

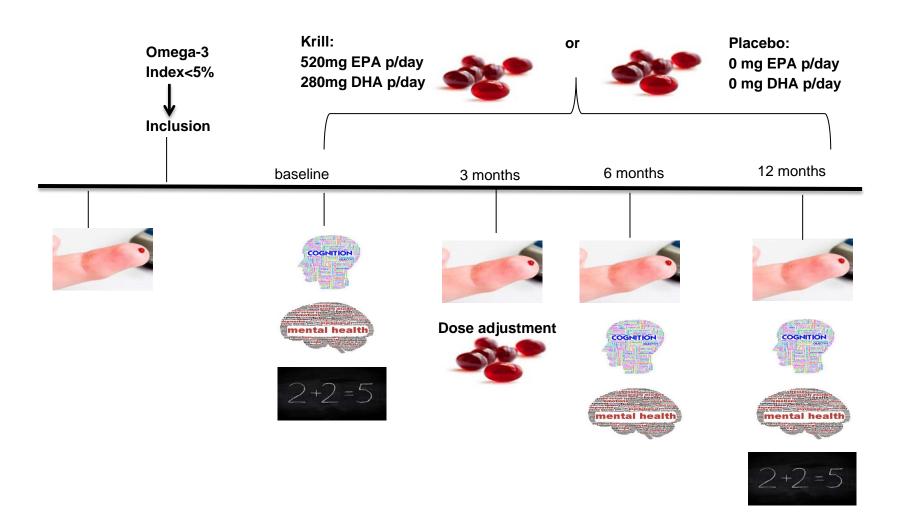
Effect of 1 year krill oil supplementation on cognitive achievement in typically developing Dutch adolescents: Preliminary results

ISM van der Wurff, C von Schacky, T Bergeland, R Leontjevas, MP Zeegers, PA Kirschner, RHM de Groot

Open Universiteit welten-institute.org

Research Question

What is the influence of 1 year of krill oil supplementation in 13-15 year old adolescents attending lower general secondary education on:


Cognitive functioning and academic achievement?

Mood and self-esteem?

Sleep quality and quantity and visual processing?

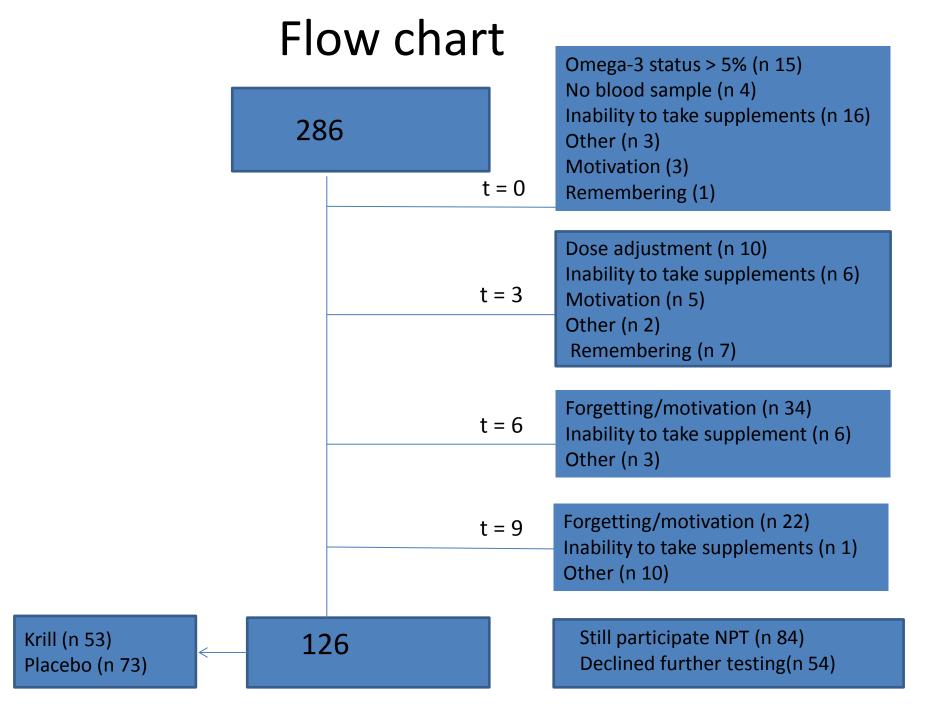
Study design

Cognitive tests

Cognitive test	Measures
Letter digit substitution task	Speed of information processing
D2 test of attention	Speed of information processingImpulsivityInattention
Stroop test	Inhibition
Concept shifting test	Shifting
Digit span forward	Short term memory
Digit span backward	Working memory

Unique characteristics

Adolescents


Lower general secondary education (TL/MAVO)

Selection <5% Omega-3 Index

Personalised dose-adjustment after 3 months

Supplement consumed at dinner time

Baseline characteristics

	Mean ± SD or N [%]	min	max
Age (years)	14.10 ± 0.49	13.09	15.44
Male/Female	127/139 [47.7/52.3%]		
Smoking no/yes ¹	239/26 [90.2/9.8%]		
ВМІ	19.93 ± 3.00	13.7	31.5
Diagnosis yes/no ²	69/196 [26/73.7%]		
Alcohol per week ³	0.46 ± 1.77	0	22

¹ Smoking 'yes' was defined as anybody who indicated to smoke more than 0 cigarettes per week.

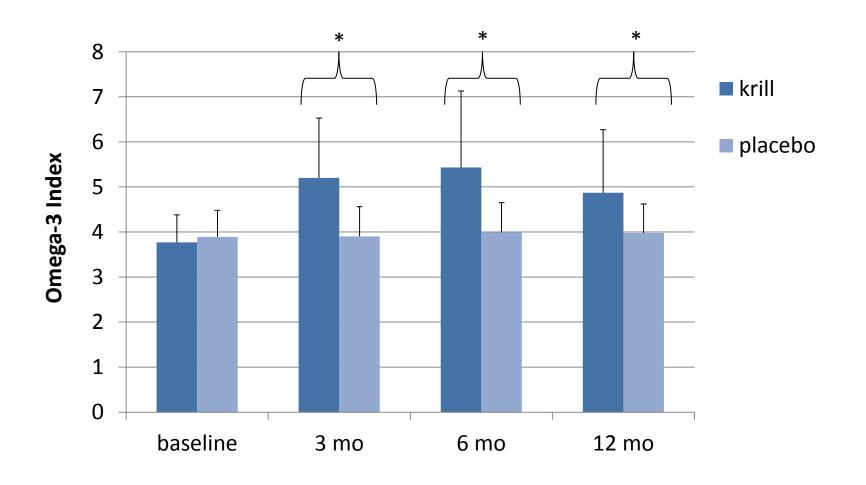
³ Alcohol consumption was asked as how many times per week and units per consumption moment, alcohol per week is defined as these factors multiplied.

² Diagnosis was indicated by students themselves and included (but not limited to) dyslexia, dyscalculia, depression, autism and ADHD.

Baseline results

A higher Omega-3 Index was associated with better information processing speed.

A higher Omega-3 Index was associated with less inattention/impulsivity (i.e. paid more attention)


Change in fatty acids (ITT)

fatty acid (%wt/wt of total FA)	condition	baseline	3 months	6 months	12 months
AA 20:4n-6	Placebo	11.19 ± 1.36	11.00 ± 1.19	11.04 ± 1.51	11.13 ± 1.28
	Krill	11.15 ± 1.16	10.27 ± 1.12*	10.30 ± 1.39 *	10.70 ± 1.48*
EPA 20:5n-3	Placebo	0.39 ± 0.15	0.43 ± 0.15	0.41 ± 0.14	0.41 ± 0.14
	Krill	0.39 ± 0.16	0.95 ± 0.59*	0.99 ± 0.71*	0.75 ± 0.58*
ObA 22:5n-6	Placebo	0.42 ± 0.11	0.41 ± 0.17	0.42 ± 0.09	0.38 ± 0.12
	Krill	0.44 ± 0.10	0.32 ± 0.12*	0.32 ± 0.11*	0.33 ± 0.13*
DPA 22:5n-3	Placebo	1.22 ± 0.20	1.29 ± 0.22	1.30 ± 0.20	1.30 ± 0.19
	Krill	1.23 ± 0.17	1.59 ± 0.34*	1.56 ± 0.35*	1.47 ± 0.31 *
DHA 22:6n-3	Placebo	2.63 ± 0.48	2.63 ± 0.55	2.70 ± 0.54	2.74 ± 0.55
	Krill	2.53 ± 0.52	3.30 ± 0.76*	3.48 ± 0.95*	3.24 ± 0.84*

^{*} Krill oil and placebo condition are significantly different p<0.05

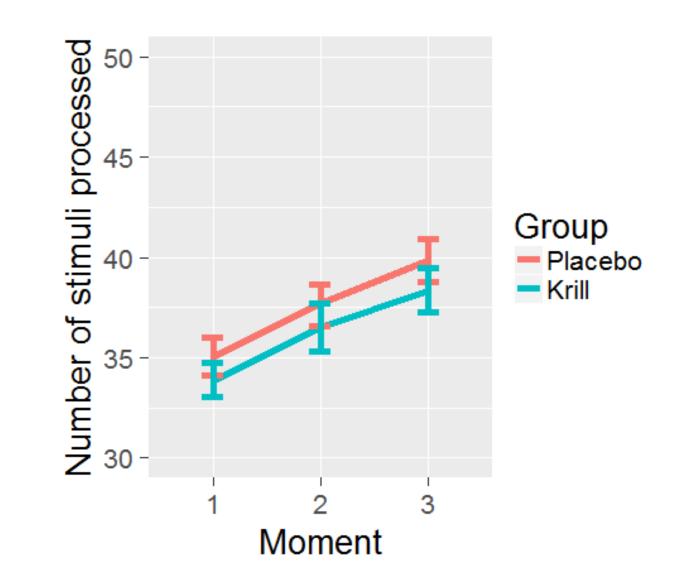
Change in Omega-3 Index over time

^{*} Krill oil and placebo condition are significantly different p<0.05

In comparison

Target group	Omega-3 index
Unselected Japanese men (n 262)	9.58
Unselected Germans (n 5000)	7.15 ± 2.19
Unselected Europeans (n 10000)	6.96 ± 2.15
Framingham-Offspring (n 3196)	4.90 ± 2.10
American adolescents with major depression (n 150)	3.46
Americans with major depression (n 118)	2.90 ± 1.50

Adapted from: Von Schacky , C. Omega-3 index and cardiovascular health. Nutrients 2014;6:799–814. doi:10.3390/nu6020799



Analyses

- Multilevel analyses with person as unit
- Intention to treat and blood Omega-3 Index
- Correction for covariates
 - Drinking (units per week)
 - Smoking (yes/no)
 - Age at specific test moment
 - BMI (self-reported at baseline)
 - Sex
 - Cohort number
 - Level of parental education

Results speed of information processing

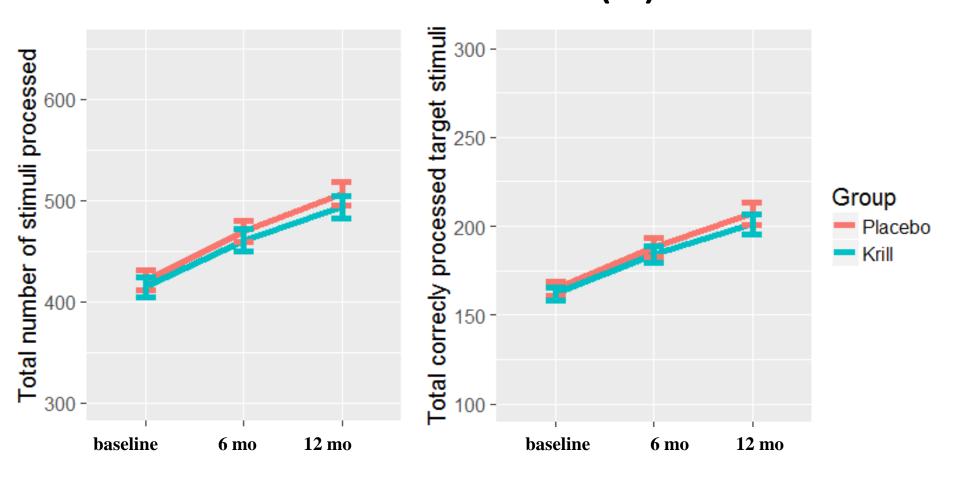
ITT analyses:

 $\beta = -1.28$

p = 0.114

95% CI: -2.84 to 0.28

Omega-3 Index:


 $\beta = 0.02$

p = 0.911

95% CI: -0.33 to 0.37

Results: D2 (1)

ITT analyses:

 $\beta = -11.91$

p = 0.151

95% CI: -27.84 to 4.04

Omega-3 Index:

 $\beta = -1.70$

p = 0.258

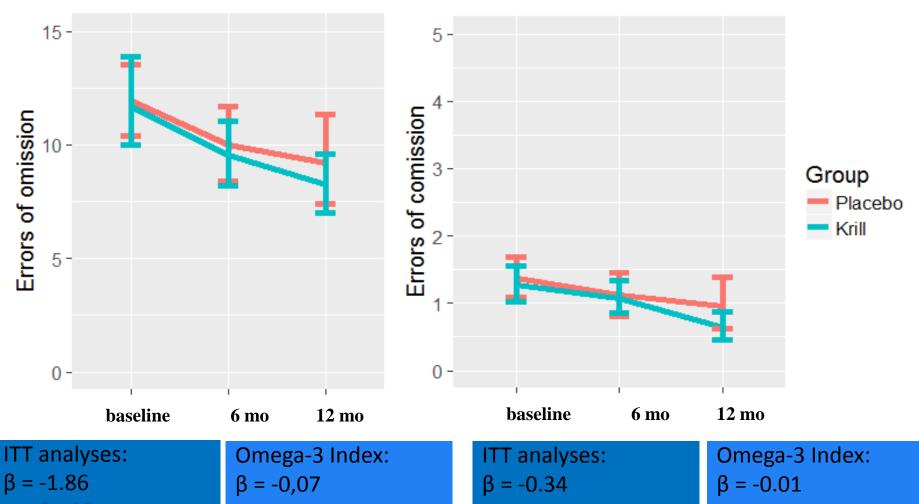
95% CI: -4.66 to 1.22

ITT analyses:

 $\beta = -4.25$

p = 0.278

95% CI: -11.79 to 3.29


Omega-3 Index:

 $\beta = -1.70$

p = 0.100

95% CI: -2.37 to 0.20

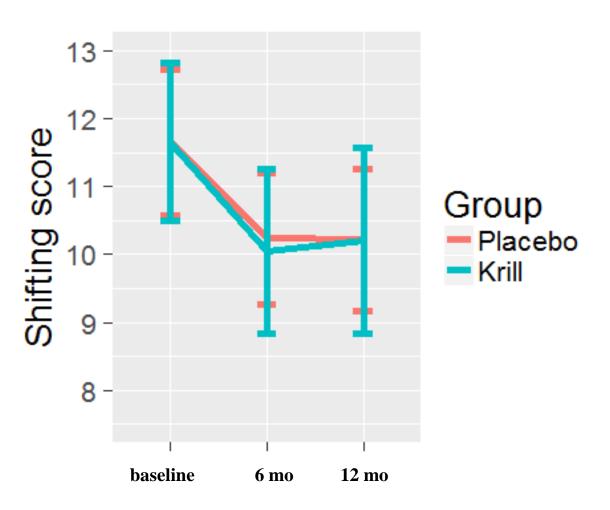
Results: D2 (2)

p = 0.129

95% CI: -4.21 to 0.49

p = 0.804

95% CI: -0.63 to 0.48


p = 0.077

95% CI: -0.70 to 0.03

p = 0.929

95% CI: -0.12 to 0.11

Results: Shifting

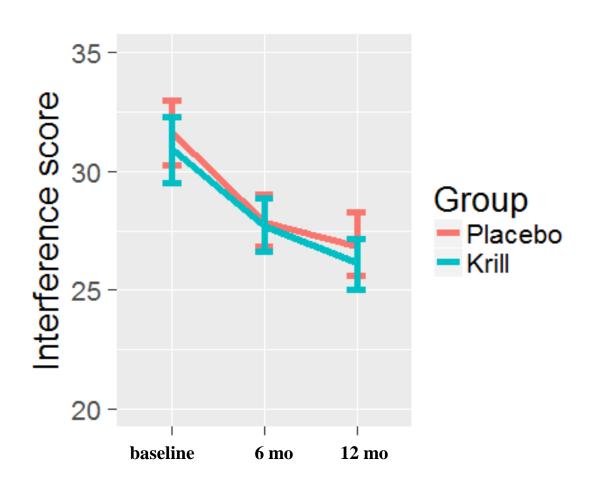
ITT analyses:

 $\beta = -0.59$

p = 0.443

95% CI: -2.06 to 0.88

Omega-3 Index:


 $\beta = -0.05$

p = 0.853

95% CI: -0.53 to 0.44

Results: Interference

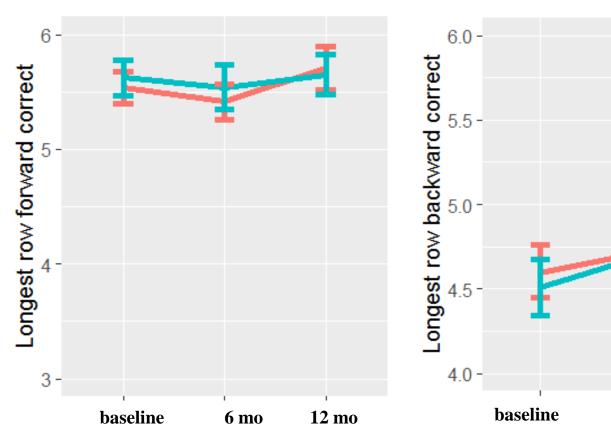
ITT analyses:

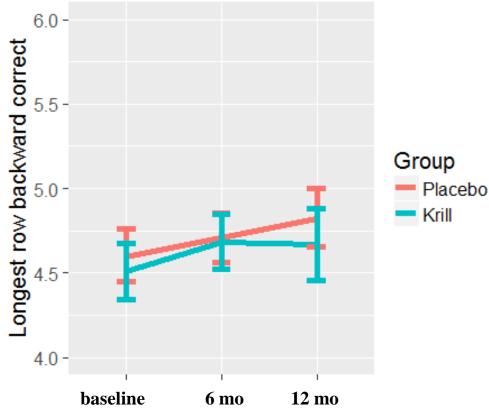
 $\beta = -0.100$

p = 0.888

95% CI: -1.26 to 1.46

Omega-3 Index:


 $\beta = -0.28$


p = 0.290

95% CI: -0.78 to 0.23

Results: Digit Span

ITT analyses:

 $\beta = 0.03$

p = 0.793

95% CI: -0.20 to 0.26

Omega-3 Index:

 $\beta = 0.01$

p = 0.684

95% CI: -0.05 to 0.08

ITT analyses:

 $\beta = -0.03$

p = 0.759

95% CI: -0.25 to 0.18

Omega-3 Index:

 $\beta = 0.00$

p = 0.932

95% CI: -0.07 to 0.07

Discussion (1)

- No significant effects of supplementation on cognitive test performance.
- Even analyses according to omega-3 fatty acid status did not show effects
- 1 year of krill oil, still low Omega-3 Index
 - Did not take capsules compliance
 - Factors associated with metabolism
 - Krill oil

Discussion (2)

- Further analyses are in progress and other outcome measures (mental well-being, sleep, academic achievement, mental processing).
- Important to take blood values!

Funding

- Study was funded by:
 - Grant of Dutch Scientific Organisation
 - Aker Biomarine
 - Omegametrix

Publications

- van der Wurff, I., Von Schacky, C., Berge, K., Zeegers, M., Kirschner, P. A., & de Groot, R. (2016). Association between Blood Omega-3 Index and Cognition in Typically Developing Dutch Adolescents. Nutrients, 8(1), 13.
- van der Wurff, I. S. M., von Schacky, C., Berge, K., Kirschner, P. A., & de Groot, R. H. M. (2016). A protocol for a randomised controlled trial investigating the effect of increasing Omega-3 index with krill oil supplementation on learning, cognition, behaviour and visual processing in typically developing adolescents. BMJ open, 6(7), e011790. doi:10.1136/bmjopen-2016-011790.

Thank you for your attention

