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Summary 25 

Dutch women of reproductive age have low concentrations of the fish fatty acids EPA and DHA. As the 26 

human brain incorporates high concentrations of these fatty acids in utero, these low EPA and DHA 27 

concentrations may adversely affect fetal brain health. We investigated associations between maternal 28 

AA, DHA, and EPA and cognitive function with the Kaufman Assessment Battery for Children, 29 

including sequential processing, simultaneous processing, and the mental processing composite, at 7 30 

years of age (n=292). Only 2% of the children performed more than one SD below the mental 31 

processing composite norm score. Fully-adjusted linear regression models did not show associations 32 

between maternal AA, DHA, or EPA status during any of the pregnancy trimesters and childhood 33 

sequential or simultaneous processing. Concluding, in this population, maternal fatty acid status during 34 

pregnancy was not associated with cognitive performance in Dutch children at age 7.  35 
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Abstract 36 

 37 

Introduction 38 

Concentrations of the fish fatty acids EPA and DHA are low among Dutch women of reproductive age. 39 

As the human brain incorporates high concentrations of these fatty acids in utero, particularly during 40 

third trimester of gestation, these low EPA and DHA concentrations may have adverse consequences 41 

for fetal brain development and functioning.  42 

 43 

Methods  44 

Analyses were conducted using longitudinal observational data of 292 mother-child pairs participating 45 

in the MEFAB cohort. Maternal AA, DHA, and EPA were determined in plasma phospholipids - 46 

obtained in three trimesters - by gas-liquid chromatography. Cognitive function was assessed at 7 47 

years of age, using the Kaufman Assessment Battery for Children, resulting in three main outcome 48 

parameters: sequential processing (short-term memory), simultaneous processing (problem-solving 49 

skills), and the mental processing composite score. Spline regression and linear regression analyses 50 

were used to analyse the data, while adjusting for potential relevant covariates. 51 

 52 

Results 53 

Only 2% of the children performed more than one SD below the mental processing composite norm 54 

score. Children with lower test scores (<25%) were more likely to have a younger mother with a higher 55 

pre-gestational BMI, less likely to be breastfed, and more likely to be born with a lower birth weight, 56 

compared to children with higher test scores (≥25%). Fully-adjusted linear regression models did not 57 

show associations of maternal AA, DHA, or EPA status during any of the pregnancy trimesters with 58 

childhood sequential and simultaneous processing. 59 

 60 

Conclusion 61 

Maternal fatty acid status during pregnancy was not associated with cognitive performance in Dutch 62 

children at age 7. 63 

 64 

Keywords: LCPUFA; cognitive performance; maternal; childhood; offspring.  65 
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1. Introduction 66 

Fish consumption in the Dutch population is low [1]. As fish is the predominant source of the long-67 

chain polyunsaturated fatty acids (LCPUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid 68 

(DHA), the intake of these fatty acids is low as well. Specifically, Dutch women aged 19-30 have 69 

reported a median (25th – 75th percentile) intake of 75 (41-133) mg EPA+DHA/day; those aged 31-51 70 

years have reported an intake of 89 (49-155) mg EPA+DHA/day [1]. To put this into perspective, the 71 

European Food Safety Authority (EFSA) currently recommends pregnant women to consume 350-450 72 

mg of EPA and DHA per day [2]. This low intake of these LCPUFAs, particularly DHA, in women of 73 

reproductive age is worrisome. Human studies namely indicate that the brain contains high 74 

concentrations of DHA [3], of which high quantities are already incorporated during the third trimester 75 

of gestation [4]. As the fetus principally depends on the DHA stores/intake of the mother, an adequate 76 

and balanced maternal DHA supply during gestation is assumed to be important for the developing 77 

fetal brain. 78 

Besides DHA, another predominant LCPUFA in the human brain is arachidonic acid (AA). As AA can 79 

be obtained from a more abundant spectrum of food sources than EPA and DHA, including vegetable 80 

oils, poultry, eggs, nuts, and whole-grain products, the intake of AA is assumed to be adequate in the 81 

Dutch population. Previous literature, however, does indicate an endogenous metabolic competition 82 

between n-3 fatty acids (e.g. EPA and DHA) and n-6 fatty acids (e.g. AA) [5]. Hence, not only the 83 

quantity of these LCPUFAs, but also their relative proportion may be of importance with respect to 84 

fetal brain development.  85 

Studies investigating the impact of prenatal LCPUFA supplementation [6-12], intake [13, 14], or 86 

maternal or cord blood concentrations [11, 12, 15-20] on child brain development and function are 87 

inconclusive. Whereas a study among 11-year-old Inuit children showed significant associations 88 

between higher umbilical cord DHA concentration and a better performance on the digit span forward 89 

and California Verbal Learning Test-Children’s Version [16], no associations were observed between 90 

umbilical cord DHA concentrations and cognitive performance in 7-year-old Norwegian [6] and Dutch 91 

children [19]. Beneficial associations were observed for maternal third trimester DHA concentrations 92 

and sequential processing scores at age 7 in Norwegian boys and girls [6] and language and verbal 93 

ability in 5-year-old children living at the Seychelles [15]. On the contrary, no associations were 94 

observed between second or second/third trimester maternal DHA concentrations and cognitive 95 
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performance of the child at the age of 3 [13] and 18 months [18]. Clearly, most studies investigated 96 

maternal LCPUFA concentrations in late gestation or at delivery in relation to childhood cognition. 97 

However, as fetal brain development is a highly complex process that already starts in the first 98 

trimester, research on potential LCPUFA effects throughout the whole gestational period is warranted 99 

to provide more insight regarding specific LCPUFA requirements during the various critical periods of 100 

brain development.  101 

The Maastricht Essential Fatty Acid Birth (MEFAB) cohort provides the unique opportunity to study 102 

associations between maternal essential fatty acid status throughout gestation (i.e. <16, 22, 32 103 

gestational weeks) and childhood brain development and functioning. Previous analyses within the 104 

MEFAB cohort did not show associations between umbilical cord plasma AA and DHA and sequential 105 

and simultaneous processing at age 7 [19], but adverse associations were observed for maternal DHA 106 

status across trimesters and school performance based on arithmetic scores at age 7 [21]. 107 

Associations between fatty acid status across trimesters and cognitive performance at age 7 have not 108 

been explored yet. Therefore, the aim of this study was to examine the associations of maternal 109 

LCPUFA concentrations (i.e. AA, DHA, EPA, and DHA:AA) during gestation (i.e. <16, 22, 32 weeks) 110 

with childhood cognitive performance at 7 years of age as assessed with the Kaufman-Assessment 111 

Battery (K-ABC) in the MEFAB cohort.  112 
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2. Patients and Methods 113 

2.1. Study population 114 

This study was performed using data of the MEFAB cohort, a prospective study designed to study 115 

relationships of essential fatty acid status during gestation and birth with metabolic health and 116 

cognitive, visual and motor function in Dutch children. Recruitment took place from 1989 to 1995. 117 

Pregnant women (<16 weeks) without any cardiovascular, neurological, renal or metabolic condition 118 

were eligible to participate. In total, n=1,334 women were screened; n=131 (10%) were either 119 

excluded or dropped out before partus. At 7 years of age, n=305 participated in the cognitive testing 120 

procedures. Excluding those with missing data on maternal fatty acid status in all three trimesters 121 

resulted in a sample size of n=292 children for the analyses. More detailed information on the design 122 

and methods of the MEFAB cohort has been described elsewhere [22]. The Medical Ethics Committee 123 

of the University Hospital Maastricht/University Maastricht approved the study protocol and all families 124 

gave written informed consent. 125 

 126 

2.2. LCPUFA status 127 

Non-fasted blood samples were collected at study entry (<16 gestational weeks), at 22 gestational 128 

weeks, 32 gestational weeks, and when the children were 7 years of age. Immediately after sampling, 129 

blood samples were stored at -80°C until further analyses were conducted. In total, 41 different 130 

maternal fatty acids of plasma phospholipids (PL) were determined by gas-liquid chromatography [23], 131 

including C14:0, C15:0, C16:0, C17:0, C18:0, C20:0, C22:0, C23:0, C24:0, C16:1n-7, C18:1n-7, 132 

C20:1n-7, C18:1n-9, C18:2n-9, C20:1n9, C20:3n-9, C22:1n-9, C22:3n-9, C24:1n-9, C18:2n-6, C18:3n-133 

6, C20:2n-6, C20:3n-6, C20:4n-6, C22:2n-6, C22:4n-6, C22:5n-6, C24:2n-6, C18:3n-3, C20:3n-3, 134 

C20:4n-3, C20:5n-3, C22:3n-3, C22:5n-3, C22:6n-3, C16:0 DMA, C18:0 DMA, C18:1 DMA, C18:2n-135 

6tr, C16:1n-7tr, and C18:1n-9tr. For this study, maternal plasma phospholipid DHA (C22:6n-3), AA 136 

(C20:4n-6), and EPA (C20:5n-3) concentrations were selected, providing relative concentrations of 137 

DHA, AA, and EPA to total phospholipid-associated fatty acids (% wt/wt).  138 

 139 

2.3. Cognitive performance 140 

Cognitive function was assessed with the Kaufman Assessment Battery for Children (K-ABC) [24], 141 

which evaluates two different types of information processing: sequential processing (i.e. short-term 142 
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memory) and simultaneous processing (i.e. problem-solving skills). The sequential processing score is 143 

based on a variety of assignments in which the child arranges items in serial or sequential order, such 144 

as reproducing hand taps on a table, recalling numbers, and recalling objects as presented by the 145 

researcher. The simultaneous processing score is based on a variety of assignments in which the 146 

child completes a facial recognition task, identifies objects or scenes in an unfinished picture, 147 

replicates an object using rubber triangles, selects a picture to finalize another picture or complement 148 

another picture, has to remember and recall the location of specific pictures, and arranges a variety of 149 

pictures in a meaningful order. Together the sequential and simultaneous processing scores form the 150 

mental processing composite score, a measure of intelligence. For all three scores, a score of 100±15 151 

points is considered average (i.e. norm score); a score of 85 is one standard deviation below the norm 152 

score of 100. Thus, higher scores indicate a better performance. The K-ABC was assessed according 153 

to a standard protocol, in a quiet room with blinded windows and by a single well-trained researcher.  154 

 155 

2.4. Covariates 156 

Information on child’s sex (boy/girl, n (%)), gestational age at birth (weeks), birth weight (grams), birth 157 

order (first/second/third/fourth/fifth, n (%)),breastfeeding (no/yes, n (%) and duration), child’s age at the 158 

time of the cognitive assessment (years), maternal age (years), maternal height (m), maternal pre-159 

pregnancy weight (kg), maternal smoking during gestation (yes/no, n (%)), and maternal alcohol 160 

consumption during gestation (yes/no, n (%)) were collected by means of questionnaires. Bodyweight 161 

of the child was measured to the nearest 100g using a digital scale (SECA) while wearing light 162 

underwear. Height of the child was measured to the nearest mm using a stadiometer (HoltainLTD, 163 

Crymych, UK). BMI was calculated as weight/height2. APGAR scores 5 minutes after birth were 164 

extracted from hospital records. Maternal pre-gestational BMI was calculated as weight/height2, using 165 

the measures of self-reported height and weight. Maternal intelligence was tested with Raven’s 166 

Standard Progressive Matrices [25]. 167 

 168 

2.5. Statistical analyses 169 

Participant characteristics are reported as mean with standard deviation (mean±SD), or n with 170 

percentages (n, (%)). Medians with interquartile range (median (IQR)) were used to report skewed 171 

variables. Data is shown for the total population, by tertiles of maternal DHA status in the third 172 
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trimester, and by cognitive performance score (normal vs. poor performance). Differences between 173 

tertiles of maternal DHA status and cognitive performance were analyzed by means of ANOVA in case 174 

of continuous variables and chi-square test in case of categorical variables. Correlations between the 175 

fatty acids across the trimesters were visualized by means of an ordination plot and quantified using 176 

Pearson’s correlations. Linearity of the associations of maternal fatty acid status with childhood 177 

cognitive performance were investigated using restricted cubic spline regression as well as linear 178 

regression analyses by tertile of fatty acid status. As the aforementioned analyses did not point 179 

towards non-linearity, multivariable linear regression analyses was used to quantify the strength of the 180 

associations between maternal fatty acid status and cognitive performance of the child at age 7. Model 181 

1 was adjusted for child sex, birth weight, gestational age at birth, birth order, duration of 182 

breastfeeding, and child BMI at age 7. Model 2 was adjusted for the covariates in model 1 + maternal 183 

age, maternal intelligence, maternal pre-gestation BMI, maternal smoking, and maternal alcohol 184 

consumption during gestation. Model 3 was adjusted for the covariates in model 2 + fatty acid status of 185 

the child at age 7 years. Given the intercorrelatedness between the fatty acids under study no 186 

adjustment for multiple testing was applied and hence a two-sided P-value of ≤0.05 was considered 187 

statistically significant. Restricted cubic spline analyses were performed using R v2.15. The ordination 188 

plot was created using Canoco v5. All other statistical analyses were performed using the statistical 189 

package SAS, v9.3 (SAS Institute Inc., Cary, NC, USA).   190 
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3. Results 191 

Participant characteristics are shown in Table 1. In this population, the mean±SD maternal age was 192 

29.9±4.2 years and pre-gestational BMI 23.7±4.1 kg/m2. Smoking was reported by 24% of the 193 

pregnant women; 3% reported to consume alcohol during pregnancy. Children were on average born 194 

with a gestational age of 40.1±3.3 weeks, weighed 3,302±512 grams, and were breastfed for a median 195 

(25-75th percentile) period of 0 (0-3) weeks. 56% of the children were boys. Most children were the first 196 

(69%) or second (24%) child of the family. None of the variables displayed in Table 1 differed over 197 

tertiles of maternal DHA status. Very few children performed more than one SD below the norm 198 

cognitive score, specifically n=7 (2%) for the mental processing composite score, n=23 (8%) for the 199 

sequential processing score, and n=4 (1%) for the simultaneous processing score. Nevertheless, 200 

children belonging to the group with the lowest cognitive test scores (<25%) were more likely to have a 201 

younger mother (28.3±4.4 vs. 30.4±4.0 years at the time of the pregnancy, P<0.05), a mother with a 202 

higher pre-gestational BMI (25.2±5.1 vs. 23.3±3.7 kg/m2, P<0.05), and were less likely to have 203 

received breastfeeding (35 vs. 50%, P<0.05) compared to children with higher test scores (≥25%). 204 

Children belonging to the group with the lowest cognitive test scores were also more likely to be born 205 

with a lower birth weight than children with higher test scores (3,191±571 g vs. 3,338±487 g, P<0.05). 206 

Absolute (wt/wt%) concentrations of the fatty acids across trimesters are displayed in Figure 1. As 207 

shown by the clustering of the arrows in Figure 2, the fatty acids under study are generally strongly 208 

correlated across the trimesters.  209 

 210 

Tests for non-linearity, visualization using restricted cubic splines, as well as linear regression 211 

analyses by tertiles (figures and data not shown) disclosed linear associations between the different 212 

fatty acids and childhood cognitive performance. Unadjusted linear regression models subsequently 213 

showed an inverse association between first trimester maternal AA concentrations and sequential 214 

processing scores (β-0.99±0.51, P=0.05) (Table 2). Moreover, very modest non-significant inverse 215 

trends between first and second trimester maternal AA concentrations and simultaneous processing 216 

scores were observed (β-0.83±0.48, P=0.09 and -0.98±0.56, P=0.08). As the sequential and 217 

simultaneous processing scores form the mental processing composite score, these trends were also 218 

reflected in the results for this overall mental composite score. 219 
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The modest associations of first and second trimester AA concentrations with sequential (β-0.68±0.57, 220 

P=0.23 and -0.55±0.65, P=0.70) and simultaneous processing (β-0.40±0.52, P=0.44 and -0.19±0.61, 221 

P=0.75) fully disappeared after further adjustment for child and maternal characteristics. Neither crude 222 

nor adjusted models pointed towards associations between maternal DHA concentrations and 223 

childhood cognitive performance. Crude models did show a borderline non-significant positive 224 

association between third trimester maternal EPA concentrations and sequential processing scores (β 225 

7.16±3.83, P=0.06). After adjustment for child as well as maternal characteristics a trend towards an 226 

association remained (β 7.28±4.05, P=0.07), which somewhat further attenuated after adjustment for 227 

EPA status of the child at 7 years of age (β 7.28±4.26, P=0.09). No associations were observed 228 

between maternal DHA:AA ratio and cognitive performance of the child at age 7 years.   229 
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4. Discussion and Conclusions 230 

This study did not show significant associations of maternal fatty acid status during the different 231 

trimesters of gestation with sequential (short-term memory) or simultaneous (problem-solving skills) 232 

processing of the children at age 7.  233 

 234 

A priori, associations with childhood cognitive performance were particularly hypothesized for third 235 

trimester maternal AA and DHA concentrations. Specifically, AA and DHA are considered to be the 236 

most important fatty acids for normal brain growth and development, amongst others due to their role 237 

in neuronal growth, differentiation, and signaling [26]. These potential effects are particularly expected 238 

during the third trimester as this is the period with the highest transfer of fatty acids from the mother to 239 

the unborn child [27]. In contrast to these expectations, we did not observe any association between 240 

maternal AA, DHA, and EPA status across trimesters and childhood cognitive performance. Our 241 

findings are in line with previous analyses within this cohort examining associations of umbilical cord 242 

AA and DHA concentrations with cognitive performance at age 7, which also not provided evidence for 243 

significant associations between the variables under study [19].  244 

 245 

In this study no associations were observed between first trimester fatty acid status and offspring 246 

cognition. To the best of our knowledge, this is the first study examining associations between first 247 

trimester fatty acid concentrations and childhood cognitive performance and hence this association 248 

warrants further verification in other cohorts. We did also not observe associations between second 249 

trimester fatty acid status and childhood cognitive performance. These findings are in line with the 250 

findings in the Project Viva cohort showing no associations between second trimester maternal 251 

erythrocyte DHA concentrations with cognitive performance at 3-years-old [13] and data of an Italian 252 

cohort investigating the link between second/third trimester LCPUFAs and child neurodevelopment 253 

[18]. Our null-findings with respect to third trimester DHA and AA concentrations and cognitive 254 

performance of the child are in contrast to findings of several other studies. After full-adjustment, 255 

Strain and colleagues observed associations between higher third trimester maternal DHA 256 

concentrations and higher scores on the Preschool Language Scale-Revised for language (β 41.3, SE 257 

19.3, P=0.03) as well as verbal ability (β 24.6, SE 12.2, P=0.04), but not with Kaufman Brief 258 

Intelligence Test scores (n=225, aged ±5y, the Seychelles) [15]. In addition, this study showed 259 
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associations of third trimester maternal AA concentrations with language (β -15.8, SE 6.5, P=0.02), 260 

auditory comprehension (β -7.5, SE 3.2, P=0.02), and verbal ability (β -8.3, SE 4.1, P=0.04) [15]. In 7 261 

year old Norwegian children (n=143), third trimester maternal DHA concentrations were positively 262 

associated with sequential processing scores of the K-ABC (β 0.06±0.03, P<0.05) [6]. Our null-findings 263 

with respect to maternal EPA concentrations and childhood cognitive performance in our study are in 264 

line with the null-findings in the Norwegian study [6], Project Viva [13], the Seychelles study [15], as 265 

well as the Italian study [18].  266 

 267 

Unfortunately, none of the above-summarized studies analyzed data on fatty acid status throughout 268 

gestation. Previous analyses within the MEFAB cohort did investigate associations between fatty acid 269 

status across trimesters and school performance at age 7 [21]. These analyses pointed towards 270 

significant adverse associations between maternal DHA status in all three trimesters and arithmetic 271 

scores. Adverse associations were also shown of maternal EPA concentrations in the first and second 272 

trimester with arithmetic scores, first trimester EPA with spelling, and first trimester AA with arithmetic 273 

and reading scores [21]. However, although cognition and school performance are related, these 274 

terms cannot be exchanged, as school performance is probably also affected by other factors such as 275 

perseverance and study time. Possible explanations for the inconsistent findings for the studies on 276 

maternal fatty acid status and childhood cognition are that they may relate to methodological 277 

differences in cognitive assessment (e.g. method lacking sensitivity), power-issues, and limited 278 

variation in fatty acid status. It has also been postulated that early life effects of LCPUFA may be 279 

transient and that effects are overruled by effects of the LCPUFA supply in postnatal life [18]. 280 

However, this last idea is contradicted by the various studies showing significant associations between 281 

maternal fatty acid status during gestation and cognitive performance at 5, 7, and 11-years old [6, 15, 282 

16]. Moreover, our models did not substantially change after adjustment for fatty acid status of the 283 

child at the age of 7 years. 284 

 285 

Finally, in order to put our findings further into perspective, there are several study specific 286 

characteristics that warrant some discussion. First of all, cognitive performance was assessed with the 287 

K-ABC. Our test results indicate that only very few children in this population performed more than one 288 

SD below the norm-score, which may indicate that this test was not sensitive enough to detect robust 289 
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associations. However, our test scores and the variation in these scores were relatively similar to the 290 

test scores in the study by Helland and colleagues [6], who used the same cognitive test battery and 291 

did observe an association between maternal third trimester DHA and sequential processing of the 292 

child. Secondly, maternal fatty acids were determined using non-fasted blood samples, which may 293 

raise doubts about the long-term representativeness of the measured concentrations. However, as 294 

previous work has shown that the incorporation of EPA and DHA in erythrocyte membranes has a 295 

half-life of approximately 28 days, where concentrations start to rise after 3 days of fish oil 296 

supplementation [28], we do not expect a substantial influence of very recent EPA and DHA intakes 297 

on the EPA/DHA concentrations measured. Another limitation of our study may be that only 305 298 

children of the original 1203 mother-offspring pairs completed the cognitive tests at age 7. Though, 299 

Bakker and colleagues (2003) compared the data of participating and non-participating children with 300 

respect to their clinical baseline characteristics and did not show significant differences between these 301 

two groups [19]. Despite aforementioned limitations, a unique feature of this study is that women were 302 

included in a very early stage of gestation, providing us with valuable data on fatty acids status from 303 

the first to the third trimester. Furthermore, as fatty acids were measured in plasma phospholipids, a 304 

generally accepted technique to determine long-term dietary fatty acids intake, it can be confidently 305 

stated that the exposure marker studied provided a reliable reflection of long-term fatty acid status. 306 

Last but not least, children were followed for on average 7 years of age, which offered the possibility to 307 

study potential long-term effects of early-life LCPUFA exposure.  308 

 309 

All in all, we conclude that our analyses in the Dutch MEFAB cohort do not provide evidence for a 310 

negative nor a positive association between maternal LCPUFA concentrations throughout gestation 311 

and cognitive performance at 7-years-old.  312 

 313 
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Figure 1. Fatty acid status (% wt/wt) across trimesters. AA: 9.61±1.47 (T1), 8.58±1.29 (T2), 8.15±1.17 (T3); DHA: 4.02±0.83 
(T1), 4.16±0.84 (T2), 4.00±0.74 (T3); EPA: 0.52±0.37 (T1), 0.41±0.36 (T2), 0.35±0.20 (T3); DHA:AA: 0.42±0.09 (T1), 
0.49±0.12(T2), 0.50±0.11 (T3).  

 

 

Figure 2. Ordination plot. Arrows indicate the strength of the correlations between the different fatty acids (% wt/wt) as 
measured throughout the three trimesters (T1, T2, and T3). In general, arrows for a specific fatty acid are clustered in the same 
region, indicating strong correlations between the fatty acids across trimester. Specifically, Pearson correlations for AA-T1 vs T2 
and T3 were 0.74 (P<0.0001) and 0.69 (P<0.0001). Pearson correlations for DHA-T1 vs T2 and T3 were 0.58 (P<0.0001) and 
0.51 (P<0.0001). Pearson correlations for EPA-T1 vs T2 and T3 were 0.24 (P=0.0001) and 0.19 (P=0.002). 
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Table 1. Population characteristics by tertiles of third trimester DHA status 

  

Total 

(n=292) 

3rd trimester DHA status 

 

Mental processing composite 

 

Tertile 1 

(n=103) 

 

Tertile 2 

(n=95) 

 

 

Tertile 3 

(n=94) 

<25% 

(poor, n=71) 

≥25% 

(normal, n=221) 

Maternal parameters during 

pregnancy 

      

Age, years 29.9±4.2 29.4±4.5 30.3±4.3 29.9±3.7 28.3±4.4 30.4±4.0* 

Pre-gestational BMI, kg/m2 23.7±4.1 23.7±3.9 23.6±4.0 23.8±4.5 25.2±5.1 23.3±3.7* 

Smoking, n (%) 68 (24) 25 (24) 25 (27) 18 (20) 19 (27) 49 (23) 

Alcohol consumption, n (%)  9 (3) 5 (5) 2 (2) 2 (2) 2 (3) 7 (3) 

Maternal intelligence, score 51±12 52±12 49±13 52±10 50±11 51±12 

       

Child        

Sex, n boy (%) 159 (56) 56 (55) 52 (56) 51 (55) 44 (65) 115 (53) 

Gestational age, wk 40.1±3.3 40.3±4.9 40.2±1.6 39.9±2.1 40.5±5.8 40.0±1.9 

Birth weight, grams 3302±512 3222±539 3389±497 3303±486 3191±571 3338±487* 

APGAR score (5 min) 9.6±0.9 9.6±1.0 9.6±0.6 9.5±1.0 9.5±0.9 9.6±0.9 

Birth order, n (%) 

   First   

   Second  

   Third  

   Fourth  

   Fifth 

 

200 (69) 

71 (24) 

16 (6) 

4 (1) 

1 (0) 

 

68 (66) 

26 (25) 

7 (7) 

2 (2) 

0 

 

59 (62) 

28 (29) 

6 (6) 

1 (1) 

1 (1) 

 

73 (78) 

17 (18) 

3 (3) 

1 (1) 

0 

 

48 (68) 

18 (25) 

3 (4) 

1 (1) 

1 (1) 

 

152 (69) 

53 (24) 

13 (6) 

3 (1) 

0 

Breastfeeding, n (%) 132 (46) 44 (44) 37 (41) 51 (55) 24 (35) 108 (50)* 

Duration breastfeeding, wk 0 (0-3) 0 (0-3) 0 (0-3) 1 (0-4) 0 (0-2) 0 (0-3) 

Age at assessment, y 7.3±0.3 7.3±0.2 7.3±0.3 7.3±0.3 7.3±0.3 7.3±0.3 

BMI at age 7y 15.6±1.8 15.6±1.7 15.9±2.1 15.2±1.6 15.4±1.7 15.6±1.9 

Mental processing composite, 

score 

107±12  108±13  107±12  108±11  92±7 112±9* 

Sequential processing, score  102±13 101±12  102±12  104±13  88±10 107±10* 

Simultaneous processing, score  109±12 110±12  109±12  109±11  96±7 114±9* 

Values are expressed as mean±SD, median (IQR), or n (%). To compare baseline characteristics over tertiles of third trimester 
DHA status or cognitive performance, chi-squared tests were performed for categorical variables and 1-way analysis of variance 
for continuous variables. * indicates P<0.05. Missing: Sex child n=6, Smoking n=4, Alcohol n=5, pre-pregnancy BMI n=31, 
gestational age n=14, birthweight n=1, breastfeeding n=8, age at assessment n=6, BMI at age 7 n=11, APGAR score after 5 
minutes n=3.   
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Table 2. Associations of 1st, 2nd, and 3rd AA, DHA, EPA, and DHA:AA status with cognitive performance at age 7 years. 

  

Crude model 

 

 (T1 n=281; T2 n=261; T3 

n=275) 

 

Model 1 

 

(T1 n=254; T2 n=238, T3 

n=252) 

 

Model 2 

 

(T1 n=229; T2 n=212; T3 

n=225) 

 

Model 3 

 

(T1 n=199; T2 n=183; T3 

n=193) 

 β±SD P β±SD P β±SD P β±SD P 

Sequential processing 

score 

        

Fatty acid Trimester         

AA 1 -0.99±0.51 0.05 -1.21±0.55 0.03 -0.68±0.57 0.23 -0.73±0.62 0.24 

AA 2 -1.04±0.61 0.09 -0.96±0.64 0.14 -0.25±0.65 0.70 -0.12±0.70 0.87 

AA  3 -0.52±0.66 0.43 -0.30±0.69 0.66 0.02±0.72 0.97 -0.10±0.79 0.90 

DHA 1 0.55±0.91 0.55 -0.15±0.96 0.88 1.21±1.00 0.23 1.58±1.05 0.14 

DHA 2 0.01±0.95 0.99 -0.16±0.98 0.87 0.40±0.97 0.68 0.56±1.04 0.59 

DHA  3 0.96±1.04 0.36 0.29±1.10 0.79 1.06±1.15 0.35 1.06±1.23 0.39 

EPA  1 -1.39±2.04 0.50 -2.28±2.14 0.29 -0.56±2.21 0.80 0.07±3.22 0.98 

EPA  2 -1.27±2.22 0.57 -2.62±2.26 0.25 -2.23±2.13 0.30 -2.53±2.18 0.25 

EPA 3 7.16±3.83 0.06 6.05±4.05 0.14 7.28±4.05 0.07 7.28±4.26 0.09 

DHA:AA 1 14.14±7.96 0.08 9.73±8.34 0.24 12.96±8.16 0.11 16.34±8.95 0.07 

DHA:AA  2 4.24±6.84 0.54 2.00±7.03 0.78 1.10±6.77 0.87 -0.15±7.08 0.98 

DHA:AA  3 5.73±7.21 0.43 0.16±7.53 0.98 3.36±7.85 0.67 3.60±8.47 0.67 

Simultaneous 

processing score 

        

Fatty acid Trimester         

AA 1 -0.83±0.48 0.09 -0.67±0.50 0.18 -0.40±0.52 0.44 -0.30±0.58 0.61 

AA 2 -0.98±0.56 0.08 -0.63±0.58 0.28 -0.19±0.61 0.75 -0.16±0.68 0.81 

AA  3 -0.61±0.59 0.30 -0.04±0.61 0.95 0.13±0.65 0.84 0.05±0.72 0.95 

DHA 1 -0.33±0.85 0.70 -0.55±0.88 0.53 -0.14±0.91 0.88 0.01±0.98 0.99 

DHA 2 -0.19±0.87 0.82 -0.05±0.89 0.95 -0.14±0.91 0.88 -0.22±0.99 0.82 

DHA  3 -0.84±0.94 0.37 -1.09±0.98 0.27 -1.54±1.02 0.13 -1.81±1.11 0.10 

EPA  1 -0.83±1.91 0.66 -1.39±1.95 0.48 -1.17±2.02 0.56 -1.09±2.96 0.71 

EPA  2 -0.67±2.03 0.74 -1.44±2.05 0.48 -0.56±2.00 0.78 -1.32±2.07 0.53 

EPA 3 3.61±3.47 0.30 2.69±3.63 0.46 2.82±3.66 0.44 2.51±3.87 0.52 

DHA:AA 1 7.20±7.49 0.34 3.70±7.60 0.63 2.69±7.50 0.72 3.10±8.31 0.71 

DHA:AA  2 5.44±6.27 0.39 3.40±6.36 0.59 0.13±6.33 0.98 -0.90±6.73 0.89 

DHA:AA  3 -1.75±6.50 0.79 -7.96±6.71 0.24 -11.47±7.00 0.10 -12.53±7.60 0.10 

Mental processing         
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score 

Fatty acid Trimester         

AA 1 -1.03±0.49 0.04 -1.02±0.52 0.05 -0.59±0.54 0.27 -0.52±0.59 0.38 

AA 2 -1.17±0.58 0.05 -0.90±0.61 0.14 -0.19±0.61 0.75 -0.19±0.69 0.79 

AA  3 -0.64±0.61 0.29 -0.15±0.64 0.81 0.09±0.66 0.89 0.00±0.74 0.99 

DHA 1 -0.01±0.87 0.99 -0.47±0.91 0.61 0.42±0.93 0.65 0.71±2.00 0.48 

DHA 2 -0.15±0.90 0.86 -0.14±0.93 0.88 0.09±0.93 0.92 0.13±1.01 0.90 

DHA  3 -0.18±0.97 0.86 -0.64±1.02 0.53 -0.61±1.05 0.56 -0.78±1.15 0.50 

EPA  1 -1.30±1.96 0.51 -2.06±2.02 0.31 -1.16±2.07 0.58 -0.96±3.04 0.75 

EPA  2 -0.97±2.11 0.65 -2.07±2.14 0.33 -1.30±2.04 0.53 -1.96±2.12 0.36 

EPA 3 5.73±3.58 0.11 4.63±3.77 0.22 5.21±3.74 0.17 4.90±3.97 0.22 

DHA:AA 1 11.22±7.64 0.14 6.95±7.89 0.38 7.64±7.66 0.32 9.32±8.51 0.28 

DHA:AA  2 5.59±6.53 0.39 3.22±6.66 0.63 0.73±6.48 0.91 -0.49±6.88 0.94 

DHA:AA  3 0.99±6.74 0.88 -5.72±7.00 0.41 -6.59±7.21 0.36 -7.24±7.87 0.36 

Associations are adjusted for child sex, birth weight, gestational age at birth, birth order, breastfeeding (yes/no), child BMI at age 
7 (model 1) + maternal age, maternal intelligence, maternal pre-pregnancy BMI, maternal smoking (yes/no) + maternal alcohol 
consumption during pregnancy (yes/no) (model 2) + fatty acid status at age 7 (model 3).  


