
DEVELOPMENT OF A HEART MOTION TRACKING SYSTEM USING NON-INVASIVE
IMAGING DATA

by

Bryent Tucker

July, 2017

Director of Thesis: Dr. Zhen Zhu

Major Department: Engineering

 Cardiac motion can be monitored non-invasively for the assessment of cardiovascular

function by using medical imaging systems and motion tracking algorithms. Existing tracking

approaches require a priori understanding of the non-rigid motion of the target system, which

could change over multiple cardiac cycles and lead to tracking failures. The purpose of this

research is to develop the algorithm and software, with computer vision techniques, to

continuously track the motion of a user-defined region of the heart images. The proposed

algorithm improves upon existing techniques because it does not require an underlying motion

model, it quantifies the quality of tracking, and it can recover from a failed tracking estimate.

The motion estimation of a non-rigid system will be done by a piecewise tracking approach that

breaks up the region of interest into several small segments (patches), which can be

approximated with interconnected pseudo-rigid segments. These segments will be initialized

based on two criteria: 1) motion within a segment must follow the pseudo-rigid body model;

and 2) motion in neighboring segments must be similar to each other. Segments are

subsequently tracked as pseudo-rigid bodies, and the criteria described above are also used to

detect failures in tracking. If a failure were to occur, the tracking algorithm will be reinitialized

automatically. This algorithm was shown to be accurate and efficient, and has been tested on

several heart motion data sets.

Development of a Heart Motion Tracking System

using Non-invasive Imaging Data

A Thesis

Presented to the Faculty of the Department of Engineering

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science Biomedical Engineering

by

Bryent Tucker

July, 2017

© Bryent Tucker, 2017

Development of a Heart Motion Tracking System

using Non-invasive Imaging Data

by

Bryent Tucker

APPROVED BY:

DIRECTOR OF

THESIS: __

 (Zhen Zhu, PhD)

COMMITTEE MEMBER: ___

 (Sunghan Kim, PhD)

COMMITTEE MEMBER: ___

 (Jun Qing Lu, PhD)

CHAIR OF THE DEPARTMENT

OF (Engineering): __

 (Hayden Griffin, PhD)

DEAN OF THE

GRADUATE SCHOOL: ___

 Paul J. Gemperline, PhD

ACKNOWLEDGEMENTS

 I would first like to thank Dr. Ferguson and Dr. Chen for providing all five heart motion

data sets. This data provided the support in the development and testing of the heart motion

tracking system. I would also like to thank my thesis advisor, Dr. Zhu, along with my committee

members, Dr. Lu and Dr. Kim, for their tremendous help in guiding me throughout this research

process. I would lastly like to thank my fiancée, Amanda, and family for their consistent support

as I completed this thesis.

TABLE OF CONTENTS
LIST OF TABLES .. vi

LIST OF FIGURES .. vii

LIST OF SYMBOLS OR ABBREVIATIONS ... x

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: REVIEW OF THE LITERATURE ... 3

 2.1: Medical Image Tracking: MRI Tagging ... 3

 2.2: Robotic Assistant Surgery Tracking ... 7

 2.3: Computer Vision Tracking Algorithms for Non-Rigid Motion Tracking 11

CHAPTER 3: METHODS .. 15

 3.1: Non-Rigid Motion Observation Model... 15

 3.1.1: Piecewise Approximation .. 16

 3.1.2: 2D Observations and Constraints .. 18

 3.1.3: Configuration of Piecewise Tracking .. 19

 3.2: Computer Vision Techniques ... 22

 3.2.1: Preprocessing: Histogram Eq., Determine Patch, Edge Detection 23

 3.2.2: Corner Detection and Kanade-Lucas-Tomasi Tracking (KLT) 26

 3.2.3: Initialization and Re-initialization Techniques 32

 3.3: Experimental Design... 40

CHAPTER 4: RESULTS .. 42

 4.1: Initialization .. 42

 4.2: Tracking and Reinitialization .. 54

CHAPTER 5: DISCUSSION .. 76

 5.1: Initialization of Parameters .. 76

 5.2: Recovery from Loss Track and Reinitialization ... 79

CHAPTER 6: CONCLUSIONS ... 80

REFERENCES…………………. ... 82

APPENDIX: MATLAB ALGORITHM ... 84

LIST OF TABLES

1. Table 1: Initialization of the Patch Number and Thresholds for Data Set 1 42

2. Table 2: Initialization of the Patch Number and Thresholds for Data Set 2 43

3. Table 3: Initialization of the Patch Number and Thresholds for Data Set 3 43

4. Table 4: Initialization of the Patch Number and Thresholds for Data Set 4 43

5. Table 5: Initialization of the Patch Number and Thresholds for Data Set 5 43

LIST OF FIGURES

1. Figure 1: Algorithm Flowchart ... 22

2. Figure 2: Histogram Equalization Results ... 24

3. Figure 3: Convolution Demonstration ... 25

4. Figure 4: Original Image – Low and High Threshold Edge Detection 26

5. Figure 5: Optical flow of 2 Image Frames with Pixel Points Velocity Estimation .. 27

6. Figure 6: Image Derivatives in the X (left) and Y (right) Directions 28

7. Figure 7: Barber Pole Illusion with True Motion and Incorrect Optical Flow 28

8. Figure 8: Iterative Refinement of Optical Flow using Image Pyramids 30

9. Figure 9: Image 1 ROI with Corners from Frame 1 (Dot) and Frame 2 (Plus) 31

10. Figure 10: Graphical Representation of an Integral Image .. 33

11. Figure 11: 9x9 Box Filters for Convolution with Image to Approximate Gaussian . 34

12. Figure 12: Increase in Scale of Filter using Integral Images Reduces Computation . 35

13. Figure 13: Fast-Hessian Detection of Feature points in an Image 35

14. Figure 14: Haar wavelet x and y and Orientation Assignment Calculation 36

15. Figure 15: Feature Extraction Process to Build Descriptor 37

16. Figure 16: Bright-on-dark and Dark-on-bright would not be matched...................... 37

17. Figure 17: SURF Matched Features for Two Upright and Rotated Frames 38

18. Figure 18: Example Homography transform between two planes x and x’ 40

19. Figure 19: Data Set 1 Histogram of U Patch Neighbors Horizontal Direction 44

20. Figure 20: Data Set 1 Histogram of U Patch Neighbors Vertical Direction 44

21. Figure 21: Data Set 1 Histogram of V Patch Neighbors Horizontal Direction 45

22. Figure 22: Data Set 1 Histogram of V Patch Neighbors Vertical Direction 45

23. Figure 23: Data Set 2 Histogram of U Patch Neighbors Horizontal Direction 46

24. Figure 24: Data Set 2 Histogram of U Patch Neighbors Vertical Direction 46

25. Figure 25: Data Set 2 Histogram of V Patch Neighbors Horizontal Direction 47

26. Figure 26: Data Set 2 Histogram of V Patch Neighbors Vertical Direction 47

27. Figure 27: Data Set 3 Histogram of U Patch Neighbors Horizontal Direction 48

28. Figure 28: Data Set 3 Histogram of U Patch Neighbors Vertical Direction 48

29. Figure 29: Data Set 3 Histogram of V Patch Neighbors Horizontal Direction 49

30. Figure 30: Data Set 3 Histogram of V Patch Neighbors Vertical Direction 49

31. Figure 31: Data Set 4 Histogram of U Patch Neighbors Horizontal Direction 50

32. Figure 32: Data Set 4 Histogram of U Patch Neighbors Vertical Direction 50

33. Figure 33: Data Set 4 Histogram of V Patch Neighbors Horizontal Direction 51

34. Figure 34: Data Set 4 Histogram of V Patch Neighbors Vertical Direction 51

35. Figure 35: Data Set 5 Histogram of U Patch Neighbors Horizontal Direction 52

36. Figure 36: Data Set 5 Histogram of U Patch Neighbors Vertical Direction 52

37. Figure 37: Data Set 5 Histogram of V Patch Neighbors Horizontal Direction 53

38. Figure 38: Data Set 5 Histogram of V Patch Neighbors Vertical Direction 53

39. Figure 39: Data Set 1 Tracking Results Frame 1, 2, 1537 to 1538-1540 55

40. Figure 40: Measured U Optical Flow vs Corrected Flow by Neighbors 56

41. Figure 41: Measured V Optical Flow vs Corrected Flow by Neighbors 57

42. Figure 42: Frame 1768 Occlusion.. 58

43. Figure 43: Data Set 2 Tracking Results Frame 1, 2, 1607 to 1608-1610 59

44. Figure 44: Measured U Optical Flow vs Corrected Flow by Neighbors 60

45. Figure 45: Measured V Optical Flow vs Corrected Flow by Neighbors 61

46. Figure 46: Data Set 3 Tracking Results from Frame 1, 2, 191 to 192-194 62

47. Figure 47: Measured U Optical Flow vs Corrected Flow by Neighbors 63

48. Figure 48: Measured V Optical Flow vs Corrected Flow by Neighbors 64

49. Figure 49: Data Set 4 Tracking Results from Frame 1, 2, 2354 to 2355-2357 65

50. Figure 50: Measured U Optical Flow vs Corrected Flow by Neighbors 66

51. Figure 51: Measured V Optical Flow vs Corrected Flow by Neighbors 67

52. Figure 52: Data Set 5 Tracking Results Frame 1, 2, 2321 to Frame 2322-2324 68

53. Figure 53: Measured U Optical Flow vs Corrected Flow by Neighbors 69

54. Figure 54: Measured V Optical Flow vs Corrected Flow by Neighbors 70

55. Figure 55: U and V Flow Over Five Heart Cycles – Data Set 1 71

56. Figure 56: U and V Flow Over Five Heart Cycles – Data Set 2 72

57. Figure 57: U and V Flow Over Five Heart Cycles – Data Set 3 73

58. Figure 58: U and V Flow Over Five Heart Cycles – Data Set 4 74

59. Figure 59: U and V Flow Over Five Heart Cycles – Data Set 5 75

LIST OF ABBREVIATIONS

WHO World Health Organization .. 1

ROI Region of Interest ... 1

CT Computed Tomography ... 3

MRI Magnetic Resonance Imaging .. 3

SPAMM Spatial Modulation of Magnetization ... 3

CSPAMM Complementary Spatial Modulation of Magnetization 3

SA Short-Axis Slice ... 3

LA Long-Axis Slice ... 3

RF Radio Frequency .. 3

HARP Harmonic Phase Algorithm.. 5

LK Lucas-Kanade Optical Flow .. 5

HS Horn-Shuck Optical Flow .. 5

LKD Lucas-Kanade-Dense Optical Flow ... 5

PDE Partial Differential Equation .. 6

LV Left Ventricle ... 6

RV Right Ventricle ... 6

ARMC Active Relative Motion Cancelling .. 7

POI Point of Interest .. 8

TPS Thin-Plate Splines Model .. 10

EKF Extended Kalman Filtering .. 10

SIFT Scale-Invariant Feature Transform .. 12

KLT Kanade-Lucas-Tomasi ... 21

SURF Speeded Up Robust Features ... 23

RANSAC Random Sample Consensus Method .. 23

CHAPTER 1: INTRODUCTION

Cardiovascular diseases are defined by the World Health Organization (WHO) as a group

of disorders of the heart and blood vessels that restrict blood flow to a specific region. These

diseases are also labeled as ischemic disorders that include coronary heart disease, peripheral

arterial disease, and deep vein thrombosis. The disorders classified can lead to severe conditions

that include myocardial infarctions, heart failure, strokes, and more. Cardiovascular diseases are

the leading cause of death globally, and an estimated 17.5 million people died from these

diseases in 2012 (WHO, 2016). Cardiac motion must be monitored non-invasively for the

assessment of cardiovascular function using motion tracking systems and medical imaging data.

The non-invasive tracking systems must be able to model and predict the movement of structures

of the heart muscle, and analyze their movement overtime for applications that include

diagnostic analysis.

Computer vision techniques have been widely used in the medical field to develop

algorithms for these applications. For example, post-processing techniques have been used to

improve the quality of images and to extract information. Some of these algorithms have been

implemented in software to improve the overall image intensity, to analyze specific regions of

interest, or to take measurements for accurate analysis and diagnosis (Najarian & Splinter, 2012).

Some of the existing cardiac motion tracking techniques estimate the movement of structures of

the heart muscle by using a specific model to predict this motion. Cardiac motion tracking by

this approach requires a priori understanding of the motion. Since the motion of the heart could

change over multiple heart cycles, the models developed could fail to account for this change,

which makes it difficult to recover from tracking failures. The research presented in this work

will aim at improving the heart motion tracking algorithms.

 The purpose of this research is to develop the algorithm and software, by using computer

vision techniques, to continuously track the motion of a biological heart from two-dimensional

imaging data without using a motion model. The non-parametric motion tracking algorithm will

be used to estimate the motion of non-rigid structures of the heart by tracking point features

identified in a user-defined local region of interest (ROI), on or within the heart. The algorithm

will be developed using multiple computer vision techniques, including, but not limited to,

feature extraction, matching, motion estimation, and outlier detection techniques. It is fully

2

realized that point feature-based tracking methods could potentially be disrupted by large

motions, noise, lost frames or occlusions. It is important for a tracking system to have the

capability of detecting such conditions. In this method, the tracking quality of these point

features will be quantified by evaluating the consistency in frame. If the tracking quality fails a

set of criteria, the algorithm is able to flag the failure of tracking. Future, it will be able to realign

with the motion and recover from the failure. Finally, it is purely based on two-dimensional

imagery data, and is thus considered a non-invasive approach.

The developed algorithm from this thesis can be utilized in many other applications. For

example, the movement of myocardial walls or blood vessels could be tracked continuously to

assess function by analyzing the motion and strain fields of these structures. Another possible

application for this algorithm could be long-term single-cell tracking, which could improve the

analysis of the cellular dynamics of a specific cell line. Current research in this field looks to

improve upon the lack of software techniques in single-cell tracking, and reduce the amount of

data acquisition needed (Hilsenbeck et al., 2016). Since cells move as non-rigid bodies, the

developed algorithm can be used in this application to highlight and continuously track a

specified cell for analysis. Since most tissues and organs that make up the human body are non-

rigid structures that need to be tracked continuously, an additional application for this algorithm

could be in the diagnostic analysis of other structures using imaging modalities. If a

measurement is to be acquired using a specified imaging technique, the algorithm will be able to

track the non-rigid motion of a region to provide the supplemental geometry for continuous data

acquisition.

The algorithm proposed in this thesis improves the existing techniques because 1) it does

not require underlying motion model to be known, 2) it quantifies the current tracking estimate,

and 3) it can recover from a failed tracking estimate. Chapter 2 will review the current motion

tracking techniques that are applicable to biomedical systems and estimating cardiac motion. The

underlying methods used for algorithm development and the experimental design will be

presented in chapter 3. Lastly, the results of the tracking algorithm, discussion and a conclusion

will be presented in chapters 4, 5, and 6 respectively.

CHAPTER 2: REVIEW OF THE LITERATURE

The literature review will focus on three areas. The first focus is on the research related to

heart motion estimation and modeling using medical imaging data. The second part of this

review is focused on motion tracking models developed for robotic-assisted surgery applications.

Finally, the existing approaches that are related to the proposed algorithm of tracking non-rigid

motion, such as piece-wise tracking, will be discussed.

2.1: Medical Image Tracking: MRI Tagging
 Different imaging modalities, such as CT, MRI, and ultrasound, have been used as

diagnostic tools to monitor patient cardiac function and analyze cardiac motion to improve

diagnosis. MRI tagging has been a useful procedure to obtain detailed information to track the

motion and strain fields of myocardium. MRI tagging was introduced in the late eighties, when

Zerhouni et al. developed a technique for generating visible image markers to tack myocardial

movement without the need for physically implanted markers (Zerhouni et al., 1988). Two of the

most popular MRI tagging techniques used today are the spatial modulation of magnetization

(Axel & Dougherty, 1989) and complementary spatial modulation of magnetization (Fischer et.

al, 1993) labeled as SPAMM and CSPAMM respectively. Both techniques generate a grid

pattern across the images for cardiac motion analysis. SPAMM generates this tag pattern through

selective radio frequency (RF) pulses throughout the cardiac cycle, while CSPAMM improves

upon this technique to reduce fading of the tag pattern and improve the signal-to-noise ratio

(Ibrahim, 2011). Research has been completed on the development of automated tools and

tracking models to assist clinicians with cardiac motion diagnosis, and three different examples

of these tools will be discussed further.

In a study conducted by Chandrashekara et al. (2003), a statistical model of the

myocardium motion field of several healthy volunteers’ tagged MRI data was developed and

tested. The objective of this research was to use prior information to develop a statistical model

to track the motion of myocardium from patient data. To develop the statistical model, data from

17 volunteers, consisting of short-axis (SA) and long-axis (LA) slices, was acquired. Also, a cine

breath-hold sequence of data was taken to develop a SPAMM tag pattern at the end of expiration

for generating a grid pattern across the images to analyze motion (Chandrashekara et. al, 2003).

4

With the MRI tagged data collected, a statistical model was generated from all image

frames between end-diastole and end-systole using all seventeen patients. Both the SA and LA

data was used to derive a myocardial motion field for all individual subjects, and to account for

the twisting, contraction, and shortening of the heart. The SA and LA images acquired were re-

sampled by ordering images such that the first frame is aligned with end-diastole, or relaxation.

With the images re-sampled to follow the cardiac cycle, a transformation function was derived to

estimate the movement of any point in the myocardium at each frame. The actual motion fields

for each image were then calculated by transforming multiple points within one image frame to

estimate the position of those points in the next frame, and subtracting transformed position with

the actual location in the current frame. The motion fields were computed to model the

deformation of the heart within the image throughout time. Next, the motion fields of each data

set were mapped temporally and spatially to a reference subject. This was done to develop a

common coordinate system for points within each image and develop a common time scale for

all image frames. With the common coordinate system developed, principal component analysis

was conducted to build the statistical model for the cardiac motion. Two separate models were

built and validated by tracking the motion of the heart in eight separate data sets for all time

frames of the cardiac cycle. Both models differed in specific parameters, but the displacement of

tag intersection points was compared to the displacement of these points measured by a human

observer for each model. The root-mean-square tracking error was found to be below 2

millimeters for the cardiac cycle over all eight data sets, which is labeled as a good performance

for motion tracking (Chandrashekara et. al, 2003).

The results of this study show that the cardiac motion can be modeled and applied to

different data sets to track the motion of intersecting lines, or deformations, from tagged MRI

data with a small displacement error. It further shows that the heart motion can be modeled and

tracked overtime. The model was not optimal for real-time tracking, as it does not account for the

variability of the heart rate over multiple contraction cycles. Improvements to the model could be

made to account for the variation from changes in the motion pattern of different healthy and

diseased patients. The method proposed in this study also requires the use of tagged MRI images,

which increases data acquisition cost. The model was also not developed for applications that

require tracking recovery from lost data or occlusions.

5

In a study conducted by Hassanein et al. (2014), a mathematical model was generated to

test tracking methods of cardiac motion with synthetic images, to model left ventricular function

of tagged MRI data. The synthetic data was modeled as a circular disc with an inner radius of 30

millimeters and outer radius of 40 millimeters to simulate the endocardium and epicardium. The

displacement model varied over polar coordinates, where the radius decreased to a specific point

and then increased to simulate the contraction and relaxation of the cardiac cycle. The polar

coordinates were then transformed into a Cartesian system to develop a sequence of test images.

Using a known model, the SPAMM and CSPAMM tag patterns were overlaid on the image to

simulate actual tagged data. To complete the synthetic data, Gaussian white noise and

exponential decay of the tag line amplitude was applied to simulate actual noise artifacts from

real time imaging. The synthetic data set motion was then tracked overtime by comparing optical

flow techniques with a commercially utilized HARP technique. The harmonic phase algorithm

(HARP) is a commercially available MRI analysis technique to process the motion of tagged

MRI data (Hassanein et. al, 2014).

Image tracking techniques based on optical flow were applied to the synthetic data set,

along with HARP to estimate the motion of the circle over time. Optical flow is a computer

vision technique to track the change in pixel motion overtime. Optical flow can be defined as the

two-dimensional displacement or velocity estimation of pixel patches on an image plane. Three

different optical flow techniques Lucas-Kanade (LK), Horn-Shuck (HS), and Anisotropic LK

(LKD) were used in this study. The radial strain and estimation errors were calculated over each

image frame for all four methods, and the radial strain was compared to the actual strain

measured from the image sequences. The results show that the LK method produced the most

accurate strain measurement at the epicardial or border of the circle for tag patterns, and

produced the smallest tracking error overall for all tests. The commercially available method,

HARP, was found to have good tracking accuracy in the endocardium or inner circle, but failed

to track the border of the circle for both tag patterns. The HS results were found to have the

greatest tracking error among optical flow techniques, but performed better than the HARP

method at the border. The LKD tracking error was found to be similar to that of the LK method

at the border, but was greater at the inner circle than the LK error (Hassanein et. al, 2014).

6

In a similar study, Arif et al. (2014) proposed a method for tracking specific structures in

cardiac MRI images by propagating a segmentation from one frame to another across a sequence

of images. This study improved upon the partial differential equation (PDE) solutions of optical

flow techniques with consideration of the fluid motion present in the heart. The researchers

proposed a new boundary condition to solve the PDE of the tracking methods by changing them

from a zero velocity to a value linked to the inside of the segmentation that is not zero. The

mathematical model developed was then discretized to generate an algorithm to be tested. The

developed method was applied to publicly available data sets, the MICCAI Left and Right

Ventricle sets (LV and RV), and compared to the commercially available Medivisio

segmentation software. Both methods start with a user selected initial segmentation of each

ventricle, and the segmentation is propagated separately to compare both techniques. Full heart

segments were also selected to track the myocardium outer boundary, left ventricle, and right

ventricle (Arif et. al, 2014).

The results show that the proposed technique from this study improves cardiac

segmentation and propagation throughout the entire data set when compared to Medivisio

segmentation, and requires no manual correction throughout the entire data set. For the LV, the

proposed method included a more accurate boundary segmentation and motion compared to

Medivisio. However, the main difference between the two can be seen in the RV data. The

Medivisio segmentation would group noise artifacts and components outside the true boundary

of the RV. This would lead to a correction by the user to delete extra unwanted pixels to continue

tracking. The proposed method was not interrupted by these artifacts and kept an accurate

boundary segmentation close to the actual RV wall. When these techniques were applied to

segment out multiple structures, the Medivisio method failed and consistently could not correct

itself to keep the segment boundary equal to the actual movement of the LV, RV, and

myocardium wall. The proposed method accurately tracked the boundary of the segmented LV,

RV, and myocardium wall throughout multiple cardiac cycles (Arif et. al, 2014).

By making improvements to the general optical flow techniques, the proposed method

from this study demonstrated accurate segmentation and tracking results for LV, RV, and

myocardial boundaries. The proposed technique was also developed to be computationally

efficient because the changes made did not alter the computational time significantly, when

7

compared to traditional techniques (Arif et. al, 2014). The method did not even require specific

MRI tagging, and was developed to be non-specific to any imaging modality. The method was

not developed for real-time tracking as the experiments were conducted as post-processing

techniques on MRI data that is publicly available and does not include interference or occlusions.

The acquisition cost to use this technique for MRI data would lead to an expensive data

acquisition for non-invasive diagnosis.

In summary, MRI is one of the medical imaging modalities used to track the motion of

specific components of the heart, which requires preprocessed (tagged) data and can only track

the heart within one region, such as the left ventricle. The high cost associated with MRI tagged

data promotes the use of other imaging methods in the development of a tracking algorithm for

diagnostic applications. The tracking algorithms presented support the use of optical flow

techniques to estimate the motion of the heart and improve upon commercially available tracking

software. However, the techniques developed are not robust to occlusions or other interferences

and cannot automatically correct a failed tracking estimate for the use in real-time cardiac motion

tracking.

2.2: Robotic Assistant Surgery Tracking

 Open heart and specifically coronary artery bypass surgeries require surgeons to operate

on blood vessels that constantly move and cause interference. Research has been conducted to

improve the working conditions for surgeons during operation also by using computer vision

techniques. The master-slave robotic systems, such as the DaVinci machine, have been improved

to include mechanical motion synchronization of the surgical instruments with the beating heart

to track, predict, and cancel out the cardiac motion. Active Relative Motion Cancelling (ARMC)

is one method used to actively cancel out heart motion by tracking a point of interest on the heart

surface to provide surgeons with a still view (Bader et. al, 2007). Three different research studies

on the development of cardiac motion tracking systems for this application and their motion

tracking technologies will be reviewed.

In a study conducted by Bader et. al (2007), a model-based approach was used to build an

estimator to reconstruct multiple feature points from one image frame to the next, to predict

cardiac surface motion. A testing model was developed with a circular pulsating membrane,

paced between 0.5 and 2.4 hertz, and physical markers to track motion using a stereo camera

8

system. The motion behavior of the membrane was derived as a system of coupled linear partial

differential equations, and converted into a lumped parameter system to estimate the solution of

the model at a discrete time point. A Kalman filter was utilized to estimate the state of the

lumped parameter system from the location of marked feature points on the membrane model.

The location of these points was found through feature extraction from both cameras using an

edge detection technique, specifically Canny edge detection (Canny, 1986). The predicted

deflection of a series of points that did not include the labeled markers was compared to the

actual measured deflection of the labeled points as the model was pulsed at a frequency of 0.653

hertz. The results show that the average prediction error (measured – prediction) was found to be

equal to 1.39 millimeters (Bader et. al, 2007).

The model developed from this study demonstrates that the deflection of a circular

membrane, which resembles cardiac motion in the z-axis, can be tracked through feature

detection. This model also successfully tracked the changes in motion throughout time using

non-invasive imaging data. It is reported that at some image frames the Canny edge features

could not be found, which contributes to an increase in the prediction error. More research on the

types of features to be selected, such as corners instead of edges, could provide a better tracking

model to reduce loss from occlusions or other interferences. The membrane model should be

tested in real-time on cardiac images to improve non-rigid tracking and be more applicable to

robotic-assisted surgery applications.

In a research study conducted by Tuna et al. (2013), two least-square prediction

algorithms were created and tested to predict future position estimates of points of interest (POI)

from the heart surface. In this study, the heart motion displacement of three calves was recorded

using a sonomicrometer system, and imaging data was tested with the algorithms developed.

Two piezoelectric crystals were placed near the coronary artery and along the side of the heart to

measure displacement. A “one step motion” estimation algorithm was first developed to predict

the current POI using the prior position in previous frames through a process of adaptive

filtering. Adaptive filtering adjusts the filter weights using a least squares method to allow the

algorithm to constantly update based upon the most recent iteration. The second approach

developed uses a generalized linear predictor to independently estimate each point over the entire

image. This second approach computes an estimation matrix at each iteration, which was found

9

to be approximately constant throughout all frames. Both algorithms were tested on the pre-

recorded cardiac displacement data to track the heart over all image frames. The results of this

study show that the generalized predictor root mean square position error was found to be much

smaller than the one step estimation at a constant and varying heart rate (Tuna et. al, 2013).

The algorithms developed in this study show that a motion predictor can be developed to

actively track specific regions of the heart even when the heart begins to contract at a higher rate.

The motion predictors were successfully able to track the non-rigid motion of the heart using

non-invasive cardiac imaging data. The predictors were, however, not developed to account for

interferences or occlusions, which occur during surgery. It is important to note that even though

the prediction algorithms can actively track regions when the heart rate increases, the algorithms

cannot track these regions when an abrupt change in heart rate occurs. This abrupt change could

be caused from an abnormal arrhythmia or myocardial infarction. The methods presented in this

study are also not implemented in real time in an active surgical system.

In a third study, Richa et al. (2010) presented a robust method for estimating three-

dimensional temporal and spatial deformation of the heart surface using stereo endoscopic

images and computer vision techniques. This method, based on previous research with Thin-

Plate Splines (TPS) models, was improved to accurately track large ROI on the heart surface

even in the presence of occlusions or tracking failures. In their previous studies, the TPS method

was developed to select control points from a reference image of the heart and utilize a warp

function to map the control points and the ROI from one frame to the next. It is important to note

that the control points are selected manually by the user in a reference image from regions of

high texture, such as edges. This study was conducted to improve upon this method by adding

the heart motion dynamics to support the tracking accuracy of the TPS solution. A heart motion

model was developed based on time-varying Fourier series that is recursively estimated using an

Extended Kalman Filter (EKF). This model will be used to reestablish the motion of the heart

when a tracking failure occurs. The current algorithm from this study was re-organized to

evaluate the quality of the tracking result at every iteration. In the evaluation step, the image

alignment error and the estimated three-dimensional heart shape will be checked. If the error is

found to be high, the EKF and Fourier series model will be used to restore the tracking of the

selected ROI. The alignment error is evaluated by calculating the normalized cross-correlation

10

coefficient of regions of about 40x40 pixels surrounding each control point. If three of these

points were found to be below a set threshold, the current tracking TPS model stops and

continues when the control points are visible. The three-dimensional shape analysis is evaluated

by calculating the bending energy of the ROI. If the bending energy of any point within this

region is greater than a specific threshold, the tracking is stopped and the motion is reestablished

from the EKF model. The improved tracking algorithm was tested on human data that was pre-

recorded from previous research studies (Richa et. al, 2011).

The algorithm from this study was tested on image sequence from an endoscopic

coronary bypass surgery using the DaVinci surgical platform on a human subject. The data

consisted of 32 seconds of colored imaging data with a total of 1600 images. Eight control points

were selected on the reference image, the EKF was initialized, and the alignment error and

bending energy thresholds were set at 0.60 and 0.14 respectively. The researchers note that the

first tracking error within the ROI occurred around 3.16 seconds, and the previous method was

not able to recover. The new method fixed the tracking error by 3.18 seconds using the predicted

heart motion from the EKF and continued. Throughout the whole test, the tracking was

suspended for 13.69% of the total time duration. This lead to a computational delay of 800 ms

total from tracking loss to reestablishment. The large duration of the delay was found to occur

due to the poor prediction quality from abrupt cardiac frequency changes, but the region was

successfully tracked throughout the entire sequence (Richa et. al, 2011).

The results show that the non-rigid motion can be tracked through EKF and Fourier series

modeling for applications in real time robotic-assisted surgery. The authors of this study suggest

that abrupt cardiac frequency changes can be accounted for by incorporating electrocardiogram

(ECG) data. The ECG could be utilized to predict abrupt changes in the heart frequency to

improve tracking quality (Richa et. al, 2011). However, more instrumentation must be added to

the existing method to measure the ECG. The algorithm presented in this study demonstrated

that the visual tracking system must be robust to occlusions for robotic-assisted surgery

applications. A tracking validation step can also be developed using the normalized cross-

correlation coefficient for feature tracking in cardiac motion data.

11

2.3: Computer Vision Tracking Algorithms for Non-Rigid Motion Tracking

 Most of the computer vision techniques initially developed for object tracking and motion

detection had an implicit assumption that the object to be tracked in an image was rigid. For

biological systems, such as the heart, a tracking system must be able to accurately track and

predict the stretching or dilating motion of non-rigid structures, such as a blood vessel. It must

estimate these areas of non-uniform motion within one region, which is typically found on the

heart. There has not been substantial development of closed-form tracking algorithms for non-

rigid heart motion in the literature. However, this problem could be solved through a linearized,

piecewise approach. Piecewise motion tracking is used to break up the motion field of a region

into smaller areas, called neighborhoods, that can be estimated individually. The next set of

studies will present techniques that can be used to model and estimate regions in a scene or

image that have different motion fields.

In a study conducted by Cremers and Soatto (2004), a motion estimation and

segmentation technique was developed to track multiple regions of interest (ROI) and segment

out objects from their respective motion field. This proposed method was developed using

Bayesian inference that is updated based on continuous optical flow measures outlined by a

contour representation of the motion of separate regions. The motion field is also optimized by a

gradient descent minimization factor. The initial image frame is segmented into multiple regions

of piecewise parametric motion, where the motion of each region is solved from a system of

partial differential equations. With the equations and algorithm developed, this method was first

tested on a set of synthetic gray-scale images of similar intensity where the ground-truth motion

is known. The results of these tests show that the objects located within the image set were found

to be accurately segmented based on their separate motion and not appearance. In a more

applicable test, a traffic scene test set was developed by setting an image of two cars to move

toward the top-right of the image, while the background of this same image was moved to the

bottom-left to simulate camera movement. The motion segmentation method was compared to a

previously developed intensity-based segmentation technique for this image sequence. The

results show that the intensity-segmentation was only able to segment out the bright and dark

areas within the image. The proposed method was accurately able to segment out each individual

car from the background, and obtain an accurate estimate of the motion of the cars and

background when compared to the ground-truth. A third experiment from this study takes a

12

traffic sequence of multiple moving cars and a moving background, and estimates the motion of

a selected initial segment within the first image. It is important to note that in this test sequence,

the ground-truth motion was not known. The results of this test show that the segmentation of

one car in the scene was robust to competing motion of other cars and the background. The

algorithm began to fail as the car started to move perpendicular to the viewing plane of the

image. At this point the optical flow cannot be solved for, and this error is known as the aperture

problem. The results of this study show that regions of separate motion can be estimated and the

boundaries of these regions can be highlighted to segment out each moving object in a scene.

The segmentation method was developed for piecewise motion fields based on parametric

motion models. To segment regions of the moving heart, this model cannot be used. However,

this technique could be utilized if the specific parametric motion from pre-segmented heart data

is learned and used as an input to the motion segmentation algorithm (Cremers & Soatto, 2004).

 In another approach proposed by Zhou, Yuan, and Shi (2008), an object tracking

technique was developed by combining the use of a scale invariant feature transform (SIFT) with

a mean shift algorithm. This algorithm integrated two commonly used object tracking techniques

to improve consistency in tracking performance, even if one of them were to fail. A SIFT feature

detector is a method that locates points of interest that occur at the maxima and minima of a

difference of Gaussian function, across all scale space. Local key points are identified through

this step, and then a feature descriptor is developed for each key point to assign measures for

robustness of the point against rotation or brightness changes. The final SIFT feature points are

chosen by testing the robustness of each key point detected by building an image pyramid and re-

sampling the points at each level of the image scale space. The mean shift algorithm works by

conducting a color or intensity similarity search using color histograms across two image frames.

An initial target window, with its position, is given in the current frame, and the algorithm begins

to step through the next image frame in search for a confidence region that has a similar

histogram distribution. Both tracking techniques are used in this algorithm by taking

measurements and developing an expectation-maximization scheme to achieve a maximum

likelihood estimation of similar regions across multiple image frames. A region of interest, or

rectangle, is defined in the first frame, along with the computation of the color histogram of this

region and the SIFT features. Then in the second frame, the algorithm will examine surrounding

areas of the initial position from the previous frame for color similarity measures along with the

13

sum of square difference between SIFT features. The expectation-maximization will then be

used to locate regions that are similar while minimizing the distance between the detected

locations from the mean shift and SIFT results. This process will then iterate until the difference

between the two is smaller than a set threshold, and the target location will be found in the

current frame. The algorithm was tested on four publicly available data sets, and then compared

to the SIFT and mean shift detectors separately. The Euclidian distance between the object

detection of the three techniques and the ground truth were then compared, and it was found that

the mean-shift combination algorithm had a significant lower tracking error for both a single

object in a dark scene and tracking a single object in a crowded scene. The combination of both

techniques did, however, increase computation time when compared to running each

individually. Overall, the proposed algorithm shows promise in improving object tracking over

multiple image frames in different scenarios by combining different object tracking techniques

together to improve results (Zhou, Yuan, & Shi, 2008).

The combination of different tracking techniques shows an improvement in estimating

the motion of one segment in a scene of competing motion. Even though the initial region of

interest was assumed to be rigid in all the algorithms presented, this individual consistent

tracking can be used for piecewise motion estimation by breaking up a non-rigid region into

smaller areas that can be assumed to move as rigid segments.

A third study, proposed by Ren in 2008, improved optical flow results by developing an

image-based grouping approach in motion estimation. This method begins by computing a soft

edge and texture boundary map using a probability-of-boundary operator, which combines local

brightness, color, and texture contrast and differs from traditional edge detection techniques. The

boundary map will then be used to develop pairwise affinities between subsequent pairs of points

through an intervening contour method. The affinity value represents if two points are separated

by strong boundaries or if they belong in a uniform region. The image will then be sampled at

corner or edge points for the affinity calculation step, and then the flow will be estimated at these

sample points. The affinity values calculated will define a support for the spatial integration of

flow to avoid connections across object boundaries, also known as a semi-local flow approach.

An affinity-based optical flow will then be calculated across the image to estimate the motion of

these points from one frame to the next. The grouping method was then tested on publicly

14

available data sets and the average angular error and average end-point error was compared with

a top-ranking flow estimator from Black and Anandan (1996). The results show that the

grouping approach significantly improves the optical flow estimation by lowering both errors

measured. These results can be contributed to the improved flow estimation for points that are

close to boundaries in an image, but do not necessarily move in the same direction as the

boundary. While traditional flow estimators tend to group unwanted regions into areas of strong

intensity, like edges and corners, even if the true motion of these points is in a different direction.

The downfall to this approach is that the computation time increases due to the increase in the

number of points used in computation of the flow field. These results show that grouping optical

flow measures by edges or corners improves tracking estimation. This grouping approach can be

useful for piecewise estimation as well to estimate regions that undergo non-rigid motion similar

to cardiac motion (Ren, 2008).

In summary, existing heart motion tracking systems from imaging modalities were found

to be accurate only at specific locations on or within the heart. The systems reviewed here

require tagged MRI data, a prior model, or a lot of prior imaging data that can be expensive to

capture and have long computation times. Non-invasive optical imaging tracking techniques

could improve upon MRI tracking systems presented because optical techniques require less

exposure time, are less-invasive, and are more cost effective. The data used to develop this

algorithm stems from optical imaging techniques, but could also be used in other imaging

modalities. Tracking systems used on robotic surgery applications were found to be accurate.

However, these algorithms require the use of artificial sensors and computationally expensive

models to effectively track the motion of the heart. Lastly, a set of computer vision techniques

that were not originally developed for tracking non-rigid biomedical systems could be used to

solve for piecewise motion estimation. Overall, there exists a gap between existing systems and

the need of a heart motion tracking approach that is continuous, non-parametric, and robust to

tracking failures.

CHAPTER 3: METHODS

3.1: Non-Rigid Motion Observation Model

In order to continuously estimate the non-rigid motion of a biological system, such as the

heart, a traditional computer vision technique that assumes a rigid body is no longer directly

applicable. A piecewise tracking algorithm is proposed here. It will break up a ROI into smaller

components, each estimated as a pseudo-rigid segment. Each small component will be estimated

as a pseudo-rigid segment because not every point within that segment will follow the same

exact motion. The motion of some points will differ slightly, but the distribution of this motion

will follow an approximately rigid model. All the segments combined can approximate the non-

rigid motion of a ROI as observed in a two-dimensional space (image).

In order to introduce the piecewise algorithm, a body frame and a camera frame are

defined in a three-dimensional space. The body frame is a three-dimensional Cartesian

coordinate system attached to the target biological system (the heart), with an arbitrarily chosen

origin point (j). If the heart were a rigid body, another point (i) can be defined at a fixed location

in the body frame, ܺ௜
௕, which does not change over time in a rigid body frame. However, in a

non-rigid system, the location of this point becomes a function of time, i.e. ܺ௜
௕(ݐ). At a specific

time (ݐ = ௡), the location of this point would be at ܺ௜ݐ
௕(ݐ௡). Since the point (j) is the origin, the

location of this point in the body frame is zero, i.e., ௝ܺ
௕ = 0, regardless of time.

The camera frame is another rigid 3D Cartesian coordinate system. At a time ݐ௡, the

origin of the camera frame is located at, for example, ܺ௖
௕(ݐ௡), which is a location observed in the

rigid body frame. The coordinates of the point (i) and the origin (j) in the camera frame is thus

defined by equation 1 and 2 respectively:

 ܺ௜
௖(ݐ௡) = ܴ௕

௖(ݐ௡)[௜ܺ
௕(ݐ௡) − ܺ௖

௕(ݐ௡)] (1)

 ௝ܺ
௖(ݐ௡) = ܴ௕

௖(ݐ௡)[௝ܺ
௕(ݐ௡) − ܺ௖

௕(ݐ௡)] (2)

where ܴ௕
௖ is the rotational transform of a point from the body frame to the camera frame. Thus,

(ܺ௜
௖(ݐ௡)) represents point i observed in the camera frame at time ݐ௡.

16

3.1.1: Piecewise Approximation

Now let the time stamp step from ݐ௡ to ݐ௡ାଵ, still in a non-rigid system. If a rigid body

had been assumed in a predictive model, it would not agree with the actual observation. The

error (ϵ) between the predicted location and truth is described in equation 3, where ܺప
௖ ෪ (௡ାଵݐ)

stands for the prediction.

߳ = ݊݋݅ݐܿ݅݀݁ݎ݌ − ℎݐݑݎݐ = ܺప
௖ ෪ (௡ାଵݐ) − ܺ௜

௖(ݐ௡ାଵ) (3)

Both terms can be substituted from equation 1 and simplified below in equation 4:

߳ = ܴ௕
஼೙ାଵൣ ௜ܺ

௕(ݐ௡) − ܺ௖
௕(ݐ௡ାଵ)൧ − ܴ௕

஼೙ାଵൣ ௜ܺ
௕(ݐ௡ାଵ) − ܺ௖

௕(ݐ௡ାଵ)൧ (4)

As afore mentioned, in a non-rigid system, ܺ௜
௕(ݐ௡ାଵ) ≠ ܺ௜

௕(ݐ௡). We further assume that the

location of point (i) has been biased through deformation by ∆ܾ, such that

ܺ௜
௕(ݐ௡ାଵ) = ܺ௜

௕(ݐ௡) + ∆ܾ

The prediction error is therefore also a function of ∆ܾ:

߳ = ܴ௕
஼೙ାଵൣ ௜ܺ

௕(ݐ௡)൧ − ܴ௕
஼೙ାଵൣ ௜ܺ

௕(ݐ௡) + ∆ܾ൧

where ܴ௕
஼೙ାଵ is the rotation transform from the body frame to the current camera frame. We can

then simplify the equation above into:

߳ = −ܴ௕
஼೙ାଵ∆ܾ (5)

The difference between the rigid and the non-rigid motion is now observed in the camera

frame, as shown in equation 5. In a non-rigid system, the bias ∆ܾ can be defined as a function of

time and space shown in equation 6 below:

௡ାଵݐ)ܾ∆ − ,௡ݐ ܺప
௕ − ܺఫ

௕ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ) (6)

In a piecewise approach, the non-rigid motion will be approximated with pseudo-rigid

motion in a small neighborhood, which is observed as a small “patch” in this image. In order for

this approximation to be sufficiently accurate, a constraint must be applied to ∆ܾ such that it can

be linearized. In general, the bias term is assumed to be continuous over time and space in a

biological heart. The bias term must fit the continuity constraint as described below:

17

∆ܾ ቀݐ௡ାଵ − ,௡ݐ ܺప
௕ − ܺఫ

௕ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቁ is smooth if
డ∆௕

డ௧
,

డ∆௕

డ௑
exist and are continuous

For this function to be smooth, it must be differentiable in time and space everywhere in its

domain. Also, all the partial derivatives must exist and be continuous in all orders across the

domain. For the function to be continuous, it must be defined at any point, and the value at that

point must equal a real number. The limit of the function must also exist and be equal to the

function value at that point.

 ∆ܾ is a function of time and space because its value will change overtime, or consecutive

image frames, and at different points in the ROI. The bias within a small patch can be

approximated using first order Taylor series and is shown below in equation 7:

∆ܾ൫ݐ௡ାଵ, ܺ௜
௕൯ ≅ ∆ܾ൫ݐ௡, ௝ܺ

௕൯ +
డ௕

డ௧
(ݐ∆) +

డ௕

డ௫್ ௕ݔ∆)) +
డ௕

డ௬್ ௕ݕ∆)) +
డ௕

డ௭್ ௕ݖ∆)) (7)

where ∆ݐ is the change in time from ݐ௡ to ݐ௡ାଵ and (∆ݔ௕ , ௕ݕ∆ , ௕ݖ∆) represents changes along

the three axes in the body frame. To further simply the analysis, in equation 8, we assume that

the bias is only sensitive to the distance between two points, such that

∆ܾ൫ݐ௡ାଵ, ܺ௜
௕൯ ≅ ∆ܾ൫ݐ௡, ௝ܺ

௕൯ +
డ௕

డ௧
(ݐ∆) +

డ௕

డ஽
 (8) (ܦ∆)

where ∆ܦ is the change in distance from a point (i) to the origin (j) within one patch.

Since the bias is assumed to be continuous and smooth, if the change in time between image

frames is approximately small (∆ݐ ≅ 0), the bias due to the time change will be sufficiently

small. The bias within a patch due to distance can then be defined by evaluating equation 8 using

the distance variable only:

∆ܾ൫ݐ௡ାଵ, ܺ௜
௕൯ ≅ ∆ܾ൫ݐ௡, ௝ܺ

௕൯ +
߲ܾ
ܦ߲

 (ܦ∆)

Similarly, there would exist a small neighborhood surround the origin (j), in which any point (i)

has |
డ௕

డ஽
| ≅ ૙. In other words, there is a pseudo-rigid relationship between both points. This

neighborhood, will be called a “patch” in this work. If a patch was observed to be approximately

rigid at a time (ݐ௡), it still will be approximately rigid at the next time step (ݐ௡ାଵ). Therefore, the

bias change due to time will be minimal, i.e., ∆ܾ൫ݐ௡ାଵ, ܺ௜
௕൯ ≅ ∆ܾ൫ݐ௡, ܺ௜

௕൯.

18

Piecewise motion estimation also requires a constraint across neighboring patches.

Neighboring patches do not necessarily share the same linear transformation. However, their

motion models are expected be continuous. Assume that a point (k) is located in a patch adjacent

to the one defined with origin (j). The bias term at point (k) can be approximated with a first

order Taylor series following equation 9 below:

∆ܾ൫ݐ௡ାଵ, ܺ௞
௕൯ ≅ ∆ܾ൫ݐ௡ାଵ, ௝ܺ

௕൯ +
డ௕

డ஽
 (9) (ܦ∆)

The variation over time is assumed to be negligible. Both patches will follow a pseudo-rigid

model. Since ∆ܾ is smooth, the first order Taylor series is sufficient to estimate the bias if the

distance between both points (∆ܦ = หܺ௞
௕ − ௝ܺ

௕ห) is small enough. It provides yet another

constraint on the patch size. With smaller patches, the bias ∆ܾ between neighboring patches

would have a limited difference shown in equations 10 and 11 below.

ห∆ܾ൫ݐ௡ାଵ, ܺ௞
௕൯ − ∆ܾ൫ݐ௡ାଵ, ௝ܺ

௕൯ห < (10) ݐ݈݅݉݅

In other words,

ቚቀܺ௞
௕(ݐ௡ାଵ) − ܺ௞

௕(ݐ௡)ቁ − ቀ ௝ܺ
௕(ݐ௡ାଵ) − ௝ܺ

௕(ݐ௡)ቁቚ < (11) ݐ݈݅݉݅

3.1.2: 2D Observations and Constraints

The non-rigid motion of point (i), is observed in a two-dimensional space (image). First,

the location of this point can be converted from body frame to camera frame, as afore mentioned:

ܺ௜
௖(ݐ௡ାଵ) = ܴ௕

௖(ݐ௡ାଵ)[௜ܺ
௕(ݐ௡ାଵ) − ܺ௖

௕(ݐ௡ାଵ)]

ܺ௜
௖(ݐ௡ାଵ) is defined in the three-dimensional camera frame, with x, y, and z components:

ܺ௜
௖(ݐ௡ାଵ) = ,ݔ] ,ݕ Conventionally, x points to the right, y points down and z points out of the .[ݖ

camera lens. The location of (i) will be observed in an image that has normalized x and y

components, which will then be compared to the predicted location of this point as shown below

(Hartley & Zisserman, 2004):

ܵ݁݁݊: ܺ௜
ଶ஽(ݐ௡ାଵ) = ቀ

ݔ
ݖ

,
ݕ
ݖ

ቁ

పܺ :݊݋݅ݐܿ݅݀݁ݎܲ
ଶ஽෢ (௡ାଵݐ) = ൬

ොݔ
ݖ̂

,
ොݕ
ݖ̂

൰

19

The prediction, once again, is assumed to follow an approximately rigid model. If the observed

location in (x, y, z) is approximately equal to the prediction in (ݔො, ,ොݕ i.e. ∆ܾ~0, then the ,(ݖ̂

prediction is accurate and the tracking error (ϵ) could be minimized. It is important to note that

the z component represents the distance from the camera frame to the body frame. In a medical

imaging system, the distance between the camera and target is unlikely to dramatically change.

Therefore, z is assumed to be approximately equal to the predicted ̂ݖ in both locations (ݖ ≅ .(ݖ̂

We assume that the majority of motion will be observed in the x and y directions.

Constraint 1: Within a patch that is sufficiently small, the pseudo-rigid prediction is

expected to agree with observation

߳ = ݊݋݅ݐܿ݅݀݁ݎ݌ − ℎݐݑݎݐ ≅ 0

ܺప
ଶ஽෢ (௡ାଵݐ) ≅ ܺ௜

ଶ஽(ݐ௡ାଵ)

Any disagreement would be attributed to noise in feature tracking, which is expected to follow

Gaussian distribution. As to be discussed in the following sections, motion of a pseudo-rigid

patch can be modeled by a linear transform, such as the fundamental matrix or a homography

matrix. It allows us to predict the motion of any single point based on the consistency of

neighboring points. Furthermore, since we assume that the 3D motion between neighboring

patches would have a limited level of difference, the difference in 2D motion would also be

limited.

Constraint 2: When the difference between the neighboring patches is sufficiently small,

ቚቀܺ௞
ଶ஽෢ (௡ାଵݐ) − ܺ௞

ଶ஽෢ ቁ(௡ݐ) − ቀ ఫܺ
ଶ஽෢ (௡ାଵݐ) − ఫܺ

ଶ஽෢ ቁቚ(௡ݐ) < ݐ݈݅݉݅

It is realized that the difference is unknown and will differ over location and time. However,

when observed over a large number of points over time, it is assumed to follow a Gaussian

distribution between two patches. The quality of non-rigid motion tracking can be quantified by

how well the tracking residuals can meet this criterion.

3.1.3: Configuration of Piecewise Tracking
The first constraint assumes that the motion within a patch is approximately rigid, and in

that case, the tracking residuals will be dominated by noise. We assume that with the right patch

20

size, these residuals will follow a normal distribution with the number of outliers no greater than

two sigma or be greater than five percent of the motion within a patch in the x and y directions.

This pseudo-rigid motion can then be estimated with all the point features observed in this patch,

through a computer vision technique such as a homography or averaged optical flow estimation.

The second constraint assumes that neighboring patches are interconnected, and that the

motion from patch to patch is continuous. The second threshold will be determined by sampling

the motion, both in the x and y directions, at every patch through a set number of image frames.

The motion differences between neighboring patches in the same row and column will also be

calculated. The motion across neighboring patches will also be assumed to follow a normal

distribution. This assumption will be confirmed through a chi-square goodness of fit test of the

motion differences between neighboring patches. The motion differences at every patch with its

corresponding neighbors across a set number of image frames will be collected to estimate the

mean and standard deviation. The mean plus two sigma, or 95th percentile point, will be

calculated for every distribution, and the maximum value among all distributions will then be

used as a threshold. Four difference thresholds will be calculated in total. The first two are the

horizontal and vertical differences for the motion in the x-direction, and the next two as the

horizontal and vertical differences in the y-direction. Each motion difference will be compared

against the corresponding threshold, and will be flagged if it exceeds the threshold.

For every individual patch, both constraints are checked at every frame to quantify the

quality of motion prediction. If either constraint is not met, the tracking estimate is potentially

incorrect and will be flagged. If the constraints are still not met two more times in a row, it is

considered a tracking failure, and reinitialization step must be completed among the discontinued

image frames to restart the piecewise tracking process.

The algorithm has been illustrated in a flowchart, as shown in Figure 1 below. The

flowchart presents an outline of the necessary steps to track an input region selected from the

user, and estimate the motion at every image frame. The algorithm will begin by preprocessing

the image data set through histogram equalization to improve the overall contrast of the image.

The user will then be asked to input the starting and stopping point to define a region of interest

to be tracked. Next, the appropriate size, number of patches, and the motion difference thresholds

will be determined. The appropriate edges and detected corner features will be then stored in

21

each patch from frame one, in the next step, to be used as the initial frame in tracking. A Kanade-

Lucas-Tomasi (KLT) optical flow approach will then be used to move corner features from the

previous frame to the current frame to be used as an optical flow measure for the ROI (Shi &

Tomasi, 1994). The next major component of this algorithm will be to check the quality of

tracking by determining if the flow within a patch is normally distributed, and check if the

average flow measure between neighboring patches is continuous. If the quality of tracking

passes this set of criteria, the edges from the previous frame will then be moved by the average

optical flow measure of each patch. If the quality of tracking was found to fail either set of

criteria, this frame will be flagged. If a continuous failure is found for up to three flags, the

reinitialization step will follow. For the reinitialization step, a homography transform will be

used to realign the piecewise grid and relocate the features to be tracked. Highlighting the edge

points moved to the next image frame will also provide qualitative results to determine if the

non-rigid region is accurately tracked as pseudo-rigid patch segments. The algorithms used in

each component of this flowchart will be presented in detail in the following section.

22

Figure 1: Algorithm Flowchart

3.2: Computer Vision Techniques

The algorithm has been developed using multiple computer vision techniques and has

been implemented in MATLAB. The following sub-sections will introduce the theory,

implementation, and simulated results to show how each technique works in relation to the

23

overall process. Section 3.2.1 will present the preprocessing equalization, edge detection, and

calculation to determine the appropriate patch number and size. Section 3.2.2 will present the

corner detection step, motion estimation or optical flow technique, and the quality of flow

estimation steps. Section 3.2.3 will define the use of Speeded Up Robust Features (SURF) in

determining matching feature points between two discontinued image frames. This section will

then continue to outline the Random Sample Consensus (RANSAC) process using these SURF

feature points to estimate a homography transform to reinitialize the piecewise tracking process.

3.2.1: Preprocessing: Histogram Equalization, Determine Correct Patch Size, Edge Detection

The initial data from the imaging system must be preprocessed to improve the overall

visual quality of the images acquired. A histogram equalization function will be applied on every

image as the first component of the algorithm. This function will first evaluate the intensity

distribution, or histogram, from one or a few images. The normalization process maps a given

distribution to another wider and uniform distribution so that the intensity values are spaced out

over the entire range (MathWorks, 2017). This MATLAB function works by taking the

cumulative distribution function of the image intensity values and performing a transform to

develop a linearized cumulative distribution function of the original image. The linearized

distribution can be mapped back into an image that will have improved contrast and a spaced-out

histogram. Figure 2 below demonstrates the histogram equalization process for two images of

one of the heart data sets.

24

Figure 2: Histogram Equalization Results – Original Image and Respective Histogram (top)

Equalized Image and Histogram (bottom)

The next step after histogram equalization is to determine the correct number of patches

and the size of each at the beginning of the tracking process. To determine the correct number of

patches, a separate function was developed to estimate the quality of the motion between the first

two frames by searching for the optimal setting for the number of patches. The motion estimation

technique is based on corner feature tracking within each patch, and will be described in the next

section. Each patch will be evaluated on the bias against both constraints: the motion within a

patch must be assumed to be rigid, and the motion across neighboring patches must be

continuous. To fit the first constraint, the motion within each patch will be tested for normal

distribution through a chi-square goodness of fit and outlier detection tests. The motion between

neighboring patches will also be tested to fit a normal distribution in the horizontal and vertical

directions by using a chi-square goodness of fit test. A maximum threshold of each neighboring

difference will then be calculated to represent the maximum offset allowed for motion among

neighboring patches in either the x or y directions, as pointed out in constraint two of the

piecewise tracking approach.

 Edge detection is a key component in the tracking algorithm because locating the

boundaries found within an image can provide the most useful information to identify a ROI.

This technique will be used also as a preprocessing step to define the initial boundary points of

the ROI within each patch. An edge can be defined as a transition point of the gray or pixel level

of the image as it changes from an area of low values to high values or vice versa (Phillips,

25

2000). The edges of an image must first be detected to determine the main components of the

image and provide information from the image. An image array mask is combined with the

original image array data to detect and highlight the edges through a process called convolution.

The output array data from this convolution will result in a reduction in overall noise of the

image, and show the outline of the objects represented in the image. A correlation kernel, also

known as a mask, can be convoluted with the original image pixel matrix data. The convolution

operation can be shown in the demo provided by Figure 3 (Gimp, 2017). The resulting output

image is the weighted sum of neighborhood input pixels from this function.

Figure 3: Convolution Demonstration

An image matrix is illustrated on the left side in Figure 3. Each pixel is marked with its intensity

value, and the center pixel is outlined in red. The kernel is then applied to the area that has a

green border. In the middle is the kernel matrix and, on the right, is the convolution result. The

initial pixel intensity (70) has become 60: (61*0) +(60*1) +(64*0) + (66*0) +(70*0) +(75*0) +

(70*0) +(76*0) +(78*0) = 60. As a graphical result, the initial pixel moved a pixel downwards.

This convolution process is applied to locate the edges using a mask with specified values that

can be changed. Figure 4 below shows the original image with the edge detection output images

for a low threshold and high threshold. A canny mask is applied to the image using the

MATLAB edge function, where the strength of the mask can be tuned by decreasing the

threshold parameter (Canny, 1986). Increasing the threshold value, will lead to a decrease in the

amount of edges detected. The edge detection algorithm must be tuned based on the application.

With the edge locations known, each edge will be moved and highlighted from frame to frame

based on optical flow or homography estimation.

26

Figure 4: Original Image (left) with Low Threshold Edge Detection (middle) and High

Threshold Edge Detection (right)

3.2.2: Corner Detection and Kanade-Lucas-Tomasi Tracking (KLT)

 With the image pre-processing and initialization steps completed, the ROI motion can be

estimated. There exist multiple methods to estimate an object’s motion. A commonly used

method is to solve for the optical flow of the object. Optical flow can be defined as the two-

dimensional displacement or velocity estimation of pixel patches on an image plane. Figure 5

below shows an example of optical flow between two video frames (t and t + 1) with pixel

points (݌ଵ,݌ଶ, ଷ). Computing the optical flow of the two frames of this video sequence results in݌

velocity vectors (ݒଵ,ݒଶ, .ଷ) to estimate the apparent motion of these pointsݒ

27

Figure 5: Optical Flow of 2 Image Frames with Points (left) and Velocity Estimation (right)

The common optical flow techniques developed must define some assumptions and

constraints to estimate the motion of points within an image. One important assumption is that

the brightness (intensity) of a point remains constant from one frame to the next, even though the

position of that point changes (Cremers & Wedel, 2011). The brightness constancy constraint is

also labeled as the optical flow constraint, and is shown in equation 12 below.

௧ܫ + ௫ܫݑ + ௬ܫݒ = 0 (12)

Where ܫ௫ , ௬ܫ , ௧ are the partial derivatives of the image with respect to x, y, and t. While u and vܫ

are the motion vectors in the x and y direction, respectively, that are to be estimated. Figure 6

below will show example images of the image partial derivatives in the x and y directions by

applying an image gradient. Another optical flow assumption is spatial coherence, where

neighboring points in an image frame typically belong to the same surface and have similar

motions between image frames. A third optical flow assumption is temporal persistence, where

the motion of an object, or group of points, within an image changes gradually over time. In the

case for most optical flow approaches, the apparent motion of the points within an image frame

is assumed to be small throughout subsequent frames. Regions within the image for optical flow

movement must also avoid “bad” textures that include homogenous intensity values and areas of

28

linear symmetry. A classic example of the linear symmetry problem is the barber pole illusion

shown in Figure 7 below. The true movement of the stripes within the image is horizontal,

however the optical flow and perceived motion is that the stripes are moving up along the z-axis.

Two additional constraints are typically added to solve this problem. The flow field is assumed

to be smooth locally, and the optical flow is solved within a specific size window that is swept

over the image to estimate the true motion. The barber pole illusion can then be solved along the

outside edge where it is estimated that the information within the image is moving horizontally.

Figure 6: Image Derivatives in the X (left) and Y (right) Directions

Figure 7: Barber Pole Illusion with True Motion (middle) and Incorrect Optical Flow (right)

There exist many different solutions to the optical flow equation, and a variation of the

Lucas-Kanade (LK) method will be used to compute the optical flow in this case (Lucas &

Kanade , 1981). The LK method works by assuming motion within a small window is uniform,

29

typically NxN where N is smaller than 15 pixels. The optical flow constraint is then evaluated at

all pixels within the defined neighborhood to estimate their respective motion, and this equation

is shown below in equation 13. Equation 13 is then solved by applying a least squares approach

to a quadratic equation that is derived below to form equation 14 (Cremers & Wedel, 2011).

min௨,௩ [ߑ൫ܫݑ௫ + ௬ܫݒ + ௧൯ܫ
ଶ

] (13)

which gives,

௫ܫݑ൫ߑ + ௬ܫݒ + ௫ܫ௧൯ܫ = ௫ܫݑ൫ߑ ݀݊ܽ 0 + ௬ܫݒ + ௬ܫ௧൯ܫ = 0

௫ܫߑ
ଶݑ + ݒ௬ܫ௫ܫߑ = ݑ௬ܫ௫ܫߑ ݀݊ܽ ௧ܫ௫ܫߑ− + ௬ܫߑ

ଶݒ = ௧ܫ௬ܫߑ−

ቈ
௫ܫߑ

ଶ ௬ܫ௫ܫߑ

௬ܫ௫ܫߑ ௬ܫߑ
ଶ ቉ ቂ

ݑ
ቃݒ = ൤

௧ܫ௫ܫߑ−
௧ܫ௬ܫߑ−

൨ (14)

Where Σ represents the summation of all pixels within a specified neighborhood for each term

that applies. This partial differential can be solved for all points within the neighborhood, but it is

important to note where equation 10 produces the best results. The most accurate flow estimates

occur at regions with have high texture or sharp intensity change that are represented as corners,

edges, and areas of large gradients. The most inaccurate optical flow measurements occur at

areas with low gradients that have small or no intensity change (Cremers & Wedel, 2011). The

optical flow results can also be improved through iterative refinement by using image pyramids.

The optical flow motion between two points is solved for in low resolution images first, and then

refined on increasingly higher resolution images. This pyramid refinement step can be seen in

Figure 8 below. Overall, the LK optical flow approach was developed to estimate the movement

of rigid structures as the most accurate flow estimations occur at edges or corners. To apply this

technique to estimate the non-rigid motion of the heart, the optical flow measurements must be

sampled in small patch areas that are assumed to follow rigid motion. Using the LK method does

produce accurate results to predict the motion of the heart structure in the first couple of frames.

However, the location of the targeted vessel edges tends to drift away from their actual location

that cannot be recovered even after employing a re-alignment step. This result shows that the

motion estimation is not exact with a neighborhood approach and must be improved.

30

Figure 8: Iterative Refinement of Optical Flow using Image Pyramids

The Kanade-Lucas-Tomasi (KLT) tracker will be used instead of the LK approach to

estimate the motion of corner points from frame to frame. The Harris corner features are used in

this approach, because they are well-defined as an intersection of two edges and are robust to

large motion or intensity changes from one frame to the next (Shi & Tomasi, 1994). The KLT

algorithm, developed in 1991, works to improve the optical flow estimation by evaluating

regions that propose a well-condition system to solve for the motion of an object or region

(Tomasi & Kanade, 1991). This algorithm was improved to its current implementation in 1994

and follows the outline shown below (Shi & Tomasi, 1994):

1. Detect Harris corner features

2. For each Harris corner compute motion between consecutive frames using either the LK method

or affine motion estimation

3. Store motion vector of each corner and update corner position in new frame

4. (optional) Add more corner points every 10 frames using step 1

5. Repeat motion estimation steps and constantly update corner position in current frame

The KLT algorithm does produce improved results for estimating the non-rigid motion of

the heart structure. The detected corners will be sampled by each patch and moved individually

to develop an average motion for every patch. Figure 9 below shows an example of finding the

corners in an image frame and showing their moved location in the next frame. The movement of

the corners from frame 1 can be seen for this ROI to the right and down into the frame 2 corners.

31

Estimating the motion with this technique cancels the drifting result of the LK motion estimation

and keeps the ROI prediction consistent at every frame.

Figure 9: Image 1 ROI with Corners from Frame 1 (Dot) and Frame 2 (Plus)

With the optical flow estimated, the quality of tracking must be checked before the ROI

is moved to the next frame. The quality of tracking will be checked by determining if the flow

within a patch is normally distributed, and if the average flow measure between neighboring

patches is continuous. To begin this process, the optical flow estimation within each patch will

be checked for a normal distribution by determining the number of outliers outside of the

Gaussian distribution (±2ߪ) and a chi-square goodness of fit test. The difference between the

average motion of two neighbors within a row will be compared along with the difference

between two neighbors within a column to fit a predefined threshold. This will be done to ensure

the estimation is accurate and does not break up the continuous motion constraint. If both

constraints are met, the optical flow estimation will be used to move each patch into its

respective location in the next image frame. If both constraints are not met, the optical flow

estimation failed and will be flagged to count the number of failures within a small number of

frames. The flag count will continue to iterate as long as the next optical flow estimation does

not meet the same constraints. The piecewise ROI will then need to be reinitialized using the

SURF/RANSAC technique after a set number of flags is reached. The addition of flagged

32

estimates will allow the KLT tracker to fix any error in real time before moving on to the

reinitialization stage.

3.2.3: Initialization and Reinitialization Techniques

If the motion estimate was found to not pass the quality criteria as normally distributed

within a patch and continuous across neighboring patches, the ROI must be reinitialized by

determining a homography transform. This transform can be estimated by locating the matching

SURF features within an image and use RANSAC to estimate a homography. To begin

describing this process, feature matching must be introduced. Feature matching is an important

image-processing technique to locate corresponding points of a specific object within two image

frames. The Speeded Up Robust Features (SURF) algorithm can be utilized as a scale and

rotation-invariant detector and descriptor to approximate matching pixels between two images

for object tracking. The algorithm, developed by Bay et al., can be summarized into three steps.

First, specific feature points are located at pixels corresponding to high frequency components,

typically found in corners, blobs, edges, and T-junctions (Bay et al., 2007). Next, the

neighborhood of every feature point detected will be represented by a feature vector, called a

descriptor. The descriptor must be unique and robust to noise, displacement, and photometric

deformations (Bay et. al, 2007). Lastly, the descriptor vectors of each detected point are then

matched between the two images. The matching step is done by determining the minimum

Euclidean distance between two features. Each step in the SURF matching process will be

described in detail below.

The first objective in the SURF algorithm is to locate interest points that will be used to

determine matches between two images. These interest points typically are found in corners,

edges, blobs, and T-junctions (Bay et. al, 2007). A Hessian matrix approximation is used in this

algorithm with integral images to reduce computation time and improve efficiency. An integral

image at a pixel location (x) is represented as the sum of all local pixel intensities within a

rectangular region. Equation 15 below shows the mathematical calculation of the integral image:

ܫఀ (ݔ) = ∑ ∑ ,݅)ܫ ݆)௝ஸ௬
௝ୀ଴

௜ஸ௫
௜ୀ଴ (15)

Where I is the input image, x is the sum of all the pixel intensity values (Viola & Jones, 2001). A

graphical representation of an integral image is shown in Figure 10 below. This figure shows the

33

representation of a rectangular area as three additions to calculate the sum of the intensities. This

allows for an increase in processing time for convolution of filters, and, in the case of SURF,

allows for a faster interest point detection step.

Figure 10: Graphical Representation of an Integral Image.

The SURF feature point detector is based off a Hessian matrix approach to detect blob-

like structures at locations where the determinant is maximum. At a given point within an image

(x), the Hessian Matrix H(x,ߪ) is defined in equation 16 below:

,ݔ)߅ (ߪ = ቈ
,ݔ)௫௫ܮ (ߪ ,ݔ)௫௬ܮ (ߪ
,ݔ)௫௬ܮ (ߪ ,ݔ)௬௬ܮ ቉ (16)(ߪ

Where Lxx is the convolution of the Gaussian second order derivative with the image I in the

point x, similar for Lxy and Lyy (Bay et. al, 2007). Gaussian derivatives are approximated at a

low computation cost using box filters and integral images to speed up the convolution step and

reduce computation time. The three 9x9 box filters used on each image in the x, y, and both x

and y directions are shown in Figure 11 below as Dxx, Dyy, and Dxy respectively (Juan et. al,

2010).

34

Figure 11: 9x9 Box Filters used in Convolution with Image to Approximate Gaussian

The approximated determinant of the Hessian matrix, shown in equation 17 below,

represents the blob response in the image at a specified location x. The results are stored in a

blob response map over different scales, where the local maxima are detected.

det൫ܪ௔௣௣௥௢௫൯ = ௬௬ܦ௫௫ܦ − ൫0.9ܦ௫௬൯
ଶ
 (17)

For the SURF feature point detection step, points of interest must be found at different

image scales to locate the best feature points that show up in every down-sampled size of an

image. The scale-space can be represented as a pyramid, and is analyzed by up-scaling the box

filter size, instead of iteratively reducing the image size shown in Figure 12 below. The output of

the 9x9 box filter is set as the initial scale labeled s = 1.2. The following results are calculated by

filtering the same image with bigger masks with the use of integral images. The box filter, or

mask, size must be increased by 6 pixels at each iteration to keep the filter size uneven and keep

the central pixel (Bay et. al, 2007).

35

Figure 12: Increase in Scale of the Filter (right) using Integral Images Reduces Computation

Time

With multiple interest points detected across different scales, the next step is to localize

the points found using a non-maximum suppression in a 3 x 3 x 3 neighborhood. A Fast-Hessian

detector method, proposed by Brown and Lowe, is used by interpolating the maximum of the

determinant of the Hessian matrix in the scale and image space. The interest points located can

be shown in Figure 13 below as an example image from the heart data set with detected interest

regions.

Figure 13: Fast-Hessian Detection of Feature Points in an Image

The next component of the SURF algorithm is the development of a descriptor for each

feature point detected. The first step in the descriptor process is to identify a reproducible

orientation for each interest point detected. The Haar wavelet responses in the x and y direction

36

are calculated within a circular neighborhood of the interest point detected, shown in Figure 14

below. The wavelet responses are calculated and weighted with a Gaussian function centered at

the interest point. Every sample point response within the circular region of the detected point

can be represented as points in a circular space, also shown in Figure 14 below, with horizontal

response strength in x and vertical strength in the y. The dominant orientation is estimated by

calculating the sum of all sample points within a sliding orientation window of size
గ

ଷ
 . This

results in an orientation vector for each point. For many applications, however, rotation

invariance is not needed. Upright SURF (U-SURF) can be used instead due to faster computation

time while maintaining a robustness to rotation of about ±15° (Bay et. al, 2007).

Figure 14: Haar Wavelet x and y (Left) and Orientation Assignment Calculation (Right)

A descriptor must be extracted for each interest point detected to be used in comparison

to other points for the matching step. Figure 15 below shows the overall descriptor extraction

process. Each circular detected point must be represented as a square region centered around the

interest point. The square is then split up into smaller 4 x 4 sub regions to preserve spatial

information. The Haar wavelet response is then calculated at each 5x5 spaced sample points. The

responses in the x-direction (dx) and y-direction (dy) are Gaussian weighted and summed up

over each sub-region to form the first components of a feature vector for an interest point

detected. The next two responses will be included in a 4D descriptor vector, which is used to

describe the intensity structure of the interest point. The descriptor includes the dx and dy

responses along with absolute value of each. Concatenating these results for all 4x4 sub regions,

gives a descriptor vector of length 64 for each interest point.

37

Figure 15: Feature Extraction Process to Build Descriptor

The final step is to match feature points using the extracted descriptor information. The

sign of the Laplacian is used to distinguish bright intensities on dark backgrounds from dark

intensities on bright backgrounds. This calculation allows for a comparison of only features with

similar contrast to allow for faster matching by indexing each descriptor based on contrast. For

example, in Figure 16 below, the contrast between two star objects are different so these are not

considered a good match. Only features of similar contrast will be compared to allow for

increase in accuracy at no computation cost. Figure 17 below will show two images of a set of

SURF matched features from two separate image frames and one image matched with a rotated

version of the same image. The image rotation does not need to be estimated for this application

as all data sets are rotation invariant. These results are shown to demonstrates that the SURF

features can be matched between two image discontinued image frames, and will be the best to

use for a homography transform estimation.

Figure 16: Bright-on-dark (left) and Dark-on-bright (right) Stars would not be Matched

38

Figure 17: SURF Matched Features for Two Upright Frames (top) and Rotated Frames (bottom)

 The next component to the reinitialization step is to utilize the Random Sample

Consensus (RANSAC) method as an outlier rejection and homography estimation technique.

RANSAC is an iterative method to estimate parameters of a mathematical model from a set of

observed data which contains outliers. The mathematical model for estimating a homography

transform through RANSAC can be summarized in the outline below:

1. Randomly choose N pairs

2. Find H (transfer matrix) from N pairs

a. Where, ܺଶതതത = ܪ ଵܺതതത

3. Use estimated ܪ෡, where ܺଶ෢തതത = ෡ܪ ଵܺതതത

a. If perfect, then ܺଶ෢തതത ≈ ܺଶതതത

b. Else, ܺଶ෢തതത − ܺଶതതത = ݏݐ݊݅݋݌ ݎ݈݁݅ݐݑ݋

4. If number of inliers is too small, initial H estimator is bad

5. Repeat until a large number of inliers is found.

39

RANSAC will be applied to SURF matched features to estimate the location of the

beginning and end of the piecewise grid in one image frame to a subsequent or different

transformed image. RANSAC can take a set of matched SURF points between two images, and

compute a transfer matrix to relate any point within one image to the next image. The subsequent

region from image one may be transformed through a homography transformation. A

homography transform is defined as a non‐singular 3x3 mapping matrix (H), such that for any

point in an image represented by a point x that h(x)=Hx. This transformation matrix can be used

to estimate motions in a two-dimensional case that are typically due to affine transforms such as

translation, rotation, scaling, and others. A two-dimensional Homography matrix is calculated by

the RANSAC algorithm to relate the image points (x) from frame 1 to frame 2 (x’), and can be

shown in Figure 18 below. RANSAC initially takes a random set of four matched pairs, in this

case SURF matches, and computes a transfer matrix between them. The initial [3x3] matrix is

then applied to all the matched points from image one to compute an estimate of the location of

the input data in image two. If there is a difference between the estimate and actual matched

pairs, then the difference is labeled as outliers and must be minimized. RANSAC will continue

to iterate until the maximum amount of inlier data points is found. A data point will be

considered an inlier if its geometric distance to the estimate, also known as error, is minimized

(Choi et. al, 2009). If there are fewer correct SURF matched features, more iterations are

required to increase the probability that a selected subset will contain only correct matches

(Hassner et. al, 2013). It is important to make sure the SURF matches found are correct to

reduce the number of RANSAC iterations necessary. The RANSAC homography transform

results can be applied to any set of points within one image frame, and project these points to

their locations in the next image frame. To reinitialize the tracking algorithm due to a failed

estimate, the SURF features will be combined with RANSAC to estimate a homography

transform that will move the beginning and end of the piecewise grid. With a new start and stop

point, the piecewise grid will be redefined by updating the corners and edges found in each

patch. The piecewise motion estimation will then return to the KLT tracker to estimate the

motion in the next image frame.

40

Figure 18: Example Homography Transform Between Two Planes x and x’

3.3: Experimental Design

 The piecewise tracking approach explained above was tested on five heart motion data

sets following the steps presented in this section. First, both piecewise motion constraints were

validated over a small portion of data, and this function, labeled as “DeterminePatchNum4.m,” is

attached in the Appendix. This function looped through different patch numbers and tested

whether the motion from frames one to two is normally distributed within each patch. In

addition, this function looped through a set number of image frames to check if the motion

between patch neighbors is normally distributed, and record the differences in the horizontal and

vertical directions. After the validation step, thresholds were then calculated using the standard

deviation values.

Next, the piecewise tracking algorithm was tested across all image frames of each data

set, to prove that this approach will track a ROI continuously. With the patch number and motion

thresholds determined for each data set during initialization, the corners and edges of the ROI

were grouped into each patch. The KLT tracker was then initialized, and the edge locations were

moved frame by frame using the estimated motion. The motion of any patch in the U and V

direction was also flagged as a failed tracking estimate if either constraint was not met. To

improve the tracking results, any flagged patch, due to the flow difference with its neighbor

being higher than the set threshold, was set to follow the motion of its neighbor for that frame.

This step was done to ensure the ROI to be tracked was not lost, and to keep the edges from

separating completely. If the number of flagged image frames reached three, the reinitialization

step was completed. To begin, the previous image frame with the most matching SURF features

41

with the current discontinued frame was determined using the “DetermineBestFit2.m” function,

which can also be found in the Appendix. The two image frames were then used to calculate a

homography transform through the RANSAC algorithm with SURF matched features between

them. The homography was then used to move the current start and stop points to realign the

piecewise grid. The corner features and edges were then resampled into new patch locations, and

the KLT tracker was restarted.

CHAPTER 4: RESULTS

4.1: Initialization

The results of the optical flow measurements in the U (x) and V (y) directions within a

patch was checked by the chi-square goodness of fit test, and these results are shown below in

Tables 1-5. The tables below show the total number of patches with a motion distribution that

failed the chi-square test and are not normally distributed. When both the U and V motion was

found to be normally distributed within every patch, the patch number was set. The table also

includes the four motion thresholds calculated as the maximum offset allowed for motion among

neighboring patches in either the U or V directions. These results verify that the first constraint

for the piecewise tracking is met. It also provides results to support the second constraint that the

motion between neighbors is continuous if the difference between them is lower than the

threshold limit.

For data sets 1, 2, 3, and 5 the patch number was determined to be 36, while patch 4 was

determined to be 25.

Table 1: Initialization of the Patch Number and Thresholds for Data Set 1

43

Table 2: Initialization of the Patch Number and Thresholds for Data Set 2

Table 3: Initialization of the Patch Number and Thresholds for Data Set 3

Table 4: Initialization of the Patch Number and Thresholds for Data Set 4

Table 5: Initialization of the Patch Number and Thresholds for Data Set 5

44

The distributions of all the neighboring differences are shown in Figures 19-38 as

histograms for each of the five data sets. The distributions shown appear to be close to normal

distribution, as expected. The two-sigma values were calculated as a motion threshold for the

horizontal and vertical neighbors in the U and V directions. If any difference between

neighboring patches were to be greater than its respective threshold, the frame will be flagged as

a failed motion estimate.

Figure 19: Data Set 1 Histogram of U Patch Neighbors Horizontal Direction

Figure 20: Data Set 1 Histogram of U Patch Neighbors Vertical Direction

45

Figure 21: Data Set 1 Histogram of V Patch Neighbors Horizontal Direction

Figure 22: Data Set 1 Histogram of V Patch Neighbors Vertical Direction

46

Figure 23: Data Set 2 Histogram of U Patch Neighbors Horizontal Direction

Figure 24: Data Set 2 Histogram of U Patch Neighbors Vertical Direction

47

Figure 25: Data Set 2 Histogram of V Patch Neighbors Horizontal Direction

Figure 26: Data Set 2 Histogram of V Patch Neighbors Vertical Direction

48

Figure 27: Data Set 3 Histogram of U Patch Neighbors Horizontal Direction

Figure 28: Data Set 3 Histogram of U Patch Neighbors Vertical Direction

49

Figure 29: Data Set 3 Histogram of V Patch Neighbors Horizontal Direction

Figure 30: Data Set 3 Histogram of V Patch Neighbors Vertical Direction

50

Figure 31: Data Set 4 Histogram of U Patch Neighbors Horizontal Direction

Figure 32: Data Set 4 Histogram of U Patch Neighbors Vertical Direction

51

Figure 33: Data Set 4 Histogram of V Patch Neighbors Horizontal Direction

Figure 34: Data Set 4 Histogram of V Patch Neighbors Vertical Direction

52

Figure 35: Data Set 5 Histogram of U Patch Neighbors Horizontal Direction

Figure 36: Data Set 5 Histogram of U Patch Neighbors Vertical Direction

53

Figure 37: Data Set 5 Histogram of V Patch Neighbors Horizontal Direction

Figure 38: Data Set 5 Histogram of V Patch Neighbors Vertical Direction

54

4.2: Tracking and Reinitialization

The tracking results of data set 1 can be shown in Figure 39 below, including the initial

frame (frame 1) that contains the initializing patch grid, with frames 2, 1537-1540. This whole

set contains 2430 image frames in total, and frames 1537-1540 are chosen to demonstrate the

tracking results in the middle of the dataset set. Throughout the entire data set, the total number

of resets was found to be 409 times or 16.8% of the total number of frames. An example of this

reinitialization is also provided in the figure from frame 1539 to 1540. The average optical flow

measure for each patch is also shown in Figures 40 and 41 below along with the corrected

measure of every patch that does not pass the set thresholds. These results show that there exists

a distinct pattern to the movement of the ROI. The flow movement was found to increase and

then always returns to its original position with a zero-flow measure at the end of every heart

cycle. A flagged frame is also highlighted by a black star to show when the optical flow of one or

more patches is considered an outlier that does not pass either piecewise constraint. It is

important to note that this is the only data set where a complete occlusion of the ROI occurs

around frames 1700 and 2000. The tracking algorithm was not able to correct itself with a

complete blockage of the region. These results are shown in Figure 42 below with the complete

block pushing the tracking estimate away from the actual location. After the complete blockage

of the region, the actual image changes as the region cannot be distinguished from the blockage.

This change in the image causes the reinitialization step to not be able to realign and restart the

tracking process. With these frames taken out of the data set, the algorithm is able to completely

track the ROI over all other image frames.

55

Figure 39: Data Set 1 Tracking Results Starting from Frame 1, 2, 1537 (top) to Frame 1538-1540

(bottom)

56

Figure 40: Measured U Optical Flow vs Corrected Flow by Neighbors

57

Figure 41: Measured V Optical Flow vs Corrected Flow by Neighbors

58

Figure 42: Frame 1768 Occlusion

 For data set 2, we found that the ROI was tracked continuously in all image frames.

Figure 43 below shows some results starting with frame 1, 2, and 1607 in the top row followed

by 1608-1610 in the bottom row. The flagged image frames start at 1608 as the left edge of the

blood vessel separates from its actual boundary location, and is then realigned due to the

reinitialization step. This shows that the motion thresholds calculated are accurate to pick up any

small change between two patch neighbors that would break the piecewise motion estimate. In

this data set, the total number of resets was found to be 540 times or 22.2% of the total number

of frames. The average optical flow measure for each patch is also shown in Figures 44 and 45

below along with the corrected measure of every patch by their respective neighboring flow. A

flagged frame is also highlighted by a black star to show when the optical flow one or more

patches is considered an outlier that does not pass either piecewise constraint.

59

Figure 43: Data Set 2 Tracking Results Starting from Frame 1, 2, 1607 (top) to Frame 1608-1610

(bottom)

60

Figure 44: Measured U Optical Flow vs Corrected Flow by Neighbors

61

Figure 45: Measured V Optical Flow vs Corrected Flow by Neighbors

 The ROI was also continuously tracked for data set 3 over a set number of 2430 frames.

Figure 46 below shows the tracking and reinitialization from frames 1, 2, and 191-194. These

results show that the rightmost edges of the vessel break off from their actual location and then

are reset by the last frame. In this data set, the total number of resets was found to be 419 times

or 17.2% of the total number of frames. The average optical flow measure for each patch is also

shown in Figures 47 and 48 below along with the corrected measure of every patch by their

62

respective neighboring flow. A flagged frame is also highlighted by a black star to show when

the optical flow one or more patches is considered an outlier that does not pass either piecewise

constraint. These results also show that there exists a distinct pattern to the movement of the ROI

as the flow movement increases and then always returns to its original position with a zero flow

at the end of every heart cycle.

Figure 46: Data Set 3 Tracking Results Starting from Frame 1, 2, 191 (top) to Frame 192-194

(bottom)

63

Figure 47: Measured U Optical Flow vs Corrected Flow by Neighbors

64

Figure 48: Measured V Optical Flow vs Corrected Flow by Neighbors

 Data set 4 provides a different result as the number of patches changes to 25, but the

algorithm was still able to continuously track the ROI continuously over 2400 frames. Figure 49

below shows the tracking and reinitialization from frames 1, 2, and 2354-2357. It can be shown

in frames 2354-2357 the bottom left edges of the blood vessel fall off track and are eventually

moved back to their correct position. This shows that the algorithm can recover from more than

one offset between neighboring patches and restart the tracking process. Overall, the total

65

number of resets was found to be 739 times or 30.8% of the total number of frames. The average

optical flow measure for each patch is also shown in Figures 50 and 51 below along with the

corrected measure of every patch that does not pass the set thresholds. These results show that

there exists a distinct pattern to the movement of the ROI as the flow movement increases and

then always returns to its original position with a zero flow at the end of every heart cycle. A

flagged frame is also highlighted by a black star to show when the optical flow one or more

patches is considered an outlier that does not pass either piecewise constraint.

Figure 49: Data Set 4 Tracking Results Starting from Frame 1, 2, 2354 (top) to Frame 2355-2357

(bottom)

66

Figure 50: Measured U Optical Flow vs Corrected Flow by Neighbors

67

Figure 51: Measured V Optical Flow vs Corrected Flow by Neighbors

 The last set of was successfully tracked over 2430 frames. Figure 52 below demonstrates

tracking and reinitialization from frames 1, 2, and 2321-2324. These results show the middle and

top left edges of the ROI fall off track and then realign by the last image frame. The total number

of resets was found to be 286 times or 11.7% of the total number of frames. The average optical

flow measure for each patch is also shown in Figures 53 and 54 below along with the corrected

flow for each patch that does not pass the difference thresholds set. These results show that there

68

exists a distinct pattern to the movement of the ROI as the blood vessel always returns to its

original position at the end of every heart cycle. A flagged frame is also highlighted by a black

star to show when the optical flow one or more patches is considered an outlier that does not pass

a piecewise constraint.

Figure 52: Data Set 5 Tracking Results Starting from Frame 1, 2, 2321 (top) to Frame 2322-2324

(bottom)

69

Figure 53: Measured U Optical Flow vs Corrected Flow by Neighbors

70

Figure 54: Measured V Optical Flow vs Corrected Flow by Neighbors

 One last set of results to present includes the motion for each data set in the first few

heart cycles. Figures 55, 56, 57, 58, and 59 demonstrate the optical flow measured with the KLT

tracker in the U and V directions over five heart cycles. The results verify that a distinct pattern

can be observed in each data set. In the corrected U and V flow measurements, we noticed that

all the patches tend to follow similar patterns in general. However, their motion can differ by

several pixels across the ROI. It is due to the non-rigid nature of the problem. A machine

71

learning approach could be added to generate a learned model that could make tracking

predictions on future data based on a pattern over the first few heart cycles.

Figure 55: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 1

72

Figure 56: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 2

73

Figure 57: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 3

74

Figure 58: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 4

75

Figure 59: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 5

CHAPTER 5: DISCUSSION

 The results show that the piecewise tracking algorithm was able to break up a selected

ROI into smaller patches that could be estimated as small pseudo-rigid segments. The algorithm

automatically calculated the number of patches and motion thresholds needed to meet the

piecewise geometrical constraints during the initialization step.

5.1: Initialization of Parameters

For each data set, the algorithm was initialized with a set of parameters, which are similar

across data sets. The configuration of these parameters can contribute to the overall performance

of tracking, which can be evaluated, for example, by the likelihood of reinitializations or resets

needed. It was confirmed through visual inspection that 93% of the total resets in all five data

sets are due to a loss of tracking, and only 7% of them were considered false alarms. It is

reasonable to assess the tracking performance by monitoring the resets. Each reinitialization step

that is counted as a false alarm occurs when the motion estimated does not pass the set

thresholds, but does follow the actual motion of the ROI. Therefore, with these parameters, the

incorrect motion estimates are mostly due to a loss of tracking as the estimated motion does not

meet the set thresholds and does not follow the actual movement of the ROI. The two parameters

that are found to be the most influential to the overall performance are the number of corners

detected in the initial frame and number of patches used in tracking. Although both parameters

are iteratively optimized in the automatic approach, it is of interest to consider their impact on

tracking.

The number of corner features used to track each patch could have changed by varying

the initial Harris corner detection threshold. 12,626 corners were detected by using an initial

threshold of 0.005 in the current software implementation, which was the same value used across

all data sets in this analysis. The number of patches was then determined by grouping some of

these corner features into small patches, and testing different patch sizes to follow a normal

distribution to meet the first constraint that every patch can be assumed to follow a pseudo-rigid

motion. To test if the current performance of the tracking algorithm is the most efficient, the

number of resets for one data set can be compared by varying these two parameters. Also since

77

the motion of every data set is non-rigid and of a biological heart, the same results shown

are to be expected with the other four data sets.

The first parameter to be tested is the number of corners detected in the first frame, while

keeping the patch number constant. For data set two, the number of corners was increased to

15,305, which corresponds to a Harris corner detection threshold of 0.001, and the number of

resets was found to increase to 592 or 24% of the total image frames. The number of corners was

also increased to the maximum 16,529 corners, which corresponds to a threshold of 0.0001, and

the number of resets increased again to 648 or 26%. This test shows that if the number of corners

initially detected is too large, it is more likely that the features detected are “bad” features that do

not represent the location of a true corner. The increase in the number of “bad” features will lead

to an incorrect motion estimation and cause the number of flagged frames and resets to increase.

The number of corners was also lowered to test the algorithm performance. The corner detection

threshold was first set to 0.008 to lower the number of corners detected to 10,331, and the

number of resets was found to increase to 595 (24%). The number of corners was then set to a

minimum of 9,007 corners, which corresponds to a threshold of 0.01, and the reset number was

found to also increase to 566 (23%) times. This test shows that even though it is less likely to

have a “bad” feature by lowering the number of corners detected, the number of corners per

patch will decrease. The decrease in the number of corners per patch will lead to a higher chance

of an outlier corner motion to cause an incorrect patch estimate and a flagged frame or reset.

Overall, the number of corners initially detected at 12,626, with a threshold of 0.005, results in

the lowest reset number at 540 resets or 22% to provide an optimal performance of the

algorithm. It is also expected that either increasing or decreasing the number of corners used for

every data set will lead to the same conclusion. These results show that the number of corners

detected and overall tracking performance is not very sensitive to the actual threshold used, as

the increase in the number of resets does not change by a significant amount. However, a step

can be added to the initialization phase to determine an optimal threshold for the initial corner

detection by testing for any outlier motion when this threshold is varied.

 Next, the impact of the number of patches is investigated. The number of patches was

increased to 49 and then increased again to 64 patches while keeping the corner detection

threshold constant, to test if lowering the patch sizes and adding more patches will improve the

78

pseudo-rigid estimation of the ROI. Increasing the patch number to 49 does not change the

number of resets significantly at 549 times (22.5%), but the number of corners per patch changes

to 12. Changing the patch number to 64, however, does increase the number of resets to 664

times (27%) and the number of corners decreases per patch to 9. This increase in patch number

decreases the patch size to lower the number of corners used in estimating the motion of each

patch. The decrease in the number of corners per patch will lead to an inaccurate motion estimate

that could be dominated by an outlier corner motion that will increase the number of flagged

frames and resets. Also, if the number of patches were to decrease to allow for a larger patch

size, each patch will still follow a non-rigid motion that could not be accurately estimated as an

approximately rigid segment with optical flow. This test shows that the automatic initialization

of a patch number to 36 patches, that all follow a pseudo-rigid motion within each patch, results

in the optimal performance of the tracking algorithm. The same results are also expected for the

other four data sets.

 In addition to both parameters, the frame selected to start the initialization could

influence the tracking performance of the algorithm. In the results shown in the previous section,

the initial frame for every data set started during the relaxation or diastole phase of the heart

cycle. This allowed the algorithm to start at the beginning of a heart cycle to improve the

initialization of the piecewise grid and optical flow tracking. The initial frame was changed to

show that starting the tracking process during the relaxation phase of the heart cycle provides a

more accurate initialization and improves performance. To demonstrate the effect of the starting

frame, the algorithm was changed for data set two to first start at frame 32, which corresponds to

the middle of the heart cycle. The patch number selected by the algorithm was 36 and the

algorithm was able to track the ROI throughout the entire data set, but the number of resets

increased to 555 (23%). This test shows that the tracking algorithm can begin at the middle of the

heart cycle, but to improve performance, it is better to begin tracking during the relaxation phase.

The starting frame was then set to frame 55, which corresponds to the contraction phase of the

heart cycle. The large motion change during this part of the heart cycle leads to a decrease in the

patch number to 16, and the algorithm was unable to track the ROI throughout the entire data set.

With a large patch size, the motion estimated for each patch was inaccurate as the patches still

follow a non-rigid motion. Estimating the non-rigid motion with a rigid optical flow measure

will lead to a loss or disconnect of edges in the ROI. By moving the starting frame away from the

79

relaxation phase of the heart cycle, the initialization and tracking results change to lower the

performance of the algorithm developed. These results support keeping the initial frame constant

during this phase for future heart motion tests.

5.2: Recovery from Loss of Track and Reinitialization

The algorithm was able to continuously track the ROI and recover from tracking failures

for every image frame in all data sets, except for data set one. In this data set, the algorithm was

unable to reinitialize due to a complete occlusion. Even though the algorithm is robust against

temporary loss of data or occlusions, the complete occlusion changed the image data, and did not

allow the ROI to be distinguished from the blockage. To properly handle this issue, the

reinitialization step must be improved to allow for a temporary stop in the tracking process until

the ROI is back in view. In a real-time implementation, this can be done with a user-controlled

pause of the tracking process. However, this step could be automated by allowing the algorithm

to detect when all patches were to not follow the piecewise constraints and stop tracking for the

next few frames.

 To summarize, the overall tracking performance of the algorithm presented was

determined to be efficient. Changing the two most influential parameters, the number of corners

detected and patch number/size, does affect this performance as the number of resets increased.

However, selection of the initial frame appears to have a greater impact. The initial frame set at

the relaxation phase of the heart cycle provides the best tracking performance, which requires an

estimate of the heart cycle. The heart cycle can be measured with additional sensory, or directly

observed in the imagery data. The motion estimated in each patch was also found to follow a

pattern for the movement of the ROI in each heart cycle. In further studies, a machine learning

approach could be added to generate a learned model that could make tracking predictions on

future data specifically based on their individual pattern over the first few heart cycles. The

learned model could also be used to provide a smart selection of the initial frame to begin

initialization and tracking at the beginning of the heart cycle. The reinitialization step could also

be improved from this model by determining where the discontinued frame is located in the

current heart cycle, and find the image frame from the same location in the previous heart cycle.

This step would improve the computation speed and realignment accuracy to reset the piecewise

grid and restart the tracking process.

CHAPTER 6: CONCLUSION

To successfully track a non-rigid system, such as the biological heart, a piecewise

tracking approach was developed to break up a selected ROI into small segments (patches) that

are assumed to be approximately rigid. The number of pseudo-rigid segments was determined by

following two constraints. Both constraints were defined based on smoothness of the physical

model, and enforced on tracking residuals. Image tracking that does not conform to either

constraint could be flagged as a failure and trigger a reinitialization step. The reinitialization step

was able to realign the piecewise grid and reset the features within each patch to be tracked.

The results show that the proposed piecewise approach was indeed able to track a

biological heart. Overall, it was able to meet all objectives outlined in the introduction as 1) it

does not require an underlying motion model to be known, 2) it quantifies the current tracking

estimate, and 3) it can recover from a tracking failure.

 The tracking algorithm could be improved in future studies. The results showed that the

algorithm is robust against temporary blockage or loss of images. However, with severe

occlusion, for example, blockage over the entire ROI over a period of time, it may not be able to

recover as successfully. The reinitialization step may be improved to allow for the tracking

algorithm to stop running when a complete occlusion occurs, and restart when the ROI is back in

view. In a real-time implementation, this can be done with a user-controlled pause of the tracking

process. However, this step could be automated by allowing the algorithm to detect when all

patches were to not follow the piecewise constraints and stop tracking for the next couple of

frames.

The motion estimated in each patch was also found to follow a pattern for the movement

of the ROI in each heart cycle. In further studies, a machine learning approach could be added to

generate a learned model that could make tracking predictions on future data, allow for a smart

selection of the initial frame, and improve reinitialization by matching any discontinued frame to

its previous frame from the last heart cycle. This model will be specifically based on the

individual pattern of a ROI over the first few heart cycles. This would still allow the tracking

algorithm to run with a piecewise approach and not require an underlying motion model to be

known before tracking process begins

81

 Furthermore, the proposed approach could also be feasible for tracking other biological

structures that exhibit a non-rigid motion model. Additional testing with images of a variety of

biological systems will provide more insight on the non-parametric piecewise tracking process.

Finally, the approach was designed and developed using computationally efficient image

processing methods. It would be feasible to implement and optimize the approach for a real-time

imaging system.

REFERENCES

Arif et. al. (2014). Tracking Using Motion Estimation with Physically Motivated Inter-Region
Constraints. IEEE Transactions on Medical Imaging , 1875-1889.

Axel, & Dougherty. (1989). Heart wall motion: Improved method of spatial modulation of
magnetization for MR imaging. Radiology, 349-360.

Axel, L., & Dougherty, L. (1989). MR imaging of motion with spatial modulation of
magnetization. Radiology, 841-845.

Bader et. al. (2007). Model-Based Motion Estimation of Elastic Surfaces for Minimally Invasive
Cardiac Surgery. Proceedings 2007 IEEE International Conference on Robotics and
Automation, 2261-2266.

Bay et. al. (2007). SURF: Speeded Up Robust Features. Computer Vision - EECV 2006 Lecture
Notes in Computer Science, 404-417.

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE TRANSACTIONS ON
PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 679-698.

Chandrashekara et. al. (2003). Construction of a Statistical Model for Cardiac Motion Analysis
Using Nonrigid Image Registration. Radiology, 1-12.

Choi et. al. (2009). Performance Evaluation of the RANSAC Family.

Cremers, D., & Soatto, S. (2004). Motion Competition: A Variational Approach to Piecewise
Parametric Motion Segmentation. London: Springer.

Cremers, D., & Wedel, A. (2011). Optical Flow Estimation. In Stereo Scene Flow for 3D Motion
Analysis (pp. 5-34). London: Springer.

Fischer et. al. (1993). Improved Myocardial Tagging Contrast . Magnetic Resonance Med, 191-
200.

Gimp. (2017). Convolution Matrix: Generic Filters. Retrieved from gimp.org:
https://docs.gimp.org/en/plug-in-convmatrix.html

Hartley, R., & Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge:
Cambridge University Press.

Hassanein et. al. (2014). Performance of Optical Flow Tracking Approaches for Cardiac Motion
Analysis. 2nd Midle East Conference on Biomedical Engineering.

Hassner et. al. (2013). When Standard RANSAC is Not Enough. Machine Vision and
Applications , 971-983.

Hilsenbeck et al., O. (2016). Software tools for single-cell tracking and quantification of cellular
and molecular properties. Nature Biotechnology, 703-706.

83

Ibrahim, E.-S. H. (2011). Myocardial tagging by Cardiovascular Magnetic Resonance: evolution
of techniques–pulse sequences, analysis algorithms, and applications. Journal of
Cardiovascular Magnetic Resonance , 1-40.

Juan et. al. (2010). A Scene Matching Algorithm Based on SURF Feature. IEEE, 1-4.

Lucas, B., & Kanade , T. (1981). An Iterative Image Registration Technique. Proceedings of
Imaging Understanding Workshop , 121-130.

MathWorks. (2017). Histogram Equalization. Retrieved from MathWorks:
https://www.mathworks.com/help/images/histogram-equalization.html

Najarian, K., & Splinter, R. (2012). Biomedical Signal and Image Processing. Boca Raton,
Florida: CRC Press.

Phillips, D. (2000). Image Processing in C. Lawrence, Kansas: R&D Publications.

Ren, X. (2008). Local Grouping for Optical Flow. 2008 IEEE Conference on Computer Vision
and Pattern Recognition, 1-8.

Richa et. al. (2011). Towards Robust 3D Visual Tracking for Motion Compensation in Beating
Heart Surgery. Medical Image Analysis, 302-315.

Shi, J., & Tomasi, C. (1994). Good Features to Track. IEEE Conference Paper on Computer
Vision and Pattern Recognition, 1-8.

Tomasi, C., & Kanade, T. (1991). Detection an Tracking of Point Features.

Tuna et. al. (2013). Heart Motion Prediction Based on Adaptive Estimation Algorithms for
Robotic-Assisted Beating Heart Surgery . IEEE Transactions on Robotics, 261-276.

Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple
Features. CVPR, 511-518.

WHO. (2016, September). Cardiovascular diseases (CVDs). (WHO) Retrieved April 28, 2017,
from http://www.who.int/mediacentre/factsheets/fs317/en/

Zerhouni et al. (1988). Human heart: Tagging with MR imaging - a method for noninvasive
assessment of myocardial motion. Radiology, 59-63.

Zhou, H., Yuan, Y., & Shi, C. (2008). Object Tracking using SIFT features and mean shift.
Computer Vision and Image Understanding, 345-352.

APPENDIX: MATLAB ALGORITHM

 The tracking algorithm developed in MATLAB will be attached in this section. The main

function is to be attached first and is labeled as “NewRegionBreakdownTrackin5.m.” This

approach requires the use of many other functions, where most are included in the MATLAB

package. Functions that are not part of that package, but used in this algorithm are also included

to follow. These include “DeterminePatchNum4.m” and “DetermineBestFit2.m.” The SURF and

RANSAC functions are found in MATLAB but the functions used in this approach can be found

in the following downloadable links as part of the MathWorks and GitHub community webpage.

SURF: https://www.mathworks.com/matlabcentral/fileexchange/28300-opensurf--including-

image-warp-

RANSAC: https://github.com/RANSAC/RANSAC-Toolbox

Main Algorithm:

%BT Thesis - Piecewise tracking algorithm loop for data set
close all; clc;
clear all;
%FLOW ON EDGES MOVE USING CORNERS AND KLT TRACKING FUNCTION
%%%
%Overall
%inputs:data set 800x800xN image,patch grid starting pts
%
%outputs:highlight edges in next image frame from opt flow result + prev.
%edge index pts and loop for all frames, write new images to file
%
%summary:the purpose of this program is to loop through an entire data set
%to track the boundary edges of a selected segment, fix failed estimate,
%and quantify current track estimate
%
%%%
%%%
%Part1: Input data set and determine correct patch size and number for
%piecewise tracking and determine corners
%%%
%data set 1
% load('ImgNIR_20160725T124609.mat');%breaks down 220-221
% ImgNIR=ImgNIR_20160725T124609;
% %frame num = 31 and only all pass at 15
% for q=1:25
% I=histeq(ImgNIR(:,:,q));
% ImgCycle(:,:,q)=I;
% end
%data set 2
% load('20160725T124323.mat');
% ImgNIR=IDS.ImgNIR;
% %frame num = 31

85

% for q=1:25
% I=histeq(ImgNIR(:,:,q));
% ImgCycle(:,:,q)=I;
% end
% data set 3
% load('20160725T124909.mat');%breaks:1210-1213
% ImgNIR=IDS.ImgNIR;
% %frame num = 25
% for q=1:25
% I=histeq(ImgNIR(:,:,q));
% ImgCycle(:,:,q)=I;
% end
% data set 4
% load('20160725T132840.mat');%holds w/ high motion like 1941-1942
% ImgNIR=IDS.ImgNIR;
% %frame num = 31
% for q=1:25
% I=histeq(ImgNIR(:,:,q));
% ImgCycle(:,:,q)=I;
% end
% data set 5
load('20160725T133113.mat');%breaks:
ImgNIR=IDS.ImgNIR;
%frame num = 26
for q=1:25
 I=histeq(ImgNIR(:,:,q));
 ImgCycle(:,:,q)=I;
end

%num frames
numframes=size(ImgNIR,3);

%create directory to save output images
mkdir('C:\ECU\Thesis\DataResultsSet5\TimedTest1');

%run Equalize function to apply histeq to img frame 1 and 2
img1=histeq(ImgNIR(:,:,1));
img2=histeq(ImgNIR(:,:,2));
count=1;
MinPatchCorners=0;

%detect corners across image
corners=detectMinEigenFeatures(img1,'MinQuality',0.005);

%have user select start and end point within region of interest
figure,imshow(img1), hold on;
title('Region of Interest Input');
%press return(enter) to stop selection
% [x,y]=ginput(2);

%1
% x=[227;475];
% y=[344;482];
% 2
% x=[231;480];
% y=[333;478];

86

%3
% x=[180;434];
% y=[327;460];
%4
% x=[221;465];
% y=[353;484];
%5
x=[169;415];
y=[337;481];

pt1=[x(1,1);y(1,1)];
pt2=[x(2,1);y(1,1)];
pt3=[x(1,1);y(2,1)];
pt4=[x(2,1);y(2,1)];
plot(pt1(1,1),pt1(2,1),'*','MarkerSize',8);
plot(pt2(1,1),pt2(2,1),'*','MarkerSize',8);
plot(pt3(1,1),pt3(2,1),'*','MarkerSize',8);
plot(pt4(1,1),pt4(2,1),'*','MarkerSize',8);
StartPt=pt1;
EndPt=pt4;

%minimize amount of corners to within area near selected region
ind=0;
for w = 1:length(corners.Location(:,1));
 if round(corners.Location(w,2)) >= (StartPt(2,1)-20) &&
round(corners.Location(w,2)) <= (EndPt(2,1)+20) ...
 && round(corners.Location(w,1)) >= (StartPt(1,1)-20) &&
round(corners.Location(w,1)) <= (EndPt(1,1)+20)
 ind=ind+1;
 ReducedCorners(ind,:)=[corners.Location(w,1) corners.Location(w,2)
w];
 end
end

%%%
%%%
%Part 2: Run function to automatically determine patch number between
%frames 1-2 that pass motion criteria of normally dist within patch and
%continuous across neighbors. Then store edges+corners within each Patch of
%img1
%%%
%function to determine correct patch number
% patchnum=DeterminePatchNum(img1,img2,StartPt,EndPt,ReducedCorners,corners);
% [FinalPatchNum,UThresh,VThresh] =
DeterminePatchNum2(img1,ImgCycle,StartPt,EndPt,ReducedCorners,corners);
[FinalPatchNum,MaxUHorizThresh,MaxVHorizThresh,MaxUVertThresh,MaxVVertThresh,
NumCorners] =
DeterminePatchNum4(img1,ImgCycle,StartPt,EndPt,ReducedCorners,corners,MinPatc
hCorners);
%create cell array with N rows for each patch and 3 columns for left corner
%pt,corner index,edges index within each patch that is updated every
iteration
PatchInfo={};
patchnum=FinalPatchNum;
rowcount=sqrt(patchnum);%initial row count
diffY=abs(EndPt(2,1)-StartPt(2,1));
diffX=abs(EndPt(1,1)-StartPt(1,1));

87

sizeY=round(diffY/rowcount);
sizeX=round(diffX/rowcount);
if(mod(sizeX,2)>0)
 sizeX=sizeX+1;
end
if(mod(sizeY,2)>0)
 sizeY=sizeY+1;
end

% patchID=zeros(patchnum,1);
numedges=zeros(patchnum,1);

%apply blur + edge detection on region
I1Blur1=imgaussfilt(img1,0.5);
I1Blur1Edges=edge(I1Blur1,'canny',[0.035 0.0675]);

patchcount=0;
for Ycount = 0:(rowcount-1)
 StartY=round(StartPt(2,1)+(sizeY*Ycount));
 for Xcount = 0:(rowcount-1)
 patchcount=patchcount+1;
 index2=0;
 StartX=round(StartPt(1,1)+(sizeX*Xcount));
 StartCornerPt=[StartY,StartX];
 PatchInfo(patchcount,1)={StartCornerPt};

patchCorners=SaveCornerIndex(ReducedCorners,StartX,StartY,sizeX,sizeY);
 PatchInfo(patchcount,2)={patchCorners};
 patchOutline=I1Blur1Edges(StartY:((StartY+sizeY)-
1),StartX:((StartX+sizeX)-1));
 patchEdges=SaveEdgeIndex(patchOutline,StartX,StartY);
 EdgeNum(patchcount,1)=length(patchEdges(:,1));
 PatchInfo(patchcount,3)={patchEdges};
 end
end

 figure,imshow(img1),hold on;
 %make patch grid
 for k = StartPt(2,1):sizeY:(EndPt(2,1)+2)
 xgrid = [StartPt(1,1) (EndPt(1,1)+2)];
 ygrid = [k k];
 plot(xgrid,ygrid,'Color','g','LineStyle','-');
 plot(xgrid,ygrid,'Color','r','LineStyle',':');
 end

 for k = StartPt(1,1):sizeX:(EndPt(1,1)+2)
 xgrid = [k k];
 ygrid = [StartPt(2,1) (EndPt(2,1)+2)];
 plot(xgrid,ygrid,'Color','g','LineStyle','-');
 plot(xgrid,ygrid,'Color','r','LineStyle',':');
 end

 for mm=1:patchnum
 Corners=cell2mat(PatchInfo(mm,2));
 for m = 1:length(Corners(:,1))
 PlotCorners=round(Corners(m,:));
 plot(PlotCorners(:,1),PlotCorners(:,2),'.m');

88

 end
 end
 title('Initial Frame Grid with Corners');

%initialize tracker
tracker=vision.PointTracker('MaxBidirectionalError',1);
initialize(tracker,corners.Location,img1);
%%%
%%%
%Part3: Main Loop
%inputs:opt flow object and current 2 frames, init edge pts from frame 1
%outputs:next image frame with highlighted edges and resampled corners
%after grid start,stop is moved by AVG Flow in X and Y
%
%%%
%init flags
Flag=0;
numflags=0;
numresets=0;
FlowAvg=struct;
FlowAvgCorrected=struct;
FlagIndex=zeros(numframes,1);
tic;
BeginTime=datestr(now)
while count < numframes
 UpdateTime=datestr(now);
 %increment current frame count,get prev(I1) and curr(I2) images
 count = count + 1;
 FlowStatus=1;
 I1=histeq(ImgNIR(:,:,count-1));
 I2=histeq(ImgNIR(:,:,count));

 %move corners using KLT tracker
 [Corners2Loc,validity,scores]=step(tracker,I2);

 %calc U and V flow with Average
 %save flow in each patch + calculate average flow in X and Y
 VFlowAVG = zeros(patchnum,1);
 UFlowAVG = zeros(patchnum,1);
 CornerFlow=zeros(patchnum,1);
 PatchCornerFlowU=struct;
 PatchCornerFlowV=struct;
 NoCorners=zeros(patchnum,1);
 ind7=0;
 for k = 1:patchnum
 CurrCorners=cell2mat(PatchInfo(k,2));
 Test=CurrCorners(1,3);
 if Test == 0%if no corners, do not track patch
 ind7=ind7+1;
 NoCorners(ind7,1)=k;
 PatchCornerFlowU(k).U=0;
 PatchCornerFlowV(k).V=0;
 UFlowAVG(k,1)=0;
 VFlowAVG(k,1)=0;
 else
 numcorners=length(CurrCorners(:,1));
 PatchU=zeros(numcorners,1);

89

 PatchV=zeros(numcorners,1);
 for kk=1:numcorners
 MovedIndex=CurrCorners(kk,3);
 PatchU(kk)=Corners2Loc(MovedIndex,1)-CurrCorners(kk,1);
 PatchV(kk)=Corners2Loc(MovedIndex,2)-CurrCorners(kk,2);
 end
 UFlowAVG(k,1)=mean(PatchU);
 VFlowAVG(k,1)=mean(PatchV);
 PatchCornerFlowU(k).U=PatchU;
 PatchCornerFlowV(k).V=PatchV;
 end
 end
 %save positive or negative flow values and save neighbor flow if flow
 %in X or Y is = 0
 for k=1:patchnum
 U=PatchCornerFlowU(k).U;
 V=PatchCornerFlowV(k).V;
 for kk = 1:length(U)
 if U(kk)==0
 ind1=kk;
 if ind1 > 1
 ind1=ind1-1;
 else if ind1 == 1
 for w=2:length(U)
 if U(w) ~= 0
 ind1=w;
 end
 end
 else
 ind1=length(U);
 end
 end
 U(kk)=U(ind1);
 end
 end
 for kk = 1:length(V)
 if V(kk)==0
 ind2=kk;
 if ind2 > 1
 ind2=ind2-1;
 else if ind2 == 1
 for w=2:length(V)
 if V(w) ~= 0
 ind2=w;
 end
 end
 else
 ind2=length(V);
 end
 end
 V(kk)=V(ind2);
 end
 end
 PatchCornerFlowU(k).U=U;
 PatchCornerFlowV(k).V=V;
 %calculate new avg flow in x and y
 UFlowAVG(k,:)=mean(PatchCornerFlowU(k).U);

90

 VFlowAVG(k,:)=mean(PatchCornerFlowV(k).V);
 end

%%%
 %%%
 %Part 4: Check for Normal distribution within each patch by counting
 %outliers and Chi-square GOF test
 %%%
 %run chi goodness of fit test to check if each flow is normal dist.
 UFlowChiTest=zeros(patchnum,1);
 VFlowChiTest=zeros(patchnum,1);
 UDistOutliers=0;
 VDistOutliers=0;
 for aa=1:patchnum
 if UFlowAVG(aa,1) ~= 0
 U=PatchCornerFlowU(aa).U;
 UFlowChiTest(aa,1)=chi2gof(U);
 if UFlowChiTest(aa,1)==1
 UDistOutliers=UDistOutliers+1;
 end
 end
 if VFlowAVG(aa,1) ~= 0
 V=PatchCornerFlowV(aa).V;
 VFlowChiTest(aa,1)=chi2gof(V);
 if VFlowChiTest(aa,1)==1
 VDistOutliers=VDistOutliers+1;
 end
 end
 end

 if UDistOutliers > 1 || VDistOutliers > 1
 Flag = 1;
 end

 %also count outliers outside of distribution and if #outliers > 5%
distribution is not normal and replace with average
 %for within patch, develop standard deviation and check for outliers
 %outside 2 sigma in both directions
 %develop standard deviation
 UFlowDEV=zeros(patchnum,1);
 VFlowDEV=zeros(patchnum,1);
 Udiffsum=0;
 Vdiffsum=0;
 for m = 1:patchnum
 CurrU=PatchCornerFlowU(m).U;
 CurrV=PatchCornerFlowV(m).V;
 for n=1:length(CurrU);
 Udiff=(CurrU(n,1)-UFlowAVG(m,1))^2;
 Vdiff=(CurrV(n,1)-VFlowAVG(m,1))^2;
 Udiffsum=Udiffsum+Udiff;
 Vdiffsum=Vdiffsum+Vdiff;
 end
 CurrUDev=sqrt(Udiffsum/length(CurrU));
 CurrVDev=sqrt(Vdiffsum/length(CurrV));
 UFlowDEV(m,1)=CurrUDev;
 VFlowDEV(m,1)=CurrVDev;

91

 Udiffsum=0;
 Vdiffsum=0;
 end
 %check for outliers outside this deviation in X and Y (U/V)
 PatchVariability=struct;
 OutliersU=zeros(patchnum,1);
 OutliersV=zeros(patchnum,1);
 RatioU=zeros(patchnum,1);
 RatioV=zeros(patchnum,1);
 for p=1:patchnum
 numoutliersU=0;
 numoutliersV=0;
 CurrU=PatchCornerFlowU(p).U;
 CurrV=PatchCornerFlowV(p).V;
 UIndex=ones(length(CurrU),1);
 VIndex=ones(length(CurrV),1);
 UAbove=UFlowAVG(p,1)+(2*UFlowDEV(p,1));
 UBelow=UFlowAVG(p,1)-(2*UFlowDEV(p,1));
 VAbove=VFlowAVG(p,1)+(2*VFlowDEV(p,1));
 VBelow=VFlowAVG(p,1)-(2*VFlowDEV(p,1));
 for q=1:length(CurrU)
 if CurrU(q) < UBelow
 %label as outlier
 numoutliersU=numoutliersU+1;
 UIndex(q)=0;
 end
 if CurrV(q) < VBelow
 %label as outlier
 numoutliersV=numoutliersV+1;
 VIndex(q)=0;
 end
 if CurrU(q) > UAbove
 %label as outlier
 numoutliersU=numoutliersU+1;
 UIndex(q)=0;
 end
 if CurrV(q) > VAbove
 %label as outlier
 numoutliersV=numoutliersV+1;
 VIndex(q)=0;
 end
 end
 %setup test 1=inside distribution,0=fail outside mean +/- 2 sigma
 PatchVariability(p).U=UIndex;
 PatchVariability(p).V=VIndex;
 OutliersU(p,1)=numoutliersU;
 OutliersV(p,1)=numoutliersV;
 end

 %set to not move points that are outliers or move by average flow in X/Y
 for p = 1:patchnum
 UIndex=PatchVariability(p).U;
 VIndex=PatchVariability(p).V;
% if RatioU(p,1) > 5 && OutliersU(p,1) > 1
% % Flag=1;
% else
 CurrU=PatchCornerFlowU(p).U;

92

 for q = 1:length(UIndex)
 if UIndex(q) == 0
 CurrU(q)=UFlowAVG(p,1);
 end
 end
% end
% if RatioV(p,1) > 5 && OutliersV(p,1) > 1
% % Flag=1;
% else
 CurrV=PatchCornerFlowV(p).V;
 for q = 1:length(VIndex)
 if VIndex(q) == 0
 CurrV(q)=VFlowAVG(p,1);
 end
 end
% end
 PatchCornerFlowU(p).U=CurrU;
 PatchCornerFlowV(p).V=CurrV;
 UFlowAVG(p,1)=mean(CurrU);
 VFlowAVG(p,1)=mean(CurrV);
 end

 %loop to track patches that do not move by neighbors flow
 for k=2:(patchnum-1)
 if UFlowAVG(k,1) == 0
 CurrCorners=cell2mat(PatchInfo(k,2));
 if length(CurrCorners(:,1)) >= 1
 if UFlowAVG(k-1) ~= 0
 UFlowAVG(k,1)=UFlowAVG(k-1,1);
 else if UFlowAVG(k+1) ~= 0
 UFlowAVG(k,1)=UFlowAVG(k+1,1);
 end
 end
 end
 end
 if VFlowAVG(k,1) == 0
 CurrCorners=cell2mat(PatchInfo(k,2));
 if length(CurrCorners(:,1)) >= 1
 if VFlowAVG(k-1) ~= 0
 VFlowAVG(k,1)=VFlowAVG(k-1,1);
 else if VFlowAVG(k+1) ~= 0
 VFlowAVG(k,1)=VFlowAVG(k+1,1);
 end
 end
 end
 end
 end

 %loop to not track patches with low edge count
 for k=1:patchnum
 if EdgeNum(k,1) < 10
 UFlowAVG(k,1)=0;
 VFlowAVG(k,1)=0;
 end
 end

 %store flow values

93

 FlowAvg(count,1).U=UFlowAVG;
 FlowAvg(count,1).V=VFlowAVG;
 %%%
 %Part 5: Check for continuous flow between neighbors in Horizontal and
 %vertical direction using thresholds from patchnum function
 %%%
 %now check variability across patches(compare averages)
 %compare both U and V directions, thresh chosen in init function TTEST to
 %have 0 or patches have same distribution
 UPatchOutliersH=0;
 UIndex2=ones(patchnum,1);
 for k=1:rowcount
 if k == 1
 CurrRow=1;
 else
 CurrRow=(k*rowcount)-(rowcount-1);
 end
 for kk=CurrRow:(CurrRow+(rowcount-2))
 if UFlowAVG(kk,1)==0 || UFlowAVG(kk+1,1)==0
 UIndex2(kk)=1;
 else
 if abs(UFlowAVG(kk,1)-UFlowAVG(kk+1,1)) >= MaxUHorizThresh;
 UPatchOutliersH=UPatchOutliersH+1;
 UIndex2(kk)=0;
 Flag=1;
 fprintf('Flag between %d and %d U\n',kk,kk+1);
 end
 end
 end
 end

 VPatchOutliersH=0;
 VIndex2=ones(patchnum,1);
 for k=1:rowcount
 if k == 1
 CurrRow=1;
 else
 CurrRow=(k*rowcount)-(rowcount-1);
 end
 for kk=CurrRow:(CurrRow+(rowcount-2))
 if VFlowAVG(kk,1)==0 || VFlowAVG(kk+1,1)==0
 VIndex2(kk)=1;
 else
 if abs(VFlowAVG(kk,1)-VFlowAVG(kk+1,1)) >= MaxVHorizThresh
 VPatchOutliersH=VPatchOutliersH+1;
 VIndex2(kk)=0;
 Flag=1;
 fprintf('Flag between %d and %d V\n',kk,kk+1);
 end
 end
 end
 end

 %check variability across patches vertically
 %compare both U and V directions
 UPatchOutliersV=0;
 UIndex3=ones(patchnum,1);

94

 for k=1:rowcount
 CurrCol=k;
 for kk=CurrCol:rowcount:((rowcount-2)*rowcount)+CurrCol
 if UFlowAVG(kk,1)==0 || UFlowAVG(kk+rowcount,1)==0
 UIndex3(kk)=1;
 else
 UPatchDiff2=abs(UFlowAVG(kk,1)-UFlowAVG(kk+rowcount,1));
 if UPatchDiff2 >= MaxUVertThresh;
 UPatchOutliersV=UPatchOutliersV+1;
 UIndex3(kk)=0;
 Flag=1;
 fprintf('Flag between %d and %d U\n',kk,kk+rowcount);
 end
 end
 end
 end

 VPatchOutliersV=0;
 VIndex3=ones(patchnum,1);
 for k=1:rowcount
 CurrCol=k;
 for kk=CurrCol:rowcount:((rowcount-2)*rowcount)+CurrCol
 if VFlowAVG(kk,1)==0 || VFlowAVG(kk+rowcount,1)==0
 VIndex3(kk)=1;
 else
 VPatchDiff2=abs(VFlowAVG(kk,1)-VFlowAVG(kk+rowcount,1));
 if VPatchDiff2 >= MaxVVertThresh;
 VPatchOutliersV=VPatchOutliersV+1;
 VIndex3(kk)=0;
 Flag=1;
 fprintf('Flag between %d and %d V\n',kk,kk+rowcount);
 end
 end
 end
 end

 %velocity to neighbors
 for p = 2:(patchnum-1)

 if UIndex2(p,1)==0
 if UFlowAVG(p,1) > 0 && UFlowAVG(p+1) > 0
 if UFlowAVG(p,1) > UFlowAVG(p+1,1)
 UFlowAVG(p,1)=UFlowAVG(p+1,1);
 else if UFlowAVG(p+1,1) > UFlowAVG(p,1)
 UFlowAVG(p+1,1)=UFlowAVG(p,1);
 end
 end
 else if UFlowAVG(p,1) < 0 && UFlowAVG(p+1,1) < 0
 if UFlowAVG(p,1) < UFlowAVG(p+1,1)
 UFlowAVG(p,1)=UFlowAVG(p+1,1);
 else if UFlowAVG(p+1,1) < UFlowAVG(p,1)
 UFlowAVG(p+1,1)=UFlowAVG(p,1);
 end
 end
 else
 if UFlowAVG(p,1) > UFlowAVG(p+1,1)
 UFlowAVG(p,1)=UFlowAVG(p+1,1);

95

 else if UFlowAVG(p+1,1) > UFlowAVG(p,1)
 UFlowAVG(p+1,1)=UFlowAVG(p,1);
 end
 end

 end
 end
 end

 if VIndex2(p,1)==0
 if VFlowAVG(p,1) > 0 && VFlowAVG(p+1,1) > 0
 if VFlowAVG(p,1) > VFlowAVG(p+1,1)
 VFlowAVG(p,1)=VFlowAVG(p+1,1);
 else if VFlowAVG(p+1,1) > VFlowAVG(p,1)
 VFlowAVG(p+1,1)=VFlowAVG(p,1);
 end
 end
 else if VFlowAVG(p,1) < 0 && VFlowAVG(p+1,1) < 0
 if VFlowAVG(p,1) < VFlowAVG(p+1,1)
 VFlowAVG(p,1)=VFlowAVG(p+1,1);
 else if VFlowAVG(p+1,1) < VFlowAVG(p,1)
 VFlowAVG(p+1,1)=VFlowAVG(p,1);
 end
 end
 else
 if UFlowAVG(p,1) > UFlowAVG(p+1,1)
 UFlowAVG(p,1)=UFlowAVG(p+1,1);
 else if UFlowAVG(p+1,1) > UFlowAVG(p,1)
 UFlowAVG(p+1,1)=UFlowAVG(p,1);
 end
 end
 end
 end
 end

 if UIndex3(p,1)==0 && UIndex2(p,1) ~= 0
 if UFlowAVG(p,1) > UFlowAVG(p-1,1)
 UFlowAVG(p,1)=UFlowAVG(p-1,1);
 else if UFlowAVG(p-1,1) > UFlowAVG(p,1)
 UFlowAVG(p-1,1)=UFlowAVG(p,1);
 end
 end
 end

 if VIndex3(p,1)==0 && VIndex2(p,1) ~= 0
 if VFlowAVG(p,1) > VFlowAVG(p-1,1)
 VFlowAVG(p,1)=VFlowAVG(p-1,1);
 else if VFlowAVG(p-1,1) > VFlowAVG(p,1)
 VFlowAVG(p-1,1)=VFlowAVG(p,1);
 end
 end
 end
 end

 %outlier motion not picked up
 for p=2:patchnum
 if UFlowAVG(p,1)-UFlowAVG(p-1,1) >= 20

96

 UFlowAVG(p,1)=UFlowAVG(p-1,1);
 end
 if UFlowAVG(p,1)-UFlowAVG(p-1,1) <= -20
 UFlowAVG(p,1)=UFlowAVG(p-1,1);
 end
 if VFlowAVG(p,1)-VFlowAVG(p-1,1) >= 20
 VFlowAVG(p,1)=VFlowAVG(p-1,1);
 end
 if VFlowAVG(p,1)-VFlowAVG(p-1,1) <= -20
 VFlowAVG(p,1)=VFlowAVG(p-1,1);
 end
 end

 %%%
 %Part 6: Determine if flow measure passes constraints if not count
 %flags and determine FlowStatus 1=pass,0=fail
 %%%
 if Flag == 1
 numflags=numflags+1;
 fprintf('FLAG\n');
 FlagIndex(count,1)=1;
 else
 Flag=0;
 numflags=0;
 end
 if numflags == 3
 FlowStatus=0;
 end

 %%%
 %Part7: Prediction or movement of edges with average optical flow from
each
 %patch if validation is passed and results fit smoothness criteria
 %inputs:
 %outputs:
 %%%
 if FlowStatus == 1
 %move edges by average flow
 for k = 1:patchnum
 CurrEdges=cell2mat(PatchInfo(k,3));
 CurrStartCornerPts=cell2mat(PatchInfo(k,1));
 numedges=length(CurrEdges(:,1));
 for kk=1:numedges
 CurrEdges(kk,1)=CurrEdges(kk,1)+VFlowAVG(k,1);
 CurrEdges(kk,2)=CurrEdges(kk,2)+UFlowAVG(k,1);
 end
 PatchInfo(k,3)={CurrEdges};
 CurrStartCornerPts(1,1)=CurrStartCornerPts(1,1)+VFlowAVG(k,1);
 CurrStartCornerPts(1,2)=CurrStartCornerPts(1,2)+UFlowAVG(k,1);
 PatchInfo(k,1)={CurrStartCornerPts};
 end

 %move start and stop pts by flow average
 StartPt(1,1)=round(StartPt(1,1)+UFlowAVG(1,1));
 StartPt(2,1)=round(StartPt(2,1)+VFlowAVG(1,1));
 EndPt(1,1)=round(EndPt(1,1)+UFlowAVG(patchnum,1));
 EndPt(2,1)=round(EndPt(2,1)+VFlowAVG(patchnum,1));

97

 %re-draw grid and re-sample corner points
 diffY=abs(EndPt(2,1)-StartPt(2,1));
 diffX=abs(EndPt(1,1)-StartPt(1,1));
 sizeY=round(diffY/rowcount);
 sizeX=round(diffX/rowcount);
 if(mod(sizeX,2)>0)
 sizeX=sizeX+1;
 end
 if(mod(sizeY,2)>0)
 sizeY=sizeY+1;
 end

 %minimize amount of corners to within area near selected region
 ind5=0;
 for w = 1:length(Corners2Loc);
 if round(Corners2Loc(w,2)) >= (StartPt(2,1)-20) &&
round(Corners2Loc(w,2)) <= (EndPt(2,1)+20) ...
 && round(Corners2Loc(w,1)) >= (StartPt(1,1)-20) &&
round(Corners2Loc(w,1)) <= (EndPt(1,1)+20)
 ind5=ind5+1;
 ReducedCorners(ind5,:)=[Corners2Loc(w,1) Corners2Loc(w,2) w];
 end
 end

 %re-sample corner points
 patchcount=0;
 for Ycount = 0:(rowcount-1)
 StartY=round(StartPt(2,1)+(sizeY*Ycount));
 for Xcount = 0:(rowcount-1)
 patchcount=patchcount+1;
 StartX=round(StartPt(1,1)+(sizeX*Xcount));
 StartCornerPt=[StartY,StartX];
 PatchInfo(patchcount,1)={StartCornerPt};

patchCorners=SaveCornerIndex(ReducedCorners,StartX,StartY,sizeX,sizeY);
 PatchInfo(patchcount,2)={patchCorners};
 end
 end

 %store flow values
 FlowAvgCorrected(count,1).U=UFlowAVG;
 FlowAvgCorrected(count,1).V=VFlowAVG;

 end
 %%%
 %Part8: Run SURF/RANSAC to get Homography to reset tracking process due
to
 %smoothness criteria failure
 %input:both image frames (I1/I2),thresholds for SURF and
RANSAC,FlowStatus
 %of fail (0)
 %output:patch edge index points moved by Homography (H) matrix
 %%%
 if FlowStatus == 0

 %increment reset number

98

 numresets=numresets+1;

 %store flow as 0
 FlowAvgCorrected(count,1).U=0;
 FlowAvgCorrected(count,1).V=0;
 FlowAvg(count,1).U=0;
 FlowAvg(count,1).V=0;

 %use func to determine best frame to reset edge tracking pts
 FrameNum=DetermineBestFit2(ImgNIR,count);
 I1=histeq(ImgNIR(:,:,FrameNum));
 I2=histeq(ImgNIR(:,:,count));
 % Start SURF
 %set limit
 UpperLimit=550;
 LowerLimit=250;
 ind3=0;
 ind4=0;
 % Get the Key Points
 %Options.upright : Boolean which determines if we want a non-
rotation
 %invariant result (default false)
 Options.upright=true;
 %Options.upright=false;
 %Extended adds extra landmark position info to descriptor
 %Options.extended=true;
 %Options.tresh : Hessian response threshold (default 0.0002)-
changes the
 %#ofKeyPts
 Options.tresh=0.00035;%0.00055; %decreas=more pts,inc=less pts
 % Ipts : A struct w/ info about all detected key points, of 2
img's
 % Ipts.x , ipts.y : The landmark position
 Ipts1=OpenSurf(I1,Options);
 Ipts2=OpenSurf(I2,Options);
 %re sample Ipts1 and Ipts2 to include pts that are within
limits
 for aa=1:length(Ipts1)
 Yvalue=round(Ipts1(aa).y);
 if Yvalue >= LowerLimit && Yvalue <= UpperLimit
 ind3=ind3+1;
 RegionIpts1(ind3)=Ipts1(aa);
 end
 end
 for aa=1:length(Ipts2)
 Yvalue=round(Ipts2(aa).y);
 if Yvalue >= LowerLimit && Yvalue <= UpperLimit
 ind4=ind4+1;
 RegionIpts2(ind4)=Ipts2(aa);
 end
 end
 % Put the landmark descriptors in a matrix, index of
corresponding matching
 % pts-reshaped by taking Ipts.d(i) from i->length(Ipts) and
storing into D
 % as D1=64xlength(Ipts1) and D2=64xlength(Ipts2)
 D1 = reshape([RegionIpts1.descriptor],64,[]);

99

 D2 = reshape([RegionIpts2.descriptor],64,[]);
 % Find the best matches-step through length of Ipts1 or key pts
found
 err=zeros(1,length(RegionIpts1));
 cor1=1:length(RegionIpts1); %index of all Ipts1 values
 cor2=zeros(1,length(RegionIpts1));
 %re-orders D1 to length of D2, then calc distance from D2 to
D1,
 %then sums every pt with 1, stores minimum distance value as
err(i) and
 %cor2 as index of that value,if err(i)<0.05 get rid of those
matches
 for i=1:length(RegionIpts1),
 distance=sum((D2-repmat(D1(:,i),[1
length(RegionIpts2)])).^2,1);
 [err(i),cor2(i)]=min(distance);
 if err(i)<0.05
 D2(:,cor2(i))=1000;
 end
 end
 % Sort matches on vector distance
 % Sort err in ascending order and stores index as ind, to sort
cor1 and
 % cor2 in the same ascending order
 [err, ind]=sort(err);
 cor1=cor1(ind);
 cor2=cor2(ind);
 % % Show both images, create blank image as rows, column*2, color
as I1
% I = zeros([size(I1,1) size(I1,2)*2 size(I1,3)]);
% I(:,1:size(I1,2),:)=I1;
I(:,size(I1,2)+1:size(I1,2)+size(I2,2),:)=I2;
% figure, imshow(I/255); hold on;
% title('SURF Feature Matches Plot');
% plot(x,y,'g-','MarkerSize',15);
% % % Show the best matches(i<=cor1/2) + save pts from both image
frames
% % % the best matches show up as the 2 img slices side-by-side
% % % Ipts1(cor1(i)).x=img1 matching pt x value,y=img1 matching
pt y value
% % % Ipts2(cor2(i)).x=img2 matching pt x
value+(length(img1)),y=value of img2
% for i=1:200,
% c=rand(1,3);
% plot([RegionIpts1(cor1(i)).x
RegionIpts2(cor2(i)).x+size(I1,2)],[RegionIpts1(cor1(i)).y
RegionIpts2(cor2(i)).y],'-','Color',c)
% plot([RegionIpts1(cor1(i)).x
RegionIpts2(cor2(i)).x+size(I1,2)],[RegionIpts1(cor1(i)).y
RegionIpts2(cor2(i)).y],'o','Color',c)
% end

%%%
 %Part1:DONE

%%%

100

%%%
 %PART2:
 %input:SURF Features as two vectors, Ipts1 and Ipts2,ROI vector
 %ouput:RANSAC results for inlier detection/outlier rejection,
display
 %results = structure containing the following fields:
 %
 % Theta = estimated parameter vector
 % E = fitting error obtained from man_fun
 % CS = consensus set (true -> inliers, false -
> outliers)
 % r = rank of the solution
 % iter = number of iterations
 % time = time to perform the computation
 %summary:RANSAC

%%%
 %init
 X1=zeros(1,length(RegionIpts1));
 Y1=zeros(1,length(RegionIpts1));
 X2=zeros(1,length(RegionIpts1));
 Y2=zeros(1,length(RegionIpts1));

 %use length of Ipts2, bc ransac input data must have same length,
Ipts2 is smaller
 for j=1:length(RegionIpts1)
 X1(j)=RegionIpts1(cor1(j)).x;
 Y1(j)=RegionIpts1(cor1(j)).y;
 end
 for k=1:length(RegionIpts1)
 X2(k)=RegionIpts2(cor2(k)).x;
 Y2(k)=RegionIpts2(cor2(k)).y;
 end

 %input data for RANSAC
 X1bar=[X1;Y1];
 X2bar=[X2;Y2];

 %Format input data vector as 4 rows [X1;Y1:X2;Y2]
 TestData=[X1bar;X2bar];

 %Implement RANSAC
 % set RANSAC options
 options.epsilon = 1e-6;
 %threshold (default 1-1e-5), lower=tighter thresh, less pts,
higher=loose
 %threshold or more pts as inliers included
 options.P_inlier = 1-1e-5;
 options.sigma = 1;
 options.validateMSS_fun = @validateMSS_homography;
 options.est_fun = @estimate_homography;
 options.man_fun = @error_homography;
 options.mode = 'MSAC';
 options.Ps = [];
 options.notify_iters = [];
 options.min_iters = 1000;

101

 options.fix_seed = false;
 options.reestimate = true;
 options.stabilize = false;

 % run RANSAC
 [results, options] = RANSACzz(TestData, options);

 %move start/stop
 SaveStart=StartPt;
 SaveEnd=EndPt;
 [StartPt(1,1),StartPt(2,1)] = mapping_homography(SaveStart(1,1),
SaveStart(2,1), true, results.Theta);
 [EndPt(1,1),EndPt(2,1)] = mapping_homography(SaveEnd(1,1),
SaveEnd(2,1), true, results.Theta);

 %keep homography estimate bounded
 if StartPt(1,1)-SaveStart(1,1) >= 5 || StartPt(1,1)-
SaveStart(1,1) <= -20
 StartPt(1,1)=SaveStart(1,1);
 end

 if EndPt(1,1)-SaveEnd(1,1) >= 20 || EndPt(1,1)-SaveEnd(1,1) <= -8
 EndPt(1,1)=SaveEnd(1,1);
 end

 if StartPt(2,1)-SaveStart(2,1) >= 5 || StartPt(2,1)-
SaveStart(2,1) <= -8
 StartPt(2,1)=SaveStart(2,1);
 end

 if EndPt(2,1)-SaveEnd(2,1) >= 8 || EndPt(2,1)-SaveEnd(2,1) <= -5
 EndPt(2,1)=SaveEnd(2,1);
 end

 if StartPt(1,1) <= 145
 StartPt(1,1)=StartPt(1,1)+10;
 end

 if StartPt(2,1) <= 300
 StartPt(2,1)=StartPt(2,1)+10;
 end

 if EndPt(2,1) >= 500
 EndPt(2,1)=EndPt(2,1)-10;
 end

 if EndPt(1,1) >= 520
 EndPt(1,1)=EndPt(1,1)-10;
 end

 %re-draw grid and re-sample corner points
 diffY=abs(EndPt(2,1)-StartPt(2,1));
 diffX=abs(EndPt(1,1)-StartPt(1,1));
 sizeY=round(diffY/rowcount);
 sizeX=round(diffX/rowcount);
 if(mod(sizeX,2)>0)
 sizeX=sizeX+1;

102

 end
 if(mod(sizeY,2)>0)
 sizeY=sizeY+1;
 end

 %re-sample corner pts into patches that have moved
 %minimize amount of corners to within area near selected region
 ind5=0;
 for w = 1:length(Corners2Loc);
 if round(Corners2Loc(w,2)) >= (StartPt(2,1)-20) &&
round(Corners2Loc(w,2)) <= (EndPt(2,1)+20) ...
 && round(Corners2Loc(w,1)) >= (StartPt(1,1)-20) &&
round(Corners2Loc(w,1)) <= (EndPt(1,1)+20)
 ind5=ind5+1;
 ReducedCorners(ind5,:)=[Corners2Loc(w,1) Corners2Loc(w,2)
w];
 end
 end

 %apply blur + edge detection on region, re-acquire
 %corners + edges
 I2Blur=imgaussfilt(I2,0.5);
 I2BlurEdges=edge(I2Blur,'canny',[0.035 0.0675]);

 patchcount=0;
 for Ycount = 0:(rowcount-1)
 StartY=round(StartPt(2,1)+(sizeY*Ycount));
 for Xcount = 0:(rowcount-1)
 patchcount=patchcount+1;
 index2=0;
 StartX=round(StartPt(1,1)+(sizeX*Xcount));
 StartCornerPt=[StartY,StartX];
 PatchInfo(patchcount,1)={StartCornerPt};

patchCorners=SaveCornerIndex(ReducedCorners,StartX,StartY,sizeX,sizeY);
 PatchInfo(patchcount,2)={patchCorners};
 patchOutline=I2BlurEdges(StartY:((StartY+sizeY)-
1),StartX:((StartX+sizeX)-1));
 patchEdges=SaveEdgeIndex(patchOutline,StartX,StartY);
 EdgeNum(patchcount,1)=length(patchEdges(:,1));
 PatchInfo(patchcount,3)={patchEdges};
 end
 end

 Flag=0;
 numflags=0;
 end
 %%
 %Part9: Highlight edges on next frame using 'HighlightEdges.m'
 %function and write image to file
 %
 %%%
 %display edges on second image, use round final index
 %display results on second image, use round final index
 Segout3=I2;
 for k = 1:patchnum
 CurrEdges=cell2mat(PatchInfo(k,3));

103

 CurrCorners=cell2mat(PatchInfo(k,2));
 numedges=length(CurrEdges(:,1));
 if numedges >= 10
 for kk=1:numedges
 Yind=round(CurrEdges(kk,1));
 Xind=round(CurrEdges(kk,2));
 if Yind > (StartPt(2,1)-50) && Yind < (EndPt(2,1)+50)
&& Xind > 0 && Xind < 800
 Segout3(Yind,Xind)=0;
 end
 end
 end
 end
 Flag=0;

% figure,imshow(I2),hold on;
% %make patch grid
% for k = StartPt(2,1):sizeY:(EndPt(2,1)+2)
% xgrid = [StartPt(1,1) (EndPt(1,1)+2)];
% ygrid = [k k];
% plot(xgrid,ygrid,'Color','g','LineStyle','-');
% plot(xgrid,ygrid,'Color','r','LineStyle',':');
% end
%
% for k = StartPt(1,1):sizeX:(EndPt(1,1)+2)
% xgrid = [k k];
% ygrid = [StartPt(2,1) (EndPt(2,1)+2)];
% plot(xgrid,ygrid,'Color','g','LineStyle','-');
% plot(xgrid,ygrid,'Color','r','LineStyle',':');
% end
%
% for mm=1:patchnum
% Corners=cell2mat(PatchInfo(mm,2));
% for m = 1:length(Corners(:,1))
% if Corners(1,3)~=0
% PlotCorners=round(Corners(m,:));
% plot(PlotCorners(:,1),PlotCorners(:,2),'.m');
% end
% end
% end
% title('Next Frame Grid with Corners');
%
% fprintf('Frame %d \n',count);
% figure,imshow(Segout3),hold on;
% string2=['Frame' num2str(count) 'with Edges Highlighted'];
% title(string2);

 %write Segout2(jpeg) image with edges highlighted to directory specified
 %name current segment
 string=['C:\ECU\Thesis\DataResultsSet5\TimedTest1\Frame' num2str(count)
'.jpeg'];
 imwrite(Segout3,string);

 %%%
% %add menu to step to next frame
% choice=menu('Continue? Press Yes or No','Yes','No');
% if choice==2 || choice==0

104

% break;
% end
 %%%
end
toc;
fprintf('\n All Image Frames Complete! \n');
EndingTime=datestr(now)

Determine Patch Number Function:

function
[FinalPatchNum,MaxUHorizThresh,MaxVHorizThresh,MaxUVertThresh,MaxVVertThresh,
NumCorners] =
DeterminePatchNum4(img1,ImgCycle,StartPt,EndPt,ReducedCorners,corners,MinPatc
hCorners)
%%%
%PatchCorners = SaveCornerIndex(corners,startX,startY)
%inputs:
%Reduced Corners = struct with corners across patch area + surrounding [x y
%index]
%startPt and EndPt = starting points for the selected region
%img1 and ImgCycle = first frame and the rest of frames to make up 1 cycle
%outputs:
%patch number to satisfy constraints, U/V velocity thresholds for each
%patch
%summary:
%this function computes the correct patch number to track a ROI and
%determines a threshold for continuous motion between neighbors
%%
%initialize tracker
tracker3=vision.PointTracker('MaxBidirectionalError',1);
initialize(tracker3,corners.Location,img1);
CornersStruct=struct;
num=2;
CycleNum=size(ImgCycle,3);
[Corners2Loc,validity]=step(tracker3,ImgCycle(:,:,num));
UDiffStruct=struct;
VDiffStruct=struct;
%begin loop to determine patchnumber that has all patches pass chi-square
%GOF test to be normally distributed
NormalStatus = 0;
MinCornerStatus=0;
i=3;
tic;
while MinCornerStatus == 0
 while NormalStatus == 0
 if i < 13
 i=i+1;
 end
 patchnum=i^2;
 rowcount=sqrt(patchnum);
 %set patch size
 diffY=abs(EndPt(2,1)-StartPt(2,1));
 diffX=abs(EndPt(1,1)-StartPt(1,1));
 sizeY=round(diffY/rowcount);
 sizeX=round(diffX/rowcount);

105

 if(mod(sizeX,2)>0)
 sizeX=sizeX+1;
 end
 if(mod(sizeY,2)>0)
 sizeY=sizeY+1;
 end

 patchcount=0;
 for Ycount = 0:(rowcount-1)
 StartY=round(StartPt(2,1)+(sizeY*Ycount));
 for Xcount = 0:(rowcount-1)
 patchcount=patchcount+1;
 StartX=round(StartPt(1,1)+(sizeX*Xcount));

patchCorners=SaveCornerIndex(ReducedCorners,StartX,StartY,sizeX,sizeY);
 CornersStruct(patchcount).CornerIndex=patchCorners;
 end
 end

 NumCorners=zeros(patchnum,1);
 for p = 1:patchnum
 CurrCorners=CornersStruct(p).CornerIndex;
 number=length(CurrCorners(:,1));
 NumCorners(p,1)=number;
 end

 %save flow in each patch + calculate average flow in X and Y
 VFlowAVG = zeros(patchnum,1);
 UFlowAVG = zeros(patchnum,1);
 CornerN=zeros(patchnum,1);
 PatchCornerFlowU=struct;
 PatchCornerFlowV=struct;
 for k = 1:patchnum
 CurrCorners=CornersStruct(k).CornerIndex;
 Test=CurrCorners(1,1);
 if Test == 0
 PatchCornerFlowU(k).U=0;
 PatchCornerFlowV(k).V=0;
 UFlowAVG(k,:)=0;
 VFlowAVG(k,:)=0;
 else
 numcorners=length(CurrCorners(:,1));
 CornerN(k,1)=numcorners;
 PatchU=zeros(numcorners,1);
 PatchV=zeros(numcorners,1);
 for kk=1:numcorners
 MovedIndex=CurrCorners(kk,3);
 PatchU(kk)=Corners2Loc(MovedIndex,1)-CurrCorners(kk,1);
 PatchV(kk)=Corners2Loc(MovedIndex,2)-CurrCorners(kk,2);
 end
 UFlowAVG(k,:)=mean(PatchU);
 VFlowAVG(k,:)=mean(PatchV);
 PatchCornerFlowU(k).U=PatchU;
 PatchCornerFlowV(k).V=PatchV;
 end
 end

106

 %save positive or negative flow values and save neighbor flow if flow
 %in X or Y is = 0
 for k=1:patchnum
 U=PatchCornerFlowU(k).U;
 V=PatchCornerFlowV(k).V;
 for kk = 1:length(U)
 if U(kk)==0
 ind1=kk;
 if ind1 > 1
 ind1=ind1-1;
 else if ind1 == 1
 for w=2:length(U)
 if U(w) ~= 0
 ind1=w;
 end
 end
 else
 ind1=length(U);
 end
 end
 U(kk)=U(ind1);
 end
 end
 for kk = 1:length(V)
 if V(kk)==0
 ind2=kk;
 if ind2 > 1
 ind2=ind2-1;
 else if ind2 == 1
 for w=2:length(V)
 if V(w) ~= 0
 ind2=w;
 end
 end
 else
 ind2=length(V);
 end
 end
 V(kk)=V(ind2);
 end
 end
 PatchCornerFlowU(k).U=U;
 PatchCornerFlowV(k).V=V;
 %calculate new avg flow in x and y
 UFlowAVG(k,:)=mean(PatchCornerFlowU(k).U);
 VFlowAVG(k,:)=mean(PatchCornerFlowV(k).V);
 end

 %run chi goodness of fit test to check if each flow is normal dist.
 UFlowChiTest=zeros(patchnum,1);
 VFlowChiTest=zeros(patchnum,1);
 for pp=1:patchnum
 U=PatchCornerFlowU(pp).U;
 UFlowChiTest(pp,1)=chi2gof(U);
 V=PatchCornerFlowV(pp).V;
 VFlowChiTest(pp,1)=chi2gof(V);
 end

107

 ind9=0;
 ind10=0;
 for q=1:length(UFlowChiTest(:,1))
 if UFlowChiTest(q) == 0
 ind9=ind9+1;
 end
 if VFlowChiTest(q) == 0
 ind10=ind10+1;
 end
 end

 if ind9 == length(UFlowChiTest(:,1)) && ind10 ==
length(VFlowChiTest(:,1))
 NormalStatus=1;
 FinalPatchNum=patchnum;
 end
 end
 if min(NumCorners(:,1)) >= MinPatchCorners
 MinCornerStatus=1;
 else
 StartPt(1,1)=StartPt(1,1)-2;
 StartPt(2,1)=StartPt(2,1)-2;
 EndPt(1,1)=EndPt(1,1)+2;
 EndPt(2,1)=EndPt(1,1)+2;
 NormalStatus=0;
 i=i-1;
 end
end
toc;
fprintf('Patch Count Determined!: %d\n',patchnum);

%begin loop to step through frame 2-end of ImgCycle and calculate the U and V
%difference between horizontal and verical neighbors. store all vel
%differences into a struct or cell array to make up zero mean Gaussian
HorizDiffU=zeros(rowcount*(rowcount-1),CycleNum-1);
VertDiffU=zeros(rowcount*(rowcount-1),CycleNum-1);
HorizDiffV=zeros(rowcount*(rowcount-1),CycleNum-1);
VertDiffV=zeros(rowcount*(rowcount-1),CycleNum-1);
num=1;
tracker2=vision.PointTracker('MaxBidirectionalError',1);
initialize(tracker2,corners.Location,img1);
Frameind=0;
while num < CycleNum
 num=num+1;
 Frameind=Frameind+1;
 [NewCornersLoc,validity]=step(tracker2,ImgCycle(:,:,num));
 UDiff=zeros(((rowcount-1)*rowcount)*2,1);
 VDiff=zeros(((rowcount-1)*rowcount)*2,1);
 ind7=0;
 ind8=0;
 ind11=0;
 ind12=0;
 ind13=0;
 ind14=0;
 %save flow in each patch + calculate average flow in X and Y
 VFlowAVG = zeros(patchnum,1);
 UFlowAVG = zeros(patchnum,1);

108

 CornerN=zeros(patchnum,1);
 PatchCornerFlowU=struct;
 PatchCornerFlowV=struct;
 for k = 1:patchnum
 CurrCorners=CornersStruct(k).CornerIndex;
 Test=CurrCorners(1,1);
 if Test == 0
 PatchCornerFlowU(k).U=0;
 PatchCornerFlowV(k).V=0;
 UFlowAVG(k,:)=0;
 VFlowAVG(k,:)=0;
 else
 numcorners=length(CurrCorners(:,1));
 CornerN(k,1)=numcorners;
 PatchU=zeros(numcorners,1);
 PatchV=zeros(numcorners,1);
 for kk=1:numcorners
 MovedIndex=CurrCorners(kk,3);
 PatchU(kk)=NewCornersLoc(MovedIndex,1)-CurrCorners(kk,1);
 PatchV(kk)=NewCornersLoc(MovedIndex,2)-CurrCorners(kk,2);
 end
 UFlowAVG(k,:)=mean(PatchU);
 VFlowAVG(k,:)=mean(PatchV);
 PatchCornerFlowU(k).U=PatchU;
 PatchCornerFlowV(k).V=PatchV;
 end
 end
 %save positive or negative flow values and save neighbor flow if flow
 %in X or Y is = 0
 for k=1:patchnum
 U=PatchCornerFlowU(k).U;
 V=PatchCornerFlowV(k).V;
 for kk = 1:length(U)
 if U(kk)==0
 ind1=kk;
 if ind1 > 1
 ind1=ind1-1;
 else if ind1 == 1
 for w=2:length(U)
 if U(w) ~= 0
 ind1=w;
 end
 end
 else
 ind1=length(U);
 end
 end
 U(kk)=U(ind1);
 end
 end
 for kk = 1:length(V)
 if V(kk)==0
 ind2=kk;
 if ind2 > 1
 ind2=ind2-1;
 else if ind2 == 1
 for w=2:length(V)

109

 if V(w) ~= 0
 ind2=w;
 end
 end
 else
 ind2=length(V);
 end
 end
 V(kk)=V(ind2);
 end
 end
 PatchCornerFlowU(k).U=U;
 PatchCornerFlowV(k).V=V;
 %calculate new avg flow in x and y
 UFlowAVG(k,:)=mean(PatchCornerFlowU(k).U);
 VFlowAVG(k,:)=mean(PatchCornerFlowV(k).V);
 end
 %calculate U and V difference between neighbors and store in struct or
 %cell array?
 %compare both U and V directions
 UAVGDiff=zeros(rowcount,rowcount-1);
 VAVGDiff=zeros(rowcount,rowcount-1);
 for k=1:rowcount
 ind6=0;
 if k == 1
 CurrRow=1;
 else
 CurrRow=(k*rowcount)-(rowcount-1);
 end
 for kk=CurrRow:(CurrRow+(rowcount-2))
 ind6=ind6+1;
 ind7=ind7+1;
 ind11=ind11+1;
 UPatchDiff=UFlowAVG(kk,1)-UFlowAVG(kk+1,1);
 UAVGDiff(k,ind6)=UPatchDiff;
 %store difference
 UDiff(ind7,1)=UPatchDiff;
 HorizDiffU(ind11,Frameind)=UPatchDiff;
 end
 end

 for k=1:rowcount
 ind6=0;
 if k == 1
 CurrRow=1;
 else
 CurrRow=(k*rowcount)-(rowcount-1);
 end
 for kk=CurrRow:(CurrRow+(rowcount-2))
 ind6=ind6+1;
 ind8=ind8+1;
 ind12=ind12+1;
 VPatchDiff=VFlowAVG(kk,1)-VFlowAVG(kk+1,1);
 VAVGDiff(k,ind6)=VPatchDiff;
 %store difference
 VDiff(ind8,1)=VPatchDiff;
 HorizDiffV(ind12,Frameind)=VPatchDiff;

110

 end
 end

 %check variability across patches vertically
 %compare both U and V directions
 UAVGDiff2=zeros(rowcount-1,rowcount);
 VAVGDiff2=zeros(rowcount-1,rowcount);
 for k=1:rowcount
 ind6=0;
 CurrCol=k;
 for kk=CurrCol:rowcount:((rowcount-2)*rowcount)+CurrCol
 ind6=ind6+1;
 ind7=ind7+1;
 UPatchDiff2=UFlowAVG(kk,1)-UFlowAVG(kk+rowcount,1);
 UAVGDiff2(ind6,k)=UPatchDiff2;
 %store difference in struct
 UDiff(ind7,1)=UPatchDiff2;
 end
 end

 for k=1:length(UAVGDiff2(:,1))
 for kk = 1:length(UAVGDiff2(1,:))
 ind13=ind13+1;
 VertDiffU(ind13,Frameind)=UAVGDiff2(k,kk);
 end
 end

 for k=1:rowcount
 ind6=0;
 CurrCol=k;
 for kk=CurrCol:rowcount:((rowcount-2)*rowcount)+CurrCol
 ind6=ind6+1;
 ind8=ind8+1;
 VPatchDiff2=VFlowAVG(kk,1)-VFlowAVG(kk+rowcount,1);
 VAVGDiff2(ind6,k)=VPatchDiff2;
 %save difference in struct
 VDiff(ind8,1)=VPatchDiff2;
 end
 end

 for k=1:length(VAVGDiff2(:,1))
 for kk = 1:length(VAVGDiff2(1,:))
 ind14=ind14+1;
 VertDiffV(ind14,Frameind)=VAVGDiff2(k,kk);
 end
 end

 UDiffStruct(Frameind).U=UDiff;
 VDiffStruct(Frameind).V=VDiff;

 %move start and stop pts by flow average
 StartPt(1,1)=round(StartPt(1,1)+UFlowAVG(1,1));
 StartPt(2,1)=round(StartPt(2,1)+VFlowAVG(1,1));
 EndPt(1,1)=round(EndPt(1,1)+UFlowAVG(patchnum,1));
 EndPt(2,1)=round(EndPt(2,1)+VFlowAVG(patchnum,1));

 %re-draw grid and re-sample corner points

111

 diffY=abs(EndPt(2,1)-StartPt(2,1));
 diffX=abs(EndPt(1,1)-StartPt(1,1));
 sizeY=round(diffY/rowcount);
 sizeX=round(diffX/rowcount);
 if(mod(sizeX,2)>0)
 sizeX=sizeX+1;
 end
 if(mod(sizeY,2)>0)
 sizeY=sizeY+1;
 end

 %minimize amount of corners to within area near selected region
 ind5=0;
 for w = 1:length(NewCornersLoc);
 if round(NewCornersLoc(w,2)) >= (StartPt(2,1)-20) &&
round(NewCornersLoc(w,2)) <= (EndPt(2,1)+20) ...
 && round(NewCornersLoc(w,1)) >= (StartPt(1,1)-20) &&
round(NewCornersLoc(w,1)) <= (EndPt(1,1)+20)
 ind5=ind5+1;
 ReducedCorners2(ind5,:)=[NewCornersLoc(w,1)
NewCornersLoc(w,2) w];
 end
 end

 %re-sample corner pts
 patchcount=0;
 for Ycount = 0:(rowcount-1)
 StartY=round(StartPt(2,1)+(sizeY*Ycount));
 for Xcount = 0:(rowcount-1)
 patchcount=patchcount+1;
 StartX=round(StartPt(1,1)+(sizeX*Xcount));

patchCorners=SaveCornerIndex(ReducedCorners2,StartX,StartY,sizeX,sizeY);
 CornersStruct(patchcount).CornerIndex=patchCorners;
 end
 end
end
toc;
fprintf('One Cycle Finished!\n');

%determine distribution of all patch differences
HorizDiffU2=zeros(patchnum,Frameind);
HorizDiffV2=zeros(patchnum,Frameind);
ind6=0;
for k=1:rowcount
 if k == 1
 CurrRow=1;
 else
 CurrRow=(k*rowcount)-(rowcount-1);
 end
 for kk=CurrRow:(CurrRow+(rowcount-2))
 ind6=ind6+1;
 HorizDiffU2(kk,:)=HorizDiffU(ind6,:);
 HorizDiffV2(kk,:)=HorizDiffV(ind6,:);
 end
end
VertDiffU2=zeros(patchnum,Frameind);

112

VertDiffV2=zeros(patchnum,Frameind);
for p=1:(patchnum-rowcount)
 VertDiffU2(p,:)=VertDiffU(p,:);
 VertDiffV2(p,:)=VertDiffV(p,:);
end

% %run chi-goodness of fit test on each patch difference in U and V
UNormalDistTestH=zeros(patchnum,1);
UNormalDistTestV=zeros(patchnum,1);
VNormalDistTestH=zeros(patchnum,1);
VNormalDistTestV=zeros(patchnum,1);
UHorizThresh=zeros(patchnum,1);
UVertThresh=zeros(patchnum,1);
VHorizThresh=zeros(patchnum,1);
VVertThresh=zeros(patchnum,1);
for aa=1:patchnum
 if mod(aa,rowcount)~=0
 UNormalDistTestH(aa,1)=chi2gof(HorizDiffU2(aa,:));
 VNormalDistTestH(aa,1)=chi2gof(HorizDiffV2(aa,:));
 if CornerN(aa,1) <= 8
 UHorizThresh(aa,1)=0;
 VHorizThresh(aa,1)=0;
 else

UHorizThresh(aa,1)=(mean(HorizDiffU2(aa,:))+(2*std(HorizDiffU2(aa,:))));

VHorizThresh(aa,1)=(mean(HorizDiffV2(aa,:))+(2*std(HorizDiffV2(aa,:))));
 end
 end
end
for aa=1:(patchnum-rowcount)
 UNormalDistTestV(aa,1)=chi2gof(VertDiffU2(aa,:));
 VNormalDistTestV(aa,1)=chi2gof(VertDiffV2(aa,:));
 if CornerN(aa,1) <= 8
 UHorizThresh(aa,1)=0;
 VHorizThresh(aa,1)=0;
 else
 UVertThresh(aa,1)=(mean(VertDiffU2(aa,:))+(2*std(VertDiffU2(aa,:))));
 VVertThresh(aa,1)=(mean(VertDiffV2(aa,:))+(2*std(VertDiffV2(aa,:))));
 end
end

MaxUHorizThresh=max(UHorizThresh);
MaxVHorizThresh=max(VHorizThresh);
MaxUVertThresh=max(UVertThresh);
MaxVVertThresh=max(VVertThresh);

end

Determine Best Fit Function:

function FrameNum = DetermineBestFit2(ImgNIR,count)
%%%
%FrameNum = DetermineBestFit(I2,I1,BestFrame)%

113

%inputs:
%ImgNIR=image frame data set
%count=current frame count
%
%outputs:
% FrameNum=frame with highest matching SURF features
%
%summary:
%this function determines the best frame to match the current frame with
%the most SURF features
%%
PrevCt=0;
PtCt=1;
FrameCt=0;
fprintf('Determine Best Fit\n');
while(PrevCt < PtCt)
 FrameCt=FrameCt+1;
 Prev=count-FrameCt;
 if Prev > 0
 I1=histeq(ImgNIR(:,:,Prev));
 I2=histeq(ImgNIR(:,:,count));
 PrevCt=PtCt;
 % Start SURF
 % Get the Key Points
 %Options.upright : Boolean which determines if we want a non-rotation
 %invariant result (default false)
 Options.upright=true;
 %Options.upright=false;
 %Extended adds extra landmark position info to descriptor
 %Options.extended=true;
 %Options.tresh : Hessian response threshold (default 0.0002)-changes
the
 %#ofKeyPts
 Options.tresh=0.00035;%0.00055; %decreas=more pts,inc=less pts
 % Ipts : A struct w/ info about all detected key points, of 2 img's
 % Ipts.x , ipts.y : The landmark position
 Ipts1=OpenSurf(I1,Options);
 Ipts2=OpenSurf(I2,Options);
 % Put the landmark descriptors in a matrix, index of corresponding
matching
 % pts-reshaped by taking Ipts.d(i) from i->length(Ipts) and storing
into D
 % as D1=64xlength(Ipts1) and D2=64xlength(Ipts2)
 D1 = reshape([Ipts1.descriptor],64,[]);
 D2 = reshape([Ipts2.descriptor],64,[]);
 % Find the best matches-step through length of Ipts1 or key pts found
 err=zeros(1,length(Ipts1));
 cor1=1:length(Ipts1); %index of all Ipts1 values
 cor2=zeros(1,length(Ipts1));
 %re-orders D1 to length of D2, then calc distance from D2 to D1,
 %then sums every pt with 1, stores minimum distance value as err(i)
and
 %cor2 as index of that value,if err(i)<0.05 get rid of those
matches
 for i=1:length(Ipts1),
 distance=sum((D2-repmat(D1(:,i),[1 length(Ipts2)])).^2,1);
 [err(i),cor2(i)]=min(distance);

114

 if err(i)<0.05
 D2(:,cor2(i))=1000;
 end
 end
 % Sort matches on vector distance
 % Sort err in ascending order and stores index as ind, to sort cor1
and
 % cor2 in the same ascending order
 [err, ind]=sort(err);
 cor1=cor1(ind);
 cor2=cor2(ind);
 PtCt=length(cor1);
 end
end
FrameNum=Prev+1;
% FrameNum=FrameCt-1;
end

