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Stem cells are a fundamental underpinning of tissue biology. Loss of the self-renewing function 

of stem cells leads to conditions such as infertility and tissue wasting. Stem cells integrate a 

variety of signals to maintain their fate and proliferative capacity. Although intrinsic and local 

cues are well studied, less is known about how extrinsic signals, such as hormones, affect stem 

cell fate and function. The highly characterized Drosophila melanogaster steroid hormone 

ecdysone regulates germline stem cell (GSC) proliferation and self-renewal, as well as oogenesis 

and metamorphosis. Though many genes, including nuclear hormone receptor ftz transcription 

factor 1 (ftz-f1), are thought to be targets of ecdysone signaling, it is unclear how these targets 

impact GSC fate and function. To explore the role of ftz-f1 in ovarian stem cells, we used the 

UAS-GAL4 system and RNA interference (RNAi) to reduce ftz-f1 function specifically in germ 

cells or surrounding somatic cells. We demonstrate that ftz-f1 is intrinsically required for the 

establishment of the proper number of GSCs during development. Reduced ftz-f1 function in 

germ cells leads to a significant decrease in average number of GSCs. During larval stages, ftz-f1 



 
 

depleted ovaries contain a number of PGCs located significantly further away from the terminal 

filament stacks. Our results also suggest that ftz-f1 is required in ovarian somatic cells during 

development for proper movement of germ cells out of the germarium in adult stages. Taken 

together, we suggest ftz-f1 function during juvenile stages is critical for the establishment of 

GSCs and development of their progeny.   
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CHAPTER 1  

 

 

Thesis Proposal: The Role of ftz-f1 in Drosophila Ovarian Stem Cell Fate and Function.  
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Introduction 

Stem cells have been of heightened interest and are emerging as one of the fundamental 

underpinnings of tissue biology because of their potential to replenish, regenerate, and repair 

damaged tissues, including adult tissues (Lawson et. al., 2009). Stem cells have become an 

integral part in current therapies for human diseases, including neurological disorders, congenital 

heart defects and chronic lung disease (Ables et. al, 2012). Stem cells are undifferentiated cells, 

defined by their ability at the single cell level to both self-renew and proliferate to produce 

mature daughter cells, both nonrenewing and terminally differentiated (Wagers & Weissman, 

2004).  

There are two major types of stem cells: embryonic stem cells, which are able to give rise 

to all embryonic and extra embryonic cell types and adult tissue resident stem cells, which have a 

predetermined fate and will only form mature cells of the tissue from which they originate 

(Rippon and Bishop, 2004). Stem cells allow blood, bone, gametes, epithelia, nervous system, 

muscles, and other tissues to be replenished by fresh cells throughout life (Morrison and 

Spradling, 2008).  Loss of the self-renewing function can lead to various conditions such as 

infertility, anemia, and immunodeficiency, whereas over proliferation can lead to disruption of 

normal tissue homeostasis, possibly contributing to tumor formation and growth (Morrison and 

Spradling, 2008).   

Stem cell proliferation and self-renewal are tightly regulated by local signals from their 

niche, intrinsic cues, and long-range signals, such as nutrition and hormones that maintain stem 

cell fate and proliferative capacity (Drummond-Barbosa, 2008). Figure 1 shows a stem cell 
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integrating a variety of intrinsic and extrinsic cues. This diagram highlights potentially beneficial 

outcomes of stem cell research, like disease modeling or prevention and treatment of birth  

 

 

 

 

 

 

 

 

defects. Many studies have addressed how intrinsic and local regulators maintain stem cell 

identity and proliferative potential, but much less is known about the direct actions of systemic 

hormones on stem cells and the niche cells that support them, despite the therapeutic relevance of 

exploring this level of regulation (Ables and Drummond-Barbosa, 2010). Moreover, we know 

remarkably little about how systemic hormones influence the development of tissue-resident 

stem cell populations (Gilboa, 2015).   

 

Drosophila melanogaster Germline Stem Cells as a Model System  

The Drosophila melanogaster ovary provides an excellent model for the study of tissue-resident 

stem cell development and function. This system provides a way to easily visualize stem cells in 

Figure 1: Stem Cell and its Corresponding Signals (Ables et al, 2012) 
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their microenvironment while also utilizing the elegant genetic and experimental techniques 

available in the Drosophila system.  The Drosophila ovary forms during embryogenesis by 

association of somatic gonadal precursors and primordial germ cells (PGCs) (Gilboa, 2015). 

During early stages of ovary development, PGCs, which are the precursors of the germline stem 

cells (GSCs), along with other somatic cell precursors proliferate and begin the establishment of 

the GSCs in their niche (Figure 2) (Gancz and Gilboa, 2013). PGCs are the first germ cell 

population established during development and are the immediate precursor for oocytes (Alberts 

et. al, 2002).  

The adult female Drosophila has two ovaries (Figure 3A-B) that are composed of 14-16 

ovarioles (Figure 3C) (Spradling, 1993). Each ovariole functions as an independent production 

line for eggs (Spradling, 1993). At the anterior tip of each ovariole (boxed) is the germarium, 

which contains GSCs (Figure 3D). These GSCs reside in a specialized somatic cell niche, which 

modulates their behavior. The GSCs are anchored to the anterior end of the germarium and are 

recognized by their anteriorly localized fusomes, which easily distinguish the GSCs from their 

Figure 2: The Establishment of GSCs in Their Niche 



5 
 

differentiated daughter cells, or cystoblasts. Stem cell function can be genetically manipulated 

and visualized in vivo, as all of the GSC progeny are arranged in a linear fashion.  

 

 

 

 

 

 

 

 

Ecdysone Signaling is required in Drosophila Oogenesis and Metamorphosis 

Steroid hormones are critical regulators of tissue-resident stem cell development and 

function. The predominant steroid hormone in Drosophila is ecdysone, which is structurally 

similar to the human sex steroid estrogen (Mangelsdorf et. al., 1995). Ecdysone has been widely 

characterized in Drosophila oogenesis and has been implicated in various processes (Belles and 

Piulachs, 2015). Ecdysone is required for follicle development (Carney and Bender, 2000), 

regulates border cell migration (Bai et al., 2000), and is also involved in other critical steps of 

oogenesis, such as vitellogenesis or yolk deposition, shown (Figure 4) (Jang et al., 2009). Most 

importantly, ecdysone signaling is critical for the development and maintenance of GSCs and 

their surrounding niche cells. Ecdysone signaling maintains the structure of the GSC niche and 

allows somatic niche cells to support a normal rather than a reduced number of GSCs (Morris  

Figure 3: Drosophila melanogaster Oogenesis Anatomy 
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and Spradling, 2012). Ecdysone signaling also directly stimulates GSC proliferation and directly 

promotes maintenance, or the ability to self-renew, of GSCs (Ables and Drummond-Barbosa, 

2010).  

 Ecdysone is also required for Drosophila growth and metamorphosis at all stages of 

development. Ecdysone induces the histolysis of nearly all of the larval tissues, along with 

promoting differentiation and morphogenesis of the structures composing the adult fly, including 

the formation of the adult ovary (Baehrecke, 1996; Gancz et. al, 2011).  Previous literature has 

shown ecdysone and ftz-f1 work in cohort to control growth and metamorphosis (Broadus et. al, 

1999; Sultan et. al, 2014).  Ecdysone signaling induces the onset of several early genes, one of 

them being ftz-f1.  

  

Ftz-f1 is required for multiple developmental processes 

Nuclear hormone receptor ftz transcription factor 1 (ftz-f1) is also required for multiple 

developmental processes. Ftz-f1 has been shown to be a competence factor for stage-specific 

responses to steroid hormone ecdysone during Drosophila metamorphosis (Broadus et al, 1999). 

Also, when ftz-f1 is knocked down in the Drosophila testis, it induces GSC loss, similar to the 

phenotype resulting from the knockdown of ecdysone receptor (EcR) (Li et al, 2014). 

Figure 4: Ecdysone and its effects in Drosophila Oogenesis 
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Furthermore, mosaic analysis confirmed that these two factors are cell autonomously required 

for cyst stem cell maintenance (Li et al, 2014).  Over-expression of ftz-f1 in the somatic cells of 

the ovary results in precocious PGC differentiation (Gancz and Gilboa, 2011). From prior 

literature, there is a connection between ftz-f1 and ecdysone but it is unclear how ftz-f1 

specifically impacts female GSC fate and function.  Given the connection between ftz-f1 and 

ecdysone in the previous literature and my preliminary experiments, I hypothesize that ftz-f1, a 

downstream target of ecdysone, is necessary for proper GSC function and for the 

establishment of tissue resident stem cells in their niche in Drosphila oogenesis.  

 

Objectives 

My hypothesis will be tested in two separate specific aims. For the first aim and with the 

knowledge that ecdysone signaling is required in GSCs (Ables & Drummond-Barbosa, 2010) 

and in escort cells (Morris & Spradling, 2012) for proliferation of both GSCs and their daughter 

cells, I will test if ftz-f1 is required in escort cells for germ cell differentiation and in GSC for 

maintenance and proliferation.  The second aim will use Drosophila primordial germ cells 

(PGCs) to see how reduced ftz-f1 function will affect the establishment of the GSCs in their 

niche.   

Specific Aims 

1. Ecdysone signaling is required in Germline Stem Cells (GSCs) (Ables & Drummond-

Barbosa, 2010) and in escort cells (Morris & Spradling, 2012) for germ cell differentiation.  

a. Is ftz-f1 required in the somatic cell niche for germ cell differentiation? 

b. Is ftz-f1 required for stem cell maintenance and proliferation?  



8 
 

2. Is ftz-f1 is necessary for the establishment of tissue resident stem cells in their niche.  

 

 

 

 

 

 

 

Specific Aim 1: Experimental Approach 

 To test Specific Aim 1A, I will use the UAS-GAL4 system (Figure 6) in combination 

with short hairpin RNA interference (RNAi) to reduce ftz-f1 function in the ovarian somatic 

cells. By crossing ftz-f1RNAi  mutants with various ovarian somatic cell drivers, I will examine the 

effect of reduced somatic cell niche ftz-f1 on the average number of GSCs.   

To test Specific Aim 1B, I will use the UAS-GAL4 system to cross ftz-f1RNAi mutants 

with well characterized germ cell-specific driver, nosGal4::VP16 (Rørth, 1998) and examine the 

resulting phenotype following reduced ftz-f1 function in GSCs and their progeny.  

 To assess the involvement of ftz-f1 on GSC differentiation, I will examine the phenotype 

of nos-Gal4 > ftz-f1RNAi and compare to nos-Gal4 >yw. Crosses will be set at the same time. 

Once the progeny have eclosed, they will be fed on yeast paste for 5 days, 8 days, and 12 days. 

Ovaries will then be dissected, fixed, and immunostained to easily identify GSCs using (as 

Figure 6: UAS-GAL4 System (Helms et. al, 2017) 
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described in Ables and Drummond-Barbosa, 2010) a nuclear marker, 4',6-diamidino-2-

phenylindole (DAPI), a fusome marker, mouse anti-Hts (1B1), and a cap cell nuclear envelope 

marker, mouse anti-LaminC (LamC). All images will be obtained by mounting the samples on 

slides and imaging with a Zeiss confocal microscope. Quantification will be done by counting all 

GSC in control and mutant germaria and calculating the average number per germaria for use in 

statistical analysis. If ftz-f1 is required for GSC differentiation, a decrease in the total number of 

GSC per germaria will be observed in the mutant germaria.  

 

Specific Aim 1: Preliminary Data  

 My preliminary results suggest there are cell type-specific functions of ftz-f1 in the 

Drosophila ovary. Knockdown of ftz-f1 in the germline stem cells caused a significant decrease 

in the average number of GSCs, (Figure 7), while knockdown of ftz-f1 in somatic cells slightly 

increased the average number of germline stem cells (Figure 8). There was a trend but means 

were not significantly increased with this small sample size.  

 Even more interestingly, knockdown of ftz-f1 in both germ cell and somatic cell 

populations caused a phenotype that maintain an average number of germline stem cells 

consistent over my three time points, 5, 8, and 12 Days. These results suggest that a knockdown 

of ftz-f1 causes a problem in development/establishment of the GSCs in their niche, and rather 

than maintenance defects, supporting my original hypothesis.  
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Specific Aim 2: Experimental Approach 

To test Specific Aim 2, I will use the UAS-GAL4 system to cross ftz-f1RNAi mutants with 

both germline and somatic drivers and this will allow me to clearly examine the effect of reduced 

ftz-f1 function in PGCs (Figure 2A). I will mount and stain the mutant larval ovaries and 

compare them to controls of the same age and determine, based on the average number of PGCs, 

if ftz-f1 is required (as described in Maimon and Gilboa, 2011). All images will be obtained by 

mounting the samples on slides and imaging with a Zeiss confocal microscope. Quantification 

will be done by calculating the average number of PGCs in control, germ cell knockdown and 

somatic cell knockdown mutant ovaries. If ftz-f1 expression is necessary for establishment of 

PGCs in either the PGCs or the supporting somatic cells, there will be a reduction in the average 

number of PGC correctly situated in their somatic cell niche (adjacent to the cap cell precursors, 

shown in Figure 2A).  

 To further test Specific Aim 2, I will use ftz-f117 null mutants, which have complete loss 

of ftz-f1 in both germ and somatic cell populations (Broadus et. al, 1999). This mutant has a P-

Figure 8: Ftz-f1RNAi x Somatic Cell Driver (C587) Figure 7: Ftz-f1RNAi x Germline Cell Driver (nanos) 
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element insertion, resulting in interruption of the gene expression (Levis et. al, 1993). These 

mutants only survive until larval stage. I will be able to compare these mutants to the flies with 

ftz-f1 knockdown in germ or somatic cells, using the same feeding, dissecting, staining, 

mounting, viewing, and quantification procedures as the ftz-f1RNAi PGCs. If ftz-f1 is necessary for 

the establishment of the PGCs, then the developing mutant ovary will have a decrease in the 

average number of PGCs correctly situated in their somatic cell niche. 

 

Summary 

 The signals that control stem cell maintenance and development, though addressed, are 

not fully understood. By understanding the signaling pathways involved in stem cell fate, we 

could potentially create therapies to regenerate and repair damaged tissues. There are many 

recognized regulators of stem cell function, however, ftz transcription factor 1 (ftz-f1), although 

previously implicated as a potential regulator of stem cell function, has yet to be fully 

characterized. Through the study the function of my ftz-f1, I will provide fundamental insights 

into the molecular mechanisms that ultimately regulate stem cell function and fate.  

With these proposed experiments, I will be able to elucidate the function of ftz-f1 in 

Drosophila oogenesis, and determine its role in the establishment of GSCs in their niche.  Given 

the importance of stem cells, this research will be beneficial in understanding all aspects of stem 

cell function regulation through long range signals, particularly steroid hormones and their 

nuclear receptors. This research will aid in the goal of being able to have a complete grasp on the 

molecular mechanisms underlying stem cell functions, which ultimately can allow us to create 

regenerative and repairing therapies.  
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Drosophila Ovarian Stem Cell Establishment is Regulated by Nuclear Hormone Receptor 

ftz-f1 
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to the scientific journal Development.   



14 
 

KEYWORDS  

Drosophila, germline stem cells, establishment, primordial germ cells, development, niche, 

ecdysone 

 

SUMMARY STATEMENT  

ftz-f1 is required for establishment of germline stem cells in their somatic cell niche.  

 

ABSTRACT 

Stem cells are a fundamental underpinning of tissue biology. Loss of the self-renewing function 

of stem cells leads to conditions such as infertility and tissue wasting. Stem cells integrate a 

variety of signals to maintain their fate and proliferative capacity. Although intrinsic and local 

cues are well studied, less is known about how extrinsic signals, such as hormones, affect stem 

cell fate and function. The highly characterized Drosophila melanogaster steroid hormone 

ecdysone regulates germline stem cell (GSC) proliferation and self-renewal, as well as oogenesis 

and metamorphosis. Though many genes, including nuclear hormone receptor ftz transcription 

factor 1(ftz-f1), are thought to be targets of ecdysone signaling, it is unclear how these targets 

impact GSC fate and function. To explore the role of ftz-f1 in ovarian stem cells, we used the 

UAS-GAL4 system and RNA interference (RNAi) to reduce ftz-f1 function specifically in germ 

cells or surrounding somatic cells. We demonstrate that ftz-f1 is intrinsically required for the 

establishment of the proper number of GSCs during development. Reduced ftz-f1 function in 

germ cells leads to a significant decrease in the average number of GSCs. At larval stages, ftz-f1 

depleted ovaries contain a number of undifferentiated PGCs located significantly further away 

from the terminal filament stacks. Our results also suggest that ftz-f1 is required in ovarian 

somatic cells during development for proper movement of germ cells out of the germarium in 
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adult stages. Taken together, these data indicate that ftz-f1 function during juvenile stages is 

critical for the establishment of GSCs and development of their progeny.   
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INTRODUCTION   

Stem cells have emerged as one of the fundamental underpinnings of tissue biology because 

of their potential to replenish, regenerate, and repair damaged tissues, including adult tissues 

(Lawson et. al., 2009). Stem cells are undifferentiated cells, defined by their ability at the single 

cell level to self-renew and proliferate to produce mature daughter cells, both nonrenewing and 

terminally differentiated (Wagers & Weissman, 2004). Stem cells have become an integral part 

in current therapies for human diseases, including neurological disorders, congenital heart 

defects, and chronic lung disease (Hassan et. al., 2009; Bernstein and Srivastava, 2011; 

Gomperts and Strieter, 2006). To effectively wield stem cells for therapeutic interventions, such 

as disease modeling, tissue repair, and the prevention and treatment of birth defects, it is essential 

to further explore their regulation and function.   

Stem cell proliferation and self-renewal are tightly controlled by many layers of regulation, 

including local signals from their niche, intrinsic cues, and long-range signals, such as nutrition 

and hormones, that maintain stem cell fate and proliferative capacity (Drummond-Barbosa, 

2008). Many studies have addressed how intrinsic and local regulators maintain stem cell 

identity and proliferative potential, but much less is known about the direct actions of hormones, 

particularly steroid hormones, on stem cells and the niche cells that support them, despite the 

therapeutic relevance of exploring this level of regulation (Ables and Drummond-Barbosa, 2017 

review). Steroid hormone signaling is critical for a wide variety of biological processes. Among 

other actions, steroid hormone signaling modulates gene transcription via interaction with 

intracellular nuclear receptors, and regulates expression of various genes in a network-like 

manner to initiate complex events involved in nearly every aspect of development and 

physiological responses (Evans, 1988; Beat et al., 1996; Beat and Klug, 2000).  
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Steroid hormone signaling has a critical role in various mammalian stem cells. The mammary 

stem cell niche responds readily to hormonal stimuli, including stem cell expansion and tissue 

growth (Joshi et al., 2012). The steroid hormone estrogen regulates the cell cycle activity of 

hematopoietic stem cells (HSCs) in the bone marrow (Nakada et al., 2014). Estrogen is also 

involved in establishment of adult quiescent satellite cell populations at puberty and their re-

establishment during regeneration (Kim et. al., 2016). Although critical roles for stem cells have 

been identified in a variety of tissues, we know remarkably little about how steroid hormones 

influence the development and establishment of tissue-resident stem cell populations (Gilboa, 

2015). 

The Drosophila melanogaster ovary provides an excellent model for the study of tissue-

resident stem cell development and function. Stem cells can be easily visualized in their 

microenvironment while also utilizing the elegant genetic and experimental techniques available 

in the Drosophila system.  The adult female Drosophila has two ovaries that are composed of 

16-20 ovarioles (Spradling, 1993). Each ovariole functions as a string of progressively more 

mature follicles, with every follicle containing a developing oocyte (Spradling, 1993) (Figure 1 

A). At the anterior tip of each ovariole is the germarium, which contains GSCs (Figure 1 A 

boxed and D). These GSCs reside in a specialized somatic cell niche, composed of cap cells and 

terminal filament cells, which modulates GSC behavior (Xie, 2013). The GSCs are anchored to 

the anterior end of the germarium and are recognized by their anteriorly localized fusomes, 

which easily distinguish the GSCs from their differentiated daughter cells, or cystoblasts (Song 

and Xie, 2002). A GSC divides asymmetrically to generate one stem cell and one cystoblast. The 

cystoblast divides precisely four times to produce 16 interconnected cystocytes that are then 

encapsulated by a layer of follicle cells to form an egg chamber (King, 1970; Mahowald and 
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Kambyselllis, 1980; Spradling, 1993). Stem cell function can be genetically manipulated and 

visualized in vivo, as all of the GSC progeny are anatomically arranged in a linear fashion 

The Drosophila ovary forms during embryogenesis by association of somatic gonadal 

precursors and primordial germ cells (PGCs) (Figure 1 B) (Bhat and Schedl, 1997). During early 

stages of ovary development, PGCs, including potential germline stem cell (GSC) precursors, 

along with other somatic cell precursors proliferate and differentiate, beginning the establishment 

of the GSC niche (King, 1970). Somatic proliferation is needed during these stages to allow 

correct formation of 16-20 ovarioles (Gilboa and Lehmann, 2006). The number of ovarioles an 

ovary contains is determined during larval development through the morphogenesis of terminal 

filaments (TFs), each of which is composed of seven to ten terminal filament cells (TFCs) (Godt 

and Laski, 1995; King et al., 1968). Differentiation of the TFs begin during mid-third larval 

instar and complete the TF stacks, along with the cap cells at the base of these stacks, are formed 

by late third larval instar (Xie et al., 2002). Since there are more PGCs than needed for the 

formation of adult ovarioles, each of which contains two to three GSCs, the extra PGCs 

differentiate, bypassing the stem cell stage (King, 1970; Bhat and Schedl, 1997). These germ 

cells thus fuel the first wave of egg production, immediately following eclosion. Only the PGCs 

anchored to TFs and cap cells by DE-cadherin (Song and Xie, 2002) remain undifferentiated and 

become GSCs (Zhu and Xie, 2003).   
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Figure 1. The Drosophila ovary as a model for establishment of GSCs in their somatic cell niche. (A) 

Schematic of Drosophila ovariole. Germ cells in pink and somatic cells in blue. Germarium boxed. (B) 

Schematic of Mid Larval 3 (ML3) ovary (144 hours AEL). Terminal filament precursors in dark grey, 

primordial germ cells (PGCs) in pink with their fusomes in red, and escort cell precursors or intermingled 

cells in green. (C) Schematic of Late Larval 3 (LL3) ovary. Terminal filament stacks in white, cap cell 

precursors in navy blue, PGCs in pink with their fusomes in red, and escort cell precursors or 

intermingled cells in green. (D) Schematic of the adult germaria (boxed in A). Terminal filament and cap 

cells in navy blue, GSCs in light pink, escort cells in green, differentiated germ cells (cystobloast, 2-, 4-, 

8-, and 16- cell cysts) in dark pink, follicle stem cells in navy blue with their progeny, the follicle cells, in 

blue.  
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The Drosophila ovary is very responsive to steroid hormones. The predominant steroid 

hormone in Drosophila is ecdysone, which is structurally similar to the human sex steroid 

hormone estrogen (Mangelsdorf et al., 1995). Ecdysone has been widely implicated in a variety 

of cellular processes during Drosophila oogenesis (Belles and Piulachs, 2015 and Ables and 

Drummond-Barbosa, 2017). Ecdysone is required for follicle survival (Buszczak et al., 1999), 

regulates border cell migration (Bai et al., 2000), and is involved in other critical steps of 

oogenesis, such as eggshell formation and yolk deposition (Jang et al., 2009).  

Most importantly, ecdysone signaling is critical for the development and maintenance of 

GSCs and their surrounding niche cells. Ecdysone signaling maintains the structure of the GSC 

niche and allows somatic niche cells to support a normal rather than a reduced number of GSCs 

(Morris and Spradling, 2012). Ecdysone signaling directly stimulates GSC proliferation and 

directly promotes maintenance, or the ability to self-renew, of GSCs (Ables and Drummond-

Barbosa, 2010). Female flies with global reductions in ecdysone (ecdysoneless mutants) and 

ecdysone signaling (EcR mutants) show decreased GSC proliferation and were rapid loss of 

GSCs from the niche, indicative of a failure to maintain GSC fate (Ables and Drummond-

Barbosa, 2010). Ecdysone signaling supports the differentiation of GSC progeny, as well as their 

encapsulation by follicle cells (Konig et al., 2011; Ables et al., 2016).  

Ecdysone is also required for Drosophila growth and metamorphosis at all stages of 

development and is patterned spatially as well as temporally, depending on the tissue type and 

developmental stage (Konig et al., 2011). Ecdysone induces histolysis of nearly all of larval 

tissues, and promotes differentiation and morphogenesis of structures composing the adult fly, 

including formation of the adult ovary (Baehrecke, 1996; Gancz and Gilboa, 2011).  In ovary 

development, ecdysone receptors are required to coordinate development of niche somatic cells 
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and GSC precursors. At early third instar, ecdysone receptors repress precocious differentiation 

of niche precursor cells and PGCs. At mid-third instar, ecdysone signaling initiates PGC 

differentiation (Gancz and Gilboa, 2011). The ecdysone signaling cascade induces the onset of 

several early genes, including the nuclear hormone receptor, ftz transcription factor 1 (ftz-f1). 

There are two different mRNA isoforms of ftz-f1: ftz-f1-RA (short isoform) and ftz-f1-RB 

(long isoform). Both isoforms are transcribed from the same gene locus and share a common C-

terminal region, but contain different N-terminal regions (Lavorgna et al., 1991, 1993) (Figure 

2). ftz-f1-RA is considered the early isoform and is expressed in early embryos. This mRNA 

isoform is maternally loaded into oocytes and required for embryogenesis (King-Jones and 

Thummel, 2005).  ftz-f1-RB expression is detected in late-stage embryos, larvae, prepupae, and 

adults (Ueda et al., 1990; Lavorgna et al., 1993; Murata et al., 1996).  
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Figure 2.  Schematic of ftz-f1 gene locus. Blue bolded line indicates ftz-f1 gene span while the two lines 

below are representative of the two differing ftz-f1 isoforms. Of the isoforms, black lines indicate introns; 

orange and grey squares indicate exons; red squares indicate regions targeted by shRNAi in ftz-f1JF02738 

and ftz-f1KK108995. Green arrow indicates ftz-f1::GFP insertion site.  
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 Several lines of evidence demonstrate that ecdysone and ftz-f1 work in concert to control 

growth and metamorphosis (Broadus et al., 1999; Sultan et al., 2014). ftz-f1 is also required for 

multiple developmental processes and is expressed throughout development, with especially high 

levels during late pupal stage immediately after ecdysteroid pulses (Sultan et al., 2014). Using an 

antibody against Bftz-f1, staining can be found in most larval tissues 44-46 hours after egg laying 

(AEL), for example the salivary gland, fat body, trachea, ring gland, epidermis, and guts, but at 

this time point, staining of gonads was not detectable (Yamada et al., 2000). ftz-f1 has been 

described as a competence factor necessary for stage-specific responses to ecdysone during 

Drosophila metamorphosis (Broadus et al, 1999). ftz-f1 is stage-specifically expressed in mid-

prepupae, during the period of low ecdysone titer, and is essential for genetic and biological 

responses to ecdysone that distinguish the prepupal-pupal transition. ftz-f1 mutants pupariate 

normally in response to the late larval pulse of ecdysone, but display defects related to problems 

during the prepupal-pupal transition, such as adult head eversion, leg elongation, and salivary 

gland cell death (Broadus et al., 1999).  In male adults, when ftz-f1 is depleted in the Drosophila 

testis, it induces GSC loss, similar to the phenotype resulting from the knockdown of ecdysone 

receptor (EcR) (Li et al, 2014). Furthermore, mosaic analysis confirmed that these two factors 

are cell autonomously required for cyst stem cell maintenance (Li et al, 2014).  Over-expression 

of ftz-f1 in the somatic cells of the ovary results in precocious PGC differentiation (Gancz and 

Gilboa, 2011). There is a known connection between ftz-f1 and ecdysone but it is unclear how 

ftz-f1 specifically impacts female GSC establishment and function.   

Although many genes, including ftz-f1, are thought to be downstream targets of ecdysone 

signaling, it is unclear how these targets impact GSC fate and function. We hypothesize that ftz-

f1, a downstream target of ecdysone, is necessary for proper GSC function and for the 
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establishment of tissue resident stem cells in their niche in Drosophila oogenesis. To explore the 

role of ftz-f1 in ovarian stem cells, we used the UAS-GAL4 system in combination with short 

hairpin RNA interference (RNAi) to reduce ftz-f1 function specifically in germ cells or the 

surrounding somatic cells. We demonstrate that ftz-f1 is intrinsically required for the 

establishment of the proper number of GSCs during development. Reduced ftz-f1 function in 

somatic cells of late third larval instar ovaries leads to disorganization of the GSCs while 

reduced ftz-f1 function in germ cells leads to a significant decrease in the average number of 

GSCs. Further, our results suggest that ftz-f1 is also required in ovarian somatic cells during 

development for proper movement of germ cells out of the germarium in adult stages. Reduced 

ftz-f1 function in ovarian somatic cells during development leads to enlarged germaria with a 

significant increase the average number of 16-cell cysts. Taken together, our data suggests that 

ftz-f1 function during juvenile stages is critical for the establishment and development of GSCs 

and their progeny. 
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RESULTS  

 

ftz-f1 is widely expressed in the adult and larval ovary 

ftz-f1 is expressed in a variety of tissue types and required for multiple developmental 

processes, including adult head eversion, leg elongation, and salivary gland cell death (Broadus 

et al, 1999). The pattern and localization of  ftz-f1 expression in the adult and larval ovary has not 

been reported, despite its known connection with ecdysone in oogenesis, including its sufficing 

for PGC differentiation (Gancz and Gilboa, 2011). To asses ftz-f1 localization in the adult and 

larval ovary, we took advantage of a reporter transgene in which the coding region of green 

fluorescent protein (GFP) was inserted in frame on the C-terminal end of the ftz-f1 locus 

(Spokony and White, personal communication), creating a fusion protein (ftz-f1::GFP) (Figure 

3). To identify cell type-specific expression of ftz-f1::GFP in the adult ovary, we performed co-

immunofluorescence with anti-Hts, a fusome and follicle cell membrane marker, and anti-LamC, 

a marker of the nuclear envelope of cap cells. We found that ftz-f1::GFP is broadly expressed at 

varying levels throughout the adult ovary, including the germarium and follicles at each stage of 

oogenesis (Figure 3 A and A’). ftz-f1 is expressed in an array of different cell types in the adult 

ovariole, both somatic and germline. For the germline cell populations, ftz-f1 is highly expressed 

in the GSCs and their differentiated daughter cell, the cystoblast, with less expression in the 2- , 

4-, 8-, and 16- cell cysts (Figure 3 B and B’). In the adult ovary, ftz-f1 is expressed in a variety of 

somatic cells, including high expression in the escort cells, the follicle stem cells, and their 

progeny, the follicle cells (Figure 3 C and C’).  

We were also interested in ftz-f1 expression at an earlier point in development, when 

germ cells and somatic cells coalesce to form the larval ovary. To unambiguously identify germ 
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cells, we co-stained larval ovaries with anti-Hts, anti-LamC, and Vasa, a germ cell marker. Like 

the adult ovary, the larval ovary also has ftz-f1::GFP expression. ftz-f1 is highly expressed in a 

subset of the PGCs closer to the terminal filament stacks (Figure 3 D and D’, circled and co-

stained with Vasa, a germ-cell specific protein). There are a portion of the PGCs further away 

from the terminal filament stacks  and at the posterior end of the LL3 ovary that do not seem to 

express ftz-f1 (Figure 3 D and D’, arrowed and co-stained with Vasa). In the LL3 developing 

ovary, there seems to be little expression in somatic cell populations, including terminal filament 

cells and precursor escort cells, called intermingled cells (Figure 3 D and D’). This somatic cell 

expression pattern in the LL3 ovary differs from the somatic cell expression pattern in the adult 

ovary, where the escort and follicle cells highly express ftz-f1. This suggests that there is a point 

in development where ftz-f1 somatic cell expression changes. Taken together, these data suggest 

that ftz-f1 is indeed expressed in germ cells and somatic cells in both the LL3 and adult ovary.  
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Figure 3. ftz-f1 expression in adult and larval germ and somatic cell populations. (A and A’) ftz-f1 

expression throughout the Drosophila ovariole. Scale bar, 10 um. (B and B’) ftz-f1 expression in a GSC 

circled in pink, escort cells circled in yellow, and a cystoblast circled in white. Arrow head indicates cap 

cell directly anterior to GSC. Scale bar, 20 um (C and C’) Somatic cell populations of escort cells circled 

in yellow, follicle stem cells circled in blue. Adult germaria labeled with anti-GFP (green; endogenous 

ftz-f1) anti-Hts (red; fusomes and follicle cell membranes), and anti-LamC (red; nuclear envelope of cap 

cells). Scale bar, 20 um (D and D’) ftz-f1 expression in LL3 ovary. PGCs expressing ftz-f1 circled in pink 

while PGCs not expressing ftz-f1 are arrowed. LL3 ovary labeled with anti-GFP (green; endogenous ftz-

f1), anti-Hts (red; fusomes and follicle cell membranes), and anti-Vasa (white; germ cells). Scale bar, 50 

um.  
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ftz-f1 is intrinsically required in PGCs during development for establishment of the proper 

number of adult GSCs  

Expression of ftz-f1::GFP in adult GSCs suggested that ftz-f1 could be important for GSC 

regulation. We therefore sought to discover whether ftz-f1 is intrinsically required in GSCs for 

self-renewal. To decrease ftz-f1 expression in germ cells, we took advantage of the UAS-GAL4 

system to induce tissue specific expression of a short hairpin RNA (shRNAi) targeted against the 

shared, common region between the two isoforms of ftz-f1 (Figure 2). We crossed a previously 

described ftz-f1 RNAi (Matunis et al., 2015),  ftz-f1JF02738, with nos.NGT-Gal4, a well-described 

germ cell-specific driver (Rørth, 1998). We immunostained nos.NGT-Gal > ftz-f1JF02738 and 

control (carrying nos.NGT-Gal4 or ftz-f1JF02738 only) ovaries with LaminC, nuclear membrane 

marker, and Hts, a component of the fusome marker. This staining allowed us to easily visualize 

and identify GSCs by their anteriorly localized fusomes (Figure 4 A and B).  

When dissected five days after eclosion, nos.NGT-Gal> ftz-f1JF02738 flies have a 

significant decrease in average number of GSCs per germaria compared to controls. We reasoned 

that if ftz-f1 was required for GSC self-renewal, then the number of ftz-f1 mutant GSCS should 

decrease faster than the rate at which normal GSCs are lost during aging. We therefore dissected 

these germ cell specific ftz-f1JF02738  flies at two later time points: eight and twelve days after 

eclosion (Figure 4 C). nos.NGT-Gal4 > ftz-f1JF02738  mutant females had a consistent and 

significant decrease in the average number of GSCs per germaria compared to controls across all 

three time points examined (Figure 4 C). Interestingly, these mutant flies showed no further 

reduction in GSC number with aging and no other obvious phenotypic abnormalities. Day five, 

eight, and twelve all had a similar significant decrease, suggesting that the decreased average 

number of GSCs in the adult ovary is not due to a loss of GSC self-renewal. Rather, these data 
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suggests that ftz-f1 is intrinsically required in germ cells during development for establishment of 

the proper number of GSCs.  

Figure 4. ftz-f1 is intrinsically required during development for establishment of the proper number of 

adult GSCs. (A and B) nos.NGT-Gal4 > yw control (A) nos.NGT-Gal4 > ftz-f1JF02738  mutant (B) 

germaria labeled with anti-Hts (red; fusomes and follicle cell membranes), anti-LamC (red; nuclear 

envelope of cap cells), and DAPI (blue; DNA) GSCs circled in white. Scale bar, 20 um. (C) Average 

number of GSCs per germarium in both nos.NGT-Gal4 > yw controls nos.NGT-Gal4 > ftz-f1JF02738  

mutants over three time points, 5, 8, and 12 days after eclosion. Error bars, mean +/- SEM. * p < 0.00001; 

Student’s two tailed T-test.  



30 
 

Reduction of ftz-f1 does not induce precocious PGC differentiation  

One possible explanation for the significant decrease in average number of GSCs per 

germaria in nos.NGT-Gal4>ftz-f1JF02738 mutant females is precocious PGC differentiation. In 

order for growth and development of varying tissues and organs, differentiation and proliferation 

are tightly regulated. The molecular mechanisms, however, can be independent of the regulation 

necessary in the same adult tissue type. During the development of the Drosophila ovary, 

ecdysone receptors are required to coordinate the development of the niche and GSC precursors 

(Gancz and Gilboa, 2011). At early third instar, ecdysone receptors repress precocious 

differentiation of both somatic cell precursors and PGCs. At mid-third instar, ecdysone signaling 

initiates PGC differentiation (Gancz and Gilboa, 2011). We tested whether ftz-f1 is a required 

component of the ecdysone response cascade required for repression of precocious 

differentiation of PGCs. Using the same UAS-GAL4 system to tissue specifically express ftz-

f1JF02738 in germ cells (nos.NGT- Gal4) as in the adult ovary, we did so in the developing LL3 

ovary. 

We used fusome morphology to evaluate differentiation in Vasa expressing PGCs (Figure 

5 A). A round fusome is indicative of undifferentiation, while an elongated fusome is indicative 

of differentiation (Spradling et al., 1994). This is because when a differentiated daughter cell 

divides to form a cystoblast, the cells remained connected due to incomplete cytokinesis. The 

fusome is thought to be an open tunnel, allowing for signals to be transported from one cell to 

another (Spradling et al., 1994). Per LL3 ovary, we counted all of the Vasa stained germ cells 

and tallied up fusome, stained with anti-Hts, into two categories: round or branched. There was 

no difference between mutant and control in regards to fusome morphology, indicating that 

knockdown of ftz-f1 in the germ cells does not induce precocious differentiation (Figure 5 C). 
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These data suggest that the significant decrease in average number of GSCs per germaria in the 

adult ovary (Figure 4 C) is not due to precocious differentiation of the PGCs in the larval ovary 

(Figure 5 C).  
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Figure 5. Reduction of ftz-f1 does not induce precocious PGC differentiation. (A and A’) nos.NGT-Gal4 

> yw control (B and B’) nos.NGT-Gal4 > ftz-f1JF02738 mutants. (A and B) labeled with anti-Hts (red; 

fusomes and follicle cell membranes), anti-Vasa (white; germ cells), and DAPI (blue; DNA). (A’ and B’) 

just red layer. White arrow distinguishes rounded undifferentiated fusome example for both control and 

mutant. Scale bar, 50 um. (C) Frequencies germ cells containing rounded (grey) or branched (red) 

fusomes. Numbers in bars indicate number of germ cells analyzed.  
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ftz-f1 is required for the establishment of proper number of GSCs at the base of the 

terminal filament stacks  

While imaging the nos.NGT-Gal4>ftz-f1JF02738 female flies, we quickly began to notice a 

mutant phenotypic trend: the mutant larval ovary germ cells appeared disorganized. When 

stained for anti-engrailed (terminal filament marker), Vasa (germ cell markers), and DAPI (DNA 

marker), we noticed that Vasa expressing germ cells were not all located directly adjacent to the 

terminal filament stacks, as observed in control (carrying nos.NGT-Gal4 or ftz-f1JF02738 only) 

ovaries (Figure 6 A and B). In order to remain undifferentiated, PGCs must be physically 

anchored to the TFs and cap cells via DE-cadherin (Song and Xie, 2002).  Fewer PGCs in close 

proximity to TFs may result in fewer GSCs in the adult germarium, which was the finding 

displayed in Figure 4. So we quantified this phenotype by measuring the distance between the 

most posterior terminal filament cell in the terminal filament stack to the center of the nucleus of 

all the germ cells in the larval ovary. We found that there was a significant increase in TF to 

germ cell distance in our mutant nos.NGT-Gal4>ftz-f1JF02738 female flies compared to controls 

(Figure 6 C).  

BMP (Bone Morphogenetic Protein) signaling is a major GSC-maintaining pathway in 

female flies. Dpp (a BMP-like ligand) acts nonautonomously over the short range from the stem 

cell niche to the GSCs in order to repress the transcription of bag of marbles (bam) (Song et al., 

2004; Chen and McKearin, 2003). bam expression is sufficient to drive differentiation of GSCs 

or cystoblasts, even in the presence of high levels of Dpp (Chen and McKearin, 2003). Mothers 

against Dpp (Mad) is a transcriptional repressor of bam and binds to transcriptional silencer 

elements in the bam promotor (Song et al., 2004; Chen and McKearin, 2003). pMAD, a marker 

of undifferentiated PGCs and GSCs, is only expressed in a subset of the PGCs that directly 
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adjacent to the TF fated to become the adult GSCs (Kai and Spradling, 2001; Gilboa et al., 2003; 

Gilboa and Lehmann, 2004). Since we saw a significant increase in the TF to germ cell distance 

was observed in the larval ovary, we hypothesized that there may be fewer undifferentiated germ 

cells (PGCs expressing pMAD) in nos.NGT-Gal> ftz-f1JF02738 larva, because they are too far 

away to make the crucial DE-cadherin physical attachment. Typically, only the PGCs that are 

directly adjacent to the TFs express pMAD (Gilboa and Lethmann, 2004). We immunostained 

nos.NGT-Gal> ftz-f1JF02738 and control larval ovaries with anti-Vasa, pMAD, anti-engrailed, and 

DAPI. This staining allowed us to visualize which Vasa- containing germ cells were also 

expressing pMAD and thus, are more likely to be maintained as GSCs (Figure 6 D and E). 

Expression in pMAD intensity in control larval ovary germ cells was more pronounced 

compared to mutant larval ovary germ cells (Figure 6 D and E). Taken together, these data 

suggest that ftz-f1 expression in PGCs promotes recruitment of PGCs to the undifferentiated pre-

GSC fate. This indicates that ftz-f1 makes PGCs competent to respond to BMP signaling.  
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Figure 6. ftz-f1 is required for the establishment of proper number of GSCs at the base of the terminal 

filament stacks. (A) nos.NGT-Gal4 > yw control (B) nos.NGT-Gal4 > ftz-f1JF02738 mutant. (A and B) 

labeled with anti- engrailed (red; terminal filaments), anti-Vasa (green; germ cells), and DAPI (blue; 

DNA). White lines indicate example distance measured from most anterior terminal filament cell to 

nuclei of the germ cell. Scale bar, 50 um. (C) Quantification of distance from the terminal filament (TF) 

stack in um for both control (grey) and mutant (red). Each dot is indicative of the distance from 1 germ 

cell to its closest terminal filament stack. (D) nos.NGT-Gal4 > yw control (E) nos.NGT-Gal4 > ftz-

f1JF02738 mutant. (D and E) labeled with anti-Vasa (red; germ cells), pMAD (green, undifferentiated germ 

cells), DAPI (blue; DNA), and anti-Engrailed (white, terminal filament cells). Example terminal filament 

cells circled in white and example germ cells circled in orange. Scale bar, 50 um.  
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Reduction of ftz-f1 in somatic cells results in pupal lethality 

Because of ftz-f1’s high expression in adult ovary escort and follicle somatic cell 

populations (Figure 3 B and C), we were interested in ftz-f1’s role in somatic cells and its indirect 

role in germ cell function. In order to confine ftz-f1 knockdown to specific somatic cell 

populations, we screened through a variety of available adult ovary somatic cell drivers including 

bric-a-brac 1 (bab1), C587, and traffic jam (tj) (Bolívar et al, 2006; Kai et al., 2005; Li et al., 

2003) in order to clarify their expression patterns and determine their suitability as tissue specific 

tools. Using the UAS-GAL4 system, we crossed various somatic cell Gal4 drivers to a UAS-GFP 

to visualize expression. We performed co-immunofluorescence with anti-Hts (fusome and 

follicle cell membrane marker), anti-LamC (marker of the nuclear envelope of cap cells), and 

DAPI in order to characterize driver specific expression in adult germaria. Bab1-Gal4 expression 

in the adult ovary was specific to the cap cells and terminal filament cells (Figure 7 A and A’). 

C587-Gal4 expression was specific to escort cells and early follicle cells (Figure 7 B and B’), 

although typically C587-Gal4 expression did not typically contain all escort cells and follicle 

cells, and varied from germarium to germarium (data not shown). Tj-Gal4 expression was 

specific to all follicle cells (Figure 7 C and C’). With these differing expression patterns, we 

were able to use the specific expression patterns of these somatic cell drivers as tools in order to 

investigate ftz-f1’s role in specific cell types of the adult ovary. 
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Figure 7. Adult ovary somatic cell driver expression. (A and A’) bab1-Gal4 expression (B and B’) C587-

Gal4 expression (C and C’) tj-Gal4 expression. Germaria labeled with GFP (green; somatic cell driver 

expression), anti-Hts (red; fusomes and follicle cell membranes), anti-LamC (red; nuclear envelope of cap 

cells), and DAPI (blue; DNA). Scale bar, 20 um.    
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Just as we wanted to specifically pinpoint certain somatic cell types, we would like to 

identify specific developmental time points. This will allow us to evaluate both temporal and 

spatial aspects of ftz-f1 to tease apart its specific role in the germaria, and particularly its indirect 

effect on GSCs. In order to knockdown ftz-f1 function, or switch on the RNAi, at varying time 

points in development, we turned to the temperature sensitive Gal4/Gal80ts system. This 

temperature sensitive system also serves as a way to bypass the extreme lethality that occurs 

when ftz-f1 is depleted from egg laying (Table 1). This system allows us to use environmental 

temperature switches, from restrictive (29oC) to permissive temperature (18oC) in order to 

mediate RNAi expression. We turned on the RNAi, or effectively knocked down ftz-f1 function 

at three time points: egg laying, LL3, and eclosion (Figure 8 A) hoping to elucidate when exactly  

ftz-f1 function is needed during development. This Gal80ts system was verified by comparing 

mutants with no Gal80ts in the background (C587-Gal4) to mutants with Gal80ts in the 

background (C587-Gal80ts). When RNAi was turned on and remained on all throughout 

development and into adulthood, these two mutants had the same phenotype, validating the 

Gal80ts system (Figure 8 C-F).  

To identify the role of ftz-f1 in adult flies, C587-Gal80ts > ftz-f1JF02738 females were 

switched from the permissive temperature (19oC) to the restrictive temperature (29oC) 1-2 days 

after eclosion (DAE) and then maintained at that temperature until dissection. This made it so 

that ftz-f1 knockdown in escort cells only occurred in adult flies. We did not see any significant 

any phenotypic differences (Figure 8 G), and no significant difference in average number of 

GSCs or 16 cell-cysts per germarium (data not shown) between control and mutant in C587-

Gal80ts > ftz-f1JF02738 females. These C587-Gal80ts > ftz-f1JF02738 and another ftz-f1 RNAi, 

crossed with the same escort cell driver, C587-Gal80ts > ftz-f1KK108995 females also had a high 
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percentage of surviving flies when RNAi was turned on 1-2 DAE and then dissected 8 days after 

eclosion, 90% and 87% respectively (Table 1).  

 C587-Gal4 it is not only expressed in escort cells of the adult female germaria, but also in 

other tissues in the fly (A. Armstrong, personal communication). When ftz-f1 expression was 

knocked down early in development (before eclosion) a large percentage of the C587-Gal80ts > 

ftz-f1JF0273 and C587-Gal80ts > ftz-f1KK108995 mutant flies failed to eclose, suggesting that C587 is 

also expressed in a tissue critical for development (Table 1). When ftz-f1 RNAi was turned on at 

late larval stage three, 144 hours after egg laying, we observed a small percentage of surviving 

mutant flies (Table 1). There were 6% of C587-Gal80ts > ftz-f1JF0273 adult flies surviving at 

eclosion and 5% of C587-Gal80ts > ftz-f1KK108995 when ftz-f1 RNAi was turned on at LL3 (Table 

1). Mutants with reduced ftz-f1 function in somatic cells at LL3 have similar, but less severe 

phenotypic abnormalities, as when ftz-f1 RNAi is turned on at egg laying (Figure 8 G).   

 As mentioned previously, knock down of ftz-f1 expression at egg laying, resulted in a 

mutant phenotype the same as C587-Gal4, with no Gal80ts in the background (explored more in 

Figure 9 and 10). This experiment yielded an even smaller percentage of surviving mutant flies. 

There were 4.72% of C587-Gal80ts > ftz-f1JF0273 and 3% of C587-Gal80ts > ftz-f1KK108995 flies 

surviving at eclosion when ftz-f1 RNAi was turned on at egg laying (Table 1). Taken together, 

ftz-f1 function in the escort cells is most important during development, some time prior to LL3. 

We cannot rule out, however, a potential role for ftz-f1 in somatic cells during pupal 

development. C587 also seemed to be expressed in other tissue in the fly, creating significant 

lethality.  

 Just as we spatial and temporally adjusted ftz-f1 function to certain developmental time 

points and only in the escort cells, we did the same with two other somatic cell drivers, bab1 and 
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tj. Using the somatic cell driver bab1, we were able to specifically knockdown ftz-f1 function in 

the terminal filament and cap cells (Figure 8 H and I). Unfortunately, this induced 100% lethality 

when turned on any earlier than eclosion, and even surprisingly created significant lethality when 

turned on 1-2 DAE, with extreme phenotypic abnormalities throughout the fly, including the 

ovary (Figure 8 H and I). There were 16% of bab1-Gal80ts > ftz-f1JF0273 and 13% of bab1-

Gal80ts > ftz-f1KK108995 flies surviving at eclosion when ftz-f1 RNAi is turned on 1-2DAE and 0% 

flies surviving when turned on at egg laying or at LL3 (Table 1). These findings suggest bab-1 

expression is clearly not limited to cap and follicle cells during development.  

 We next looked at the follicle cell driver tj. At this point, we only have follicle cell 

specific knockdown at one developmental time point: egg laying (Figure 8 D). When ftz-f1 is 

knocked down in follicle cells at egg laying, similar to the other 2 somatic cell drivers, we get 

some lethality. There are 10.6% of tj-Gal4 > ftz-f1JF02738 flies surviving at eclosion (Table 1).  

 Taken together, with the Gal4/Gal80ts system, we were able to effectively tease apart 

when and where ftz-f1 expression is needed in the somatic cells of the adult ovary. On top of 

allowing us to have temporal and spatial control of ftz-f1 expression, these experiments also 

support our confidence in both ftz-f1 RNAi drivers ftz-f1JF0273 and ftz-f1KK108995since we observed 

similar lethality and ovary phenotype results.  
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Figure 8. ftz-f1 RNAi turned on at varying time points during development. (A) Schematic depicting 

when during development ftz-f1 expression was knocked down via RNAi. (Aa) positive control with no 

Gal80ts in background (Ab) ftz-f1 expression knocked down at egg laying (Ac) ftz-f1 expression knocked 

down 1-2 DAE eclosion (Ad) ftz-f1 expression knocked down at 144 hours AEL (LL3). Example images 

from the time points displayed in A.(B) yw control (C) C587-Gal4> ftz-f1JF02738  (D) tj-Gal4> ftz-f1JF02738  

(E) C587-Gal4> ftz-f1KK108995 (F) C587-Gal80ts> ftz-f1JF0273  expression knocked down at egg laying (G) 

C587-Gal80ts> ftz-f1JF02738  expression knocked down 144 hours AEL (LL3) (H) bab1-Gal80ts> ftz-

f1JF02738expression knocked down 1-2 DAE (I) bab1-Gal80ts> ftz-f1KK108995 expression knocked down 1-2 

DAE (J) C587-Gal80ts> ftz-f1JF02738  expression knocked down 1-2 DAE. All germaria labeled with anti-

Hts (red; fusomes and follicle cell membranes), anti-LamC (red; nuclear envelope of cap cells), and DAPI 

(blue; DNA). Scale bar, 20 um.   
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Depletion of ftz-f1 in escort cells or follicle cells does not influence GSC establishment or 

self-renewal.  

 We next wanted know the role of ftz-f1 in escort cells and how its function indirectly 

affects GSCs in the adult ovary.  Escort cells exhibit extensive interactions with differentiated 

germ cells (Morris and Spradling, 2011; Xie et al., 2011). They have been shown to wrap around 

germ cells in the anterior half of the germarium and support differentiation of GSC daughters 

(Schultz et al., 2002; Decotto and Spradling, 2005). The long cellular processes of the escort 

cells appear to be involved in passing the differentiated germline cysts posteriorly (Morris and 

Spradling, 2011).  

 To decrease ftz-f1 expression in escort cells, we used the UAS-GAL4 system to induce 

tissue specific expression of two different previously characterized RNAi lines, ftz-f1JF02738 and 

ftz-f1KK108995. We tested to see if knock down in escort cells affects average number of GSCs per 

germarium. We dissected eight days after eclosion and performed co-immunoflourescence and 

stained with anti-Hts, a fusome and follicle cell membrane marker, anti-LamC, a marker of the 

nuclear envelope of cap cells, and DAPI in order to easily visualize GSCs by their anteriorly 

localized fusomes (Figure 9 A). We found that C587-Gal4 > ftz-f1JF02738 and C587-Gal4 > ftz-

f1KK108995 females do not have a significant change in average number of GSCs per germarium 

compared to controls (carrying only C587-Gal4, ftz-f1KK108995 or ftz-f1JF02738 only) (Figure 9 B, C, 

and G). Interestingly, there is a slight increase in average number of GSCs per germarium in 

mutant females compared to controls, but this did not achieve statistical significance (C587-Gal4 

> ftz-f1JF02738 with a p-value of 0.0032 and C587-Gal4 > ftz-f1KK108995 with a p-value of 0.32). 

These findings suggest ftz-f1 function in escort cells does not significantly influence average 

number of GSCs per germarium.  



44 
 

 Using the UAS-GAL4 system and two ftz-f1 RNAi lines previously mentioned, we tested 

to see if knocked down of ftz-f1 expression in another somatic cell population in the germarium, 

the follicle cells, using tj-Gal4, and measured the effects on average number of GSCs per 

germarium. In addition to labeling follicle cells in the adult germarium, traffic jam is also 

expressed in the intermingle cells of the larval ovary. The soma-to-germ cell communication 

between intermingled cells and GSCs influences GSC establishment (Gancz et al., 2011). We 

tested to see if knock down of ftz-f1 in traffic jam expressing somatic cells affects average 

number of GSCs per germarium.  

Similar to experiments using the escort cell driver C587-Gal4, we dissected eight days 

after eclosion and performed co-immunoflourescence and stained with anti-Hts, anti-LamC, and 

DAPI to easily distinguish and quantify GCSs (Figure 9 D). Similar to ftz-f1 knockdown in 

escort cells, we found that tj-Gal4 > ftz-f1JF02738 and tj-Gal4 > ftz-f1KK108995 females do not have a 

significant change in average number of GSCs per germarium compared to controls (carrying 

only tj-Gal4, ftz-f1KK108995 or ftz-f1JF02738 only) (Figure 9 E and F). There also seems to a slight 

increase in average number of GSCs, though not significant (Figure 9 G). These findings suggest 

ftz-f1 in traffic jam expressing somatic cells does not significantly affect estblishment of GSCs. 

 In order to understand ftz-f1’s role in escort and follcile cells of the ovary over time and 

devlopment, we dissected these escort cell specific ftz-f1JF02738  flies also at two other time 

points: three days earlier at 5 DAE and four days later at 12 DAE (Figure 9 H). C587-Gal4 > ftz-

f1JF02738 mutant females had no significant change in average number of GSCs per germarium 

over the three time points, compared to controls (Figure 9 H). Taken together, ftz-f1 expression 

in escort and follicle cell populations do not significantly impact average number of GSCs per 

germarium at 5, 8, and 12 DAE.  
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Figure 9. ftz-f1 knockdown in escort cells or follicle cells and its role in GSCs. (A-C) C587-Gal4 > yw 

control (B) C587-Gal4 > ftz-f1JF02738  mutant (C)  C587-Gal4 > ftz-f1KK108995  mutant. (G first 3) No 

significant change in average number of GSCs per germaria when dissected 8 DAE. (A-C) tj-Gal4 > yw 

control (B) tj-Gal4 > ftz-f1JF02738 mutant (C) tj-Gal4 > ftz-f1KK108995 mutant. (G last 3) No significant 

change in average number of GSCs per germaria when dissected 8 DAE. All germaria labeled with anti-

Hts (red; fusomes and follicle cell membranes), anti-LamC (red; nuclear envelope of cap cells), and DAPI 

(blue; DNA) GSCs circled in white. Scale bar, 20 um. (H) Average number of GSCs per germarium in 

both C587-Gal4 > yw controls C587-Gal4 > ftz-f1JF02738 mutants over three time points, 5, 8, and 12 days 

after eclosion. Error bars, mean +/- SEM. * p < 0.00001; Student’s two tailed T-test.  
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ftz-f1 knockdown in escort cells or follicle cells creates an enlarged germarium phenotype 

with a significantly higher average number of 16-cell cysts per germaria.  

Escort cells are thought to “escort” cysts out of the germarium via their dynamic 

protrusions (Schultz et al., 2002; Decotto and Spradling, 2005; Morris and Spradling, 2011). 

Once germline cysts pass through region 2a of the germarium, they lose their connections to 

escort cells and become surrounded by the follicle cells (Decotto and Spradling, 2005). Follicle 

cells encapsulate the passing cysts as they exit the germarium (Margolis and Spradling, 1995; 

Forbes et al., 1996; Zhang and Kalderon, 2000). Ecdysone signaling is necessary for proper 

escort cell function and cyst encapsulation (Konig, 2011; Morris and Spradling, 2012; Ables et 

al., 2016). We hypothesized that knock down of ftz-f1 expression in either the escort or follicle 

cells may impair cyst encapsulation, resulting in to exit the germarium. Interestingly, we noticed 

that ftz-f1 somatic cell knockdown resulted in an enlarged germaria phenotype (Figure 10 B-F). 

This prompted us to investigate whether knockdown of ftz-f1 function in either escort or follicle 

cells may affect cyst movement out of the germarium.  

To decrease ftz-f1 expression in escort cells, we used the UAS-GAL4 system to induce 

tissue specific expression of two different previously characterized RNAi lines, ftz-f1JF02738 and 

ftz-f1KK108995.  We tested to see if knock down in escort cells affects average number of 16-cell 

cysts per germarium. We dissected flies eight days after eclosion and performed co-

immunoflourescence for anti-Hts (a fusome and follicle cell membrane marker) anti-LamC (a 

marker of the nuclear envelope of cap cells) and DAPI in order to easily visualize the 16-cell 

cysts by their branched fusome, with nodes connecting 16 germ cells (Figure 10 A). We found 

that C587-Gal4 > ftz-f1JF02738 and C587-Gal4 > ftz-f1KK108995 females have a significant increase 

in the average number of 16-cell cysts per germarium as compared to controls (carrying C587-
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Gal4, ftz-f1KK108995 or ftz-f1JF02738 only) (Figure 10 B, C, and G). In addition, we hypothesize that 

there may be an increase in 2-, 4-, and 8- cell cysts but have yet to quantify those cyst numbers. 

These findings suggest that loss of ftz-f1 function in escort cells creates an enlarged germarium 

phenotype with a significant increase in average number of 16-cell cysts.  

 We then tested to see whether knock down of ftz-f1 expression in another somatic cell 

population in the germarium, the follicle cells (tj-Gal4), affects average number of 16-cell cysts 

per germarium. Similar to the escort cell driver C587-Gal4, we dissected eight days after 

eclosion and performed co-immunoflourescence with anti-Hts, anti-LamC, and DAPI to 

distinguish and quantify 16- cell cysts (Figure 10 D). Similar to the findings following ftz-f1 

knockdown in escort cells, we found that tj-Gal4 > ftz-f1JF02738 and C587-Gal4 > ftz-f1KK108995 

females have a significant increase in average number of 16-cell cysts per germarium compared 

to controls (carrying only tj-Gal4, ftz-f1KK108995 or ftz-f1JF02738 only) (Figure 10 E and F). 

Phenotypically, tj-Gal4 > ftz-f1JF02738 and tj-Gal4 > ftz-f1KK108995 ovaries are more disorganized 

than the previous escort cell mutants. These findings suggest disruption of ftz-f1 expression in 

the follicle cells creates a disorganized enlarged germarium with a significantly increase in the 

average number of 16-cell cysts per germarium compared to controls.  

 In order to understand ftz-f1’s role in the somatic cells of the ovary over time with aging, 

we also dissected escort cell specific ftz-f1JF02738  flies also at two additional time points: three 

days earlier at 5 DAE and four days later at 12 DAE (Figure 10 H). C587-Gal4 > ftz-f1JF02738 

mutant females had a significant increase in average number of 16-cell cysts per germarium over 

the three time points, compared to controls (Figure 10 H). Taken together, ftz-f1 expression in 

escort and follicle cell populations contributes to proper 16-cell cyst number at 5, 8, and 12 

DAE.  
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Figure 10. ftz-f1 knockdown in escort cells or follicle cells creates an enlarged germarium phenotype with 

a significantly higher average number of 16-cell cysts per germaria. ftz-f1 knockdown in escort cells or 

follicle cells and its role in 16-cell cysts. (A-C) C587-Gal4 > yw control (B) C587-Gal4 > ftz-f1JF02738 

mutant (C) C587-Gal4 > ftz-f1KK108995 mutant. (G first 3) Significant increase in average number of 16-

cell cysts per germaria when dissected 8 DAE. (D-F) tj-Gal4 > yw control (E) tj-Gal4 > ftz-f1JF02738 

mutant (F)  tj-Gal4 > ftz-f1KK108995  mutant. (G last 3) Significant increase in average number of 16-cell 

cysts per germaria when dissected 8 DAE. All germaria labeled with anti-Hts (red; fusomes and follicle 

cell membranes), anti-LamC (red; nuclear envelope of cap cells), and DAPI (blue; DNA) Scale bar, 20 

um. (H) Average number of 16-cell cysts per germarium in both C587-Gal4 > yw controls C587-Gal4 > 

ftz-f1JF02738 mutants over three time points, 5, 8, and 12 days after eclosion. Signifcant increase in average 

number of 16-cell cysts per germaria over time. Error bars, mean +/- SEM. * p < 0.00001; Student’s two 

tailed T-test.  
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DISCUSSION  

 

 Although ftz-f1 has been shown to be a key node in the regulation of ecdysone signaling 

in other tissue types, it has been unclear how ftz-f1 impacts GSC fate and function. Our study 

adds to a growing body of literature demonstrating that the ecdysone induced factors critical for 

morphogenesis and developmental timing in other tissue types are also integral for germline stem 

cell establishment and follicle development. While it remains unclear how ftz-f1 contributes 

mechanistically to the establishment of GSCs and progression of differentiating germ cells out of 

the germarium, our studies highlight its critical role for both actions. Given the level of structural 

and function conservation between Drosophila and mammalian hormonal signaling pathways 

and relation to tissue resident stem cells, we propose that similar connections may exist among 

mammalian subtypes. Further studies will be necessary to fully elucidate the intricate molecular 

networks needed to achieve such important biological regulation.  

 In this study, we demonstrated that ftz-f1 is expressed in both the adult and developing 

larval ovary, particularly in the germ cells of the larval ovary. ftz-f1::GFP is not expressed in the 

germ cells that are further away from the terminal filament stacks (Figure 3 D and D’). This ftz-

f1::GFP expression pattern and our nos.NGT-Gal > ftz-f1JF02738 findings, showing that ftz-f1 is 

required for the establishment of the proper number of GSCs,  gives us reason to believe that in 

the larval ovary, ftz-f1 acts as a competence factor, permitting PGCs closest to the terminal 

filament stacks to establish as undifferentiated GSCs by providing the ability to respond to BMP 

signaling (Figure 11 A and B). This finding is consistent with ftz-f1’s role in metamorphosis, as a 

competence factor for stage-specific responses to ecdysone (Broadus et al., 1999).  
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 Similar to our results, reduction of ecdysone signaling components (ftz-f1) in PGCs did 

not induce PGC differentiation in Gilboa et al., 2011. To which repression of ftz-f1 in the somatic 

cells, using tj-Gal4, of the larval ovary resulted in precocious PGC differentiation (Gilboa et al., 

2011). This suggested that ecdysone receptors in the somatic cells of the larval ovary are 

required non-autonomously to repress precocious PGC differentiation (Gilboa et al., 2011). 

Though reduction of ftz-f1 in PGCs did not induce precocious PGC differentiation, it did result in 

a significant increase in PGC distance from the terminal filament stacks, decreased BMP 

signaling, and also a significant decrease in the average number of GSCs in adults (Figure 4 and 

6). Our data, along with Gilboa et al., 2011 suggest ftz-f1 has functional roles both autonomously 

and non-autonomously in the developing larval ovary.  

 Our investigation of ftz-f1’s indirect role in somatic cells, was complicated by several, 

unanticipated interactions. When screening through available adult somatic cell drivers, all of 

which are previously published in germline stem cell related studies, we quickly realized that all 

of our chosen drivers (bab-1, C587, and traffic jam) are expressed in cell types outside of the 

ovary. Because ftz-f1 is expressed broadly throughout the developing and adult fly (Broadus et 

al., 1999), we encountered significant pupal lethality upon reduction of ftz-f1 in somatic cells. It 

is possibile that reduction of ftz-f1 in cell types outside the ovary, but still under the control of 

our drivers, may contribute to phenotypic abnormalities in the germarium. Incidentally, C587 

and traffic jam expression overlap in early follicle cells, but we see slightly different phenotypes 

(Figure 9 and 10), which could suggest independent roles for ftz-f1 in escort and follicle cells. tj-

Gal4> ftz-f1JF02738 and tj-Gal4> ftz-f1KK108995 have greater disorganization of germ cells, and 

resemble knockdown of EcR in developing escort/follicle cells (Konig et al., 2011). C587-Gal4> 
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ftz-f1JF02738 and C587-Gal4> ftz-f1KK108995 seemed to be more bulbous with a more significant 

increase in 16- cell cysts.   

 Future experiments will investigate why ftz-f1 mutant escort cells fail to “hand off” cysts 

for encapsulation. This enlarged germarium phenotype and failure to “hand off” could be due to 

a variety of mechanistic problems including but not limited to: incorrect escort cell signaling, 

problems with differentiation/specification of the oocyte, and not enough/misplacement/incorrect 

shape or size of the escort or follicle cells (Figure 11 C and D). Investigating these possibilities 

will include pMAPK, orb, and traffic jam antibody staining.  pMAPK staining will tell us if the 

escort cells are signaling correctly. Orb staining is an oocyte marker and will allow us to see if 

there is a problem with differentiation and specification. Traffic jam antibody will tell us if there 

are enough escort cell and follicle cells and if they are shaped correctly. These three different 

types of staining with allow us to see how ftz-f1 is creating this problem and the mechanism 

that’s behind it.  
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Figure 11. Conceptual diagram of ftz-f1 role in the establishment of GSCs and their progression out of 

the germaria. (A) Schematic of a control LL3 ovary. (B) ftz-f1 expression knocked down in germ cells. 

Nos.NGT-Gal4 > ftz-f1JF02738 mutant LL3 ovary with a decrease in germ cells directly adjacent to the TF 

stacks. Also containing a subset of germ cells further away from the TF stacks. (A and B) TF stacks in 

white, cap cells in navy blue, germ cells in pink with their fusomes in red, and intermingled cells 

(precursor escort cells) in green. (C) Schematic of a control adult germarium. (D) ftz-f1 expression 

knocked down in either escort or follicle cells. C587-Gal4 > ftz-f1JF0273 or tj-Gal4 > ftz-f1JF0273 mutant 

adult germaria with enlarged germaria phenotype containing a significant increase in average number of 

16-cell cysts. (C and D) GSCs in light pink, differentiated cysts in dark pink with fusomes in red, escort 

cells in green, FSC in navy blue, and follicle cells in light blue.  
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MATERIALS AND METHODS  

Drosophila strains and culture 

All Drosophila stocks were maintained on standard cornmeal/molasses/yeast medium 

(Genesee Scientific, Nutri-Fly-MF) at 22ºC-25ºC and supplemented with yeast paste. RNAi lines 

y1 v1; P{TRiP.JF02738}attP2 (ftz-f1JF02738) (Matunis et al., 2014) (Harvard Medical School) and 

P{KK108995}VIE-260B (ftz-f1KK108995) (KK) were used to knock down ftz-f1 expression. The 

following Gal4 fly stocks were used: c587-Gal4 (Kai and Spradling, 2003), UAS-

Dcr2.D(1),w;nosGal4(II)NGT (Brand and Perrimon, 1993), Hh-Gal4 (II)/ TM6B (Xie et al., 

2015), w;bab1-Gal4(48e)/TM3 (Gonzalez-Reyes et al., 2006), and Tj-Gal4 (II) (Matunis et al., 

2014). All driver expression was confirmed using reporters: w*; (UASp-tubGFP/TM3sb), y[1] 

w[*]; P{w[+mC]=UAS-mCD8::GFP.L}LL5, P{UAS-mCD8::GFP.L}2, y[1] w[1118]; 

P{w[+mC]=GMR-UAS-lacZ}3, or y[1] w[1118]; P{w[+mC]=GMR-UAS-lacZ}2. Flies were 

collected one to two days after eclosion and maintained on standard medium supplemented with 

wet yeast paste for 5 to 12 days prior to ovary dissection.  

 

Temperature-sensitive regulation of Gal4 activity 

To promote Gal4 expression specifically during points in development, the Gal4/Gal80ts 

system (McGuire et al., 2003) was used. Flies bearing a tubPGal80ts construct were raised at 18 

ºC and then shifted to 29ºC as varying time points (egg laying, LL3, and eclosion) to induce 

expression of the UAS constructs as described (Helms et al., 2017). The following Gal80ts fly 

stocks were used: TjGal4/cyo; tubGal80[ts]/MKRS (tj-Gal80ts) (E. Matunis), w;tubPGal80[ts]; 
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bab1-gal4/tm6b (bab1-Gal80ts), and hu,C587-Gal4;tubPGal80[ts] (C587-Gal80ts) (D. 

Drummond-Barbosa). 

 

Adult Immunofluorescence and microscopy  

Adult ovaries were prepared for immunofluorescence microscopy as described (Ables 

and Drummond-Barbosa, 2010). In summary, ovaries were dissected and ovarioles were teased 

apart in Grace’s medium without additives (Lonza) and fixed in 5.3% formaldehyde in Graces 

medium for 13 minutes at room temperature. Samples were washed with 0.1% Triton X-100, and 

blocked for three hours in blocking solution [(5% bovine serum albumin (Sigma), 5% normal 

goat serum (MP Biomedicals), and 0.1% Triton X-100 in PBS)] at room temperature. The 

following primary antibodies were diluted in blocking solution over night at 4ºC: mouse anti-Hts 

(1B1) (DSHB 7H9; 1:10), mouse anti-LamC (DSHB LC28.26; 1:100), chicken anti-GFP 

(Abcam #13970; 1:2000), mouse anti-hts-RC (DSHB; 1:1), rabbit anti-pMAPK (Cell Signaling 

#4370; 1:50), guinea pig anti-TJ-G6 (D. Godt; 1:5000), and mouse anti-Orb (DSHB 4H8; 1:500) 

. To detect anti-pMAPK staining, adult ovaries were dissected in Grace’s medium and Pierce 

Phosphatase Inhibitor (1 tablet: 10 ml Grace’s Media).  

AlexaFluor 488-, 568-, or 633-conjugated goat species-specific secondary antibodies 

(1:200; Molecular Probes/Invitrogen) were incubated in the dark at room temperature for two 

hours in blocking solution and counterstained with 0.5µg/mL DAPI (1:1000 in PBS; Sigma) to 

visualize nuclei. Samples were mounted in 90% glycerol containing 20.0 µg/mL N-propyl 

gallate (Sigma). Images were taken using a Zeiss LSM700 confocal microscope using ZEN 

Black 2012 software.  
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Larval Immunofluorescence and microscopy 

Larval ovaries were prepared for immunofluorescence microscopy as described 

(Matsuoka, 2013). Briefly, LL3 larvae were sorted by sex and fat bodies (with the ovary 

attached) were dissected out of larvae in Ringer’s medium (1.3 M NaCl, 50 mM KCl, 20 mM 

CaCl2, and 100 mM Hepes pH 6.9). Sample was fixed (1 volume Buffer B (100 mM 

KH2PO4/K2HPO4 pH 6.8, 450 mM KCl, 150 mM NaCl, and 20 mM MgCl2), 1 volume 37% 

formaldehyde, and 4 volumes ddH2O) for 10 minutes at room temperature. Sample was washed 

extensively with 0.1% Triton X-100 and then blocked for 30 minutes in blocking solution (5% 

normal goat serum/0.1% Triton-X in PBS). The following primary antibodies were diluted in 

blocking solution over night at 4ºC: rabbit anti-vasa (DSHB; 1:1000), mouse anti-Hts (1B1) 

(DSHB 7H9; 1:100), mouse anti-Engrailed (DHSB; 1:20), and rabbit anti-pMAD (abcam anti-

Smad3; 1:200). When primary antibody was removed, samples were then washed extensively 

with 0.1% Triton X-100 and blocked for 30 minutes at room temperature again. Samples were 

then incubated in AlexaFluor 488-, 568-, or 633- conjugated goat species-specific secondary 

antibodies (1:200; Molecular Probes/Invitrogen) for 3.5 hours at room temperature in the dark. 

Samples were washed extensively then counterstained with 0.5µg/mL DAPI (1:1000 in PBS; 

Sigma). Gentle agitation was used throughout the fixing, blocking, and staining protocol. Fat 

body was then dissected away from ovary and mounted onto a coverslip. Images were taken 

using a Zeiss LSM700 confocal microscope using ZEN Black 2012 software.  
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Larval and adult germ cell analyses 

Images were analyzed using Zeiss ZEN Blue 2012 software. In LL3 ovaries, PGCs were 

identified based on their Vasa (germ cell marker) expression, germ cell distance was measure 

from nucleus of most posterior terminal filament cell to the nucleus of the Vasa containing germ 

cell, and precocious differentiation was determined by branching of the fusome. Round fusome 

is indicative of undifferentiation when an elongation or branched fusome is indicative of 

differentiation. In the adult ovary, GSCs were identified based on their juxtaposition to cap cells 

and fusome morphology and position, as described previously (Deng and Lin, 1997) along with 

co-immunofluorescence of Vasa. All graphs were created using Prism 5. Statistical analysis of 

germline stem cell, cysts number, distance from TFs, rounded vs. branched fusomes, and so on 

was performed using Prism 5 (GraphPad Software, Inc.).  
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APPENDIX A 

Immunostaining Protocol: pMAPK, 1B1, LamC, DAPI 

 

 Precoat 1.5mL tubes with 3% BSA for each sample 

 Dissolve 2 phosphatase inhibitor tablets to 10mL Grace’s,  keep protected from light 

 Make 5.3% formaldehyde fix:    

__ X 300µL 16% FA  =             µl                                      for     samples 

__ X 600µL Grace’s media/phosphatase =            µl   

 Put fix and Grace’s on ice 

 Dissect ovaries in Grace’s/phosphatase, tease apart ovarioles, move to BSA-precoated tube 

 Fix in 1000 µL 5.3% FA for 13 min on nutator 

 Remove fix to FA waste 

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min , last wash left O/N at 4°C 

 

 

 Remove previous wash 

 Block 3hrs, RT on nutator  

 Incubate in primary 4o O/N on nutator                

 

 

 Remove primary ab 

 Wash 4x 20 min in 0.1% PBS-triton 

 Incubate in primary 4o O/N on nutator                 

 

 

 

 Remove primary ab 

 Wash 4x 20 min in 0.1% PBS-triton 

 Incubate in secondary RT 1-2 hrs on nutator in DARK  

 Wash 2x 15 min in 0.1% PBS-triton in DARK 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in DARK on nutator 

 Wash 1x 5 min in 0.1% PBS-triton in DARK 

 Aspirate off last wash, add 3 drops of mounting media, store at 4oC 

 

 

  

1

50
=

         µl rab α−pMAPK

             𝑋 500 µl Block
 

 

1

100
=

         µl mse α−LamC

             𝑋 500 µl Block
 

 

1

200
=

        µl goat α−rab (488)

      𝑋  500 µl Block 
 

1

10
=

              µl mse α−1B1

𝑋 500 µl Block
 

1

200
=

         µl goat α−mouse (568)

      𝑋 500 µl Block
 

1

1000
=

       µl DAPI (405)

         𝑋 500 µl Block
 

 



 
 

APPENDIX B 

Immunostaining Protocol: hts-RC, 1B1, LamC, DAPI 

 

 

 Precoat 1.5mL tubes with 3% BSA for each sample, leave on nutator ~1hr 

 Make 5.3% formaldehyde fix:    

__ X 300µL 16% FA  =             µl                                      for     samples 

__ X 600µL Grace’s media =            µl   

 Put fix and Grace’s on ice 

 Dissect ovaries in Grace’s, tease apart ovarioles, move to BSA-precoated tube, place on ice. 

 Fix in 1000 µL 5.3% FA for 13 min on nutator 

 Remove fix to FA waste 

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min , last wash left O/N at 4°C 

 

 Block 3hrs, RT on nutator  

 Incubate in primary 4o O/N on nutator                

 

 

 Remove and save primary ab for later use 

 Wash 4x 20 min in 0.1% PBS-triton 

 Incubate in secondary RT 1-2 hrs on nutator in DARK  

 Wash 4x 20 min in 0.1% PBS-triton  

 Incubate in primary 4o for 2 nights on nutator in DARK                          

                   

 

 Remove and save primary ab for later use 

 Wash 4x 10 min in 0.1% PBS-triton 

 Incubate in secondary RT 1-2 hrs on nutator in DARK (or 4o O/N)           

       

 

 Wash 2x 15 min in 0.1% PBS-triton in DARK 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in DARK on nutator 

 Wash 2x 10 min in 0.1% PBS-triton in DARK 

 Aspirate off last wash, add 3 drops of mounting media, store at 4oC 

 

 

  

1

1
=

              µl mse α−htsRC

𝑋 500 µl Block
 

1

10
=

         µl mouse α−1B1

             𝑋 500 µl Block
 

1

200
=

        µl α−mse (488)

      𝑋  500 µl Block 
 

1

1000
=

       µl DAPI (405)

         𝑋 500 µl Block
 

 

1

200
=

         µl goat α−mouse (568)

      𝑋 500 µl Block
 

1

100
=

         µl mouse α−LamC

             𝑋 500 µl Block
 

 



 
 

APPENDIX C 

Immunostaining Protocol: 1B1, LamC, DAPI 

 

 Precoat 1.5mL tubes with 3% BSA for each sample, leave on nutator ~1hr 

 Make 5.3% formaldehyde fix:    

__ X 300µL 16% FA  =             µl                                      for     samples 

__ X 600µL Grace’s media =            µl   

 Put fix and Grace’s on ice 

 Dissect ovaries in Grace’s, tease apart ovarioles, move to BSA-precoated tube, place on ice. 

 Fix in 1000 µL 5.3% FA for 13 min on nutator 

 Remove fix to FA waste 

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min , last wash left O/N at 4°C 

 

 Block 3hrs, RT on nutator  

 Incubate in primary 4o for 2 nights on nutator   

_______uL α–1B1 + _______uL α-LamC = ______uL ab + _______uL block        

 

 

 Remove and save primary ab for later use 

 Wash 4x 20 min in 0.1% PBS-triton               

                   

 Remove and save primary ab for later use 

 Wash 4x 10 min in 0.1% PBS-triton 

 Incubate in secondary RT 1-2 hrs on nutator in DARK (or 4o O/N)           

       

 

 Wash 2x 15 min in 0.1% PBS-triton in DARK 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in DARK on nutator 

 Wash 1x 5 min in 0.1% PBS-triton in DARK 

 Aspirate off last wash, add 3 drops of mounting media, store at 4oC 

 

  

1

10
=

         µl mouse α−1B1

             𝑋 500 µl Block
 

1

1000
=

       µl DAPI (405)

         𝑋 500 µl Block
 

 

1

200
=

         µl goat α−mouse (568)

      𝑋 500 µl Block
 

1

100
=

         µl mouse α−LamC

             𝑋 500 µl Block
 

 



 
 

APPENDIX D 

Immunostaining Protocol: orb, 1B1, LamC, DAPI 

 

 Precoat 1.5mL tubes with 3% BSA for each sample, leave on nutator ~1hr 

 Make 5.3% formaldehyde fix:    

__ X 300µL 16% FA  =             µl                                      for     samples 

__ X 600µL Grace’s media =            µl   

 Put fix and Grace’s on ice 

 Dissect ovaries in Grace’s, tease apart ovarioles, move to BSA-precoated tube, place on ice. 

 Fix in 1000 µL 5.3% FA for 13 min on nutator 

 Remove fix to FA waste 

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min , last wash left O/N at 4°C 

 

 Wash 30 min at RT on nutator in 0.5% Trition-PBS 

 Block 3 hours, RT on nutator in blocking solution 

 Incubate in primary antibody at 4oC O/N on nutator   

 

 Remove and save primary ab for later use 

 Wash 4x 20 min in 0.1% PBS-triton               

                   

 Incubate in secondary for 1-2 hours at RT on nutator in DARK  

 Wash 8x 20 min in 0.1% PBS-triton in DARK  

 Block 30 minutes, RT on nutator in blocking solution in DARK  

 Incubate in primary antibody for 2 nights at 4oC on nutator in DARK 

_______uL α–1B1 + _______uL α-LamC = ______uL ab + _______uL block        

       

       

 

 

 Remove and save primary ab for later use 

 Wash 4x 20 min in 0.1% PBS-triton in DARK 

 Incubate in secondary for 1-2 hours at RT on nutator in DARK  

 Wash 4x 20 min in 0.1% PBS-triton in DARK 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in DARK on nutator 

 Wash 2x 5 min in 0.1% PBS-triton in DARK 

 Aspirate off last wash, add 3 drops of mounting media, store at 4o

1

10
=

         µl mouse α−1B1

             𝑋 500 µl Block
 

1

1000
=

       µl DAPI (405)

         𝑋 500 µl Block
 

 

1

200
=

         µl goat α−mouse (488)

      𝑋 500 µl Block
 

1

100
=

         µl mouse α−LamC

             𝑋 500 µl Block
 

 

1

500
=

              µl mouse α−Orb

𝑋 500 µl Block
 

1

200
=

         µl goat α−mouse (568)

      𝑋 500 µl Block
 



 
 

APPENDIX E 

Immunostaining Protocol (Larval Ovaries): 1B1, Engrailed, Vasa, DAPI 

 
 

 Dissect larvae in 10x EBR in a glass dissection dish 

- Place larvae in one well for sorting by sex. Male testes are identified as big clear 

ovals embedded in posterior 1/3rd, females as much smaller, clear, round spheres 

- Move selected larva to another well  

- Remove anterior 1/4th of the larva (head region), then “roll” out the fat body from the 

remaining larvae 

- Remove the dark gut that is attached to the fat body 

- Move fat body to 10x EBR in another dissecting dish on ice 

 

 Fix sample in 1000 µL for 10 minutes at room temperature in glass dissection dish 

__ X 166.7 µL 37% FA  =             µl                                      for     samples 

__ X 166.7 µL Buffer B =            µl 

__ X 666.7 µL ddH2O =             µl       

 

 Remove fix solution to FA waste  

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min 

 Block for 30 minutes at room temperature. 

 

 Stain with primary antibody overnight at 4°C in a humidified chamber. 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with secondary antibody for 3.5 hours at room temperature in the dark. 

 

 

 

 Wash 4x 20 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber in the dark. 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with secondary antibody for 3.5 hours at room temperature in the dark. 

 

1

100
=

              µl mse α−1B1

𝑋 500 µl Block
 

1

200
=

         µl α−mouse (568)

      𝑋 500 µl Block
 

1

20
=

              µl mse α−engrailed

𝑋 500 µl Block
 

1

200
=

         µl α−mouse (488)

      𝑋 500 µl Block
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 Wash 4x 20 min in 0.1% PBS-triton 

 Block 30 minutes  

 Stain with primary antibody overnight at 4°C in a humidified chamber in the dark. 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with secondary antibody for 3.5 hours at room temperature in the dark. 

 

 

 

 Wash 3x15 minutes at room temperature. 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in the dark.  

 

 

 

 Wash 2x10 minutes at room temperature. 

 Remove wash and cover samples in mounting media  

 Place ovary containing fat bodies on slide and carefully separate ovaries from fat bodies 

as best as you can. Also remove miscellaneous debris from slide too.

1

1000
=

              µl rbt α−VASA

𝑋 500 µl Block
 

1

200
=

        µl α−rbt (633)

      𝑋  500 µl Block 
 

1

1000
=

       µl DAPI (405)

         𝑋 500 µl Block
 

 



 
 

APPENDIX F 

Immunostaining Protocol (Larval Ovaries): 1B1, Vasa, DAPI 

 

 Dissect larvae in 10x EBR in a glass dissection dish 

- Place larvae in one well for sorting by sex. Male testes are identified as big clear 

ovals embedded in posterior 1/3rd, females as much smaller, clear, round spheres 

- Move selected larva to another well  

- Remove anterior 1/4th of the larva (head region), then “roll” out the fat body from the 

remaining larvae 

- Remove the dark gut that is attached to the fat body 

- Move fat body to 10x EBR in another dissecting dish on ice 

 

 Fix sample in 1000 µL for 10 minutes at room temperature in glass dissection dish 

__ X 166.7 µL 37% FA  =             µl                                      for     samples 

__ X 166.7 µL Buffer B =            µl 

__ X 666.7 µL ddH2O =             µl       

 

 Remove fix solution to FA waste  

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min 

 Block for 30 minutes at room temperature. 

 

 Stain with primary antibody overnight at 4°C in a humidified chamber. 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Block 30 minutes  

 Stain with secondary antibody for 3.5 hours at room temperature in the dark. 

____ µL  α -mse (568) + ___ µL α -rbt (488) = ___ µL ab + ___ µL block 

 

 

 Wash 3x15 minutes at room temperature. 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in the dark.  

1

100
=

              µL mse α−1B1

𝑋 500 µl Block
 

1

200
=

         µL α−mouse (568)

      𝑋 500 µl Block
 

1

200
=

        µL α−rabbit (488)

      𝑋  500 µl Block 
 

1

1000
=

              µL rbt α−VASA

𝑋 500 µl Block
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 Wash 2x10 minutes at room temperature. 

 Remove wash and cover samples in mounting media  

 Place ovary containing fat bodies on slide and carefully separate ovaries from fat bodies 

as best as you can. Also remove miscellaneous debris from slide too. 

1

1000
=

       µL DAPI (405)

         𝑋 500 µl Block
 

 



 
 

APPENDIX G 

Immunostaining Protocol (Larval Ovaries): Engrailed, Vasa, DAPI 

 

 Dissect larvae in 10x EBR in a glass dissection dish 

- Place larvae in one well for sorting by sex. Male testes are identified as big clear 

ovals embedded in posterior 1/3rd, females as much smaller, clear, round spheres 

- Move selected larva to another well  

- Remove anterior 1/4th of the larva (head region), then “roll” out the fat body from the 

remaining larvae 

- Remove the dark gut that is attached to the fat body 

- Move fat body to 10x EBR in another dissecting dish on ice 

 

 Fix sample in 1000 µL for 10 minutes at room temperature in glass dissection dish 

__ X 166.7 µL 37% FA  =             µl                                      for     samples 

__ X 166.7 µL Buffer B =            µl 

__ X 666.7 µL ddH2O =             µl       

 

 Remove fix solution to FA waste  

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min 

 Block for 30 minutes at room temperature. 

 

 Stain with primary antibody overnight at 4°C in a humidified chamber. 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Block 30 minutes  

 Stain with secondary antibody for 3.5 hours at room temperature in the dark. 

____ µL  α -mse (568) + ___ µL α -rbt (488) = ___ µL ab + ___ µL block 

 

 

 Wash 3x15 minutes at room temperature. 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in the dark.  

 

1

20
=

              µL mse α−engrailed

𝑋 500 µl Block
 

1

200
=

         µL α−mouse (568)

      𝑋 500 µl Block
 

1

200
=

        µL α−rabbit (488)

      𝑋  500 µl Block 
 

1

1000
=

       µL DAPI (405)

         𝑋 500 µl Block
 

 

1

1000
=

              µL rbt α−VASA

𝑋 500 µl Block
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 Wash 2x10 minutes at room temperature. 

 Remove wash and cover samples in mounting media  

 Place ovary containing fat bodies on slide and carefully separate ovaries from fat bodies 

as best as you can. Also remove miscellaneous debris from slide too.



 
 

APPENDIX H 

Immunostaining Protocol (Larval Ovaries): GFP, Engrailed, Vasa, DAPI 

 
 

 Dissect larvae in 10x EBR in a glass dissection dish 

- Place larvae in one well for sorting by sex. Male testes are identified as big clear 

ovals embedded in posterior 1/3rd, females as much smaller, clear, round spheres 

- Move selected larva to another well  

- Remove anterior 1/4th of the larva (head region), then “roll” out the fat body from the 

remaining larvae 

- Remove the dark gut that is attached to the fat body 

- Move fat body to 10x EBR in another dissecting dish on ice 

 

 Fix sample in 1000 µL for 10 minutes at room temperature in glass dissection dish 

__ X 166.7 µL 37% FA  =             µl                                      for     samples 

__ X 166.7 µL Buffer B =            µl 

__ X 666.7 µL ddH2O =             µl       

 

 Remove fix solution to FA waste  

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min 

 Block for 30 minutes at room temperature. 

 Stain with primary antibody overnight at 4°C in a humidified chamber. 

 

 

 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber. 

 

 

 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Block 30 minutes  

 Stain with secondary antibody for 3.5 hours at room temperature in the dark. 

 

___ µL  α -mse (568) + ___ µL α -rbt (633) + ___µL α -ckn (488) = ____ µL ab + ___ µL block 

 

1

20
=

              µL mse α−engrailed

𝑋 500 µl Block
 

1

200
=

         µL α−mouse (568)

      𝑋 500 µl Block
 1

200
=

        µL α−rabbit (633)

      𝑋  500 µl Block 
 

1

1000
=

              µL rbt α−VASA

𝑋 500 µl Block
 

1

2000
=

              µL ckn α−GFP

𝑋 500 µl Block
 

1

200
=

         µL α−ckn (488)

      𝑋 500 µl Block
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 Wash 3x15 minutes at room temperature. 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in the dark.  

 

 

 

 Wash 2x10 minutes at room temperature. 

 Remove wash and cover samples in mounting media  

 Place ovary containing fat bodies on slide and carefully separate ovaries from fat bodies 

as best as you can. Also remove miscellaneous debris from slide too. 

1

1000
=

       µL DAPI (405)

         𝑋 500 µl Block
 

 



 
 

APPENDIX I 

Immunostaining Protocol: 1B1, Lamc, Traffic Jam, DAPI 

 

 Precoat 1.5mL tubes with 3% BSA for each sample, leave on nutator ~1hr 

 Make 5.3% formaldehyde fix:    

__ X 300µL 16% FA  =             µl                                      for     samples 

__ X 600µL Grace’s media =            µl   

 Put fix and Grace’s on ice 

 Dissect ovaries in Grace’s, tease apart ovarioles, move to BSA-precoated tube, place on ice. 

 Fix in 1000 µL 5.3% FA for 13 min on nutator 

 Remove fix to FA waste 

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min , last wash left O/N at 4°C 

 

 Wash 30 min at RT on nutator in 0.5% Trition-PBS 

 Block 3 hours, RT on nutator in blocking solution 

 Incubate in primary antibody at 4oC O/N on nutator   

 

 Remove and save primary ab for later use 

 Wash 4x 20 min in 0.1% PBS-triton               

                   

 Incubate in secondary for 1-2 hours at RT on nutator in DARK  

 Wash 8x 20 min in 0.1% PBS-triton in DARK  

 Block 30 minutes, RT on nutator in blocking solution in DARK  

 Incubate in primary antibody for 2 nights at 4oC on nutator in DARK 

_______uL α–1B1 + _______uL α-LamC = ______uL ab + _______uL block        

       

       

 

 

 Remove and save primary ab for later use 

 Wash 4x 20 min in 0.1% PBS-triton in DARK 

 Incubate in secondary for 1-2 hours at RT on nutator in DARK  

 Wash 4x 20 min in 0.1% PBS-triton in DARK 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in DARK on nutator 

 Wash 2x 5 min in 0.1% PBS-triton in DARK 

 Aspirate off last wash, add 3 drops of mounting media, store at 4oC

1

10
=

         µl mouse α−1B1

             𝑋 500 µl Block
 

1

1000
=

       µl DAPI (405)

         𝑋 500 µl Block
 

 

1

200
=

         µl goat α−guinea pig (488)

      𝑋 500 µl Block
 

1

100
=

         µl mouse α−LamC

             𝑋 500 µl Block
 

 

1

5000
=

              µl guinea pig α−Tj

𝑋 500 µl Block
 

1

200
=

         µl goat α−mouse (568)

      𝑋 500 µl Block
 



 
 

APPENDIX J 

Immunostaining Protocol (Larval Ovaries): Traffic Jam, Engrailed, Vasa, DAPI 

 
 

 Dissect larvae in 10x EBR in a glass dissection dish 

- Place larvae in one well for sorting by sex. Male testes are identified as big clear 

ovals embedded in posterior 1/3rd, females as much smaller, clear, round spheres 

- Move selected larva to another well  

- Remove anterior 1/4th of the larva (head region), then “roll” out the fat body from the 

remaining larvae 

- Remove the dark gut that is attached to the fat body 

- Move fat body to 10x EBR in another dissecting dish on ice 

 

 Fix sample in 1000 µL for 10 minutes at room temperature in glass dissection dish 

__ X 166.7 µL 37% FA  =             µl                                      for     samples 

__ X 166.7 µL Buffer B =            µl 

__ X 666.7 µL ddH2O =             µl       

 

 Remove fix solution to FA waste  

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min 

 Block for 30 minutes at room temperature. 

 

 Stain with primary antibody overnight at 4°C in a humidified chamber. 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber. 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Block 30 minutes  

1

20
=

              µL mse α−engrailed

𝑋 500 µl Block
 

1

1000
=

              µL rbt α−VASA

𝑋 500 µl Block
 

1

5000
=

              µL guinea pig α−TJ

𝑋 500 µl Block
 



77 
 

 Stain with secondary antibody for 3.5 hours at room temperature in the dark. 
____ µL  α -mse (568) + ___ µL α -rbt (633) ___ µL α –guinea pig (488) = ___ µL ab + ___ µL block 

 

 

 

 

 Wash 3x15 minutes at room temperature. 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in the dark.  

 

 

 

 Wash 2x10 minutes at room temperature. 

 Remove wash and cover samples in mounting media  

 Place ovary containing fat bodies on slide and carefully separate ovaries from fat bodies 

as best as you can. Also remove miscellaneous debris from slide too. 

1

200
=

         µL α−mouse (568)

      𝑋 500 µl Block
 

1

200
=

        µL α−rabbit (633)

      𝑋  500 µl Block 
 

1

1000
=

       µL DAPI (405)

         𝑋 500 µl Block
 

 

1

200
=

         µl goat α−guinea pig (488)

      𝑋 500 µl Block
 



 
 

APPENDIX K 

Immunostaining Protocol (Larval Ovaries): pMAD, Engrailed, Vasa, DAPI 

 
 

 Dissect larvae in 10x EBR in a glass dissection dish 

- Place larvae in one well for sorting by sex. Male testes are identified as big clear 

ovals embedded in posterior 1/3rd, females as much smaller, clear, round spheres 

- Move selected larva to another well  

- Remove anterior 1/4th of the larva (head region), then “roll” out the fat body from the 

remaining larvae 

- Remove the dark gut that is attached to the fat body 

- Move fat body to 10x EBR in another dissecting dish on ice 

 

 Fix sample in 1000 µL for 10 minutes at room temperature in glass dissection dish 

__ X 166.7 µL 37% FA  =             µl                                      for     samples 

__ X 166.7 µL Buffer B =            µl 

__ X 666.7 µL ddH2O =             µl       

 

 

 Remove fix solution to FA waste  

 Rinse with 0.1% PBS-triton 

 Wash for 10 minutes on nutator, 0.1% PBS-triton 

 Wash 2 more times >10 min 

 Incubate in primary 4o O/N on nutator               

 

 

 

 Remove primary  

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber. 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Stain with primary antibody overnight at 4°C in a humidified chamber 

 

 

 

 Remove and save primary ab for later use 

 Wash 3x 15 min in 0.1% PBS-triton 

 Block 30 minutes  

 Stain with secondary antibody for 3.5 hours at room temperature in the dark. 

1

20
=

              µL mse α−engrailed

𝑋 500 µl Block
 

1

1000
=

              µL ckn α−VASA

𝑋 500 µl Block
 

1

200
=

         µl   rabbit α−pMAD

             𝑋 500 µl Block
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____ µL  α -mse (633) + ___ µL α -rbt (488) + ___ µL α -ckn (568) = ___ µL ab + ___ µLblock 

 

 

 

 Wash 3x15 minutes at room temperature. 

 Incubate in DAPI (1:1000 in 0.1% PBS-triton), 15 min in the dark.  

 

 

 

 Wash 2x10 minutes at room temperature. 

 Remove wash and cover samples in mounting media  

 Place ovary containing fat bodies on slide and carefully separate ovaries from fat bodies 

as best as you can. Also remove miscellaneous debris from slide too. 

1

200
=

         µL α−mouse (633)

      𝑋 500 µl Block
 

1

200
=

        µL α−ckn (568)

      𝑋  500 µl Block 
 

1

1000
=

       µL DAPI (405)

         𝑋 500 µl Block
 

 

1

200
=

        µL α−rbt(488)

      𝑋  500 µl Block 
 



 
 

APPENDIX L 

Table of Fly Stocks Used  

 

  



 
 

APPENDIX M 

Table of Antibodies Used  

  

Antibodies Used Dilution Species Stains Protein Received From:

1B1 or Hts 1:10 Mouse nuclear membrane in follicle and cap cells Hu-Li Tai Shao DSHB

LamC 1:100 Mouse lamen of epithelial cells Laminin DSHB

DAPI 1:1000 N/A nuclei DAPI DSHB

Vasa 1:1000 Rabbit germ cells Vasa Paul Lasko

1:1000 Rat germ cells Vasa DSHB 

pMAPK 1:50 Rabbit Escort cell extensions and follicle cell membranes phosphorylated MAP Kinase Cell Signaling #4370

Orb 1:500 Mouse earliest marker of oocyte formation Orb DSHB

pMAD 1:200 Rabbit undifferentiated GSCs phosphorylated MAD abcam 

Engrailed 1:20 Mouse Terminal filament cell marker engrailed DHSB

Traffic Jam 1:5000 Guinea pig Intermingled cells of larval ovary and somatic cells of adult ovary traffic jam D. Godt

hts-RC 1:1 Mouse Ring canals Hu-Li Tai Shao-RC DHSB

GFP 1:2000 Chicken desired cell population abcam 



 
 

 

 

 

 


