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 Cardiac motion can be monitored non-invasively for the assessment of cardiovascular 

function by using medical imaging systems and motion tracking algorithms. Existing tracking 

approaches require a priori understanding of the non-rigid motion of the target system, which 

could change over multiple cardiac cycles and lead to tracking failures. The purpose of this 

research is to develop the algorithm and software, with computer vision techniques, to 

continuously track the motion of a user-defined region of the heart images. The proposed 

algorithm improves upon existing techniques because it does not require an underlying motion 

model, it quantifies the quality of tracking, and it can recover from a failed tracking estimate. 

The motion estimation of a non-rigid system will be done by a piecewise tracking approach that 

breaks up the region of interest into several small segments (patches), which can be 

approximated with interconnected pseudo-rigid segments. These segments will be initialized 

based on two criteria: 1) motion within a segment must follow the pseudo-rigid body model; 

and 2) motion in neighboring segments must be similar to each other. Segments are 

subsequently tracked as pseudo-rigid bodies, and the criteria described above are also used to 

detect failures in tracking. If a failure were to occur, the tracking algorithm will be reinitialized 

automatically. This algorithm was shown to be accurate and efficient, and has been tested on 

several heart motion data sets. 
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CHAPTER 1: INTRODUCTION 

Cardiovascular diseases are defined by the World Health Organization (WHO) as a group 

of disorders of the heart and blood vessels that restrict blood flow to a specific region. These 

diseases are also labeled as ischemic disorders that include coronary heart disease, peripheral 

arterial disease, and deep vein thrombosis. The disorders classified can lead to severe conditions 

that include myocardial infarctions, heart failure, strokes, and more. Cardiovascular diseases are 

the leading cause of death globally, and an estimated 17.5 million people died from these 

diseases in 2012 (WHO, 2016). Cardiac motion must be monitored non-invasively for the 

assessment of cardiovascular function using motion tracking systems and medical imaging data.  

The non-invasive tracking systems must be able to model and predict the movement of structures 

of the heart muscle, and analyze their movement overtime for applications that include 

diagnostic analysis.  

Computer vision techniques have been widely used in the medical field to develop 

algorithms for these applications. For example, post-processing techniques have been used to 

improve the quality of images and to extract information. Some of these algorithms have been 

implemented in software to improve the overall image intensity, to analyze specific regions of 

interest, or to take measurements for accurate analysis and diagnosis (Najarian & Splinter, 2012). 

Some of the existing cardiac motion tracking techniques estimate the movement of structures of 

the heart muscle by using a specific model to predict this motion. Cardiac motion tracking by 

this approach requires a priori understanding of the motion. Since the motion of the heart could 

change over multiple heart cycles, the models developed could fail to account for this change, 

which makes it difficult to recover from tracking failures. The research presented in this work 

will aim at improving the heart motion tracking algorithms.  

 The purpose of this research is to develop the algorithm and software, by using computer 

vision techniques, to continuously track the motion of a biological heart from two-dimensional 

imaging data without using a motion model. The non-parametric motion tracking algorithm will 

be used to estimate the motion of non-rigid structures of the heart by tracking point features 

identified in a user-defined local region of interest (ROI), on or within the heart. The algorithm 

will be developed using multiple computer vision techniques, including, but not limited to, 

feature extraction, matching, motion estimation, and outlier detection techniques. It is fully 
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realized that point feature-based tracking methods could potentially be disrupted by large 

motions, noise, lost frames or occlusions. It is important for a tracking system to have the 

capability of detecting such conditions. In this method, the tracking quality of these point 

features will be quantified by evaluating the consistency in frame. If the tracking quality fails a 

set of criteria, the algorithm is able to flag the failure of tracking. Future, it will be able to realign 

with the motion and recover from the failure. Finally, it is purely based on two-dimensional 

imagery data, and is thus considered a non-invasive approach. 

The developed algorithm from this thesis can be utilized in many other applications. For 

example, the movement of myocardial walls or blood vessels could be tracked continuously to 

assess function by analyzing the motion and strain fields of these structures. Another possible 

application for this algorithm could be long-term single-cell tracking, which could improve the 

analysis of the cellular dynamics of a specific cell line. Current research in this field looks to 

improve upon the lack of software techniques in single-cell tracking, and reduce the amount of 

data acquisition needed (Hilsenbeck et al., 2016). Since cells move as non-rigid bodies, the 

developed algorithm can be used in this application to highlight and continuously track a 

specified cell for analysis. Since most tissues and organs that make up the human body are non-

rigid structures that need to be tracked continuously, an additional application for this algorithm 

could be in the diagnostic analysis of other structures using imaging modalities. If a 

measurement is to be acquired using a specified imaging technique, the algorithm will be able to 

track the non-rigid motion of a region to provide the supplemental geometry for continuous data 

acquisition.       

The algorithm proposed in this thesis improves the existing techniques because 1) it does 

not require underlying motion model to be known, 2) it quantifies the current tracking estimate, 

and 3) it can recover from a failed tracking estimate. Chapter 2 will review the current motion 

tracking techniques that are applicable to biomedical systems and estimating cardiac motion. The 

underlying methods used for algorithm development and the experimental design will be 

presented in chapter 3. Lastly, the results of the tracking algorithm, discussion and a conclusion 

will be presented in chapters 4, 5, and 6 respectively.    



 
 

CHAPTER 2: REVIEW OF THE LITERATURE 

The literature review will focus on three areas. The first focus is on the research related to 

heart motion estimation and modeling using medical imaging data. The second part of this 

review is focused on motion tracking models developed for robotic-assisted surgery applications. 

Finally, the existing approaches that are related to the proposed algorithm of tracking non-rigid 

motion, such as piece-wise tracking, will be discussed. 

2.1: Medical Image Tracking: MRI Tagging 
 Different imaging modalities, such as CT, MRI, and ultrasound, have been used as 

diagnostic tools to monitor patient cardiac function and analyze cardiac motion to improve 

diagnosis. MRI tagging has been a useful procedure to obtain detailed information to track the 

motion and strain fields of myocardium. MRI tagging was introduced in the late eighties, when 

Zerhouni et al. developed a technique for generating visible image markers to tack myocardial 

movement without the need for physically implanted markers (Zerhouni et al., 1988). Two of the 

most popular MRI tagging techniques used today are the spatial modulation of magnetization 

(Axel & Dougherty, 1989) and complementary spatial modulation of magnetization (Fischer et. 

al, 1993) labeled as SPAMM and CSPAMM respectively. Both techniques generate a grid 

pattern across the images for cardiac motion analysis. SPAMM generates this tag pattern through 

selective radio frequency (RF) pulses throughout the cardiac cycle, while CSPAMM improves 

upon this technique to reduce fading of the tag pattern and improve the signal-to-noise ratio 

(Ibrahim, 2011). Research has been completed on the development of automated tools and 

tracking models to assist clinicians with cardiac motion diagnosis, and three different examples 

of these tools will be discussed further. 

In a study conducted by Chandrashekara et al. (2003), a statistical model of the 

myocardium motion field of several healthy volunteers’ tagged MRI data was developed and 

tested. The objective of this research was to use prior information to develop a statistical model 

to track the motion of myocardium from patient data. To develop the statistical model, data from 

17 volunteers, consisting of short-axis (SA) and long-axis (LA) slices, was acquired. Also, a cine 

breath-hold sequence of data was taken to develop a SPAMM tag pattern at the end of expiration 

for generating a grid pattern across the images to analyze motion (Chandrashekara et. al, 2003).  



4 
 

With the MRI tagged data collected, a statistical model was generated from all image 

frames between end-diastole and end-systole using all seventeen patients. Both the SA and LA 

data was used to derive a myocardial motion field for all individual subjects, and to account for 

the twisting, contraction, and shortening of the heart. The SA and LA images acquired were re-

sampled by ordering images such that the first frame is aligned with end-diastole, or relaxation. 

With the images re-sampled to follow the cardiac cycle, a transformation function was derived to 

estimate the movement of any point in the myocardium at each frame. The actual motion fields 

for each image were then calculated by transforming multiple points within one image frame to 

estimate the position of those points in the next frame, and subtracting transformed position with 

the actual location in the current frame. The motion fields were computed to model the 

deformation of the heart within the image throughout time. Next, the motion fields of each data 

set were mapped temporally and spatially to a reference subject. This was done to develop a 

common coordinate system for points within each image and develop a common time scale for 

all image frames. With the common coordinate system developed, principal component analysis 

was conducted to build the statistical model for the cardiac motion. Two separate models were 

built and validated by tracking the motion of the heart in eight separate data sets for all time 

frames of the cardiac cycle. Both models differed in specific parameters, but the displacement of 

tag intersection points was compared to the displacement of these points measured by a human 

observer for each model. The root-mean-square tracking error was found to be below 2 

millimeters for the cardiac cycle over all eight data sets, which is labeled as a good performance 

for motion tracking (Chandrashekara et. al, 2003).  

The results of this study show that the cardiac motion can be modeled and applied to 

different data sets to track the motion of intersecting lines, or deformations, from tagged MRI 

data with a small displacement error. It further shows that the heart motion can be modeled and 

tracked overtime. The model was not optimal for real-time tracking, as it does not account for the 

variability of the heart rate over multiple contraction cycles. Improvements to the model could be 

made to account for the variation from changes in the motion pattern of different healthy and 

diseased patients. The method proposed in this study also requires the use of tagged MRI images, 

which increases data acquisition cost. The model was also not developed for applications that 

require tracking recovery from lost data or occlusions.       
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In a study conducted by Hassanein et al. (2014), a mathematical model was generated to 

test tracking methods of cardiac motion with synthetic images, to model left ventricular function 

of tagged MRI data. The synthetic data was modeled as a circular disc with an inner radius of 30 

millimeters and outer radius of 40 millimeters to simulate the endocardium and epicardium. The 

displacement model varied over polar coordinates, where the radius decreased to a specific point 

and then increased to simulate the contraction and relaxation of the cardiac cycle. The polar 

coordinates were then transformed into a Cartesian system to develop a sequence of test images. 

Using a known model, the SPAMM and CSPAMM tag patterns were overlaid on the image to 

simulate actual tagged data. To complete the synthetic data, Gaussian white noise and 

exponential decay of the tag line amplitude was applied to simulate actual noise artifacts from 

real time imaging. The synthetic data set motion was then tracked overtime by comparing optical 

flow techniques with a commercially utilized HARP technique. The harmonic phase algorithm 

(HARP) is a commercially available MRI analysis technique to process the motion of tagged 

MRI data (Hassanein et. al, 2014).  

Image tracking techniques based on optical flow were applied to the synthetic data set, 

along with HARP to estimate the motion of the circle over time. Optical flow is a computer 

vision technique to track the change in pixel motion overtime. Optical flow can be defined as the 

two-dimensional displacement or velocity estimation of pixel patches on an image plane. Three 

different optical flow techniques Lucas-Kanade (LK), Horn-Shuck (HS), and Anisotropic LK 

(LKD) were used in this study.  The radial strain and estimation errors were calculated over each 

image frame for all four methods, and the radial strain was compared to the actual strain 

measured from the image sequences. The results show that the LK method produced the most 

accurate strain measurement at the epicardial or border of the circle for tag patterns, and 

produced the smallest tracking error overall for all tests. The commercially available method, 

HARP, was found to have good tracking accuracy in the endocardium or inner circle, but failed 

to track the border of the circle for both tag patterns. The HS results were found to have the 

greatest tracking error among optical flow techniques, but performed better than the HARP 

method at the border. The LKD tracking error was found to be similar to that of the LK method 

at the border, but was greater at the inner circle than the LK error (Hassanein et. al, 2014). 
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In a similar study, Arif et al. (2014) proposed a method for tracking specific structures in 

cardiac MRI images by propagating a segmentation from one frame to another across a sequence 

of images. This study improved upon the partial differential equation (PDE) solutions of optical 

flow techniques with consideration of the fluid motion present in the heart. The researchers 

proposed a new boundary condition to solve the PDE of the tracking methods by changing them 

from a zero velocity to a value linked to the inside of the segmentation that is not zero. The 

mathematical model developed was then discretized to generate an algorithm to be tested. The 

developed method was applied to publicly available data sets, the MICCAI Left and Right 

Ventricle sets (LV and RV), and compared to the commercially available Medivisio 

segmentation software. Both methods start with a user selected initial segmentation of each 

ventricle, and the segmentation is propagated separately to compare both techniques. Full heart 

segments were also selected to track the myocardium outer boundary, left ventricle, and right 

ventricle (Arif et. al, 2014). 

The results show that the proposed technique from this study improves cardiac 

segmentation and propagation throughout the entire data set when compared to Medivisio 

segmentation, and requires no manual correction throughout the entire data set. For the LV, the 

proposed method included a more accurate boundary segmentation and motion compared to 

Medivisio. However, the main difference between the two can be seen in the RV data. The 

Medivisio segmentation would group noise artifacts and components outside the true boundary 

of the RV. This would lead to a correction by the user to delete extra unwanted pixels to continue 

tracking. The proposed method was not interrupted by these artifacts and kept an accurate 

boundary segmentation close to the actual RV wall. When these techniques were applied to 

segment out multiple structures, the Medivisio method failed and consistently could not correct 

itself to keep the segment boundary equal to the actual movement of the LV, RV, and 

myocardium wall. The proposed method accurately tracked the boundary of the segmented LV, 

RV, and myocardium wall throughout multiple cardiac cycles (Arif et. al, 2014). 

By making improvements to the general optical flow techniques, the proposed method 

from this study demonstrated accurate segmentation and tracking results for LV, RV, and 

myocardial boundaries. The proposed technique was also developed to be computationally 

efficient because the changes made did not alter the computational time significantly, when 
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compared to traditional techniques (Arif et. al, 2014). The method did not even require specific 

MRI tagging, and was developed to be non-specific to any imaging modality. The method was 

not developed for real-time tracking as the experiments were conducted as post-processing 

techniques on MRI data that is publicly available and does not include interference or occlusions. 

The acquisition cost to use this technique for MRI data would lead to an expensive data 

acquisition for non-invasive diagnosis.      

In summary, MRI is one of the medical imaging modalities used to track the motion of 

specific components of the heart, which requires preprocessed (tagged) data and can only track 

the heart within one region, such as the left ventricle. The high cost associated with MRI tagged 

data promotes the use of other imaging methods in the development of a tracking algorithm for 

diagnostic applications. The tracking algorithms presented support the use of optical flow 

techniques to estimate the motion of the heart and improve upon commercially available tracking 

software. However, the techniques developed are not robust to occlusions or other interferences 

and cannot automatically correct a failed tracking estimate for the use in real-time cardiac motion 

tracking.     

2.2: Robotic Assistant Surgery Tracking 

 Open heart and specifically coronary artery bypass surgeries require surgeons to operate 

on blood vessels that constantly move and cause interference. Research has been conducted to 

improve the working conditions for surgeons during operation also by using computer vision 

techniques. The master-slave robotic systems, such as the DaVinci machine, have been improved 

to include mechanical motion synchronization of the surgical instruments with the beating heart 

to track, predict, and cancel out the cardiac motion. Active Relative Motion Cancelling (ARMC) 

is one method used to actively cancel out heart motion by tracking a point of interest on the heart 

surface to provide surgeons with a still view (Bader et. al, 2007). Three different research studies 

on the development of cardiac motion tracking systems for this application and their motion 

tracking technologies will be reviewed. 

In a study conducted by Bader et. al (2007), a model-based approach was used to build an 

estimator to reconstruct multiple feature points from one image frame to the next, to predict 

cardiac surface motion. A testing model was developed with a circular pulsating membrane, 

paced between 0.5 and 2.4 hertz, and physical markers to track motion using a stereo camera 
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system. The motion behavior of the membrane was derived as a system of coupled linear partial 

differential equations, and converted into a lumped parameter system to estimate the solution of 

the model at a discrete time point. A Kalman filter was utilized to estimate the state of the 

lumped parameter system from the location of marked feature points on the membrane model. 

The location of these points was found through feature extraction from both cameras using an 

edge detection technique, specifically Canny edge detection (Canny, 1986). The predicted 

deflection of a series of points that did not include the labeled markers was compared to the 

actual measured deflection of the labeled points as the model was pulsed at a frequency of 0.653 

hertz. The results show that the average prediction error (measured – prediction) was found to be 

equal to 1.39 millimeters (Bader et. al, 2007). 

The model developed from this study demonstrates that the deflection of a circular 

membrane, which resembles cardiac motion in the z-axis, can be tracked through feature 

detection. This model also successfully tracked the changes in motion throughout time using 

non-invasive imaging data. It is reported that at some image frames the Canny edge features 

could not be found, which contributes to an increase in the prediction error. More research on the 

types of features to be selected, such as corners instead of edges, could provide a better tracking 

model to reduce loss from occlusions or other interferences. The membrane model should be 

tested in real-time on cardiac images to improve non-rigid tracking and be more applicable to 

robotic-assisted surgery applications.  

In a research study conducted by Tuna et al. (2013), two least-square prediction 

algorithms were created and tested to predict future position estimates of points of interest (POI) 

from the heart surface. In this study, the heart motion displacement of three calves was recorded 

using a sonomicrometer system, and imaging data was tested with the algorithms developed. 

Two piezoelectric crystals were placed near the coronary artery and along the side of the heart to 

measure displacement. A “one step motion” estimation algorithm was first developed to predict 

the current POI using the prior position in previous frames through a process of adaptive 

filtering. Adaptive filtering adjusts the filter weights using a least squares method to allow the 

algorithm to constantly update based upon the most recent iteration. The second approach 

developed uses a generalized linear predictor to independently estimate each point over the entire 

image. This second approach computes an estimation matrix at each iteration, which was found 
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to be approximately constant throughout all frames. Both algorithms were tested on the pre-

recorded cardiac displacement data to track the heart over all image frames. The results of this 

study show that the generalized predictor root mean square position error was found to be much 

smaller than the one step estimation at a constant and varying heart rate (Tuna et. al, 2013). 

The algorithms developed in this study show that a motion predictor can be developed to 

actively track specific regions of the heart even when the heart begins to contract at a higher rate. 

The motion predictors were successfully able to track the non-rigid motion of the heart using 

non-invasive cardiac imaging data. The predictors were, however, not developed to account for 

interferences or occlusions, which occur during surgery. It is important to note that even though 

the prediction algorithms can actively track regions when the heart rate increases, the algorithms 

cannot track these regions when an abrupt change in heart rate occurs. This abrupt change could 

be caused from an abnormal arrhythmia or myocardial infarction. The methods presented in this 

study are also not implemented in real time in an active surgical system. 

In a third study, Richa et al. (2010) presented a robust method for estimating three-

dimensional temporal and spatial deformation of the heart surface using stereo endoscopic 

images and computer vision techniques. This method, based on previous research with Thin-

Plate Splines (TPS) models, was improved to accurately track large ROI on the heart surface 

even in the presence of occlusions or tracking failures. In their previous studies, the TPS method 

was developed to select control points from a reference image of the heart and utilize a warp 

function to map the control points and the ROI from one frame to the next. It is important to note 

that the control points are selected manually by the user in a reference image from regions of 

high texture, such as edges. This study was conducted to improve upon this method by adding 

the heart motion dynamics to support the tracking accuracy of the TPS solution. A heart motion 

model was developed based on time-varying Fourier series that is recursively estimated using an 

Extended Kalman Filter (EKF). This model will be used to reestablish the motion of the heart 

when a tracking failure occurs. The current algorithm from this study was re-organized to 

evaluate the quality of the tracking result at every iteration. In the evaluation step, the image 

alignment error and the estimated three-dimensional heart shape will be checked. If the error is 

found to be high, the EKF and Fourier series model will be used to restore the tracking of the 

selected ROI. The alignment error is evaluated by calculating the normalized cross-correlation 
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coefficient of regions of about 40x40 pixels surrounding each control point. If three of these 

points were found to be below a set threshold, the current tracking TPS model stops and 

continues when the control points are visible. The three-dimensional shape analysis is evaluated 

by calculating the bending energy of the ROI. If the bending energy of any point within this 

region is greater than a specific threshold, the tracking is stopped and the motion is reestablished 

from the EKF model. The improved tracking algorithm was tested on human data that was pre-

recorded from previous research studies (Richa et. al, 2011).  

The algorithm from this study was tested on image sequence from an endoscopic 

coronary bypass surgery using the DaVinci surgical platform on a human subject. The data 

consisted of 32 seconds of colored imaging data with a total of 1600 images. Eight control points 

were selected on the reference image, the EKF was initialized, and the alignment error and 

bending energy thresholds were set at 0.60 and 0.14 respectively. The researchers note that the 

first tracking error within the ROI occurred around 3.16 seconds, and the previous method was 

not able to recover. The new method fixed the tracking error by 3.18 seconds using the predicted 

heart motion from the EKF and continued. Throughout the whole test, the tracking was 

suspended for 13.69% of the total time duration. This lead to a computational delay of 800 ms 

total from tracking loss to reestablishment. The large duration of the delay was found to occur 

due to the poor prediction quality from abrupt cardiac frequency changes, but the region was 

successfully tracked throughout the entire sequence (Richa et. al, 2011). 

The results show that the non-rigid motion can be tracked through EKF and Fourier series 

modeling for applications in real time robotic-assisted surgery. The authors of this study suggest 

that abrupt cardiac frequency changes can be accounted for by incorporating electrocardiogram 

(ECG) data. The ECG could be utilized to predict abrupt changes in the heart frequency to 

improve tracking quality (Richa et. al, 2011). However, more instrumentation must be added to 

the existing method to measure the ECG. The algorithm presented in this study demonstrated 

that the visual tracking system must be robust to occlusions for robotic-assisted surgery 

applications. A tracking validation step can also be developed using the normalized cross-

correlation coefficient for feature tracking in cardiac motion data. 
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2.3: Computer Vision Tracking Algorithms for Non-Rigid Motion Tracking 

 Most of the computer vision techniques initially developed for object tracking and motion 

detection had an implicit assumption that the object to be tracked in an image was rigid. For 

biological systems, such as the heart, a tracking system must be able to accurately track and 

predict the stretching or dilating motion of non-rigid structures, such as a blood vessel. It must 

estimate these areas of non-uniform motion within one region, which is typically found on the 

heart. There has not been substantial development of closed-form tracking algorithms for non-

rigid heart motion in the literature. However, this problem could be solved through a linearized, 

piecewise approach. Piecewise motion tracking is used to break up the motion field of a region 

into smaller areas, called neighborhoods, that can be estimated individually. The next set of 

studies will present techniques that can be used to model and estimate regions in a scene or 

image that have different motion fields.  

In a study conducted by Cremers and Soatto (2004), a motion estimation and 

segmentation technique was developed to track multiple regions of interest (ROI) and segment 

out objects from their respective motion field. This proposed method was developed using 

Bayesian inference that is updated based on continuous optical flow measures outlined by a 

contour representation of the motion of separate regions. The motion field is also optimized by a 

gradient descent minimization factor. The initial image frame is segmented into multiple regions 

of piecewise parametric motion, where the motion of each region is solved from a system of 

partial differential equations. With the equations and algorithm developed, this method was first 

tested on a set of synthetic gray-scale images of similar intensity where the ground-truth motion 

is known. The results of these tests show that the objects located within the image set were found 

to be accurately segmented based on their separate motion and not appearance. In a more 

applicable test, a traffic scene test set was developed by setting an image of two cars to move 

toward the top-right of the image, while the background of this same image was moved to the 

bottom-left to simulate camera movement. The motion segmentation method was compared to a 

previously developed intensity-based segmentation technique for this image sequence. The 

results show that the intensity-segmentation was only able to segment out the bright and dark 

areas within the image. The proposed method was accurately able to segment out each individual 

car from the background, and obtain an accurate estimate of the motion of the cars and 

background when compared to the ground-truth. A third experiment from this study takes a 
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traffic sequence of multiple moving cars and a moving background, and estimates the motion of 

a selected initial segment within the first image. It is important to note that in this test sequence, 

the ground-truth motion was not known. The results of this test show that the segmentation of 

one car in the scene was robust to competing motion of other cars and the background. The 

algorithm began to fail as the car started to move perpendicular to the viewing plane of the 

image. At this point the optical flow cannot be solved for, and this error is known as the aperture 

problem. The results of this study show that regions of separate motion can be estimated and the 

boundaries of these regions can be highlighted to segment out each moving object in a scene. 

The segmentation method was developed for piecewise motion fields based on parametric 

motion models. To segment regions of the moving heart, this model cannot be used. However, 

this technique could be utilized if the specific parametric motion from pre-segmented heart data 

is learned and used as an input to the motion segmentation algorithm (Cremers & Soatto, 2004).  

 In another approach proposed by Zhou, Yuan, and Shi (2008), an object tracking 

technique was developed by combining the use of a scale invariant feature transform (SIFT) with 

a mean shift algorithm. This algorithm integrated two commonly used object tracking techniques 

to improve consistency in tracking performance, even if one of them were to fail. A SIFT feature 

detector is a method that locates points of interest that occur at the maxima and minima of a 

difference of Gaussian function, across all scale space. Local key points are identified through 

this step, and then a feature descriptor is developed for each key point to assign measures for 

robustness of the point against rotation or brightness changes. The final SIFT feature points are 

chosen by testing the robustness of each key point detected by building an image pyramid and re-

sampling the points at each level of the image scale space. The mean shift algorithm works by 

conducting a color or intensity similarity search using color histograms across two image frames. 

An initial target window, with its position, is given in the current frame, and the algorithm begins 

to step through the next image frame in search for a confidence region that has a similar 

histogram distribution. Both tracking techniques are used in this algorithm by taking 

measurements and developing an expectation-maximization scheme to achieve a maximum 

likelihood estimation of similar regions across multiple image frames. A region of interest, or 

rectangle, is defined in the first frame, along with the computation of the color histogram of this 

region and the SIFT features. Then in the second frame, the algorithm will examine surrounding 

areas of the initial position from the previous frame for color similarity measures along with the 
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sum of square difference between SIFT features. The expectation-maximization will then be 

used to locate regions that are similar while minimizing the distance between the detected 

locations from the mean shift and SIFT results. This process will then iterate until the difference 

between the two is smaller than a set threshold, and the target location will be found in the 

current frame. The algorithm was tested on four publicly available data sets, and then compared 

to the SIFT and mean shift detectors separately. The Euclidian distance between the object 

detection of the three techniques and the ground truth were then compared, and it was found that 

the mean-shift combination algorithm had a significant lower tracking error for both a single 

object in a dark scene and tracking a single object in a crowded scene. The combination of both 

techniques did, however, increase computation time when compared to running each 

individually. Overall, the proposed algorithm shows promise in improving object tracking over 

multiple image frames in different scenarios by combining different object tracking techniques 

together to improve results (Zhou, Yuan, & Shi, 2008).  

The combination of different tracking techniques shows an improvement in estimating 

the motion of one segment in a scene of competing motion. Even though the initial region of 

interest was assumed to be rigid in all the algorithms presented, this individual consistent 

tracking can be used for piecewise motion estimation by breaking up a non-rigid region into 

smaller areas that can be assumed to move as rigid segments.   

A third study, proposed by Ren in 2008, improved optical flow results by developing an 

image-based grouping approach in motion estimation. This method begins by computing a soft 

edge and texture boundary map using a probability-of-boundary operator, which combines local 

brightness, color, and texture contrast and differs from traditional edge detection techniques. The 

boundary map will then be used to develop pairwise affinities between subsequent pairs of points 

through an intervening contour method. The affinity value represents if two points are separated 

by strong boundaries or if they belong in a uniform region. The image will then be sampled at 

corner or edge points for the affinity calculation step, and then the flow will be estimated at these 

sample points. The affinity values calculated will define a support for the spatial integration of 

flow to avoid connections across object boundaries, also known as a semi-local flow approach. 

An affinity-based optical flow will then be calculated across the image to estimate the motion of 

these points from one frame to the next. The grouping method was then tested on publicly 
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available data sets and the average angular error and average end-point error was compared with 

a top-ranking flow estimator from Black and Anandan (1996). The results show that the 

grouping approach significantly improves the optical flow estimation by lowering both errors 

measured. These results can be contributed to the improved flow estimation for points that are 

close to boundaries in an image, but do not necessarily move in the same direction as the 

boundary. While traditional flow estimators tend to group unwanted regions into areas of strong 

intensity, like edges and corners, even if the true motion of these points is in a different direction. 

The downfall to this approach is that the computation time increases due to the increase in the 

number of points used in computation of the flow field. These results show that grouping optical 

flow measures by edges or corners improves tracking estimation. This grouping approach can be 

useful for piecewise estimation as well to estimate regions that undergo non-rigid motion similar 

to cardiac motion (Ren, 2008).           

In summary, existing heart motion tracking systems from imaging modalities were found 

to be accurate only at specific locations on or within the heart. The systems reviewed here 

require tagged MRI data, a prior model, or a lot of prior imaging data that can be expensive to 

capture and have long computation times. Non-invasive optical imaging tracking techniques 

could improve upon MRI tracking systems presented because optical techniques require less 

exposure time, are less-invasive, and are more cost effective. The data used to develop this 

algorithm stems from optical imaging techniques, but could also be used in other imaging 

modalities. Tracking systems used on robotic surgery applications were found to be accurate. 

However, these algorithms require the use of artificial sensors and computationally expensive 

models to effectively track the motion of the heart. Lastly, a set of computer vision techniques 

that were not originally developed for tracking non-rigid biomedical systems could be used to 

solve for piecewise motion estimation. Overall, there exists a gap between existing systems and 

the need of a heart motion tracking approach that is continuous, non-parametric, and robust to 

tracking failures. 



 
 

CHAPTER 3: METHODS 

3.1: Non-Rigid Motion Observation Model 

In order to continuously estimate the non-rigid motion of a biological system, such as the 

heart, a traditional computer vision technique that assumes a rigid body is no longer directly 

applicable. A piecewise tracking algorithm is proposed here. It will break up a ROI into smaller 

components, each estimated as a pseudo-rigid segment. Each small component will be estimated 

as a pseudo-rigid segment because not every point within that segment will follow the same 

exact motion. The motion of some points will differ slightly, but the distribution of this motion 

will follow an approximately rigid model. All the segments combined can approximate the non-

rigid motion of a ROI as observed in a two-dimensional space (image). 

In order to introduce the piecewise algorithm, a body frame and a camera frame are 

defined in a three-dimensional space. The body frame is a three-dimensional Cartesian 

coordinate system attached to the target biological system (the heart), with an arbitrarily chosen 

origin point (j). If the heart were a rigid body, another point (i) can be defined at a fixed location 

in the body frame, , which does not change over time in a rigid body frame. However, in a 

non-rigid system, the location of this point becomes a function of time, i.e. ( ). At a specific 

time ( = ), the location of this point would be at ( ). Since the point (j) is the origin, the 

location of this point in the body frame is zero, i.e., = 0, regardless of time.   

The camera frame is another rigid 3D Cartesian coordinate system. At a time ,  the 

origin of the camera frame is located at, for example, ( ), which is a location observed in the 

rigid body frame. The coordinates of the point (i) and the origin (j) in the camera frame is thus 

defined by equation 1 and 2 respectively: 

      ( ) =  ( )[ ( ) − ( )]     (1) 

     ( ) =  ( )[ ( ) − ( )]     (2) 

where  is the rotational transform of a point from the body frame to the camera frame. Thus, 

( ( )) represents point i observed in the camera frame at time .   
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3.1.1: Piecewise Approximation 

Now let the time stamp step from  to , still in a non-rigid system. If a rigid body 

had been assumed in a predictive model, it would not agree with the actual observation. The 

error (ϵ) between the predicted location and truth is described in equation 3, where  ( ) 

stands for the prediction.  

= − ℎ =   ( ) − ( )    (3) 

Both terms can be substituted from equation 1 and simplified below in equation 4: 

= ( ) − ( ) − ( ) − ( )    (4) 

As afore mentioned, in a non-rigid system, ( ) ≠ ( ). We further assume that the 

location of point (i) has been biased through deformation by ∆ , such that 

( ) = ( ) + ∆  

The prediction error is therefore also a function of ∆ : 

= ( ) − ( ) + ∆  

where  is the rotation transform from the body frame to the current camera frame. We can 

then simplify the equation above into:   

= − ∆          (5) 

The difference between the rigid and the non-rigid motion is now observed in the camera 

frame, as shown in equation 5. In a non-rigid system, the bias ∆  can be defined as a function of 

time and space shown in equation 6 below:  

∆ ( − , − )      (6) 

In a piecewise approach, the non-rigid motion will be approximated with pseudo-rigid 

motion in a small neighborhood, which is observed as a small “patch” in this image. In order for 

this approximation to be sufficiently accurate, a constraint must be applied to ∆  such that it can 

be linearized. In general, the bias term is assumed to be continuous over time and space in a 

biological heart. The bias term must fit the continuity constraint as described below:  



17 
 

∆ − , − is smooth if 
∆

,
∆

exist and are continuous  

For this function to be smooth, it must be differentiable in time and space everywhere in its 

domain. Also, all the partial derivatives must exist and be continuous in all orders across the 

domain. For the function to be continuous, it must be defined at any point, and the value at that 

point must equal a real number. The limit of the function must also exist and be equal to the 

function value at that point.     

 ∆  is a function of time and space because its value will change overtime, or consecutive 

image frames, and at different points in the ROI. The bias within a small patch can be 

approximated using first order Taylor series and is shown below in equation 7: 

∆ , ≅ ∆ , + (∆ ) + (∆ ) + (∆ ) + (∆ )     (7) 

where ∆  is the change in time from  to  and (∆ , ∆ , ∆ ) represents changes along 

the three axes in the body frame. To further simply the analysis, in equation 8, we assume that 

the bias is only sensitive to the distance between two points, such that  

∆ , ≅ ∆ , + (∆ ) + (∆ )    (8) 

where ∆  is the change in distance from a point (i) to the origin (j) within one patch.  

Since the bias is assumed to be continuous and smooth, if the change in time between image 

frames is approximately small (∆ ≅ 0), the bias due to the time change will be sufficiently 

small. The bias within a patch due to distance can then be defined by evaluating equation 8 using 

the distance variable only: 

∆ , ≅ ∆ , + (∆ ) 

Similarly, there would exist a small neighborhood surround the origin (j), in which any point (i) 

has | | ≅ .  In other words, there is a pseudo-rigid relationship between both points. This 

neighborhood, will be called a “patch” in this work. If a patch was observed to be approximately 

rigid at a time ( ), it still will be approximately rigid at the next time step ( ). Therefore, the 

bias change due to time will be minimal, i.e., ∆ , ≅ ∆ , . 
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Piecewise motion estimation also requires a constraint across neighboring patches. 

Neighboring patches do not necessarily share the same linear transformation. However, their 

motion models are expected be continuous. Assume that a point (k) is located in a patch adjacent 

to the one defined with origin (j). The bias term at point (k) can be approximated with a first 

order Taylor series following equation 9 below:  

∆ , ≅ ∆ , + (∆ )        (9) 

The variation over time is assumed to be negligible. Both patches will follow a pseudo-rigid 

model. Since ∆  is smooth, the first order Taylor series is sufficient to estimate the bias if the 

distance between both points (∆ = − ) is small enough. It provides yet another 

constraint on the patch size. With smaller patches, the bias ∆  between neighboring patches 

would have a limited difference shown in equations 10 and 11 below.  

∆ , − ∆ , <      (10) 

In other words,  

( ) − ( ) − ( ) − ( ) <     (11) 

3.1.2: 2D Observations and Constraints 

The non-rigid motion of point (i), is observed in a two-dimensional space (image). First, 

the location of this point can be converted from body frame to camera frame, as afore mentioned: 

( ) =  ( )[ ( ) − ( )] 

( ) is defined in the three-dimensional camera frame, with x, y, and z components: 

( ) = [ , , ]. Conventionally, x points to the right, y points down and z points out of the 

camera lens. The location of (i) will be observed in an image that has normalized x and y 

components, which will then be compared to the predicted location of this point as shown below 

(Hartley & Zisserman, 2004):  

: ( ) = ,  

: ( ) =
̂
,

̂
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The prediction, once again, is assumed to follow an approximately rigid model. If the observed 

location in (x, y, z) is approximately equal to the prediction in ( , , ̂), i.e. ∆ ~0, then the 

prediction is accurate and the tracking error (ϵ) could be minimized. It is important to note that 

the z component represents the distance from the camera frame to the body frame. In a medical 

imaging system, the distance between the camera and target is unlikely to dramatically change. 

Therefore, z is assumed to be approximately equal to the predicted ̂ in both locations ( ≅ ̂). 

We assume that the majority of motion will be observed in the x and y directions. 

Constraint 1: Within a patch that is sufficiently small, the pseudo-rigid prediction is 

expected to agree with observation 

= − ℎ ≅ 0 

( ) ≅ ( ) 

Any disagreement would be attributed to noise in feature tracking, which is expected to follow 

Gaussian distribution. As to be discussed in the following sections, motion of a pseudo-rigid 

patch can be modeled by a linear transform, such as the fundamental matrix or a homography 

matrix. It allows us to predict the motion of any single point based on the consistency of 

neighboring points. Furthermore, since we assume that the 3D motion between neighboring 

patches would have a limited level of difference, the difference in 2D motion would also be 

limited. 

Constraint 2: When the difference between the neighboring patches is sufficiently small,  

( ) − ( ) − ( ) − ( ) <  

It is realized that the difference is unknown and will differ over location and time. However, 

when observed over a large number of points over time, it is assumed to follow a Gaussian 

distribution between two patches. The quality of non-rigid motion tracking can be quantified by 

how well the tracking residuals can meet this criterion. 

3.1.3: Configuration of Piecewise Tracking 
The first constraint assumes that the motion within a patch is approximately rigid, and in 

that case, the tracking residuals will be dominated by noise. We assume that with the right patch 
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size, these residuals will follow a normal distribution with the number of outliers no greater than 

two sigma or be greater than five percent of the motion within a patch in the x and y directions. 

This pseudo-rigid motion can then be estimated with all the point features observed in this patch, 

through a computer vision technique such as a homography or averaged optical flow estimation.  

The second constraint assumes that neighboring patches are interconnected, and that the 

motion from patch to patch is continuous. The second threshold will be determined by sampling 

the motion, both in the x and y directions, at every patch through a set number of image frames. 

The motion differences between neighboring patches in the same row and column will also be 

calculated. The motion across neighboring patches will also be assumed to follow a normal 

distribution. This assumption will be confirmed through a chi-square goodness of fit test of the 

motion differences between neighboring patches. The motion differences at every patch with its 

corresponding neighbors across a set number of image frames will be collected to estimate the 

mean and standard deviation. The mean plus two sigma, or 95th percentile point, will be 

calculated for every distribution, and the maximum value among all distributions will then be 

used as a threshold. Four difference thresholds will be calculated in total. The first two are the 

horizontal and vertical differences for the motion in the x-direction, and the next two as the 

horizontal and vertical differences in the y-direction. Each motion difference will be compared 

against the corresponding threshold, and will be flagged if it exceeds the threshold.  

For every individual patch, both constraints are checked at every frame to quantify the 

quality of motion prediction. If either constraint is not met, the tracking estimate is potentially 

incorrect and will be flagged. If the constraints are still not met two more times in a row, it is 

considered a tracking failure, and reinitialization step must be completed among the discontinued 

image frames to restart the piecewise tracking process. 

The algorithm has been illustrated in a flowchart, as shown in Figure 1 below. The 

flowchart presents an outline of the necessary steps to track an input region selected from the 

user, and estimate the motion at every image frame. The algorithm will begin by preprocessing 

the image data set through histogram equalization to improve the overall contrast of the image. 

The user will then be asked to input the starting and stopping point to define a region of interest 

to be tracked. Next, the appropriate size, number of patches, and the motion difference thresholds 

will be determined. The appropriate edges and detected corner features will be then stored in 
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each patch from frame one, in the next step, to be used as the initial frame in tracking. A Kanade-

Lucas-Tomasi (KLT) optical flow approach will then be used to move corner features from the 

previous frame to the current frame to be used as an optical flow measure for the ROI (Shi & 

Tomasi, 1994). The next major component of this algorithm will be to check the quality of 

tracking by determining if the flow within a patch is normally distributed, and check if the 

average flow measure between neighboring patches is continuous. If the quality of tracking 

passes this set of criteria, the edges from the previous frame will then be moved by the average 

optical flow measure of each patch. If the quality of tracking was found to fail either set of 

criteria, this frame will be flagged. If a continuous failure is found for up to three flags, the 

reinitialization step will follow. For the reinitialization step, a homography transform will be 

used to realign the piecewise grid and relocate the features to be tracked. Highlighting the edge 

points moved to the next image frame will also provide qualitative results to determine if the 

non-rigid region is accurately tracked as pseudo-rigid patch segments. The algorithms used in 

each component of this flowchart will be presented in detail in the following section.    
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Figure 1: Algorithm Flowchart   

3.2: Computer Vision Techniques 

The algorithm has been developed using multiple computer vision techniques and has 

been implemented in MATLAB.  The following sub-sections will introduce the theory, 

implementation, and simulated results to show how each technique works in relation to the 
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overall process. Section 3.2.1 will present the preprocessing equalization, edge detection, and 

calculation to determine the appropriate patch number and size. Section 3.2.2 will present the 

corner detection step, motion estimation or optical flow technique, and the quality of flow 

estimation steps. Section 3.2.3 will define the use of Speeded Up Robust Features (SURF) in 

determining matching feature points between two discontinued image frames. This section will 

then continue to outline the Random Sample Consensus (RANSAC) process using these SURF 

feature points to estimate a homography transform to reinitialize the piecewise tracking process.      

3.2.1: Preprocessing: Histogram Equalization, Determine Correct Patch Size, Edge Detection 

The initial data from the imaging system must be preprocessed to improve the overall 

visual quality of the images acquired. A histogram equalization function will be applied on every 

image as the first component of the algorithm. This function will first evaluate the intensity 

distribution, or histogram, from one or a few images. The normalization process maps a given 

distribution to another wider and uniform distribution so that the intensity values are spaced out 

over the entire range (MathWorks, 2017). This MATLAB function works by taking the 

cumulative distribution function of the image intensity values and performing a transform to 

develop a linearized cumulative distribution function of the original image. The linearized 

distribution can be mapped back into an image that will have improved contrast and a spaced-out 

histogram. Figure 2 below demonstrates the histogram equalization process for two images of 

one of the heart data sets.  
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Figure 2: Histogram Equalization Results – Original Image and Respective Histogram (top) 

Equalized Image and Histogram (bottom) 

The next step after histogram equalization is to determine the correct number of patches 

and the size of each at the beginning of the tracking process. To determine the correct number of 

patches, a separate function was developed to estimate the quality of the motion between the first 

two frames by searching for the optimal setting for the number of patches. The motion estimation 

technique is based on corner feature tracking within each patch, and will be described in the next 

section. Each patch will be evaluated on the bias against both constraints: the motion within a 

patch must be assumed to be rigid, and the motion across neighboring patches must be 

continuous. To fit the first constraint, the motion within each patch will be tested for normal 

distribution through a chi-square goodness of fit and outlier detection tests. The motion between 

neighboring patches will also be tested to fit a normal distribution in the horizontal and vertical 

directions by using a chi-square goodness of fit test. A maximum threshold of each neighboring 

difference will then be calculated to represent the maximum offset allowed for motion among 

neighboring patches in either the x or y directions, as pointed out in constraint two of the 

piecewise tracking approach.      

 Edge detection is a key component in the tracking algorithm because locating the 

boundaries found within an image can provide the most useful information to identify a ROI. 

This technique will be used also as a preprocessing step to define the initial boundary points of 

the ROI within each patch. An edge can be defined as a transition point of the gray or pixel level 

of the image as it changes from an area of low values to high values or vice versa (Phillips, 
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2000). The edges of an image must first be detected to determine the main components of the 

image and provide information from the image. An image array mask is combined with the 

original image array data to detect and highlight the edges through a process called convolution. 

The output array data from this convolution will result in a reduction in overall noise of the 

image, and show the outline of the objects represented in the image. A correlation kernel, also 

known as a mask, can be convoluted with the original image pixel matrix data. The convolution 

operation can be shown in the demo provided by Figure 3 (Gimp, 2017). The resulting output 

image is the weighted sum of neighborhood input pixels from this function.  

 

Figure 3: Convolution Demonstration 

An image matrix is illustrated on the left side in Figure 3. Each pixel is marked with its intensity 

value, and the center pixel is outlined in red. The kernel is then applied to the area that has a 

green border. In the middle is the kernel matrix and, on the right, is the convolution result. The 

initial pixel intensity (70) has become 60: (61*0) +(60*1) +(64*0) + (66*0) +(70*0) +(75*0) + 

(70*0) +(76*0) +(78*0) = 60. As a graphical result, the initial pixel moved a pixel downwards. 

This convolution process is applied to locate the edges using a mask with specified values that 

can be changed. Figure 4 below shows the original image with the edge detection output images 

for a low threshold and high threshold. A canny mask is applied to the image using the 

MATLAB edge function, where the strength of the mask can be tuned by decreasing the 

threshold parameter (Canny, 1986). Increasing the threshold value, will lead to a decrease in the 

amount of edges detected. The edge detection algorithm must be tuned based on the application. 

With the edge locations known, each edge will be moved and highlighted from frame to frame 

based on optical flow or homography estimation.  
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Figure 4: Original Image (left) with Low Threshold Edge Detection (middle) and High 

Threshold Edge Detection (right)  

3.2.2: Corner Detection and Kanade-Lucas-Tomasi Tracking (KLT) 

 With the image pre-processing and initialization steps completed, the ROI motion can be 

estimated. There exist multiple methods to estimate an object’s motion. A commonly used 

method is to solve for the optical flow of the object. Optical flow can be defined as the two-

dimensional displacement or velocity estimation of pixel patches on an image plane. Figure 5 

below shows an example of optical flow between two video frames (t and t + 1) with pixel 

points ( , , ). Computing the optical flow of the two frames of this video sequence results in 

velocity vectors ( , , ) to estimate the apparent motion of these points.  
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Figure 5: Optical Flow of 2 Image Frames with Points (left) and Velocity Estimation (right) 

The common optical flow techniques developed must define some assumptions and 

constraints to estimate the motion of points within an image. One important assumption is that 

the brightness (intensity) of a point remains constant from one frame to the next, even though the 

position of that point changes (Cremers & Wedel, 2011). The brightness constancy constraint is 

also labeled as the optical flow constraint, and is shown in equation 12 below.  

+ + = 0                  (12) 

Where , ,  are the partial derivatives of the image with respect to x, y, and t. While u and v 

are the motion vectors in the x and y direction, respectively, that are to be estimated. Figure 6 

below will show example images of the image partial derivatives in the x and y directions by 

applying an image gradient. Another optical flow assumption is spatial coherence, where 

neighboring points in an image frame typically belong to the same surface and have similar 

motions between image frames. A third optical flow assumption is temporal persistence, where 

the motion of an object, or group of points, within an image changes gradually over time. In the 

case for most optical flow approaches, the apparent motion of the points within an image frame 

is assumed to be small throughout subsequent frames. Regions within the image for optical flow 

movement must also avoid “bad” textures that include homogenous intensity values and areas of 
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linear symmetry. A classic example of the linear symmetry problem is the barber pole illusion 

shown in Figure 7 below. The true movement of the stripes within the image is horizontal, 

however the optical flow and perceived motion is that the stripes are moving up along the z-axis. 

Two additional constraints are typically added to solve this problem. The flow field is assumed 

to be smooth locally, and the optical flow is solved within a specific size window that is swept 

over the image to estimate the true motion. The barber pole illusion can then be solved along the 

outside edge where it is estimated that the information within the image is moving horizontally.  

  

Figure 6: Image Derivatives in the X (left) and Y (right) Directions 

 

Figure 7: Barber Pole Illusion with True Motion (middle) and Incorrect Optical Flow (right) 

There exist many different solutions to the optical flow equation, and a variation of the 

Lucas-Kanade (LK) method will be used to compute the optical flow in this case (Lucas & 

Kanade , 1981). The LK method works by assuming motion within a small window is uniform, 
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typically NxN where N is smaller than 15 pixels. The optical flow constraint is then evaluated at 

all pixels within the defined neighborhood to estimate their respective motion, and this equation 

is shown below in equation 13. Equation 13 is then solved by applying a least squares approach 

to a quadratic equation that is derived below to form equation 14 (Cremers & Wedel, 2011).  

min ,  [ + + ]      (13)  

which gives, 

+ + = 0  + + = 0 

+ = −   + =  −   

=
−
−      (14) 

Where Σ represents the summation of all pixels within a specified neighborhood for each term 

that applies. This partial differential can be solved for all points within the neighborhood, but it is 

important to note where equation 10 produces the best results. The most accurate flow estimates 

occur at regions with have high texture or sharp intensity change that are represented as corners, 

edges, and areas of large gradients. The most inaccurate optical flow measurements occur at 

areas with low gradients that have small or no intensity change (Cremers & Wedel, 2011). The 

optical flow results can also be improved through iterative refinement by using image pyramids. 

The optical flow motion between two points is solved for in low resolution images first, and then 

refined on increasingly higher resolution images. This pyramid refinement step can be seen in 

Figure 8 below. Overall, the LK optical flow approach was developed to estimate the movement 

of rigid structures as the most accurate flow estimations occur at edges or corners. To apply this 

technique to estimate the non-rigid motion of the heart, the optical flow measurements must be 

sampled in small patch areas that are assumed to follow rigid motion. Using the LK method does 

produce accurate results to predict the motion of the heart structure in the first couple of frames. 

However, the location of the targeted vessel edges tends to drift away from their actual location 

that cannot be recovered even after employing a re-alignment step. This result shows that the 

motion estimation is not exact with a neighborhood approach and must be improved.        
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Figure 8: Iterative Refinement of Optical Flow using Image Pyramids  

The Kanade-Lucas-Tomasi (KLT) tracker will be used instead of the LK approach to 

estimate the motion of corner points from frame to frame. The Harris corner features are used in 

this approach, because they are well-defined as an intersection of two edges and are robust to 

large motion or intensity changes from one frame to the next (Shi & Tomasi, 1994). The KLT 

algorithm, developed in 1991, works to improve the optical flow estimation by evaluating 

regions that propose a well-condition system to solve for the motion of an object or region 

(Tomasi & Kanade, 1991). This algorithm was improved to its current implementation in 1994 

and follows the outline shown below (Shi & Tomasi, 1994): 

1. Detect Harris corner features  

2. For each Harris corner compute motion between consecutive frames using either the LK method 

or affine motion estimation 

3. Store motion vector of each corner and update corner position in new frame 

4. (optional) Add more corner points every 10 frames using step 1 

5. Repeat motion estimation steps and constantly update corner position in current frame 

The KLT algorithm does produce improved results for estimating the non-rigid motion of 

the heart structure. The detected corners will be sampled by each patch and moved individually 

to develop an average motion for every patch. Figure 9 below shows an example of finding the 

corners in an image frame and showing their moved location in the next frame. The movement of 

the corners from frame 1 can be seen for this ROI to the right and down into the frame 2 corners. 
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Estimating the motion with this technique cancels the drifting result of the LK motion estimation 

and keeps the ROI prediction consistent at every frame.  

 

Figure 9: Image 1 ROI with Corners from Frame 1 (Dot) and Frame 2 (Plus) 

With the optical flow estimated, the quality of tracking must be checked before the ROI 

is moved to the next frame. The quality of tracking will be checked by determining if the flow 

within a patch is normally distributed, and if the average flow measure between neighboring 

patches is continuous. To begin this process, the optical flow estimation within each patch will 

be checked for a normal distribution by determining the number of outliers outside of the 

Gaussian distribution (±2 ) and a chi-square goodness of fit test. The difference between the 

average motion of two neighbors within a row will be compared along with the difference 

between two neighbors within a column to fit a predefined threshold. This will be done to ensure 

the estimation is accurate and does not break up the continuous motion constraint. If both 

constraints are met, the optical flow estimation will be used to move each patch into its 

respective location in the next image frame. If both constraints are not met, the optical flow 

estimation failed and will be flagged to count the number of failures within a small number of 

frames. The flag count will continue to iterate as long as the next optical flow estimation does 

not meet the same constraints. The piecewise ROI will then need to be reinitialized using the 

SURF/RANSAC technique after a set number of flags is reached. The addition of flagged 



32 
 

estimates will allow the KLT tracker to fix any error in real time before moving on to the 

reinitialization stage.         

3.2.3: Initialization and Reinitialization Techniques  

If the motion estimate was found to not pass the quality criteria as normally distributed 

within a patch and continuous across neighboring patches, the ROI must be reinitialized by 

determining a homography transform. This transform can be estimated by locating the matching 

SURF features within an image and use RANSAC to estimate a homography. To begin 

describing this process, feature matching must be introduced. Feature matching is an important 

image-processing technique to locate corresponding points of a specific object within two image 

frames. The Speeded Up Robust Features (SURF) algorithm can be utilized as a scale and 

rotation-invariant detector and descriptor to approximate matching pixels between two images 

for object tracking. The algorithm, developed by Bay et al., can be summarized into three steps. 

First, specific feature points are located at pixels corresponding to high frequency components, 

typically found in corners, blobs, edges, and T-junctions (Bay et al., 2007). Next, the 

neighborhood of every feature point detected will be represented by a feature vector, called a 

descriptor. The descriptor must be unique and robust to noise, displacement, and photometric 

deformations (Bay et. al, 2007). Lastly, the descriptor vectors of each detected point are then 

matched between the two images. The matching step is done by determining the minimum 

Euclidean distance between two features. Each step in the SURF matching process will be 

described in detail below.  

The first objective in the SURF algorithm is to locate interest points that will be used to 

determine matches between two images. These interest points typically are found in corners, 

edges, blobs, and T-junctions (Bay et. al, 2007). A Hessian matrix approximation is used in this 

algorithm with integral images to reduce computation time and improve efficiency. An integral 

image at a pixel location (x) is represented as the sum of all local pixel intensities within a 

rectangular region. Equation 15 below shows the mathematical calculation of the integral image:  

( ) = ∑ ∑ ( , )      (15) 

Where I is the input image, x is the sum of all the pixel intensity values (Viola & Jones, 2001). A 

graphical representation of an integral image is shown in Figure 10 below. This figure shows the 



33 
 

representation of a rectangular area as three additions to calculate the sum of the intensities. This 

allows for an increase in processing time for convolution of filters, and, in the case of SURF, 

allows for a faster interest point detection step.  

 

Figure 10: Graphical Representation of an Integral Image.  

The SURF feature point detector is based off a Hessian matrix approach to detect blob-

like structures at locations where the determinant is maximum. At a given point within an image 

(x), the Hessian Matrix H(x, ) is defined in equation 16 below:  

( , ) =
( , ) ( , )
( , ) ( , )       (16) 

Where Lxx is the convolution of the Gaussian second order derivative with the image I in the 

point x, similar for Lxy and Lyy (Bay et. al, 2007). Gaussian derivatives are approximated at a 

low computation cost using box filters and integral images to speed up the convolution step and 

reduce computation time. The three 9x9 box filters used on each image in the x, y, and both x 

and y directions are shown in Figure 11 below as Dxx, Dyy, and Dxy respectively (Juan et. al, 

2010).  
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Figure 11: 9x9 Box Filters used in Convolution with Image to Approximate Gaussian 

The approximated determinant of the Hessian matrix, shown in equation 17 below, 

represents the blob response in the image at a specified location x. The results are stored in a 

blob response map over different scales, where the local maxima are detected.  

det = − 0.9      (17) 

For the SURF feature point detection step, points of interest must be found at different 

image scales to locate the best feature points that show up in every down-sampled size of an 

image. The scale-space can be represented as a pyramid, and is analyzed by up-scaling the box 

filter size, instead of iteratively reducing the image size shown in Figure 12 below. The output of 

the 9x9 box filter is set as the initial scale labeled s = 1.2. The following results are calculated by 

filtering the same image with bigger masks with the use of integral images. The box filter, or 

mask, size must be increased by 6 pixels at each iteration to keep the filter size uneven and keep 

the central pixel (Bay et. al, 2007).      
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Figure 12: Increase in Scale of the Filter (right) using Integral Images Reduces Computation 

Time  

With multiple interest points detected across different scales, the next step is to localize 

the points found using a non-maximum suppression in a 3 x 3 x 3 neighborhood. A Fast-Hessian 

detector method, proposed by Brown and Lowe, is used by interpolating the maximum of the 

determinant of the Hessian matrix in the scale and image space. The interest points located can 

be shown in Figure 13 below as an example image from the heart data set with detected interest 

regions.  

 

Figure 13: Fast-Hessian Detection of Feature Points in an Image 

The next component of the SURF algorithm is the development of a descriptor for each 

feature point detected. The first step in the descriptor process is to identify a reproducible 

orientation for each interest point detected. The Haar wavelet responses in the x and y direction 
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are calculated within a circular neighborhood of the interest point detected, shown in Figure 14 

below. The wavelet responses are calculated and weighted with a Gaussian function centered at 

the interest point. Every sample point response within the circular region of the detected point 

can be represented as points in a circular space, also shown in Figure 14 below, with horizontal 

response strength in x and vertical strength in the y. The dominant orientation is estimated by 

calculating the sum of all sample points within a sliding orientation window of size  . This 

results in an orientation vector for each point. For many applications, however, rotation 

invariance is not needed. Upright SURF (U-SURF) can be used instead due to faster computation 

time while maintaining a robustness to rotation of about ±15° (Bay et. al, 2007). 

           

Figure 14: Haar Wavelet x and y (Left) and Orientation Assignment Calculation (Right) 

A descriptor must be extracted for each interest point detected to be used in comparison 

to other points for the matching step. Figure 15 below shows the overall descriptor extraction 

process. Each circular detected point must be represented as a square region centered around the 

interest point. The square is then split up into smaller 4 x 4 sub regions to preserve spatial 

information. The Haar wavelet response is then calculated at each 5x5 spaced sample points. The 

responses in the x-direction (dx) and y-direction (dy) are Gaussian weighted and summed up 

over each sub-region to form the first components of a feature vector for an interest point 

detected. The next two responses will be included in a 4D descriptor vector, which is used to 

describe the intensity structure of the interest point. The descriptor includes the dx and dy 

responses along with absolute value of each. Concatenating these results for all 4x4 sub regions, 

gives a descriptor vector of length 64 for each interest point.  
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Figure 15: Feature Extraction Process to Build Descriptor 

The final step is to match feature points using the extracted descriptor information. The 

sign of the Laplacian is used to distinguish bright intensities on dark backgrounds from dark 

intensities on bright backgrounds. This calculation allows for a comparison of only features with 

similar contrast to allow for faster matching by indexing each descriptor based on contrast. For 

example, in Figure 16 below, the contrast between two star objects are different so these are not 

considered a good match. Only features of similar contrast will be compared to allow for 

increase in accuracy at no computation cost. Figure 17 below will show two images of a set of 

SURF matched features from two separate image frames and one image matched with a rotated 

version of the same image. The image rotation does not need to be estimated for this application 

as all data sets are rotation invariant. These results are shown to demonstrates that the SURF 

features can be matched between two image discontinued image frames, and will be the best to 

use for a homography transform estimation.    

 

Figure 16: Bright-on-dark (left) and Dark-on-bright (right) Stars would not be Matched 
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Figure 17: SURF Matched Features for Two Upright Frames (top) and Rotated Frames (bottom) 

 The next component to the reinitialization step is to utilize the Random Sample 

Consensus (RANSAC) method as an outlier rejection and homography estimation technique. 

RANSAC is an iterative method to estimate parameters of a mathematical model from a set of 

observed data which contains outliers. The mathematical model for estimating a homography 

transform through RANSAC can be summarized in the outline below:  

1. Randomly choose N pairs 

2. Find H (transfer matrix) from N pairs 

a. Where, =  

3. Use estimated , where =  

a. If perfect, then ≈  

b. Else, − =   

4. If number of inliers is too small, initial H estimator is bad 

5. Repeat until a large number of inliers is found. 
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RANSAC will be applied to SURF matched features to estimate the location of the 

beginning and end of the piecewise grid in one image frame to a subsequent or different 

transformed image. RANSAC can take a set of matched SURF points between two images, and 

compute a transfer matrix to relate any point within one image to the next image. The subsequent 

region from image one may be transformed through a homography transformation. A 

homography transform is defined as a non‐singular 3x3 mapping matrix (H), such that for any 

point in an image represented by a point x that h(x)=Hx. This transformation matrix can be used 

to estimate motions in a two-dimensional case that are typically due to affine transforms such as 

translation, rotation, scaling, and others. A two-dimensional Homography matrix is calculated by 

the RANSAC algorithm to relate the image points (x) from frame 1 to frame 2 (x’), and can be 

shown in Figure 18 below. RANSAC initially takes a random set of four matched pairs, in this 

case SURF matches, and computes a transfer matrix between them. The initial [3x3] matrix is 

then applied to all the matched points from image one to compute an estimate of the location of 

the input data in image two. If there is a difference between the estimate and actual matched 

pairs, then the difference is labeled as outliers and must be minimized. RANSAC will continue 

to iterate until the maximum amount of inlier data points is found. A data point will be 

considered an inlier if its geometric distance to the estimate, also known as error, is minimized 

(Choi et. al, 2009). If there are fewer correct SURF matched features, more iterations are 

required to increase the probability that a selected subset will contain only correct matches 

(Hassner et. al, 2013).  It is important to make sure the SURF matches found are correct to 

reduce the number of RANSAC iterations necessary. The RANSAC homography transform 

results can be applied to any set of points within one image frame, and project these points to 

their locations in the next image frame. To reinitialize the tracking algorithm due to a failed 

estimate, the SURF features will be combined with RANSAC to estimate a homography 

transform that will move the beginning and end of the piecewise grid. With a new start and stop 

point, the piecewise grid will be redefined by updating the corners and edges found in each 

patch. The piecewise motion estimation will then return to the KLT tracker to estimate the 

motion in the next image frame.    
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Figure 18: Example Homography Transform Between Two Planes x and x’ 

3.3: Experimental Design  

 The piecewise tracking approach explained above was tested on five heart motion data 

sets following the steps presented in this section. First, both piecewise motion constraints were 

validated over a small portion of data, and this function, labeled as “DeterminePatchNum4.m,” is 

attached in the Appendix. This function looped through different patch numbers and tested 

whether the motion from frames one to two is normally distributed within each patch. In 

addition, this function looped through a set number of image frames to check if the motion 

between patch neighbors is normally distributed, and record the differences in the horizontal and 

vertical directions. After the validation step, thresholds were then calculated using the standard 

deviation values.  

Next, the piecewise tracking algorithm was tested across all image frames of each data 

set, to prove that this approach will track a ROI continuously. With the patch number and motion 

thresholds determined for each data set during initialization, the corners and edges of the ROI 

were grouped into each patch. The KLT tracker was then initialized, and the edge locations were 

moved frame by frame using the estimated motion. The motion of any patch in the U and V 

direction was also flagged as a failed tracking estimate if either constraint was not met. To 

improve the tracking results, any flagged patch, due to the flow difference with its neighbor 

being higher than the set threshold, was set to follow the motion of its neighbor for that frame. 

This step was done to ensure the ROI to be tracked was not lost, and to keep the edges from 

separating completely. If the number of flagged image frames reached three, the reinitialization 

step was completed. To begin, the previous image frame with the most matching SURF features 
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with the current discontinued frame was determined using the “DetermineBestFit2.m” function, 

which can also be found in the Appendix. The two image frames were then used to calculate a 

homography transform through the RANSAC algorithm with SURF matched features between 

them. The homography was then used to move the current start and stop points to realign the 

piecewise grid. The corner features and edges were then resampled into new patch locations, and 

the KLT tracker was restarted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 4: RESULTS 

4.1: Initialization 

The results of the optical flow measurements in the U (x) and V (y) directions within a 

patch was checked by the chi-square goodness of fit test, and these results are shown below in 

Tables 1-5. The tables below show the total number of patches with a motion distribution that 

failed the chi-square test and are not normally distributed. When both the U and V motion was 

found to be normally distributed within every patch, the patch number was set. The table also 

includes the four motion thresholds calculated as the maximum offset allowed for motion among 

neighboring patches in either the U or V directions. These results verify that the first constraint 

for the piecewise tracking is met. It also provides results to support the second constraint that the 

motion between neighbors is continuous if the difference between them is lower than the 

threshold limit.  

For data sets 1, 2, 3, and 5 the patch number was determined to be 36, while patch 4 was 

determined to be 25. 

Table 1: Initialization of the Patch Number and Thresholds for Data Set 1 
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Table 2: Initialization of the Patch Number and Thresholds for Data Set 2 

Table 3: Initialization of the Patch Number and Thresholds for Data Set 3 

 

Table 4: Initialization of the Patch Number and Thresholds for Data Set 4 

 

Table 5: Initialization of the Patch Number and Thresholds for Data Set 5 

 



44 
 

The distributions of all the neighboring differences are shown in Figures 19-38 as 

histograms for each of the five data sets. The distributions shown appear to be close to normal 

distribution, as expected. The two-sigma values were calculated as a motion threshold for the 

horizontal and vertical neighbors in the U and V directions. If any difference between 

neighboring patches were to be greater than its respective threshold, the frame will be flagged as 

a failed motion estimate.   

 

Figure 19: Data Set 1 Histogram of U Patch Neighbors Horizontal Direction 

 

Figure 20: Data Set 1 Histogram of U Patch Neighbors Vertical Direction 
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Figure 21: Data Set 1 Histogram of V Patch Neighbors Horizontal Direction 

 

Figure 22: Data Set 1 Histogram of V Patch Neighbors Vertical Direction 
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Figure 23: Data Set 2 Histogram of U Patch Neighbors Horizontal Direction 

 

Figure 24: Data Set 2 Histogram of U Patch Neighbors Vertical Direction 
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Figure 25: Data Set 2 Histogram of V Patch Neighbors Horizontal Direction 

 

Figure 26: Data Set 2 Histogram of V Patch Neighbors Vertical Direction 
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Figure 27: Data Set 3 Histogram of U Patch Neighbors Horizontal Direction 

 

Figure 28: Data Set 3 Histogram of U Patch Neighbors Vertical Direction 
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Figure 29: Data Set 3 Histogram of V Patch Neighbors Horizontal Direction 

 

Figure 30: Data Set 3 Histogram of V Patch Neighbors Vertical Direction 
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Figure 31: Data Set 4 Histogram of U Patch Neighbors Horizontal Direction 

 

Figure 32: Data Set 4 Histogram of U Patch Neighbors Vertical Direction 
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Figure 33: Data Set 4 Histogram of V Patch Neighbors Horizontal Direction 

 

Figure 34: Data Set 4 Histogram of V Patch Neighbors Vertical Direction 
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Figure 35: Data Set 5 Histogram of U Patch Neighbors Horizontal Direction 

 

Figure 36: Data Set 5 Histogram of U Patch Neighbors Vertical Direction 
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Figure 37: Data Set 5 Histogram of V Patch Neighbors Horizontal Direction 

 

Figure 38: Data Set 5 Histogram of V Patch Neighbors Vertical Direction 
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4.2: Tracking and Reinitialization 

The tracking results of data set 1 can be shown in Figure 39 below, including the initial 

frame (frame 1) that contains the initializing patch grid, with frames 2, 1537-1540. This whole 

set contains 2430 image frames in total, and frames 1537-1540 are chosen to demonstrate the 

tracking results in the middle of the dataset set. Throughout the entire data set, the total number 

of resets was found to be 409 times or 16.8% of the total number of frames. An example of this 

reinitialization is also provided in the figure from frame 1539 to 1540. The average optical flow 

measure for each patch is also shown in Figures 40 and 41 below along with the corrected 

measure of every patch that does not pass the set thresholds. These results show that there exists 

a distinct pattern to the movement of the ROI. The flow movement was found to increase and 

then always returns to its original position with a zero-flow measure at the end of every heart 

cycle. A flagged frame is also highlighted by a black star to show when the optical flow of one or 

more patches is considered an outlier that does not pass either piecewise constraint. It is 

important to note that this is the only data set where a complete occlusion of the ROI occurs 

around frames 1700 and 2000. The tracking algorithm was not able to correct itself with a 

complete blockage of the region. These results are shown in Figure 42 below with the complete 

block pushing the tracking estimate away from the actual location. After the complete blockage 

of the region, the actual image changes as the region cannot be distinguished from the blockage. 

This change in the image causes the reinitialization step to not be able to realign and restart the 

tracking process. With these frames taken out of the data set, the algorithm is able to completely 

track the ROI over all other image frames.  
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Figure 39: Data Set 1 Tracking Results Starting from Frame 1, 2, 1537 (top) to Frame 1538-1540 

(bottom) 
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Figure 40: Measured U Optical Flow vs Corrected Flow by Neighbors  
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Figure 41: Measured V Optical Flow vs Corrected Flow by Neighbors  
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Figure 42: Frame 1768 Occlusion 

 For data set 2, we found that the ROI was tracked continuously in all image frames. 

Figure 43 below shows some results starting with frame 1, 2, and 1607 in the top row followed 

by 1608-1610 in the bottom row. The flagged image frames start at 1608 as the left edge of the 

blood vessel separates from its actual boundary location, and is then realigned due to the 

reinitialization step. This shows that the motion thresholds calculated are accurate to pick up any 

small change between two patch neighbors that would break the piecewise motion estimate. In 

this data set, the total number of resets was found to be 540 times or 22.2% of the total number 

of frames. The average optical flow measure for each patch is also shown in Figures 44 and 45 

below along with the corrected measure of every patch by their respective neighboring flow. A 

flagged frame is also highlighted by a black star to show when the optical flow one or more 

patches is considered an outlier that does not pass either piecewise constraint.  
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Figure 43: Data Set 2 Tracking Results Starting from Frame 1, 2, 1607 (top) to Frame 1608-1610 

(bottom) 
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Figure 44: Measured U Optical Flow vs Corrected Flow by Neighbors  
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Figure 45: Measured V Optical Flow vs Corrected Flow by Neighbors  

 The ROI was also continuously tracked for data set 3 over a set number of 2430 frames. 

Figure 46 below shows the tracking and reinitialization from frames 1, 2, and 191-194. These 

results show that the rightmost edges of the vessel break off from their actual location and then 

are reset by the last frame. In this data set, the total number of resets was found to be 419 times 

or 17.2% of the total number of frames. The average optical flow measure for each patch is also 

shown in Figures 47 and 48 below along with the corrected measure of every patch by their 
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respective neighboring flow. A flagged frame is also highlighted by a black star to show when 

the optical flow one or more patches is considered an outlier that does not pass either piecewise 

constraint. These results also show that there exists a distinct pattern to the movement of the ROI 

as the flow movement increases and then always returns to its original position with a zero flow 

at the end of every heart cycle.  

    

   

Figure 46: Data Set 3 Tracking Results Starting from Frame 1, 2, 191 (top) to Frame 192-194 

(bottom) 
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Figure 47: Measured U Optical Flow vs Corrected Flow by Neighbors  
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Figure 48: Measured V Optical Flow vs Corrected Flow by Neighbors  

 Data set 4 provides a different result as the number of patches changes to 25, but the 

algorithm was still able to continuously track the ROI continuously over 2400 frames. Figure 49 

below shows the tracking and reinitialization from frames 1, 2, and 2354-2357. It can be shown 

in frames 2354-2357 the bottom left edges of the blood vessel fall off track and are eventually 

moved back to their correct position. This shows that the algorithm can recover from more than 

one offset between neighboring patches and restart the tracking process. Overall, the total 
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number of resets was found to be 739 times or 30.8% of the total number of frames. The average 

optical flow measure for each patch is also shown in Figures 50 and 51 below along with the 

corrected measure of every patch that does not pass the set thresholds. These results show that 

there exists a distinct pattern to the movement of the ROI as the flow movement increases and 

then always returns to its original position with a zero flow at the end of every heart cycle. A 

flagged frame is also highlighted by a black star to show when the optical flow one or more 

patches is considered an outlier that does not pass either piecewise constraint.           

    

   

Figure 49: Data Set 4 Tracking Results Starting from Frame 1, 2, 2354 (top) to Frame 2355-2357 

(bottom) 
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Figure 50: Measured U Optical Flow vs Corrected Flow by Neighbors  
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Figure 51: Measured V Optical Flow vs Corrected Flow by Neighbors  

 The last set of was successfully tracked over 2430 frames. Figure 52 below demonstrates 

tracking and reinitialization from frames 1, 2, and 2321-2324. These results show the middle and 

top left edges of the ROI fall off track and then realign by the last image frame. The total number 

of resets was found to be 286 times or 11.7% of the total number of frames. The average optical 

flow measure for each patch is also shown in Figures 53 and 54 below along with the corrected 

flow for each patch that does not pass the difference thresholds set. These results show that there 
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exists a distinct pattern to the movement of the ROI as the blood vessel always returns to its 

original position at the end of every heart cycle. A flagged frame is also highlighted by a black 

star to show when the optical flow one or more patches is considered an outlier that does not pass 

a piecewise constraint.         

    

   

Figure 52: Data Set 5 Tracking Results Starting from Frame 1, 2, 2321 (top) to Frame 2322-2324 

(bottom) 
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Figure 53: Measured U Optical Flow vs Corrected Flow by Neighbors  
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Figure 54: Measured V Optical Flow vs Corrected Flow by Neighbors 

 One last set of results to present includes the motion for each data set in the first few 

heart cycles. Figures 55, 56, 57, 58, and 59 demonstrate the optical flow measured with the KLT 

tracker in the U and V directions over five heart cycles. The results verify that a distinct pattern 

can be observed in each data set. In the corrected U and V flow measurements, we noticed that 

all the patches tend to follow similar patterns in general. However, their motion can differ by 

several pixels across the ROI. It is due to the non-rigid nature of the problem. A machine 
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learning approach could be added to generate a learned model that could make tracking 

predictions on future data based on a pattern over the first few heart cycles.  

 

Figure 55: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 1 
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Figure 56: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 2 
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Figure 57: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 3 
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Figure 58: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 4 



75 
 

 

Figure 59: Measured and Corrected U and V Flow Over Five Heart Cycles – Data Set 5



 
 

 
 
 

CHAPTER 5: DISCUSSION 

 The results show that the piecewise tracking algorithm was able to break up a selected 

ROI into smaller patches that could be estimated as small pseudo-rigid segments. The algorithm 

automatically calculated the number of patches and motion thresholds needed to meet the 

piecewise geometrical constraints during the initialization step.  

5.1: Initialization of Parameters 

For each data set, the algorithm was initialized with a set of parameters, which are similar 

across data sets. The configuration of these parameters can contribute to the overall performance 

of tracking, which can be evaluated, for example, by the likelihood of reinitializations or resets 

needed. It was confirmed through visual inspection that 93% of the total resets in all five data 

sets are due to a loss of tracking, and only 7% of them were considered false alarms.  It is 

reasonable to assess the tracking performance by monitoring the resets. Each reinitialization step 

that is counted as a false alarm occurs when the motion estimated does not pass the set 

thresholds, but does follow the actual motion of the ROI. Therefore, with these parameters, the 

incorrect motion estimates are mostly due to a loss of tracking as the estimated motion does not 

meet the set thresholds and does not follow the actual movement of the ROI. The two parameters 

that are found to be the most influential to the overall performance are the number of corners 

detected in the initial frame and number of patches used in tracking. Although both parameters 

are iteratively optimized in the automatic approach, it is of interest to consider their impact on 

tracking.  

The number of corner features used to track each patch could have changed by varying 

the initial Harris corner detection threshold. 12,626 corners were detected by using an initial 

threshold of 0.005 in the current software implementation, which was the same value used across 

all data sets in this analysis. The number of patches was then determined by grouping some of 

these corner features into small patches, and testing different patch sizes to follow a normal 

distribution to meet the first constraint that every patch can be assumed to follow a pseudo-rigid 

motion. To test if the current performance of the tracking algorithm is the most efficient, the 

number of resets for one data set can be compared by varying these two parameters. Also since 
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the motion of every data set is non-rigid and of a biological heart, the same results shown 

are to be expected with the other four data sets.

The first parameter to be tested is the number of corners detected in the first frame, while 

keeping the patch number constant. For data set two, the number of corners was increased to 

15,305, which corresponds to a Harris corner detection threshold of 0.001, and the number of 

resets was found to increase to 592 or 24% of the total image frames. The number of corners was 

also increased to the maximum 16,529 corners, which corresponds to a threshold of 0.0001, and 

the number of resets increased again to 648 or 26%. This test shows that if the number of corners 

initially detected is too large, it is more likely that the features detected are “bad” features that do 

not represent the location of a true corner. The increase in the number of “bad” features will lead 

to an incorrect motion estimation and cause the number of flagged frames and resets to increase. 

The number of corners was also lowered to test the algorithm performance. The corner detection 

threshold was first set to 0.008 to lower the number of corners detected to 10,331, and the 

number of resets was found to increase to 595 (24%). The number of corners was then set to a 

minimum of 9,007 corners, which corresponds to a threshold of 0.01, and the reset number was 

found to also increase to 566 (23%) times. This test shows that even though it is less likely to 

have a “bad” feature by lowering the number of corners detected, the number of corners per 

patch will decrease. The decrease in the number of corners per patch will lead to a higher chance 

of an outlier corner motion to cause an incorrect patch estimate and a flagged frame or reset. 

Overall, the number of corners initially detected at 12,626, with a threshold of 0.005, results in 

the lowest reset number at 540 resets or 22% to provide an optimal performance of the 

algorithm. It is also expected that either increasing or decreasing the number of corners used for 

every data set will lead to the same conclusion. These results show that the number of corners 

detected and overall tracking performance is not very sensitive to the actual threshold used, as 

the increase in the number of resets does not change by a significant amount. However, a step 

can be added to the initialization phase to determine an optimal threshold for the initial corner 

detection by testing for any outlier motion when this threshold is varied.  

 Next, the impact of the number of patches is investigated. The number of patches was 

increased to 49 and then increased again to 64 patches while keeping the corner detection 

threshold constant, to test if lowering the patch sizes and adding more patches will improve the 
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pseudo-rigid estimation of the ROI. Increasing the patch number to 49 does not change the 

number of resets significantly at 549 times (22.5%), but the number of corners per patch changes 

to 12. Changing the patch number to 64, however, does increase the number of resets to 664 

times (27%) and the number of corners decreases per patch to 9. This increase in patch number 

decreases the patch size to lower the number of corners used in estimating the motion of each 

patch. The decrease in the number of corners per patch will lead to an inaccurate motion estimate 

that could be dominated by an outlier corner motion that will increase the number of flagged 

frames and resets. Also, if the number of patches were to decrease to allow for a larger patch 

size, each patch will still follow a non-rigid motion that could not be accurately estimated as an 

approximately rigid segment with optical flow. This test shows that the automatic initialization 

of a patch number to 36 patches, that all follow a pseudo-rigid motion within each patch, results 

in the optimal performance of the tracking algorithm. The same results are also expected for the 

other four data sets.  

 In addition to both parameters, the frame selected to start the initialization could 

influence the tracking performance of the algorithm. In the results shown in the previous section, 

the initial frame for every data set started during the relaxation or diastole phase of the heart 

cycle. This allowed the algorithm to start at the beginning of a heart cycle to improve the 

initialization of the piecewise grid and optical flow tracking. The initial frame was changed to 

show that starting the tracking process during the relaxation phase of the heart cycle provides a 

more accurate initialization and improves performance. To demonstrate the effect of the starting 

frame, the algorithm was changed for data set two to first start at frame 32, which corresponds to 

the middle of the heart cycle. The patch number selected by the algorithm was 36 and the 

algorithm was able to track the ROI throughout the entire data set, but the number of resets 

increased to 555 (23%). This test shows that the tracking algorithm can begin at the middle of the 

heart cycle, but to improve performance, it is better to begin tracking during the relaxation phase. 

The starting frame was then set to frame 55, which corresponds to the contraction phase of the 

heart cycle. The large motion change during this part of the heart cycle leads to a decrease in the 

patch number to 16, and the algorithm was unable to track the ROI throughout the entire data set. 

With a large patch size, the motion estimated for each patch was inaccurate as the patches still 

follow a non-rigid motion. Estimating the non-rigid motion with a rigid optical flow measure 

will lead to a loss or disconnect of edges in the ROI. By moving the starting frame away from the 
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relaxation phase of the heart cycle, the initialization and tracking results change to lower the 

performance of the algorithm developed. These results support keeping the initial frame constant 

during this phase for future heart motion tests.     

5.2: Recovery from Loss of Track and Reinitialization 

The algorithm was able to continuously track the ROI and recover from tracking failures 

for every image frame in all data sets, except for data set one. In this data set, the algorithm was 

unable to reinitialize due to a complete occlusion. Even though the algorithm is robust against 

temporary loss of data or occlusions, the complete occlusion changed the image data, and did not 

allow the ROI to be distinguished from the blockage. To properly handle this issue, the 

reinitialization step must be improved to allow for a temporary stop in the tracking process until 

the ROI is back in view. In a real-time implementation, this can be done with a user-controlled 

pause of the tracking process. However, this step could be automated by allowing the algorithm 

to detect when all patches were to not follow the piecewise constraints and stop tracking for the 

next few frames.  

 To summarize, the overall tracking performance of the algorithm presented was 

determined to be efficient. Changing the two most influential parameters, the number of corners 

detected and patch number/size, does affect this performance as the number of resets increased.  

However, selection of the initial frame appears to have a greater impact. The initial frame set at 

the relaxation phase of the heart cycle provides the best tracking performance, which requires an 

estimate of the heart cycle. The heart cycle can be measured with additional sensory, or directly 

observed in the imagery data. The motion estimated in each patch was also found to follow a 

pattern for the movement of the ROI in each heart cycle. In further studies, a machine learning 

approach could be added to generate a learned model that could make tracking predictions on 

future data specifically based on their individual pattern over the first few heart cycles. The 

learned model could also be used to provide a smart selection of the initial frame to begin 

initialization and tracking at the beginning of the heart cycle. The reinitialization step could also 

be improved from this model by determining where the discontinued frame is located in the 

current heart cycle, and find the image frame from the same location in the previous heart cycle. 

This step would improve the computation speed and realignment accuracy to reset the piecewise 

grid and restart the tracking process.   



 
 

 
 
 

CHAPTER 6: CONCLUSION 

To successfully track a non-rigid system, such as the biological heart, a piecewise 

tracking approach was developed to break up a selected ROI into small segments (patches) that 

are assumed to be approximately rigid. The number of pseudo-rigid segments was determined by 

following two constraints. Both constraints were defined based on smoothness of the physical 

model, and enforced on tracking residuals. Image tracking that does not conform to either 

constraint could be flagged as a failure and trigger a reinitialization step. The reinitialization step 

was able to realign the piecewise grid and reset the features within each patch to be tracked.  

The results show that the proposed piecewise approach was indeed able to track a 

biological heart. Overall, it was able to meet all objectives outlined in the introduction as 1) it 

does not require an underlying motion model to be known, 2) it quantifies the current tracking 

estimate, and 3) it can recover from a tracking failure.  

 The tracking algorithm could be improved in future studies. The results showed that the 

algorithm is robust against temporary blockage or loss of images. However, with severe 

occlusion, for example, blockage over the entire ROI over a period of time, it may not be able to 

recover as successfully. The reinitialization step may be improved to allow for the tracking 

algorithm to stop running when a complete occlusion occurs, and restart when the ROI is back in 

view. In a real-time implementation, this can be done with a user-controlled pause of the tracking 

process. However, this step could be automated by allowing the algorithm to detect when all 

patches were to not follow the piecewise constraints and stop tracking for the next couple of 

frames.  

The motion estimated in each patch was also found to follow a pattern for the movement 

of the ROI in each heart cycle. In further studies, a machine learning approach could be added to 

generate a learned model that could make tracking predictions on future data, allow for a smart 

selection of the initial frame, and improve reinitialization by matching any discontinued frame to 

its previous frame from the last heart cycle. This model will be specifically based on the 

individual pattern of a ROI over the first few heart cycles. This would still allow the tracking 

algorithm to run with a piecewise approach and not require an underlying motion model to be 

known before tracking process begins
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 Furthermore, the proposed approach could also be feasible for tracking other biological 

structures that exhibit a non-rigid motion model. Additional testing with images of a variety of 

biological systems will provide more insight on the non-parametric piecewise tracking process.  

Finally, the approach was designed and developed using computationally efficient image 

processing methods. It would be feasible to implement and optimize the approach for a real-time 

imaging system.
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APPENDIX: MATLAB ALGORITHM 

 The tracking algorithm developed in MATLAB will be attached in this section. The main 

function is to be attached first and is labeled as “NewRegionBreakdownTrackin5.m.” This 

approach requires the use of many other functions, where most are included in the MATLAB 

package. Functions that are not part of that package, but used in this algorithm are also included 

to follow. These include “DeterminePatchNum4.m” and “DetermineBestFit2.m.” The SURF and 

RANSAC functions are found in MATLAB but the functions used in this approach can be found 

in the following downloadable links as part of the MathWorks and GitHub community webpage.  

SURF: https://www.mathworks.com/matlabcentral/fileexchange/28300-opensurf--including-

image-warp- 

RANSAC: https://github.com/RANSAC/RANSAC-Toolbox     

Main Algorithm:  

%BT Thesis - Piecewise tracking algorithm loop for data set 
close all; clc; 
clear all; 
%FLOW ON EDGES MOVE USING CORNERS AND KLT TRACKING FUNCTION  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Overall 
%inputs:data set 800x800xN image,patch grid starting pts 
% 
%outputs:highlight edges in next image frame from opt flow result + prev.  
%edge index pts and loop for all frames, write new images to file 
% 
%summary:the purpose of this program is to loop through an entire data set 
%to track the boundary edges of a selected segment, fix failed estimate, 
%and quantify current track estimate 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Part1: Input data set and determine correct patch size and number for 
%piecewise tracking and determine corners  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%data set 1 
% load('ImgNIR_20160725T124609.mat');%breaks down 220-221  
% ImgNIR=ImgNIR_20160725T124609; 
% %frame num = 31 and only all pass at 15 
% for q=1:25 
%     I=histeq(ImgNIR(:,:,q)); 
%     ImgCycle(:,:,q)=I; 
% end 
%data set 2 
% load('20160725T124323.mat'); 
% ImgNIR=IDS.ImgNIR; 
% %frame num = 31



 
 

85 
 

 
% for q=1:25 
%     I=histeq(ImgNIR(:,:,q)); 
%     ImgCycle(:,:,q)=I; 
% end 
% data set 3 
% load('20160725T124909.mat');%breaks:1210-1213 
% ImgNIR=IDS.ImgNIR; 
% %frame num = 25 
% for q=1:25 
%     I=histeq(ImgNIR(:,:,q)); 
%     ImgCycle(:,:,q)=I; 
% end 
% data set 4 
% load('20160725T132840.mat');%holds w/ high motion like 1941-1942 
% ImgNIR=IDS.ImgNIR;  
% %frame num = 31 
% for q=1:25 
%     I=histeq(ImgNIR(:,:,q)); 
%     ImgCycle(:,:,q)=I; 
% end 
% data set 5 
load('20160725T133113.mat');%breaks: 
ImgNIR=IDS.ImgNIR; 
%frame num = 26 
for q=1:25 
    I=histeq(ImgNIR(:,:,q)); 
    ImgCycle(:,:,q)=I; 
end 
  
%num frames 
numframes=size(ImgNIR,3); 
  
%create directory to save output images 
mkdir('C:\ECU\Thesis\DataResultsSet5\TimedTest1'); 
  
%run Equalize function to apply histeq to img frame 1 and 2 
img1=histeq(ImgNIR(:,:,1)); 
img2=histeq(ImgNIR(:,:,2)); 
count=1; 
MinPatchCorners=0; 
  
%detect corners across image  
corners=detectMinEigenFeatures(img1,'MinQuality',0.005); 
  
%have user select start and end point within region of interest 
figure,imshow(img1), hold on; 
title('Region of Interest Input'); 
%press return(enter) to stop selection 
% [x,y]=ginput(2); 
  
%1  
% x=[227;475]; 
% y=[344;482]; 
% 2 
% x=[231;480]; 
% y=[333;478]; 
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%3 
% x=[180;434]; 
% y=[327;460]; 
%4 
% x=[221;465]; 
% y=[353;484]; 
%5 
x=[169;415]; 
y=[337;481]; 
  
pt1=[x(1,1);y(1,1)]; 
pt2=[x(2,1);y(1,1)]; 
pt3=[x(1,1);y(2,1)]; 
pt4=[x(2,1);y(2,1)]; 
plot(pt1(1,1),pt1(2,1),'*','MarkerSize',8); 
plot(pt2(1,1),pt2(2,1),'*','MarkerSize',8); 
plot(pt3(1,1),pt3(2,1),'*','MarkerSize',8); 
plot(pt4(1,1),pt4(2,1),'*','MarkerSize',8); 
StartPt=pt1; 
EndPt=pt4; 
  
%minimize amount of corners to within area near selected region 
ind=0; 
for w = 1:length(corners.Location(:,1)); 
    if round(corners.Location(w,2)) >= (StartPt(2,1)-20) && 
round(corners.Location(w,2)) <= (EndPt(2,1)+20) ... 
            && round(corners.Location(w,1)) >= (StartPt(1,1)-20) && 
round(corners.Location(w,1)) <= (EndPt(1,1)+20) 
        ind=ind+1; 
        ReducedCorners(ind,:)=[corners.Location(w,1) corners.Location(w,2) 
w]; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Part 2: Run function to automatically determine patch number between 
%frames 1-2 that pass motion criteria of normally dist within patch and 
%continuous across neighbors. Then store edges+corners within each Patch of 
%img1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%function to determine correct patch number 
% patchnum=DeterminePatchNum(img1,img2,StartPt,EndPt,ReducedCorners,corners);  
% [FinalPatchNum,UThresh,VThresh] = 
DeterminePatchNum2(img1,ImgCycle,StartPt,EndPt,ReducedCorners,corners); 
[FinalPatchNum,MaxUHorizThresh,MaxVHorizThresh,MaxUVertThresh,MaxVVertThresh,
NumCorners] = 
DeterminePatchNum4(img1,ImgCycle,StartPt,EndPt,ReducedCorners,corners,MinPatc
hCorners); 
%create cell array with N rows for each patch and 3 columns for left corner 
%pt,corner index,edges index within each patch that is updated every 
iteration  
PatchInfo={}; 
patchnum=FinalPatchNum; 
rowcount=sqrt(patchnum);%initial row count 
diffY=abs(EndPt(2,1)-StartPt(2,1)); 
diffX=abs(EndPt(1,1)-StartPt(1,1)); 
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sizeY=round(diffY/rowcount); 
sizeX=round(diffX/rowcount); 
if(mod(sizeX,2)>0) 
    sizeX=sizeX+1; 
end 
if(mod(sizeY,2)>0) 
    sizeY=sizeY+1; 
end 
  
% patchID=zeros(patchnum,1); 
numedges=zeros(patchnum,1); 
  
%apply blur + edge detection on region 
I1Blur1=imgaussfilt(img1,0.5); 
I1Blur1Edges=edge(I1Blur1,'canny',[0.035 0.0675]); 
  
patchcount=0; 
for Ycount = 0:(rowcount-1) 
    StartY=round(StartPt(2,1)+(sizeY*Ycount)); 
    for Xcount = 0:(rowcount-1) 
        patchcount=patchcount+1; 
        index2=0; 
        StartX=round(StartPt(1,1)+(sizeX*Xcount));   
        StartCornerPt=[StartY,StartX]; 
        PatchInfo(patchcount,1)={StartCornerPt};       
        
patchCorners=SaveCornerIndex(ReducedCorners,StartX,StartY,sizeX,sizeY); 
        PatchInfo(patchcount,2)={patchCorners};           
        patchOutline=I1Blur1Edges(StartY:((StartY+sizeY)-
1),StartX:((StartX+sizeX)-1)); 
        patchEdges=SaveEdgeIndex(patchOutline,StartX,StartY); 
        EdgeNum(patchcount,1)=length(patchEdges(:,1)); 
        PatchInfo(patchcount,3)={patchEdges}; 
    end 
end 
  
    figure,imshow(img1),hold on; 
    %make patch grid 
    for k = StartPt(2,1):sizeY:(EndPt(2,1)+2) 
        xgrid = [StartPt(1,1) (EndPt(1,1)+2)]; 
        ygrid = [k k]; 
        plot(xgrid,ygrid,'Color','g','LineStyle','-'); 
        plot(xgrid,ygrid,'Color','r','LineStyle',':'); 
    end 
  
    for k = StartPt(1,1):sizeX:(EndPt(1,1)+2) 
        xgrid = [k k]; 
        ygrid = [StartPt(2,1) (EndPt(2,1)+2)]; 
        plot(xgrid,ygrid,'Color','g','LineStyle','-'); 
        plot(xgrid,ygrid,'Color','r','LineStyle',':'); 
    end 
     
    for mm=1:patchnum 
        Corners=cell2mat(PatchInfo(mm,2)); 
        for m = 1:length(Corners(:,1)) 
            PlotCorners=round(Corners(m,:)); 
            plot(PlotCorners(:,1),PlotCorners(:,2),'.m'); 
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        end 
    end 
    title('Initial Frame Grid with Corners'); 
  
%initialize tracker 
tracker=vision.PointTracker('MaxBidirectionalError',1); 
initialize(tracker,corners.Location,img1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Part3: Main Loop  
%inputs:opt flow object and current 2 frames, init edge pts from frame 1 
%outputs:next image frame with highlighted edges and resampled corners 
%after grid start,stop is moved by AVG Flow in X and Y 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%init flags 
Flag=0; 
numflags=0; 
numresets=0; 
FlowAvg=struct; 
FlowAvgCorrected=struct; 
FlagIndex=zeros(numframes,1); 
tic; 
BeginTime=datestr(now) 
while count < numframes 
    UpdateTime=datestr(now); 
    %increment current frame count,get prev(I1) and curr(I2) images 
    count = count + 1; 
    FlowStatus=1; 
    I1=histeq(ImgNIR(:,:,count-1)); 
    I2=histeq(ImgNIR(:,:,count)); 
     
    %move corners using KLT tracker 
    [Corners2Loc,validity,scores]=step(tracker,I2); 
  
    %calc U and V flow with Average 
    %save flow in each patch + calculate average flow in X and Y 
    VFlowAVG = zeros(patchnum,1); 
    UFlowAVG = zeros(patchnum,1); 
    CornerFlow=zeros(patchnum,1); 
    PatchCornerFlowU=struct; 
    PatchCornerFlowV=struct; 
    NoCorners=zeros(patchnum,1); 
    ind7=0; 
    for k = 1:patchnum 
        CurrCorners=cell2mat(PatchInfo(k,2)); 
        Test=CurrCorners(1,3); 
        if Test == 0%if no corners, do not track patch 
            ind7=ind7+1; 
            NoCorners(ind7,1)=k; 
            PatchCornerFlowU(k).U=0; 
            PatchCornerFlowV(k).V=0; 
            UFlowAVG(k,1)=0; 
            VFlowAVG(k,1)=0; 
        else 
            numcorners=length(CurrCorners(:,1)); 
            PatchU=zeros(numcorners,1); 
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            PatchV=zeros(numcorners,1); 
            for kk=1:numcorners 
                MovedIndex=CurrCorners(kk,3); 
                PatchU(kk)=Corners2Loc(MovedIndex,1)-CurrCorners(kk,1); 
                PatchV(kk)=Corners2Loc(MovedIndex,2)-CurrCorners(kk,2); 
            end 
            UFlowAVG(k,1)=mean(PatchU); 
            VFlowAVG(k,1)=mean(PatchV); 
            PatchCornerFlowU(k).U=PatchU; 
            PatchCornerFlowV(k).V=PatchV; 
        end 
    end 
    %save positive or negative flow values and save neighbor flow if flow 
    %in X or Y is = 0 
    for k=1:patchnum 
        U=PatchCornerFlowU(k).U; 
        V=PatchCornerFlowV(k).V; 
            for kk = 1:length(U) 
                if U(kk)==0 
                    ind1=kk; 
                    if ind1 > 1 
                        ind1=ind1-1; 
                    else if ind1 == 1 
                        for w=2:length(U) 
                            if U(w) ~= 0 
                                ind1=w; 
                            end 
                        end 
                    else  
                        ind1=length(U); 
                        end 
                    end 
                    U(kk)=U(ind1); 
                end 
            end 
            for kk = 1:length(V) 
                if V(kk)==0 
                    ind2=kk; 
                    if ind2 > 1 
                        ind2=ind2-1; 
                    else if ind2 == 1 
                        for w=2:length(V) 
                            if V(w) ~= 0 
                                ind2=w; 
                            end 
                        end 
                    else  
                        ind2=length(V); 
                        end 
                    end 
                    V(kk)=V(ind2); 
                end 
            end 
            PatchCornerFlowU(k).U=U; 
            PatchCornerFlowV(k).V=V; 
            %calculate new avg flow in x and y 
            UFlowAVG(k,:)=mean(PatchCornerFlowU(k).U); 
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            VFlowAVG(k,:)=mean(PatchCornerFlowV(k).V); 
    end     
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Part 4: Check for Normal distribution within each patch by counting 
    %outliers and Chi-square GOF test 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %run chi goodness of fit test to check if each flow is normal dist. 
    UFlowChiTest=zeros(patchnum,1); 
    VFlowChiTest=zeros(patchnum,1); 
    UDistOutliers=0; 
    VDistOutliers=0; 
    for aa=1:patchnum 
        if UFlowAVG(aa,1) ~= 0 
            U=PatchCornerFlowU(aa).U; 
            UFlowChiTest(aa,1)=chi2gof(U); 
            if UFlowChiTest(aa,1)==1 
                UDistOutliers=UDistOutliers+1; 
            end 
        end 
        if VFlowAVG(aa,1) ~= 0 
            V=PatchCornerFlowV(aa).V; 
            VFlowChiTest(aa,1)=chi2gof(V); 
            if VFlowChiTest(aa,1)==1 
                VDistOutliers=VDistOutliers+1; 
            end 
        end 
    end 
     
    if UDistOutliers > 1 || VDistOutliers > 1 
        Flag = 1; 
    end 
     
    %also count outliers outside of distribution and if #outliers > 5% 
distribution is not normal and replace with average   
    %for within patch, develop standard deviation and check for outliers 
    %outside 2 sigma in both directions 
    %develop standard deviation 
    UFlowDEV=zeros(patchnum,1); 
    VFlowDEV=zeros(patchnum,1); 
    Udiffsum=0; 
    Vdiffsum=0; 
    for m = 1:patchnum 
        CurrU=PatchCornerFlowU(m).U; 
        CurrV=PatchCornerFlowV(m).V; 
        for n=1:length(CurrU); 
            Udiff=(CurrU(n,1)-UFlowAVG(m,1))^2; 
            Vdiff=(CurrV(n,1)-VFlowAVG(m,1))^2; 
            Udiffsum=Udiffsum+Udiff; 
            Vdiffsum=Vdiffsum+Vdiff; 
        end 
        CurrUDev=sqrt(Udiffsum/length(CurrU)); 
        CurrVDev=sqrt(Vdiffsum/length(CurrV)); 
        UFlowDEV(m,1)=CurrUDev; 
        VFlowDEV(m,1)=CurrVDev; 
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        Udiffsum=0; 
        Vdiffsum=0; 
    end 
    %check for outliers outside this deviation in X and Y (U/V) 
    PatchVariability=struct; 
    OutliersU=zeros(patchnum,1); 
    OutliersV=zeros(patchnum,1); 
    RatioU=zeros(patchnum,1); 
    RatioV=zeros(patchnum,1); 
    for p=1:patchnum 
        numoutliersU=0; 
        numoutliersV=0; 
        CurrU=PatchCornerFlowU(p).U; 
        CurrV=PatchCornerFlowV(p).V; 
        UIndex=ones(length(CurrU),1); 
        VIndex=ones(length(CurrV),1); 
        UAbove=UFlowAVG(p,1)+(2*UFlowDEV(p,1)); 
        UBelow=UFlowAVG(p,1)-(2*UFlowDEV(p,1)); 
        VAbove=VFlowAVG(p,1)+(2*VFlowDEV(p,1)); 
        VBelow=VFlowAVG(p,1)-(2*VFlowDEV(p,1)); 
        for q=1:length(CurrU) 
            if CurrU(q) < UBelow 
               %label as outlier 
               numoutliersU=numoutliersU+1; 
               UIndex(q)=0; 
            end 
            if CurrV(q) < VBelow 
               %label as outlier 
               numoutliersV=numoutliersV+1; 
               VIndex(q)=0; 
            end 
            if CurrU(q) > UAbove 
               %label as outlier 
               numoutliersU=numoutliersU+1; 
               UIndex(q)=0; 
            end 
            if CurrV(q) > VAbove 
               %label as outlier 
               numoutliersV=numoutliersV+1; 
               VIndex(q)=0;  
            end 
        end 
        %setup test 1=inside distribution,0=fail outside mean +/- 2 sigma 
        PatchVariability(p).U=UIndex; 
        PatchVariability(p).V=VIndex; 
        OutliersU(p,1)=numoutliersU; 
        OutliersV(p,1)=numoutliersV; 
    end 
         
    %set to not move points that are outliers or move by average flow in X/Y 
    for p = 1:patchnum 
        UIndex=PatchVariability(p).U; 
        VIndex=PatchVariability(p).V; 
%         if RatioU(p,1) > 5 && OutliersU(p,1) > 1 
%     %         Flag=1; 
%         else 
            CurrU=PatchCornerFlowU(p).U; 



 
 

92 
 

            for q = 1:length(UIndex) 
                if UIndex(q) == 0 
                    CurrU(q)=UFlowAVG(p,1); 
                end 
            end 
%         end 
%         if RatioV(p,1) > 5 && OutliersV(p,1) > 1 
%     %         Flag=1; 
%         else 
            CurrV=PatchCornerFlowV(p).V; 
            for q = 1:length(VIndex) 
                if VIndex(q) == 0 
                    CurrV(q)=VFlowAVG(p,1); 
                end 
            end 
%         end 
        PatchCornerFlowU(p).U=CurrU; 
        PatchCornerFlowV(p).V=CurrV; 
        UFlowAVG(p,1)=mean(CurrU); 
        VFlowAVG(p,1)=mean(CurrV); 
    end 
     
    %loop to track patches that do not move by neighbors flow 
    for k=2:(patchnum-1) 
        if UFlowAVG(k,1) == 0  
            CurrCorners=cell2mat(PatchInfo(k,2)); 
            if length(CurrCorners(:,1)) >= 1 
                if UFlowAVG(k-1) ~= 0 
                    UFlowAVG(k,1)=UFlowAVG(k-1,1); 
                else if UFlowAVG(k+1) ~= 0 
                        UFlowAVG(k,1)=UFlowAVG(k+1,1); 
                    end 
                end             
            end 
        end 
         if VFlowAVG(k,1) == 0  
            CurrCorners=cell2mat(PatchInfo(k,2)); 
            if length(CurrCorners(:,1)) >= 1 
                if VFlowAVG(k-1) ~= 0 
                    VFlowAVG(k,1)=VFlowAVG(k-1,1); 
                else if VFlowAVG(k+1) ~= 0 
                        VFlowAVG(k,1)=VFlowAVG(k+1,1); 
                    end 
                end             
            end 
        end 
    end 
     
    %loop to not track patches with low edge count  
    for k=1:patchnum 
        if EdgeNum(k,1) < 10 
            UFlowAVG(k,1)=0; 
            VFlowAVG(k,1)=0; 
        end 
    end 
  
    %store flow values 
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    FlowAvg(count,1).U=UFlowAVG; 
    FlowAvg(count,1).V=VFlowAVG; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Part 5: Check for continuous flow between neighbors in Horizontal and 
    %vertical direction using thresholds from patchnum function 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %now check variability across patches(compare averages) 
    %compare both U and V directions, thresh chosen in init function TTEST to 
    %have 0 or patches have same distribution 
    UPatchOutliersH=0; 
    UIndex2=ones(patchnum,1); 
    for k=1:rowcount 
        if k == 1 
            CurrRow=1; 
        else 
            CurrRow=(k*rowcount)-(rowcount-1); 
        end 
        for kk=CurrRow:(CurrRow+(rowcount-2)) 
           if UFlowAVG(kk,1)==0 || UFlowAVG(kk+1,1)==0 
               UIndex2(kk)=1; 
           else 
               if abs(UFlowAVG(kk,1)-UFlowAVG(kk+1,1)) >= MaxUHorizThresh; 
                    UPatchOutliersH=UPatchOutliersH+1; 
                    UIndex2(kk)=0; 
                    Flag=1; 
                    fprintf('Flag between %d and %d U\n',kk,kk+1); 
               end 
           end 
        end 
    end 
     
    VPatchOutliersH=0; 
    VIndex2=ones(patchnum,1); 
    for k=1:rowcount 
        if k == 1 
            CurrRow=1; 
        else 
            CurrRow=(k*rowcount)-(rowcount-1); 
        end 
        for kk=CurrRow:(CurrRow+(rowcount-2)) 
            if VFlowAVG(kk,1)==0 || VFlowAVG(kk+1,1)==0 
                VIndex2(kk)=1; 
            else 
                if abs(VFlowAVG(kk,1)-VFlowAVG(kk+1,1)) >= MaxVHorizThresh 
                    VPatchOutliersH=VPatchOutliersH+1; 
                    VIndex2(kk)=0; 
                    Flag=1; 
                    fprintf('Flag between %d and %d V\n',kk,kk+1); 
                end 
            end 
        end 
    end 
     
    %check variability across patches vertically 
    %compare both U and V directions  
    UPatchOutliersV=0; 
    UIndex3=ones(patchnum,1); 
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    for k=1:rowcount 
        CurrCol=k; 
        for kk=CurrCol:rowcount:((rowcount-2)*rowcount)+CurrCol 
            if UFlowAVG(kk,1)==0 || UFlowAVG(kk+rowcount,1)==0 
                UIndex3(kk)=1; 
            else 
                UPatchDiff2=abs(UFlowAVG(kk,1)-UFlowAVG(kk+rowcount,1)); 
                if UPatchDiff2 >= MaxUVertThresh; 
                    UPatchOutliersV=UPatchOutliersV+1; 
                    UIndex3(kk)=0; 
                    Flag=1; 
                    fprintf('Flag between %d and %d U\n',kk,kk+rowcount);                    
                end 
            end 
        end 
    end 
     
    VPatchOutliersV=0; 
    VIndex3=ones(patchnum,1); 
    for k=1:rowcount 
        CurrCol=k; 
        for kk=CurrCol:rowcount:((rowcount-2)*rowcount)+CurrCol 
            if VFlowAVG(kk,1)==0 || VFlowAVG(kk+rowcount,1)==0 
                VIndex3(kk)=1; 
            else 
                VPatchDiff2=abs(VFlowAVG(kk,1)-VFlowAVG(kk+rowcount,1)); 
               if VPatchDiff2 >= MaxVVertThresh; 
                    VPatchOutliersV=VPatchOutliersV+1; 
                    VIndex3(kk)=0; 
                    Flag=1; 
                    fprintf('Flag between %d and %d V\n',kk,kk+rowcount);                    
               end 
            end 
        end 
    end 
  
    %velocity to neighbors  
    for p = 2:(patchnum-1) 
         
         if UIndex2(p,1)==0 
            if UFlowAVG(p,1) > 0 && UFlowAVG(p+1) > 0  
                if UFlowAVG(p,1) > UFlowAVG(p+1,1) 
                    UFlowAVG(p,1)=UFlowAVG(p+1,1); 
                else if UFlowAVG(p+1,1) > UFlowAVG(p,1) 
                        UFlowAVG(p+1,1)=UFlowAVG(p,1); 
                    end 
                end 
            else if UFlowAVG(p,1) < 0 && UFlowAVG(p+1,1) < 0  
                 if UFlowAVG(p,1) < UFlowAVG(p+1,1) 
                    UFlowAVG(p,1)=UFlowAVG(p+1,1); 
                else if UFlowAVG(p+1,1) < UFlowAVG(p,1) 
                        UFlowAVG(p+1,1)=UFlowAVG(p,1); 
                    end 
                 end 
            else  
                if UFlowAVG(p,1) > UFlowAVG(p+1,1) 
                    UFlowAVG(p,1)=UFlowAVG(p+1,1); 
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                else if UFlowAVG(p+1,1) > UFlowAVG(p,1) 
                        UFlowAVG(p+1,1)=UFlowAVG(p,1); 
                    end 
                end 
                 
                end 
            end 
         end 
  
        if VIndex2(p,1)==0  
            if VFlowAVG(p,1) > 0 && VFlowAVG(p+1,1) > 0 
                if VFlowAVG(p,1) > VFlowAVG(p+1,1) 
                    VFlowAVG(p,1)=VFlowAVG(p+1,1); 
                else if VFlowAVG(p+1,1) > VFlowAVG(p,1) 
                        VFlowAVG(p+1,1)=VFlowAVG(p,1); 
                    end 
                end 
            else if VFlowAVG(p,1) < 0 && VFlowAVG(p+1,1) < 0 
                 if VFlowAVG(p,1) < VFlowAVG(p+1,1) 
                    VFlowAVG(p,1)=VFlowAVG(p+1,1); 
                else if VFlowAVG(p+1,1) < VFlowAVG(p,1) 
                        VFlowAVG(p+1,1)=VFlowAVG(p,1); 
                    end 
                 end  
                else  
                    if UFlowAVG(p,1) > UFlowAVG(p+1,1) 
                        UFlowAVG(p,1)=UFlowAVG(p+1,1); 
                    else if UFlowAVG(p+1,1) > UFlowAVG(p,1) 
                        UFlowAVG(p+1,1)=UFlowAVG(p,1); 
                        end 
                    end 
                end 
            end 
        end 
  
        if UIndex3(p,1)==0 && UIndex2(p,1) ~= 0 
            if UFlowAVG(p,1) > UFlowAVG(p-1,1) 
                UFlowAVG(p,1)=UFlowAVG(p-1,1); 
            else if UFlowAVG(p-1,1) > UFlowAVG(p,1) 
                    UFlowAVG(p-1,1)=UFlowAVG(p,1); 
                end 
            end 
        end 
  
        if VIndex3(p,1)==0 && VIndex2(p,1) ~= 0 
            if VFlowAVG(p,1) > VFlowAVG(p-1,1) 
                VFlowAVG(p,1)=VFlowAVG(p-1,1); 
            else if VFlowAVG(p-1,1) > VFlowAVG(p,1) 
                    VFlowAVG(p-1,1)=VFlowAVG(p,1); 
                end 
            end 
        end 
    end 
         
    %outlier motion not picked up 
    for p=2:patchnum        
        if UFlowAVG(p,1)-UFlowAVG(p-1,1) >= 20 
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            UFlowAVG(p,1)=UFlowAVG(p-1,1); 
        end 
        if UFlowAVG(p,1)-UFlowAVG(p-1,1) <= -20 
            UFlowAVG(p,1)=UFlowAVG(p-1,1); 
        end 
        if VFlowAVG(p,1)-VFlowAVG(p-1,1) >= 20 
            VFlowAVG(p,1)=VFlowAVG(p-1,1); 
        end 
        if VFlowAVG(p,1)-VFlowAVG(p-1,1) <= -20 
            VFlowAVG(p,1)=VFlowAVG(p-1,1); 
        end        
    end 
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Part 6: Determine if flow measure passes constraints if not count 
    %flags and determine FlowStatus 1=pass,0=fail 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if Flag == 1 
        numflags=numflags+1; 
        fprintf('FLAG\n'); 
        FlagIndex(count,1)=1; 
    else 
        Flag=0; 
        numflags=0; 
    end 
    if numflags == 3 
        FlowStatus=0; 
    end 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Part7: Prediction or movement of edges with average optical flow from 
each 
    %patch if validation is passed and results fit smoothness criteria 
    %inputs: 
    %outputs: 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if FlowStatus == 1 
        %move edges by average flow 
        for k = 1:patchnum 
            CurrEdges=cell2mat(PatchInfo(k,3)); 
            CurrStartCornerPts=cell2mat(PatchInfo(k,1)); 
            numedges=length(CurrEdges(:,1)); 
            for kk=1:numedges 
                CurrEdges(kk,1)=CurrEdges(kk,1)+VFlowAVG(k,1); 
                CurrEdges(kk,2)=CurrEdges(kk,2)+UFlowAVG(k,1); 
            end 
            PatchInfo(k,3)={CurrEdges}; 
            CurrStartCornerPts(1,1)=CurrStartCornerPts(1,1)+VFlowAVG(k,1); 
            CurrStartCornerPts(1,2)=CurrStartCornerPts(1,2)+UFlowAVG(k,1); 
            PatchInfo(k,1)={CurrStartCornerPts}; 
        end 
  
        %move start and stop pts by flow average  
        StartPt(1,1)=round(StartPt(1,1)+UFlowAVG(1,1)); 
        StartPt(2,1)=round(StartPt(2,1)+VFlowAVG(1,1)); 
        EndPt(1,1)=round(EndPt(1,1)+UFlowAVG(patchnum,1)); 
        EndPt(2,1)=round(EndPt(2,1)+VFlowAVG(patchnum,1)); 
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        %re-draw grid and re-sample corner points 
        diffY=abs(EndPt(2,1)-StartPt(2,1)); 
        diffX=abs(EndPt(1,1)-StartPt(1,1)); 
        sizeY=round(diffY/rowcount); 
        sizeX=round(diffX/rowcount); 
        if(mod(sizeX,2)>0) 
            sizeX=sizeX+1; 
        end 
        if(mod(sizeY,2)>0) 
            sizeY=sizeY+1; 
        end 
  
        %minimize amount of corners to within area near selected region 
        ind5=0; 
        for w = 1:length(Corners2Loc); 
            if round(Corners2Loc(w,2)) >= (StartPt(2,1)-20) && 
round(Corners2Loc(w,2)) <= (EndPt(2,1)+20) ... 
                    && round(Corners2Loc(w,1)) >= (StartPt(1,1)-20) && 
round(Corners2Loc(w,1)) <= (EndPt(1,1)+20) 
                ind5=ind5+1; 
                ReducedCorners(ind5,:)=[Corners2Loc(w,1) Corners2Loc(w,2) w]; 
            end 
        end 
         
        %re-sample corner points 
        patchcount=0; 
        for Ycount = 0:(rowcount-1) 
            StartY=round(StartPt(2,1)+(sizeY*Ycount)); 
            for Xcount = 0:(rowcount-1) 
                patchcount=patchcount+1; 
                StartX=round(StartPt(1,1)+(sizeX*Xcount));   
                StartCornerPt=[StartY,StartX]; 
                PatchInfo(patchcount,1)={StartCornerPt};       
                
patchCorners=SaveCornerIndex(ReducedCorners,StartX,StartY,sizeX,sizeY); 
                PatchInfo(patchcount,2)={patchCorners}; 
            end 
        end 
         
        %store flow values 
        FlowAvgCorrected(count,1).U=UFlowAVG; 
        FlowAvgCorrected(count,1).V=VFlowAVG; 
         
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Part8: Run SURF/RANSAC to get Homography to reset tracking process due 
to 
    %smoothness criteria failure 
    %input:both image frames (I1/I2),thresholds for SURF and 
RANSAC,FlowStatus 
    %of fail (0) 
    %output:patch edge index points moved by Homography (H) matrix 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if FlowStatus == 0 
         
        %increment reset number 
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        numresets=numresets+1; 
         
        %store flow as 0 
        FlowAvgCorrected(count,1).U=0; 
        FlowAvgCorrected(count,1).V=0; 
        FlowAvg(count,1).U=0; 
        FlowAvg(count,1).V=0; 
         
        %use func to determine best frame to reset edge tracking pts 
        FrameNum=DetermineBestFit2(ImgNIR,count); 
        I1=histeq(ImgNIR(:,:,FrameNum)); 
        I2=histeq(ImgNIR(:,:,count));     
        % Start SURF 
            %set limit 
            UpperLimit=550; 
            LowerLimit=250; 
            ind3=0; 
            ind4=0; 
            % Get the Key Points 
              %Options.upright : Boolean which determines if we want a non-
rotation  
              %invariant result (default false)   
              Options.upright=true;  
              %Options.upright=false;  
              %Extended adds extra landmark position info to descriptor 
              %Options.extended=true; 
              %Options.tresh : Hessian response threshold (default 0.0002)-
changes the  
              %#ofKeyPts 
              Options.tresh=0.00035;%0.00055; %decreas=more pts,inc=less pts 
              % Ipts : A struct w/ info about all detected key points, of 2 
img's 
              % Ipts.x , ipts.y : The landmark position 
              Ipts1=OpenSurf(I1,Options); 
              Ipts2=OpenSurf(I2,Options); 
              %re sample Ipts1 and Ipts2 to include pts that are within 
limits 
              for aa=1:length(Ipts1) 
                  Yvalue=round(Ipts1(aa).y); 
                  if Yvalue >= LowerLimit && Yvalue <= UpperLimit 
                      ind3=ind3+1; 
                      RegionIpts1(ind3)=Ipts1(aa); 
                  end 
              end 
              for aa=1:length(Ipts2) 
                  Yvalue=round(Ipts2(aa).y); 
                  if Yvalue >= LowerLimit && Yvalue <= UpperLimit 
                      ind4=ind4+1; 
                      RegionIpts2(ind4)=Ipts2(aa); 
                  end 
              end 
            % Put the landmark descriptors in a matrix, index of 
corresponding matching 
            % pts-reshaped by taking Ipts.d(i) from i->length(Ipts) and 
storing into D 
            % as D1=64xlength(Ipts1) and D2=64xlength(Ipts2) 
              D1 = reshape([RegionIpts1.descriptor],64,[]);  
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              D2 = reshape([RegionIpts2.descriptor],64,[]);  
            % Find the best matches-step through length of Ipts1 or key pts 
found  
              err=zeros(1,length(RegionIpts1)); 
              cor1=1:length(RegionIpts1); %index of all Ipts1 values 
              cor2=zeros(1,length(RegionIpts1)); 
              %re-orders D1 to length of D2, then calc distance from D2 to 
D1, 
              %then sums every pt with 1, stores minimum distance value as 
err(i) and 
              %cor2 as index of that value,if err(i)<0.05 get rid of those 
matches  
              for i=1:length(RegionIpts1), 
                  distance=sum((D2-repmat(D1(:,i),[1 
length(RegionIpts2)])).^2,1); 
                  [err(i),cor2(i)]=min(distance); 
                  if err(i)<0.05 
                    D2(:,cor2(i))=1000; 
                  end 
              end 
            % Sort matches on vector distance 
            % Sort err in ascending order and stores index as ind, to sort 
cor1 and 
            % cor2 in the same ascending order 
              [err, ind]=sort(err);  
              cor1=cor1(ind);  
              cor2=cor2(ind); 
        %     % Show both images, create blank image as rows, column*2, color 
as I1 
%               I = zeros([size(I1,1) size(I1,2)*2 size(I1,3)]); 
%               I(:,1:size(I1,2),:)=I1; 
I(:,size(I1,2)+1:size(I1,2)+size(I2,2),:)=I2; 
%               figure, imshow(I/255); hold on; 
%               title('SURF Feature Matches Plot'); 
%               plot(x,y,'g-','MarkerSize',15); 
%         %     % Show the best matches(i<=cor1/2) + save pts from both image 
frames 
%         %     % the best matches show up as the 2 img slices side-by-side 
%         %     % Ipts1(cor1(i)).x=img1 matching pt x value,y=img1 matching 
pt y value 
%         %     % Ipts2(cor2(i)).x=img2 matching pt x 
value+(length(img1)),y=value of img2 
%               for i=1:200, 
%                   c=rand(1,3); 
%                   plot([RegionIpts1(cor1(i)).x 
RegionIpts2(cor2(i)).x+size(I1,2)],[RegionIpts1(cor1(i)).y 
RegionIpts2(cor2(i)).y],'-','Color',c) 
%                   plot([RegionIpts1(cor1(i)).x 
RegionIpts2(cor2(i)).x+size(I1,2)],[RegionIpts1(cor1(i)).y 
RegionIpts2(cor2(i)).y],'o','Color',c) 
%               end 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            %Part1:DONE 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            %PART2: 
            %input:SURF Features as two vectors, Ipts1 and Ipts2,ROI vector 
            %ouput:RANSAC results for inlier detection/outlier rejection, 
display 
            %results           = structure containing the following fields: 
            % 
            %   Theta               = estimated parameter vector 
            %   E                   = fitting error obtained from man_fun 
            %   CS                  = consensus set (true -> inliers, false -
> outliers) 
            %   r                   = rank of the solution 
            %   iter                = number of iterations 
            %   time                = time to perform the computation 
            %summary:RANSAC 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            %init 
            X1=zeros(1,length(RegionIpts1)); 
            Y1=zeros(1,length(RegionIpts1)); 
            X2=zeros(1,length(RegionIpts1)); 
            Y2=zeros(1,length(RegionIpts1)); 
  
            %use length of Ipts2, bc ransac input data must have same length, 
Ipts2 is smaller 
            for j=1:length(RegionIpts1) 
                X1(j)=RegionIpts1(cor1(j)).x; 
                Y1(j)=RegionIpts1(cor1(j)).y; 
            end 
            for k=1:length(RegionIpts1) 
                X2(k)=RegionIpts2(cor2(k)).x; 
                Y2(k)=RegionIpts2(cor2(k)).y; 
            end 
  
            %input data for RANSAC 
            X1bar=[X1;Y1]; 
            X2bar=[X2;Y2]; 
  
            %Format input data vector as 4 rows [X1;Y1:X2;Y2] 
            TestData=[X1bar;X2bar]; 
  
            %Implement RANSAC 
            % set RANSAC options 
            options.epsilon = 1e-6; 
            %threshold (default 1-1e-5), lower=tighter thresh, less pts, 
higher=loose 
            %threshold or more pts as inliers included 
            options.P_inlier = 1-1e-5; 
            options.sigma = 1; 
            options.validateMSS_fun = @validateMSS_homography; 
            options.est_fun = @estimate_homography; 
            options.man_fun = @error_homography; 
            options.mode = 'MSAC'; 
            options.Ps = []; 
            options.notify_iters = []; 
            options.min_iters = 1000; 
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            options.fix_seed = false; 
            options.reestimate = true; 
            options.stabilize = false; 
  
            % run RANSAC 
            [results, options] = RANSACzz(TestData, options); 
             
            %move start/stop 
            SaveStart=StartPt; 
            SaveEnd=EndPt; 
            [StartPt(1,1),StartPt(2,1)] = mapping_homography(SaveStart(1,1), 
SaveStart(2,1), true, results.Theta); 
            [EndPt(1,1),EndPt(2,1)] = mapping_homography(SaveEnd(1,1), 
SaveEnd(2,1), true, results.Theta); 
             
            %keep homography estimate bounded 
            if StartPt(1,1)-SaveStart(1,1) >= 5 || StartPt(1,1)-
SaveStart(1,1) <= -20 
                StartPt(1,1)=SaveStart(1,1); 
            end 
             
            if EndPt(1,1)-SaveEnd(1,1) >= 20 || EndPt(1,1)-SaveEnd(1,1) <= -8 
                EndPt(1,1)=SaveEnd(1,1); 
            end 
             
            if StartPt(2,1)-SaveStart(2,1) >= 5 || StartPt(2,1)-
SaveStart(2,1) <= -8 
                StartPt(2,1)=SaveStart(2,1); 
            end 
  
            if EndPt(2,1)-SaveEnd(2,1) >= 8 || EndPt(2,1)-SaveEnd(2,1) <= -5 
                EndPt(2,1)=SaveEnd(2,1); 
            end 
             
            if StartPt(1,1) <= 145 
                StartPt(1,1)=StartPt(1,1)+10; 
            end 
             
            if StartPt(2,1) <= 300 
                StartPt(2,1)=StartPt(2,1)+10; 
            end 
             
            if EndPt(2,1) >= 500 
                EndPt(2,1)=EndPt(2,1)-10; 
            end 
             
            if EndPt(1,1) >= 520 
                EndPt(1,1)=EndPt(1,1)-10; 
            end 
             
            %re-draw grid and re-sample corner points 
            diffY=abs(EndPt(2,1)-StartPt(2,1)); 
            diffX=abs(EndPt(1,1)-StartPt(1,1)); 
            sizeY=round(diffY/rowcount); 
            sizeX=round(diffX/rowcount); 
            if(mod(sizeX,2)>0) 
                sizeX=sizeX+1; 
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            end 
            if(mod(sizeY,2)>0) 
                sizeY=sizeY+1; 
            end 
  
            %re-sample corner pts into patches that have moved  
            %minimize amount of corners to within area near selected region 
            ind5=0; 
            for w = 1:length(Corners2Loc); 
                if round(Corners2Loc(w,2)) >= (StartPt(2,1)-20) && 
round(Corners2Loc(w,2)) <= (EndPt(2,1)+20) ... 
                        && round(Corners2Loc(w,1)) >= (StartPt(1,1)-20) && 
round(Corners2Loc(w,1)) <= (EndPt(1,1)+20) 
                    ind5=ind5+1; 
                    ReducedCorners(ind5,:)=[Corners2Loc(w,1) Corners2Loc(w,2) 
w]; 
                end 
            end 
             
            %apply blur + edge detection on region, re-acquire 
            %corners + edges 
            I2Blur=imgaussfilt(I2,0.5); 
            I2BlurEdges=edge(I2Blur,'canny',[0.035 0.0675]); 
             
            patchcount=0; 
            for Ycount = 0:(rowcount-1) 
                StartY=round(StartPt(2,1)+(sizeY*Ycount)); 
                for Xcount = 0:(rowcount-1) 
                    patchcount=patchcount+1; 
                    index2=0; 
                    StartX=round(StartPt(1,1)+(sizeX*Xcount));   
                    StartCornerPt=[StartY,StartX]; 
                    PatchInfo(patchcount,1)={StartCornerPt};       
                    
patchCorners=SaveCornerIndex(ReducedCorners,StartX,StartY,sizeX,sizeY); 
                    PatchInfo(patchcount,2)={patchCorners};           
                    patchOutline=I2BlurEdges(StartY:((StartY+sizeY)-
1),StartX:((StartX+sizeX)-1)); 
                    patchEdges=SaveEdgeIndex(patchOutline,StartX,StartY); 
                    EdgeNum(patchcount,1)=length(patchEdges(:,1)); 
                    PatchInfo(patchcount,3)={patchEdges}; 
                end 
            end 
            
            Flag=0; 
            numflags=0; 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Part9: Highlight edges on next frame using 'HighlightEdges.m'  
    %function and write image to file 
    % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %display edges on second image, use round final index 
    %display results on second image, use round final index 
    Segout3=I2; 
    for k = 1:patchnum 
            CurrEdges=cell2mat(PatchInfo(k,3)); 



 
 

103 
 

            CurrCorners=cell2mat(PatchInfo(k,2)); 
            numedges=length(CurrEdges(:,1)); 
             if numedges >= 10 
                    for kk=1:numedges  
                        Yind=round(CurrEdges(kk,1)); 
                        Xind=round(CurrEdges(kk,2)); 
                        if Yind > (StartPt(2,1)-50) && Yind < (EndPt(2,1)+50) 
&& Xind > 0 && Xind < 800 
                            Segout3(Yind,Xind)=0; 
                        end 
                    end 
             end 
    end 
    Flag=0; 
     
%     figure,imshow(I2),hold on; 
%     %make patch grid 
%     for k = StartPt(2,1):sizeY:(EndPt(2,1)+2) 
%         xgrid = [StartPt(1,1) (EndPt(1,1)+2)]; 
%         ygrid = [k k]; 
%         plot(xgrid,ygrid,'Color','g','LineStyle','-'); 
%         plot(xgrid,ygrid,'Color','r','LineStyle',':'); 
%     end 
%  
%     for k = StartPt(1,1):sizeX:(EndPt(1,1)+2) 
%         xgrid = [k k]; 
%         ygrid = [StartPt(2,1) (EndPt(2,1)+2)]; 
%         plot(xgrid,ygrid,'Color','g','LineStyle','-'); 
%         plot(xgrid,ygrid,'Color','r','LineStyle',':'); 
%     end 
%      
%     for mm=1:patchnum 
%         Corners=cell2mat(PatchInfo(mm,2)); 
%         for m = 1:length(Corners(:,1)) 
%             if Corners(1,3)~=0 
%                 PlotCorners=round(Corners(m,:)); 
%                 plot(PlotCorners(:,1),PlotCorners(:,2),'.m'); 
%             end 
%         end 
%     end 
%     title('Next Frame Grid with Corners'); 
%      
%     fprintf('Frame %d \n',count); 
%     figure,imshow(Segout3),hold on; 
%     string2=['Frame' num2str(count) 'with Edges Highlighted']; 
%     title(string2);     
     
    %write Segout2(jpeg) image with edges highlighted to directory specified 
    %name current segment  
    string=['C:\ECU\Thesis\DataResultsSet5\TimedTest1\Frame' num2str(count) 
'.jpeg']; 
    imwrite(Segout3,string); 
   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%     %add menu to step to next frame 
%     choice=menu('Continue? Press Yes or No','Yes','No'); 
%     if choice==2 || choice==0 
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%         break; 
%     end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 
toc; 
fprintf('\n All Image Frames Complete! \n'); 
EndingTime=datestr(now) 

  
Determine Patch Number Function:  
 
function 
[FinalPatchNum,MaxUHorizThresh,MaxVHorizThresh,MaxUVertThresh,MaxVVertThresh,
NumCorners] = 
DeterminePatchNum4(img1,ImgCycle,StartPt,EndPt,ReducedCorners,corners,MinPatc
hCorners) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%PatchCorners = SaveCornerIndex(corners,startX,startY) 
%inputs:  
%Reduced Corners = struct with corners across patch area + surrounding [x y 
%index] 
%startPt and EndPt = starting points for the selected region 
%img1 and ImgCycle = first frame and the rest of frames to make up 1 cycle 
%outputs: 
%patch number to satisfy constraints, U/V velocity thresholds for each 
%patch 
%summary:  
%this function computes the correct patch number to track a ROI and 
%determines a threshold for continuous motion between neighbors 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%initialize tracker 
tracker3=vision.PointTracker('MaxBidirectionalError',1); 
initialize(tracker3,corners.Location,img1); 
CornersStruct=struct; 
num=2; 
CycleNum=size(ImgCycle,3); 
[Corners2Loc,validity]=step(tracker3,ImgCycle(:,:,num)); 
UDiffStruct=struct; 
VDiffStruct=struct; 
%begin loop to determine patchnumber that has all patches pass chi-square 
%GOF test to be normally distributed 
NormalStatus = 0; 
MinCornerStatus=0; 
i=3; 
tic; 
while MinCornerStatus == 0 
    while NormalStatus == 0  
        if i < 13 
            i=i+1; 
        end 
        patchnum=i^2; 
        rowcount=sqrt(patchnum); 
        %set patch size 
        diffY=abs(EndPt(2,1)-StartPt(2,1)); 
        diffX=abs(EndPt(1,1)-StartPt(1,1)); 
        sizeY=round(diffY/rowcount); 
        sizeX=round(diffX/rowcount); 
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        if(mod(sizeX,2)>0) 
            sizeX=sizeX+1; 
        end 
        if(mod(sizeY,2)>0) 
            sizeY=sizeY+1; 
        end 
         
        patchcount=0; 
        for Ycount = 0:(rowcount-1) 
            StartY=round(StartPt(2,1)+(sizeY*Ycount)); 
            for Xcount = 0:(rowcount-1) 
                patchcount=patchcount+1; 
                StartX=round(StartPt(1,1)+(sizeX*Xcount));   
                
patchCorners=SaveCornerIndex(ReducedCorners,StartX,StartY,sizeX,sizeY); 
                CornersStruct(patchcount).CornerIndex=patchCorners;           
            end 
        end 
  
        NumCorners=zeros(patchnum,1); 
        for p = 1:patchnum 
            CurrCorners=CornersStruct(p).CornerIndex; 
            number=length(CurrCorners(:,1)); 
            NumCorners(p,1)=number; 
        end 
  
        %save flow in each patch + calculate average flow in X and Y 
        VFlowAVG = zeros(patchnum,1); 
        UFlowAVG = zeros(patchnum,1); 
        CornerN=zeros(patchnum,1); 
        PatchCornerFlowU=struct; 
        PatchCornerFlowV=struct; 
        for k = 1:patchnum 
            CurrCorners=CornersStruct(k).CornerIndex; 
            Test=CurrCorners(1,1); 
            if Test == 0 
                PatchCornerFlowU(k).U=0; 
                PatchCornerFlowV(k).V=0; 
                UFlowAVG(k,:)=0; 
                VFlowAVG(k,:)=0; 
            else 
                numcorners=length(CurrCorners(:,1)); 
                CornerN(k,1)=numcorners; 
                PatchU=zeros(numcorners,1); 
                PatchV=zeros(numcorners,1); 
                for kk=1:numcorners 
                    MovedIndex=CurrCorners(kk,3); 
                    PatchU(kk)=Corners2Loc(MovedIndex,1)-CurrCorners(kk,1); 
                    PatchV(kk)=Corners2Loc(MovedIndex,2)-CurrCorners(kk,2); 
                end 
                UFlowAVG(k,:)=mean(PatchU); 
                VFlowAVG(k,:)=mean(PatchV); 
                PatchCornerFlowU(k).U=PatchU; 
                PatchCornerFlowV(k).V=PatchV; 
            end 
        end 
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        %save positive or negative flow values and save neighbor flow if flow 
        %in X or Y is = 0 
        for k=1:patchnum 
            U=PatchCornerFlowU(k).U; 
            V=PatchCornerFlowV(k).V; 
                for kk = 1:length(U) 
                    if U(kk)==0 
                        ind1=kk; 
                        if ind1 > 1 
                            ind1=ind1-1; 
                        else if ind1 == 1 
                            for w=2:length(U) 
                                if U(w) ~= 0 
                                    ind1=w; 
                                end 
                            end 
                        else  
                            ind1=length(U); 
                            end 
                        end 
                        U(kk)=U(ind1); 
                    end 
                end 
                for kk = 1:length(V) 
                    if V(kk)==0 
                        ind2=kk; 
                        if ind2 > 1 
                            ind2=ind2-1; 
                        else if ind2 == 1 
                            for w=2:length(V) 
                                if V(w) ~= 0 
                                    ind2=w; 
                                end 
                            end 
                        else  
                            ind2=length(V); 
                            end 
                        end 
                        V(kk)=V(ind2); 
                    end 
                end 
                PatchCornerFlowU(k).U=U; 
                PatchCornerFlowV(k).V=V; 
                %calculate new avg flow in x and y 
                UFlowAVG(k,:)=mean(PatchCornerFlowU(k).U); 
                VFlowAVG(k,:)=mean(PatchCornerFlowV(k).V); 
        end 
  
        %run chi goodness of fit test to check if each flow is normal dist. 
        UFlowChiTest=zeros(patchnum,1); 
        VFlowChiTest=zeros(patchnum,1); 
        for pp=1:patchnum 
            U=PatchCornerFlowU(pp).U; 
            UFlowChiTest(pp,1)=chi2gof(U); 
            V=PatchCornerFlowV(pp).V; 
            VFlowChiTest(pp,1)=chi2gof(V); 
        end 
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        ind9=0; 
        ind10=0; 
        for q=1:length(UFlowChiTest(:,1)) 
            if UFlowChiTest(q) == 0 
                ind9=ind9+1; 
            end 
            if VFlowChiTest(q) == 0 
                ind10=ind10+1; 
            end 
        end 
         
        if ind9 == length(UFlowChiTest(:,1)) && ind10 == 
length(VFlowChiTest(:,1)) 
            NormalStatus=1; 
            FinalPatchNum=patchnum; 
        end  
    end 
    if min(NumCorners(:,1)) >= MinPatchCorners 
        MinCornerStatus=1; 
    else 
        StartPt(1,1)=StartPt(1,1)-2; 
        StartPt(2,1)=StartPt(2,1)-2; 
        EndPt(1,1)=EndPt(1,1)+2; 
        EndPt(2,1)=EndPt(1,1)+2; 
        NormalStatus=0; 
        i=i-1; 
    end 
end 
toc; 
fprintf('Patch Count Determined!: %d\n',patchnum); 
  
%begin loop to step through frame 2-end of ImgCycle and calculate the U and V 
%difference between horizontal and verical neighbors. store all vel 
%differences into a struct or cell array to make up zero mean Gaussian  
HorizDiffU=zeros(rowcount*(rowcount-1),CycleNum-1); 
VertDiffU=zeros(rowcount*(rowcount-1),CycleNum-1); 
HorizDiffV=zeros(rowcount*(rowcount-1),CycleNum-1); 
VertDiffV=zeros(rowcount*(rowcount-1),CycleNum-1); 
num=1; 
tracker2=vision.PointTracker('MaxBidirectionalError',1); 
initialize(tracker2,corners.Location,img1); 
Frameind=0; 
while num < CycleNum 
    num=num+1; 
    Frameind=Frameind+1; 
    [NewCornersLoc,validity]=step(tracker2,ImgCycle(:,:,num)); 
    UDiff=zeros(((rowcount-1)*rowcount)*2,1); 
    VDiff=zeros(((rowcount-1)*rowcount)*2,1); 
    ind7=0; 
    ind8=0; 
    ind11=0; 
    ind12=0; 
    ind13=0; 
    ind14=0; 
    %save flow in each patch + calculate average flow in X and Y 
    VFlowAVG = zeros(patchnum,1); 
    UFlowAVG = zeros(patchnum,1); 
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    CornerN=zeros(patchnum,1); 
    PatchCornerFlowU=struct; 
    PatchCornerFlowV=struct; 
    for k = 1:patchnum 
        CurrCorners=CornersStruct(k).CornerIndex; 
        Test=CurrCorners(1,1); 
        if Test == 0 
            PatchCornerFlowU(k).U=0; 
            PatchCornerFlowV(k).V=0; 
            UFlowAVG(k,:)=0; 
            VFlowAVG(k,:)=0; 
        else 
            numcorners=length(CurrCorners(:,1)); 
            CornerN(k,1)=numcorners; 
            PatchU=zeros(numcorners,1); 
            PatchV=zeros(numcorners,1); 
            for kk=1:numcorners 
                MovedIndex=CurrCorners(kk,3); 
                PatchU(kk)=NewCornersLoc(MovedIndex,1)-CurrCorners(kk,1); 
                PatchV(kk)=NewCornersLoc(MovedIndex,2)-CurrCorners(kk,2); 
            end 
            UFlowAVG(k,:)=mean(PatchU); 
            VFlowAVG(k,:)=mean(PatchV); 
            PatchCornerFlowU(k).U=PatchU; 
            PatchCornerFlowV(k).V=PatchV; 
        end 
    end 
    %save positive or negative flow values and save neighbor flow if flow 
    %in X or Y is = 0 
    for k=1:patchnum 
        U=PatchCornerFlowU(k).U; 
        V=PatchCornerFlowV(k).V; 
            for kk = 1:length(U) 
                if U(kk)==0 
                    ind1=kk; 
                    if ind1 > 1 
                        ind1=ind1-1; 
                    else if ind1 == 1 
                        for w=2:length(U) 
                            if U(w) ~= 0 
                                ind1=w; 
                            end 
                        end 
                    else  
                        ind1=length(U); 
                        end 
                    end 
                    U(kk)=U(ind1); 
                end 
            end 
            for kk = 1:length(V) 
                if V(kk)==0 
                    ind2=kk; 
                    if ind2 > 1 
                        ind2=ind2-1; 
                    else if ind2 == 1 
                        for w=2:length(V) 
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                            if V(w) ~= 0 
                                ind2=w; 
                            end 
                        end 
                    else  
                        ind2=length(V); 
                        end 
                    end 
                    V(kk)=V(ind2); 
                end 
            end 
            PatchCornerFlowU(k).U=U; 
            PatchCornerFlowV(k).V=V; 
            %calculate new avg flow in x and y 
            UFlowAVG(k,:)=mean(PatchCornerFlowU(k).U); 
            VFlowAVG(k,:)=mean(PatchCornerFlowV(k).V); 
    end 
    %calculate U and V difference between neighbors and store in struct or 
    %cell array? 
    %compare both U and V directions  
    UAVGDiff=zeros(rowcount,rowcount-1); 
    VAVGDiff=zeros(rowcount,rowcount-1); 
    for k=1:rowcount 
        ind6=0; 
        if k == 1 
            CurrRow=1; 
        else 
            CurrRow=(k*rowcount)-(rowcount-1); 
        end 
        for kk=CurrRow:(CurrRow+(rowcount-2)) 
            ind6=ind6+1; 
            ind7=ind7+1; 
            ind11=ind11+1; 
            UPatchDiff=UFlowAVG(kk,1)-UFlowAVG(kk+1,1); 
            UAVGDiff(k,ind6)=UPatchDiff; 
            %store difference 
            UDiff(ind7,1)=UPatchDiff; 
            HorizDiffU(ind11,Frameind)=UPatchDiff; 
        end 
    end 
  
    for k=1:rowcount 
        ind6=0; 
        if k == 1 
            CurrRow=1; 
        else 
            CurrRow=(k*rowcount)-(rowcount-1); 
        end 
        for kk=CurrRow:(CurrRow+(rowcount-2)) 
            ind6=ind6+1; 
            ind8=ind8+1; 
            ind12=ind12+1; 
            VPatchDiff=VFlowAVG(kk,1)-VFlowAVG(kk+1,1); 
            VAVGDiff(k,ind6)=VPatchDiff; 
            %store difference 
            VDiff(ind8,1)=VPatchDiff; 
            HorizDiffV(ind12,Frameind)=VPatchDiff; 
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        end 
    end 
     
    %check variability across patches vertically 
    %compare both U and V directions  
    UAVGDiff2=zeros(rowcount-1,rowcount); 
    VAVGDiff2=zeros(rowcount-1,rowcount); 
    for k=1:rowcount 
        ind6=0; 
        CurrCol=k; 
        for kk=CurrCol:rowcount:((rowcount-2)*rowcount)+CurrCol 
            ind6=ind6+1; 
            ind7=ind7+1; 
            UPatchDiff2=UFlowAVG(kk,1)-UFlowAVG(kk+rowcount,1); 
            UAVGDiff2(ind6,k)=UPatchDiff2; 
            %store difference in struct 
            UDiff(ind7,1)=UPatchDiff2; 
        end 
    end 
     
    for k=1:length(UAVGDiff2(:,1)) 
        for kk = 1:length(UAVGDiff2(1,:)) 
            ind13=ind13+1; 
            VertDiffU(ind13,Frameind)=UAVGDiff2(k,kk); 
        end 
    end 
             
    for k=1:rowcount 
        ind6=0; 
        CurrCol=k; 
        for kk=CurrCol:rowcount:((rowcount-2)*rowcount)+CurrCol 
            ind6=ind6+1; 
            ind8=ind8+1; 
            VPatchDiff2=VFlowAVG(kk,1)-VFlowAVG(kk+rowcount,1); 
            VAVGDiff2(ind6,k)=VPatchDiff2; 
            %save difference in struct 
            VDiff(ind8,1)=VPatchDiff2; 
        end 
    end 
     
    for k=1:length(VAVGDiff2(:,1)) 
        for kk = 1:length(VAVGDiff2(1,:)) 
            ind14=ind14+1; 
            VertDiffV(ind14,Frameind)=VAVGDiff2(k,kk); 
        end 
    end 
     
    UDiffStruct(Frameind).U=UDiff; 
    VDiffStruct(Frameind).V=VDiff; 
  
        %move start and stop pts by flow average  
        StartPt(1,1)=round(StartPt(1,1)+UFlowAVG(1,1)); 
        StartPt(2,1)=round(StartPt(2,1)+VFlowAVG(1,1)); 
        EndPt(1,1)=round(EndPt(1,1)+UFlowAVG(patchnum,1)); 
        EndPt(2,1)=round(EndPt(2,1)+VFlowAVG(patchnum,1)); 
         
        %re-draw grid and re-sample corner points 
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        diffY=abs(EndPt(2,1)-StartPt(2,1)); 
        diffX=abs(EndPt(1,1)-StartPt(1,1)); 
        sizeY=round(diffY/rowcount); 
        sizeX=round(diffX/rowcount); 
        if(mod(sizeX,2)>0) 
            sizeX=sizeX+1; 
        end 
        if(mod(sizeY,2)>0) 
            sizeY=sizeY+1; 
        end 
  
        %minimize amount of corners to within area near selected region 
        ind5=0; 
        for w = 1:length(NewCornersLoc); 
            if round(NewCornersLoc(w,2)) >= (StartPt(2,1)-20) && 
round(NewCornersLoc(w,2)) <= (EndPt(2,1)+20) ... 
                    && round(NewCornersLoc(w,1)) >= (StartPt(1,1)-20) && 
round(NewCornersLoc(w,1)) <= (EndPt(1,1)+20) 
                ind5=ind5+1; 
                ReducedCorners2(ind5,:)=[NewCornersLoc(w,1) 
NewCornersLoc(w,2) w]; 
            end 
        end 
         
        %re-sample corner pts 
        patchcount=0; 
        for Ycount = 0:(rowcount-1) 
            StartY=round(StartPt(2,1)+(sizeY*Ycount)); 
            for Xcount = 0:(rowcount-1) 
                patchcount=patchcount+1; 
                StartX=round(StartPt(1,1)+(sizeX*Xcount));   
                
patchCorners=SaveCornerIndex(ReducedCorners2,StartX,StartY,sizeX,sizeY); 
                CornersStruct(patchcount).CornerIndex=patchCorners;           
            end 
        end 
end 
toc; 
fprintf('One Cycle Finished!\n'); 
  
%determine distribution of all patch differences 
HorizDiffU2=zeros(patchnum,Frameind); 
HorizDiffV2=zeros(patchnum,Frameind); 
ind6=0; 
for k=1:rowcount 
        if k == 1 
            CurrRow=1; 
        else 
            CurrRow=(k*rowcount)-(rowcount-1); 
        end 
        for kk=CurrRow:(CurrRow+(rowcount-2)) 
            ind6=ind6+1; 
            HorizDiffU2(kk,:)=HorizDiffU(ind6,:); 
            HorizDiffV2(kk,:)=HorizDiffV(ind6,:); 
        end 
end 
VertDiffU2=zeros(patchnum,Frameind); 
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VertDiffV2=zeros(patchnum,Frameind); 
for p=1:(patchnum-rowcount) 
    VertDiffU2(p,:)=VertDiffU(p,:); 
    VertDiffV2(p,:)=VertDiffV(p,:); 
end 
  
% %run chi-goodness of fit test on each patch difference in U and V 
UNormalDistTestH=zeros(patchnum,1); 
UNormalDistTestV=zeros(patchnum,1); 
VNormalDistTestH=zeros(patchnum,1); 
VNormalDistTestV=zeros(patchnum,1); 
UHorizThresh=zeros(patchnum,1); 
UVertThresh=zeros(patchnum,1); 
VHorizThresh=zeros(patchnum,1); 
VVertThresh=zeros(patchnum,1); 
for aa=1:patchnum 
    if mod(aa,rowcount)~=0             
      UNormalDistTestH(aa,1)=chi2gof(HorizDiffU2(aa,:)); 
      VNormalDistTestH(aa,1)=chi2gof(HorizDiffV2(aa,:)); 
      if CornerN(aa,1) <= 8 
        UHorizThresh(aa,1)=0; 
        VHorizThresh(aa,1)=0; 
      else 
        
UHorizThresh(aa,1)=(mean(HorizDiffU2(aa,:))+(2*std(HorizDiffU2(aa,:)))); 
        
VHorizThresh(aa,1)=(mean(HorizDiffV2(aa,:))+(2*std(HorizDiffV2(aa,:)))); 
      end 
    end 
end 
for aa=1:(patchnum-rowcount) 
      UNormalDistTestV(aa,1)=chi2gof(VertDiffU2(aa,:)); 
      VNormalDistTestV(aa,1)=chi2gof(VertDiffV2(aa,:)); 
      if CornerN(aa,1) <= 8 
        UHorizThresh(aa,1)=0; 
        VHorizThresh(aa,1)=0; 
      else 
        UVertThresh(aa,1)=(mean(VertDiffU2(aa,:))+(2*std(VertDiffU2(aa,:)))); 
        VVertThresh(aa,1)=(mean(VertDiffV2(aa,:))+(2*std(VertDiffV2(aa,:)))); 
      end 
end 
  
MaxUHorizThresh=max(UHorizThresh); 
MaxVHorizThresh=max(VHorizThresh); 
MaxUVertThresh=max(UVertThresh); 
MaxVVertThresh=max(VVertThresh);     
     
end 

 
 
Determine Best Fit Function:  
 
function FrameNum = DetermineBestFit2(ImgNIR,count) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%FrameNum = DetermineBestFit(I2,I1,BestFrame)% 
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%inputs:  
%ImgNIR=image frame data set 
%count=current frame count 
% 
%outputs: 
% FrameNum=frame with highest matching SURF features 
% 
%summary:  
%this function determines the best frame to match the current frame with 
%the most SURF features 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PrevCt=0; 
PtCt=1; 
FrameCt=0; 
fprintf('Determine Best Fit\n'); 
while(PrevCt < PtCt) 
    FrameCt=FrameCt+1; 
    Prev=count-FrameCt; 
    if Prev > 0 
        I1=histeq(ImgNIR(:,:,Prev)); 
        I2=histeq(ImgNIR(:,:,count)); 
        PrevCt=PtCt; 
        % Start SURF 
        % Get the Key Points 
        %Options.upright : Boolean which determines if we want a non-rotation  
        %invariant result (default false)   
        Options.upright=true;  
        %Options.upright=false;  
        %Extended adds extra landmark position info to descriptor 
        %Options.extended=true; 
        %Options.tresh : Hessian response threshold (default 0.0002)-changes 
the  
        %#ofKeyPts 
        Options.tresh=0.00035;%0.00055; %decreas=more pts,inc=less pts 
        % Ipts : A struct w/ info about all detected key points, of 2 img's 
        % Ipts.x , ipts.y : The landmark position 
        Ipts1=OpenSurf(I1,Options); 
        Ipts2=OpenSurf(I2,Options); 
        % Put the landmark descriptors in a matrix, index of corresponding 
matching 
        % pts-reshaped by taking Ipts.d(i) from i->length(Ipts) and storing 
into D 
        % as D1=64xlength(Ipts1) and D2=64xlength(Ipts2) 
          D1 = reshape([Ipts1.descriptor],64,[]);  
          D2 = reshape([Ipts2.descriptor],64,[]);  
        % Find the best matches-step through length of Ipts1 or key pts found  
          err=zeros(1,length(Ipts1)); 
          cor1=1:length(Ipts1); %index of all Ipts1 values 
          cor2=zeros(1,length(Ipts1)); 
          %re-orders D1 to length of D2, then calc distance from D2 to D1, 
          %then sums every pt with 1, stores minimum distance value as err(i) 
and 
          %cor2 as index of that value,if err(i)<0.05 get rid of those 
matches  
          for i=1:length(Ipts1), 
              distance=sum((D2-repmat(D1(:,i),[1 length(Ipts2)])).^2,1); 
              [err(i),cor2(i)]=min(distance); 
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              if err(i)<0.05 
                D2(:,cor2(i))=1000; 
              end 
          end 
        % Sort matches on vector distance 
        % Sort err in ascending order and stores index as ind, to sort cor1 
and 
        % cor2 in the same ascending order 
        [err, ind]=sort(err);  
        cor1=cor1(ind);  
        cor2=cor2(ind); 
        PtCt=length(cor1); 
    end 
end 
FrameNum=Prev+1; 
% FrameNum=FrameCt-1; 
end
 
  
  
         
 
 
 
 
     
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 


