C 

Acute hepatitis C, although frequently associated with non specific symptoms such as fatigue, nausea, 

abdominal pain, anorexia, pruritis or myalgia, most patients remain asymptomatic and cases of 

fulminant liver failure due to acute HCV infection are rare(47, 48). HCV RNA becomes detectable 

between 7 and 21 days post infection though liver blood test abnormalities often post date this by 8 

to 12 weeks by which time HCV RNA levels have risen rapidly(49, 50). The emergence of anti HCV 

antibodies occurs in most patients between 32-46 days post transmission, though in 

immunocompromised patients this may be delayed up to 48 weeks(51, 52). Acute HCV infection may 

be cleared spontaneously in a minority of cases with pre menopausal women, patients with acute 

infection characterised by a clinical hepatitis with jaundice and, patients with favourable nucleotide 

polymorphisms adjacent to the interleukin 28B gene most likely to clear the virus without 

treatment(53-55).  

1.2.2 Chronic Hepatitis C 

According to studies of seropositive populations, acute HCV infection progresses to chronic infection 

in between 64-78% of cases(32, 54, 56). Chronic infection, once established, often follows a relatively 

indolent course with patients seldom presenting to healthcare professionals. HCV itself is not thought 

to be pathogenic to hepatocytes rather it is the immune response to the virus that causes the 

complications associated with HCV infection, though there is a growing body of evidence suggesting 

that virus proteins directly modulate a number of cellular pathways affecting lipid metabolism, insulin 
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sensitivity, and apoptosis pathways(57-59). Although predominantly hepatotropic, extra hepatic 

replication of HCV has been demonstrated in both lymphocytes and within the central nervous 

system(60, 61). 

Ongoing immune mediated hepatic inflammation which is characterised by marginal and often 

intermittent elevations in liver enzymes are thought to result in gradual fibrotic change in the portal 

tracts which, can lead to portal hypertension and cirrhosis.  Although liver function tests can estimate 

current inflammation, imaging modalities such as ultrasound and Fibroscan and biopsy evaluation of 

liver tissue are often required to definitively quantify both inflammation and the development of 

fibrotic change. Cirrhosis develops in 20% of cases after 20 years and, with the onset of cirrhosis, there 

is an associated increased risk of developing hepatocellular carcinoma which appears to be of the 

order of 1% per annum(62). The presence of other co morbidities such as obesity, other pathologies 

such as additional hepatic pathology or lifestyle risk factors such as excessive alcohol consumption 

may hasten the advance of end organ damage in HCV(32). Once established, cirrhosis is associated 

with a severe clinical complication rate (ascites, variceal bleeding or encephalopathy) and a mortality 

rate of 5.6-8.3% and 2-4% per annum respectively(63-65). Successful eradication of HCV prior to the 

onset of cirrhosis reduces patient mortality rates to that of the general population(66). The advent of 

decompensation or a potentially curative hepatocellular carcinoma should prompt consideration for 

liver transplantation but, patient and graft survival rates for patients post transplant are inferior to 

those transplanted for all other indications(67).  
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1.3 Hepatitis C virus 

1.3.1 Molecular Structure of HCV 

 
Fig. 2. Molecular structure of HCV virus. 

1.3.2 5’ Untranslated region (UTR) 

HCV is a 9,600 base pair single stranded RNA virus. The 5’ terminal of the HCV genome is composed 

of a 341 nucleotide nontranslated region which is the most highly conserved region of the genome 

(90.1% sequence identity)(68). Although nontranslated, this portion of the genome forms a 4 domain 

complex secondary structure which is essential for its function(69). Together with the first 24-40 

nucleotides from the N-terminal of the core protein, domains II, III and IV form an internal ribosome 

entry site (IRES) which is capable of initiating cap independent translation of the HCV genome. The 

IRES binds host 40S ribosomal subunits and guides this host translational machinery to the methionine 

AUG initiation codon(70). Domain I (nucleotides 4-20) is not essential for replication or translation, 

but may have a modulatory function(71). Finally, recent studies of HCV sequences has shown an 

association between variation at nucleotide 243 located in domain III and numerous nucleotide 

positions within NS2 and NS3 non-structural proteins that are required for HCV translation and 

replication. Cell culture assays using subgenomic particles with these variations have indicated a 

possible role for NS2 in modulating the rate of replication(72). 

1.3.3 3’ Untranslated Region 

The 3’ UTR is a tripartite sequence of variable length made up of a highly variable 30-50 nucleotide 

section, a poly-U/UC tract of variable length (20-200 nucleotides) and completed by a 98 nucleotide 

highly conserved χ-tail(73, 74). Similar to the 5’UTR, the 3’ UTR sequences form secondary structures 

which are important in the efficient replication of HCV(75). HCV is unable to replicate both in cell 

culture and in vivo in the absence of the poly-U/UC tract or the χ-tail and, replication has been shown 

to be significantly reduced in the absence of the variable region(76, 77). The χ-tail forms 3 stem loops, 
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the second of which has been shown to interact with stem loops in NS5B, most likely, in the initiation 

of minus strand transcription(78, 79). Modification of the χ-tail has been shown to reduce replication 

efficiency(80). Finally, disruption of the 3’UTR appears to significantly reduce IRES dependent 

polyprotein translation(81).  

1.3.4 HCV structural proteins 

1.3.5 Core 

Core is a 21 kDa, 173-179 amino acid α helical protein which demonstrates marked intergenotypic 

genomic conservation. The first protein in the HCV open reading frame, it is initially cleaved by a host 

signal peptidase creating a 23 kDa 191 amino acid immature form and achieves its mature form 

following post translational C-terminal processing. Conserved hydrophilic bases at the N-terminal are 

responsible for homo-oligmerisation, forming the nucleocapsid and enclosing and binding genomic 

RNA which are the primary structural functions of the protein.  During translation a sequence motif 

located between core and E1 results in the attachment and subsequent translocation of E1 across the 

endoplasmic reticulum (ER) membrane with concomitant cleavage of the core-E1 junction and release 

of core which itself, becomes associated with lipid droplets via domain 2(82, 83). Core association with 

lipid droplets has been demonstrated at numerous intracellular sites including membranous webs, the 

surface of lipid droplets and on the membranes of the endoplasmic reticulum. Variable post 

translational modification of core has been associated with differing patterns of localisation with 

palmitoylation, required for interaction with ER membrane(84). Core has been strongly implicated in 

disruption of lipid metabolism, both in cell culture models and mouse models, and it has been 

proposed that core is at least in part responsible for the steatosis seen in hepatitis C through a 

reduction in lipid droplet turnover(85, 86). The association of core with lipid droplets is required for 

the production of infectious HCV particles and, it has been shown that this association is required for 

virus assembly (87-89).   

In addition to modulation of lipid metabolism, HCV core protein has a number of other putative 

regulatory functions. A number of cell culture and animal studies have demonstrated an upregulation 

of apoptotic and apoptotic-like pathways through activation of Fas, mcl, and tumor necrosis factor(59, 

90-93). Indeed, a role for core protein in the genesis of hepatocellular cancer has also been 

suggested(94). In vitro studies have demonstrated that core proteins can increase reactive oxygen 

species and result in mitochondrial stress/dysfunction(95). Cell culture studies have also 

demonstrated a possible link between core protein and insulin resistance often seen in patients with 

hepatitis C through the disruption of insulin receptor substrate 1, a known target of insulin(96, 97). 
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Finally, core protein has shown the potential for manipulation of host immune response through the 

disruption of interferon signalling and the alteration of Kupffer cell function(98, 99).  

Further truncated forms of core protein produced as a result of alternative reading frames have been 

isolated but the relevance of these remain somewhat elusive(100). Recently, cell culture studies have 

demonstrated that an alternative reading frame present in the core genome can result in the 

translation of so called “minicore” proteins ranging from 8-16 kDa and lacking the N-terminal amino 

acids. The precise role and functions of these proteins remain to be clarified(101). 

 

1.3.6 Envelope Proteins 

HCV has two envelope proteins designated E1 [35kDa] and E2 [70 kDa] which are cleaved from the 

HCV polyprotein by host peptidases(102). Our understanding of envelope protein structure and 

function had been limited due to the restrictions of the in vitro pseudo particle model which produced 

replication competent, but not infectious particles. The advent of a cell culture model has contributed 

greatly to the elucidation of envelope protein structure and function(103). E1 and E2 are type 1 

transmembrane proteins with large N-terminal ectodomains and short intraluminal C- terminals(102). 

E1 and E2 undergo post translational glycosylation at 6 and 11 sites respectively at the N-

terminal(104). This most likely occurs at the golgi apparatus and this is thought to be required for 

envelope protein folding and virus particle assembly, and appear to have functions in both CD81 

binding during cell entry and, in disrupting the effectiveness of host anti E2 neutralising antibody 

response(103, 105). Amino acid similarity across genotypes for the envelope proteins is 68%(106). 

Until recently E1 and E2 were thought to form a functional unit comprised of non-covalently bonded 

heterodimers which were thought to form the viral envelope(107). However, following the publication 

of a proposed secondary structure of E2 it appears that these heterodimers may be present 

intracellularly but that the envelope is made up of more complex E1:E2 oligomers which are formed 

by covalent disulphide bridges(103, 108). This is in agreement with previous studies suggesting that 

E2 is the fusion protein, similar to the class II fusion proteins seen in other Flavi and Alphaviruses, 

required for HCV cell entry(108). However, analysis of the secondary structure of E2 did not elucidate 

typical conformational features of class I, II, or III fusion proteins. The precise role for E1 at that time 

was unclear. Although it was recognised that anti E1 antibodies prevented HCV cell entry, there was 

no evidence for direct interaction between E1 and host cell receptors(109, 110). It had been proposed 

that E1 functions as a lattice structure, ensuring the correct conformational folding of E2 and, 

facilitating the generation of the oligomers required for envelope building. Coimmunoprecipitation 
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studies have recently identified binding of E1 but not E2 to apolipoproteins which are thought to bind 

host LDL receptors(111). The secondary structure of E1 also does not however, conform to class I, II, 

or II fusion proteins suggesting that E1 may be a novel form of fusion protein (112). Most recently E1 

homotrimers have been described on the virus surface and, it has been proposed that these are 

formed using E2 as a co factor and, facilitate the internalisation of the virus with disruption of these 

homotrimers associated with a loss of virus infectivity(113).  

E2 has been shown to bind directly with CD81 and to interact with a number of other receptors which 

have important roles in cell entry. Evidence that the envelope proteins are required for cell entry has 

meant that this has been a target for the development of HCV vaccines though results have been 

disappointing(114). The development of anti envelope antibodies has been shown in vivo both in 

acute and chronic infection. Antibody development in acute infection has been associated with a 

lower likelihood of spontaneous clearance and antibodies are almost ubiquitous in chronic 

infection(115).  A number of studies have identified potential broadly neutralising antibodies targeting 

E2 against conserved regions of E2 in animal models (114, 116, 117). Recently, a panel of broadly 

neutralising antibodies has been successfully used to prevent HCV infection, and abrogate infection in 

chimeric mouse models potentially identifying a novel strategy for eradicating infection, as it is 

dependent on continual infection of new hepatocytes(118).  Ineffective antibody responses are 

thought to be related to the heterogeneity of envelope sequences, which is thought to facilitate 

immune evasion. Other factors that are thought to minimise immunogenicity of the E1:E2 

glycoproteins are: the closely covalently bound conformation that form which minimises protein 

exposure; the multiple glycans that protect their exterior; and the association between virion surface 

glycoproteins and host lipids(103, 119, 120). E2 contains 3 regions designated hypervariable regions 

1,2 & 3, which have been proposed as antibody binding sites(121). E2 binding with CD81 receptors on 

natural killer cells in vitro indicates that E2 may have an additional role in modulation of host defences 

by altering interferon signalling(122). 

 

 

1.3.7 Hypervariable Regions 

In two separate papers in February 1991, two areas of marked amino acid heterogeneity were 

described within, what was then, the putative envelope encoding region of the HCV genome(123, 

124). These sections of the genome have been designated the hypervariable regions (HVR) 1 and 2 

and are located between amino acids 384-411 near the junction between E1 and E2, and amino acids 
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476-482 respectively. Recently, a third hypervariable region has been described (HVR3) located 

between amino acids 431-466. All three HVRs share a number of physico chemical properties with 

marked variability tolerated but also site-specific conservation of certain amino acids which are 

thought to ensure correct functional folding of the protein product with a number of basic residues 

required for cell entry(121, 125). 

1.3.8 HVR1 

HVR1 is a 27 amino acid section of the N-terminal of the E2 protein which forms a tail like structure 

proximal to domain 1, in the recently proposed tertiary structure of the HCV E2 protein(108, 123). 

HVR1 is the most variable but, also demonstrates amino acid conservation at particular sites and an 

overall positive charge which it has been proposed points to a role in cell targeting or binding(121, 

126). HVR1 has been proposed as a B and T cell epitope. HVR1 appears to have three microdomains 

with amino acid residues at positions 14, 15 and 25-27 essential for binding of the virus to scavenger 

receptor class B, type1 receptor. This efficiency of binding to these receptors appears to be modulated 

by amino acids 1-13. The third microdomain encompassing amino acid residues 16-24 is not required 

for cell entry and is an epitope for neutralising antibodies(127). 

1.3.9 HVR2 

HVR2 comprises a 7-11 amino acid segment of E2 and it demonstrates 39-93% sequence identity 

depending on the genotype(128). Serum sampling studies have shown that HVR2 undergoes less 

sequence divergence than HVR1 which has led to speculation that it is not a target for immune 

surveillance(126). HVR2 has been shown to overlap with the binding site of CD81, a tetraspanin 

receptor required for HCV cell entry, though in vitro studies have demonstrated that binding of CD81 

can occur in the absence of HVR2, albeit at reduced efficiency(128). On treatment studies of sequence 

changes in HVR2 have demonstrated it to be under selective pressure but, one study of substitution 

patterns in HVR2 quasispecies during treatment failed to demonstrate any significant difference 

between responders and non responders(129-131). This has led to speculation that HVR2 may 

protrude from E2 and provide a protective shield to the true CD81 binding site which is exposed 

through conformational change in the period immediately prior to cellular binding(128). Interestingly 

HVR2 provides two glycosylation sites which have also been implicated in shielding HCV from host 

immune response(119).  

1.3.10 HVR3 

HVR3 is a 17-36 amino acid portion of E2 which is located between HVR1 and HVR2 with 3 subdomains, 

which has been shown to be under strong host selective pressure and, is thought to function in the 

process of HCV binding(132, 133). 
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Finally, two further hypervariable regions within E2, but confined to genotype 3a, have recently been 

identified. HVR495 and HVR575 are, respectively, 7 and 9 amino acids in length, appear to be under 

selective pressure, and are flanked by conserved hydrophobic residues. The functional relevance of 

these regions is unknown, but they correspond to potentially important folding sites for the E2 

glycoprotein (108, 134). 

1.3.11 P7 

This 63 amino acid hydrophobic polypeptide with two helical transmembrane domains, and a 

conserved basic cytosolic loop orientated toward the lumen of the endoplasmic reticulum is essential 

for in vivo production of infectious particles, but not required for replication(135-137). Analogous 

proteins have been described in BVDV(138). Similar to viroporins, it has recently been shown to form 

hexamers, and to function as an ion channel ,which may protect pH sensitive virus particles, most 

likely glycoproteins, during virion assembly(139, 140). Alternate processing of HCV polypeptide results 

in the production of E2:p7 fusion proteins which, though not required for production of infectious 

progeny, may be incorporated into virus particles(141).  
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1.3.12 HCV Non Structural Proteins 

The non-structural proteins are coded for the 3’ or C-terminal two thirds of the HCV genome. They are 

designated non-structural because they do not form part of the circulating HCV particle but, a number 

of them perform structural functions during the translation and replication of HCV. The HCV non-

structural proteins also contain a number of co factors and two enzymes required for replication(142).  

HCV does not have a non-structural protein 1 as once classified as a Flavivirus it was found not to have 

an analogous non-structural protein(143).  

 

1.3.13 NS2  

NS2 is a 23 kDa hydrophobic transmembrane protein, with three transmembrane segments and 

localises to the endoplasmic reticulum, into which it is inserted through its N-terminal(144). The timing 

and mechanism of translocation and insertion into the membrane remain to be fully elucidated, 

though it has been proposed to occur both co and post translationally, once cleavage of NS3 has 

occurred(144, 145).  

NS2 has been implicated in the hyperphosphorylation of NS5A which is required for NS5A activity 

though, it may be that this accreditation is erroneous and that it is NS3 that is responsible for this 

function(146, 147). More recently, it has been shown that host casein kinase II (CK2) may be 

responsible for this hyperphosphorylation(148). Interestingly NS2 is also hyperphosphorylated by CK2 

and is rapidly degraded by the proteosome thereafter(149). Whether this action is coincidental or 

either non-structural protein is required for these actions remains to be fully elucidated. 

NS2 has shown potential for regulation of host immune responses by inhibiting a number of promoters 

which are associated with pro inflammatory cytokines suggesting a role in the control of host immune 

response(150). NS2 has been shown to prevent apoptosis by preventing localisation of CIDE-B (cell 

death inducing DFF45-like effector) to the mitochondrion, where it functions as a pro-apoptotic 

protein(151).   

Finally, NS2 has been shown to contain a site for the development of intergenotypic chimeras. These 

genotype switch over joints occur within NS2 following the first transmembrane domain suggesting 

that the NS2 N-terminal interaction with the structural proteins is required for viable replication(152). 

This intriguing finding has been further studied with NS2 co localisation with E2 close to lipid droplets 

on confocal microscopy, suggesting a role for NS2 in HCV virus assembly. Confocal microscopy and co 

immunoprecipitation demonstrate that NS2 interacts with E1, E2, P7, NS3, and NS5A and suggest that 

NS2 may uniquely provide the foundation for virus assembly at the endoplasmic reticulum(153, 154).  
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1.3.14 NS2/3 

NS2/3, a highly hydrophobic protein extending from amino acids 810-1206, is the first non-structural 

protein to be translated(155). Cleavage from the structural protein p7 is performed by host signal 

peptidases. NS2/3 is a novel cysteine protease which functions as an autoprotease in subsequently 

cleaving NS2 from NS3 between amino acids 1027 and 1028(156-158). NS2/3 appears to form dimers 

which may be required for protease activity, with each protein providing either one or two of the 

amino acids required for the active cleavage site(158, 159). Following cleavage the C-terminal residues 

remain at the active site and it has been suggested that this may serve to inactivate the virus(160).  

The hydrophobic N terminal of NS2 is not required for autoprotease function and the function of this 

domain appears to relate to actions of NS2 is virus assembly following autoproteolytic cleavage(144). 

The full NS3 protease domain must be present for NS2/3 processing, but this occurs independent of 

the serine protease activity of NS3(156). 

NS2/3 conformation plays a crucial role in autoprotease activity and this can be affected by NS4A 

derived peptides which, by altering the conformation of the NS3 N-terminal, disrupt the positioning 

of the cleavage site(161). Zinc is an essential component of NS2/3 protease activity but it seems that 

rather than being a zinc dependent protease, that zinc is required for maintenance of the required 

structure(160). NS2/3 cleavage is required for viral replication in vivo but, the successful replication of 

subgenomic particles coding for NS3-3’UTR suggests that replication may occur in the absence of 

NS2(162, 163). HCV NS2/3 demonstrates sequence alignment similarity with Bovine Viral Diarrhoea 

Virus (BVDV) NS2/3. In BVDV, replication rates has been shown to correlate with cleaved NS3 levels 

whereas infectivity requires non cleaved NS2/3 suggesting a potential role for regulating replication 

and infectivity rates, though similar findings have yet to be demonstrated in HCV(160, 164, 165). 

 

1.3.15 NS3A 

The non-structural protein 3 (NS3)is a 70kDa multifunctional protein containing a serine protease at 

its C-terminal which makes up 2/3 of the 5’ end of the protein and an RNA helicase of the DExH family 

at the 3’ end(166). Both enzymes may act independently of the other but there is also evidence that 

either may modulate the activity of the other(167). Additionally, the both the protease and NS4A have 

been shown to regulate the activity of the helicase(168, 169).  
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The protease is a serine protease and member of the trypsin/chymotrypsin protease superfamily(170). 

Zn 2+ stabilises the structure of the protease and is essential for enzymatic function. The Zn2+ is itself 

located within a construct containing three cysteine molecules and a water molecule(171). 

The activity of the NS3 protease requires a catalytic triad of conserved amino acids and an oxyanion 

hole. NS4A contributes to this by localising substrate and catalytic triad(172). NS3 is responsible for 

the cleavage of NS3/4a, NS4a/4b, NS4b/5a, and NS5a/5b to release the respective non structural 

proteins(173).  

The NS3 protease cleaves both viral and host proteins and has been implicated in viral mechanisms 

for evading innate immune responses. NS3 cleaves both TRIF and MAVS both of which are important 

in the normal activation of the RIG-I pathway, which in turn upregulates host interferon stimulating 

genes and endogenous interferon activity, which has been shown to be important in initiation of HCV 

infection (174, 175). 

Several NS3 protease inhibitors have been developed with the implication that inhibition of NS3 would 

both interfere with established infection by disrupting virus replication and additionally 

prevent/reduce intra host spread through the associated reactivation of innate immune 

responses(176). Two protease inhibitors (boceprevir and telaprevir) have been licensed for use in 

chronic hepatitis C infection and were associated with improved efficacy in genotype 1 infections but, 

have subsequently been withdrawn due to the emergence of newer agents with fewer side effects 

and improved treatment responses(177, 178). Interestingly, many of these inhibitors have 

encountered resistant mutant variants which are postulated to exist within the quasispecies at time 

of initial inhibitor exposure(179).  

The 3’ third of the NS3 codes for a helicase which is a member of the DExH subfamily of DEAD RNA 

helices, which is itself part of subfamily 2, one of the two main families of helicases, as divided by 

amino acid similarity(180). It can act on RNA,RNA/DNA and dsDNA substrates and acts in a 3’to5’ 

direction(181). It is made up of three domains and the amino acid Trp-501 located in domain 3 is 

thought to anchor the protein to the substrate and predispose the directional mode of action of the 

protein(182). Helicases are thought to unwind the helical secondary structures formed by genetic 

material, thus facilitating translation and replication. It is thought to unwind helices in a 1-3 base pair 

kinetic step using NTPs and dNTPs as a source of energy. The precise mechanism for this remains 

unclear but, it has been proposed that while anchored by domain 3 that domains 1 and 2 move base 

pair by base pair along the genome with the hydrolysis of ATP providing the energy required for 

unwinding in what has been dubbed the inchworm mechanism. The separating of the DNA strands 
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appears to require the Beta hairpin which extends from domain 2, as the absence of this structure 

abolishes DNA unwinding in a spring loaded fashion.  It is not clear whether the NS3 helicase operates 

as a monomer, dimer or oligomer as these conformations have all been demonstrated in vivo(183). 

Numerous helicases can cooperatively act by binding at different sites owing to their unidirectional 

mode of action. NS3 has an optimal activity at pH 6.5 and a binding site of 7-8 nucleotides(184). As 

mentioned previously, NS3 protease is involved in modulating the activity of NS3 helicase. The precise 

mechanism is not clear but as NS3 protease binds DNA with greater affinity than NS3 helicase, a role 

binding unwound DNA has been postulated(169).  

 

1.3.16 NS4A 

NS4A, a 54 amino acid protein, the shortest non structural protein has a number of functions in viral 

replication, host immune evasion and, virus assembly. It is required as a co factor in the NS3/NS4A 

enzyme complex which is essential for the cleavage of the non structural protein junctions at NS3/4A 

and NS4B/5A and optimises cleavage at NS4A/4B and NS5A/5B(185). A hydrophobic N terminal 

stabilises the NS3-4A complex to cellular membranes. The middle portion acts as a cofactor ensuring 

optimal folding of the NS3 serine protease domain(186).  NS4A is also required for 

hyperphosphorylation of NS5A an essential process in viral replication(187). 

The NS3-4A complex exhibits an ability to disrupt the innate immune response by cleaving the cellular 

messenger IPS-1, a membrane associated protein which forms part of the RIG-I mechanism of innate 

anti viral prevention of HCV infection(175, 188). Additionally, the NS3-4A complex has been implicated 

in virus assembly, possibly through the association between the acidic C terminal and host membranes 

at the endoplasmic reticulum(189). 

1.3.17 NS4B 

NS4B is a protein of molecular weight 27 kDa which is made up of 261 relatively conserved amino 

acids with a hydrophobic predominance(190). NS4B is formed by the cleavage by NS3-4A serine 

protease of NS 4A from a NS4A-NS5A complex and, the subsequent cleavage between NS4B and NS5A 

in what are the penultimate and final steps in the cleavage of the HCV non-structural proteins(191, 

192). This is thought to occur at specific membrane sites in order to facilitate NS4Bs inherent 

transmembrane phenotype(193). NS4B contains four transmembrane regions and an N terminal 

which is thought to be initially cytosolic with the capacity for intraluminal translocation and a C 

terminus which is cytosolic(190, 194). NS4B localises to membranes both in the endoplasmic reticulum 

and, in dot like membrane aggregates seen in the cytoplasm of infected cells known as membranous 
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webs(MW)(195, 196). The translocation of the N terminal seems to occur as a result of 

oligomerisation, which results in the transformation of the second of the two N terminal α helices into 

a transmembrane segment(197, 198). Oligomerisation is required for MW formation and, it may that 

oligomerisation is required in order to achieve the required concave conformation of the MW(199). 

These conformational changes have also been shown to be influenced by alterations in the relative 

abundance of other HCV non-structural proteins, suggesting that the activity of NS4B may be in turn 

modulated by these(197, 200). The C terminus is characterised by two α helices, one of which, (α2) 

anchors the protein to the membrane(201). Interestingly, the C terminus is characterised by a high 

degree of amino acid conservation and has recently been demonstrated as an important factor in 

facilitating interactions between NS4B and itself in the formation of functional replication 

complexes(202). NS4B hydrolyses ATP and NTP an enzymatic function which may serve to provide 

energy autonomy to virus replication(203). NS4B has also been proposed to function in the assembly 

of virion particles, to bind RNA during replication, the disruption of innate immune activation and, in 

mitigating the anti viral activity of interferon α(204-207). Furthermore protein interaction networks 

have suggested a role for NS4B in inducing oxidative stress as a result of NS4B induced endoplasmic 

reticulum stress. Finally, network analysis of protein-protein interactions have also implicated NS4B 

in the development of steatosis, insulin resistance, liver fibrosis, and tumour development in HCV 

patients, though the mechanisms have yet to be elucidated(199, 208).  

 

1.3.18 NS5A 

NS5A is a 447 amino acid proline rich phosphoprotein which exists in vivo in two forms: p56 and p58 

depending on the degree of phosphorylation the polyprotein has undergone(157). Phosphorylation 

appears to be mediated by NS4A but also appears to involve a number of host kinases, including casein 

kinase I α and Polo like kinase I. The precise role for the differing degrees of phosphorylation remains 

to be elucidated but, the NS5A appears to have important roles in a number of areas within the host 

cell including the cytosol and adjacent to the endoplasmic reticulum. NS5A is made up of three 

domains with domains I and II forming part of the replication complex and is involved in virus 

replication and domain III involved in virus assembly. Domain I includes both a Zinc binding site and a 

disulphide bond that bind RNA directly and, both of which are necessary for replication. The absence 

of domains I and II prevents virus replication and amino acid substitutions may have significant effects 

of the replicative capacity of the virus(209). Phosphorylation of domain III is required for virus 

assembly and this section co localizes with core proteins on lipid droplets and appears to regulate the 
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transition and encapsulation of new genomes from the endoplasmic reticulum to form new virus 

particles(209). 

NS5A has been identified as a potential drug target and the first direct NS5A inhibitor Daclastavir has 

completed clinical trials and demonstrated high degrees of efficacy though a number of resistant 

mutants have already been described(210). A section of NS5A within genotype 1b has been associated 

in a number of studies on populations in the Far East with pre treatment prediction of response to 

treatment with dual therapy combining pegylated interferon and ribavirin. Named the Interferon 

Sensitivity Determining Region (ISDR), patients with wild type respond less frequently to treatment, 

while those with 2 or more amino acid substitutions at this site have significantly superior response 

rates(211). 

 

1.3.19 NS5B 

NS5B is a 591 amino acid 86 kDa protein which is cleaved by the NS3 serine protease(212). The N 

terminal 530 amino acid portion forms a classic fingers, palm and thumb subdomain motif that is seen 

universally in RNA dependent RNA polymerases. The RNA template binds directly to the groove 

between the fingers and thumb which leads directly to the active polymerisation site(213). There is 

significant pangenotypic conservation of NS5B which has lead to the development of a number of 

highly efficacious NS5B inhibitors which have revolutionised HCV treatment(214). NS5B requires both 

magnesium and manganese as co factors and is capable of polymerisation in vivo. The C terminal tail 

is composed of a 21 amino acid segment which binds to membranes and is not required for 

polymerisation in vitro but, is essential for replication in cells(213).  
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1.4 HCV Life Cycle 

1.4.1 Cell entry 

HCV transits the bloodstream bound to low density lipoprotein (LDL), very low density lipoprotein 

[VLDL], bound to immunoglobulin, and in free form. HCV cell entry is by means of a number of 

receptors. The envelope proteins E1 and E2 form a heterodimer functional unit, which was thought to 

interact and attach directly to the virus receptors though recent studies have suggested that the virus 

is bound to Apolipoprotein E which interacts with the hepatocyte LDL receptor(215). Both E1 and E2 

are required for HCV receptor binding(216).  

LDL receptor (LDLR) is a potential candidate as the virus transits bound to LDL but the role remains 

undefined. It may be that LDLR and glycosaminoglycans (GAGS) binding brings the virus in contact with 

the receptors required for internalisation(217). The C-type lectin receptors DC-SIGN (dendritic cell-

specific intercellular adhesion molecule-3-grabbing integrin) and L-SIGN (liver cell-specific intercellular 

adhesion molecule-3-grabbing integrin) have also been implicated in cell entry but, their roles remain 

unclear(218, 219). CD 81, a tetraspanin, almost ubiquitously expressed, and scavenger receptor class 

B type I (SR-BI), a membrane bound lipoprotein receptor, bind E2 but, although required for cell entry, 

they are unable to transfer the virus across the membrane either alone or in combination (220-222).  

Claudin-1 and occludin, tight junction proteins which form contacts between the apical poles of lateral 

cell membranes are also required for HCV cell entry. HCV is not thought to directly interact with the 

tight junction proteins, rather, following receptor binding, the virion receptor complex is thought to 

migrate to tight junctions, where internalisation occurs, though more recent data illustrating minimal 

association between Claudin-1 and CD81 at tight junctions and particle tracking studies that do not 

show migration of HCV particles to tight junctions suggest that tight junctions may not be required for 

cell entry(223-226). Epidermal growth factor receptor (EGFR) activation (by means yet to be 

elucidated) appears to stimulate the association of claudin and CD81 which form a co-receptor 

complex involved in virus cell entry(227, 228). Cell entry is by clathrin mediated endocytosis which, is 

pH dependent and the virion is incorporated into an endosome and delivered to the endoplasmic 

reticulum (229-231).  

It is thought CD81 binding may induce conformational changes in the HCV virion, possibly to the E1:E2 

envelope structure which primes the virus for the low pH environment required for 

internalisation(232). Infected cells down regulate claudin and occludin expression, which reduces 

membrane polarisation and is thought to prevent superinfection (233). Furthermore, HCV infection 

alters the localisation of tight junction proteins from plasma membranes to lateral membranes, thus 
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potentially facilitating virus transfer to neighbouring hepatocytes and compartmentalisation of 

infection within the liver(234, 235). Additionally, claudin 6 and 9 act as co-receptors in cell entry(236).  

1.4.2 Translation and processing of HCV polyprotein 

Following internalisation, fusion between the virion glycoprotein envelope and the cellular 

membranes is thought to occur releasing the uncoated genome into the cytosol(237). HCV genome 

contains an internal ribosome entry site (IRES) which is comprised of domains II, III, and IV of the highly 

conserved 5’ UTR together with nucleotides 24-40 of the core gene. This IRES initiates cap 

independent translation by binding with the 40S ribosomal unit and the initiation factor eukaryotic 

translation initiation factor 3 (eIF3) (70, 238). Meanwhile, HCV eIF3 can also utilise eIF4F to initiate 

cap dependent translation(239). Furthermore, NS5A can upregulate cap dependent translation 

mechanisms(240). The 5’ UTR also binds endogenous miR-122, an endogenous micro RNA which 

increases translation and replication(241). Finally, it has recently been shown that the 3’ UTR can also 

enhance IRES activity, which may select for the translation of intact genomes(240). The translation of 

the single open reading frame produces a polyprotein which is both co- and post- translationally 

cleaved by viral and host proteases(101, 143). 

1.4.3 HCV replication 

HCV replication occurs at membranous aggregates called membranous webs that are thought to be 

derived from the endoplasmic reticulum and are mediated by the actions of NS3/4a, NS4b, NS5a and 

NS5b(195). These membranous webs are made up mostly of double membrane vesicles which are 

induced by NS5a(242). Replication is meditated by a combination of NS3 NTPase/helicase activity and 

the NS5B RNA dependent RNA polymerase (RDRP). Hyperphosphorylation of NS5A is thought to 

control the activity of the RDRP(148). The intracellular association of HCV with lipid droplets and the 

finding that replication in cell culture is disrupted by a change from saturated and monounsaturated 

fats to poly unsaturated fats has suggested a role for lipids in HCV replication(243). This has been 

reinforced by the recent finding that pharmacological manipulation of the lipid milieu toward HDL was 

associated with a reduction in HCV viral loads, though this was transient(244). 

A complementary negative stranded genome is generated by the RDRP from which the positive 

stranded genome is subsequently produced. Newly generated positive strands are then either, 

translated, replicated or packaged into new viruses for release. The fate of the negative strand remains 

unclear(237). Host micro RNA 122 (miR-122) has been identified as an important in the stabilisation 

of viral RNA and prevents degradation by the viral 5’ exonuclease Xrn 1 during replication by recruiting 

Argonaute 2(245). HCV induced alteration in host lipid metabolism results in the accumulation of 

intracellular lipids in the membranous web as lipid droplets which may have a role in viral replication 
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via interactions with NS5a(246, 247). Recently, SEC14L2, a single host cDNA  that increases vitamin E 

modulated protection of viral particles from lipid peroxidation has been identified as the rate limiting 

factor which prevented the replication of HCV isolates other than the JFH-1 isolate in hepatoma cell 

lines(248). Finally, a number of further host proteins have been implicated in virus replication 

including phosphatidyl-inositol-4-kinase-III which is necessary for the formation of membranous webs 

and vesicle associated membrane protein associated protein A and B (VAP-A and VAP-B) which 

associate with cholesterol in the membranous webs(249, 250).  

1.4.4 Virus assembly and release 

Little is known of the precise mechanism by which HCV assembly and release is achieved. Once 

synthesized, core proteins homodimerize and are trafficked to lipid droplets where they accumulate 

and lead to transfer of lipid droplets to the peri-nuclear area (251-253). These core proteins are 

subsequently retrieved from the lipid droplets for virus assembly and budding in a process modulated 

by NS2 and p7(254, 255). NS2 seems to form a membrane bound matrix in order to facilitate the 

interaction of numerous structural and non structural proteins required for virion assembly (153, 154). 

E1 and E2 the envelope proteins form heterodimers and are maintained at the endoplasmic reticulum 

prior to NS2 mediated transfer for virion assembly, with p7 also required for capsid assembly and 

envelopment(256-258). A phosphorylated form of the C terminal of NS5a also plays a central role in 

virus assembly possibly by associating lipid droplet bound core proteins with NS5a and p7(259-261). 

Once enveloped, the virus exploits the very low density lipid (VLDL) assembly pathway and becomes 

associated with apolipoproteins(262, 263).  It is thought that release is mediated by budding into the 

endoplasmic reticulum secretory pathway, though the direct cell to cell transfer mediated by 

intercellular tight junction proteins has also been proposed(217, 235). 
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1.5 HCV and the Immune System 

1.5.1 Evasion of the Innate Immune Response 

The discovery that certain patients display ability to clear HCV infection without sero converting 

prompted the investigation of innate immune anti viral mechanisms. HCV is sensed by all three main 

classes of pattern recognition receptors in the innate immune system:  

1. Retinoic acid inducible gene-1 (RIG-I) 

Spontaneous HCV clearance without seroconversion is mediated by activation of retinoic acid 

inducible gene-I (RIG-I) and is strongly associated with the host IL 28B (a host interleukin) 

genotype(264). RIG-I stimulates a signalling cascade that ultimately upregulates endogenous 

interferon signalling, which inhibits viral replication through the production of up to 300 interferon 

stimulated genes which induce an antiviral state in the host hepatocyte(265). RIG-I is a cytosolic 

RNA helicase which is activated early after infection by the poly U/UC at the 3’ UTR of the HCV 

genome (264, 266-268). Interestingly, in patients where virus persists despite upregulation of 

interferon signalling, further augmentation with pegylated interferon is associated with high rates 

of treatment failure(269). Activation of RIG-I promotes oligomerisation and the activated complex 

is transferred to the mitochondrial associated endoplasmic reticulum membrane (MAM) where it 

interacts with mitochondrial antiviral signalling protein (MAVS)(270). This results in downstream 

activation of inflammatory molecules including nuclear factor kappa B (NFκB) and interferon 

regulatory factor 3 (IRF3)(188). HCV counteracts RIG I signalling by NS3/4A mediated cleavage of 

the mitochondrial antiviral signalling molecule (MAVS) and TIR-domain-containing adapter-

inducing interferon-β (TRIF), both essential downstream components of RIG I signalling(265, 271).  

2. Toll like Receptors (TLRs) 

Toll like receptors may recognise either viral nucleic acid or protein(272, 273). Activation of TLRs 

reduces viral replication via TIR domain containing adapter-inducing IFN-β induced activation of 

IRF3 and NFκB. The HCV NS3/4A protease cleaves TRIF and downregulates TLR mediated innate 

immunity(174, 274, 275). 

3. Nod-like Receptors (NLRs) 

Nod-like receptors may sense HCV, though the precise pathogen associated molecular pattern 

responsible for their activation is unknown. NLR activation produces the pro-inflammatory 

cytokines IL-1β and IL-18(276-278). 
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The activation of the innate immune response although important in spontaneous clearance, is also 

an important step in priming and maturation of the adaptive immune response(265) . 

 

1.5.2 Evasion of the Adaptive Immune Response 

Adaptive immune response to HCV infection comprise both humoral (antibody mediated cell) and T 

cell potentiation of host anti viral interferon γ mediated mechanisms of viral clearance. Adaptive 

immune responses first become detectable 6-8 weeks after initial infection(279). 

1.5.3 Humoral antibody mediated immune responses 

HCV stimulates a variety of antibody responses to multiple viral epitopes but, these are predominantly 

non neutralising. The early emergence of a neutralising antibody response is associated with viral 

clearance and HLA restriction appears to play a significant role in identifying patients where 

spontaneous antibody mediated clearance is likely(280). The ability of HCV to stimulate a 

predominantly non neutralising antibody response may facilitate the virus in allowing time to exploit 

defects in the host antibody repertoire by the generation of escape variants, highlighting the 

importance of HCV genome malleability and its inherent quasispecies nature(265). Notably, 

hypogammaglobulinaemic patients may also clear HCV suggesting that antibody mediated clearances 

is not the sole mechanism of HCV clearance(281). HVR1 appears to be one of the main targets of anti 

HCV antibodies, though the protracted persistence of antibody bound HVR1 sequences highlights both 

the potential for crossreactive binding and the challenges the immune system faces in effectively 

clearing HCV(282-284).  

1.5.4 T cell responses in acute and chronic HCV infection 

Spontaneous clearance of acute HCV infection is associated with a robust CD4+ and CD8+ T cell 

response(285). Among Chimpanzee populations where HCV clearance is high, the depletion of either 

CD8+ or CD8+ T cell populations facilitates the persistence of chronic HCV infection until such time as 

the T cell populations recover(286, 287).  

The mechanisms of viral evasion of T cell responses in both acute and chronic HCV infection are 

incompletely understood. Viral escape by means of genome mutation has been illustrated as an 

effective mechanism of escape at HLA epitope sites and is associated both with persistence of 

infection and spontaneous viral clearance. These immune escape mutants often require clustered 

amino acid substitutions at the epitope binding site which is likely to explain why individuals with the 

same HLA polymorphisms do not all spontaneously clear HCV infection(288, 289). 
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Further proposed mechanisms of viral evasion of T cell responses include dysfunction of CD8+ T cell 

response with resultant impaired interferon γ release and reduced T cell proliferation(290). Weak 

CD4+ T cell responses which are required to potentiate CD8+ T cell effector function have also been 

identified. Finally, it has been suggested that intrahepatic T cell regulatory cells may interfere with the 

proliferation of CD8+ cells, limiting the overall effectiveness of host T cell response(265).  
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1.6. Quasispecies  

1.6.1 Background 

Fundamental to the understanding of HCV evolution and immune evasion, which is a major factor in 

the maintenance of chronic infection, is the concept of quasispecies. The HCV RNA dependent RNA 

polymerase lacks a proof reading function and, as a result, the likelihood of replication of the genome 

into identical progeny is low. The HCV RNA dependent RNA polymerase has an estimated mutation 

rate of 10-4/nucleotide site/year which is roughly equivalent to one mutation per replication cycle(291, 

292). As many HCV virions are produced daily (1x1012), this results in the generation of a highly 

heterogenous swarm or cloud of virions with differing genotypic and phenotypic characteristics. These 

collections of mutant virions are known as quasispecies. This term had originally been coined in 

relation to a theory proposing to explain the origins of self replicating organisms and, how selection 

and adaptation could be incorporated into early biological systems(293).  

Fundamental to this theory was the generation of a constant proportion of mutant progeny in order 

to explore for beneficial mutations which might confer evolutionary advantage. Thus, the quasispecies 

generated would appear organised around a dominant sequence or master sequence which would 

represent the genome best adapted to the state of the quasispecies spectrum at a given time.  

Quasispecies theory differs from classical population genetics however in that the characteristics and 

behaviour of the quasispecies is seen as an ensemble property which incorporates both cooperative 

and competitive effects and, ultimately as a result the process of selection occurs at a population wide 

as opposed to an individual genome level. It has however subsequently been adopted and adapted by 

virologists and used to both explore and explain features of virus evolution, adaptation and 

selection(294, 295). With time the stepwise accumulation of mutant progeny allows the virus to test 

potential mutants also referred to as the sequence space and the maturation of quaspecies has been 

proposed as a state of equilibrium when constituent parts of the quasispecies become maintained in 

relative prevalence in proportion to the fitness conferred by each mutation.  

While the generation of mutant progeny can result in virus evolution and adaptation, excessive 

mutation can result in an inability to maintain a master sequence. The point at which mutation rate 

exceeds the capacity for the quasispecies to maintain itself is referred to as the error threshold. Once 

a virus exceeds this threshold it enters into a process known as error catastrophe where the ever 

increasing number of progeny containing defective mutations results in a collapse in the quasispecies 

structure(295). This theory in the form of the lethal mutagenesis hypothesis, where viruses are 

induced into exceeding the error threshold, forms one of the major strategies for anti viral 

treatments(296). Perhaps the most important clinical implication of viral quasispecies is the capacity 
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of the virus to adapt to both new immune pressure and also, to maintain a reservoir of viral genomes 

that might contain mutants resistant to anti viral drugs(297). 

1.6.2 Quasispecies bottlenecks 

The transmission of viruses to new hosts often results in new infections founded by a random 

collection of virus genomes which may or may not contain master sequence genomes. This process, 

known as a bottleneck, has the potential to significantly reduce virus fitness if the sequences contain 

multiple deleterious mutations. Studies using serial bottleneck events in both viruses and phages have 

demonstrated an associated decrease in viral fitness validating the concept of Mullers ratchet which 

states that, in asexual replication, that the progeny of sequences with deleterious mutations are likely 

to contain the same mutation(298, 299). Conversely, bottleneck events if sufficiently infrequent and 

if containing sufficiently large numbers of viruses potentially facilitate an increase in viral fitness, by 

permitting the rise of sequences that had been the subject of interference from the dominant 

sequences within the preceding milieu(300). 

Bottleneck events occur frequently in HCV with host to host transmission frequently characterised by 

the transfer of large numbers of viruses thus abrogating the risk of fitness loss. However, the 

requirement to infect individual host hepatocytes is a further potential bottleneck which can 

significantly affect the quasispecies profile of the infecting virus(301). 

1.6.3 HVR1 Quasispecies 

As described previously, HVR1 is a 27 amino acid section of E2 one of two envelope proteins on the 

virus surface (124). HVR1 is one of three regions in the HCV genome which demonstrates more marked 

sequence heterogeneity and dynamic change over the course of chronic infection when compared 

with the remainder of the genome, though certain structural motifs and the positioning of positively 

charged amino acid residues are conserved pointing to a role for HVR1 in cell attachment(121). Many 

studies have investigated quasispecies dynamics for HVR1 as it is postulated as a target for host 

immune response. Neutralising antibodies targeting HVR1 have been demonstrated and it is thought 

that HVR1 sequence change is driven by envelope targeting adaptive immune responses and that the 

malleability of HVR1 is important in facilitating the maintenance of chronic infection(302).  

 

1.6.4 HVR1 Quasispecies in Acute HCV infection 

The study of acute HCV infection has been limited by the indolent nature of the early stages of 

infection. This means that most diagnoses are made once chronic infection has been established. 

Exceptions to this rule are the limited number of patients who develop an acute hepatitis 



29 
 

characterised by jaundice, and among populations engaging in high risk behaviours (intra venous drug 

use (IVDU)) who were prospectively screened for acute infection. Transmission among IVDUs appears 

to be associated with an inoculum containing multiple HCV quasispecies(303). This contrasts with the 

recent outbreak of HCV among HIV infected men who have sex with men (MSM) where a lower 

diversity transmission has been demonstrated and a higher rate of spontaneous clearance reported 

suggesting that the diversity of the inoculum may be important in determining the likely outcome of 

acute infection(304). Acute infection is characterised by rapid changes in HVR1 quasispecies that 

appears not to be related to immune pressure and rather reflects the adaptation of the virus to 

optimise fitness (305). A proportion of patients will undergo rapid spontaneous clearance of HCV 

without the development of a humoral immune response. Seroconversion results in a reduction in 

HVR1 QS diversity suggestive of immune mediated clearance by neutralising antibodies(306, 307). In 

a landmark study Farci et al. identified an association between early QS HVR1 evolution and the 

development of chronic infection. Equally, a reduction in complexity and diversity was associated with 

increased likelihood of spontaneous clearance. Interestingly, Farci references the emergence of poly 

or multi phyletic trees as a predictor of viral persistence(308). This term is likely to correspond with 

the more recently described phenomenon of viral subpopulations(309). Acute infection is also 

associated with rapid early sequence change towards consensus sequences for each genotype, which 

is likely reflective of convergent change towards genotype specific fitness optima(310). The transition 

to chronic infection has been proposed to correspond with the failure of both innate and adaptive 

immune mediated clearance and, appears to be associated with an acceleration in the change in the 

HVR1 quasispecies, as the virus evades neutralising antibodies and CD4+ and CD8+ T lymphocyte 

responses. This is characterised by higher rates of non synonymous substitutions within the HVR1 

region (310-313). Higher genetic complexity and diversity in HVR1 appears to be associated with the 

development of chronic infection, and it is postulated that HVR1 could act as a decoy, designed to 

induce immune response while protecting areas of the viral genome less tolerant of conformational 

change(313). 

 

1.6.5 HVR1 in Chronic HCV Infection 

With the transition to chronic HCV infection, HVR1 evolution is patient specific with variable patterns 

of change in HVR1 diversity, complexity, divergence and evolution. These fluctuate over time with no 

definitive pattern(314). Studies using paired liver biopsies suggest that serum quasispecies may lag 

changes in the liver by some weeks(315). In patients where treatment has been unsuccessful, early 

changes in HVR1 appear to be driven by selective pressures and result in significant diversification of 
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the quasispecies which suggest the exploitation of niche defects in the host immune system. The long 

term evolution of HVR1 appears to conform to two patterns: divergence from consensus sequence at 

the site of HLA epitopes and convergence towards consensus elsewhere in HVR1(316), which is likely 

to reflect the adaptation of the virus back to global fitness optima. These patterns of change result in 

the emergence over time of groups of HCV genomes that have been called both lineages and 

subpopulations in the literature (309). 

The pattern of HVR1 change in chronic infection appears to have clinical implications, with those 

patients where HVR1 changes rapidly more likely to progress to advanced liver fibrosis and cirrhosis. 

These patients are also more likely to demonstrate ongoing active hepatitis in the form of raised liver 

enzymes, which implies active immune mediated hepatocyte damage(317). These episodic elevations 

of liver function tests also appear to correlate with transient spikes in the HCV viral load(318). With 

progressive fibrosis and cirrhosis HVR1 divergence and evolution appears to slow and there may be a 

reduction in HVR1 quasispecies complexity and diversity though studies in this area have included 

limited numbers of patients(319, 320). The transition to chronic infection appears to result in a 

reduction in HVR1 change as a result of the exhaustion of T cell and antibody mediated host immune 

responses which have been proposed to result from an element of original antigenic sin(321). 

Although many studies have investigated HVR1 change in chronic infection, little is known about the 

mode and tempo of HVR1 change over short time intervals. 

 

1.6.6 HVR1 Post Transplantation 

Recurrence of chronic HCV infection post orthoptic liver transplantation is almost universal and offers 

the prospect of evaluating quasispecies in an immune suppressed state. Patients transplanted for 

complications of hepatitis C have a poorer long term survival when compared with those transplanted 

for other indications(67). HCV recurrence in the transplanted organ may be asymptomatic in up to 

50% of cases but may also be associated with rapid development of cirrhosis and a condition called 

fibrosing cholestatic hepatitis in up to 20% of cases. HVR1 complexity appears to be lower post 

transplant and greater degrees of post transplant HVR1 complexity appear to be associated with a 

more indolent post transplant course as does rapid change in the HVR1 quasispecies(322-324). 

Greater HVR1 diversity also appears to predict less progression in the liver allograft(325) though 

greater HVR1 divergence is associated with fibrosing cholestatic hepatitis(326). Finally, 

immunosuppression has been proposed to reduce immune pressure on the post transplant HVR1 

quasispecies(327). 
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1.6.7 HVR1 in Co infection with HIV 

A number of studies have suggested that immunosuppression is associated with reduced HCV HVR1 

quasispecies complexity. Patients co infected with Human Immunodeficiency Virus (HIV) have 

historically represented a special group due to lower response rates to treatment with interferon and 

ribavirin but the emergence of new directly acting anti viral medications has resulted in equal response 

rates compared to patients not infected with HIV. Evidence for differing HVR1 quasispecies 

evolution/complexity, diversity and divergence has and remains both conflicting and controversial. A 

number of early studies using short single chain polymorphism analysis had suggested lower degrees 

of HVR1 complexity in patients co infected with HIV(328, 329). Subsequent studies evaluating the 

effect of immune reconstitution following the initiation of highly active antiretroviral therapy 

suggested that this resulted in increased HVR1 diversity and divergence with greater evidence of 

selection in the form of higher dn/ds ratios(330-332). These findings have partially conflicted with 

another study where no such association was found with sequence divergence(333). 

1.6.8 HVR1 Quasispecies on Treatment 

Rapid change in HVR1 quasispecies early in the treatment of HCV with dual therapy and, most 

particularly, the homogenisation of the quasispecies milieu has been shown to be predictive of 

treatment response(334). Furthermore, study of genotype 1 patients for whom dual therapy did not 

achieve sustained response has shown that those patients where the initial treatment resulted in a 

change in the HVR1 quasispecies had a greater chance of SVR following repeat treatment. This study 

was performed on patients receiving 24 weeks of non pegylated interferon and has important 

implications for our understanding of HCV quasispecies. Firstly, the lack of change among the cohort 

who failed treatment on two occasions suggested a persistent resistance to treatment which may 

have reflected either an inability of the host immune system to mount a neutralising immune response 

following potentiation of interferon signalling or, inherent resistance of the viral quasispecies to 

treatment. Secondly, the sub optimal duration of treatment suggests that the patients who cleared 

the virus following the second course of treatment may have cleared the virus if treatment had been 

extended to 48 or even 72 weeks which have subsequently been shown to further increase SVR rates. 

Finally, and most importantly, it suggested that the changes induced by the first course of treatment 

did not select treatment resistant mutants that would render future treatment futile(335). 

1.6.9 HVR1 as an Immune Target 

HVR1 contains both B and T cell epitopes with a number of studies demonstrating serial change in 

HVR1 quasispecies in response to anti HVR1 antibodies (336-338). Conversely, HVR1 demonstrates 

stability despite serial passage among chimpanzee populations with far fewer non synonymous 
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substitutions when compared with HVR1 in human hosts(339). This suggests that the changes seen in 

humans are driven by antibody mediated selection. Studies in humans using immunoglobulin binding 

techniques have also found differing patterns in HVR1 quasispecies in the antibody bound and 

unbound fragments(283). The presence of multiple B cell epitopes in HVR1 has formed the theoretical 

basis for vaccine discovery though the extreme variability of HVR1 has contributed significantly to the 

disappointing results reported. 
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1.7 Treatment  

1.7.1 Background 

The introduction if interferon marked a huge change in the effective treatment of HCV. With efficacy 

equating to 20-30 % it marked the first significant breakthrough in the successful clearance of HCV. 

The subsequent addition of ribavirin, a broad acting anti viral resulted in further improvements in 

treatment success, as did the alteration of interferon into a long acting pegylated form which reduced 

the requirement of injections from three times per week to weekly. Treatment response was genotype 

dependent with successful treatment rates of 70-80% for genotypes 2 and 3 and 30-40% for genotypes 

1 and 4. Combined pegylated interferon with ribavirin had remained the mainstay of HCV treatment 

until 2011 when the first protease inhibitors specifically designed to target HCV proteases became 

available. Boceprevir and telaprevir both demonstrated a significant improvement in treatment 

efficacy when combined with the previous regime in genotype 1 patients, increasing successful 

treatment rates to in excess of 70%. However, a number of adverse outcomes in patient with 

advanced liver disease combined with a significant adverse effect profile have limited their use and 

the licensing of a number of new direct acting anti virals with greater efficacy has resulted in the 

withdrawal of both first generation protease inhibitors from market(340). Between 2013 and 2015 a 

number of new direct acting anti virals have come to market with remarkable improvements in SVR 

rates for all genotypes regardless of the degree of underlying liver disease, co infection with HIV or 

transplant status. These drugs have revolutionised the management of hepatitis C and overcome all 

previously identified viral and host factors associated with lower SVR rates. To date sofosbovir (an 

NS5B polymerase inhibitor), ledipasvir (NS5A inhibitor), ombitasvir (NS5A inhibitor), paritaprevir (NS3-

4A inhibitor), ritonavir (an anti retroviral medication that is included with ombitasvir, paritaprevir and 

dasabuvir), dasabuvir (NS5B inhibitor), and daclatasvir (NS5A inhibitor) have been licensed for use 

with combination therapy with or without ribavirin recommended for all genotypes(24). 

1.7.2 Treatment Individualisation 

During the interval between the emergence of dual therapy and the licensing of the first generation 

protease inhibitors a number of viral and host factors that are associated with likelihood of SVR were 

described: 
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1.7.3 Viral Predictors of SVR using dual therapy with Pegylated Interferon and Ribavirin 

1.7.3.1 Hypervariable Region 1 Complexity 

 Table 1 

Summary of previous studies investigating associations between HVR1 complexity and response to 

HCV treatment. 

Quasispecies complexity as has been previously discussed is a measure of the number of unique 

sequences and their prevalence within a group of clones. HVR1 QS complexity has long been 

associated with likelihood of treatment success though some findings have been contradictory: 

 Early studies investigating complexity involved single strand conformation polymorphism technique 

(SSCP), which was a 3 dimensional agar electrophoresis that was able to separate PCR products with 

as little as a single nucleotide difference between them. Results using SSCP have been conflicting with 

Okada et al. first identifying an association between low complexity and SVR among six patients 

treated with interferon α(341), though no such association was found by Nakazawa et al. in a study of 

14 patients(342). In a number of larger scale studies, Koizumi et al. and Moribe et al. demonstrated 

an association between lower complexity (though in the study the authors use the term diversity) and 
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treatment response among 42 mostly genotype 2 and 25 genotype 1 patients respectively, a finding 

that was further corroborated by Grahovac et al. among 12 patients of unknown genotype(343-345). 

Pawlotsky et al. identified, again using SSCP among 114 patients infected with a variety of genotypes, 

that low HVR1 complexity was associated with increased SVR rates when treated with interferon 

alone(346). Yeh et al. reported a similar finding among 26 patients with genotype 1 infection treated 

with interferon α(347). Lopez-Labrador et al. in examining the complexity among 122 patients with 

genotype 1 infection did not find an association between baseline HVR1 complexity and SVR(348). 

Notably, however, these patients were treated for a maximum of six months with interferon α alone, 

which may have distorted the true effect of complexity on treatment outcomes.  

With the more widespread use of genome sequencing, calculation of QS complexity evolved and 

Sandres et al. studied 13 responders and 13 non responders containing multiple genotypes using 

Shannon entropy to calculate complexity from 20 cloned sequences per sample and failed to find an 

association between complexity and SVR(349). Subsequently, Moreau et al and Chambers et al using 

Sanger sequencing of cloned plasmid samples demonstrated a similar association among 10 patients 

with genotype 3a infection and 29 genotype 1 patients who underwent treatment with dual pegylated 

interferon and ribavirin treatment(350, 351). However, Abbate et al. reported no association between 

HVR1 complexity and SVR using cloned samples but it has been pointed out that they reported 

complexity at a nucleotide level which contrasts with the studies by Chambers et al. and Moreau et 

al. where complexity at amino acid level was used(352).  

1.7.3.2 HVR1 Diversity 

Although, a number of studies in the late nineties suggested an association between low HVR1 QS 

diversity and SVR, these studies exclusively used SSCP analysis which is more akin to HVR1 QS 

complexity. The emergence and greater accessibility of cost effective genetic sequencing methods 

resulted in the emergence of QS diversity as an additional metric which came into widespread use in 

the description of QS. Diversity came to be defined as the average number of nucleotide substitutions 

between sequences in a group of clones. Diversity itself could then be adjusted in accordance with the 

underlying evolutionary model that best represented the pattern of sequence change described by a 

group of clones(353). A reduction in HVR1 QS diversity is associated with spontaneous clearance of 

acute Hepatitis C virus infection(308). Furthermore, an early reduction in HVR1 QS diversity in patients 

on treatment with dual therapy is associated with increased SVR rates(308). Pre treatment HVR1 

diversity as a tool to predict likelihood of treatment response has been investigated in a number of 

studies with variable results. Chambers et al. identified an association between low HVR1 diversity 

and response to treatment but not SVR among 29 genotype 1 patients who underwent 48 weeks of 

treatment with pegylated interferon α and ribavirin(351, 354). Fan et al. demonstrated the opposite 
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in a study of 153 genotype 1 patients, where an Early Virologic Response (EVR) which has been shown 

to be a marker of SVR was associated with high HVR1 diversity. Notably, this study did not provide 

data with regard to SVR and the degree of diversity required at 0.53 was by the authors own admission 

extremely rare. Indeed, although >80% with a HVR1 diversity greater than 0.53 achieved EVR, the 

limited proportion of patients with such high HVR1 diversity meant that most of the patients who 

achieved SVR actually had HVR1 diversity <0.53(354). 

1.7.3.3 Interferon Sensitivity Determining Region (ISDR) 

An association between amino acid substitutions in the non structural protein 5A (NS5A) and SVR was 

first identified among a cohort of 84 Japanese patients with genotype 1b infection who were treated 

with interferon α for six months. Patients with wild type amino acid sequences for positions 2209-

2248 when compared with HCV-J a consensus sequences for genotype 1b experienced universal 

treatment failure on interferon therapy. SVR rates for patients with 1-3 and 4-11 amino acid 

substitutions were 13% and 100% respectively. This section of NS5A was subsequently named the 

interferon sensitivity determining region (ISDR)(211, 355). This finding was subsequently confirmed in 

further Japanese, Thai and Chinese cohorts of genotypes 1, 2, and 6 patients(356-358). Notably, while 

many studies have shown an association between ISDR substitutions and SVR in the Far East, despite 

numerous studies in Europe and the United States, no similar association has been described though 

a meta analysis of published data has suggested that this may be due to differences in the underlying 

prevalence of such mutant ISDR sequences in different geographical regions (359-362). No similar 

association between ISDR substitutions and response to interferon therapy has been identified to date 

(363, 364). 

1.7.3.4 HCV Core substitutions  

Amino acid substitutions at Core70 and Core 91 are associated with reduced response to peygylated 

interferon and ribavirin among genotype 1b patients(365). Replacement of arginine with glutamine or 

histidine at position 70 and or the substitution of methionine for leucine at position Core 91 resulted 

in a higher rate of non response to treatment among 50 Japanese patients. Further studies in 313 and 

361 genotype 1b patients in Japan have demonstrated at least a doubling of the rate of developing 

hepatocellular carcinoma in patients who are infected with viruses containing these mutant Core 

substitutions(366, 367). These substitutions appear to confer resistance to treatment that is 

somewhat, but not completely overcome by prolonging treatment to 72 as opposed to 48 weeks(368). 

Such mutant Core amino acid substitutions appear to increase interferon resistance by up regulating 

interleukin-6 (IL-6), which in turn increases suppressor of cytokine signalling 3 (SOCS3)(369). A similar 

association between core amino acid substitutions has been identified in genotype 2 patients, but not 

to date in genotype 3 patients (370, 371). 
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1.7.4 Host Predictors of SVR using Dual Therapy with Pegylated Interferon and Ribavirin 

1.7.4.1 Interferon γ inducible protein 10 (IP 10) 

IP 10 first became implicated in characterising the host immune response to HCV when it was noted 

that IP 10 levels correlated with histologic disease severity in chronic infection(372). Associated with 

T lymphocyte activation, IP 10 is a pro inflammatory chemokine. An association between IP 10 levels 

and SVR was almost simultaneously described by two groups in Spain and Sweden. Diago et al. 

identified that IP 10 levels were much lower among responders among 103 patients with chronic 

genotype 1 HCV infection who were treated with pegylated interferon and ribavirin and suggested 

that this could be used to predict SVR(373). Lagging et al. demonstrated that low IP 10 levels, even 

among patients with high body mass index or low viral loads (both negative predictors of SVR), were 

associated with higher rates of SVR. An IP 10 cut off of less than 150 pg/mL for optimal response and 

between 150-600pg/mL for improved response was described while those patients who had an IP 10 

level >600pg/mL demonstrated a very poor response to pegylated interferon and ribavirin(374, 375). 

Low IP 10 levels at treatment induction are also associated with rapid reductions in HCV viral load 

among genotype 1,2 and 3 patients, a feature which has also been shown in patients co infected with 

HIV(376, 377). Higher IP 10 levels have also been associated with more advanced liver fibrosis(378). 

As a pro inflammatory chemokine, which acts by attracting activated lymphocytes, the association 

between high levels and poor response had remained difficult to reconcile. It has recently been 

proposed that the form of IP 10 produced in these patients may in fact be a modified antagonistic 

form of IP 10, which results in dysregulation of the host immune response(379). 

1.7.4.2 IL 28 polymorphisms 

1.7.4.2.1 Rs12979860 Genotype 1 

Polymorphisms of the IL28 gene which is involved in the regulation of endogenous interferon signalling 

are also associated with response to dual therapy. Ge et al. first noted an association between allele 

pairs at rs12979860 and response to pegylated interferon and ribavirin among a cohort of 1,600 

genotype 1 infected treatment naive patients. Patients with a CC at this site had a twofold higher 

response rate to treatment when compared with those who had CT or TT, though a subsequent meta 

analysis of 10 papers describing this phenomenon has suggested that the odds ratio of treatment 

response is 5.52 (3.74-8.15) (380, 381). This allele codes, located 3kb upstream from the IL28β gene 

which codes for interferon λ, part of the family of interferons which are known to have broad antiviral 

activity(382). An association between responder substitutions at rs 12979860 and spontaneous 

clearance of HCV was also described among 1008 genotype 1 infected patients, 388 of whom had 

spontaneously cleared their infection(383). Interestingly carriers of responder rs12979860 C/C who 
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go on to develop chronic infection have been shown to have higher viral loads and more histologic 

evidence of severe lobular inflammation and fibrosis progression across all genotypes(384, 385). 

1.7.4.2.2 Rs12979860 Genotype 3 

While there have been many studies investigating the clinical implication of rs12979860 in genotype 

1, studies specifically evaluating patients with genotype 3 infection are fewer and have described 

more heterogeneous results. A meta-analysis of data from five studies gave an odds ratio of 1.23 (.071-

2.14) for SVR suggesting no association though it should be noted that a three of these studies 

combined genotype 2 and 3 patients(381). To date four studies have elucidating treatment response 

to IL28 polymorphisms have been published. Two European studies identified an association between 

C/C and rapid decrease in viral load but found no association with SVR(382, 386). Two other studies 

in the Indian subcontinent that included 356 and 105 patients have identified an association between 

C/C and SVR among genotype 3 patients. We note however that the SVR rates for C/T at 30.5% and 

56.4% and T/T at 8.4% and 22.2% were extremely low(387, 388). Finally, one European study including 

267 patients which was not included in the earlier meta-analysis has suggested an association 

between C/C and SVR, but this study combined genotype 2 and 3 patients(389). 

 1.7.4.2.3 rs8099917 Genotype 1 

Further studies including a seminal paper by Rauch et al. investigating IL28 using multivariate logistic 

regression identified a second site rs8099917 which locates 8kb downstream of IL28 and codes for 

interferon λ2(382, 390). This site was also associated with higher rates of spontaneous clearance and 

interferon based treatment success particularly in genotype 1 and 4 patients. TT (spontaneous 

clearance 76%, SVR 68%) at this site was characterised as optimal with lesser rates of spontaneous 

clearance and interferon response among patients with GT (spontaneous clearance 22%, SVR 29%) 

and GG (spontaneous clearance 1%, SVR 3%)(390, 391). The identification of these polymorphisms in 

the interferon λ coding genes and its association with spontaneous HCV clearance suggests an 

important role for innate immunity in viral clearance. One large meta-anaysis of data has shown 

marked improvement in SVR among patients with genotype 1 infection (odds ratio 4.28 (2.87-

6.38))(381). 

1.7.4.2.4 rs8099917 Genotype 3 

Meta-analysis of five early studies investigating SVR among patients with differing rs8099917 

polymorphisms did not show a statistically significant association with SVR (odds ratio 1.4 (0.98-2.00), 

but this included studies where genotype 2 and 3 were combined(381). Three subsequent studies on 

genotype 3 patients in Europe (one of which combined genotype 2 and 3) have shown an association 

between polymorphisms at this site and rapid response to treatment but not with SVR(382, 386, 389). 
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Aziz et al. reported similar findings among patients with T/T at this site among 105 patients in 

Pakistan(387). Patients with TT genotypes appear to have a more progressive disease with more 

advanced fibrosis and increased risk of hepatocellular carcinoma(392). 

1.7.4.2.5 Other Single Nucleotide Polymorphisms (SNPs) 

The use of genome wide association studies has identified a number of other SNPs in IL28 that have 

been associated with SVR following dual therapy with pegylated interferon and ribavirin, though they 

have not to date been studied in the same detail as the two previously discussed. The SNP that has 

been studied in greatest detail is rs12980275. This SNP is associated increased rates of RVR in 

genotypes 1, 2, and 3 and SVR in genotype 1 when trial data from 253 Caucasian individuals who were 

enrolled in the HCV-DITTO trial was retrospectively reviewed(393, 394). With the development of 

massive parallel sequencing techniques it has been possible to identify up to 18 IL28 SNPs that are 

associated with SVR in genotype 1 patients.  

However, the development of highly efficacious direct acting antiviral drugs has overcome the 

association between IL 28 polymorphisms and poor treatment response (21, 395). 
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1.8 Conclusion 

The individualisation of HCV treatment has been largely on the basis of population parameters. HCV 

genotype has been widely shown to affect treatment prognosis as has race, body mass index, alcohol 

consumption, advancing liver disease and cirrhosis. 

A number of retrospective studies have identified associations between HVR1 quasispecies 

parameters and likelihood of successful treatment response with dual therapy. The natural history of 

short interval change in HVR1 quasispecies is absent from the literature. The degree to which these 

changes are the result of antibody escape is unclear.  

Recent studies have also identified a number of host and viral molecular markers that might assist in 

identifying patients who are likely to achieve sustained viral response. Pre treatment identification of 

success is important for a number of reasons: 

1. Treatment with interferon and ribavirin is associated with significant side effect related 

morbidity including fatigue, anaemia, thyroid dysfunction, depression and increased suicide 

risk. 

2. HCV treatment is resource and cost intensive and optimising success rates has potentially 

significant cost saving implications for health care systems. 

3. The new highly efficacious DAAs are extremely costly and the potential to identify candidates 

with high response rates to dual therapy would allow healthcare professionals to target these 

costly drugs at the patients with poorer outcomes, thus allowing the treatment of more 

patients with finite resources. 

We studied short interval changes in HCV HVR1 quasispecies parameters and both host and viral 

predictors of response to treatment in order to investigate for treatment individualisation strategies 

to optimise sustained virologic response rates. We also separated the immunoglobulin bound from 

immunoglobulin free HVR1 sequences to investigate whether quasispecies change was antibody 

driven.  

As the study progressed, the composition of our cohort precluded the exploration and discovery of 

treatment individualisation strategies. We therefore focused on describing in depth the evolution of 

HCV over short time intervals in a novel cohort of chronically infected individuals. This facilitated the 

identification of differing patterns of HCV change depending on the degree of underlying liver fibrosis. 

By using molecular clock techniques we then explored for evidence supportive of a variable fidelity 

polymerase which we hypothesize emerges in a phase specific fashion as the virus adapts to the host 

immune system. We investigated our samples using Sanger sequencing of nested polymerase chain 
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reaction (PCR) product of the E1E2 section of the virus envelope (a segment that includes HVR1. These 

were compared with Sanger sequences generated from amplified plasmid clones. Our PCR product 

(320 base pairs) was of a suitable lenght for Sanger sequencing. We identify potential pitfalls in the 

description of an underlying QS using amplicon Sanger sequencing.  

Finally, we used 454 next generation sequencing to interrogate the QS in greater depth. This allowed 

comparison between all three descriptive strategies. 454 sequencing with the use of appropriate 

screening tools can provide information with regard to minor components within the QS which is not 

achievable using cloning strategies. However, 454 next generation sequencing has its own limitations 

notwithstanding its high cost. The technology we used requires post hoc reconstruction of the 

underlying sequences. This can potentially distort the QS and as a result sequences generated that 

form <0.1% of the underlying sample are removed. Finally, 454 sequencing produces extremely large 

volumes of data and requires rigorous bioinformatic approaches in order to provides accurate 

interpretation which is time and labour intensive. 
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Chapter 2 
 

Methods  
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2.1 Methods 

2.1.1 Aims 

As outlined in the introduction the purpose of the project was to describe short interval change in 

HVR1 quasispecies and investigate whether QS complexity and diversity (parameters that have 

previously been shown to correlate with treatment outcomes) could be utilised in future models to 

optimise response to pegylated interferon and ribavirin. 

Using nested PCR and cloning strategies, followed by DNA amplification and sequencing of a plasmid 

encoded 320 base pair section of the envelope protein encompassing HVR1 we planned to generate 

10-24 clones for each sample collected. Individual cloned sequences were provided in the form of raw 

fasta (.fas) files and electropherograms by the sequencing company (Eurofins DNA). All fasta 

sequences were compared with the corresponding electropherogram manually to correct any mis 

reads. All individual sequences for a single sample were combined in a single fasta file and visualised 

using MEGA6. Sequences that included short insertions (<10bp) between the plasmid primers were 

removed. The remaining sequences were then aligned using ClustalW. All resuyultant sequences were 

320 bp in length. The base pairs corresponding with the forward and reverse primers were removed 

from downstream analysis as their inclusion could potentially distort the accuracy of the data. Once 

the sequences had been aligned and inspected we planned to calculate HVR1 complexity and diversity 

for each sample and the degree of HVR1 change or divergence both between groups of clones and 

from the original group of clones to investigate for patterns of HVR1 change comparing the data with 

the published literature.  

Cloning data outcomes was visualised using unrooted phylogenetic trees, a method that uses specific 

evolutionary models to estimate sequences origins using bifurcating trees, such that the tree can 

provide an estimate as to how the group of clones is likely to have developed from an unknown 

common ancestor. For the analysis of our cloning data we identified the optimal evolutionary model 

using jmodeltest as Generalised Time Reversible with Invariant sites and a gamma distribution 

(GTR+I+G).  

We performed an initial tree exploration for basic errors and to out rule contamination of samples we 

using a Neighbour Joining model with a boot strap of 500 replicated for the purposes of tree 

optimisation as this provided a quick overview of the data. Early exploration of the outputs from 

Neighbour Joining methods identified problems with the density of HVR1 substitutions and difficulties 

that the program had with identifying identical sequences and placing them together on the tree. As 

a result we included only unique nucleotide sequences from each sample for future tree exploration. 
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Gamma distribution was calculated individually for each individuals group of clones. We then 

compared trees generated using GTR+I+G with maximum composite likelihood trees including the 

patient specific gamma distribution and found no significant difference between these models but the 

computational requirement of the former led us to choose the latter for our cloning study. Difficulties 

with tree optimisation were overcome by increasing bootstrap replicates to 10,000 per tree. 

During the period of the study a seminal paper on long term HVR1 change was published describing 

groups of clones as subpopulations and establishing that these are potentially maintained over years 

of chronic infection, while simultaneously describing HVR1 change between clades on a phylogenetic 

tree as time ordered phylogenetic change. We therefore also interrogated our data using partitioned 

analysis for short interval subpopulation dynamics and evidence of time ordered phylogeny. 

The time required to generate cloning outputs is significant and was identified as a potential obstacle 

to the use of these strategies in treatment optimisation. We therefore sought to establish whether 

nested PCR amplicons can provide adequate accurate information with regard to the underlying HVR1 

quasispecies and whether amplicons could be used to predict QS behaviour. 

Early analysis of cloning outputs indicated a spectrum of HVR1 change from stasis to widespread time 

ordered phylogenetic change. In an effort to establish whether these short term changes reflected a 

sustained or episodic process we included a retrospective group of clones from our sample library for 

each subject, where a suitable sample was available. We also investigated whether adaptive immune 

pressures were responsible for the HVR1 changes identified by separating the serum samples into 

immunoglobulin bound and free fractions and sequencing the resultant amplicons. 

Finally, using next generation sequencing, we investigated patterns of HVR1 change at a third level of 

depth (amplicon, cloning and pyrosequencing). The inclusion of pyrosequencing data necessitated the 

transfer from maximum likelihood phylogenetic trees to GTR+I+G trees generated as the density of 

sequence depth required more rigorous evolutionary model application. 
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2.2 Study Design 

 

Fig 1 Study Design 

2.2.1 Subject Recruitment 

Patients who were deemed eligible for treatment at the tertiary referral centre exceeded the capacity 

of the centre and as a result there was a time lag between subjects being deemed eligible and the 

date of starting treatment. Accordingly, there was a suitable window for sample collection which did 

not delay treatment as any delay due to study participation would have been unethical. 

Ethical approval for the study was sought and obtained under the auspices of the Clinical Research 

Ethics Committee of the Cork Teaching Hospitals. 

All suitable patients were first approached by a clinician with whom rapport had already previously 

been established and asked whether they would be willing to discuss entry into the study. I met all 

willing subjects and outlined the project and the requirement to attend for blood tests that would not 

have otherwise been required in advance of treatment. All subjects were provided with an outline of 

the study and all questions were answered with in addition an explanation that study participation 

was not a prerequisite for treatment and that withdrawal of consent would be possible at any time 

without repercussion.  

In total I approached 28 patients of whom 26 provided informed consent for study participation. Two 

patients declined study entry, one of whom proceeded to treatment and the second person was not 

treated as the supervising clinicians had concerns that ongoing intermittent alcohol intake and 

frequent nonattendance for clinic appointments contraindicated safe treatment.  

One patient attended for her first sample 16 weeks prior to commencing treatment and had become 

pregnant and treatment was postponed until after she finished breastfeeding. A second patient 

attended erratically for sample collection but did not proceed to treatment as he was deported 

Fortnightly venepuncture
16/14/12/10/8/6/4/2/0 

weeks pretreatment

Treatment 
Genotype 1 – 48 weeks
Genotype 3 – 24 weeks

Sustained viral response
6 months post treatment
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following an unsuccessful application for political asylum. Finally, a third patient developed gallstone 

pancreatitis shortly before he was due to commence sample collection and treatment was postponed 

until such time as he had recovered from interval cholecystectomy. 
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2.2.2 Consent Form 

 

SUBJECT INFORMATION SHEET 

Protocol Number:                         Patient Name:    

 

 

 

 

Title of Protocol: Do the dynamics of quasispecies complexity and IP-10 concentration in chronic 

hepatitis C provide an opportunity to individualise treatment strategies? 

  

 

Principal Investigator: 

Dr Orla Crosbie  Phone: 021-4922066 

   

You are being asked to participate in a research study.  The doctors at University College Cork study 

the nature of disease and attempt to develop improved methods of diagnosis and treatment.  In order 

to decide whether or not you want to be a part of this research study, you should understand enough 

about its risks and benefits to make an informed judgment.  This process is known as informed 

consent.  This consent form gives detailed information about the research study, which will be 

discussed with you.  Once you understand the study, you will be asked to sign this form if you wish to 

participate. 
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Why is this study being run? 

It is estimated that Hepatitis C affects up to 170 million people worldwide. You are invited to participate 

in a research study where we aim to study the hepatitis C virus that could be used to identify improved 

treatment strategies.  

If you agree to participate in the study several blood samples will be obtained over a four month 

period prior to starting your treatment. The first visit will take place at Cork University Hospital. 

Participation will involve blood tests every two weeks for four months. 

This study will involve up to 40 patients. All of these other subjects will be between 18 and 75 years 

of age. 

 

Study Procedure 

You will be advised of the purpose of the study and the procedures which will be undertaken. You will 

be given a copy of the subject information sheet, which will explain what is required from you. If 

interested, you will then be requested to read and sign the Informed Consent form, and receive a 

signed copy.  

 

A venous blood sample (10ml) will be obtained and the virus building blocks (RNA) will be assessed. 

The blood sample will also be assessed for an inflammatory protein (IP 10). Eight blood samples will 

be collected in total every fortnight over a period of four months. We will use these blood samples to 

monitor for changes in the virus and inflammatory proteins over that period.  

 

What happens if I start the study and change my mind later? 

You do not have to take part in the study, participation is entirely voluntary. Refusal to participate, or 

discontinuing participation at any time, will involve no penalty, loss of benefits or denial of treatment 

or services by the Cork Teaching Hospital or the participating doctor.  

 

Who is performing the study? 
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The study is being undertaken by Dr Daniel Schmidt-Martin under the supervision of Dr Orla Crosbie. 

Dr Schmidt-Martin will be taking the blood samples and is currently studying for a PhD. in the area of 

Hepatitis C. 

 

Will I experience any unpleasant side effects? 

During the collection of your blood sample, you may experience a slight scratch, which may be 

uncomfortable for a moment but quickly passes. 

 

Funding of trial 

There are no cost implications for the Health Board or to you. The management of patients and 

investigative tests will comply with current standards of care. Cost of research tests will be incurred 

by University College Cork. 

 

Confidentiality 

All the information gathered from this study will be stored on a computer, paper files and will be 

treated confidentially. You will be identified only by a subject number. In the event of any publication 

regarding this study, your identity will not be disclosed. 

 

What happens if there is anything I do not understand? 

If there is anything you are not sure about, the Doctor will be happy to explain in more detail to 

yourself or your relatives, guardians ( or legal representative of required). The study will be fully 

explained to you before you decide if you want to take part. If you have any problems or questions 

after the study has started you may call: 

 

Dr Orla Crosbie 

Consultant Gastroenterologist 

Cork University Hospital, Cork, Tel 021 4546400 
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CONSENT BY SUBJECT FOR PARTICIPATION IN RESEARCH PROTOCOL 

 

 

Protocol Number:                                 

Patient Name:     

 

 

Title of Protocol: Do the dynamics of quasispecies complexity and IP-10 concentration in chronic 

hepatitis C provide an opportunity to individualise treatment strategies? 

  

 

Principal Investigator: 

Dr Orla Crosbie  Phone: 021-4922066 

 

 

Participation in this study is voluntary and you may withdraw at any time for any reason 

                                                                   

The research project and the treatment procedures associated with it have been fully explained to 

me.  All experimental procedures have been identified and no guarantee has been given about the 

possible results.  I have had the opportunity to ask questions concerning any and all aspects of the 

project and any procedures involved.  I am aware that participation is voluntary and that I may 

withdraw my consent at any time.  I am aware that my decision not to participate or to withdraw will 

not restrict my access to health care services normally available to me.  Confidentiality of records 

concerning my involvement in this project will be maintained in an appropriate manner.  When 

required by law, the records of this research may be reviewed by government agencies and sponsors 

of the research. 
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I understand that the sponsors and investigators have such insurance as is required by law in the event 

of injury resulting from this research. 

  

I, the undersigned, hereby consent to participate as a subject in the above described project 

conducted at the Cork Teaching Hospitals.  I have received a copy of this consent form for my records.  

I understand that if I have any questions concerning this research, I can contact the doctor(s) listed 

above.  If I have further queries concerning my rights in connection with the research, I can contact 

the Clinical Research Ethics Committee of the Cork Teaching Hospitals, Lancaster Hall, 6 Little Hanover 

Street, Cork. 

  

After reading the entire consent form, if you have no further questions about giving consent, please 

sign where indicated. 

 

Subject’s Signature:                       Date    

                                                                                                     

       dd mon yy       

Name (BLOCK LETTERS):________________   Time:____________ 

 

Investigator’s signature:_______________   Date    

                                                                                                     

       dd mon yy       

Name (BLOCK LETTERS):________________   
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2.2.3 Patient Attendance 

Patient attendance was satisfactory. Early in the project a number of patients did not attend for their 

second sample and the possibility of arranging for an automated text reminder was discussed but as 

participation was voluntary and attendance potentially associated with cost for the patient it was 

agreed that this might constitute undue pressure and may in certain circumstances risk withdrawal 

from the study. Instead patients were provided with a written confirmation of their next date and 

time for blood testing after each sample had been taken. 

As treatment duration ranged from 24 to 48 weeks and up to 72 weeks among slow genotype 1 

responders and was often associated with significant morbidity, patients were encouraged to consider 

taking a holiday prior in advance. This resulted in a number of missed data points. Furthermore, the 

study period coincided with the imposition of a no fly zone in Europe following the eruption of a 

volcano in Iceland and one of the patients became stranded in New York and missed a number of 

appointments. 

 

Fig 2. Patient attendance 
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2.3 Methods in Chapter 4 
Subjects attended for venepuncture every two weeks for a period of 16 weeks prior to commencing 

treatment with pegylated interferon and ribavirin. All subjects were prospectively recruited in an 

unselected fashion with inclusion criteria confined to chronic hepatitis C infection between the ages 

of 16 and 75. Entry into the study was voluntary and no compensation financial, or otherwise, was 

provided to study participants. All participants were attending outpatients in a tertiary referral centre 

in the Republic of Ireland for ongoing management of chronic hepatitis C. 

Subjects provided written informed consent and the study was undertaken under the governance of 

the Clinical Research Ethics Committee of the Cork Teaching Hospitals. Samples were centrifuged 

within 2 hours, and stored at -70 C within six hours of collection.  

2.3.2 RNA extraction and amplification 

The extraction of HCV RNA was performed by use of the Total Nucleic Acid Isolation protocol on the 

MagNA Pure LC (Roche Diagnostics Ltd., UK) automated platform. 

2.3.3 Reverse Transcription 

Reverse transcription was commenced using 8 μl of the isolated RNA and 0.5 μg random primers 

(Promega, Madison, WI). This mixture was heated at 75oC for ten minutes followed by a brief 

incubation on ice. cDNA synthesis was performed at 42 o C with a mastermix containing 400 μM dNTPs 

(Roche, UK), 40 units RNAse inhibitor (Promega, Madison, WI), 4 μl of AMV RT 5x buffer and 10 units 

of AMV reverse transcriptase (Promega, Madison, WI) in a final volume of 20 μl for 60 minutes 

followed by 3 minutes at 94 oC for enzyme denaturation. 

2.3.4 Nested PCR of E1/E2 

The E1/E2 segment including the HVR1 were amplified using nested PCR producing a 320 bp fragment 

corresponding to nucleotides 1254 to 1572 of reference strain HCVGENS1 genotype 3a (Genbank : 

X76918). Pwo polymerase was used for the amplification of blunt ended products for cloning.  

 

Nested PCR protocol: 

Primary PCR 

Forward 5’- ATG GCA TGG GAT ATG AT -3’ 

Reverse  5’- AAG GCC GTC CTG TTG A -3’ 
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A 50 μl master mix was produced combining 5.0μl RT PCR product, 1.5μl forward primer, 1.5μl reverse 

primer, 1.0μl dNTP, 5.0μl 10x PCR buffer, 3.0μl MgSO4, 32.5μl H2O, and 0.5μl Pwo DNA polymerase. 

The reaction was performed in a thermocycler with a denaturation of 94oC for 2 minutes, followed by 

35 cycles of 94oC for 15 s, 51oC for 30 s, 72oC for 30 s and a final extension at 72oC for 7 minutes. 

Secondary PCR 

Forward 5’- GCA TGG GAT ATG ATG ATG AA -3’ 

Reverse  5’- GTC CTG TTG ATG TGC CA -3’ 

A 50 μl master mix was produced combining 4.0μl primary PCR product, 1.5μl forward primer, 1.5μl 

reverse primer, 1.0μl dNTP, 5.0μl 10x PCR buffer, 2.0μl MgSO4, 34.5μl H2O, and 0.5μl Pwo DNA 

polymerase. The reaction was performed in a thermocycler with a denaturation of 94oC for 2 minutes, 

followed by 35 cycles of 94oC for 15 s, 53oC for 30 s, 72oC for 30 s and a final extension at 72oC for 7 

minutes. 
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2.3.5 PCR amplicon of the correct size was confirmed using gel electrophoresis.  

2.3.5.1 2% agarose gel preparation 

1. Measure out 2g of agarose. 

2. Pour agarose powder into microwavable flask along with 100mL of 1xTAE 

3. Microwave for 1-3min (until the agarose is completely dissolved and there is a nice rolling 

boil). 

4. Let agarose solution cool down for 5min. 

5. Pour the agarose into a gel tray with the well comb in place. 

Note: Pour slowly to avoid bubbles which will disrupt the gel. Any bubbles can be pushed away from 

the well comb or towards the sides/edges of the gel with a pipette tip. 

Place newly poured gel at 4°C for 10-15 minutes OR let sit at room temperature for 20-30 minutes, 

until it has completely solidified. 

2.3.5.2 Loading Samples and Running an Agarose Gel: 

1. Add loading buffer to each of your digest samples. 

Note: Loading buffer serves two purposes: 1) it provides a visible dye that helps with gel 

loading and will also allows you to gauge how far the gel has run while you are running your 

gel; and 2) it contains a high % glycerol, so after adding it your sample is heavier than water 

and will settle to the bottom of the gel well, instead of diffusing in the buffer. 

2. Once solidified, place the agarose gel into the gel box (electrophoresis unit). 

3. Fill gel box with 1xTAE (or TBE) until the gel is covered. 

4. Carefully load a molecular weight ladder (100-1,000bp) into the first lane of the gel. 

5. Carefully load your samples into the additional wells of the gel. 

6. Run the gel at 80 until the dye line is approximately 75-80% of the way down the gel. 

7. Turn OFF power, disconnect the electrodes from the power source, and then carefully remove 

the gel from the gel box. 

8. Using any device that has UV light, visualize your DNA fragments. 

2.3.5.3 Recipe for TAE 

1. One liter 50X stock of TAE Tris-base:  

2. 242 g Acetate (100% acetic acid): 57.1 ml  

3. EDTA 100 ml 0.5M sodium EDTA  

4. Add dH2O up to one litre.  

To make 1x TAE from 50X TAE stock, dilute 20ml of stock into 980 ml of DI water 
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When running gels negative controls were included in parallel in order to observe for possible cross 

contamination of samples.  

2.3.6 Cloning 

Cloning was performed using Zero Blunt® TOPO® PCR Cloning Kit using chemically competent cells 

(TOP10) (Invitrogen, Belgium).  

Cloning reaction: 

PCR product 4μl 

Salt solution 1μl 

TOPO® vector 1μl 

1. Mix reagents gently and incubate for 5 minutes at room temperature (22-23⁰C). 

2. Place the reaction on ice and proceed to transformation of competent cells. 

Transformation of Competent Cells 

3. Add 2 µL of the TOPO® Cloning reaction from Perform the TOPO® Cloning reaction into a vial 

of One Shot® chemically competent E. coli and mix gently. Do not mix by pipetting up and 

down.  

4. Incubate on ice for 5–30 minutes.  

5. Heat-shock the cells for 30 seconds at 42°C without shaking.  

6. Immediately transfer the tubes to ice.  

7. Add 250 µL of room temperature S.O.C. medium (provided in cloning kit).  

8. Cap the tube tightly and shake the tube horizontally (200 rpm) at 37°C for 1 hour.  

9. Spread 10–50 µL from each transformation on a prewarmed selective plate and incubate 

overnight at 37°C. To ensure even spreading of small volumes, add 20 µL of S.O.C. medium 

We recommend that you plate two different volumes to ensure that at least one plate will 

have well-spaced colonies.  

10. Two plates were prepared for each cloning reaction to increase the likelihood of well space 

colonies. 

2.3.7 Preparing Agar plates 

Making the LB Agar 

1. Add 250 mL of dH2O to a graduated cylinder.  

2. Weigh out 20g of premix LB Agar powder (VWR)  
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3. Add dH2O to total volume of 500 mL and transfer to 1 L flask  

4. Put on stirring hot plate and heat to boil for 1 min while stirring.  

5. Transfer to 1 L pyrex jar and label with autoclave tape.  

6. Autoclave at liquid setting for 20 minutes in a basin making sure to loosen top  

7. Let agar cool to ~55C (you should be able to pick up the jar without a glove)  

Pouring Agar Plates  

1. Make sure bench top has wiped down with bleach/EtOH.  

2. Pour a thin layer (5mm) of LB Agar (~10mL) into each plate being careful to not lift the cover 

off excessively (you should be able to just open up enough to pour). Swirl plate in a circular 

motion to distribute agar on bottom completely.  

3. Let each plate cool until its solid (~20 minutes) then flip so as to avoid condensation on the 

agar.  

4. Store plates in plastic bags in fridge with: name, date and contents (note any additive). 

 

2.3.8 Amplification of Cloning Plasmid 

1. Performed using illustra™ Templiphi 100 Amplification Kit (GE Healthcare Freiburg, Germany) 

as follows: 

2. Add 5μl aliquots of sample buffer to each well in a microwell plate. 

3. A small portion of an individual colony was added to the sample buffer taking care not to 

transfer agar. 

4. Seal the microwell plate and denature at 95⁰C for 3 minutes and cool the samples to 4⁰C. 

5. Prepare a master mix for the number of colonies to amplified containing 5μl of reaction buffer 

and 0.2μl of enzyme mix. 

6. Add 5μl of master mix to each sample well in the cooled denatured product from step 3. 

7. Incubate the supernatant at 30⁰C for 10-14 hours (the kit guidelines suggest 4-18 hours but 

we did not perform the reaction at either extreme) and inactivate the enzyme to complete 

the process by incubating at 65⁰C for 10 minutes.  

2.3.9 Preparation of samples for sequencing 

1. Add 3μl of templiphi amplification product to 12μl of sample buffer. 

2. Seal microwell and label with sample identifier and seal the microwell within a zip lock bag. 

3. Send to sequencing in a padded envelope to Eurofins MWG Operon (Ebersberg, Germany) 

using M13 reverse priming site as the forward primer. 
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2.3.10 Sequence analysis 

1. Sequence similarity was compared using the BLAST web based 

tool http://blast.ncbi.nlm.nih.gov/Blast.cgi.  

2. The sequences were aligned using CLUSTALW and analysis was performed following the 

exclusion of sequences which were either incomplete or contained stop codons.  

3. The optimum evolutionary model for analysis was determined using jModeltest.  

4. Intra sample genetic diversity was calculated using the generalised time reversible model 

(GTR+I+G).  

5. Sequence divergence was calculated using a gamma distributed maximum likelihood 

evaluation pairwise genetic distance between the groups of clones from each sample.  

6. Genetic complexity was described using normalised Shannon entropy [NSE] which was 

calculated as follows: Sn = ∑ i[(pi x ln pi)ln n], where pi is the number of times each particular 

sequence appears in the QS and n is the number of sequences in the sample.  

7. Phylogenetic analysis was performed using MEGA5 maximum composite likelihood with a 

bootstrap value of 10,000.  

8. Codon specific selection pressures were estimated using Random Effects Likelihood (REL) and 

evidence for sequence wide selection was established using a PARtitioning approach for 

Robust Inference of Selection (PARRIS) through the www.datamonkey.org server. 

9. Intra host virus population evolution was further visualised in the form of median joining 

networks (MJN) using SplitsTree4.  

10. PAQ was used to identify subpopulations with a minimum difference of 15% at amino acid 

level between all subpopulations. PAQ is a software suite which can partition sequences into 

groups using genetic distances either at nucleotide or amino acid level 

(www.vetmed.iastate.edu/units/carplab/). Initial screening of the data required exploration 

of the optimum radius using the Net weight evaluation method. Each cluster was 

subsequently evaluated for sub groups by using the sub group analysis menu. Once the 

optimum radius had been found the average Hamming Distance from the central sequence 

within the cluster was calculated as a measure of how compact the swarm was around the 

central sequence. We found an amino acid radius of 4 changes identified distinct 

subpopulations within the dataset in all subjects. 

2.3.11 Calculation of nucleotide substitution rates 

1. Nucleotide substitution rates per nucleotide site per year and the ratio of substitutions at 

codon position 1+2 to codon position 3 were calculated using MCMC analysis on Beast. 

2. Fasta files were converted to Nexus files 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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3. Nexus files were imported into BEAUTi v1.8.1 

4. The files were not partitioned 

5. The date of the sequences relative to each other were assigned individually 

6. Following a number of trail runs I found HKY provided the best fit model and used estimated 

base frequency. 

7. In order to compare substitution rates in codon positions 1+2 with position 3 I partitioned the 

sequences and calculated substitution sites for both separately. An overall substitution site 

was also calculated on a repeat run. 

8. I used a strict clock to estimate the substitution rates as this provided the best fit outcomes. 

9. The initial clock rate was specified as 1 x 10-3 as this provided the best fit for early optimisation 

of estimated substitution rates. 

10. The length of chain was specified as 10,000,000 with an initial burn in of 1,000,000 and optimal 

trees were logged every 1,000 operations. 

11. Analysis was performed by importing the BEAUTI file into BEAST v1.8.1. 

12. The output files were interpreted using Tracer_v1.5 by visualisation of the normality of the 

operation output and deemed satisfactory if estimated sample size was greater than 200. 

2.3.12 Statistical Analysis 

1. Continuous variables were tested for normality using a Kolmogorov-Smirnov test. 

2. Analysis of QS continuous variable metrics was performed using Mann Whitney U as the data 

was not normally distributed 

3. Categorical variables were analysed using Chi squared analysis. 

 

  



60 
 

2.4 Methods in Chapter 5 
Serum was collection and storage as previously described.  

RNA extraction, reverse transcription, Pωo nested PCR of 320 bp E1/E2 product, cloning, amplification, 

and sequencing as previously described. 

2.4.1 Taq Polymerase nested PCR 

Nested PCR protocol: 

Primary PCR 

Forward 5’- ATG GCA TGG GAT ATG AT -3’ 

Reverse  5’- AAG GCC GTC CTG TTG A -3’ 

A 50 μl master mix was produced combining 5.0μl RT PCR product, 1.5μl forward primer, 1.5μl reverse 

primer, 1.0μl dNTP, 10.0μl 10x PCR buffer, 3.0μl MgCl2, 27.5μl H2O, and 0.5μl GoTaq DNA polymerase. 

The reaction was performed in a thermocycler with a denaturation of 94oC for 2 minutes, followed by 

35 cycles of 94oC for 15 s, 51oC for 30 s, 72oC for 30 s and a final extension at 72oC for 7 minutes. 

Secondary PCR 

Forward 5’- GCA TGG GAT ATG ATG ATG AA -3’ 

Reverse  5’- GTC CTG TTG ATG TGC CA -3’ 

A 50 μl master mix was produced combining 4.0μl primary PCR product, 1.5μl forward primer, 1.5μl 

reverse primer, 1.0μl dNTP, 10.0μl 10x PCR buffer, 2.0μl MgCl2, 29.5μl H2O, and 0.5μl Pwo DNA 

polymerase. The reaction was performed in a thermocycler with a denaturation of 94oC for 2 minutes, 

followed by 35 cycles of 94oC for 15 s, 53oC for 30 s, 72oC for 30 s and a final extension at 72oC for 7 

minutes. 

PCR Product was run on a 2% agarose gel with negative controls in parallel. 

2.4.2 PCR product Purification 

1. QIAquick PCR Purification Kit© (Qiagen, Venlo, Netherlands)  

2. Add 5 volumes of Buffer PB to 1 volume of the PCR sample and mix.  

3. If pH indicator I has been added to Buffer PB, check that the color of the mixture is yellow. If 

the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate, pH 5.0, and mix. 

The color of the mixture will turn to yellow.  

4. Place a labelled QIAquick spin column in a provided 2 ml collection tube.  
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5. To bind DNA, apply the sample to the QIAquick column and centrifuge at 17,9000 g for 30–60 

s.  

6. Discard flow-through. Place the QIAquick column back into the same tube.  

7. To wash, add 0.75 ml Buffer PE to the QIAquick column and centrifuge for 30–60 s.  

8. Discard flow-through and place the QIAquick column back in the same tube. Centrifuge the 

column for an additional 1 min. IMPORTANT: Residual ethanol from Buffer PE will not be 

completely removed unless the flow-through is discarded before this additional 

centrifugation.  

9. Place QIAquick column in a clean labelled 1.5 ml microcentrifuge tube.  

10. To elute DNA, add 50 µl Buffer EB (10 mM Tris·Cl, pH 8.5) or water (pH 7.0–8.5) to the center 

of the QIAquick membrane and centrifuge the column for 1 min.  

11. IMPORTANT: Ensure that the elution buffer is dispensed directly onto the QIAquick membrane 

for complete elution of bound DNA. The average eluate volume is 48 µl from 50 µl elution 

buffer volume, and 28 µl from 30 µl elution buffer.  

12. The resultant product can be run on a gel, sent for sequencing, or stored at either 4⁰C or 

frozen. 

2.4.3 Sequence analysis 

The resultant sequences were examined for evidence of stop codons and the electropherograms were 

visually inspected for inaccurate automated nucleotide base reads. 

The amplicon sequences for HVR1 were then combined with all unique nucleotide HVR1 sequences 

generated for each sample for the same study subject. The combined multiple sequence alignment 

was transferred into Mega 5 and a phylogenetic tree calculated using a maximum composite likelihood 

neighbour joining tree with a boot strap replicate value of 10,000 for the purposes of tree 

optimisation. The amplicon samples for each individual were then labelled on the overall tree.  

Additionally, we generated multiple sequence alignments for the amplicon sequence combined with 

the unique nucleotide HVR1 clones generated from the equivalent sample and visualised the amino 

acid sequences using multalin (http://multalin.toulouse.inra.fr/multalin/). 

Statistical analysis 

Continuous variables were compared using Pearson correlation and Mann Whitney U difference of 

two medians.  
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2.5 Methods in Chapter 6 
We performed the identical reverse transcription, nested pcr, cloning, sequence amplification and 

sequencing as had been performed on our prospective samples. 

The sequences generated were examined, screened for errors and analysed as per the previous 

samples. 

We examined the library for the presence of the subpopulations that had been previously described 

and investigated for novel subpopulations. 

HVR1 QS divergence was calculated and the overall divergence from the original sample was 

compared to each sample within the prospective study in order to investigate for either divergence or 

convergence of HVR sequences. 

Finally, we used Beast to estimate HVR1 substitution rates and compared these to the rates described 

over short intervals in our prospective samples. 
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2.6 Methods in Chapter 7 

2.6.1 Ultradeep pyrosequencing data generation, handling and error correction.  

Amplicons were quantified using a Biophotometer (Eppendorf) and diluted to a final concentration of 

1 × 107 molecules/ml. Pyrosequencing was performed using a 454 GS FLX titanium platform with 

sample-specific multiplex identifier sequence-adapted libraries for Lib-1 sequencing (Roche 454 Life 

Sciences, Branford, CT). Raw sff data files were first uncoupled into individual patient sample files 

using SFFFile tools (Roche). Low-quality reads and reads shorter than 90% of the expected amplicon 

lengths were removed. 

 

The resultant data files were sequentially processed through implementation of the k-mer error 

correction (KEC) and empirical threshold algorithms as previously described using the parameters k = 

25 and i = 3 (396, 397). The panel of temporally matched clonal sequences to the UDPS data was used 

to further identify and correct homopolymer errors (302, 396). Following this procedure, no erroneous 

sequences at a frequency > 0.1% were present in the homogeneous plasmid control sample. 

Consequently, all haplotypes present at a frequency > 0.1% in their respective sample were retained 

for downstream analysis. 

 

2.6.2 1-step and k-step network construction.  

To study the dynamics of intra-host quasispecies evolution, we created two networks for each patient 

(398). First, all unique haplotypes (318 bp) were aligned and the Hamming distance between each pair 

was calculated. Then connected components were built where each unique haplotype was 

represented by a node and two nodes were connected by an edge if the distance between them was 

one. 

 

The 1-step network of most patients consisted of several connected components. To join them 

together, k-step networks were constructed as follows: iteratively for k = 2,3,…, until all pairs of 

haplotypes from different components with distance equal to k were found. They were linked by edges 

and the connected components were recalculated. These steps were repeated until a single 

component was formed. The resulting k-step network is equivalent to the union of all minimum 

spanning trees. The analysis and network visualization was performed with MATLAB R2014b (The 

MathWorks, Inc.) and Pajek (399). 
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2.6.3 Bioinformatics analyses.  

MEGA6 was used to calculate Hamming distance, synonymous and nonsynonymous mutation rates 

(400). Phylogenetic trees using a general time-reversible model with gamma-distributed and invariant 

sites were drawn in MEGA6. Time ordered Shannon diversity (H) of 1-step networks was calculated 

using the formula: 

𝐻𝐻 = −  �𝑝𝑝𝑖𝑖  ×  𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖 

𝑁𝑁

𝑖𝑖=1

 

where pi is the total frequency of haplotypes component i in the 1-step network and N is the number 

of connected components of the 1-step network (richness). Evenness (EH) of the 1-step network was 

determined using the formula: 

𝐸𝐸𝐻𝐻 = 𝐻𝐻/ ln𝑁𝑁 

Three patients were identified as containing mixed lineages. In each instance the components 

comprising the dominant lineage were analyzed separately from the minor lineages. Prior to 

calculation of Shannon diversity the total frequency of the dominant lineage components was 

normalized to 1 to account for the absence of the minor lineage. 

 

Amino acid conservation plots were drawn using the Jalview program which is based on analysis of 

multiply aligned sequences (AMAS) to determine changes to the physio-chemical properties of the 

constituent amino acids (401, 402).  
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2.7 Methods in Chapter 8 
We examined the serum of six patients with chronic HCV infection over a standardised interval of 16 

weeks.  

2.7.1 Separation of sample into Immunoglobulin enriched/ depleted fractions 

Qproteome Albumin/IgG Depletion Kit (Qiagen, Venlo, Netherlands) protocol was modified for the 

separation of the sample into immunoglobulin enriched and immunoglobulin depleted fractions was 

performed as follows: 

1. 5 ampliprep tubes were labelled alpha numerically in accordance with the subject under 

evaluation and the timing of the sample under investigation and this was followed by a 

number ranging from 1-5 – (e.g. for subject A at the time 16 weeks pre treatment the samples 

would be labelled A16-1, A16-2, A16-3, A16-4, A16-5).  

2. The sample was thawed from the - 70⁰C freezer and mixed by gently pipetting. 

3. 75μL phosphate buffering solution (PBS) and 25μL of the serum sample were transferred to a 

clean, labelled 1.5mL eppendorf tube and mixed by gently pipetting to produce the serum 

solution. 

4. The Qproteome Depletion Spin Column was briefly centrifuged at 500g to remove the resin 

from the cap. 

5. The screw cap was removed and the bottom broken from the spin column. The storage buffer 

was allowed to drain by gravity flow. 

6. The spin column was equilibrated with 2 x 0.5mL aliquots of PBS and allowed to drain by 

gravity flow each time. 

7. The spin column was centrifuged at 500g for 10 seconds with the luer plug in place. 

8. 100μL serum solution (from step 3) was applied to the spin column, before the cap was 

secured and the column shaken vigorously until a viscous, homogenous suspension was 

produced. 

9. The spin column was incubated on the end-over-end shaker for 5 minutes at room 

temperature. 

10. The luer plug was removed and the column was transferred to the Ampliprep tube labelled 

A16-1. 

11. The spin column cap was loosened (to avoid vacuum) ant the column was centrifuged at 500g 

for 10 seconds. 

12. The spin column was transferred to the Ampliprep tube labelled A16-2 and washed with 2x 

100μL PBS aliquots and centrifuged each time at 500g for 10 seconds. 
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13. The spin column was transferred to the Ampliprep tube A16-3 where step 12 was repeated. 

14. Step 13 was repeated for A16-4 and A16-5. 

15. 300μL lysis/binding buffer from the MagNa Pure LC Total Nucleic Acid Isolation Kit was added 

to both A15-3 and A16-4 and these were subsequently stored at -70⁰C. 

16. A16-1, A16-2, and A16-5 were made up to 500μL with Lysis/Binding buffer. These samples 

contained the immunoglobulin free virus particles in sample A16-1 while the remaining two 

samples were included in further analysis to confirm that all immunoglobulin free virus was 

within the first sample. 

17. Ampliprep was labelled A16-B 

18. 200μL PBS buffer was added to 600μL lysis/binding buffer in a clean labelled 1.5mL eppendorf 

tube to generate a PBS/lysis/binding buffer solution. 

19. The spin column (from step 14) was sealed with the luer cap and 200μL of the solution 

generated in step 28 was added and this was shaken vigorously and incubated on an end over 

end shaker for 5 minutes. 

20. The spin column was transferred to the Ampliprep tube from step 17 (which had been labelled 

A16-B) and centrifuged for 10 seconds at 500g. 

21. Step 19 and 20 were repeated. 

22. The contents of A16-B were made up to 500μL with PBS/lysis/binding solution. This produced 

the immunoglobulin bound virus particles. 

2.7.2 RNA extraction and nested E1/E2 PCR 

These were performed as per Chapter 4. 

2.7.3 Partitioned analysis of Quasispecies. 

As per Chapter 4. 
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2.8 Methods in Chapter 9 

2.8.1 Interferon gamma inducible protein 10 (IP 10) assay 

IP 10 levels were measured using Luminex xMAP® bead based assay platform (Merck Millipore). 

Serum samples were thawed vortexed for 1 minute and centrifuged for 5 minutes at 3,000 x g. 

To pre-wet the plate, 150 µL wash buffer was used. 

Pipette technique involved expression to the sides of the wells ensuring sure all fluid was expressed 

out of the pipette tips.  

Luminex® colour code microspheres coated with specific IP 10 antibodies were incubated with the 

samples. Once captured by the bead, a biotinylated detection antibody is added and the reaction 

mixture is incubated with a reporter molecule which completes the reaction on the each bead.  

The Luminex® reporter analyses the concentrations of each completed reaction within each well using 

LED based analysis. Quality controls with defined concentrations of the target molecule are included 

in parallel.  

2.8.2 RT PCR 

Reverse transcription of all sequences was performed as per Chapter 4. 

2.8.3 Core nested PCR 

Genotype 1 

Primary PCR 

Forward 5’-ATT GGG GGC GAC ACT CCA CCA T-3’ 

Reverse  5’-CGT AGG GGA CCA GTT CAT CAT CAT-3’ 

A 50 μl master mix was produced combining 5.0μl RT PCR product, 1.5μl forward primer, 1.5μl reverse 

primer, 1.0μl dNTP, 5.0μl 10x PCR buffer, 3.0μl MgSO4, 32.5μl H2O, and 0.5μl Pwo DNA polymerase. 

The reaction was performed in a thermocycler with a denaturation of 94oC for 3 minutes, followed by 

35 cycles of 94oC for 30 s, 64oC for 30 s, 72oC for 45 s and a final extension at 72oC for 7 minutes. 

Secondary PCR 

Forward 5’-CTT GTG GTA CTG CCT GAT AGG GTG C-3’ 

Reverse  5’-CCA RYT CAT CAT CAT RTC CCA NGC CA-3’ 
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A 50 μl master mix was produced combining 5.0μl primary PCR product, 1.5μl forward primer, 1.5μl 

reverse primer, 1.0μl dNTP, 5.0μl 10x PCR buffer, 2.0μl MgSO4, 38.5μl H2O, and 0.5μl Pwo DNA 

polymerase. The reaction was performed in a thermocycler with a denaturation of 94oC for 2 minutes, 

followed by 35 cycles of 94oC for 30 s, 60oC for 45 s, 68oC for 2 min and a final extension at 68oC for 5 

minutes. This yielded a product of 1,000 bp. 

 

Genotype 3 

Primary PCR 

Forward 5’-CTT GTG GTA CTG CCT GAT AGG GTG C-3’ 

Reverse  5’-CCA RYT CAT CAT CAT RTC CCA NGC CA-3’ 

A 50 μl master mix was produced combining 5.0μl RT PCR product, 1.5μl forward primer, 1.5μl reverse 

primer, 1.0μl dNTP, 5.0μl 10x PCR buffer, 2.0μl MgSO4, 38.5μl H2O, and 0.5μl Pwo DNA polymerase. 

The reaction was performed in a thermocycler with a denaturation of 94oC for 2 minutes, followed by 

35 cycles of 94oC for 30 s, 60oC for 45 s, 68oC for 2 min and a final extension at 68oC for 5 minutes. 

Secondary PCR 

Forward 5’-CTT GTG GTA CTG CCT GAT AGG GTG C-3’ 

Reverse  5’-CCA RYT CAT CAT CAT RTC CCA NGC CA-3’ 

A 50 μl master mix was produced combining 5.0μl primary PCR product, 1.5μl forward primer, 1.5μl 

reverse primer, 1.0μl dNTP, 5.0μl 10x PCR buffer, 2.0μl MgSO4, 38.5μl H2O, and 0.5μl Pwo DNA 

polymerase. The reaction was performed in a thermocycler with a denaturation of 94oC for 2 minutes, 

followed by 35 cycles of 94oC for 30 s, 60oC for 45 s, 68oC for 1:30 min and a final extension at 68oC for 

5 minutes. This yielded a product ~570bp. 

 

2.8.4 Interferon Sensitivity Determining Region (ISDR) PCR 

Genotype 1 

Primary PCR 

Forward 5’-CAG TGC TCA CTT CCA TGC TCA-3’ 

Reverse  5’-ACG GAT ATT TCC CTC TCA TCC-3’ 
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A 50 μl master mix was produced combining 5.0μl RT PCR product, 1.5μl forward primer, 1.5μl reverse 

primer, 1.0μl dNTP, 5.0μl 10x PCR buffer, 3.0μl MgSO4, 32.5μl H2O, and 0.5μl Pwo DNA polymerase. 

The reaction was performed in a thermocycler with a denaturation of 95oC for 2 minutes, followed by 

30 cycles of 95oC for 30 s, 55oC for 40 s, 72oC for 60 s and a final extension at 72oC for 7 minutes. 

Secondary PCR 

Forward 5’-ACC CCT CCC ACA TTA CAG CAG-3’ 

Reverse  5’-CCG AAG CGG ATC GAA AGA GTC CA-3’ 

A 50 μl master mix was produced combining 5.0μl primary PCR product, 1.5μl forward primer, 1.5μl 

reverse primer, 1.0μl dNTP, 10.0μl 10x PCR buffer, 2.0μl MgSO4, 33.5μl H2O, and 0.5μl Pwo DNA 

polymerase. The reaction was performed in a thermocycler with a denaturation of 94oC for 2 minutes, 

followed by 35 cycles of 95oC for 30 s, 55oC for 40 s, 72oC for 60 s and a final extension at 72oC for 7 

minutes. 

 

Genotype 3 

Primary PCR 

Forward 5’-TGC TGA GTT CTT TAC TGA-3’ 

Reverse  5’-GGT AAG GCG CAT CCA TGA A-3’ 

A 50 μl master mix was produced combining 5.0μl RT PCR product, 1.5μl forward primer, 1.5μl reverse 

primer, 1.0μl dNTP, 10.0μl 10x PCR buffer, 2.0μl MgSO4, 33.5μl H2O, and 0.5μl Pwo DNA polymerase. 

The reaction was performed in a thermocycler with a denaturation of 94oC for 5 minutes, followed by 

35 cycles of 94oC for 30 s, 55oC for 30 s, 72oC for 45 s and a final extension at 72oC for 7 minutes. 

Secondary PCR 

Forward 5’-AGG GTG GAT GGG GTG AGA CTC AGT-3’ 

Reverse  5’-AGT CTG GCC TAG CCC AGA TAG GAA-3’ 

A 50 μl master mix was produced combining 5.0μl primary PCR product, 1.5μl forward primer, 1.5μl 

reverse primer, 1.0μl dNTP, 5.0μl 10x PCR buffer, 2.0μl MgSO4, 29.5μl H2O, and 0.5μl Pwo DNA 

polymerase. The reaction was performed in a thermocycler with a denaturation of 94oC for 5 minutes, 

followed by 35 cycles of 94oC for 30 s, 55oC for 30 s, 72oC for 45 s, and a final extension at 72oC for 7 

minutes. This yielded a product ~933bp. 



70 
 

2.8.5 IL28 Sequencing 

Samples were obtained from all study participants with informed consent and sequencing of the SNPs 

was outsourced. 

 

  



71 
 

2.9 Summary of Project Outputs  
 

 

Table 1 – Overview of the results generated for each subject included in the project. Numbers 

correspond with the timing of the sample ore commencement of treatment.  
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Chapter 3 

Published Hypothesis Paper 

Hepatitis C quasispecies adaptation in the setting of a variable fidelity 
polymerase 
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Abstract: Hepatitis C (HCV) is a virus characterized by an RNA-dependent RNA polymerase 

that lacks a proofreading mechanism and, as a result, generates a quasispecies. There is emerging 

evidence that this RNA-dependent RNA polymerase may in fact have variable fidelity. Here, 

we review the relevant concepts, including fitness landscapes, clonal interference, robustness, 

selection, adaptation, mutation rates, and their optimization, and provide a unique interpretation 

of a number of relevant theoretical models, evolving the theory of replicative homeostasis in 

light of their findings. We suggest that a variable fidelity polymerase can find its own optimal 

mutation rate, which is governed by the sequence itself and certain population dynamics. We 

propose that this concept can explain features of viral kinetics and clearance, both spontane-

ously and following treatment of chronic HCV. We point to evidence that supports this theory 

and explain how it refines replicative homeostasis and conclude by discussing particular areas 

of potential research that might augment our understanding of viral host interactions at an 

individual cellular level.

Keywords: fitness landscapes, adaptation, evolution, quasispecies, hepatitis C, replicative 

homeostasis

Introduction
Hepatitis C (HCV), a positive 9.2–9.6 kb RNA Flavivirus, was first identified by 

Choo and colleagues at Chiron in 1989 and is estimated to infect up to 3% people 

worldwide, equivalent to 120–170 million people.1–3 Chronic HCV infection leads to 

the development of cirrhosis in 20% of cases after 20 years and is now the leading 

indication for orthoptic liver transplantation in the USA.

Low fidelity and the lack of proofreading ability of the HCV RNA-dependent RNA 

polymerase (RDRP) results in a population of closely related genomes or quasispecies.4 

Originally proposed by Eigen as a model for the study of the evolution of primitive 

organisms, the quasispecies concept has been applied to many bacteria and viruses 

including human immunodeficiency virus and HCV.5 The gradual generation of point 

mutations results in the development of new variant species or “quasispecies” with 

slightly altered characteristics that then undergo selection. Within a given host, those 

quasispecies best adapted to the environment are most likely to survive and become 

dominant as a result of the principle of competitive exclusion.6 The most prevalent 

quasispecies is the “master” sequence and other related quasispecies cluster around 

this in terms of their genetic distance. Mutations either undergo selection (positive, 

resulting in the selection of beneficial traits; negative, when a deleterious trait is 

removed). Alternatively, in the absence of selection, the gradual accumulation of 
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neutral or near neutral mutations of insufficient magnitude 

to prompt selection results in an evolutionary process known 

as “genetic drift.” Gradual adaptation to the host occurs as a 

result of these processes with the neutral theory of evolution 

predicting that genetic drift will be the predominant form of 

evolution.7 For a mutation to provoke a change from genetic 

drift to natural selection it must breach what has been termed 

the “selection threshold.”8

These processes are dependent on a number of factors 

including virion fitness, population size, clonal density, 

clonal interference, and mutation rates. Our understand-

ing of HCV has grown exponentially as a result of both 

experimental results and mathematical modeling, which have 

facilitated better understanding of viral replication processes 

and, as a result, viral genomic selection, adaptation, and 

evolution. This review provides an up-to-date appraisal of 

these topics.

Fitness
Conceptually, each genome has an inherent fitness defined by 

a group of characteristics (ability to infect, ability to replicate, 

energy requirement), with each quasispecies competing for 

host resources (host cells, cellular machinery, etc). Within the 

population, each sequence competes for these host resources 

with the best adapted, or fittest characteristics, most likely to 

dominate. However, the transience of this domination is guar-

anteed by the mechanism by which it is generated; the almost 

inexorable emergence of fitter mutants demands continual 

evolution for survival, in a process called the “Red Queen 

Hypothesis.”9 A moderate increase in viral fitness of one qua-

sispecies over another results in exponential proliferation of 

this new quasispecies, with likely extinction of its competitor 

sequences in what amounts to a zero-sum game.10

Fitness landscapes
Viral fitness can be described in the form of a fitness land-

scape, with mountains corresponding to areas of increased 

fitness surrounded by areas of diminishing fitness analogous 

to foothills (Figure 1). The accumulation of mutations allows 

the exploration of the sequence space and through this process 

the discovery of fitness gains that might displace the master 

sequence through competition. In the case of HCV, because 

the number of possible nucleotide combinations is so great 

(49.600), this landscape is only able to describe quasispecies 

diversity for short segments of the sequence. Not all muta-

tions are viable, with these lethal mutations akin to cliffs in 

what is known as a “truncated fitness landscape.” Finally, the 

combined interplay between individual quasispecies and the 

immune system results in a changing or dynamic truncated 

fitness landscape.

In this setting, the lack of a proofreading function is 

often looked upon as beneficial to HCV; adapted mutants, 

which are closely related to the parent virion and better able 

to evade the host’s immune response, emerge and maintain 

chronic infection. However, in this model the proviso is 

that high mutation rates mean that beneficially adapted 

mutants are equally prone to deleterious mutations, which 

can potentially wipe out entire quasispecies. Muller’s 

ratchet predicts that deleterious mutations are likely to 

“hitchhike” and be found in all future progeny, barring the 

unlikely event of a reciprocal mutation taking place.11,12 

Mitigating the effects of hitchhiking is the process of 

recombination, which can facilitate the removal of deleteri-

ous mutations by combining mutation-free segments and 

allow greater potential exploration of the sequence space 

by combining sequences with multiple mutations. It is this 

latter process that is thought to contribute significantly to 

the emergence of differing HCV genotypes and even taxa 

and species.13,14

Interference
Although a significant factor in determining the fate of a 

given quasispecies, competitive exclusion is not the sole 

determinant of evolutionary success. In large quasispecies 

populations, it has been shown that sequences with sig-

nificant fitness superiority are not necessarily guaranteed to 

dominate a quasispecies due to a process known as “clonal 

interference.”15–17 In small populations, beneficial mutations 

of smaller increments are more likely to come to dominate 

as a result of selective sweep, while, in large populations 

(as are seen in established chronic HCV infections), a qua-

sispecies with significant fitness benefit can be suppressed 

by the less-fit dominant quasispecies, unless it reaches a 

Local fitness optimaGlobal fitness optimum

Figure 1 Schematic representation of the sequence space in the form of a fitness 
landscape. 
Notes: The accumulation of mutation facilitates the exploration of the landscape. 
Adaptation results in the discovery of local fitness optima and potentially the global 
fitness optimum.
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critical threshold. This has the net effect of ensuring that, in 

chronic infection, the incremental increase in quasispecies 

fitness becomes larger in fitness gain but more infrequent in 

occurrence. Experimental evidence of clonal interference 

supporting this theory has been found in Escherichia coli, 

DNA viruses, HCV, and the RNA vesicular stomatitis virus 

(VSV).16,18–21

Defective interfering particles
Notwithstanding the extreme variability seen in the genetic 

sequence of RNA viruses, it must be remembered, how-

ever, that redundancy in the sequence is limited and that the 

proteins produced are small in number and, in most cases, 

essential in function. However, despite this lack of redun-

dancy, subgenomic particles exist that can have significant 

effects on virus population dynamics.

Named “defective interfering particles” (DIPs) and identi-

fied in several virus species (including both DNA and RNA 

viruses), they may be important factors in the search for fitter 

quasispecies resistant to the effects of DIPs.22–26 Unable to 

replicate in the absence of wild-type virus but able to infect 

new cells, they are thought to contribute to the oscillating 

nature of the viral load repeatedly seen in HCV infection. 

DIPs have also been proposed to interfere in the production 

of wild-type virus and modulate pathogen virulence and may 

themselves be potential antiviral agents.27–30

Stumpf and Zitzmann have proposed the reciprocality 

of DIPs; that is, that the particles are able to replicate but 

are unable to cause de novo infection of new cells due to 

the deletion of the structural section of the genome. The 

associated increase in replicative ability leads to competitive 

exclusion of viable virions and the gradual accumulation of 

defective intracellular viral RNA, meaning that continuous 

de novo infection of new cells is essential to viral survival.31 

Experimental evidence for this has remained elusive.

Studies focused on hepatocyte-derived HCV genomic 

sequences have not found evidence of these particles, though 

factors such as the duration of infection and use of limited 

numbers of clones (it is estimated that use of 20 clones 

will demonstrate most sequences present at a level of 10%) 

may go some way to explain this.32–34 Indeed, the advent of 

next-generation sequencing may see the reemergence of 

this concept.

Robustness
The ability of a virion to tolerate mutations without phe-

notypic disruption, termed “robustness,” is also likely 

to be important in maintaining or enhancing f itness. 

Characterized by a greater number of available neutral 

 mutations, a high degree of robustness results in a smoother 

fitness landscape, in a theory described as “survival of the 

flattest.”35 Studies using digital models and subviral particles 

suggest that an organism with greater robustness may out 

compete and dominate less robust counterparts, particularly 

at times of high mutagenesis.35–37

The emergence of neutral mutation-rich organisms may 

however have significant implications for virion evolution. 

A recent study has demonstrated that a high proportion of 

neutral or near-neutral mutations may act as a barrier to 

evolution by natural selection, with genetic drift coming to 

dominate.8 Studies evaluating HCV robustness are limited, 

but one network-based analysis of HCV polyprotein has 

demonstrated a high degree of robustness at many nucle-

otide positions, with relatively few positions vulnerable to 

phenotypically deleterious mutation.38 Comparisons with 

other RNA viruses are challenging, as direct studies have 

not yet been published. One recent paper has estimated by 

site-directed mutagenesis that 40% of random mutations in 

VSV are lethal, which may suggest a lesser degree of robust-

ness compared with HCV.39

Finally, it has been suggested that increased robustness 

may result in a reduced ability to adapt and that, in organisms 

that are required to survive in changing environments, the 

requirement for frequent adaptive change will limit tolerance 

of neutrality/robustness.40 Indeed, the ability of an organ-

ism to respond to selective pressure and tolerate significant 

large-scale genetic evolution or evolvability has also been 

demonstrated as a selectable trait.41

Cooperative interaction
The concept of the “cooperative interaction” of the constituent 

mutants in exploring fitness maxima, so that the population 

ultimately achieves a mutation–selection equilibrium, dis-

tinguishes quasispecies theory from classical population 

genetics. When looked on in this light, it becomes apparent 

that successful quasispecies evolution is a population-wide 

phenomenon, so that fitness can be seen as an “ensemble 

property.”42 While evidence for this phenomenon is limited, 

studies of poliovirus have demonstrated that the pathogenesis 

of individual quasispecies is affected by cooperative interac-

tion with other mutants in the quasispecies profile and that 

maintenance of a degree of heterogeneity is preferable for 

viral survival and maintenance of tissue tropism.43 Indeed, 

the influence of cooperative reactions has been proposed as 

essential if mathematical models are to accurately generate 

the quasispecies patterns observed in vivo.44
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Adaptation
“Adaptation” is the process whereby the quasispecies alters 

to become more suited to new or changing environments. The 

rate of adaptation of quasispecies appears to be governed by 

a number of factors: population size, mutation rate, adaptive 

quotient, and variability of the environment. In small popula-

tions, the size of the population limits the ability to explore 

the sequence space. As a result, adaptation occurs at a slower 

rate by means of stochastic genetic drift with episodic selec-

tive sweeps. This means that the population is more likely to 

be confined to local fitness peaks. In contrast, large popula-

tions are better able to expand throughout the sequence space 

and, as a result, adaptation is more deterministic, though the 

time taken for fixation of beneficial mutations is increased 

as a result of interference.45,46

Mutation rates
The effects of different mutation rates on a quasispecies 

within a truncated fitness landscape appear to follow three 

patterns: (1) low mutation rates result in a distribution 

around the master sequence and are more likely to become 

“trapped” in local fitness peaks, reducing the chances of 

complete exploration of the sequence space; (2) intermediate 

mutation rates result in wider exploration of the sequence 

space, with the emergence of variants further removed 

from the master sequence; and (3) those with high mutation 

rates produce an ever-increasing number of progeny with 

lethal mutations and, as a result, reach what has been called 

the “error threshold” – the point at which the quasispecies 

becomes unable to maintain sequence integrity. The coercion 

of viruses beyond this point into what has been called “error 

catastrophe” has been a major strategy in the development 

of antiviral therapies.46–49

Interestingly, adaptation is not maximal prior to reach-

ing error threshold; rather, it behaves in a sine wave fash-

ion (Figure 2). The mutation rate that results in optimal 

adaptation is remote from error threshold and adaptation 

decreases with increasing mutation rate as the ability to 

fix beneficial mutations decreases until error threshold is 

breached.50,51 Using parameters present in quasispecies, 

Orr has found that optimal mutation rates for adaptation 

are governed by the strength of selection against deleteri-

ous mutations (ie, more truncated landscapes have a lower 

optimal adaptive mutation rate).50 This work was based on 

the assumption that the selective power against deleterious 

mutations was at all times greater that the selective power 

for beneficial mutations; however, this may not, in fact, 

be the case.

Adaptive quotient
Johnson and Barton advanced this theory by describing a 

matrix that can predict a sequence-specific optimal mutation 

rate depending on whether the surrounding fitness landscape 

is dominated by deleterious or beneficial mutations and the 

selective power of these relative to each other.52 According 

to this model, the existence of many potential beneficial 

mutations will promote the emergence of a higher mutation 

rate and vice versa. In the setting of a bottleneck event (rapid 

reduction in quasispecies – as occurs at transmission of HCV) 

the organism can be seen to be less adapted to the new host 

and, as a result, the ratio of beneficial:deleterious mutations 

is also likely to change and will probably be reflected in the 

rate of mutation.53

Variability of environment
In static environments, the exploration of the sequence space 

with fixation of beneficial mutations that pass the selection 

threshold and outlast clonal interference becomes exhausted 

once the quasispecies reaches the mutation–selection 

equilibrium. At this stage, all fitness optima have been 

explored. As this occurs, the fitness gains that were initially 

large, diminish toward nil.54 With many microorganisms, 

however, the emergence of new environments, either as a 

result of transmission of infection or the development of 

immune responses, results in a dynamic fitness landscape that 

serves to replenish the potential for adaptive change.

Furthermore, the ruggedness of these landscapes can 

themselves affect the rate of adaptation. Clune et al demon-

strated using computer models that digital organisms fail to 

optimize mutation rates and tend to settle at a mutation rate 

below this.55 Evidence for this has been described in DNA 

bacteriophages, where the imposition of a fourfold increase 

in mutation rate actually conferred fitness gain.55,56 Clune et al 

argued that, while adaptation occurs over long periods (many 

generations), selection acts quickly and this phenomenon 

Mutation rate

Adaptation

Optimal adaptive 
mutation rate Error threshold

Figure 2 The interaction between mutation rates and the rate of adaptation.
Notes: Beyond the optimal adaptive mutation rate, increasing mutation rates result 
in an ever-diminishing rate of adaptation until the error threshold is reached.
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may be an effort by the virus to mitigate the potential for 

emergence of deleterious/lethal mutations. Expanding on 

this initial finding, Clune et al demonstrated that the observed 

mutation rate is dependent on the ruggedness of the fitness 

landscape with more rugged landscapes favoring an even 

lower mutation rate.55

The fidelity spectrum
There is a growing body of literature indicating that muta-

tion rates are not constant and may be selectable. Mutation 

rates have been shown to increase at times of stress in many 

bacteria and lethal mutagenesis has long been suggested 

as a potential treatment strategy in viral infections.57 The 

beneficial effects of increased mutational rates, in addition 

to how they may be associated with increased replicative 

capacity, have also been demonstrated in bacteriophage 

populations.58 Furthermore, adaptive change in the mutation 

rate in response to medications has been shown to confer 

drug resistance and sustain chronic infection in the case of 

human immunodeficiency virus type 1.59 Several mechanisms 

governing how transient increases in mutation rate can be 

generated and suitably regulated have been suggested, includ-

ing environmental and heritable factors.60

Evidence of variable RDRP  
mutation rates in HCV
In HCV, the estimated mutation rate is 1 × 10-4 to 5/base.61–63 

The estimation of the error threshold of HCV RDRP is 10-2 to 3 

(mutations per base), which leaves scope for a ten- to hun-

dredfold change in baseline RDRP fidelity before the error 

threshold is reached, with the optimal adaptive mutation rate 

likely to be found within this range. Lethal mutagenesis has 

formed one of the theories of the mechanism of action of 

ribavirin, as it has been shown to induce lethal mutagenesis 

in poliovirus and foot-and-mouth disease, but the results 

in HCV have been variable.62,64,65 Ribavirin-resistant muta-

tions have been described, both in vitro and in vivo, in two 

HCV nonstructural proteins (NS5A and NS5B) including 

the RDRP. It has been suggested that the NS5A mutation 

may indicate that this protein may interact with the RDRP 

to modulate polymerase fidelity.62,66,67 Indeed, the idea that 

RDRP fidelity may be controlled remotely is not novel to 

HCV.68

Recently, mutant RDRPs conferring ribavirin resistance 

by means of increased fidelity have been described in both 

foot-and-mouth disease virus and poliovirus. We feel that 

similar mutants are likely to exist in the case of HCV and 

that their emergence during ribavirin therapy would explain 

the heterogeneity of the effect on mutation rates seen in these 

studies. Furthermore, the sampling intervals may have been 

such that transient increases in mutation rates may have 

been missed.

A mechanism by which viruses might self-regulate rep-

lication fidelity has been proposed by Sallie in his theory of 

replicative homeostasis (RH).69–71 Sallie argued that HCV 

viral kinetics behave in such a way to suggest autoregulation 

of virion production through a homeostatic mechanism that 

modulates RDRP fidelity/processivity (which he proposed 

are inversely proportional). RH predicts that excess wild-

type protein will prompt a decrease in fidelity and a resultant 

increase in mutation and vice versa. The idea that mutation 

rates may be dependent on polymerization rates was first 

proposed in the kinetic proofreading hypothesis, in which 

a delay in the rate of polymerization results in increased 

polymerase fidelity; experimental support for this has been 

demonstrated in the case of VSV.11,72 While we are of the 

opinion that Sallie’s theory has significant merit, we feel that 

the theory of RH could be further adapted to more accurately 

describe the behavior of HCV.

A framework for the action  
of a variable fidelity polymerase
On the basis of the position of the quasispecies within the 

fitness landscape, we propose that a framework exists for 

the selection of phase-specific mutation rates (Figure 3). 

The RDRP acts along a fidelity spectrum with optimal 

mutation rates that are largely dependent on population size, 

capacity for adaption (adaptive quotient), and  variability of 

Viral load

Beneficial:deleterious
mutations

Mutation rate

Clonal interference

Immune pressure

A B C

Figure 3 Phase diagram demonstrating the proposed behavior of hepatitis C (HCV) 
variable fidelity polymerase. (A) New infection is characterized by an increase in 
the ratio of beneficial:deleterious mutations. HCV polymerases with increased 
mutation rates are selected, promoting exploration of the sequence space, which 
results in viral load spike. (B) Once the sequence space is explored, the ratio of 
beneficial:deleterious mutations decreases and the polymerase mutation rate 
returns to baseline. As the quasispecies expands, clonal interference emerges. 
The advent of host immune response, in combination with reduced mutation, is 
associated with a marked reduction in viral load. (C) Immune-mediated dynamic 
changes in the fitness landscape result in oscillation of clonal interference, viral load, 
and polymerase mutation rates.
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the environment.73,74 We propose that the optimal  mutation 

rate selected for could be predicted by the position of the 

sequence within a framework similar to that proposed 

by Johnson and Barton.52 The exploration of this fidelity 

 spectrum is likely to be initially stochastic, as it is reliant on 

the generation of promutator mutations and evidence for simi-

lar processes can be seen in Drosophila populations.52,75

Following the bottleneck of transmission, unencumbered 

by clonal interference, and with an increased probability 

of beneficial mutations, we suggest that a form of density-

dependent selection, similar to those that have been described 

in foot-and-mouth disease virus, E. coli, and Drosophila, will 

result in the emergence of an increased mutation rate.75–77 

This latter occurrence would be characterized by quicker 

adaptation, could correspond to the intermediate fidelity 

phase as described by Saakian et al, and could be likened to 

the episodes of stress which have also been shown to result 

in increased mutation rates in E. coli.47,78 As the relative pro-

portion of beneficial to deleterious mutations is increased in 

small nonadapted populations, the emergence of an increased 

mutation rate is favored. Initial infection with a finite number 

of variants will gradually explore local fitness maxima by 

stochastic means until the population becomes sufficient 

for deterministic exploration as the capacity to generate all 

possible mutants is achieved.46 With population expansion, 

increasing clonal interference, and viral adaptation, the 

same process will select a less-productive polymerase with 

increased fidelity that has the added potential bonus of being 

immunologically stealthy by means of viral-load reduction. 

This period of selection may result in the reduction in viral 

load often seen in acute HCV.70

Furthermore, increased fidelity will inevitably mean 

that antigenic thresholds will be intermittently breached, 

resulting in activation of the adaptive immune response. As 

the exploration of both sequence space and what we refer to 

as the “fidelity spectrum” is stochastic, it is to some degree 

dependent on chance, but the near certainty of successful 

exploration has been in built into the quasispecies charac-

teristics of the virus. Conversely, the certainty of failure, in 

some cases, to either optimize fidelity or even find infidelity 

sufficient to evade the immune response, provides the tanta-

lizing prospect of explaining the process by which infection 

is cleared in 15%–25% of patients.79,80 The emergence of a 

population selection–mutation equilibrium will tend toward 

a lower mutation rate, as the genetic distance to the nearest 

beneficial mutations is likely to become larger due to this 

adaptation. In summary, at times of stress, the polymerase 

and its inherent mutation rate becomes the unit of selection, 

while, at other times, it is the genomic properties and their 

cooperative/competitive interactions that become the traits 

selected for or against.

In our model, similar to that of RH, the selection of 

particular sequences for removal by the immune system 

will merely result in the generation of new quasispecies to 

match the new fitness landscape, while also facilitating long-

term stability of quasispecies in the absence of variations in 

effective immune pressure. This model also has the capacity 

to explain HCV clearance in the absence of seroconversion, 

as it allows for the attainment of error catastrophe without 

the need for immune response. Additionally, our proposed 

mechanism of action along a fidelity spectrum more coher-

ently explains why the emergence of a single dominant 

quasispecies in the treatment of HCV infection and a low 

rate of quasispecies evolution are more likely to result in 

clearance as opposed to the generation of new quasispecies, 

as Sallie’s model would suggest.69–71

In proposing this model, we must acknowledge that 

one of the major obstacles to clarifying the interaction 

between quasispecies theory and experimental results in 

HCV is the phenomenon of founder effect at the level of 

the individual cell. The prevention of superinfection, in 

theory, means that the apparatus of the cell is at the mercy 

of this sole founder and that competition is prevented, 

promoting the preservation of the status quo. This, coupled 

with evidence demonstrating the prevention of infection 

of neighboring cells via the apical cell membrane and the 

facilitation of virion transfer to these neighbors via tight 

junctions, is equivalent to dynasty building – that is, clonal 

expansion. Accounting for these factors in evolutionary 

models is challenging, particularly when little is known 

of the incidence of superinfection in the context of fitter 

“pilgrim” virions, which may facilitate the conversion of 

the quasispecies to new fitness optima.

Finally, we would like to note one conundrum reconcil-

ing the current theories of optimal mutation rates and the 

suggestion that organisms adapt toward neutral networks. 

Under the survival of the flattest hypothesis, the emergence 

of such fitness landscapes results in a reduction in the rug-

gedness of the fitness landscape. As the number and selective 

power of potentially deleterious mutations are reduced, we 

should see closer optimization of mutation rates to maximize 

 adaptation. However, little evidence has been produced to 

favor this and, conversely, the mutation rate in E. Coli, which 

has a 90% tolerance of mutations, has a mutation rate far less 

than that of RNA viruses, which have a lethal mutation rate 

of 21%–40%.39,81
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Conclusion
Adaptive evolution is slave to both genetic drift and natural 

selection, with the emergence of more neutral flatter fitness 

landscapes favoring the former. Following a bottleneck, 

the exploration of the sequence space is stochastic, with 

the transition to deterministic exploration dependent on the 

population size and the development of clonal interference. 

Mutation rates often fail to optimize adaptation and this may 

be an effort to mitigate the relative strength of lethal mutations 

when compared with the relative and often-marginal benefit 

of beneficial  mutations – particularly, in well-already-adapted 

species.  Mutation rates are not constant and, in low popula-

tion sizes, increased mutation rates may be selected for to 

enhance the rate of adaptation. Several potential mechanisms 

for regulating mutation rates to ensure that these increases are 

transient have been proposed. HCV demonstrates character-

istics consistent with a population density-mediated selection 

of mutation rates.
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Chapter 4 

Published Study  

Intensive temporal mapping of Hepatitis C hypervariable region 1 
quasispecies provides novel insights into HCV evolution in chronic 
infection.  



Schmidt-Martin, D., Crosbie, O., Kenny-Walsh, E. and Fanning, L. J. (2015) 'Intensive 
temporal mapping of hepatitis C hypervariable region 1 quasispecies provides novel insights 
into hepatitis C virus evolution in chronic infection', Journal of General Virology, 96(8), pp. 
2145-2156. DOI: http://dx.doi.org/10.1099/vir.0.000149 
 

http://dx.doi.org/10.1099/vir.0.000149
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Chapter 5 
 

Does amplicon sequencing accurately reflect the underlying HVR1 
quasispecies? 
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5.1. Background 

HCV quasispecies are thought to enable the virus to chronically infect human hosts, as the virus 

mutant spectra facilitates the evasion of the host immune system(403). Hypervariable Region 1 which 

is found at the N terminal section of E2 has been extensively studied and is thought important in 

ongoing immune evasion by means of its malleability(313).  Study into the characteristics of HCV QS 

among patients who underwent virus treatment with dual therapy comprising pegylated interferon 

and ribavirin have identified both HVR1 QS complexity and diversity as potential predictors of 

treatment success(344, 350, 354). We explored how accurately the PCR amplicon of a nested HVR1 

PCR reflects the underlying quasispecies. In order to do this we cloned and amplified nested PCR 

products of HVR1 using a high fidelity DNA polymerase (Pwo DNA polymerase). In parallel with this 

process we sequenced the PCR product of 10 of the subjects in our study using Taq polymerase.  

5.2. Methods 

Serum was collected from 10 individuals as per the methods and guidelines outlined previously and 

the serum spun, collected and stored at -80oC within 6 hours of collection.  

For a detailed description of methods used see: 

Chapter 2 section 2.4  
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5.3. Results 

The results for each individual are presented separately. The subjects are designated alphabetically 

and these correspond with those from chapter 4. 

The amplicons generated are presented on phylogenetic trees generated by combining the amplicon 

sequences with all unique nucleotide HVR1 sequences from the prospective cloning project. 

Phylogenetic trees were constructed using maximum composite likelihood methods with a gamma 

distribution and each tree was boot strapped 10,000 times for the purposes of tree optimisation. 

The phylogenetic tree is followed by multiple sequence alignments containing the amplicon sequence 

with the corresponding unique HVR1 clones for the same sample. 

5.3.1 Subject B 

 

5.3.1 Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = week 16, Red = Week 12, Blue = Week 6, Pink = Week 4, 

Orange = Week 0. All sequences with the exception of the sample at week 16, which differs at 

numerous amoino acid positions, are identical at nucleotide level and therefore the square labels 

overlap on the phylogenetic tree (see 5.3.1 Fig 2). This suggests initial change followed by stasis of 

HVR1 in the study period. 

 

0.002
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5.3.1 Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 12, 6, 4, 0. The amplicon 

sequence closely corresponds with the cloning data in all samples except week 16 where there is a 3 

amino acid difference between the amplicon sequence and the nearest clone at positions 9-11.  
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5.3.2. Subject C 

 

5.3.2. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = week 16, Red = Week 12, Yellow = Week 8, Orange = Week 

0. The nucleotide sequences from Weeks 16, 12, and 8 are identical and the labels therefore overlap. 

The HVR1 change which results in the Week 0 sequence is characterised by a single amino acid 

substitution (see 5.3.2 Fig2.) which indicates minimal overall change in HVR1 during the entire study 

period. 

Although the tree has multiple apparent clades, analysis on the amino acid sequences identifies that 

this reflects multiple synonymous nucleotide substitutions and the overall genetic distances is small 

between all sequences. 

 

0.005
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5.3.2. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 12, 8, 0. All amplicons 

correspond with an identical clone for each sample. 
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5.3.3 Subject D 

 

5.3.3. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = week 16, Red = Week 12, Yellow = Week 8, Pink = Week 4, 

Orange = Week 0. Week 12, 8, 4, and 0 samples have the same HVR1 sequences at nucleotide level 

and overlap. The sample from Week 16 differs by a single amino acid substitution (see 5.3.3 Fig 2). 

Although the amplicon sequences predict little change, the diversity of the underlying QS milleu is not 

captured as illustrated by the multiple clades present in the tree. 

 

0.005
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5.3.3. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 12, 8, 4, 0. Each amplicon 

has an identical clone sequence with the exception of week 16 where the amplicon is identical to the 

consensus and is likely to reflect a composite sequence combining different subpopulations.  
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5.3.4 Subject F 

 

5.3.4. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = Week 16, Red = Week 12, Yellow = Week 8, Pink = 4, Orange 

= Week 0. The Week 16 sample differs at 6 amino acid positions from the sample at Week 12 (seen in 

red) suggesting significant change in HVR1 during the study. The labels for samples from Weeks 8, 4, 

and 0 overlap as they have identical nucleotide sequence. 
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5.3.4. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 12, 8, 4, 0. Each amplicon 

sequence is identical to one cloned sequence from the equivalent sample.  
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5.3.5. Subject K 

 

5.3.5. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = Week 16, Red = Week 12, Yellow = Week 8, Pink = Week 4, 

Orange = Week 0. 

 

 

 

 

 

0.005
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5.3.5. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 12, 8, 4, 0. 
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5.3.6. Subject L 

 

5.3.6. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 1000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = Week 16, Yellow = Week 8, Pink = Week 4, Orange = Week 

0. The sequence at Week 16 differs at 9 amino acid positions from the amplicon sequence seen at 

Week 8 and maps remotely on the phylogenetic tree. However, the cloning sequences include 

identical sequences to those seen later in the study suggesting the presence of multiple 

subpopulations (see 5.3.6. Fig 2) 

 

 

 

0.002
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5.3.6. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 6, 4, 0.  
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5.3.7. Subject M 

 

5.3.7. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = Week 16, Red = Week 12, Yellow = Week 8, Pink = Week 4, 

Turquoise = Week 2, Orange = Week 0. The Week 16 amplicon sequence differs from Week 12 by 6 

amino acid substitutions suggesting temporal change.  
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5.3.7. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 12, 6, 4, 2, 0.  
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5.3.8. Subject N 

 

5.3.8. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = week 16, Pink = Week 2, Orange = Week 0. The labels overlap 

as the amplicon sequences are almost identical with the sequences from Week 16 and 2 differing from 

Week 0 by a single amino acid substitution. 
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5.3.8. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 2, 0.  
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5.3.9. Subject Q 

 

5.3.9. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = Week 16, Grey = Week 14, Red = Week 12, Green = Week 

10, Blue = Week 6, Pink = Week 4, Orange = Week 0. Each amplicon sequence maps to a distinct clade 

within the overall tree suggesting a time order phylogeny. 
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5.3.9. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 14, 12, 10, 6, 4, 0.  
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5.3.10. Subject T 

 

5.3.10. Fig 1. 

Maximum likelihood composite phylogenetic tree with boot strap of 10,000 comprising all unique 

nucleotide HVR1 sequences from prospective cloning project (unlabelled) with the amplicon 

sequences included and labelled. Black = Week 16, Red = Week 12, Yellow = Week 8, Pink = Week 4, 

Orange = Week 0. All amplicon sequences are identical at amino acid level and differ by a maximum 

of one nucleotide substitution from each other. 
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5.3.10. Fig 2. 

Amino acid multiple sequence alignments of the unique nucleotide HVR1 sequences for each sample 

from the cloning project combined with the corresponding amplicon sequence. The alignments were 

constructed using multalin and the figure includes samples from weeks 16, 12, 8, 4, 0. 
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5.3.11. Results Summary 

 

5.3.11. Table 1 

The number of amino acid and nucleotide differences between the amplicon sequence and the master 

sequence (most prevalent sequence generated by the cloning project for the equivalent sample). 

 

 

5.3.11. Table 2 

Predictive power of amplicon sequencing for changes seen in the clonal analysis.  

Amplicon sequencing corresponded with the cloning project in correctly identifying all subjects who 

had a single dominant HVR1 QS subpopulation. In predicting the presence or absence of time order 
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phylogeny there was concordance between the amplicon and cloning data in nine out of ten subjects. 

Finally, the amplicon sequences confirmed the replacement of the initial dominant HVR1 QS in nine 

out of ten subjects. Amplicon and cloning findings differed for subject F where the cloning data 

illustrated a complex interaction with two prominent disparate subpopulations. Cloning data 

suggested changes in the prevalence of these subpopulations with time but the amplicon sequences 

suggest both a change in the dominant subpopulation and a time order phylogeny. 

 

 

5.3.11. Table 3. 

Collated data for all of the amplicon project indicating the patterns of nucleotide differences between 

the amplicon and the most prevalent cloning sequence. 72% of differences are the result of a purine 

to purine substitution or a pyrimidine to pyrimidine substitution. 
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5.3.11. Table 4. 

Concordance of master sequence as predicted by amplicon and nucleotide sequences stratified 

according to how many subpopulations were identified in the cloning analysis. The number of 

subpopulations was associated with an inverse likelihood of the cloning data and amplicon data 

identifying the same master sequence.  
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5.4. Discussion 

We investigated how representative the sequencing of the HVR1 PCR amplicon was of the underlying 

HVR1 QS as demonstrated using cloned data. A mean of 17 (range 12-24) sequences generated for 

each sample using cloning techniques were compared with the amplicon data. Although many studies 

have investigated change in HVR1 quasispecies, there is no published literature either describing 

changes in sequenced amplicon products or comparing amplicon sequencing with cloned quasispecies 

profiles(308, 309, 314, 338, 343, 346). 

Interestingly, the amplicon sequence correctly predicted the most dominant cloned sequence as 

identified in 63% of samples. This highlights an ability to identify QS change. Conversely, the amplicon 

failed to identify the dominant clonal sequence in 37% of cases. The amplicon sequence was within 2 

or 3 amino acid substitutions of the master sequence in 80% and 88% of samples respectively. 

When we compared the amplicon sequences with cloning data, the amplicon correctly identified 80% 

of the subjects where there was a change in the dominant HVR1 sequence during the study. 

In cases where the cloned sequences identified a single dominant subpopulation, the amplicon 

sequence correctly identified a sequence that would be contained within that subpopulation in 100% 

of cases. However, the lack of concordance between cloning data and amplicon sequencing has 

important implications for the new direct anti viral medications as currently all screening for drug 

resistance utilises Sanger sequencing of the virus. Although HVR1 quasispecies represents an extreme 

in the depth of viral diversity, our data raises questions with regard to the reliability of Sanger 

sequencing for the purposes of screening for viral resistance. 

We investigated for possible explanations for this inability to identify the most prevalent clone in our 

cloning data. We identified an association between multiple subpopulations in the cloning samples 

and a greater risk of disparity between the amplicon and cloning sequences (p<0.05 Mann Whitney 

U). In a number of cases where the amplicon did not correspond with any of the cloned sequences, 

this was because the amplicon represented a composite of the two co dominant subpopulations 

(Subject D – week 16 -7.3.3. Fig. 2 and Subject E – week 12 – 7.3.4. Fig. 2).  

When we compared the amplicon nucleotide sequence generated with the closest cloned sequence 

we identified the identical sequence in 50% of samples. We examined the sequences in order to 

identify the most common substitutions in the closest cloning sequence to the amplicon and found 

that it was a transition in 31% of cases and a transversion in 69%.  
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The most common substitutions were substitutions of a G-A/A-G or C-T/T-C. Substitution of a purine 

for a purine or pyrimidine for pyrimidine constituted 72% of all differences seen between the amplicon 

sequence and the next nearest clone sequence. 

We generated our amplicon sequences using Taq polymerase, a DNA polymerase which lacks a 

proofreading function and has an estimated error rate of 2 x 10-4 to >1 x 10-5 errors/site/cycle. The 

cloning sequences were generated using polymerase chain reactions catalysed by Pwo polymerase, a 

DNA polymerase with a proofreading mechanism that has an estimated error rate ten times less than 

Taq polymerase(404). The use of Taq polymerase would, we calculate, result in 0.03-0.07 errors per 

sequence in the 81 base pair sequence corresponding with the HVR1 after two PCR cycles(405). 

Importantly, the likelihood that a missubstitution would occur early enough in the PCR cycle such that 

it could be represented as dominant in the final PCR product is extremely remote given the high 

numbers of circulating virus sequences in the pre reverse transcriptase sample. Hence we are satisfied 

that the discrepancy noted between the amplicon sequences and the clones generated are not as a 

result of the DNA polymerase used. 

 

5.5. Conclusion 

Amplicon sequencing can correctly identify the most dominant sequence in most cases and can also 

suggest HVR1 QS undergoing significant change. However, in subjects where there is high HVR1 

diversity as seen in cases with multiple subpopulations, the ability of amplicon sequencing to identify 

the dominant QS is more limited. Although amplicon sequencing can be used as a blunt tool to identify 

HVR1 change, it does not provide sufficient surrogate information with regard to the underlying QS to 

obviate the use of cloning. Finally, discrepancy between cloning and amplicon sequencing may be a 

harbinger of future challenges in screening for resistance to new direct anti virals. 
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Chapter 6 

Analysis of long term HVR1 sequence evolution  
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6.1 Background 
Short interval change in HCV HVR1 complexity and diversity is unpredictable.  

Our analysis also identified the contrasting tempo of HVR1 change from stasis to time order 

phylogenetic change over intervals far shorter than had previously been described.  

In order to further investigate whether the QS stasis/change patterns we described are sustained over 

more prolonged periods of time we cloned and sequenced a retrospective sample from the HCV library 

curated by the Molecular Virology Diagnostics and Research Laboratory where a suitable sample was 

available (n=18 of the 23 subjects included in the prospective study). 

This strategy would allow us to investigate the tempo of HVR1 change over a more prolonged period 

of time in order to clarify:  

1. Among those subjects where we identified time order phylogeny whether this pattern has 

persisted in the form of novel subpopulations in the retrospective sample. 

2. Whether HVR1 stasis as described is sustained over prolonged periods.  

3. Although, the clonal depth used has been suggested to be sufficient for analysis of 

quasispecies change, it is possible that unavoidable random selection bias may have distorted 

the patterns we identified and the inclusion of a retrospective sample may facilitate the 

identification of subpopulations identified late in the prospective cloning study(323). 

Finally, we demonstrated highly variable rates of HVR1 QS change in the substitution per site per year 

but also rates that were 10 fold greater than previous studies of HCV had suggested(406, 407). The 

effect of the subpopulations within a quasispecies milieu on estimated substitution rates is unclear. 

The inclusion of a temporally remote sample would permit the confirmation of HCV HVR1 substitution 

rates. 

6.2 Methods 
Described in Methods Chapter section 2.5. 

 

6.3 Results 
The results for four of the five subjects presented in the prospective cloning study are presented 

individually (no suitable sample was available for subject T). These subjects provide illustration of the 

patterns of change we identified. 

The remaining subjects are presented separately in Appendix B. 
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The results are presented separately in the following order: 

1. Diversity, complexity and divergence 

2. Phylogenetic change 

3. Subpopulation analysis 

A summary of the overall data for all 18 subjects is presented in section 6.3.5. 

  



135 
 

6.3.1 Subject C 

6.3.1 Diversity, Complexity, and Divergence 

 

6.3.1 Fig 1. HVR1 QS diversity for each sample. Diversity is mean pairwise substitutions between clones 
within the sample and was calculated using a generalised time reversible model with invariant sites 
and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity, however overall diversity is low for the entirety of the 

study. This may imply little change of a homogenous QS. 
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6.3.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. High nucleotide complexity reflects in the context of the low diversity seen in 6.3.1 
Fig 1 suggests a QS that is confined to a local fitness optimum. The variable amino acid complexity 
indicates the variable appearance of closely related sequences within the clones. 

 

HVR1 demonstrates greater nucleotide complexity relative to E1 in most samples though this is not 

the case for amino acid complexity which suggests a dominant master sequence under purifying 

selection. 
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6.3.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones.  

There is very little HVR1 divergence between samples. 

 

6.3.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the retrospective 
groups of clones. The clones demonstrate little divergence from 10 years prior to study 
commencement (R1). 
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E1 demonstrates minimal divergence throughout the study period. The least divergent HVR1 sample 

is the pre treatment sample suggesting that minimal divergent drift has been followed by convergent 

change. 

6.3.1 Phylogenetic analysis 

 

6.3.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective samples. 
Retrospective (R1) which was taken 10 years prior to the study onset (wine) and samples from week 
16 (black) and week 0 (orange) labelled. Additional retrospective samples are labelled blue (R2 -1 years 
prior to study onset) and pink (5 year prior to study onset). Tree constructed using maximum 
composite likelihood with GTR+I+G and bootstrap 10,000 for the purposes of optimisation.  

 

It is noticeable that the general shape of the tree has been unaffected by the inclusion of the 

retrospective sample.  

0.005 0.005
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6.3.1 Subpopulation analysis 

 

6.3.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject by 
a minimum of 4 amino acid substitutions. Encompassing 10 years of chronic infection all sequences 
are included in a single subpopulation. During the 10 year period under investigation, the HVR1 
changes by only two amino acid substitutions. 

1 

http://multalin.toulouse.inra.fr/
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6.3.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The retrospective samples 
are labelled with the same colours as 6.3.1 Fig 5. The prospective labels are: Week 16 – black, Week 
14 – grey, Week 12 – red, Week 8 – yellow, Week 0 – orange. 

0.005
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6.3.1 Fig. 8 The persistence of the single subpopulation from the retrospective sample through the 
study period to the pre treatment sample.  

All clones generated including those from all three retrospective samples a within the same 

subpopulation.  
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6.3.2 Subject F 

6.3.2 Diversity, Complexity, and Divergence 

 

6.3.2 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with invariant 
sites and a gamma distribution (GTR+I+G). The episodic high diversity is suggestive of the transient 
presence of co-existing multiple HVR1 subpopulations within the QS. 

HVR1 diversity is greater than E1 diversity in all samples  
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6.3.2 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates increased amino acid complexity relative to E1 throughout the study period. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R 16 14 12 10 8 6 4 2 0

N
or

m
al

is
ed

 S
ha

nn
on

 E
nt

ro
py

A - Nucleotide Complexity

Whole Sequence

E1

HVR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R 16 14 12 10 8 6 4 2 0

N
or

m
al

is
ed

 S
ha

nn
on

 E
nt

ro
py

B - Amino Acid Complexity

Whole Sequence

E1

HVR



144 
 

 

6.3.2. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. The 
retrospective sample was taken 163 days prior to the onset of the prospective study which itself lasted 
112 days. The magnitude of HVR1 divergence seen between the retrospective groups of clones and 
that seen between Week 4 and Week 2 is similar but it must be noted from 6.3.2. Fig 1 that these 
samples have high diversity perhaps implying that multiple subpopulations may be distorting the true 
rate of divergence. 

It is notable that despite the longer time interval between the retrospective sample and the intervals 

between the remaining study samples which corresponds to two weeks that there is a similar 

magnitude of divergence. 

 

6.3.2. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the retrospective 
groups of clones.  

0.000

0.050

0.100

0.150

0.200

0.250

0.300

M
ea

n 
G

en
et

ic
 D

is
ta

nc
e

Divergence from Preceding Sample

Whole Sequence

E1

HVR

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

R-16R-14R-12R-10 R-8 R-6 R-4 R-2 R-0

M
ea

n 
G

en
et

ic
 D

is
ta

nc
e

Divergence from Retrospective Sample

Whole Sequence

E1

HVR



145 
 

E1 demonstrates minimal divergence throughout the study period. HVR1 cumulative divergence from 

the retrospective group is similar for all subsequent samples. Although Fig. 3 suggests significant inter 

sample divergence, the mean pairwise genetic distance from the retrospective sample remains 

constant Fig. 4 suggesting constant exploration of the sequence space at a near constant distance 

from the retrospective sample. 

6.3.2 Phylogenetic analysis 

 

6.3.2 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (163 days 
prior to Week 16 clones which are labelled with black circles. Retrospective (wine) and samples from 
week 16 (black) and week 0 (orange) labelled. Tree constructed using maximum composite likelihood 
with GTR+I+G and bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective 
clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 8 – yellow, Week 6 – blue, 
Week 4 – pink, Week 2 – turquoise, Week 0 – orange. 

 It is noticeable that the general shape of the tree has been affected by the inclusion of the 

retrospective sample. A number of retrospective sequences have formed a new clade which joins the 

majority of the sequences. This has also drawn a sample 14 sequence (grey) away from the lower 

sequences where it had been placed in the left tree.  
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6.3.2 Subpopulation analysis 

 

6.3.2 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject by 
a minimum of 4 amino acid substitutions. The subpopulations identified (5 in total) are designated by 
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red integers. The numbering of subpopulations was done in accordance with the temporal appearance 
of each subpopulation. Where two subpopulations appeared in the same sample, the subpopulation 
which contained the higher number of sequences was labelled first. 

 

 

6.3.2 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 8 – yellow, Week 
6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Multiple co-existing subpopulations 
are identified with the emergence and elimination of novel subpopulations during the prospective 
study period. There appears to be temporal change in the dominant subpopulation during the study. 
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6.3.2 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

Subpopulation 1 (blue) co dominant in the retrospective sample and a minor component of week 14 

sequences is subsequently completely eliminated from the HVR1 QS. Subpopulation 3 (green) 

emerges in the pre treatment samples and increases in prevalence and makes up 60% of the QS in the 

pre treatment sample. This feature suggests a time order phylogeny.  
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6.3.3 Subject H 
 

6.3.3 Diversity, Complexity, and Divergence 

 

6.3.3 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with invariant 
sites and a gamma distribution (GTR+I+G). High diversity in the HVR clones reflects remotely related 
groups of clones and suggests the presence of multiple HVR1 subpopulations. 

HVR1 diversity is greater than E1 diversity.  
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6.3.3 Fig 7. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates increased complexity relative to E1 throughout the study period.  
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6.3.3. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

It is notable that despite the longer time interval between the retrospective sample and the intervals 

between the remaining study samples which corresponds to two weeks that there is a similar 

magnitude of divergence. 

 

6.3.3. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the retrospective 
groups of clones.  

There is minimal divergence throughout the study interval and including the retrospective sample. 
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6.3.3 Phylogenetic analysis 

 

6.3.3 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample. 
Retrospective (wine) (176 days prior to prospective study) and samples from week 16 (black) and week 
0 (orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, Week 
16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, Week 
4 – pink, Week 2 – turquoise, Week 0 – orange. 

The phylogenetic tree is unaffected by the inclusion of the retrospective sample. 

Subject H had in the 16 weeks prior to commencing treatment demonstrated characteristics 

suggestive of a time ordered phylogeny with complete replacement of the initially dominant HVR1 

subpopulation with a subpopulation not identified in the sample taken 16 weeks prior to commencing 

treatment. However, the retrospective sample includes a sequence which suggests that there may be 

a sustained mixed lineage infection rather than a time order phylogeny. 
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6.3.3 Subpopulation analysis 

 

6.3.3 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject by 
a minimum of 4 amino acid substitutions. The subpopulations identified (11 in total) are designated 
by red integers. The numbering of subpopulations was done in accordance with the temporal 
appearance of each subpopulation. Where two subpopulations appeared in the same sample, the 
subpopulation which contained the higher number of sequences was labelled first. 
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6.3.3 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 8 – yellow, Week 
6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. 
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6.3.3 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

The initially dominant subpopulation makes up an ever diminishing proportion of the quasispecies 

through the study period. Coincident with this is the ever increasing prevalence within the clones 

generated of one of the minor subpopulations (green) from the retrospective sample. This 

subpopulation was not present among the clones generated at timepoint 16 and in prior to performing 

retrospective analysis of the HVR1 QS we had concluded that this subpopulation arose during the 

study period. The retrospective samples suggests that these multiple subpopulations may co exist in 

the QS over prolonged periods prior to the gradual displacement of the previous dominant 

subpopulation either as a result of competitive exclusion or the emergence of an immune mediated 

clearance of the previous subpopulation.  

When examined together Figures 7 and 8 highlight the importance of subpopulations 1 and 3 who 

together comprise a majority of the sequences generated for each sample. It is also interesting to note 

the emergence of subpopulation 10 towards the end of the study period. This group of sequences is 

phylogenetically remote from all previous sequences and may represent the exploration of a new 

remote fitness optima within the sequence space. 
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6.3.4 Subject Q 

6.3.4 Diversity, Complexity, and Divergence 

 

6.3.4 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with invariant 
sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity with the exception of the retrospective sample and the two 

pre treatment samples where a dramatic homogenisation of the HVR1 QS was demonstrated.  
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6.3.4 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 
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6.3.4. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

Maximal divergence occurs between the retrospective sample (378 days prior to commencement of 

prospective study) and the first study sample but divergence continues throughout the 16 weeks prior 

to commencing treatment. There is little E1 divergence. 

 

6.3.4. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the retrospective 
groups of clones.  

E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group is maximal at the sample 16 weeks pre treatment. 
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6.3.4 Phylogenetic analysis 

 

6.3.4 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (378 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 (orange) 
labelled. Tree constructed using maximum composite likelihood with GTR+I+G and bootstrap 10,000 
for the purposes of optimisation. The labels are: Retrospective clones – wine, Week 16 – black, Week 
14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 4 – pink, Week 2 – turquoise, 
Week 0 – orange. 

The phylogenetic tree has been unaffected by the inclusion of the retrospective sample. The 

retrospective samples are situated close to a week 14 sequence. This tree illustrates why the 

divergence figures suggest convergence from week 16 onwards with subsequent samples more closely 

related to the retrospective sequences. This tree illustrates clearly a time order phylogeny with 

sequential samples mapping to different clades in the tree.  
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6.3.4 Subpopulation analysis 
 

 

6.3.4 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject by 
a minimum of 4 amino acid substitutions. The subpopulations identified (9 in total) are designated by 
red integers. The numbering of subpopulations was done in accordance with the temporal appearance 
of each subpopulation. Where two subpopulations appeared in the same sample, the subpopulation 
which contained the higher number of sequences was labelled first. 
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6.3.4 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 10 -green, Week 12 – red, Week 
8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Where two identical 
sequences occur the labels overlap. 
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6.3.4 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

Time order phylogeny is clearly illustrated with sequential changes in the dominant HVR1 QS.  
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6.3.5 Results Summary 

 

6.3.5. Table 1. Summary of nucleotide substitution rates and subpopulation change. Duration 
indicates the timing pre treatment of the retrospective sample. 

 

6.3.5.1 Time order Phylogeny 

The inclusion of the retrospective sample increased the time period studied for the 18 subjects from 

112 days to a median of 405 days (range 234-3715). When the additional sample was included the 

finding of a time order phylogeny was confirmed in all five subjects. In subject H however the 

dominant subpopulation in the pre treatment sample which had not been present in the sample 16 

weeks pre treatment was also identified in the retrospective sample. Examination of the multiple 

sequence alignment of the amino acid HVR1 sequences for subject H however identifies two amino 

acid substitutions in the constituent sequence which has facilitated this re emergence (6.3.3 Fig. 6). 

None of the four cirrhotic subjects demonstrated a change in the dominant subpopulation during the 

study. In contrast 10 of the 14 non cirrhotic subjects (71%) included demonstrated a change in the 

dominant subpopulation suggestive of a time order phylogeny. The difference between cirrhotic and 

non cirrhotic subjects was statistically significant (Chi 2 p<0.05) despite that fact that cirrhotic subjects 

were investigated over a longer period of time (median 735 days for cirrhotic subjects versus 399 for 

non cirrhotic subjects). 
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6.3.5.2 HVR stasis 

Only two subjects were characterised by the presence of a single subpopulation for the entirety of the 

study including the retrospective sample, of which both were cirrhotic. Subject C was studied for in 

excess of 10 years and over this period of time the dominant HVR sequence differed from the original 

dominant sequence by a mere 2 amino acid substitutions. Subject D is characterised by a single 

dominant HVR1 QS subpopulation but with many different sequences within that subpopulation. 

Analysis of the phylogeny (Appendix A D.1 Fig 5 and Fig 6) indicates some change in the prevalence of 

individual sequences but the dominant sequence at the pre treatment sample was present in low 

number in the retrospective sample which was one year prior to commencing treatment. 

Two non cirrhotic subjects (Appendix A U.1 Fig 7) and W (Appendix A.1 Fig 7)) were shown to be 

dominated in all samples by a single dominant HVR1 QS subpopulation but with the presence in minor 

copy of a second subpopulation on two occasions.  These subjects are noteworthy for the fact that 

the dominant HVR1 sequence does not change by a single amino acid substitution over the 399 and 

444 days they were studied respectively. 

6.3.5.3 Number of Subpopulations 

We evaluated the retrospective sample for the presence of a new subpopulation which had not been 

seen in the samples for the 16 weeks preceding treatment and found new subpopulations in 8 of the 

18 subjects studied (6.3.5 Table 1). A new subpopulation was identified in a single cirrhotic patient 

(20%) and 50% 7/14 of non cirrhotic subjects had a new subpopulation present in the retrospective 

sample though this was not statistically significant (p=0.34 (χ2)).  

Although non cirrhotic patients had a higher mean number of subpopulations identified (5.42) during 

the study when compared with cirrhotic subjects (2.25), the difference was not statistically significant 

(p=0.26(χ2)) though the limited number of participants may in part explain this. 
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6.3.5.4 Nucleotide Substitution Rates 

 

6.3.5.4 Table. 1 Comparison of HVR1 substitution rates between prospective study and when 
retrospective sample is included 

The samples were interrogated using Beast© to calculate nucleotide substitution rate per site per year 

for HVR1. When compared with the figures calculated using the prospective samples over a 16 week 

period it became clear that there was significant disparity between the results obtained. The results 

for the 16 week study were in all cases several orders of magnitude greater than those when the 

retrospective sample was included.  
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6.3.5.4 Fig. 1 Scatter plot of nucleotide substitution rates per year per site from prospective study 
and including retrospective sequences 

We investigated for a relationship between the nucleotide substitution rates as calculated with and 

without the retrospective samples and found an association between these data (paired Student’s t-

test <0.01). 

 

6.3.5.4 Fig. 2 Comparison of HVR1 substitution rates when duration of retrospective investigation is 
included. 

There was no association between the length of time studies and the substitution rate. 
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6.3.5.4 Fig. 3 Comparison of HVR1 substitution rates with E1 substitution rates using retrospective 
clones. 

There was no correlation between HVR1 and E1 nucleotide substitution rates. 

 

6.3.5.4 Fig. 4 Mean HVR1 substitution rates per nucleotide per site as calculated using Bayesian 
Evolutionary Analysis with 10,000,000 calculations for each subject. 

We analysed the data produced from the substitution calculation by combining the result for all 

subjects in order to evaluate for patterns of substitution rate among all subjects. This produced a 
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skewed curve which suggested two or possibly three different average mutation rates as indicated 

with arrows. 

 

6.3.5.4 Fig. 5 Mean E1 substitution rates per nucleotide per site as calculated using Bayesian 
Evolutionary Analysis with 10,000,000 calculations for each subject. 

We further investigated the sequences to look for substitution rates in the E1 section and identified a 

similar curve. We compared the substitution rates for both E1 and HVR1 and there was evidence of 

correlation (paired two tailed Students T test p<0.01). This suggested that the underlying substitution 

rates for both E1 and HVR1 were related. We evaluated our E1 sequences for evidence of selection 

using REL (www.datamonkey.org) and found no evidence of either positive or purifying selection at 

individual codon sites in E1 for any of the subjects suggesting that all change was as a result of genetic 

drift. 

E1 substitution rates did not correlate with cirrhosis, number of subpopulations, presence of multiple 

subpopulations, change in dominant subpopulation, and evidence of time ordered phylogeny.  

http://www.datamonkey.org/
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6.4.1. Discussion 

 

We have previously described in detail the change in HVR1 QS at two to four week intervals in a cohort 

of 23 subjects chronically infected with HCV. Our results highlighted a degree of HVR1 change which 

had not previously been described in the literature over such short time intervals(302). We identified 

clonal depth as a potential confounding factor in our previous analysis. Additionally, we postulated 

that natural variations in the prevalence of differing subpopulations rather than true selective change 

in sequences could in part explain the changes we described. Here we have used sequences generated 

from retrospective samples contained in our HCV library to confirm our previous findings. 

6.4.2 Diversity, Complexity, and Divergence 

Both HCV HVR1 diversity and complexity have previously been associated with likelihood of treatment 

success (341, 344, 346, 350, 354). We have previously shown that changes in these metrics of 

quasispecies are unpredictable and as a result likely to be of limited utility in predicting response to 

dual therapy with pegylated interferon and ribavirin(302). The inclusion of a retrospective sample has 

not altered this conclusion.  

Diversity in E1 is limited in most cases and HVR1 diversity is only similar to E1 diversity in those subjects 

with low overall diversity. Diversity may provide some information with regard to the potential for the 

presence of multiple subpopulations is but is otherwise of limited utility in describing QS populations. 

Complexity also provides limited information with regard to a QS population. It is possible by analysing 

the relative proportions of amino acid to nucleotide complexity at both E1 and HVR1 level to deduce 

some information with regard to whether the underlying QS may be under positive or purifying 

selection or following a path of genetic drift with little selective pressure. Nevertheless, the usefulness 

of this metric in describing the behaviour of QS limited by the cumbersome nature of how it is 

calculated and the ready availability of more useful tools for describing QS populations and change. 

Divergence is perhaps the most useful of the three commonly used metrics of QS populations. The 

inclusion of retrospective samples has allowed us to confirm persistently low divergence among a 

number of predominantly cirrhotic subjects from the prospective arm of the study. E1 divergence was 

minimal in all subjects whereas HVR1 divergence was dramatic in many subjects. The magnitude of 

HVR1 divergence between the retrospective sample and the week 16 sample was often greater than 

that described in the fortnightly samples taken thereafter but the magnitude did not appear time 

dependent. Often the divergence between fortnightly samples approximated those seen between the 

retrospective sample and the week 16(pre treatment) sample. This suggests ongoing dramatic change 
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in the HVR1 QS. One possible explanation for this might be changes in the proportions of the differing 

subpopulations within the milieu(282).  

When we looked at divergence from the retrospective sample this became somewhat clearer. As 

divergence was now being calculated from a static parameter, the noise generated by changes in the 

proportions of subpopulations could be silenced to a degree. In a number of subjects the magnitude 

of divergence calculated increased with each subsequent sample. This suggests truly divergent 

sequence change from the initial group of sequences. In some subjects, the initially significant 

divergence between the retrospective and week 16 sample was followed by a pattern of increasing 

and decreasing divergence from the retrospective sample. This has two possible explanations which 

require further analysis to confirm. Firstly, it may reflect differing proportions of a group of clones 

closely related to the retrospective sequences within the sample. Secondly, it may suggest 

multidirectional exploration of the sequence space within a multiple fitness optima. The virus in this 

circumstance is “testing” the various mutations available for mutants with significant fitness benefit 

in a process termed “pacing the cage”(408).  

6.4.3. Phylogenetics 

The visualisation of the HVR1 QS using phylogenetic trees clearly illustrates the degree of change from 

the retrospective sample and throughout the prospective portion of the study. The inclusion of scale 

bars provides additional valuable information with regard to the degree of HVR1 change observed. In 

Subject A (6.3.1 Fig. 5) the trees clearly suggest that the HVR1 QS has undergone significant change in 

the recent past which was not possible to appreciate using the prospective samples alone. 

Additionally, it identifies a likely ancestral divergence event which gave rise to the group of clones 

seen at week 14 (grey circles in the bottom right clade). 

The phylogenetic tree for subject C (6.3.1. Fig. 5) illustrates sequence stasis and a complex and diverse 

but closely related QS pattern. 

These patterns contrast markedly with the tree produced for subject Q (6.3.4. Fig. 3) where the scale 

bar suggests a markedly different magnitude of change. Nonetheless, even with scale bars it can be 

difficult to appreciate the degree of change illustrated in a phylogenetic tree. 

6.4.4 Sequence Alignments and Subpopulations 

Sequence alignments are an unrefined way of presenting QS data but we include raw amino acid 

sequence alignments of the HVR1 for a number of reasons. Firstly, phylogenetic trees cannot give an 

impression of the underlying sequence change. Secondly, they may facilitate the division of the QS 

into groups of sequences that are more closely related to each other called subpopulations.  



171 
 

We have previously defined subpopulations as groups of sequences that differ from each other by less 

than four amino acid substitutions (15% of HVR1) and from all others within the sample by four or 

more amino acid substitutions(302). Subpopulations inform with regard to the extent of QS change 

and are useful in identifying subjects with large scale change in the QS. The use of prevalence graphs 

further illustrates temporal changes in subpopulations.  

Here for the first time we have presented how superimposing the subpopulations identified using 

sequence alignments on the phylogenetic trees validates this method for describing evolutionary 

change. Using this strategy, we had described a time order phylogeny in five of the subjects and the 

inclusion of retrospective sequences confirms this finding. Therefore, we are satisfied our use of clonal 

sequences accurately identifies time order phylogeny over periods as short as 16 weeks. 60% of the 

subjects where time order phylogeny was confirmed had a novel subpopulation in the retrospective 

sample (6.3.5. Table 1). This suggests that the rapid change identified in our cohort may be sustained 

over prolonged periods of time and these differing patterns of QS change have not previously been 

defined in the literature. 

Novel subpopulations were described in the retrospective sample of 70% of subjects and that this 

resulted in a novel time order phylogeny in four additional subjects (A, F, J, M). Conversely, the 

inclusion of retrospective samples confirmed QS stasis in four subjects (C, D, U, W). Subject C is 

perhaps the most interesting of these as we were in a position to interrogate samples covering a 

period of 10 years prior to entry into the prospective study. This patient had been infected with HCV 

through the use of contaminated Anti D immunoglobulin in the post partum management of women 

who were Rhesus antigen negative in 1977 in Ireland(41). In the 10 years prior to study entry, our 

analysis has demonstrated minimal change in the HVR1 QS suggesting a virus well adapted to the host 

immune system. 

6.4.5 Substitution Rates 

The inclusion of retrospective samples allowed us to investigate the estimated substitution rate per 

nucleotide per year over more prolonged period of time (median 405 days). Our data for HVR1 

substitution rates was on average 10 to 100 times greater than the reported mutation rate for HCV. 

In noting this we acknowledge that HVR1’s role as an immune target would mean that the substitution 

rate would appear far greater than the underlying mutation rate. The mean substitution rate for HVR1 

from the literature is of the order of 7 x10-3 per nucleotide site per year which contrasts with our mean 

of 17 x 10-3 per nucleotide site per year from our prospective data(407). The substitution rates 

calculated in this paper were however calculated using 31 whole genome sequences derived from 15 

different subjects and do not give any information with regard to the underlying QS. Our analysis 
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provides for the first time estimates of substitution rates based on groups of clones from different 

time points. Nevertheless we were eager to explore whether such high substitution rates would be 

found when the same individuals were investigated over longer time intervals. 

The inclusion of retrospective samples reduced the mean substitution rate per site per year 

significantly from 17 x 10 -3 to 11.5 x 10-5 for HVR1. We had not anticipated such a dramatic fall but on 

review of the data we feel that the initial calculation for the prospective 16 week study overestimated 

the substitution rate. This we feel was because the ancestral sequences used in the calculation were 

groups of sequences with variable diversity. The software then calculated substitution rates on the 

basis that sequences were all progeny of the original group of sequences. In order to confirm this we 

have subsequently investigated for an association between the number of subpopulations described 

for each individual and the HVR1 substitution rate as calculated using BEAST. Using a paired two tailed 

Student’s t-test we can demonstrate an association between the number of subpopulations described 

and the substitution rate calculated (p<0.0001). 

This highlights a potential pitfall in calculating substitution rates which is difficult to overcome – 

particularly in the setting of subjects with multiple subpopulations that are sustained over prolonged 

periods of time. 

We examined the substitution rates calculated using the retrospective samples for similar correlation 

and found a weaker association (Pearson 0.137, paired two tailed Student t-test p<0.02). This suggests 

that the time interval reduces the effect of the original set of clones on the overall substitution rate. 

Furthermore, we investigated for an association between the length of time the virus was studied and 

found a weaker correlation with the substitution rate as calculated using BEAST (p<0.05). 

Combining these findings leads us to conclude that the HVR1 substitution rate that is most likely to 

reflect the overall mutation rate would be identified in subjects with the fewest subpopulations and 

studied over the longest time interval. Subject C is characterised by a single subpopulation and is 

studied over 10 years and has an E1 and HVR1 substitution rate of 2.393 and 3.435 x 10-5 per site per 

year respectively. E1 in this subject is under no identifiable selective pressures implying that this figure 

may be a true reflection of the underlying HCV substitution rate. 

6.4.6 E1 vs HVR1 Substitution Rates  

HVR1 is well recognized as an immune target with a malleable structure including many potential 

epitope binding sites and is thought to act as a decoy protecting more structurally constrained 

portions of the HCV envelope protein(310, 313). E1 is not a recognised immune target and accordingly 
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we found no correlation between HVR1 substitution rates and those calculated using E1 alone (6.3.5.4 

Fig. 3). 

Graphical representation of estimated substitution rates as calculated using BEAST for all subjects 

suggest three likely substitution rates (6.3.5.4 Fig. 4). Our data may suggest that the virus has differing 

underlying mutation rates in different subjects. The duration of infection is unknown in many cases 

but certainly subject C had a prolonged duration of chronic infection and was also demonstrated to 

have one of the lowest substitution rates. We have previously postulated that the underlying mutation 

rate of a polymerase may be a selectable trait depending on the requirement placed on the virus to 

adapt to host environment(409). Although our numbers are limited we feel that the similar pattern of 

substitution rate seen in E1 compared to HVR1 supports this hypothesis.  
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6.5. Conclusion 
The inclusion of retrospective samples has confirmed the patterns of HVR1 QS change seen in the 

prospective study. We found no evidence that the time order phylogeny was incorrectly identified in 

the five patients with this pattern of change who were included. We found evidence for time order 

phylogeny in a further four subjects when the period under review was extended. QS diversity, 

complexity, and to a lesser degree divergence are of limited use in describing QS though a systematic 

approach to their interpretation may provide some insights. QS subpopulations are a useful tool for 

identifying and describing widespread change in QS. Despite high substitution rates, HCV is able to 

maintain single subpopulation infection with minimal amino acid substitutions over decades. The 

calculation of underlying HVR substitution rates remains challenging though the inclusion of estimates 

of E1 substitution rates can be useful in deciphering the underlying mutation rate in chronic HCV 

infection. HCV may have a variable mutation rate which decrease with time as the virus adapts to the 

host and the requirement for immune escape diminishes once niche deficits in the humoral immune 

system have been exploited.  
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Chapter 7 
 

Published Study 

Network analysis of the chronic Hepatitis c virome defines HVR1 
evolutionary phenotypes in the context of humoral immune 
responses  
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Network Analysis of the Chronic Hepatitis C Virome Defines
Hypervariable Region 1 Evolutionary Phenotypes in the Context of
Humoral Immune Responses

Brendan A. Palmer,a Daniel Schmidt-Martin,a Zoya Dimitrova,b Pavel Skums,b Orla Crosbie,c Elizabeth Kenny-Walsh,c

Liam J. Fanninga

Molecular Virology Diagnostic & Research Laboratory, Department of Medicine, University College Cork, Cork, Irelanda; Division of Viral Hepatitis, Centers for Disease
Control and Prevention, Atlanta, Georgia, USAb; Department of Hepatology, Cork University Hospital, Cork, Irelandc

ABSTRACT

Hypervariable region 1 (HVR1) of hepatitis C virus (HCV) comprises the first 27 N-terminal amino acid residues of E2. It is clas-
sically seen as the most heterogeneous region of the HCV genome. In this study, we assessed HVR1 evolution by using ultradeep
pyrosequencing for a cohort of treatment-naive, chronically infected patients over a short, 16-week period. Organization of the
sequence set into connected components that represented single nucleotide substitution events revealed a network dominated by
highly connected, centrally positioned master sequences. HVR1 phenotypes were observed to be under strong purifying (station-
ary) and strong positive (antigenic drift) selection pressures, which were coincident with advancing patient age and cirrhosis of
the liver. It followed that stationary viromes were dominated by a single HVR1 variant surrounded by minor variants comprised
from conservative single amino acid substitution events. We present evidence to suggest that neutralization antibody efficacy
was diminished for stationary-virome HVR1 variants. Our results identify the HVR1 network structure during chronic infection
as the preferential dominance of a single variant within a narrow sequence space.

IMPORTANCE

HCV infection is often asymptomatic, and chronic infection is generally well established in advance of initial diagnosis and sub-
sequent treatment. HVR1 can undergo rapid sequence evolution during acute infection, and the variant pool is typically seen to
diverge away from ancestral sequences as infection progresses from the acute to the chronic phase. In this report, we describe
HVR1 viromes in chronically infected patients that are defined by a dominant epitope located centrally within a narrow variant
pool. Our findings suggest that weakened humoral immune activity, as a consequence of persistent chronic infection, allows for
the acquisition and maintenance of host-specific adaptive mutations at HVR1 that reflect virus fitness.

Hepatitis C virus (HCV) infection is a global health issue and is
recognized as a major etiological agent of liver-related dis-

eases (1). It has been estimated that the current prevalence of HCV
represents approximately 2% of the global adult (15 years of age
and older) population (2). Following transmission, HCV infec-
tion may remain asymptomatic for decades, resulting in the ma-
jority of infections initially passing undetected (3). It is estimated
that up to 4 million Americans are living with the virus, the ma-
jority of whom became infected prior to the isolation and identi-
fication of the virus (4, 5). Consequently, the U.S. Centers for
Disease Control and Prevention now recommend that Americans
born from 1945 to 1965 be screened for the presence of the virus
notwithstanding the presence of clinical symptoms (3, 5).

HCV is a single-stranded positive-sense RNA virus of consid-
erable genomic heterogeneity. A recent reclassification defined the
HCV global distribution into 7 genotypes and 67 subtypes, with
genotypes 1 and 3 accounting for the majority of infections world-
wide (6, 7). An error-prone RNA-dependent RNA polymerase,
together with an inherent tolerance of defined hypervariable re-
gions (HVR), accounts for much of this variability. Three HVRs
are located within the envelope glycoprotein E2. The greatest het-
erogeneity has been identified at the 27-amino-acid HVR1 (resi-
dues 384 to 410 of the H77 reference strain), located at the amino-
terminal end of the E2 glycoprotein (8). Recent studies indicated
that the central region of E2 (residues 456 to 656) is globular and
surprisingly compact, whereas the first 80 amino acids (including

HVR1) lack this structural rigidity (9). This observation is consis-
tent with a region that is proposed to shield conserved neutralizing
epitopes and to participate in high-density lipoprotein enhance-
ment of infection via scavenger receptor class B type I (SRBI)
interactions and is itself targeted by neutralizing antibodies (nAb)
(10–16).

Mutational flexibility at HVR1 was characterized soon after the
initial identification of HCV (8, 17). Rapid mutational change of
HVR1 has been documented over weeks during the acute phase of
infection, where HVR1 evolution is governed predominantly by
strong selective pressures, with fixation of beneficial mutations
(11, 18, 19). Reports examining samples collected over years to
decades have documented the emergence of convergent HVR1
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quasispecies variant pools under purifying selection pressures in
established chronic infections (20–24). In selected instances, the
maintenance of the dominant HVR1 epitope extended over years
and in the absence of an associated antibody response (22).

We recently reported HVR1 quasispecies phenotypes at the
clonal level from a study of 23 chronically infected, treatment-
naive patients from whom samples were collected every 2 weeks
over a period of 16 weeks (25). Within the short sampling time
frame, both stationary (ST) viromes and rapid intrapatient se-
quence changes were observed. In the present study, a represen-
tative cohort of 12/23 patients was selected for ultradeep pyrose-
quencing (UDPS) analysis to interrogate in depth the clonal
phenotypes reported. Furthermore, IgG-associated virions were
subfractionated from serum, and the HVR1 profiles of viral RNA-
positive samples were determined. We report HVR1 phenotypes
exhibiting conservative HVR1 evolution that is coincident with
patient age and the presence of cirrhosis. The HVR1 variant pools
of this group were interlinked by single-site amino acid substitu-
tions. Additionally, IgG binding for this cohort of patients was
associated with the dominant HVR1 variant but was not indicative
of effective virus neutralization for the majority of patient viromes
during the study period.

MATERIALS AND METHODS
Sample set. Twelve treatment-naive patients were selected from a larger
cohort of 23 for whom the HVR1 quasispecies change had been charac-
terized at the clonal level (Table 1) (25). The selection criteria were based
on genotype, the presence/absence of cirrhosis, and the observed diver-
gence of sequences from the initial sample observed from clonal analysis
(25).

Samples collected at 16 weeks, at 8 weeks, and immediately prior to the
commencement of antiviral treatment (0 weeks) were analyzed in con-
junction with a homogenous plasmid control template of known se-
quence (GenBank accession number GQ985374) by UDPS of amplicons
that spanned the E1-E2 glycoprotein gene junction. The amplified frag-
ment corresponded to positions 1296 to 1613 of the H77 reference strain
(GenBank accession number AF009606). The 0-week sample was addi-
tionally analyzed for the presence of IgG-bound virions. Subjects pro-
vided written informed consent, and the study was undertaken under the
governance of the Clinical Research Ethics Committee of the Cork Teach-
ing Hospitals.

Fractionation of IgG-bound virions. Protein G HP SpinTrap col-
umns were used to extract IgG-bound virions from whole patient serum
(GE Healthcare). The procedure followed the manufacturer’s instruc-
tions, with minor modifications. Briefly, 200 �l of patient serum, normal-

ized to 5 log10 IU/ml with phosphate-buffered saline, was applied to a
preequilibrated SpinTrap column. End-over-end mixing at room temper-
ature (RT) for 15 min was then performed, followed by centrifugation.
Eight serial wash steps (W1 to W8) with 300 �l of binding buffer were
applied. The final wash elute (W8) was retained and analyzed to confirm
the absence of detectable virus RNA. IgG-bound virions were recovered
from the column by the addition of 200 �l of elution buffer followed by
end-over-end mixing at RT for 5 min. The eluted IgG-bound virions were
collected in a microcentrifuge tube containing 30 �l neutralizing buffer.

Amplification of the E1-E2 junction encompassing the HVR1 re-
gion. Viral RNA was extracted using a QIAamp viral RNA minikit into a
final volume of 60 �l (Qiagen). Ten microliters of the RNA sample was
taken to generate cDNA by use of SuperScript II reverse transcriptase
(Invitrogen). Nested PCR amplification was performed as described pre-
viously (26). Inter- and intrapatient samples were handled on separate
days to guard against cross-contamination. In each instance, a 1:100 di-
lution of the RNA was performed to ensure that the amount of starting
template was not limiting. This was confirmed by visualization of the
amplicon by gel electrophoresis. Amplicons were purified using a PCR
purification kit (Qiagen).

FIG 1 Phylogenetic analysis of patient consensus sequences against reference
1a, 1b, and 3a strains. The scale bar shows the genetic distance. Bootstrap
values for 1,000 resamplings are shown.

TABLE 1 Study cohort descriptorsa

Patient Virus genotype Age (yr) Sex Baseline viral load (log10 IU/ml) Mode of transmission Cirrhosis Group identifier

1 1a 47 M 5.37 Unknown Y ML2
2 1a 43 F 6.40 Unknown N ML3
3 1b 75 M 6.08 Blood transfusion Y ST1
4 1b 50 M 6.91 Intravenous drug use Y ST2
5 1b 59 F 6.59 Blood product Y ST3
6 1b 61 M 6.61 Unknown Y ST4
7 3a 41 M 6.57 Iatrogenic N ML1
8 3a 37 F 4.70 Intravenous drug use N AD1
9 3a 21 M 4.91 Iatrogenic N AD2
10 3a 23 F 6.28 Unknown N AD3
11 3a 45 M 5.18 Unknown Y ST5
12 3a 32 M 6.74 Unknown N ST6
a F, female; M, male; Y, cirrhosis was present; N, cirrhosis was not present.
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Clonal analysis. IgG-bound virion RNA was isolated and the E1-E2
region amplified. Amplicon-positive samples were initially purified and
sequenced (Eurofins Genomics). In cases where multiple peaks were ob-
served in the trace files, a panel of clones was generated as previously
described (26).

UDPS data generation, handling, and error correction. Amplicons
were quantified using a Biophotometer machine (Eppendorf) and diluted
to a final concentration of 1 � 107 molecules/ml. Pyrosequencing was
performed using a 454 GS FLX titanium platform with sample-specific
multiplex identifier sequence-adapted libraries for Lib-1 sequencing
(Roche 454 Life Sciences, Branford, CT). Raw sff data files were first un-
coupled into individual patient sample files by using SFFFile tools
(Roche). Low-quality reads and reads shorter than 90% of the expected
amplicon lengths were removed.

The resultant data files were sequentially processed through imple-
mentation of the k-mer error correction (KEC) and empirical thresh-
old algorithms as previously described, using the parameters k � 25
and i � 3 (22, 27). A panel of clonal sequences temporally matched to
the UDPS data was used to further identify and correct homopolymer
errors (22, 25). Following this procedure, no erroneous sequences
were present at a frequency of �0.1% in the homogeneous plasmid
control sample. Consequently, all haplotypes present at a frequency
of �0.1% in their respective samples were retained for downstream
analysis.

1-step and k-step network construction. To study the dynamics of
intrahost quasispecies evolution, we created two networks for each patient
(28). First, all unique haplotypes (318 bp) were aligned, and the Hamming
distance between each pair was calculated. Connected components were
then built, in which each unique haplotype was represented by a node and
two nodes were connected by an edge if the distance between them was 1.
Initially, the components were independent of one another and together
formed a 1-step network.

The 1-step network of most patients consisted of several components.
To join them together, k-step networks were constructed as follows: iter-
atively for k � 2, 3, . . ., until all pairs of haplotypes from different com-
ponents with a distance equal to k were found. They were linked by edges,

and the components were recalculated. These steps were repeated until a
single connected component was formed. The resulting k-step network is
equivalent to the union of all minimum spanning trees. The analysis and
network visualization were performed with MATLAB R2014b (The
MathWorks, Inc.) and Pajek (29).

Bioinformatic analyses. MEGA6 was used to calculate Hamming
distances and synonymous and nonsynonymous substitution rates
(30). Phylogenetic trees were drawn in MEGA6, using a general time-
reversible model with gamma-distributed and invariant sites. The
time-ordered Shannon diversity (H) of 1-step networks was calculated
using the following formula: H � � �i�1

N pi � lnpi, where pi is the
total frequency of haplotype component i in the 1-step network and N
is the number of components of the 1-step network (richness). The
evenness (EH) of the 1-step network was determined using the follow-
ing formula:EH � H ⁄ ln N.

Three patients were identified as containing mixed lineages. In each
instance, the components comprising the dominant lineage were analyzed
separately from the minor lineages. Prior to calculation of the Shannon
diversity index, the total frequency of the dominant lineage components
was normalized to 1 to account for the absence of the minor lineage.

Amino acid conservation plots were drawn using the Jalview program,
which is based on analysis of multiply aligned sequences (AMAS) to de-
termine changes to the physiochemical properties of the constituent
amino acids (31, 32).

Nucleotide sequence accession numbers. UDPS data sets used in this
study are available at http://www.ucc.ie/liamfanning/hcv. Unique nucleotide
sequences were deposited in GenBank and assigned accession numbers
KT193821 to KT193838.

Statistical analysis. All statistical analyses were performed using R
3.1.3. The statistical significance of comparisons was analyzed using
the nonparametric Mann-Whitney U test. Where appropriate, the
nonindependence of intrapatient samples was accounted for by aver-
aging the individual values, which were then used for statistical com-
parisons. In all tests, P values of �0.05 were considered statistically
significant.

TABLE 2 Inter- and intracomponent HVR1 epitope distribution

Group
identifier Group Sublineage

Total lineage
frequencya

(%)
No. of 1-step
componentsb

No. of unique HVR1
epitopes per 1-step
component

No. of HVR1 epitopes
jointly isolated
through UDPS and
clonal techniquesc

UDPS HVR1 sample
space captured by
clonal analysis (%)

ST1 ST 100 1 10 2 98.15
ST2 ST 100 5 20, 1, 1, 1, 1 3 96.12
ST3 ST 100 1 28 3 95.33
ST4 ST 100 1 22 8 86.89
ST5 ST 100 1 2 2 100
ST6 ST 100 3 16, 1, 1 6 99.01
AD1 AD 100 4 8, 8, 1, 1 6 95.04
AD2 AD 100 9 6, 2, 2, 1, 1, 1, 1, 1, 1 6 98.88
AD3 AD 100 7 4, 2, 2, 1, 1, 1, 1 6 97.20

ML1 AD L1 99.6 8 8, 7, 4, 3, 3, 1, 1, 1 11 91.13
NDd L2 0.4 1 2 2 0.34

ML2 ST L1 88.4 4 19, 3, 2, 1 8 85.57
ND L2 11.6 2 3, 1 1 12.13

ML3 ST L1 96.1 3 6, 1, 1 7 95.46
ND L2 3.9 1 1 1 3.88

a Averaged across all three samples.
b All HVR1 variants within any one component can be linked to at least one other variant within that component by a single amino acid substitution.
c See reference 25.
d ND, not determined.
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RESULTS
Characterization of the patient cohort. Twelve treatment-naive
patients chronically infected with either HCV genotype 1 (n � 6)
or genotype 3a (n � 6) comprised the study cohort. Initial geno-
type identification was performed using the Versant hepatitis C
virus genotype assay (LiPA) 1.0, targeting the 5= untranslated re-
gion. This procedure identified all six genotype 1 patients as hav-
ing subtype 1b virus (25). Reanalysis of both the 5= untranslated
region and the core by using LiPA 2.0 categorized patients 1 and 2
as having subtype 1a viruses. This result was confirmed by phylo-
genetic analysis of patient consensus sequences against reference
1a, 1b, and 3a sequences (Fig. 1 and Table 1).

In our hands, clonal analysis accounted for (on average) 96.3%
occupation of the HVR1 variant sample space identified through
UDPS (range, 86.9% to 100%). However, this translated to �34%
of the unique HVR1 variant sequence space present in the UDPS
data set (Table 2) (25). Frequency selection bias toward the dom-
inant epitope in the clonal data was evident, as 34/35 HVR1 vari-
ants, with a UDPS sample-specific frequency of �5%, were also
described clonally (25).

k-step network analysis of patient viromes. To better explore
sequence evolution over the sampling time frame, visualization of
UDPS data was performed by generating a k-step network for each
of the 12 patients. The initial 1-step network was comprised of

FIG 2 Representative k-step network graphs for stationary (ST3), antigenic drift (AD1), and mixed-lineage (ML1) viromes. Unique haplotypes with frequencies
of �0.1% of the sample space are displayed. Individual panels are given for 16 weeks pretreatment, 8 weeks pretreatment, and immediately prior to commence-
ment of treatment (0 weeks). Red nodes identify unique time point-specific haplotypes, yellow nodes identify future haplotypes, and blue nodes identify
haplotypes from an earlier sample that were not detected in the given sample. Green nodes denote sample-specific haplotypes that occupied �10% of the sample
space at that time. The maximum distance between any two haplotypes from separate 1-step components was 4 bp for ST3, 8 bp for AD1, and 18 bp for ML1. A
black triangle juxtaposed to the color bar represents the relative Hamming distance for that samples. A red triangle represents the relative Hamming distance of
haplotypes combined across all three samples.
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FIG 3 Temporal 1-step component frequency and composition. Over the 16-week sampling period, all components that formed the 1-step network graph were
examined for fluctuations in the percentage of occupation of the sample space (stationary viromes [A] and antigenic drift viromes [B]) and the number of unique
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components whose nodes (haplotypes) were connected by edges
that represented a genetic distance of 1. In cases where one haplo-
type could not be paired with a second in this manner, the com-
ponent was comprised of that single haplotype.

The patient cohort was divided into three groups based on
genetic and network characteristics, and representative k-step net-
works for each group are given in Fig. 2. First, viromes were clas-
sified as stationary (ST) based on comparable sample-specific and
combined Hamming distances. Within ST networks, haplotype
emergence over the sampling period was within a localized se-
quence space. The dominant haplotypes in each ST network re-
mained largely fixed across the 16 weeks (Fig. 2, green nodes).
Second, viromes were observed that exhibited a time-ordered spa-
tial distribution of haplotypes toward naive sequence space. Much
of the sequence heterogeneity was within HVR1, and such vi-
romes were classified as undergoing antigenic drift (AD). The el-
evated Hamming distance of combined AD samples compared to
sample-specific Hamming distances also defined the intersample
heterogeneity. The remaining viromes contained mixed-lineage
(ML) virus subpopulations (Tables 1 and 2). With respect to the
ML phenotype, the presence of a subpopulation was initially evi-
dent due to elevated between-component distances (�16 bp)
within the k-step network. These separations were later confirmed
through a phylogenetic analysis using the maximum likelihood
method, based on a general time-reversible model. Bootstrap val-
ues of �98% for 1,000 resamplings were recorded (data not
shown). The dominant lineage in each of the ML viromes was
partitioned away from minor lineage haplotypes and designated
either ST or AD for downstream analysis. ML1 exhibited an anti-
genic drift phenotype. ML2 and ML3 were classified as stationary
(Table 1). Minor lineages within each ML virome either were not
detectable in all three samples or had too few unique haplotypes to
be classified formerly as ST or AD (Table 2).

All 12 patients’ k-step networks contained 1 to 4 dominant
haplotypes (present at �10% of the sample sequence space)

(Fig. 2, green nodes). Thirty-four of 36 samples contained a single
haplotype that accounted for �25% of the sample space (the max-
imum recorded was 98.7%, for the AD1, 0-week sample). The
dominant haplotype was centrally placed within the network and
contained the highest edge degree (Fig. 2). The majority of edges
to the dominant haplotype were reflective of synonymous substi-
tution events.

1-step components reveal virome connectedness. For each
patient network, the composition of the constituent components
was analyzed over time (Fig. 3). ST patients were largely defined by
a single dominant component that persisted across the 16-week
sampling period and varied substantively only by the constituent
numbers of unique haplotypes. The sequence depth achieved here
facilitated the construction of a 1-step network (defined as being
comprised of a single connected component) for ST1 sequences
(Fig. 3). The majority of ST networks were formed from a single
dominant component and multiple low-frequency components
containing few unique haplotypes. In contrast, AD networks ex-
hibited a temporal component dominance that was observed to
change between sample points (Fig. 3B and D).

Partitioning of the patient data into 1-step components al-
lowed for (i) haplotypes to be grouped together by the nearest
evolutionary linkages and (ii) component stability over time to be
assessed quantitatively. In this study, virome richness was defined
as the number of components that accounted for all sequences
within a sample-specific 1-step network. Shannon diversity and
evenness are commonly used to characterize species diversity in a
community. We applied this approach to our data by assuming
that each component is analogous to a species and that, together,
the components comprise the community. Evenness values ap-
proaching zero indicate a skewed component dominance within
the network (e.g., ST1 is uneven because it contains only one com-
ponent) (Fig. 3A). Overall, ST samples demonstrated restrictive
exploration of the sequence space, which is indicative of compo-
nent stability and dominance (Fig. 4). Nineteen of the 24 patient

FIG 4 Richness, Shannon diversity, and evenness values for individual-sample 1-step networks. For each 1-step network (n � 36), the constituent component
profile was assessed. (A) A total of 19/24 1-step ST networks were concentrated in the lower left quadrants for all three parameters examined. (B) A total of 6/12
1-step AD networks were concentrated in the lower left quadrants for all three parameters examined.

haplotypes (stationary viromes [C] and antigenic drift viromes[D]). Each component was comprised of a single haplotype (black) or existed as a connected
component where the constituent haplotypes differed by a single nucleotide substitution from at least one other haplotype across the length of the amplicon
sequence (318 bp). Time is represented on the x axis, and the specific component identifier by patient is shown on the y axis. Ranges are defined by the color bars.
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samples for group ST occupied the lower left quadrants for all
three measures of the 1-step network components (Fig. 4A).
Taken together, the data indicated that ST viromes were stably
maintained for 16 weeks.

HVR1 evolution is markedly conservative in ST patient vi-
romes. Partitioning of the conserved E1 region (195 bp) and
HVR1 (81 bp) distinguished nonsynonymous mutation at HVR1
as the main determinant differentiating ST and AD phenotypes
(Fig. 5B). The ratio of nonsynonymous to synonymous evolution-
ary changes (dN/dS) for the HVR1 portions of ST sequences indi-
cated that HVR1 was predominantly under purifying selection
pressures (Fig. 5F). Significant differences in age and the presence
or absence of cirrhosis between ST and AD patients were also
observed (P value � 0.017). All patients were chronically infected
for at least 3 years (25). The parameters of age and cirrhosis were
introduced as additional surrogate markers for the duration of
infection, and HVR1 evolution was subsequently viewed in this
context (33–35).

Separation of the patient cohort into ST and AD viromes was

also evident from the divergence of the HVR1 pool from the initial
samples (Fig. 6A) (P � 0.01). All patients identified as AD patients
from k-step network analysis showed marked separation of the
HVR1 epitope away from the original quasispecies. This was in
contrast to ST patients, who demonstrated minimal movement of
the HVR1 quasispecies over time. The dominance of individual
HVR1 variants within ST viromes was fixed, with little evidence of
epitope evolution (Fig. 6B). In contrast, the dominant HVR1 for
AD group viromes was seen to change at multiple sites within 8
weeks (Fig. 6C). Nevertheless, the mutational capacities of HVR1
were similar for both ST3 and AD1. Sequence analysis across all
unique ST3 and AD1 HVR1 variants isolated revealed that just
10/27 and 11/27 sites, respectively, were conserved (Fig. 6D).

Unique HVR1 variants from each sample set were subjected to
1-step network analysis as detailed previously for the nucleotide
data, and variants linked by a single amino acid substitution were
assigned to 1-step components. The entire HVR1 variant pool for
ST1, ST3, ST4, and ST5 formed a single 1-step component, with
the dominant HVR1 exhibiting the highest edge degree (Table 2

FIG 5 dN, dS, and dN/dS variations between patient groups ST and AD examined across E1 (195 bp) and HVR1 (81 bp) sections of the amplicon sequence. (A
and B) Number of nonsynonymous mutations per nonsynonymous site. (C and D) Number of synonymous mutations per synonymous site. (E and F) dN/dS
ratios. When a patient was identified as containing a mixed-lineage virome, the dominant lineage was assigned to either the ST or AD group, where possible
(Table 2), and analyzed independently from the minor lineage. Statistically significant differences in averaged sample values (to account for nonindependent
intrahost sampling) are indicated by asterisks (**, P � 0.005; *, P � 0.05).
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and Fig. 6E). Remarkably, for ST5, only two unique HVR1 vari-
ants (occupying 99.9% and 0.1% of the sample space) were recov-
ered from three independent sample preparations and �10,000
individual reads sequenced. For ST2 and ST6, across all three sam-
pling points combined, the dominant HVR1 1-step component
accounted for 96.9% and 99.8% of the sample space, respectively.
In contrast, the dominant HVR1 1-step components for AD1,
AD2, and AD3 accounted for 62.4%, 33.3%, and 49.1% of the
sample space, respectively.

AD HVR1 variant pools demonstrate pronounced physio-
chemical changes. HVR1 microdomains participating in SRBI
interactions, influencing infectivity and encompassing a neutral-
izing epitope, have been defined for the H77 HVR1 variant (16).
We sought to map the observed HVR1 mutations within our data
to these sites (Fig. 7).

As anticipated, conservative changes were observed for the ma-
jority of ST HVR1 sites. The most noticeable exception was for
ST4, which had the largest recorded HVR1 divergence of the ST
group (Fig. 6A). A considerable proportion of this change oc-
curred within the SRBI interacting microdomain (Fig. 7, residues
384 to 396). AD viromes, with the exception of AD1, exhibited
high diversity within the proposed nAb epitope for H77 and resi-
dues 397 and 398, which are linked to infectivity (Fig. 7) (16).
Additionally, the changes were for nonconservative amino acids.
Within this domain, residues 403, 406, and 407 emerged as highly
conserved across all viromes, which is suggestive of a discrete pres-
ervation of function. Overall, the pattern of diverse mutational
change seen for AD sequences implicates nAb targeting and the
modulation of processes governing infectivity.

IgG binding of virions is associated with the dominant HVR1
amino acid epitope. We previously showed that IgG-bound viri-
ons can be fractionated away from IgG-free virions through affin-
ity chromatography (22, 26, 36). In this study, the HVR1 profile of
IgG-bound virions in the 0-week samples was determined, and the
prevalence of the IgG-associated HVR1 motifs over the 16-week
sampling period was evaluated retrospectively.

Ten of the 12 patients were positive for HCV RNA following
IgG fractionation (ST5 and AD2 were identified as negative for
HCV RNA in the IgG-bound sample). In cases where the pre-
dicted HVR1 of IgG-bound virions initially occupied �80% of the
sample space, it remained so for the subsequent samples. In cases
where the predicted HVR1 of IgG-bound virions was initially be-
tween 0 and 40%, the occupation of the sample space expanded by
an additional 25 to 95% (Fig. 8A). The homogeneity of ST group
samples was clear for ST1, ST2, and ST3, as a single HVR1 amino
acid motif accounted for �80% of the total virome across all three
sampling points. IgG binding was associated with virus sequences
that coded for the 0-week dominant HVR1 variant in ST4, ST6,
and ML2 (Fig. 8A). Within the latter three viromes, the between-
sample dominant HVR1 variants differed by a single amino acid
substitution event (data not shown). With respect to ML2, the
HVR1 variant identified following IgG fractionation formed part
of the minor lineage variant pool (Table 2).

HVR1 epitope heterogeneity was observed in just 2 of the 10
IgG-bound virus RNA-positive samples, both of which had AD
group viromes (AD3 and ML1, respectively). For AD1 and AD3,
the predicted HVR1 of IgG-bound virions was present at �2% of
the 16-week sample space and rose to �90% in both subsequent
samples (Fig. 8A). Given the positive selection of HVR1 in this
group (Fig. 5F) and the pronounced nonconservative amino acid

FIG 6 HVR1 evolution is conservative in ST group viromes. (A) HVR1 amino
acid divergence from the original sample was calculated as the pairwise mean
distance for ST patient viromes (dashed lines) and AD patient viromes (solid
lines). The dominant ST3 HVR1 variant remained unchanged over the 16-
week study period (B), whereas the AD1 HVR1 variant’s dominance altered
between samples, with multiple mutations across the 27-amino-acid length of
the epitope (C). (D) ST3 and AD1 HVR1 sequence conservation across all
isolates demonstrates that ST3 variants retain mutational capacity. Conserved
sites are denoted by asterisks, and variant sites are denoted by dashes. (E) All 28
unique HVR1 variants isolated from ST3 had a single amino acid separation
from at least one other HVR1 motif within the sample set, as shown in the
1-step network graph. Variants are numbered in order of the averaged fre-
quency across all three samples (for variant 1, 88.3%; and for variant 28,
0.06%).
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substitutions within the putative nAb epitope (Fig. 7A, residues
399 to 407), the data support the hypothesis that, in both in-
stances, these variants were subject to humoral immune targeting.
This conclusion was further strengthened by the isolation of five
unique AD3 HVR1 epitopes following IgG fractionation, three of
which were detectable in the UDPS data (Fig. 8B). The sum of
these data is that the AD3 HVR1 profile was indicative of antibody
targeting and removal of variants, which reflected the between-
sample dominant HVR1 profile.

While effective IgG binding of virions occurred for both the ST
and AD phenotypes, only the AD3 HVR1 profile was indicative of
neutralization during the 16-week time frame examined here. We
previously reported that the predicted HVR1 of IgG-bound viri-
ons was associated with the collapse of the constituent virion pop-
ulation in a process that was measured in years rather than weeks
or months (22). Consequently, the 16-week study period is likely
to be insufficient to determine the full extent of neutralization
efficacy of the antibody response. However, the antibody reper-
toire does appear to be capable of readily recognizing virions as
new HVR1 epitopes emerge from the background variant pool,
regardless of HVR1 phenotype (Fig. 8).

DISCUSSION

Visualization of the data through the generation of k-step net-
works and analysis of the constituent 1-step network components
revealed viromes governed by either stably or temporally domi-
nant master sequences. We categorized these phenotypes as ST or
AD based on the evident evolutionary divergence within the se-
quence sets. ST virome HVR1 variant pools converged around the
dominant HVR1 epitope, with most variants separated from the
dominant epitope by a single amino acid substitution. IgG bind-

ing of virions was associated with the sample-specific dominant
HVR1 in both ST and AD groups but was indicative of neutraliza-
tion only for AD3 variants during the study period.

Despite a large volume of research documenting the genetic
variability of HVR1, discrete windows of intrahost evolution in
chronic infection are lacking in the literature. Initial clonal analy-
sis of samples, collected at 2-week intervals over 16 weeks, identi-
fied both divergent and stationary HVR1 evolutionary pheno-
types (25). In the present study, UDPS was utilized to scrutinize
this window of HVR1 evolution in treatment-naive patients, all of
whom were chronically infected with HCV for at least 3 years.
Next-generation sequencing technologies facilitate a more com-
plete mining of the quasispecies pool. Our analysis concurs with
estimates that variants present at a frequency of �5% of the sam-
ple space are reliably detectable using clonal methods (37, 38).
Nevertheless, ST and AD phenotype classification was not achiev-
able through clonal analysis, as the true quasispecies spectrum was
masked by a few dominant sequences (Table 2).

For all 12 patients, the sample-specific viromes were organized
around dominant haplotypes or master sequences that were
highly connected to the quasispecies pool, largely through single-
point synonymous substitutions (Fig. 2 and 3). ST viromes were
relatively homogeneous and explored a narrow sequence space.
Additionally, significant associations of ST viromes were made
with older patients and patients with cirrhosis (Table 1). While
sequence heterogeneity and rapid virus evolution have been asso-
ciated with the initial development of fibrosis, the homogeneous
viromes seen here may be a reflection of further advancement of
liver disease (39–41). Indeed, HCV viromes with low-diversity
HVR1 variant pools have, over time, been linked to increasing
disease severity (42).

FIG 7 Amino acid conservation of patient-specific HVR1 variant pools is pronounced among ST viromes. An amino acid physiochemical conservation plot was
prepared for each of the 12 patients, based on the AMAS method of multiple-sequence alignment, and scored (y axis). Values of �9 reflect ultraconservative
changes or absolute conservation (dashed white lines). Functional microdomains as characterized by Guan et al. (16) for the H77 HVR1, which are purported to
participate in SRBI interactions (residues 384 to 396) and to contain a nAb epitope (residues 399 to 407), are identified (x axis), while residues 397 and 398 and
408 to 410 modulate infectivity. HVR1 residues are numbered in accordance to the H77 reference genome.
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We report significant differences between ST and AD group
haplotype profiles solely in the exploration of nonsynonymous
sequence space across HVR1 and the subsequent divergence from
the initial sample (Fig. 5 and 6). The intriguing observation with
respect to ST HVR1 variant pools was the interconnectedness of
the dominant HVR1 variant to remaining minor variants, largely
through single amino acid point mutations (Fig. 6E). We previ-
ously detailed an HCV genotype 4a mixed-lineage infection in
which a low-diversity minor lineage expanded into the sample
space over a period of 10 years, to dominate the virome in toto
during the last 2 years (percentage sample space minimum, 0.4%;
and maximum, 96.9%) (22). A conservative pattern of synony-
mous mutation was observed that parallels the ST phenotypes
reported here, with the distinction that the HVR1 variant domi-
nated the sample space for years rather than weeks.

We did not observe differences between ST and AD patients
with respect to IgG binding, and we cannot exclude the possibility
that epitopes outside the N terminus of E2 may exhibit immu-
nodominance. However, significant differences distinguished hu-
moral immune targeting of the HVR1 ST and AD variant pools.
AD HVR1 epitopes were under strong positive selection pressures
and exhibited frequent variant replacement rather than sequence
diversification (Fig. 5). Furthermore, the predicted HVR1 profile
of AD3 IgG-bound virions argues in favor of direct humoral im-
mune targeting, and this is strengthened by the observation of
pronounced nonconservative mutational changes in the putative
nAb epitope of AD HVR1 variants (Fig. 7 and 8B) (16).

Lower levels of nucleotide substitution in HVR1 have been
reported for patients with hypogammaglobulinemia, suggesting
that sequence evolution in this region of the genome is primarily
linked to humoral immune pressure (43–45). For each patient
with detectable IgG binding of virions, the associated HVR1 vari-
ant was dominant and centrally placed within the virome network
(Fig. 6E), which has previously been associated with greater cross-
immunoreactivity (46). However, given the short time frame and
the commencement of treatment following the completion of this
study, we were unable to confirm whether the HVR1 profile of
detectable virus-antibody interactions seen for AD3 extended to
the wider sample set.

ST viromes additionally displayed considerable global stability
(Fig. 4). Original antigenic sin, the preferential activation of im-
mune memory against a similar yet nonidentical antigen follow-
ing a reinfection event, has been described for HCV, dengue virus,
and influenza virus (47–49). The delayed removal of the dominant
variant targeted by a weakened nAb response is known to extend
to years (22, 50). In the context of a convergent HVR1 variant
pool, the presentation of successive, antigenically similar but non-
identical epitopes (Fig. 6E) may impart a cumulative weakening of
the nAb response required for effective virion neutralization (51–
53). Consequently, the minimum binding threshold required for vi-
rion neutralization is more difficult to achieve, which concomitantly
facilitates the maintenance of related minor variants (54, 55). To-
gether, the data support a model of antigenic cooperation enabled in
viromes, organized around a single dominant variant (51).

FIG 8 IgG binding of virions was associated with the dominant HVR1 in the
0-week sample. All samples taken on the day of treatment were subjected to
fractionation of IgG-bound virions followed by extraction of virus genomes
and determination of the predicted HVR1 epitopes. (A) UDPS data from pre-
treatment samples (16 and 8 weeks prior) were retrospectively reviewed to
assess the prevalence of HVR1 epitopes associated with IgG-bound virions.
The x axis gives the patient identifier, and the y axis gives the percentage of the
sample space occupied by sequences containing the predicted IgG-bound
HVR1. (B) Three AD3 HVR1 variants associated with IgG-bound virions
(AD3_V1, accession number KT193831; AD3_V2, accession number
KT193830; and AD3_V3, accession number KT193829) were detectable in the
UDPS data. Partition analysis by variant revealed that IgG binding was asso-
ciated with variant emergence and removal. Specifically, the AD3_V2 epitope
was isolated only from the IgG-bound fraction, not from UDPS analysis of

whole serum, for the 0-week sample (asterisk). In the 8-week sample, this
variant accounted for 50.8% of the UDPS sample space. The y axis gives the
percentage of sample space occupation of the predicted IgG-bound HVR1,
and the x axis defines the IgG-bound variant occupation of the sample space by
time point.
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The persistent dominance of specific HVR1 epitopes indicates
diminished humoral immune pressures. Indeed, stronger nAb
cross-reactivity with historic than with current HVR1 epitopes has
been shown (50). Alleviation of potentially deleterious nonsyn-
onymous mutations forced upon this region allows for enhance-
ment of fitness through exploration of the synonymous sequence
space (56). In the context of an error-prone polymerase and a high
replication rate, the maintenance of singly dominant HVR1
epitopes over weeks (as observed here) and years is indicative of
host adaptation and/or the maintenance of functional advantages
(21, 22, 57).

The acquisition of host-specific adaptions to HVR1 has the
potential to enhance infectivity and receptor recognition (16, 58–
60). As the within-host period of infection extends, we predict a
preferential evolution toward ST rather than continued rapid and
nonconservative epitope change. Based on our observations over
16 weeks, AD1 is moving toward an ST group phenotype given the
contraction of the network to a single 1-step component in the
0-week sample (Fig. 2 and 3). We note that the adaptive capacity of
HVR1 is retained regardless of the specific mutational phenotype
(Fig. 6D), and we recognize that reversion between phenotypes over
time is feasible, depending on the within-host environment (57).

In summary, homogeneous HVR1 populations arise as a con-
sequence of long-term, host-specific, pervasive humoral immune
selection. Complex viromes reflect a population dynamic that ex-
plores a more expansive sequence space in an attempt to find
within-host fitness optima. The benefits of nearly clonal HVR1
dominance in the virus are ill defined, but this phenomenon does
imply adaptation of HCV to its host.
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Chapter 8 

Analysis of IgG binding patterns and influence on HVR1 sequence 
change  
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8.1 Introduction 

We have, using cloning strategies identified varying patterns of HCV hypervariable 1 (HVR1) region 

change among 23 subjects with chronic infection, who were prospectively studied over a 16 week 

period in advance of commencing treatment(302).  

A number of previous studies have used co immunoprecipitation and, more latterly, immunoglobulin 

separation spin columns to evaluate to contribution of adaptive antibody mediated immune 

responses to the emergence of new HCV quasispecies variants(283, 410, 411).   

In order to identify antibody driven change, we separated the serum into Immunoglobulin G (IgG) 

enriched and IgG depleted fractions and, amplified and sequenced HVR1 in the respective fractions. 

Using preliminary data from our prospective study of temporal change in HVR1 quasispecies, we 

selected a group of subjects with differing patterns of QS change. The subjects are labelled in 

accordance with previous chapters. 

8.2 Methods 

See Chapter 2 section 2.7.  
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8.3 Results 
Temporal change in quasispecies parameters. 

 

Table 1.  

Summary of results of the temporal change in HVR1 as described in the prospective cloning study. The 
samples chosen for immunoglobulin separation included a mix of genotypes and severity of underlying 
liver disease. The subjects chosen included those with time order phylogeny, those with a single 
subpopulation throughout the study period, subjects with a change in the dominant subpopulation, 
and subjects with evidence of sequence wide positive selection using PARRIS 
analysis www.datamonkey.org. 

 

Using the first (week 16) and last (week 0) sample for each individual, we separated the virus, 

contained within 25μL aliquots of serum, from 9 subjects into immunoglobulin G bound and 

immunoglobulin G free fractions to evaluate for temporal changes in IgG binding over the 16 week 

study period. 

The IgG free and bound fractions were then compared with the results of the prospective cloning 

study in order to evaluate for patterns of binding between subjects characterised by significant 

changes in the clones and those where there was no change (Table 1). 

http://www.datamonkey.org/
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8.3.1 Subjects with no HVR1 change 

8.3.1.1 Subject A 

 

Fig 8.1. Phylogentic tree containing all unique cloned HVR1 nucleotide sequences for samples taken 
16 weeks prior to commencing treatment (black triangles) and the pretreatment sample (red 
triangles) with the immunoglobulin bound (black square – Week 16/red square – Week 0) and free 
(black circle – Week 16/red circle – Week 0) sequences included for Subject A. The tree was generated 
using maximum composite likelihood (GTR+I+G) with 10,000 bootstrap replicates for tree optimisation 
using MEGA 5. 

 

Patient A is characterised by a minimally evolving HVR1 sequence in the cloning study which is 

remarkably homogenous with only 3 of the 40 clones examined demonstrating any difference from 

the master sequences, and each of  these have a single amino acid substitution within the HVR1. 

Subject A demonstrates IgG binding of the master sequence at both sampling points but, without any 

discernable influence on the QS pattern. Interestingly, at week 0 there appears to be no IgG free 

fraction, while at week 16 the IgG free fraction is characterised by a single amino acid substitution 

within the HVR1 (Fig. 8.1) when compared with the bound fraction.  

0.01
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8.3.1.2 Subject B 

 

Fig 8.2. Phylogentic tree containing all unique cloned HVR1 nucleotide sequences for samples taken 
16 weeks prior to commencing treatment (black triangles) and the pretreatment sample (red 
triangles) with the immunoglobulin bound (black square – Week 16/red square – Week 0) and free 
(black circle – Week 16/red circle – Week 0) sequences included for Subject B. The tree was generated 
using maximum composite likelihood (GTR+I+G) with 10,000 bootstrap replicates for tree optimisation 
using MEGA 5. Indentical nucleotide sequences overlap. 

 

In subject B, the separation of the quasispecies into IgG enriched and depleted fractions resulted in 

the same HVR1 sequence in all fractions. This suggests either ineffective neutralisation or remote 

binding at another epitope (Fig 8.2.). 

0.01
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8.3.1.3 Subject C 

 

Fig 8.3. Phylogentic tree containing all unique cloned HVR1 nucleotide sequences for samples taken 
16 weeks prior to commencing treatment (black triangles) and the pretreatment sample (red 
triangles), with the immunoglobulin bound (black square – Week 16/red square – Week 0) and free 
(black circle – Week 16/red circle – Week 0) sequences included for Subject C. The tree was generated 
using maximum composite likelihood (GTR+I+G) with 10,000 bootstrap replicates for tree optimisation 
using MEGA 5. The sequence designated with a pink diamond represents the original Anti D sequence 
which caused the iatrogenic infection in 1977. 

 

Patient C demonstrated no HVR1 IgG enriched fragment. Both IgG free fractions correspond with the 

consensus master sequence which remained unchanged throughout the 16 week study period (Fig 

8.3). 

0.01
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8.3.1.4Subject N 

 

Fig 8.4. Phylogentic tree containing all unique cloned HVR1 nucleotide sequences for samples taken 
16 weeks prior to commencing treatment (black triangles) and the pretreatment sample (red 
triangles), with the immunoglobulin bound (black square – Week 16/red square – Week 0) and free 
(black circle – Week 16/red circle – Week 0)sequences included for Subject N. The tree was generated 
using maximum composite likelihood (GTR+I+G) with 10,000 bootstrap replicates for tree optimisation 
using MEGA 5. 

 

Subject N demonstrated immunoglobulin binding of the HVR1 master sequence at week 0, with the 

IgG free fraction demonstrating a single amino acid difference but by week 16, the master sequence 

which has persisted throughout the study period appeared to no longer demonstrate IgG affinity (Fig 

8.4).  

0.01
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8.3.1.5 Subject T 

 

Fig 8.5. Phylogentic tree containing all unique cloned HVR1 nucleotide sequences for samples taken 
16 weeks prior to commencing treatment (black triangles) and the pretreatment sample (red 
triangles), with the immunoglobulin bound (black square – Week 16/red square – Week 0) and free 
(black circle – Week 16/red circle – Week 0) sequences included for Subject T. The tree was generated 
using maximum composite likelihood (GTR+I+G) with 10,000 bootstrap replicates for tree optimisation 
using MEGA 5. 

 

Patient T demonstrated no IgG binding to the sequences produced in the clonal samples but instead 

binds to a distant genotype 3a sequence (Fig 5).   
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8.3.2 Subjects with HVR1 change 

We included four subjects where the cloning data suggested significant changes in the HVR1 QS but 

the samples produced following passage through the immunoglobulin depletion kits failed to produce 

any amplification product in three of these subjects (G, L and Q). Therefore it was only possible to 

evaluate temporal IgG binding in a single subject where the cloning study had identified HVR1 QS 

change (subject H). 

8.3.2.1 Subject H 

 
Fig 8.6. Phylogentic tree containing all unique cloned HVR1 nucleotide sequences for samples taken 
16 weeks prior to commencing treatment (black triangles) and the pretreatment sample (red 
triangles), with the immunoglobulin bound (black square – Week 16/red square – Week 0) and free 
(black circle – Week 16/red circle – Week 0) sequences included for Subject H. The tree was generated 

0.01
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using maximum composite likelihood (GTR+I+G) with 10,000 bootstrap replicates for tree optimisation 
using MEGA 5. 

 

Subject H demonstrates IgG free fractions which correlate with the master sequence at each time 

point but also IgG bound fractions which correspond with minor sequences from the cloning data (Fig. 

6). 

 

 

Fig 8.7. Phylogentic tree containing all unique cloned HVR1 nucleotide sequences for samples taken 
16 weeks prior to commencing treatment (black triangles) and the pre treatment sample (red 
triangles). Week 16 IgG bound and free sequences are included and designated with green square and 
circle respectively. Week 0 IgG bound and free sequences are included and designated with blue 
square and circle respectively. The tree was generated using maximum composite likelihood 
(GTR+I+G) with 10,000 bootstrap replicates for tree optimisation using MEGA 5. The subpopulations 
identified using partitioned analysis are circled and designated 1-4 with the mean radius indicating the 
mean nucleotide substitutions between all sequences contained within the cluster. Cluster1 and 2 
represent the dominant sequences and Venn diagrams are provided indicating the relative proportion 
of sequences from each sample that make up the cluster.  
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In order to further characterise the interplay between the sequences generated for subject H, we 

performed a partitioned analysis of the quasispecies generated. Partitioned analysis of subject B 

indicates that the HVR1 milieu can be divided into four subpopulations of quasispecies (Fig. 8.7). There 

is temporal variation in the prevalence of each swarm, with the disappearance IgG enriched cluster 

from week 16 by the end of the study period and transfer of IgG binding to an entirely new cluster 8 

amino acids removed from the original target (Fig. 8.8). This new antibody target is not the dominant 

QS cluster at week 0 suggesting that it is likely to represent a cluster that became transiently dominant 

in the intervening period but, by the completion of the study a mature antibody mediated response 

was in the process of neutralising this cluster. The dominant cluster at the commencement (cluster 1) 

of the study for which there was no apparent IgG binding has been completely removed from the 

circulating quasispecies, potentially indicating that a further antibody mediated selective sweep has 

also neutralised this cluster at some point during the study period (Fig. 8.7).  

  

Fig. 8.8 The prevalence of each subpopulation/cluster as identified in Fig 8.7 within the population of 
HVR1 clones generated during the 16 weeks studied. * designates the clustered targeted by 
immunoglobulin binding. 

 

Finally, we looked at the prevalence of each cluster over the course of the study (Fig. 8). Cluster 1 the 

initially dominant cluster is no longer present by week 16 and has been replaced by cluster 2 as the 

dominant QS. It is notable that neither dominant cluster demonstrates IgG enrichment while both IgG 

enriched fractions represent minority subsets of the QS in each sample. 
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8.4 Discussion 

HVR1 demonstrates variable patterns of evolutionary change among subjects with chronic infection, 

with evidence of time order phylogeny over time intervals as short as 2-4 weeks in non cirrhotic 

patients, and stasis in a proportion of non cirrhotic patients and all cirrhotic patients(302). In order to 

investigate whether the changes described are due to antibody mediated immune clearance we 

separated the samples into IgG enriched and IgG depleted fractions in subjects where we had 

described differing patterns of HVR1 change. 

Among subjects where HVR1 stasis was identified among the cloned sequences, variable patterns of 

IgG binding were described. Subjects A and B demonstrate IgG binding to the master sequence but, 

no resultant change in the HVR1 quasispecies. Subject N demonstrates a similar lack of interval change 

in HVR1 sequences but with interval loss of IgG binding to the master sequence. These features are 

suggestive either of non neutralising antibody response, or binding to a site remote to HVR1. IgG 

binding in Subject T isolates a remote HVR1 sequence which had not been identified in the cloning 

study. Interestingly, we have seen how the separation of HCV in infected sera into immunoglobulin 

bound and separated fractions produce antibody bound sequences which are genetically distantly 

removed from those generated using clonal analysis. This may represent the persistence at low 

frequency of previously targeted sequence motifs and may suggest either memory or the ongoing 

ability of the virus to revert to consensus should pressure to adapt diminish. These low copy viromes 

may have important implications for resistance to new direct acting anti virals. 

The pattern of IgG binding in Subject H, in whom we had identified a time order phylogeny in our 

cloning data, is highly suggestive of serial emergence of neutralising antibody response with the 

selection and removal of entire subpopulations from the circulating HVR1 quasispecies milieu driving 

ongoing sequence divergence. The use of partitioned analysis aids in the identification of this process 

and highlights the importance of subpopulations in the persistence of chronic infection.  

We aimed to study temporal IgG binding to HVR1 in chronically HCV infected individuals with variable 

patterns of HVR1 change as identified by our prospective cloned sequences. Unfortunately, in three 

of the four subjects with HVR1 change, the spin columns failed to produce virus particles sufficient for 

sequencing following reverse transcription and nested PCR. This highlights a potential pitfall in the use 

of spin columns where the 25μL serum sample may contain insufficient virus particles, particularly if 

mixing of the serum sample prior to pipetting has been inadequate. 
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8.5 Conclusion 

The separation of HCV quasispecies into antibody enriched and depleted fractions can aid in 

identifying the predominant evolutionary process driving sequence change. This can assist in 

identifying suitable subjects for studying virus evolution unaffected by host adaptive immune 

response. In subjects where host immune response is driving HVR1 change, the bound fraction may 

point the way of the past and likewise the IgG free fraction may point the way of the future. In the era 

of direct acting anti virals, our findings raise the prospect that viral resistance may not be easily 

identifiable in advance of treatment.  
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Chapter 9 

Predicting response to pegylated interferon and ribavirin using HVR1 
quasispecies parameters in conjunction with known viral and host 
markers 
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9.1. Introduction 

Molecular studies investigating response to dual therapy characterised a number of viral and host 

factors that appeared to suggest that treatment could be individualised at a molecular level. These 

include 

Viral: 

1. HVR1 complexity 

2. HVR1 diversity 

3. Interferon Sensitivity Determining Region 

4. HCV Core Sequence  

Host: 

1. IP 10 levels 

2. IL 28 polymorphisms 

A comprehensive review of the literature relating to these factors has been included in the thesis 

introduction (sections 1.7.3 and 1.7.4). We investigated these host and viral molecular markers of 

treatment response in order to explore possible treatment individualisation strategies. 

9.2 Methods 
See Section 2.8 methods chapter. 
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9.3. Results 

9.3.1 Core and ISDR Sequences 

 

9.3.1 Table 1. 

Temporal change in the Core and Interferon Sensitivity Determining Region (ISDR) during the 16 week 
study period. N signifies no change in the underlying amino acid sequence. N/A signifies no result 
available. Numbers signify the number of amino acid substitutions that have occurred between the 
first sample (16 weeks prior to treatment) and the pre treatment sample. 

 

Both Core and ISDR demonstrate far less temporal change when compared with the HVR1 as 

previously described in Chapters 4-6. There is no change in HCV core sequences at either amino acid 

position 70 or 91 during the 16 week interval of the study. 
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There is limited change in the 40 amino acid interferon sensitivity determining region with 3 subjects 

investigated (A, C, N) demonstrating a single amino acid substitution and one further subject (U) 

demonstrating two amino acid substitutions during the study period (9.3.1. Table 1.). 

 

9.3.1 Table 2. 

Amino acid residues at position Core70 and Core91. The amino acids are designated using the IUPAC 
(International Union of Pure and Applied Chemistry) nomenclature. (C – Cysteine, M – Methionine, R 
– Arginine, Q – Glutamine). *denotes subjects with genotype 3 infection where no association 
between specific amino acid substitutions and likelihood of treatment success has been described. 

 

Examination of the Core amino acid sequences identified a number of subjects (highlighted in red) 

(Table 2) with unfavourable amino acids at positions 70 and or 91 at the commencement of treatment. 

Three genotype 3 subjects (18%) also had a glutamine at Core 70 one of whom (subject P) also had a 

methionine substitution at Core 91. Two genotype 3 patients (12%) had a methionine at Core 91. All 

genotype 3 patients were successfully treated with dual therapy. 
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Among genotype 1 subjects, 2 (Subjects A and C) (33%) had an unfavourable glutamine substitution 

at Core 70 with one of these (subject C) also having an unfavourable methionine substitution at 

Core91. Notably, Subject A achieved SVR but Subject C with both substitutions did not respond to 

treatment.  

Unfavourable methionine residues at Core91 were seen in 3 genotype 1 subjects (50%) and only one 

of these (Subject D) achieved SVR. 

 

9.3.1. Table 3 

Temporal change in ISDR sequences during 16 weeks pre treatment. The number of amino acid 
substitutions between the sample for each subjects and the wild type ISDR from HCV-J as described 
by Enomoto et al.(211) is designated. N/A indicates no data available. 
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Subject C who went on to have a null response to treatment had an ISDR profile at week 16 prior to 

treatment commencement that suggests that treatment response was more likely at that time, when 

compared with the pre treatment sample. 

Genotype 3a ISDR equivalent sequences differ from genotype 1b wild type sequences by between 10 

and 28% of amino acid residues. This suggests significantly different sequence characteristics which 

may explain why ISDR is genotype specific. 

 

9.3.2. Temporal Change in IP 10 

 

9.3.2. Table 1 

Temporal change in Interferon-γ inducible protein 10 kDa (IP-10) for each subject at 16 weeks, 8 weeks 
and 0 weeks pre-treatment. Samples where the IP 10 level is below the 600pg/mL threshold which 
has been described as predictive of SVR in genotype 1 patients are highlighted in green. 
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IP 10 levels behaved in an unpredictable manner with significant changes between samples from the 

same subject (e.g. Subject I 9.3.2 Table 1). Five subjects transiently had IP 10 levels below the 

favourable 600pg/mL level described by Lagging et al., compared to only three who demonstrated 

persistently low IP 10 levels throughout the study suggesting that likelihood of SVR may vary 

temporally. Among genotype 1 patients, where an association between IP 10 and SVR has been 

described, only Subject E had a single IP level suggestive of likely treatment success but, this subject 

did not respond to dual therapy and treatment was discontinued early. 

Five of the six patients (83%) with a pre treatment IP 10 level less than 600pg/mL achieved SVR but, 

this was comparable with the SVR rate for those with an IP 10 level greater than 600pg/mL, where 

fifteen of 17 patients (88%) achieved SVR. As a result, IP 10 levels below 600pg/mL were not predictive 

of SVR (χ2 p=0.8) (9.3.2. Table 1). 

IP 10 levels were lower among non cirrhotic patients (median 934 pg/mL, mean 1055.94pg/mL) when 

compared with cirrhotic patients (median 1.19pg/mL, mean 1518.17pg/mL) (p<0.05) - Mann Whitney 

U difference of two medians.  
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9.3.2. Fig 1. 

Scatter plot with trendline and Pearson correlation of IP 10 levels and HVR1 QS complexity. 

 

Comparison of IP 10 levels with HVR1 QS complexity did not reveal a correlation. In order to clarify 

whether subjects with very low HVR1 QS complexity (=0) were masking a correlation we also analysed 

the data excluding these results and it did not alter our finding of no correlation (r=0.073). 
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9.3.2. Fig 2. 

Scatter plot with trendline and Pearson correlation of IP 10 levels and HVR1 QS diversity measured 
using maximum composite likelihood (GTR+I+G). 

HVR1 QS diversity did not correlate with IP 10 levels (r=0.014). 
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9.3.3. Pre Treatment Prediction Data Summary 

 

9.3.3. Table 1. 

Summary of study population including all potential predictors of treatment response and treatment 
outcome. Characteristics associated with greater likelihood of response are highlighted in green and 
those associated with less likelihood of response are highlighted in red. *denotes the genotype 3 
patients for whom the literature has not previously shown core, ISDR, or IP 10 levels to be predictive 
of treatment response. 

 

9.3.3. Genotype 1 patients 

Five of our six genotype 1 patients were cirrhotic and two cirrhotic patients achieved SVR. Both of 

these patients had multiple molecular markers that suggested that treatment response was less likely 

than among their study cohort contemporaries. Conversely, Subject E had the most favourable 

molecular profile of all cirrhotic genotype 1 patients and, none the less, was a null responder. There 

were no statistically significant differences between those who achieved SVR and those who did not, 

though this was most likely the result of insufficient numbers among the cohort. 

We evaluated the IL 28 makeup of the host subjects and found that the genotype 1 patient with the 

most favourable characteristics did not respond to treatment, whereas two of the four subjects with 

intermediately favourable IL 28 alleles achieved SVR. 

9.3.3. Genotype 3 patients 

All genotype 3 patients achieved SVR. This precluded analysis of molecular predictors of treatment 

response.  
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9.4. Discussion 

We investigated host IL28 SNPs, and temporal change in Core70, Core91, ISDR, and Ip 10 levels over a 

16 week pre commencement of treatment with dual therapy in a cohort of 23 individuals chronically 

subjects infected with either genotype 1 or 3, and with differing degrees of liver fibrosis.  

Using the data from our cloning study we found no association between either viral or host factors 

and HVR1 complexity or diversity.  

Core and ISDR amino acid substitutions were limited during the study period, though there was a 

change in the ISDR sequence from favourable to unfavourable in one individual, who subsequently 

did not respond to treatment, suggesting that the use of this marker requires both a recent sequence 

result and also, possibly, confirmation on the day of treatment commencement. 

The limited degree of change in our Core and ISDR sequences is in keeping with the published 

literature for these sections of the virome, although no studies evaluating change in either Core or 

ISDR have to date been published. This suggests that these viral factors are suitable candidates for 

inclusion in pre treatment prediction models of SVR and their inclusion in broader studies appear likely 

to be of potential benefit in SVR prediction(412).  

We explored the possibility of developing such a model using our data but, were unsuccessful due to 

the limited numbers in the studied cohort. Of more fundamental importance however in the failure 

to develop a model was the genotype make-up of the cohort. This was due to both the random 

presentation of candidates suitable for treatment to our tertiary referral centre and the treatment 

guidelines at the time the study was undertaken. The study period between 2009 and 2011 

corresponded with a period when dual therapy remained the standard of care but the arrival of next 

generation protease inhibitors, and their improved genotype SVR rates, imminent(413). As a result 

uncomplicated genotype 1 patients were in many cases awaiting the arrival of protease inhibitors in a 

process which was named warehousing. This meant that only genotype 1 patients with significant 

fibrosis/cirrhosis were being treated and this is reflected in the study cohort, with five of the six 

genotype 1 patients having liver biopsies demonstrating advanced fibrosis(414). The only non cirrhotic 

genotype 1 patient in our cohort was treated on the request of the patient for occupational reasons. 

Conversely, the SVR rates with dual therapy at that time for genotype 3 patients meant that treatment 

was expedited barring contraindication. This is reflected in the proportion of cirrhotic patients in the 

genotype 3 study population where only one of seventeen individuals had advanced fibrosis. 

Historically, because SVR rates among genotype 3 patients were superior to genotype 1 the discovery 

of the viral and host characteristics that predict SVR focussed on genotype 1 infection. Consequently, 
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there are few studies validating these factors in genotype 3 infection. Due to the 100% treatment 

response in our genotype 3 patients to dual therapy, we were unable to investigate for any 

associations between these viral and host factors in this study. 

We identified an association between increased IP 10 levels and advanced fibrosis but, due to the high 

proportion of cirrhotic genotype 1 and low proportion of cirrhotic genotype 3 individuals studied we 

were unable to control for genotype. 

9.4.1. Combination studies investigating prediction of treatment response. 

A number of studies have been undertaken to investigate whether the viral (Core and ISDR) and host 

(IP 10 and IL28 SNPs) predictive factors could be combined in order to predict treatment response 

prior to initiating treatment. In the era of dual therapy, where treatment was associated with 

significant morbidity, it was argued that this might both minimise patient exposure to unwanted side 

effects and maximise societal gain through optimal use of resources (in this case the cost of 

treatment). Accordingly, pre treatment prediction of SVR would aid greatly in resource allocation.  

Numerous studies have investigated the utility of combining IL28 SNPs with IP 10 levels to predict 

treatment response. In most cases, multivariate analysis suggests that IL28 SNPs and IP 10 levels 

independently predict SVR and that combined they can potentially better predict SVR(393, 415). A 

number of algorithms have been proposed including these factors with others such as race, age, 

and/or baseline viral load but low positive (50-80%) and negative (50-70%) predictive values are likely 

to prevent their widespread use(416, 417). 

Studies investigating combined Core and ISDR substitutions suggest that substitutions at Core70 and 

more than two substitutions in the ISDR are independent predictors of SVR among Japanese and Thai 

patients on multivariate analysis (418, 419).  

The advent of triple treatment with protease inhibitors prompted an initial period of evaluation of 

these viral and host factors among genotype 1 patients but the swift arrival of new highly efficacious 

direct acting anti viral medications resulted in a paradigm shift in treatment. This new interferon free 

era of HCV treatment with pangenotypic SVR rates exceeding 80%, even among patients who would 

have previously been difficult to treat, and with the added benefit of fewer side effects has threatened 

to make interferon obsolete in the management of HCV. One major concern with the new DAAs has 

been the cost which has threatened to fundamentally undermine the health budgets of developed 

countries and is likely to preclude access to these medications in many developing countries, where 

the prevalence of HCV is highest(420). In light of these cost concerns, the pre treatment identification 
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of patients for whom dual therapy is likely to achieve comparable SVR rates, at a fraction of the cost, 

remains desirable. 
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9.5. Conclusion 

We have identified little temporal change in amino acid sequences in the Core and ISDR regions during 

the 16 week pre treatment period studied. Although this stability suggests that these viral predictors 

of SVR could be of significant use in developing models to optimise treatment outcomes, we were 

unable to demonstrate this in our cohort. 

This contrasts with HVR1 change where the time required to generate these metrics is likely to render 

the finding obsolete. 

We found no association between Core, ISDR, IP 10, or IL28 SNPs and either diversity or complexity 

suggesting that these cannot be used as surrogate markers. 

The advent of highly efficacious DAAs is likely to obviate the requirement of pre treatment predictive 

models on the basis of these historical molecular markers of response to dual therapy, though limited 

access to these expensive medications in developing economies may ensure a preserved role for 

interferon. Nevertheless, the potential for HCV adaptation to these drugs and the emergence of DAA 

resistant mutants remains a real concern and may lead to the re introduction of interferon in 

combination with DAAs in the future.  
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Chapter 10 

10.1 Conclusion 
Using Sanger sequencing of both the nested PCR amplicon and amplified plasmid clones, and next 

generation sequencing of samples collected over 16 weeks, and with the inclusion of  further 

sequenced plasmid clone sequences from a retrospective sample, we have described HVR1 evolution 

in unique detail identifying novel patterns of sequence change. Efforts to develop pre treatment 

prediction models of treatment success were hindered by the genotype make up of the study cohort, 

itself dependent on the presentation of candidates suitable for treatment. Temporal stasis in core 

sequences and limited ISDR change suggest that these are suitable candidates for such prediction 

models. IP 10 levels although statistically lower among cirrhotic patients, were subject to significant 

unpredictable temporal change which may preclude it from use in pre treatment prediction.  

Using numerous modelling strategies including phylogenetics (using evolutionary models informed by 

jmodelttest), median joining networks , k and one step network techniques, partitioned analysis of 

quasispecies, and Bayesian techniques to identify nucleotide substitution rates we have developed a 

robust and accurate schema for analysing and describing patterns and mechanisms of both short and 

long interval HVR1 evolution and adaptation.  

Early chronic HCV infection HVR1 evolution is characterised by multi-lineage episodic divergent 

evolution characterised by positive selection which is likely to be convergent to consensus at sites not 

targeted by the adaptive immune response. With prolonged chronic infection HVR1 transitions to 

single lineage sequence infection with sequence stability which is associated, though not exclusively 

seen, with advanced liver disease and cirrhosis. 

These features are highly suggestive of viral discovery and exploitation of niche deficits in the host 

immune response. 

Cloning depth of 10-20 sequences was sufficient to correctly identify the patterns of HVR1 change 

seen using next generation sequencing in all but one subject of the 15 studied. The prolonged HVR1 

sequence inertia seen in the subject infected with contaminated anti-D immunoglobulin suggests that 

original antigenic sin combined with the exhaustion of host adaptive immune response may conspire 

to flatten the fitness landscape and facilitate the exploration of broadening fitness peaks as they 

transition to plateaus. 
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IgG fractionation of the HVR1 quasispecies highlights the complexity of HCV antibody mediated 

clearance. Antigenic drift attributable to adaptive humoral response contrasts with the absence of 

discernable antibody binding in HVR1 stasis. However, not all rapidly changing HVR1 haplotypes 

demonstrate antibody binding suggesting that alternative mechanisms of HVR1 change potentially 

including the emergence of fitter variants or local T-cell mediated clearance of a HVR1 profile 

compartmentalised within a section of the liver may be responsible. Conversely, antibody binding is 

not universally associated the exclusion of the HVR1 motif from the quasispecies implying a non 

neutralising or slowly neutralising antibody response.  

Our data illustrates the heterogeneous tempo of nucleotide substitution rates between subjects which 

is independent of the presence of multiple lineages, presence of advanced fibrosis or time order 

phylogenetic change. Interestingly low substitution rates are not exclusively the remit of cirrhotic 

patients but do correspond with subjects where HVR1 change during the study period is limited 

implying a well adapted haplotype to host environmental truncation of the fitness landscape. 

The observation of three apparent mean modes of distribution of nucleotide substitution rate which 

correlate between HVR1 and E1 (which is not under demonstrable selective pressure in any subject) 

may be suggestive of adaptation and optimisation of the RNA dependent RNA polymerase mutation 

rate as we had hypothesized.   

New direct acting anti virals have changed the paradigm of expected treatment outcomes in HCV but 

the emergence of treatment resistant polymorphisms remains a significant concern. Our HVR1 data 

suggests limitations associated with amplicon sequencing when trying to describe the underlying 

quasispecies milieu. In screening for resistant polymorphisms we face the dilemma of limitations 

associated with amplicon sequencing strategies and the economic and time intensive constraints 

associated with both cloning and next generation sequencing.  

Nevertheless, our next generation sequencing network analysis highlights lineages connected by a 

maximum of one amino acid substitution to the master sequence even among multiple lineage 

infections. This suggests that the underlying presence of genetically remote low copy 

memory/resistant genomes capable of expansion to undermine treatment is unlikely. Therefore, virus 

memory and so called convergent evolution reflect short interval adaptation to global fitness optima 

rather than an illustration of virus memory.  

Furthermore, the emergence of on treatment resistant mutants is likely to result in fitness cost with 

high probability of reversion to wild type once this selective pressure is removed suggesting that re 

treatment may not automatically fail. Unlike retroviruses such as HIV where resistance fixation and 
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transmission is common, the tendency for HCV to converge to consensus is likely to abrogate 

emergence of resistance to direct acting anti virals on a global scale among treatment naive patients. 
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Appendix A 

Genbank Accession Numbers 
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Subject A 

Retro  KU897268-KU897282 

16  KF133681-KF133662 

14  KF133703-KF133682 

10  KF133725-KF133704 

8  KF133743-KF133726 

4  KF133763-KF133744 

2  KF133787-KF133764 

0  KF133806-KF133788 

 

Subject B 

Retro  KU897226- KU897244 

16  HQ661513 

HQ661501-HQ661508 

HQ661477-HQ661484 

Amplicon - HQ661470 

14  KU897245- KU897251 

 KU897266- KU897267 

12  HQ661488-HQ661492 

Amplicon - HQ661475 

6  HQ661509-HQ661512 

HQ661476 

Amplicon - HQ661472 

4 HQ661485-HQ661487 

HQ661493-HQ661500 

Amplicon-HQ661473 

0  KU897252- KU897265 

  

Subject C 

OB       KU897095-KU897111      
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OA       KU897118-KU897140                           

O KU897112-KU897117   

O-16 KU897155-KU897171 

O-14  KU897172-KU897186 

O-12  KU897187- KU897206 

O-8  KU897207- KU897225 

O-0 KU897141- KU897154 

  

Subject D 

Retro KU897404- KU897433 

16  KU897383- KU897394 

14  KU897300- KU897316 

12  KU897283    

KU897317- KU897329 

KU897402- KU897403 

8  KU897330- KU897334   

KU897379- KU897382   

KU897395- KU897401 

6  KU897335- KU897342 

 KU897372- KU897378 

4 KU897343- KU897344   

KU897360- KU897371 

2  KU897284- KU897299 

0  KU897345- KU897359   

Subject E 

16  KU897442- KU897458 

14  KU897481- KU897502 

12  KU897434- KU897441 

10  KU897503- KU897519 

6  KU897520- KU897534 
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4  KU897535- KU897550 

2  KU897459- KU897480 

 

Subject F 

Retro  KU897551-KU897570 

16  HQ661524-HQ661541 

Amplicon - HQ661518 

14  KU897600 

KU897629- KU897651 

12  KU897601 

KU897615- KU897628 

Amplicon – KU661517 

8 HQ661541-HQ661547 

HQ661520-HQ661523 

Amplicon - HQ661516 

6  KU897602- KU897614 

4  KU897591- KU897599 

 Amplicon – KU661514 

2  KU897571- KU897590 

0 HQ661548-HQ661563 

HQ661519 

Amplicon - HQ661515 

 

Subject G 

Retro KU897652- KU897670 

16  KC967602-KC967621 

14  KC967684-KC967601 

10 KC967562-KC967583 

8 KC967543-KC967561 

6 KC967527-KC967542 
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4 KC967512-KC967526 

2 KC967489-KC967511 

0 KC967482-KC967488 

 

Subject H 

Retro KU897671- KU897686 

16  KC997241-KC997257 

14 KC997258-KC997274 

12 KC997275-KC997286 

10 KC997288-KC997307 

8 KC997308-KC997321 

6 KC997322-KC997339 

4 KC997340-KC997370 

2 KC997371-KC997391 

0 KC997392-KC997408 

 

 

 

Subject I 

Retro  KU897687- KU897698 

16  KC997409-KC997429 

14 KC997430-KC997450 

12 KC997451-KC997467 

10 KC997468-KC997489 

6 KC997490-KC997512 

4 KC997513-KC997531 

2 KC997532-KC997552 

0 KC997553-KC997568 

 

Subject J 
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Retro KU897699- KU897721 

16 KF133357-KF133373 

14 KF133374-KF133391 

12 KF1333920KF133400 

10 KF133401-KF133422 

8 KF133423-KF133437 

6 KF133438-KF133456 

4 KF133457-KF133476 

2 KF133478-KF133494 

0 KF133495-KF133512 

 

Subject K 

Retro KU897723- KU897737 

14  KU897722 

KU 897738- KU897753 

12  KU897754- KU897762 

KU897819 

KU897836- KU897849 

10  KU897763- KU897780 

8  KU897820- KU897835 

6  KU897781- KU897782 

KU897808- KU897818 

4  KU897783- KU897788 

KU897795- KU897807 

2  KU897789- KU897794 

 

Subject L 

16  HQ661684-HQ661701 

HQ661646 

Amplicon - HQ661642 
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14  KU897850- KU897861 

10  KU897862- KU897866 

KU897907- KU897916 

8 HQ661652-HQ661659 

Amplicon - HQ661643 

6  KU897867- KU897872 

KU897892- KU897906 

4 HQ661660-HQ661665 

HQ661647-HQ661651 

Amplicon - HQ661644 

2  KU897873- KU897891 

0 HQ661666-HQ661683 

Amplicon - HQ661645 

 

Subject M 

Retro  KU897949-KU897968 

16  HQ661599-HQ661615 

Amplicon - HQ661569 

12 HQ661631-HQ661641 

Amplicon - HQ661568 

10  KU897918 

KU897938- KU897948 

KU897969-KU897971 

8 HQ661616-HQ661630 

Amplicon - HQ661567 

6  KU897919- KU897937 

4 HQ661584-HQ661598 

Amplicon - HQ661564 

2  KU897917 

KU897972-KU897989 
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Amplicon - HQ661566 

0 HQ661599-HQ661615 

Amplicon - HQ661565 

 

Subject N 

Retro  KU897991- KU898003 

16  HQ661715-HQ661734 

Amplicon - HQ661702 

2  KU897990 

KU898004-KU898022 

Amplicon - HQ661703 

0  HQ661735-HQ661743 

HQ661705-HQ661714 

Amplicon-HQ661704 

  

Subject O 

Retro  KU898023-KU898039 

16 KF133513-KF133529 

14 KF133530-KF133550 

12 KF133551-KF133557 

10 KF133558-KF133581 

8 KF133582-KF133599 

6 KF133600-KF133613 

4 KF133614-KF133628 

2 KF133629-KF133644 

0 KF133645-KF133661 

 

Subject P 

Retro  KU957001-KU957019 

16  KU956994 
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KU957026-KU957029 

KU957146-KU957155 

12  KU956995-KU957000 

KU957020-KU957025 

10  KU957030-KU957034 

KU957131-KU957145 

8  KU957035-KU957046 

KU957068 

KU957125-KU957130 

6 KU957047-KU957067 

4  KU957069-KU957081 

KU957122-KU957124 

2  KU957082-KU957088 

KU957107-KU957121 

0  KU957089-KU957106 

    

Subject Q  

Retro  KU957156-KU957169 

16 HQ661460-HQ661469 

14  KU957171-KU957190 

12 HQ661447-HQ661459 

10  KU957191-KU957196 

8 HQ661428-HQ661446 

6  KU957170 

4 HQ661410-HQ661427 

2  KU957197-KU957211 

0 HQ661391-HQ661409 

  

Subject R 

Retro  KU957669-KU957684 
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16  KU957667 

KU957755-KU957771 

14  KU957668 

KU957685-KU957686 

KU957735-KU957754 

12  KU957650-KU957666 

10  KU957687-KU957690 

KU957721-KU957734 

8  KU957691-KU957694 

KU957709-KU957720 

6  KU957695-KU957708 

4  KU957642-KU957649 

KU957772-KU957796 

0  KU957639-KU957641  

KU957797-KU957810 

    

 

Subject S 

16  KU957213-KU957218 

14  KU957212 

KU957219 

KU957234 

KU957254 

KU957303-KU957311 

12  KU957271-KU957275 

KU957290-KU957302 

8  KU957276-KU957289 

6  KU957220-KU957233 

4  KU957235-KU957253 

2  KU957255-KU957270 
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Subject T 

16  HQ661756-HQ661770 

Amplicon - HQ661744 

14  KU957602-KU957615 

12  KU957554-KU957569 

Amplicon – HQ661745 

8 HQ661780-HQ661791 

HQ661749-HQ661749 

Amplicon - HQ661746 

6  KU957616-KU957638 

4  KU957539-KU957553 

KU957570-KU957589 

Amplicon – HQ661747 

2  KU957525-KU957538 

KU957590-KU957601 

0 HQ661771-HQ661779 

HQ661750-HQ661755 

 Amplicon - HQ661748 

 

Subject U 

Retro  KU957312-KU957327 

16 KC964872-KC964893 

14 KC964894-KC964913 

12 KC964914-KC964937 

10 KC964938-KC964959 

8 KC964960-KC964981 

6 KC964982-KC965000 

4 KC965002-KC965024 

2 KC965025-KC965046 
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Subject V 

Retro  KU957328-KU957344 

14 KC953964-KC953984 

12 KC951985-KC954007 

10  KC965008-KC954029 

8 KC954030-KC954051 

6 KC954052-KC954068 

2 KC954069-KC954091 

 

Subject W 

Retro  KU957509-KU957524 

16  KU957366-KU957384 

14  KU957345-KU957365 

12  KU957385-KU957397 

10  KU957398-KU957418 

8  KU957419-KU957441 

4  KU957442-KU957464 

2  KU957465-KU957484 

0 KU957485-KU957508 

 

Pyrosequencing data sets available at http://www.ucc.ie/liamfanning/hcv 

 

   

http://www.ucc.ie/liamfanning/hcv
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Appendix B 
 

Retrospective data for remaining Subjects 
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A.1. Subject A 

A.1 Diversity, Complexity, and Divergence 

 

A.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity but to a far less degree than in other subjects with the 

exception of the sample corresponding with week 14 where there is marked HVR1 diversity. 
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A.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

 HVR1 demonstrates complexity which is similar in most samples to E1 which is unusual. 

Additionally, HVR1 amino acid complexity is less than E1 in most samples which is not seen in any 

other subject. 

 

A.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones.  

Divergence between samples is maximal between the retrospective sample and the week 16 sample 

with little subsequent divergence in HVR1 through the remainder of the study. 
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A.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective is almost equal for each subsequent sample suggesting QS stasis. 
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A.1 Phylogenetic analysis 

 

A.1 Fig 5. Phylogenetic tree produced when all unique HVR1 sequences were included for the 16 
weeks prior to commencing treatment. Tree constructed using maximum composite likelihood with 
GTR+I+G and bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones 
– wine, Week 16 – black, Week 14 – grey, Week 10 – green, Week 8 – yellow, Week 4 – pink, Week 2 
– turquoise, Week 0 – orange. 

A.1. Fig 6. Phylogenetic tree with all unique HVR1 sequences with retrospective (378 days prior to 
Week 16 sample) and samples from week 16 and week 0 labelled. Tree constructed using maximum 
composite likelihood with GTR+I+G and bootstrap 10,000 for the purposes of optimisation. 

It is noticeable that the general shape of the tree is altered by the inclusion of the retrospective 

sample with the emergence of a new clade.A.1 Subpopulation analysis 

0.005 0.01Fig 5. Fig 6. 
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A.1. Fig 7 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study.  

This was used to identify HVR1 subpopulations. We defined subpopulations as groups of sequences 

that differed from all other sequences for the same subject by a minimum of 4 amino acid 

substitutions. The subpopulations identified (3 in total) are designated by red integers. The 

numbering of subpopulations was done in accordance with the temporal appearance of the first of 

each subpopulation. Where two subpopulations appeared in the same sample, the subpopulation 

which had the higher number of sequences was labelled first. This clearly illustrates that the 

inclusion of the retrospective sample results in a new subpopulation. 

 

 

 

2 

 

 

 

 

3 

 

1 

http://multalin.toulouse.inra.fr/
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A.1. Fig 8 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled. Tree constructed using maximum composite 
likelihood with GTR+I+G and bootstrap 10,000 for the purposes of optimisation. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 10 – green, Week 8 – yellow, 
Week 4 – pink, Week 2 – turquoise, Week 0 – orange. 

3 

2 
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A.1. Fig. 9.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

The initial dominant QS subpopulation (1) is no longer present by the time the first study sample was 

collected one year later and 16 weeks prior to treatment. Subpopulation 3, seen here in green, 

transiently appears in a single sample. Examination of the phylogenetic tree indicates that this clade 

was likely the result of alternate sampling of the sequence space but it appears that this clade has 

been excluded by superior fitness of subpopulation 2. 
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B.1 Subject B 

B.1 Diversity, Complexity, and Divergence 

 

B.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity. 
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B.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using 
Normalised Shannon Entropy. 
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B.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

Subject B demonstrates minimal divergence throughout the study, including the retrospective 

sample. 

 

B.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

Both HVR1 and E1 demonstrate minimal divergence throughout the study period.  
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B.1 Phylogenetic analysis 

 

 

B.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample(868 days 
prior to week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 6 – blue, Week 4 – pink, Week 0 – orange. 
Identical sequences overlap. 

It is noticeable that the general shape of the tree has been affected by the inclusion of the 
retrospective sample.B.1 Subpopulation analysis 
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B.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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B.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 6 – blue, Week 
4 – pink, Week 0 – orange. 
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B.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

Subpopulation 1 comprises >90% of the clones sequenced throughout the study and including the 

retrospective samples. 
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D.1 Subject D 

D.1 Diversity, Complexity, and Divergence 

 

D.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity in most samples though there is a marked reduction in 

HVR1 QS diversity between weeks 12 and 6 which may suggest episodic selection with 

homogenisation of the QS milieu. 
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D.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates increased complexity relative to E1 at both nucleotide and amino acid level in 

most samples. 
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D.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

E1 divergence is minimal. HVR1 divergence is maximal between the retrospective sample and the 

week 16 sample though the inter sample divergence for the remainder of the study is comparable. 

 

D.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group is negligible for the remainder of the study. 
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D.1 Phylogenetic analysis 

 

D.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (252 prior 
to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 (orange) 
labelled. Tree constructed using maximum composite likelihood with GTR+I+G and bootstrap 10,000 
for the purposes of optimisation. The labels are: Retrospective clones – wine, Week 16 – black, Week 
14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 
– turquoise, Week 0 – orange. 

It is noticeable that the general shape of the tree has been affected by the inclusion of the 

retrospective sample. The result is some flipping of the clades in the top of the tree but there is little 

substantive change to the positioning of the different sequences. 
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D.1 Fig 7 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (2 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which included the greater number of sequences was labelled first. 
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D.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulation as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, 
Week 8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. 
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B.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample. 
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G.1 Subject G 

 

G.1 Diversity, Complexity, and Divergence 

 

G.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is far greater than E1 diversity. 
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G.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates greater complexity relative to E1 throughout the study period. 
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G.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

It is notable that despite the longer time interval between the retrospective sample and the intervals 

between the remaining study samples which corresponds to two weeks that there is a similar 

magnitude of divergence. 

 

G.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  
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E1 demonstrates minimal divergence throughout the study period. The divergence between the 

retrospective group of clones is maximal when compared with the sample taken immediately pre 

treatment. This suggests ongoing divergent change potentially indicating a virus under diversifying 

selective pressures.  
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G.1 Phylogenetic analysis 

 

G.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (122 dyas 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, 
Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

Here we see that the retrospective samples do not materially alter the phylogeny. This suggests that 

evolution of HVR1 sequences has been confined to local fitness maxima. 
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G.1 Subpopulation analysis
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G.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 

http://multalin.toulouse.inra.fr/
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G.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, 
Week 8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical 
sequences overlap. 

The use of subpopulation designations immediately identifies subpopulation 10 as an outlier. This 

subpopulation, not present in any of the subsequent clones generated may either represent an 
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ancestral master sequence or could also signify a previous effort to explore for alternative fitness 

benefits. 

 

G.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

This illustration of subpopulation prevalence through the study period clearly identifies a dominant 

subpopulation which has been present for almost the entire 8 months prior to commencing 

treatment. This subpopulation has however been eliminated by the pre treatment sample 

suggesting immune mediated clearance.  

PARRIS analysis of evidence for sequence wide positive selection is unaffected by the inclusion of 

retrospective samples. 
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I.1 Subject I 

 

I.1 Diversity, Complexity, and Divergence 

 

I.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between clones 
within the sample and was calculated using a generalised time reversible model with invariant sites 
and a gamma distribution (GTR+I+G). 

HVR1 diversity is far greater than E1 diversity. 
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I.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates increased complexity relative to E1 at most points during the study period. 
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I.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

It is notable that despite the longer time interval between the retrospective sample and the intervals 

between the remaining study samples which corresponds to two weeks that there is a similar 

magnitude of divergence. 

 

I.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group appears maximal at timepoint 6 (6 weeks pre treatment). This potentially 

suggests that both divergent and convergent change in the HVR1. 
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I.1 Phylogenetic analysis 

 

I.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (168 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, 
Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

It is noticeable that the general shape of the tree is unaffected by the inclusion of the retrospective 

sample. 
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I.1 Subpopulation analysis 

 

I.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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I.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, 
Week 8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical 
sequences overlap. 

Subpopulation 3 is not identified in the retrospective sample suggesting that this has emerged in the 

intervening period. No new subpopulations were found in the retrospective sample. 
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I.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

Subpopulation 3 as identified in Fig 7. Appears in the week 16 sample and transiently becomes the 

most dominant sequence prior to the pre treatment sample. Examination of the phylogeny of 

subpopulation 1 shows intra subpopulation change in the HVR1 QS suggesting that these sequence 

changes may have allowed this subpopulation to regain dominance within the entire HVR1 QS. 
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J.1 Subject J 

J.1 Diversity, Complexity, and Divergence

 

J.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between clones 
within the sample and was calculated using a generalised time reversible model with invariant sites 
and a gamma distribution (GTR+I+G). 

 
HVR1 diversity is far greater than E1 diversity. 
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J.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

 HVR1 demonstrates increased complexity relative to E1 throughout the study period. 
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J.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

It is notable that despite the longer time interval between the retrospective sample and the intervals 

between the remaining study samples which corresponds to two weeks that there is a similar 

magnitude of divergence. 

 

J.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  
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E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group increases throughout the study period and is maximal at the pre treatment 

sample. 

J.1 Phylogenetic analysis 

 

J.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (248 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, 
Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

It is noticeable that the general shape of the tree has been affected by the inclusion of the 

retrospective sample. An outlier turquoise sample has been drawn by the retrospective sample 

below the main group of sequences at the top of the tree. 
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J.1 Subpopulation analysis 

 

J.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
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designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 

 

J.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, 
Week 8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical 
sequences overlap. 

The inclusion of the retrospective samples results in two new subpopulations (2+4).  
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J.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

 The most prevalent subpopulation changes 3 times during the study period from subpopulation 4 in 

the retrospective sample to subpopulations 3 at week 16, 1 at week 14 and finally subpopulation 7 

at the pre treatment sample. 
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K.1 Subject K 

K.1 Diversity, Complexity, and Divergence 

 
K.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is far greater than E1 diversity. 
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K.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates increased complexity relative to E1 throughout the study period. 
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K.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

It is notable that despite the longer time interval between the retrospective sample and the intervals 

between the remaining study samples which corresponds to two weeks that the magnitude of 

divergence is greater for each fortnight for the three intervals between weeks 12 and 6. 

 

K.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group increases throughout the study period and is maximal at the week 2 sample. 
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K.1 Phylogenetic analysis 

 

 

K.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (314 days 
prior to Week 14 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, Week 4 – pink, 
Week 2 – turquoise. Identical sequences overlap. 

  
It is noticeable that the general shape of the tree is unaffected by the inclusion of the retrospective 

sample. 
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K.1 Subpopulation analysis 

 

K.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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K.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, 
Week 6 – blue, Week 4 – pink, Week 2 – turquoise. Identical sequences overlap. 
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K.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

The most dominant subpopulation at the beginning of the study had sustained this dominance since 

the retrospective sample 10 months previously. A new subpopulation appears at week 14 and by the 

pre treatment sample this has completely replaced the other two subpopulations by the pre 

treatment sample. Examination of the sequence alignment however suggests that these 

subpopulations are relatively closely related to each other with not all sequences within each 

subpopulation differing from the other subpopulations by more than three amino acids. This 

suggests a broad flat fitness optimum which is being thoroughly investigated by the virus QS. 
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M.1 Subject M 

M.1 Diversity, Complexity, and Divergence 

 

M.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is similar to E1 diversity.  
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M.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates increased complexity relative to E1 at many points during the study period. 

Subject M is unusual however in demonstrating a homogenous single HVR1 amino acid profile at 

three times during the study period which characterised by a complexity of 0. This potentially 

suggests multiple episodes of purifying selection. 
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M.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

E1 demonstrates almost no divergence throughout the study period. HVR1 appears to diverge 
between the retrospective sample and the sample 16 weeks prior to commencing treatment but 
thereafter there is minimal change in the HVR1 profile. 

 
M.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

 E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group is of almost the identical magnitude between it and all subsequent samples. 
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M.1 Phylogenetic analysis 

 

M.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (287 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, Week 4 – pink, 
Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

It is noticeable that the general shape of the tree is significantly changed by the inclusion of the 

retrospective sample. The retrospective clones all group in a clade remote from the study 

sequences. 

This suggests that following the elimination of the retrospective clade that the HVR1 eplored the 

sequences space in a multi directional fashion but that by the pre treatment sample, a new 

dominant clade has become established (orange marker). 
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M.1 Subpopulation analysis 

 

 

M.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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M.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 12 – red, Week 10 – green, Week 8 – yellow, 
Week 6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

This illustrates the description of a new subpopulation with the inclusion of the retrospective 

sample. 
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M.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

The initial dominant subpopulation is no longer present at the week 0 sample which is taken 16 

weeks before treatment is commenced. At week 0 there is co dominance between two new 

subpopulations but as the study progresses, subpopulation 3 comes to dominate the entire milleu ar 

has been suggested by Fig. 5. 

 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R 0 4 6 8 10 12 14 16



291 
 

N.1 Subject N 

N.1 Diversity, Complexity, and Divergence 

 

N.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity. 
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N.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy.  

HVR1 demonstrates similar complexity when compared with E1 throughout the study period and it is 

notable that E1 complexity is more than HVR1 complexity both at nucleotide and amino acid level in 

half of the samples. This suggests little positive or purifying selection. 
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N.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

HVR1 divergence between the retrospective sample and week 16 pre treatment is 0.14 potentially 

suggesting significant sequence change. 

 

 

N.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group remains constant for each of the subsequent study samples. 
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N.1 Phylogenetic analysis 

 

N.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (465 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

It is noticeable that the general shape of the tree is changed by the inclusion of the retrospective 

sample. The change in the scale distance highlights that the componenents of Fig 2 now form the 

collection of sequences seen together at the top of Fig 3. One of the retrospective sequences is 

clearly remotely related to the remainder of the HVR1 QS. This could explain the divergence data 

with a significant proportion of the pairwise divergence by the inclusion of this remote sequence. 

Furthermore, this also explains the very high degree of diversity described for HVR1 in the 

retrospective sample (Table 3).  
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N.1 Subpopulation analysis 

 

N.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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N.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 2 – turquoise, Week 0 – orange. Identical 
sequences overlap. 

The inclusion of the retrospective samples increases the number of subpopulations seen in subject N 

to 4.  
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N.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

Subpopulations 1 + 4 are only present in the retrospective sample. Subpopulations 2 + 3 vie for co 

dominance throughout the study including the retrospective sample with neither being eliminated at 

any time. This suggests some initial sequence selection but no further selection during the 16 weeks 

prior to treatment commencement. It also explains both the high diversity in the retrospective 

sample and the high degree of divergence between the retrospective and week 16 sample.   
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O.1 Subject O 

 

O.1 Diversity, Complexity, and Divergence 

 

O.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity. 
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O.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates markedly increased complexity relative to E1 throughout the study period. 

 

O.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

Divergence is greatest between the retrospective sample and the week 16 sample. 
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O.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group is maximal at the pre treatment sample. 
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O.1 Phylogenetic analysis 

 

O.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (175 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, 
Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

It is noticeable that the general shape of the tree is unaffected by the inclusion of the retrospective 

sample. 
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O.1 Subpopulation analysis 

 

 

O.1Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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O.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, 
Week 8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical 
sequences overlap. 

5 

4 

3 

1 

2 

6 



304 
 

Visualisation of the tree suggests that subpopulations 3,4 and 5 may have arisen through mutation 

of subpopulation 1.Subpopulation 6 which has replaced all other subpopulations by the completion 

of the study appears likely to have arisen from subpopulation 2. 

 

O.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

This provides a clear illustration of sequential change in the subpopulation profile with the 

elimination of predecessors. This is suggestive of immune mediated HVR1 change. 
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R.1 Subject R 

R.1 Diversity, Complexity, and Divergence 

 

R.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity. 
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R.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates increased amino acid complexity relative to E1 throughout the study period but 

less nucleotide complexity.  
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R.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

It is notable that despite the longer time interval between the retrospective sample and the intervals 

between the remaining study samples which corresponds to two weeks that there is a similar 

magnitude of divergence. Overall, there is little HVR1 or E1 divergence during the study. 

 

R.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

Overall, there is little HVR1 or E1 divergence during the study. 
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R.1  Phylogenetic analysis 

 

R.1Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (649 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, 
Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

 It is noticeable that the general shape of the tree has been unaffected by the inclusion of the 

retrospective sample. An outlier red sample from week 12 is remote from the remainder of the tree 

but analysis of E1 characteristics indicates that it is not a contaminant. The retrospective sequences 

cluster closely among the remainder of the sequences.  
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R.1 Subpopulation analysis 

 
R.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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R.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 8 – yellow, 
Week 6 – blue, Week 4 – pink, Week 0 – orange. Identical sequences overlap. 

Subpopulation 1 is mostly comprised of retrospective sequences, though sequences within this 

subpopulation appear intermittently in subsequent samples. 
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R.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

Subpopulation 1, initially dominant, is replaced by subpopulation2 which maintains its dominance 

through the remainder of the study. 
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U.1 Subject U 

U.1  Diversity, Complexity, and Divergence 

 

U.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is greater than E1 diversity. 
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U.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates markedly increased amino acid complexity relative to E1 throughout the study 

period. 
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U.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

There is little E1 or HVR1 divergence during the study 

 

U.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

E1 and HVR1 demonstrate minimal divergence throughout the study period.  
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U.1 Phylogenetic analysis 

 

U.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (287 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, 
Week 4 – pink, Week 2 – turquoise. Identical sequences overlap. 

It is noticeable that the general shape of the tree has been unaffected by the inclusion of the 

retrospective sample. Retrospective sequences cluster among the sequences from the pre treatment 

samples.  
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U.1Subpopulation analysis

 

U.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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U.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, 
Week 8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 – turquoise. Identical sequences overlap. 

A majority of sequences are included in subpopulation 1. 
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U.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

Subpopulation 1 comprises >90% of sequences at all times during the study. 
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V.1 Subject V 

V.1 Diversity, Complexity, and Divergence 

 

V.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is far greater than E1 diversity. 
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V.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates markedly increased amino acid complexity relative to E1 throughout the study 

period. 
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V.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

HVR1 divergence is maximal between the retrospective sample and the week 16 samples which is a 

fifteen month interval. The subsequent fortnightly HVR1 divergence is also significant. E1 

demonstrates not significant divergence through the entire study period. 

 

V.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  
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E1 demonstrates minimal divergence throughout the study period. HVR1 divergence from the 

retrospective group increases throughout the study period and is maximal at the pre treatment 

sample 

V.1 Phylogenetic analysis 

 

V.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (462 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 6 – blue, 
Week 2 – turquoise. Identical sequences overlap. 

It is noticeable that the general shape of the tree has been unaffected by the inclusion of the 

retrospective sample. The retrospective sequences cluster in two of the clades that were identified 

in the samples leading up to treatment.  
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Subpopulation analysis
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V.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 

 

 

V.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, 
Week 8 – yellow, Week 6 – blue, Week 4 – pink, Week 2 – turquoise. Identical sequences overlap. 

The retrospective sequences group with two previously identified subpopulations. 
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V.1 Fig 8.The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

This demonstrates characteristic features of a time order phylogeny with 3 different dominant HVR1 

QS subpopulations identified during the study. 
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W.1 Subject W 

W.1 Diversity, Complexity, and Divergence

 

W.1 Fig 1. HVR1 QS Diversity for each sample. Diversity is mean pairwise substitutions between 
clones within the sample and was calculated using a generalised time reversible model with 
invariant sites and a gamma distribution (GTR+I+G). 

HVR1 diversity is similar to E1 diversity in most samples. 
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W.1 Fig 2. QS complexity at (A)nucleotide and (B)amino acid level as calculated using Normalised 
Shannon Entropy. 

HVR1 demonstrates markedly increased amino acid complexity relative to E1 throughout the study 

period. 
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W.1. Fig 3. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each subsequent group of clones. 

Notably, there is minimal E1 or HVR1 divergence throughout the study which corresponds to fifteen 

months prior to commencement of treatment. 

 

W.1. Fig 4. QS divergence as measured using gamma distributed maximum composite likelihood 
pairwise analysis of transitions and transversions between each group of clones and the 
retrospective groups of clones.  

E1 and HVR1 demonstrate minimal divergence throughout the study period.   
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W.1 Phylogenetic analysis 

 

W.1 Fig. 5. Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment. Right - Phylogenetic tree (left) including all unique HVR1 sequences for the 16 weeks pre 
treatment with the addition of the unique HVR1 sequences from the retrospective sample (332 days 
prior to Week 16 sample). Retrospective (wine) and samples from week 16 (black) and week 0 
(orange) labelled. Tree constructed using maximum composite likelihood with GTR+I+G and 
bootstrap 10,000 for the purposes of optimisation. The labels are: Retrospective clones – wine, 
Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, Week 8 – yellow, Week 4 – pink, 
Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

It is noticeable that the general shape of the tree has been unaffected by the inclusion of the 

retrospective sample.   
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W.1 Subpopulation analysis

 

 

W.1 Fig 6 Sequence alignment generated using multalin (http://multalin.toulouse.inra.fr) containing 
all unique amino acid sequences for each sample. The bottom line approximates a HVR1 consensus 
sequence for the entire study. This was used to identify HVR1 subpopulations. We defined 
subpopulations as groups of sequences that differed from all other sequences for the same subject 
by a minimum of 4 amino acid substitutions. The subpopulations identified (4 in total) are 
designated by red integers. The numbering of subpopulations was done in accordance with the 
temporal appearance of the first of each subpopulation. Where two subpopulations appeared in the 
same sample, the subpopulation which contained the higher number of sequences was labelled first. 
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W.1 Fig 7 Phylogenetic tree with all unique HVR1 sequences including the retrospective sample with 
the subpopulations as identified using multalin labelled and circled in red. The labels are: 
Retrospective clones – wine, Week 16 – black, Week 14 – grey, Week 12 – red, Week 10 – green, 
Week 8 – yellow, Week 4 – pink, Week 2 – turquoise, Week 0 – orange. Identical sequences overlap. 

 The inclusion of the retrospective sample does not alter the number of subpopulations.  
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W.1 Fig 8. The prevalence of each subpopulation from the retrospective sample through the study 
period to the pre treatment sample.  

Subject W is characterised by a dominant HVR1 QS throughout the study with a minor subpopulation 

appearing twice at weeks 6 and 14. 
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