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Abstract

In this paper, scattering of electromagnetic waves by discrete, randomly dis-

tributed objects inside a (�nite thickness or semi-in�nite) slab is addressed.

In general, the non-intersecting scattering objects can be of arbitrary form,

material and shape with a number density of n0 (number of scatterers per vol-

ume). The main aim of this paper is to calculate the coherent re�ection and

transmission characteristics for this con�guration. Applications of the results

are found at a wide range of frequencies (radar up to optics), such as attenu-

ation of electromagnetic propagation in rain, fog, and clouds etc. The integral

representation of the solution of the deterministic problem constitutes the

underlying framework of the stochastic problem. Conditional averaging and

the employment of the Quasi Crystalline Approximation lead to a system of

integral equations in the unknown expansion coe�cients. With a uniform dis-

tribution of scatterers the analysis simpli�es to a system of integral equations

in the depth variable. Explicit solutions for tenuous media and low frequency

approximations can be obtained for spherical obstacles.

1 Introduction

Multiple scattering of electromagnetic waves by a discrete collection of scatterers is
a well-studied subject, and many excellent papers are found in the journal litera-
ture, e.g., [3,5,12,23,28,29,31,34,48,51,52,56�60,62,64,66] and in textbooks, e.g.,
[15, 16, 30, 37, 53�55]. In some of these treatments, the Null-�eld approach (Water-
man's method) has been employed to solve complex deterministic electromagnetic
scattering problem, which serves as a starting point for the stochastic analysis of the
problem. The Null-�eld approach is well-documented [63,65], and a comprehensive
database of the method has been collected [38�45,67]. A simple introduction to the
method is found in Ref. 25.

The geometry analyzed in this paper generalizes the scattering geometry of earlier
analyses further, so that di�erent background materials are now possible to analyze.
The background material is practical for a controlled experimental veri�cation of
the result. The deterministic analysis of the scattering problem in this paper is an
extension of the problems treated in [18�20,22,26,27]. Moreover, the present analysis
generalizes the established results in two previous papers [14,23] to a geometry with
a more general background material. The transmitted and re�ected intensities are
conveniently represented as a sum of two terms � the coherent and the incoherent
contributions. In this paper we focus on the analysis of the coherent term.

The paper is organized as follows. In Section 2, the geometry of the multiple elec-
tromagnetic scattering problem and a representation of the incident �eld are given,
and in Section 3 the main tool to solve the problem, the integral representation, is
introduced. The integral representations are exploited in the various homogeneous
regions of the problem in Section 4, and the expansions of the surface �elds are in-
troduced in Section 5. The �nal goal of the paper is to calculate the transmitted and
re�ected �elds of the problem. This is done in Section 6. The stochastic description
of the many-body problem in this paper is made in Section 7, and two natural and
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Figure 1: The geometry of a collection of the N scatterers and the region of
prescribed sources Vi. The positions of the local origins are rp, p = 1, . . . , N , and
the radii of the maximum inscribed and the minimum circumscribed spheres of each
local scatterer are ap and Ap, respectively. The �gure also shows the orientation of
the unit normals of the surfaces, the global origin O, and the local origins Op.

important approximations � the tenuous media and low-frequency approximations
� are developed in Section 9. The paper ends with a short conclusion in Section 10
and several useful appendices. For convenience, a selection of the most important
symbols is outlined in Appendix F.

2 Prerequisites

This section contains a description of the geometry of the problem and a description
of the incident �eld with its sources in Vi.
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2.1 The geometry

We study a collection of N di�erent scatterers, where each scatterer is centered at
the location rp, which de�nes the position of the local origin Op, p = 1, 2, . . . , N ,
relative the global origin O, see Figure 1. The volume of the individual scatterer is
denoted Vsp, bounded by the surface Ssp, p = 1, 2, . . . , N . The radii of the maximum
inscribed and minimum circumscribed spheres, both centered at the local origin, of
each scatterer are denoted ap and Ap, p = 1, 2, . . . , N , respectively. We assume that
no minimum circumscribed spheres of the scatterers intersect. Each scatterer has
its own material properties, which do not have to be the same for all scatterers.

All scatterers are located in a homogeneous, isotropic slab, volume V2 � bounded
by the planes z = z1 and z = z2 � with relative permittivity ε2 and relative
permeability µ2, which can be lossless or lossy. No minimum circumscribed sphere
of the scatterers is assumed to intersect with the planes z = z1 and z = z2. Notice
that the volume V2 is con�ned by the two planes, and excludes the �nite scatterers
Vsp, p = 1, 2, . . . , N , i.e., V2 = {r ∈ R3 : z1 < z < z2, r /∈ Vsp, p = 1, 2, . . . , N}.

The half spaces to the left and to the right of the slab are denoted V1 and
V3, respectively, and they are characterized by the lossless, homogeneous, isotropic
(relative) material parameters εi and µi, i = 1, 3.

The prescribed sources of the con�guration are located in the region Vi, which
is located in V1. These sources generate an electric �eld Ei(r) and a magnetic �eld
H i(r) everywhere outside Vi. Generalizations to other locations of the sources, such
as in V2, are possible, but not pursued in this paper.

With no loss of generality, we start with a collection of perfectly conducting
obstacles in V2, and then generalize to more complex scatterers below. The reason
for this assumption is to make the derivation of the results more simple. The �nal
result holds for a collection of scatterers with arbitrary materials and geometry, as
long as the transition matrices of the scatterers are known.

In each domain, Vi, i = 1, 2, 3, the Maxwell equations are satis�ed (the time
conventions e−iωt is used throughout this paper, where ω is the angular frequency
of the problem)

∇×E(r) = iωµ0µiH(r) = ikiη0ηiH(r)

∇×H(r) = −iωε0εiE(r) = − iki
η0ηi

E(r)
r ∈ Vi, i = 1, 2, 3

where the wave number ki = ω(ε0µ0εiµi)
1/2, and the wave impedances are given by

η0 = (µ0/ε0)1/2 and ηi = (µi/εi)
1/2, i = 1, 2, 3, and ε0 and µ0 denote the permittivity

and the permeability of vacuum, respectively.
Each scatterer is characterized by the boundary condition ν̂ ×E = 0 on all Ssp,

p = 1, 2, . . . , N . The boundary condition on the interfaces z = z1 and z = z2 are{
ν̂ ×E−(rc + ziẑ) = ν̂ ×E+(rc + ziẑ)

ν̂ ×H−(rc + ziẑ) = ν̂ ×H+(rc + ziẑ)
i = 1, 2

where the subscript ± denotes the limit values of the �elds on the surface w.r.t. to
the direction of the unit normal vector, and rc = xx̂+ yŷ.
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3 Integral representation

The deterministic scattering problem, which is the �rst problem we address, is solved
by the systematic employment of two main tools � the integral representation of
the solution in a homogeneous domain and the decomposition of the Green dyadic
for the electric �eld in free space [25].

Our starting point is the three integral representations of the electric �eld in the
domains Vi, i = 1, 2, 3 [25, 50].

3.1 Integral representation in V1

The appropriate integral representation in V1 is (V1 = {r : z < z1})

− 1

ik1

∇×
{
∇×

∫∫
S1

Ge(k1, |r − r′|) · (ν̂ × η0η1H(r′))+ dS ′
}

+∇×
∫∫
S1

Ge(k1, |r − r′|) · (ν̂ ×E(r′))+ dS ′ =

{
Er(r), r inside V1

−Ei(r), r outside V1

(3.1)

where the boundary values are taken as limits from the positive side of the surface
S1 w.r.t. the unit normal vector. The total �elds in the left-hand side of the integral
representation is the sum of the incident and re�ected �elds, i.e., E = Ei + Er.
To close the surface, we have added a half sphere in the left half space of V1. This
surface integral, due to radiation conditions, gives zero contribution. The Green
dyadic for the electric �eld in free space Ge(k, |r − r′|) is

Ge(k, |r − r′|) =

(
I3 +

1

k2
∇∇

)
g(k, |r − r′|)

where the Green function g(k, |r − r′|) in free space is

g(k, |r − r′|) =
eik|r−r′|

4π|r − r′|

The top row in (3.1) holds for all points to the left of the dielectric slab. This
�eld, the re�ected �eld Er(r), is due to the slab and the inclusions in it. It satis�es
appropriate radiation conditions at in�nity.
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3.2 Integral representation in V2

The domain V2 is bounded by the planes z = z1 and z = z2 and the domain excludes
all scatterers Vsp, p = 1, 2, . . . , N . The pertinent integral representation is

− 1

ik2

∇×
{
∇×

N∑
p=1

∫∫
Ssp

Ge(k2, |r − r′|) · (ν̂ × η0η2H(r′))+ dS ′
}

+
1

ik2

∇×
{
∇×

2∑
i=1

∫∫
Si

Ge(k2, |r − r′|) · (ν̂ × η0η2H(r′))− dS ′
}

−∇×
2∑
i=1

∫∫
Si

Ge(k2, |r − r′|) · (ν̂ ×E(r′))− dS ′ =

{
E(r), r inside V2

0, r outside V2

(3.2)

where the boundary condition ν̂ × E = 0 on each Ssp, p = 1, 2, . . . , N , has been
used. The boundary values on the planar surfaces are taken as limits from negative
side of the surfaces w.r.t. to their unit normal vectors. In particular, the lower row
in (3.2) holds for all points inside a particular scatterer bounded by Ssp.

3.3 Integral representation in V3

The �nal integral representation of the domain V3 = {r : z > z2} is

− 1

ik3

∇×
{
∇×

∫∫
S2

Ge(k3, |r − r′|) · (ν̂ × η0η3H(r′))+ dS ′
}

+∇×
∫∫
S2

Ge(k3, |r − r′|) · (ν̂ ×E(r′))+ dS ′ =

{
Et(r), r inside V3

0, r outside V3

(3.3)

where the boundary values are taken as limits from the right-hand side of the surface
S2.

The top row in (3.3) holds for all points to the right of the dielectric slab. This
�eld, the transmitted �eld Et(r), is due to the slab and the inclusions in it. It
satis�es appropriate radiation conditions at in�nity.

A simple count of the number of unknown surface �elds gives four (two surface
�elds on S1 and two surface �elds on S2) plus N unknown surface �elds on the
N scatterers in the slab. In this count, the boundary conditions on each interface
have been used. The number of extinction parts (the number of di�erent, distinct
locations of the position vector r in the lower rows) in the integral representations
is: one in (3.1), two plus N in (3.2), and one in (3.2). Consequently, the number of
unknowns and equations matches. The top rows in the integral representations then
give the �elds in each speci�c volume. In particular, the re�ected and transmitted
�elds, which are the main �elds of interest in this paper.
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4 Exploiting the integral representations

The position vector, r, can take several principal positions. We exploit each of these
cases to connect the �elds in the three di�erent regions to each other.

4.1 The volume V1

Let the position vector r be located to the right of the surface z = z1, i.e., z > z1.
The incident electric �eld has an expansion in terms of the planar vector waves
ϕ+
j (kt; k1, r), see Appendix C for the de�nition, in the form

Ei(r) =
∑
j=1,2

∫∫
R2

aj(kt)ϕ
+
j (kt; k1, r) dkx dky, z > z1 (4.1)

where the expansion coe�cients aj(kt), for a given incident �eld, are obtained by the
use of (C.6) in Appendix C.2. These coe�cients are the excitation of the scattering
problem in this paper. If the incident is a plane wave, the form of the expansion func-
tions is given in Section 7.2.2. The extinction part in integral representation (3.1)
and the decomposition of the Green dyadic (D.2) imply that the expansion coe�-
cients aj(kt) have the form

aj(kt) =− 2ik1

k1z

∫∫
S1

ϕ−j
†
(kt; k1, r

′) · (ν̂ × iη0η1H(r′))+ dS ′

− 2ik1

k1z

∫∫
S1

ϕ−
j

†
(kt; k1, r

′) · (ν̂ ×E(r′))+ dS ′, kt ∈ R2, j = 1, 2

(4.2)

where k1z = (k2
1 − k2

t )
1/2

and where j is the dual index of j, i.e., 1 = 2 and 2 = 1.
Equation (4.1) is a representation of the incident �eld in the region z > z1, given
that the surface �elds are known on surface S1. The null �eld equation (4.2) is an
equation for the unknown surface �elds. The expansion functions of the incident �eld
on the left-hand side drive the equation and the whole system, since the null-�eld
equations are coupled via the boundary conditions on the surface S1.

Similarly, expanding the re�ected wave in planar vector waves for a position
vector to the left of z = z1, z < z1, we have (using (3.1) and (D.2) and interchanging
the order of integration)

Er(r) =
∑
j=1,2

∫∫
R2

rj(kt)ϕ
−
j (kt; k1, r) dkx dky, z < z1 (4.3)

where the re�ection coe�cients are given by

rj(kt) =
2ik1

k1z

∫∫
S1

ϕ+
j
†
(kt; k1, r

′) · (ν̂ × iη0η1H(r′))+ dS ′

+
2ik1

k1z

∫∫
S1

ϕ+
j

†
(kt; k1, r

′) · (ν̂ ×E(r′))+ dS ′, kt ∈ R2, j = 1, 2

(4.4)
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Hence, we need to know the two unknown tangential �elds on S1, (ν̂ ×E)+

and (ν̂ × iη0η1H)+, to compute the re�ection expansion function rj(kt) for the
inhomogeneous slab by evaluating (4.4). This is done by a system of equations,
given by (4.2) and the extinction parts of equations (3.2) and (3.3). That is taking
into account all interaction between the scatterers and the discontinuity surfaces S1

and S2, in combination with the standard boundary conditions at the interfaces.
This is done in the following sections.

4.2 The volume V2

The extinction part of the integral representation (3.2) has three principal regions,
corresponding to the position vector r not in V2, � 1) inside any of the scatterers,
2) to the left of z = z1, and 3) to the right of z = z2.

To prepare the analysis below, we decompose the Green dyadic, see (D.1). For
an observation point inside the inscribed sphere of a particular scatterer, say the
pth scatterer, we have |r − rp| < ap, where the vector rp denotes the local origin
depicted in Figure 1. The Green dyadic is then decomposed as

Ge(k2, |r − r′|) = Ge(k2, |r − rp − (r′ − rp)|)

= ik2

∑
n

vn(k2(r − rp))un(k2(r′ − rp)), r′ ∈ Ssp

for this particular scatterer. On all other scatterers, we have |r − rq| > |r′ − rq|,
where r is inside the inscribed sphere of Ssp and r

′ ∈ Ssq, q = 1, 2, . . . , N , q 6= p.
The Green dyadic is then decomposed as

Ge(k2, |r − r′|) = Ge(k2, |r − rq − (r′ − rq)|)

= ik2

∑
n

un(k2(r − rq))vn(k2(r′ − rq)) (4.5)

where r′ ∈ Ssq, q = 1, 2, . . . , N , and q 6= p.
For this choice of position of r, the integral representation in (3.2) implies with

the two decomposition of the Green dyadic above, and the plane wave decomposition
of the Green dyadic (D.2) (p = 1, 2, . . . , N)

0 = −
∑
n

αpnvn(k2(r − rp)) +
N∑
q=1
q 6=p

∑
n

f qnun(k2(r − rq))

+
∑
j=1,2

∫∫
R2

ϕ+
j (kt; k2, r)α+

j (kt) dkx dky

+
∑
j=1,2

∫∫
R2

ϕ−j (kt; k2, r)α−j (kt) dkx dky, |r − rp| < ap (4.6)
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where the expansion coe�cients, αpn and f
p
n, are de�ned as

αpn = k2
2

∫∫
Ssp

un(k2(r′ − rp)) · (ν̂(r′)× η0η2H(r′))+ dS ′, p = 1, 2, . . . , N (4.7)

and

fpn = −k2
2

∫∫
Ssp

vn(k2(r′ − rp)) · (ν̂(r′)× η0η2H(r′))+ dS ′, p = 1, 2, . . . , N (4.8)

and where the expansion functions α±j (kt) are

α+
j (kt) = −2ik2

k2z

∫∫
S1

ϕ−j
†
(kt; k2, r

′) · (ν̂ × iη0η2H(r′))− dS ′

− 2ik2

k2z

∫∫
S1

ϕ−
j

†
(kt; k2, r

′) · (ν̂ ×E(r′))− dS ′, kt ∈ R2, j = 1, 2 (4.9)

and

α−j (kt) = −2ik2

k2z

∫∫
S2

ϕ+
j
†
(kt; k2, r

′) · (ν̂ × iη0η2H(r′))− dS ′

− 2ik2

k2z

∫∫
S2

ϕ+
j

†
(kt; k2, r

′) · (ν̂ ×E(r′))− dS ′, kt ∈ R2, j = 1, 2 (4.10)

Equation (4.6) can be written as

Eexcp(r)
def
=
∑
n

αpnvn(k2(r − rp)) =
N∑
q=1
q 6=p

∑
n

f qnun(k2(r − rq))

+
∑
j=1,2

∫∫
R2

ϕ+
j (kt; k2, r)α+

j (kt) dkx dky

+
∑
j=1,2

∫∫
R2

ϕ−j (kt; k2, r)α−j (kt) dkx dky, |r − rp| < ap (4.11)

where Eexcp(r) is the exciting �eld at the position of the scatterer located at rp.
This �eld consists of the contributions from the two planar surfaces S1 and S2 plus
the scattered �elds from all scatterers except the contribution from the pth scatterer
itself.

The transition matrix of the pth scatterer, T pnn′ , connects the expansion coe�-
cients αpn in (4.7) and fpn in (4.8) to each other, viz.,

fpn =
∑
n′

T pnn′α
p
n′ , p = 1, 2, . . . , N (4.12)
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The transition matrix T pnn′ is the linear relation between the expansion coe�cients
of the scattered �eld, fpn, in terms of outgoing spherical vector waves, un(k2(r−rp)),
at the local origin rp, and the expansion coe�cients, αpn, of the local excitation in
terms of the regular spherical vector waves, vn(k2(r − rp)), at the local origin rp,
see (4.11).

To proceed, expand the unknown surface �eld on the pth scatterer, iν̂×η0η2H , in
the tangential regular spherical vector waves. This set is a complete set of expansion
functions in the space of square integrable tangential functions [1]. We have

iη0η2 ν̂(r)×H(r)|+ =
∑
n

βnν̂(r)× vn(k2(r − rp)), r ∈ Sp, p = 1, 2, . . . , N

where n denotes the index set {τ , σ,m, l}, and where τ is the dual index of τ , i.e.,
1 = 2 and 2 = 1. Introduce the two matrices

Rp
nn′ = −ik2

2

∫∫
Ssp

vn(k2(r − rp)) · (ν̂(r)× vn′(k2(r − rp))) dS

and

Qp
nn′ = −ik2

2

∫∫
Ssp

un(k2(r − rp)) · (ν̂(r)× vn′(k2(r − rp))) dS

Then, from (4.7) and (4.8)

fpn = −
∑
n′

Rp
nn′β

p
n′ , αpn =

∑
n′

Qp
nn′β

p
n′ , p = 1, 2, . . . , N

and formal elimination of the expansion coe�cients βpn gives

T pnn′ = −
∑
n′′

Rp
nn′′(Q

p)−1
n′′n′ (4.13)

This is the classic construction of the transition matrix by means of the Null-�eld
approach (Waterman's method). The mathematical justi�cation of the Null-�eld
approach has been the subject of intensive research. Some of the e�orts are reported
in the literature [8�10,21,49]. Next, rewrite (4.11) by translating the planar vector
waves to the local origin Op, i.e.,

∑
n

αpnvn(k2(r − rp)) =
N∑
q=1
q 6=p

∑
n

f qnun(k2(r − rq))

+
∑
j=1,2

∫∫
R2

ϕ+
j (kt; k2, r − rp)eik+

2 ·rpα+
j (kt) dkx dky

+
∑
j=1,2

∫∫
R2

ϕ−j (kt; k2, r − rp)eik−2 ·rpα−j (kt) dkx dky, |r − rp| < ap
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where k±2 = kt±k2zẑ. We now use the translation properties of the spherical vector
waves, see Appendix B and [25]

un(k2(r − rq)) =
∑
n′

Pnn′(k2(rp − rq))vn′(k2(r − rp)), |r − rp| < |rp − rq|

and (D.5), i.e.,

ϕ±j (kt; k2, r − rp) =
∑
n

B±nj
†
(kt)vn(k2(r − rp))

We get

∑
n

αpnvn(k2(r − rp)) =
N∑
q=1
q 6=p

∑
nn′

f qnPnn′(k2(rp − rq))vn′(k2(r − rp))

+
∑
n

∑
j=1,2

∫∫
R2

B+
nj
†
(kt)vn(k2(r − rp))eik+

2 ·rpα+
j (kt) dkx dky

+
∑
n

∑
j=1,2

∫∫
R2

B−nj
†
(kt)vn(k2(r − rp))eik−2 ·rpα−j (kt) dkx dky, |r − rp| < ap

The orthogonality of the regular spherical vector waves on a spherical surface implies

αpn =
N∑
q=1
q 6=p

∑
n′

f qn′Pn′n(k2(rp − rq)) +
∑
j=1,2

∫∫
R2

B+
nj
†
(kt)e

ik+
2 ·rpα+

j (kt) dkx dky

+
∑
j=1,2

∫∫
R2

B−nj
†
(kt)e

ik−2 ·rpα−j (kt) dkx dky, p = 1, 2, . . . , N (4.14)

Equations (4.12) and (4.13) will be used in (4.14), when we in Section 5.3 derive
the �nal system of equations for the deterministic system for a �nite number of
scatterers in the slab.

For a position vector to the left of z = z1, z < z1 (the global origin O is located
in V2, see Figure 1), we are using (4.5) for the expansion of the Green dyadic on
all Ssp in combination with (D.3), and (D.2) on Si, i = 1, 2, in the extinction part
of the integral representation (3.2). The orthogonality of the plane waves ϕ−j on a
planar surface yields

0 =
2ik2

k2z

∑
n

B−nj(kt)
N∑
p=1

e−ik−2 ·rp

∫∫
Ssp

vn(k2(r′ − rp)) · (ν̂(r′)× iη0η2H(r′))+ dS ′

− 2ik2

k2z

2∑
i=1

∫∫
Si

ϕ+
j
†
(kt; k2, r

′) · (ν̂ × iη0η2H(r′))− dS ′

− 2ik2

k2z

2∑
i=1

∫∫
Si

ϕ+
j

†
(kt; k2, r

′) · (ν̂ ×E(r′))− dS ′, kt ∈ R2, j = 1, 2
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where k−2 = kt − k2zẑ, and where k2z = (k2
2 − k2

t )
1/2
. The surface �elds on Si,

i = 1, 2, are taken from the inside of the slab.
For a position vector to the right of z = z2, z > z2, we get similarly

0 =
2ik2

k2z

∑
n

B+
nj(kt)

N∑
p=1

e−ik+
2 ·rp

∫∫
Ssp

vn(k2(r′ − rp)) · (ν̂(r′)× iη0η2H(r′))+ dS ′

− 2ik2

k2z

2∑
i=1

∫∫
Si

ϕ−j
†
(kt; k2, r

′) · (ν̂ × iη0η2H(r′))− dS ′

− 2ik2

k2z

2∑
i=1

∫∫
Si

ϕ−
j

†
(kt; k2, r

′) · (ν̂ ×E(r′))− dS ′, kt ∈ R2, j = 1, 2

where k+
2 = kt + k2zẑ. The surface �elds on Si, i = 1, 2, are taken from the in-

side of the slab. These last two relations are not explicitly used in the paper, but
serve as consistency checks. However, these relations play a role in the elimina-
tion of the unknown surface �elds if a di�erent set of expansion functions than the
expansions (5.1) and (5.2) are used.

Finally, we let the position vector r be located in V2. Moreover, assume that the
observation point lies outside all minimum circumscribed spheres of the scatterers,
i.e., the position vector r satis�es |r − rp| > Ap for all p = 1, 2, . . . , N , and the
Green dyadic is decomposed as in (4.5).

Outside all circumscribed spheres, we get, using (4.5) in the upper row in (3.2)
and using (D.2) in the integrals over S1 and S2 in (3.2)

E(r) =
∑
n

N∑
p=1

fpnun(k2(r − rp)) +
∑
j=1,2

∫∫
R2

ϕ+
j (kt; k2, r)α+

j (kt) dkx dky

+
∑
j=1,2

∫∫
R2

ϕ−j (kt; k2, r)α−j (kt) dkx dky,

r ∈ V2 and |r − rp| > Ap for all p = 1, 2, . . . , N (4.15)

where fpn and a
±
j (kt) are given in (4.8), (4.9) and (4.10), respectively. This expression

gives the �eld inside the slab provided the unknowns, fpn and α±j (kt), can be found.

4.3 The volume V3

Let the position vector r be located to the left of z = z2, z < z2. The integral
representation (3.3), the decomposition of the Green dyadic (D.2) imply

0 =
2ik3

k3z

∫∫
S2

ϕ+
j
†
(kt; k3, r

′) · (ν̂ × iη0η3H(r′))+ dS ′

+
2ik3

k3z

∫∫
S2

ϕ+
j

†
(kt; k3, r

′) · (ν̂ ×E(r′))+ dS ′, kt ∈ R2, j = 1, 2

(4.16)
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where k3z = (k2
3 − k2

t )
1/2
.

Similarly, for a position vector to the right of the surface z = z2, z > z2, we get a
representation of the transmitted �elds in planar vector waves. Analogously to the
analysis above, we obtain

Et(r) =
∑
j=1,2

∫∫
R2

tj(kt)ϕ
+
j (kt; k3, r) dkx dky, z > z2 (4.17)

where the transmission coe�cients are given by

tj(kt) =
2ik3

k3z

∫∫
S2

ϕ−j
†
(kt; k3, r

′) · (ν̂ × iη0η3H(r′))+ dS ′

+
2ik3

k3z

∫∫
S2

ϕ−
j

†
(kt; k3, r

′) · (ν̂ ×E(r′))+ dS ′, kt ∈ R2, j = 1, 2

(4.18)

5 Expansions of surface �elds

To solve the re�ection and transmission problem, we need to eliminate the unknown
surface �elds ν̂ ×E(r)|− and the corresponding tangential magnetic �elds on S1 and
S2. We also have to eliminate the tangential magnetic �elds on the �nite scatterers
Ssp , which in (4.14) are contained in the unknown coe�cients αpn and fpn for the
regular and radiating spherical vector waves that are used in the expression for
the exciting �eld (4.11) at each scatterer. One of these sets of coe�cients, αpn, are
eliminated by the use of the transition matrix (4.13) used in (4.12).

In fact, if the scatterers are not perfectly conducting conductors, as assumed
above, the results above still hold. The main reason for the assumption of perfectly
conducting scatterers was to simplify the theoretical work. If a more general scat-
terer is present, replace the transition matrix of the scatterer with the appropriate
one. Therefore, the results above hold for any set of scatterers � single or multiple,
transparent or not, homogeneous or not � only the individual transition matrices
of the scatterers (non-intersecting minimum circumscribed spheres) are known.

5.1 Expansions on the surfaces z = z1 and z = z2

The electric �eld close to the surface z = z1 has an expansion given by (4.15). This
expansion is assumed valid in the domain z ≥ z1 and z < minp{ẑ ·rp−Ap}, i.e., we
assume no minimum circumscribed spheres of the scatterers intersect the surface S1.
Similarly, the electric �eld close to the surface z = z2 is also assumed to be given
by (4.15) in the domain z ≤ z2 and z > maxp{ẑ · rp + Ap}.

Representation (4.15) gives us an expression of the traces (limit values) of the
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tangential electric �elds on z = z1 and z = z2, i.e.,

ν̂ ×E(r)|− =
∑
n

N∑
p=1

fpnν̂ × un(k2(r − rp))

+
∑
j=1,2

∫∫
R2

α+
j (kt)ν̂ ×ϕ+

j (kt; k2, r) dkx dky

+
∑
j=1,2

∫∫
R2

α−j (kt)ν̂ ×ϕ−j (kt; k2, r) dkx dky, z = z1 (5.1)

and

ν̂ ×E(r)|− =
∑
n

N∑
p=1

fpnν̂ × un(k2(r − rp))

+
∑
j=1,2

∫∫
R2

α+
j (kt)ν̂ ×ϕ+

j (kt; k2, r) dkx dky

+
∑
j=1,2

∫∫
R2

α−j (kt)ν̂ ×ϕ−j (kt; k2, r) dkx dky, z = z2 (5.2)

respectively. Note the similarities between these expressions of the tangential �elds.
Only the values of z vary.

It is convenient to introduce a new notation that contains the unknown fpn. We
de�ne

F±j (kt) =
2

k2k2z

∑
n

N∑
p=1

fpnB
±
nj(kt)e

−ik±2 ·rp (5.3)

With the use of (D.3) and this notation, we rewrite (5.1)

ν̂ ×E(r)|− =
∑
j=1,2

∫∫
R2

α+
j (kt)ν̂ ×ϕ+

j (kt; k2, r) dkx dky

+
∑
j=1,2

∫∫
R2

(
F−j (kt) + α−j (kt)

)
ν̂ ×ϕ−j (kt; k2, r) dkx dky, z = z1 (5.4)

In this relation ν̂ = −ẑ. Similarly, we obtain from (5.2)

ν̂ ×E(r)|− =
∑
j=1,2

∫∫
R2

(
F+
j (kt) + α+

j (kt)
)
ν̂ ×ϕ+

j (kt; k2, r) dkx dky

+
∑
j=1,2

∫∫
R2

α−j (kt)ν̂ ×ϕ−j (kt; k2, r) dkx dky, z = z2 (5.5)

where, in this relation, ν̂ = ẑ.
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We also obtain the corresponding tangential magnetic �elds. The use of the
Maxwell equations and the representation (4.15) imply

iη0η2 ν̂ ×H(r)|− =
∑
j=1,2

∫∫
R2

α+
j (kt)ν̂ ×ϕ+

j
(kt; k2, r) dkx dky

+
∑
j=1,2

∫∫
R2

(
F−j (kt) + α−j (kt)

)
ν̂ ×ϕ−

j
(kt; k2, r) dkx dky, z = z1 (5.6)

where ν̂ = −ẑ, and

iη0η2 ν̂ ×H(r)|− =
∑
j=1,2

∫∫
R2

(
F+
j (kt) + α+

j (kt)
)
ν̂ ×ϕ+

j
(kt; k2, r) dkx dky

+
∑
j=1,2

∫∫
R2

α−j (kt)ν̂ ×ϕ−j (kt; k2, r) dkx dky, z = z2 (5.7)

where ν̂ = ẑ.

5.2 Elimination of the surface �elds

We have several unknown coe�cients that we have to eliminate and express in the
expansion coe�cients for the incident �eld, aj(kt), which are assumed to be given
in the direct, deterministic scattering problem.

The unknowns in the scattering problem are α±j (kt), f
p
n and αpn. The aim is

to eliminate the expansion coe�cients α±j (kt), f
p
n and αpn, and express them in the

known coe�cients aj(kt). The coe�cients rj(kt) and tj(kt) can then be expressed
in aj(kt), which solves the deterministic re�ection and transmission problems. This
elimination is accomplished by the use of the equations (4.2), (4.12), (4.14), and
(4.16).

We start the elimination of the unknown quantities with (4.2), the boundary
conditions ν̂ ×E|− = ν̂ ×E|+ and ν̂ ×H|− = ν̂ ×H|+ on S1, and insert the
surface expansions (5.4) and (5.6). Changing the order of integration and the use of
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the orthogonality in (C.3) imply

aj(kt) = −2ik1

k1z

η1

η2

∫∫
S1

ϕ−j
†
(kt; k1, r

′) · (ν̂ × iη0η2H(r′))− dS ′

− 2ik1

k1z

∫∫
S1

ϕ−
j

†
(kt; k1, r

′) · (ν̂ ×E(r′))− dS ′

=
k1e−ik1zz1

2k1z

η1

η2

kjz

kj

(
α+
j (kt)e

ik2zz1 + (−1)j
(
F−j (kt) + α−j (kt)

)
e−ik2zz1

)
+
k1e−ik1zz1

2k1z

kjz

kj

(
α+
j (kt)e

ik2zz1 + (−1)j
(
F−j (kt) + α−j (kt)

)
e−ik2zz1

)
=
k1e−ik1zz1eik2zz1

2k1z

(
η1

η2

kjz

kj
+
kjz

kj

)
α+
j (kt)

+
k1e−ik1zz1e−ik2zz1

2k1z

(−1)j
(
η1

η2

kjz

kj
−
kjz

kj

)(
F−j (kt) + α−j (kt)

)
,

kt ∈ R2, j = 1, 2

(5.8)

where again we make frequent use of the dual index j, i.e., 1 = 2 and 2 = 1.
To simplify the expressions, we identify the numerator N1

j and the denominator
D1
j in the re�ection and transmission coe�cients of the surface z = z1 (the Fresnel

re�ection coe�cients). The explicit expressions are [25, Sec. 10.6.1.2] or [17, Sec. 7.3]

N1
j (kt) = −(−1)j

{
η2k2k1z − η1k1k2z, j = 1

η2k1k2z − η1k2k1z, j = 2
= −(−1)jη1k1k2

(
η2

η1

kjz

kj
−
kjz

kj

)
(5.9)

and

D1
j (kt) =

{
η2k2k1z + η1k1k2z, j = 1

η2k1k2z + η1k2k1z, j = 2
= η1k1k2

(
η2

η1

kjz

kj
+
kjz

kj

)
(5.10)

The Fresnel re�ection and transmission coe�cients for the surface z = z1 (re�ection
from the left side of S1 and transmission from left to right) are

R1
j (kt) =

N1
j (kt)

D1
j (kt)

e2ik1zz1

T 1
j (kt) = 2η2k1k2

kjz

D1
j (kt)kj

kjk1z

k1kjz

eik1zz1e−ik2zz1

=
2η2k2k1z

D1
j (kt)

eik1zz1e−ik2zz1

kt ∈ R2, j = 1, 2 (5.11)

respectively, where the exponential factors are due to phase corrections, since the
surface S1 is not located at z = 0. Note the extra minus sign for j = 2 in the
re�ection coe�cient due to the change of sign in the de�nition of the plane waves
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in (C.1), and the last factor in the de�nition of the transmission coe�cient, which
adds an extra factor for the j = 2 polarization.

Similarly, the re�ection coe�cient from the right side of S1 and the transmission
coe�cient from right to left are

R1
j(kt) = −

N1
j (kt)

D1
j (kt)

e−2ik2zz1

T 1
j (kt) = 2η1k1k2

kjz

D1
j (kt)kj

kjk2z

k2kjz

e−ik2zz1eik1zz1

=
2η1k1k2z

D1
j (kt)

e−ik2zz1eik1zz1

kt ∈ R2, j = 1, 2 (5.12)

The re�ection and transmission coe�cients in (5.11) and (5.12) give in (5.8)

T 1
j (kt)aj(kt) = α+

j (kt)−R1
j(kt)

(
F−j (kt) + α−j (kt)

)
, kt ∈ R2, j = 1, 2 (5.13)

We proceed with (4.16). Using the boundary conditions, ν̂ ×E|− = ν̂ ×E|+
and ν̂ ×H|− = ν̂ ×H|+ on S2, and insert the surface expansions (5.5) and (5.7),
we get

0 =
η3

η2

∫∫
S2

ϕ+
j
†
(kt; k3, r

′) · (ẑ × iη0η2H(r′))− dS ′

+

∫∫
S2

ϕ+
j

†
(kt; k3, r

′) · (ẑ ×E(r′))− dS ′

= −eik3zz2eik2zz2

4i
(−1)j

(
η3

η2

kj+1z

kj+1

−
kj+1z

kj+1

)(
F+
j (kt) + α+

j (kt)
)

− eik3zz2e−ik2zz2

4i

(
η3

η2

kj+1z

kj+1

+
kj+1z

kj+1

)
α−j (kt)

=
eik3zz2eik2zz2

4iη2k2k3

N2
j (kt)

(
F+
j (kt) + α+

j (kt)
)

− eik3zz2e−ik2zz2

4iη2k2k3

D2
j (kt)α

−
j (kt), kt ∈ R2, j = 1, 2

(5.14)

where we also used the orthogonality relation (C.4), and the numerator N2
j and the

denominator D2
j in the re�ection and transmission coe�cients of the surface z = z2

(Fresnel re�ection coe�cients), viz.,

N2
j (kt) = −(−1)j

{
η3k3k2z − η2k2k3z, j = 1

η3k2k3z − η2k3k2z, j = 2
= −(−1)jη2k2k3

(
η3

η2

kj+1z

kj+1

−
kj+1z

kj+1

)
(5.15)

and

D2
j (kt) =

{
η3k3k2z + η2k2k3z, j = 1

η3k2k3z + η2k3k2z, j = 2
= η2k2k3

(
η3

η2

kj+1z

kj+1

+
kj+1z

kj+1

)
(5.16)
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The Fresnel re�ection and transmission coe�cients for the surface z = z2 (re�ection
from the left side of S2 and transmission from left to right) are

R2
j (kt) =

N2
j (kt)

D2
j (kt)

e2ik2zz2

T 2
j (kt) = 2η3k2k3

kj+1z

D2
j (kt)kj+1

kj+1k2z

k2kj+1z

eik2zz2e−ik3zz2

=
2η3k3k2z

D2
j (kt)

eik2zz2e−ik3zz2

kt ∈ R2, j = 1, 2 (5.17)

respectively1, where the exponential factors are due to phase corrections, since the
surface S2 is not located at z = 0. The re�ection coe�cient relation in (5.17) is used
in (5.14)

α−j (kt) = R2
j (kt)

(
F+
j (kt) + α+

j (kt)
)
, kt ∈ R2, j = 1, 2

which used in (5.13) yields

T 1
j (kt)aj(kt) =

(
1−R1

j(kt)R
2
j (kt)

)
α+
j (kt)

−R1
j(kt)

(
F−j (kt) +R2

j (kt)F
+
j (kt)

)
,

kt ∈ R2, j = 1, 2

Solve for the unknown α+
j (kt) and α

−
j (kt).

α+
j (kt) =

T 1
j (kt)aj(kt)

1−R1
j(kt)R2

j (kt)
+R1

j(kt)
F−j (kt) +R2

j (kt)F
+
j (kt)

1−R1
j(kt)R2

j (kt)
, kt ∈ R2, j = 1, 2

(5.18)
and

α−j (kt) =
R2
j (kt)T

1
j (kt)aj(kt)

1−R1
j(kt)R2

j (kt)
+R2

j (kt)R1
j(kt)

F−j (kt) +R2
j (kt)F

+
j (kt)

1−R1
j(kt)R2

j (kt)

+R2
j (kt)F

+
j (kt) =

R2
j (kt)T

1
j (kt)aj(kt)

1−R1
j(kt)R2

j (kt)

+R2
j (kt)

R1
j(kt)F

−
j (kt) + F+

j (kt)

1−R1
j(kt)R2

j (kt)
, kt ∈ R2, j = 1, 2

(5.19)

The coe�cients α±j (kt) are now expressed in the re�ection and transmission prop-
erties of the surfaces S1 and S2, the given coe�cient aj(kt), and the factors F±j (kt).
The later quantity contains the unknown coe�cients fpn, which contain all interac-
tion contributions from the N �nite scatterers. The elimination of these coe�cients
is made in the next section.

1Do not misinterpret the super index as the square of the re�ection or transmission coe�cient.
It denotes the surface number � in this case S2.
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5.3 Matrix equation

The elimination of the coe�cients fpn is done by solving a matrix equation. This
matrix equation is developed in this section.

We multiply (4.14) with T pnn′ and sum over the free index (notice change in
index p and q in the translation matrix and the use of Pt(kd) = P(−kd)). The use
of (4.12) leads to the result (p = 1, 2, . . . , N)

fpn =
∑
n′

T pnn′

{
N∑
q=1
q 6=p

∑
n′′

Pn′n′′(k2(rq − rp))f qn′′

+
∑
j=1,2

∫∫
R2

{
B+
n′j
†
(kt)e

ik+
2 ·rpα+

j (kt) +B−n′j
†
(kt)e

ik−2 ·rpα−j (kt)
}

dkx dky

}

Insert the expression of α+
j (kt) and α

−
j (kt) given in (5.18) and (5.19) and use (5.3).

The result has the form

fpn −
∑
n′n′′

N∑
q=1

T pnn′′A
pq
n′′n′f

q
n′ = dpn, p = 1, 2, . . . , N (5.20)

where

Apqn′′n′ = Pn′′n′(k2(rq − rp))(1− δpq) +
∑
j=1,2

∫∫
R2

2 dkx dky

k2k2z

×
{
B+
n′′j
†
(kt)e

ik+
2 ·rpR1

j(kt)
B−n′j(kt)e

−ik−2 ·rq +R2
j (kt)B

+
n′j(kt)e

−ik+
2 ·rq

1−R1
j(kt)R2

j (kt)

+B−n′′j
†
(kt)e

ik−2 ·rpR2
j (kt)

B+
n′j(kt)e

−ik+
2 ·rq +R1

j(kt)B
−
n′j(kt)e

−ik−2 ·rq

1−R1
j(kt)R2

j (kt)

}
which contains only known geometrical material properties for a given scattering
problem, and

dpn =
∑
n′

T pnn′
∑
j=1,2

∫∫
R2

{
B+
n′j
†
(kt)e

ik+
2 ·rp

1−R1
j(kt)R2

j (kt)

+
R2
j (kt)B

−
n′j
†
(kt)e

ik−2 ·rp

1−R1
j(kt)R2

j (kt)

}
T 1
j (kt)aj(kt) dkx dky

We are now in a position to summarize the solution procedure of the determin-
istic problem presented in this paper. The complete solution of the problem, for a
given incident �eld, i.e., given aj(kt), and consequently known dpn, and a scattering
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con�guration, is found by solving (5.20) for fpn. Then, (5.3) is used to get F±j (kt)
and (5.18) and (5.19) to get α±j (kt). The surface �elds on S1 and S2 are now known.

The coe�cients for the expansions of the re�ected and transmitted �elds, rj(kt)
and tj(kt) are given by (4.4) and (4.18), respectively. The re�ected and transmitted
�elds are then determined by (4.3) and (4.17), respectively. The details of this
analysis are given in the next section.

6 The transmitted and re�ected �elds

We are now in a position of calculating the transmitted and re�ected �elds from the
entire scattering con�guration.

6.1 The transmitted �eld

The transmitted �eld is, see (4.17)

Et(r) =
∑
j=1,2

∫∫
R2

tj(kt)ϕ
+
j (kt; k3, r) dkx dky, z > z2

where the transmission coe�cients, with the use of the boundary conditions, are
given by (using (4.18), the boundary conditions, (5.5), and (5.7))

tj(kt) =
k3e−ik3zz2eik2zz2

2k3z

(
η3

η2

kj+1z

kj+1

+
kj+1z

kj+1

)(
F+
j (kt) + α+

j (kt)
)

+
k3e−ik3zz2e−ik2zz2

2k3z

(−1)j
(
η3

η2

kj+1z

kj+1

−
kj+1z

kj+1

)
α−j (kt)

=
e−ik3zz2eik2zz2

2k2η2k3z

D2
j (kt)

(
F+
j (kt) + α+

j (kt)
)

− e−ik3zz2e−ik2zz2

2k2η2k3z

N2
j (kt)α

−
j (kt), kt ∈ R2, j = 1, 2

where we used the orthogonality relation (C.5) and the expressions for the numerator
and denominator of the re�ection coe�cient of S2, see (5.15) and (5.16). Insert (5.18)
and (5.19), and we get

tj(kt) =
e−ik3zz2eik2zz2

2k2η2k3z

D2
j (kt)

(
F+
j (kt) +

T 1
j (kt)aj(kt)

1−R1
j(kt)R2

j (kt)

+R1
j(kt)

F−j (kt) +R2
j (kt)F

+
j (kt)

1−R1
j(kt)R2

j (kt)

)
− e−ik3zz2e−ik2zz2

2k2η2k3z

N2
j (kt)

(
R2
j (kt)T

1
j (kt)aj(kt)

1−R1
j(kt)R2

j (kt)

+R2
j (kt)

R1
j(kt)F

−
j (kt) + F+

j (kt)

1−R1
j(kt)R2

j (kt)

)
, kt ∈ R2, j = 1, 2
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Simplify, and we get

tj(kt) =
e−ik3zz2eik2zz2

2k2η2k3z

D2
j (kt)

R1
j(kt)F

−
j (kt) + F+

j (kt)

1−R1
j(kt)R2

j (kt)

− e−ik3zz2e−ik2zz2

2k2η2k3z

N2
j (kt)R

2
j (kt)

R1
j(kt)F

−
j (kt) + F+

j (kt)

1−R1
j(kt)R2

j (kt)

+ e−ik3zz2
D2
j (kt)e

ik2zz2 −N2
j (kt)e

−ik2zz2R2
j (kt)

1−R1
j(kt)R2

j (kt)

T 1
j (kt)aj(kt)

2k2η2k3z

, kt ∈ R2, j = 1, 2

Since, see (5.15), (5.16), and (5.17)

D2
j (kt)e

ik2zz2−N2
j (kt)e

−ik2zz2R2
j (kt) =

4η2η3k2zk3zk2k3

D2
j (kt)

eik2zz2 = 2k2η2k3zT
2
j (kt)e

ik3zz2

we can simplify further

tj(kt) = T 2
j (kt)

R1
j(kt)F

−
j (kt) + F+

j (kt)

1−R1
j(kt)R2

j (kt)

+
T 1
j (kt)T

2
j (kt)

1−R1
j(kt)R2

j (kt)
aj(kt), kt ∈ R2, j = 1, 2

It is convenient to introduce the total transmission coe�cient of the slab, which in
our notation reads [25, Sec. 10.6.1.1]

Tj(kt) =
T 1
j (kt)T

2
j (kt)

1−R1
j(kt)R2

j (kt)
(6.1)

The �nal expression of the amplitude of the transmitted �eld is

tj(kt) = T 2
j (kt)

R1
j(kt)F

−
j (kt) + F+

j (kt)

1−R1
j(kt)R2

j (kt)
+ Tj(kt)aj(kt), kt ∈ R2, j = 1, 2

(6.2)
The amplitude of the transmitted �eld, tj(kt), consists of two terms � the last term
Tj(kt)aj(kt) is the direct transmitted contribution of the slab itself, and the �rst
term is the additional contribution to the transmitted �eld from the scatterers inside
the slab.

6.2 The re�ected �eld

Similarly, the re�ected �eld is, see (4.3)

Er(r) =
∑
j=1,2

∫∫
R2

rj(kt)ϕ
−
j (kt; k1, r) dkx dky, z < z1
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where the re�ection coe�cients are given by (4.4)

rj(kt) =
2ik1

k1z

η1

η2

∫∫
S1

ϕ+
j
†
(kt; k1, r

′) · (ν̂ × iη0η2H(r′))− dS ′

+
2ik1

k1z

∫∫
S1

ϕ+
j

†
(kt; k1, r

′) · (ν̂ ×E(r′))− dS ′, kt ∈ R2, j = 1, 2

were we used the boundary conditions, ν̂ ×E|− = ν̂ ×E|+ and ν̂ ×H|− =
ν̂ ×H|+ on S1. The surface expansions (5.4) and (5.6) and the use of the or-
thogonality in (C.2) imply

rj(kt) =
k1eik1zz1

2k1z

η1

η2

kjz

kj

(
(−1)jα+

j (kt)e
ik2zz1 +

(
F−j (kt) + α−j (kt)

)
e−ik2zz1

)
+
k1eik1zz1

2k1z

kjz

kj

(
(−1)jα+

j (kt)e
ik2zz1 +

(
F−j (kt) + α−j (kt)

)
e−ik2zz1

)
=
k1eik1zz1eik2zz1

2k1z

(−1)j
(
η1

η2

kjz

kj
−
kjz

kj

)
α+
j (kt)

+
k1eik1zz1e−ik2zz1

2k1z

(
η1

η2

kjz

kj
+
kjz

kj

)(
F−j (kt) + α−j (kt)

)
,

kt ∈ R2, j = 1, 2

The numerator and denominator of the re�ection coe�cient on S1, (5.9) and (5.10),
simplify this expression further. We get

rj(kt) =
eik1zz1eik2zz1

2η2k2k1z

N1
j (kt)α

+
j (kt)

+
eik1zz1e−ik2zz1

2η2k2k1z

D1
j (kt)

(
F−j (kt) + α−j (kt)

)
, kt ∈ R2, j = 1, 2

Insert (5.18) and (5.19), and we get

rj(kt)

=
eik1zz1eik2zz1

2η2k2k1z

N1
j (kt)

{
T 1
j (kt)aj(kt)

1−R1
j(kt)R2

j (kt)
+R1

j(kt)
F−j (kt) +R2

j (kt)F
+
j (kt)

1−R1
j(kt)R2

j (kt)

}

+
eik1zz1e−ik2zz1

2η2k2k1z

D1
j (kt)

{
R2
j (kt)T

1
j (kt)aj(kt)

1−R1
j(kt)R2

j (kt)
+
F−j (kt) +R2

j (kt)F
+
j (kt)

1−R1
j(kt)R2

j (kt)

}
,

kt ∈ R2, j = 1, 2
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We simplify this expression with the use of (5.11)

rj(kt) = −e−ik1zz1e−ik2zz1

2η2k2k1z

N1
j (kt)R

1
j (kt)

F−j (kt) +R2
j (kt)F

+
j (kt)

1−R1
j(kt)R2

j (kt)

+
eik1zz1e−ik2zz1

2η2k2k1z

D1
j (kt)

F−j (kt) +R2
j (kt)F

+
j (kt)

1−R1
j(kt)R2

j (kt)
+
R1
j (kt) +R2

j (kt)e
2i(k1z−k2z)z1

1−R1
j(kt)R2

j (kt)
aj(kt)

= T 1
j (kt)

F−j (kt) +R2
j (kt)F

+
j (kt)

1−R1
j(kt)R2

j (kt)
+
R1
j (kt) +R2

j (kt)e
2i(k1z−k2z)z1

1−R1
j(kt)R2

j (kt)
aj(kt),

kt ∈ R2, j = 1, 2

since, see (5.15), (5.16), (5.11) and (5.12)

D1
j (kt)e

ik1zz1−N1
j (kt)e

−ik1zz1R1
j (kt) =

4η1η2k1zk2zk1k2

D1
j (kt)

eik1zz1 = 2k2η2k1zT 1
j (kt)e

ik2zz1

It is convenient to introduce the total re�ection coe�cient of the slab, which in
our notation reads [25, Sec. 10.6.1.1]

Rj(kt) =
R1
j (kt) +R2

j (kt)e
2i(k1z−k2z)z1

1−R1
j(kt)R2

j (kt)

=
R1
j (kt) +R2

j (kt)
(
T 1
j (kt)T 1

j (kt)−R1
j (kt)R1

j(kt)
)

1−R1
j(kt)R2

j (kt)

= R1
j (kt) + T 1

j (kt)
R2
j (kt)

1−R1
j(kt)R2

j (kt)
T 1
j (kt)

where we also used the identity

e2i(k1z−k2z)z1 = T 1
j (kt)T 1

j (kt)−R1
j (kt)R1

j(kt)

The �nal expression of the amplitude of the re�ected �eld then becomes

rj(kt) = T 1
j (kt)

F−j (kt) +R2
j (kt)F

+
j (kt)

1−R1
j(kt)R2

j (kt)
+Rj(kt)aj(kt), kt ∈ R2, j = 1, 2

(6.3)
The amplitude of the re�ected �eld, rj(kt), consists of two terms � the last term
Rj(kt)aj(kt) is the direct re�ected contribution of the slab itself, and the �rst term
is the additional contribution to the re�ected �eld from the scatterers inside the
slab.

7 Statistical problem � ensemble average

The solution of the set of equations in (5.20) for the unknowns, fpn, is an unsur-
mountable task, if the number of scatterers is large. Fortunately, there are statistical



23

methods that apply in this case, especially if the location and state (material prop-
erties, size, shape, and orientation etc.) of the scatterers are randomly distributed.
Moreover, with a large number of scatterers, we rarely have complete information
about the position and the state of each scatterer, and we are often not interested
in the physical quantities of a particular con�guration, but ensemble averages suf-
�ce. In particular, the average of the electric �eld is an appropriate quantity in
several radio and radar applications, but it is of limited value as an optical ob-
servable. The presentation in this section follows to some extent the one presented
in [23,31,52,60,61], but deviates in the method of solving the problem.

A statistical evaluation of the relevant physical quantities involves ensemble av-
erages, which we denote by the symbol 〈·〉. The relation between the ensemble
average and the time average and use of the ergodic hypothesis are found in the
comprehensive review article [36] and in the excellent textbook [35].

The scatterer locations rp, p = 1, 2, . . . , N , are now random variables. Moreover,
the properties of each scatterer (geometry and material) are also random variables,
that we collect in a state variable ξp, p = 1, 2, . . . , N . The common N -particle prob-
ability density function (PDF) is denoted P (r1, . . . , rN ; ξ1, . . . , ξN). More details on
this PDF are collected in Appendix E.

The explicit assumptions made about the scatterers in this section are:

1. the number of scatterers N is large, so that statistical methods are appropriate
to apply

2. the N scatterers are characterized by a common probability density function

3. the scatterers are indistinguishable insofar as the numbering of the scatterers
is arbitrary

4. the state variables of the scatterers, ξp, are independent between di�erent
scatterers and of the position variables, rp, p = 1, 2, . . . , N

5. no minimum circumscribed spheres of the individual scatterers intersect

The position variables cannot be statistically independent variables for scatterers
of �nite size, due to the assumption of non-intersecting minimum circumscribed
spheres. The assumption of independence in Item 4 makes the averaging of scatterer
position separate from the averaging over their states in the transition matrix entries.

The random variables rp and ξp are now dummy variables in the integration
over all possible positions and states. As a consequence, the index p is eventually
dropped in the analysis below.

7.1 Transmitted and re�ected �elds

The ensemble average and the use of the conditional probability density function,
see Appendix E, imply the following expressions of the re�ected and transmitted
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�elds from (4.17) and (4.3)

〈Et(r)〉 =
∑
j=1,2

∫∫
R2

〈tj(kt)〉ϕ+
j (kt; k3, r) dkx dky, z > z2 (7.1)

and

〈Er(r)〉 =
∑
j=1,2

∫∫
R2

〈rj(kt)〉ϕ−j (kt; k1, r) dkx dky, z < z1 (7.2)

These �elds are the average or coherent contribution of the electric �eld outside the
slab, and the computation of these �elds are the main purpose of this paper.

To evaluate the averaged transmitted and re�ected �elds, we need to obtain
〈tj(kt)〉 and 〈rj(kt)〉, which both contain the factors

〈
F±j (kt)

〉
, see (6.2) and (6.3).

All other quantities in 〈tj(kt)〉 and 〈rj(kt)〉 are deterministic. We have

〈tj(kt)〉 = T 2
j (kt)

R1
j(kt)

〈
F−j (kt)

〉
+
〈
F+
j (kt)

〉
1−R1

j(kt)R2
j (kt)

+ Tj(kt)aj(kt), kt ∈ R2, j = 1, 2 (7.3)

and

〈rj(kt)〉 = T 1
j (kt)

〈
F−j (kt)

〉
+R2

j (kt)
〈
F+
j (kt)

〉
1−R1

j(kt)R2
j (kt)

+Rj(kt)aj(kt), kt ∈ R2, j = 1, 2 (7.4)

The factors
〈
F±j (kt)

〉
are evaluated in the section below.
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7.2 Coe�cient average

The average of the functions F±j (kt) in (5.3) has to be computed. The de�nition of
the conditional probability density function implies, see Appendix E

〈
F±j (kt)

〉
=

2

k2k2z

∑
n

N∑
p=1

B±nj(kt)
〈
fpne−ik±2 ·rp

〉
=

2

k2k2z

∑
n

N∑
p=1

B±nj(kt)

∫∫∫
V N
s

P (r1, . . . , rN)fpn(r1, . . . , rN)e−ik±2 ·rp

N∏
p=1

dvp

=
2

k2k2z

∑
n

N∑
p=1

B±nj(kt)

×
∫∫∫
V N
s

P (rp)P (r1, . . . , rp−1, rp+1, . . . rN |rp)fpn(r1, . . . , rN)e−ik±2 ·rp

N∏
p=1

dvp

=
2

k2k2z

∑
n

N∑
p=1

B±nj(kt)

∫∫∫
Vs

P (rp) 〈fpn〉 (rp)e−ik±2 ·rp dvp

=
2N

k2k2z

∑
n

B±nj(kt)

∫∫∫
Vs

P (r) 〈fn〉 (r)e−ik±2 ·r dv (7.5)

since the variable rp now is a dummy variable and all integrals in the middle ex-
pression are identical. We can also skip the superscript p on fn. The volume Vs

is the volume of possible locations of the local origins rp, p = 1, 2, . . . , N . If the
number of scatterers N → ∞ and the scatterers are randomly �lled in the entire
slab (this requires that an appropriate limit procedure is employed), the volume Vs

is {r : z1 + a ≤ z ≤ z2 − a}, where a = maxpAp. This limit process implies that
NP (r)→ n0 as N →∞, where n0 is the number density of the scatterers (number
of scatterers per unit volume). The geometry of a typical geometry is depicted in
Figure 2.2

To obtain 〈fn〉 (r), we need to take the conditional average of the set of matrix
equations in (5.20). Using the conditional probability density function, we obtain

〈fpn〉 (rp; ξp)−
∑
n′n′′

N∑
q=1

∫∫∫
Vs

P (rq|rp) 〈T pnn′′A
pq
n′′n′f

q
n′〉 (rp, rq; ξp) dvq = 〈dpn〉 (rp; ξp),

p = 1, 2, . . . , N (7.6)

2The notation of the slab geometry in this paper di�ers slightly from the notation employed
in Part II [13].
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ν̂ν̂

z

z = z1 z = z2

k̂i

Vs

a a

Figure 2: The geometry of the scattering region with randomly located scatterers.
In three dimensions the spheres do not intersect. However in this two-dimensional
graph some of the projections of the spheres overlap. The yellow region denotes the
region Vs, which is the domain of possible locations of local origins, i.e., the interval
[z1 + a, z2 − a].

where∑
n′′

〈T pnn′′A
pq
n′′n′f

q
n′〉 (rp, rq; ξp)

=
∑
n′′

T pnn′′(ξp)Pn′′n′(k2(rq − rp)) 〈f qn′〉 (rp, rq; ξp)(1− δpq)

+
∑
n′′

T pnn′′(ξp)
∑
j=1,2

∫∫
R2

2

k2k2z

×
{
B+
n′′j
†
(kt)e

ik+
2 ·rpR1

j(kt)
B−n′j(kt)e

−ik−2 ·rq +R2
j (kt)B

+
n′j(kt)e

−ik+
2 ·rq

1−R1
j(kt)R2

j (kt)

+B−n′′j
†
(kt)e

ik−2 ·rpR2
j (kt)

B+
n′j(kt)e

−ik+
2 ·rq +R1

j(kt)B
−
n′j(kt)e

−ik−2 ·rq

1−R1
j(kt)R2

j (kt)

}
× dkx dky 〈f qn′〉 (rp, rq; ξp)
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and

〈dpn〉 (rp; ξp) =
∑
n′

T pnn′(ξp)
∑
j=1,2

∫∫
R2

{
B+
n′j
†
(kt)e

ik+
2 ·rp

1−R1
j(kt)R2

j (kt)

+
R2
j (kt)B

−
n′j
†
(kt)e

ik−2 ·rp

1−R1
j(kt)R2

j (kt)

}
T 1
j (kt)aj(kt) dkx dky

where, as above, k±2 = kt ± k2zẑ and k2z = (k2
2 − k2

t )
1/2
.

7.2.1 Quasi Crystalline Approximations

In practice, higher order density functions are harder to obtain. To break the hierar-
chy in (7.6) Lax [29] introduced the Quasi Crystalline Approximation (QCA), which
states that the conditional average with two positions held �xed, 〈f qn′〉 (rp, rq; ξp),
is replaced with the conditional average with one position held �xed, 〈f qn′〉 (rq; ξp),
i.e.,

〈f qn′〉 (rp, rq; ξp) ≈ 〈f
q
n′〉 (rq; ξp)

This approximation has been successfully applied in a range of concentrations from
tenuous to dense media, and from the low-frequency to intermediate frequency
range [66].

The Quasi Crystalline Approximation in (7.6) leads to a set of integral equations
in the unknowns, 〈fn〉 (r′; ξ), viz., (the indices p and q are now super�uous and rp,
rq, and ξp are dummy variables)

〈fn〉 (r; ξ)− k3
2

∑
n′

∫∫∫
Vs

Knn′(r, r′; ξ) 〈fn′〉 (r′; ξ) dv′ = 〈dn〉 (r; ξ), r ∈ Vs (7.7)

where

Knn′(r, r′; ξ) =
N − 1

k3
2

P (r′|r)
∑
n′′

Tnn′′(ξ)Pn′′n′(k2(r′ − r))

+
N

k3
2

P (r′|r)
∑
n′′

Tnn′′(ξ)
∑
j=1,2

∫∫
R2

2

k2k2z{
B+
n′′j
†
(kt)e

ik+
2 ·rR1

j(kt)
B−n′j(kt)e

−ik−2 ·r′ +R2
j (kt)B

+
n′j(kt)e

−ik+
2 ·r′

1−R1
j(kt)R2

j (kt)

+B−n′′j
†
(kt)e

ik−2 ·rR2
j (kt)

B+
n′j(kt)e

−ik+
2 ·r′ +R1

j(kt)B
−
n′j(kt)e

−ik−2 ·r′

1−R1
j(kt)R2

j (kt)

}
dkx dky
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and

〈dn〉 (r; ξ) =
∑
n′

Tnn′(ξ)
∑
j=1,2

∫∫
R2

{
B+
n′j
†
(kt)e

ik+
2 ·r

1−R1
j(kt)R2

j (kt)

+
R2
j (kt)B

−
n′j
†
(kt)e

ik−2 ·r

1−R1
j(kt)R2

j (kt)

}
T 1
j (kt)aj(kt) dkx dky

Equation (7.7) is a system of integral equations for the unknown 〈fn〉 (r; ξ), which
can be simpli�ed under the assumption made in this paper. The state variable ξ
acts as a parameter in this system of integral equations. To average over this state
variable, we have to solve the system of integral equations for each value of the state
variable ξ and then take the ensemble average of the state variable.

7.2.2 Plane wave incidence and uniform distribution of scatterers

In this paper, we apply the result to a plane wave incidence, i.e.,

Ei(r) = E0eik1k̂i·r

where the complex-valued vector E0 satis�es E0 ·k̂i = 0 and the real-valued incident
direction k̂i satis�es k̂i · ẑ > 0. The explicit form of the expansion function aj(kt)
for a plane wave incident �eld is

aj(kt) = δ(kt − kit)Aj (7.8)

The factor Aj is a short-hand notation for

Aj = 4πE0 ·


− ẑ × kit

ikit

, j = 1

ẑki
2
t − kitk1iz

k1kit

, j = 2


where kit = k1 (x̂x̂+ ŷŷ) · k̂i = k1I2 · k̂i, k1iz =

(
k2

1 − ki
2
t

)1/2
and kit = |kit|. The

delta function implies that the kt = kit everywhere. This is usually called Snell's
law. To derive the factor Aj we have used the dyadic identity

I3 − k̂k̂ =
ẑ × kt

kt

ẑ × kt

kt

+
(kt + kzẑ)× (ẑ × kt)

k1kt

(kt + kzẑ)× (ẑ × kt)

k1kt

For a plane wave incidence, the excitation term simpli�es

〈dn〉 (r; ξ) = dn(z; ξ)eikit·rc = eikit·rc
∑
n′

Tnn′(ξ)
∑
j=1,2

T 1
j (kit)Aj

×
B+
n′j
†
(kit)e

ik2izz +R2
j (kit)B

−
n′j
†
(kit)e

−ik2izz

1−R1
j(kit)R

2
j (kit)

(7.9)



29

where rc = xx̂+ yŷ and k2iz = (k2
2 − |kit|2)

1/2
.

If the scatterers are randomly distributed within the volume between the planes,
the solution of the problem shows lateral invariance, which implies that the coe�-
cients must have the form 〈fn〉 (r) = fn(z)eikit·rc , where fn(z) only depends on the
depth z of the slab.3 The integral equation (7.7) then has the form (for simplicity,
we suppress the state variable ξ which acts as a parameter)

fn(z)− k2

∑
n′

∫ z2−a

z1+a

Knn′(z, z
′)fn(z′) dz′ = dn(z), z ∈ [z1 + a, z2 − a]

(7.10)
where a = maxpAp, and where

Knn′(z, z
′) = k2

2

∫∫
R2

Knn′(r, r′)eikit·(rc
′−rc) dx′ dy′

Note that, due to invariance under translation in the lateral variables, this expression
of the kernel does not depend on rc, see the explicit expression below. The explicit
expression of Knn′(z, z

′) is (N →∞ is assumed)

Knn′(z, z
′) =

n0

k2

∑
n′′

Tnn′′

∫∫
R2

{
eikit·rc

′Pn′′n′(k2(rc
′ + ẑ(z′ − z)))

+
∑
j=1,2

∫∫
R2

2

k2k2z

ei(kit−kt)·rc
′

×
{
B+
n′′j
†
(kt)R1

j(kt)e
ik2zz

B−n′j(kt)e
ik2zz

′
+R2

j (kt)B
+
n′j(kt)e

−ik2zz
′

1−R1
j(kt)R2

j (kt)

+B−n′′j
†
(kt)R

2
j (kt)e

−ik2zz

×
B+
n′j(kt)e

−ik2zz
′
+R1

j(kt)B
−
n′j(kt)e

ik2zz
′

1−R1
j(kt)R2

j (kt)

}
dkx dky

}
× g(|rc

′ + ẑ(z′ − z)|) dx′ dy′

where we expressed the conditional probability density P (r′|r) in terms of the pair
distribution function g(r, r′), i.e., (N −1)P (r′|r) = n0g(r, r′), see (E.3). Moreover,
for symmetric scatterers, the pair distribution function depends only on the distance
between two scatterers |r− r′|, i.e., g(r, r′) = g(|r− r|), and the spatial integral is
invariant w.r.t. lateral translations. The assumption N → ∞ simpli�es the factor
N/(N − 1)→ 1 that occurs in the second term.

3We require the integrand to vanish in an appropriate way as the lateral variables, x and y,
approach in�nity. One way to accomplish this is to assume an in�nitely small positive imaginary
part of the wave number k.
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At this point, it is convenient to simplify the notation by introducing the follow-
ing dimension-less quantities:

Cnn′(kt; z) = k2
2

∫∫
R2

g(|rc − ẑz|)Pnn′(k2(rc − ẑz))eikt·rc dx dy, |z| ≤ z2 − z1 − 2a

(7.11)
and the lateral Fourier transform of the pair correlation function

G(kt; z) = k2
2

∫∫
R2

g(|rc − ẑz|)e−ikt·rc dx dy, |z| ≤ z2 − z1 − 2a (7.12)

The simplest model for the pair correlation function g(r) is the hole correction
function, i.e., g(r) = H(r − 2a), where H(x) denotes the Heaviside function. The
function Cnn′(0; z) in (7.11) is investigated in Ref. 23.

Cnn′(0; z) =
l+l′∑

λ=|l−l′|+|τ−τ ′|

Iλ(−z)Ann′λ (7.13)

where Ann′λ is the azimuthal average of the translation matrix Pnn′(kr), which are
explicitly evaluated in Appendix B.1, and where the important integral Iλ(z) is [24]

Il(z) = k2
2

∫ ∞
d(z)

g(|rc + zẑ|)h(1)
l (k2

√
r2

c + z2)Pl(z/
√
r2

c + z2)rc drc, z ∈ R

where

d(z) =

{√
4a2 − z2, −2a ≤ z ≤ 2a

0, |z| > 2a

Some e�ective iteration schemes to compute the integrals Iλ(z) are presented in [24].
The lateral Fourier transform of the pair correlation function, see (7.12), or the

hole correction becomes

G(kt; z) = k2
2

∫∫
R2

H(|rc − ẑz| − 2a)e−ikt·rc dx dy

= 4π2k2
2δ(kt)− k2

2

∫ 2π

0

∫ d(z)

0

e−ikt·rcrc drc dφ

= 4π2k2
2δ(kt)− 2πk2

2

∫ d(z)

0

J0(ktrc)rc drc

= 4π2k2
2δ(kt)− 2π(k2d(z))2J1(ktd(z))

ktd(z)
, |z| ≤ z2 − z1 − 2a

where

d(z) =

{√
4a2 − z2, −2a ≤ z ≤ 2a

0, |z| > 2a
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In this new notation, the kernel Knn′(z, z
′) reads

Knn′(z, z
′) =

n0

k3
2

∑
n′′

Tnn′′

{
Cn′′n′(kit; z − z′) +

∑
j=1,2

∫∫
R2

2G(kt − kit; z − z′)
k2k2z

×
{
B+
n′′j
†
(kt)R1

j(kt)e
ik2zz

B−n′j(kt)e
ik2zz

′
+R2

j (kt)B
+
n′j(kt)e

−ik2zz
′

1−R1
j(kt)R2

j (kt)

+B−n′′j
†
(kt)R

2
j (kt)e

−ik2zz
B+
n′j(kt)e

−ik2zz
′
+R1

j(kt)B
−
n′j(kt)e

ik2zz
′

1−R1
j(kt)R2

j (kt)

}
dkx dky

}
(7.14)

The plane wave incidence also simpli�es the evaluation of
〈
F±j (kt)

〉
in (7.5).

〈
F±j (kt)

〉
=

2n0

k2k2z

∑
n

B±nj(kt)

∫∫∫
Vs

fn(z)eikit·rc−ik±2 ·r dv

=
8π2n0δ(kt − kit)

k2k2iz

∑
n

B±nj(kit)

∫ z2−a

z1+a

fn(z)e∓ik2izz dz

=
8π2n0δ(kt − kit)

k2k2iz

C±j (kit)

where

C±j (kit) =
∑
n

B±nj(kit)

∫ z2−a

z1+a

fn(z)e∓ik2izz dz

From (7.3) and (7.4), we obtain

〈tj(kt)〉 = T 2
j (kit)

8π2n0δ(kt − kit)

k2k2iz

R1
j(kit)C

−
j (kit) + C+

j (kit)

1−R1
j(kit)R

2
j (kit)

+ Tj(kit)Ajδ(kt − kit), kt ∈ R2, j = 1, 2

and

〈rj(kt)〉 = T 1
j (kit)

8π2n0δ(kt − kit)

k2k2iz

C−j (kit) +R2
j (kit)C

+
j (kit)

1−R1
j(kit)R

2
j (kit)

+Rj(kit)Ajδ(kt − kit), kt ∈ R2, j = 1, 2

and the transmitted and the re�ected �elds in (7.1) and(7.2) are

〈Et(r)〉 =
8π2n0

k2k2iz

∑
j=1,2

T 2
j (kit)

R1
j(kit)C

−
j (kit) + C+

j (kit)

1−R1
j(kit)R

2
j (kit)

ϕ+
j (kit; k3, r)

+
∑
j=1,2

Tj(kit)Ajϕ
+
j (kit; k3, r), z > z2

(7.15)
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and

〈Er(r)〉 =
8π2n0

k2k2iz

∑
j=1,2

T 1
j (kit)

C−j (kit) +R2
j (kit)C

+
j (kit)

1−R1
j(kit)R

2
j (kit)

ϕ−j (kit; k1, r)

+
∑
j=1,2

Rj(kit)Ajϕ
−
j (kit; k1, r), z < z1

(7.16)

Both expressions of the transmitted and re�ected �elds contain one deterministic
contribution of the slab itself without scatterers, and one stochastic contribution
from the scatterers and their interactions with the slab boundaries and all other
scatterers. The latter e�ects are contained in C±j (kit).

8 Special cases

There are a few special cases of the general result in Section 7 that are worth
special investigations. We identify three special cases: 1) the scatterers lie below
a homogeneous half space with sources in the other half space, i.e., the material
parameters are ε2 = ε3 and µ2 = µ3, 2) the scatterers lie above a homogeneous half
space and in the same half space as the sources, i.e., the material parameters are ε2 =
ε1 and µ2 = µ1, 3) the surface S2 is a perfectly electric conducting (PEC) surface.
Moreover, the absence of a slab background, i.e., the background is homogeneous,
ε1 = ε2 = ε3 and µ1 = µ2 = µ3, recovers the result in [23]. In the subsections below,
we exploit these we special cases one by one.

8.1 Scatterers in a half space I

In this section, we show the result for the special case when the material parameters
ε2 = ε3 and µ2 = µ3. This correspond to a geometry when the scatterers are located
in a homogeneous half space with sources in the other half space. This special case
correspond to letting R2

j (kit) = 0 and T 2
j (kit) = 1.

From (7.15) and (7.16), we get the transmitted and the re�ected �elds for this
special case. To the right of all scatterers, z > z2, we have

〈Et(r)〉 =
∑
j=1,2

{
8π2n0

k2k2iz

(
R1
j(kit)C

−
j (kit) + C+

j (kit)
)

+ T 1
j (kit)Aj

}
ϕ+
j (kit; k2, r)

and

〈Er(r)〉 =
∑
j=1,2

{
8π2n0

k2k2iz

T 1
j (kit)C

−
j (kit) +R1

j (kit)Aj

}
ϕ−j (kit; k1, r), z < z1
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The kernel in the system of integral equations in (7.7) simpli�es to

Knn′(r, r′; ξ) =
N − 1

k3
2

P (r′|r)
∑
n′′

Tnn′′(ξ)Pn′′n′(k2(r′ − r))

+
N

k3
2

P (r′|r)
∑
n′′

Tnn′′(ξ)
∑
j=1,2

∫∫
R2

2B+
n′′j
†
(kt)e

ik+
2 ·r

k2k2z

R1
j(kt)B

−
n′j(kt)e

−ik−2 ·r′ dkx dky

and the right-hand side simpli�es to

〈dn〉 (r; ξ) =
∑
n′

Tnn′(ξ)
∑
j=1,2

∫∫
R2

B+
n′j
†
(kt)e

ik+
2 ·rT 1

j (kt)aj(kt) dkx dky

8.2 Scatterers in a half space II

If the scatterers lie in the same half space as the sources, we let the material pa-
rameters ε2 = ε1 and µ2 = µ1. This special case correspond to letting R1

j (kit) = 0,
T 1
j (kit) = 1, R1

j(kit) = 0, and T 1
j (kit) = 1. From (7.15) and (7.16), we get the

transmitted and the re�ected �elds.

〈Et(r)〉 =
∑
j=1,2

T 2
j (kit)

{
8π2n0

k2k2iz

C+
j (kit) + Aj

}
ϕ+
j (kit; k3, r), z > z2

and in the left half space to the left of all scatterers, z < z1

〈Er(r)〉 =
∑
j=1,2

{
8π2n0

k2k2iz

(
C−j (kit) +R2

j (kit)C
+
j (kit)

)
+R2

j (kit)Aj

}
ϕ−j (kit; k1, r)

The kernel in the system of integral equations in (7.7) simpli�es to

Knn′(r, r′; ξ) =
N − 1

k3
2

P (r′|r)
∑
n′′

Tnn′′(ξ)Pn′′n′(k2(r′ − r))

+
N

k3
2

P (r′|r)
∑
n′′

Tnn′′(ξ)
∑
j=1,2

∫∫
R2

2B−n′′j
†
(kt)e

ik−2 ·r

k2k2z

R2
j (kt)B

+
n′j(kt)e

−ik+
2 ·r′ dkx dky

and the right-hand side simpli�es to

〈dn〉 (r; ξ) =
∑
n′

Tnn′(ξ)
∑
j=1,2

∫∫
R2

{
B+
n′j
†
(kt)e

ik+
2 ·r

+R2
j (kt)B

−
n′j
†
(kt)e

ik−2 ·r
}
aj(kt) dkx dky
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8.3 Perfectly conducting surface

From an application point of view, the special case of a perfectly electric conductive
surface S2 is of interest. This special case corresponds to letting the re�ection
coe�cient R2

j (kit) = (−1)je2ik2izz2 and the transmission coe�cient T 2
j (kit) = 0.

The re�ected �eld is relevant in this special case, while the transmitted �eld is
inaccessible. From (7.16), we get

〈Er(r)〉 =
∑
j=1,2

{
8π2n0

k2k2iz

T 1
j (kit)

C−j (kit) + (−1)je2ik2izz2C+
j (kit)

1− (−1)je2ik2izz2R1
j(kit)

+Rj(kit)Aj

}
ϕ−j (kit; k1, r), z < z1

8.4 Homogeneous background

With a homogeneous background, i.e., ε1 = ε2 = ε3 and µ1 = µ2 = µ3, which imply
R1,2
j (kt) = 0 and T 1,2

j (kt) = 1 and k1 = k2 = k3. The transmitted and the re�ected
�elds are, see (7.15) and (7.16)

〈Et(r)〉 =
∑
j=1,2

{
8π2n0

k1k1iz

C+
j (kit) + Aj

}
ϕ+
j (kit; k1, r), z > z2

and

〈Er(r)〉 =
∑
j=1,2

8π2n0

k1k1iz

C−j (kit)ϕ
−
j (kit; k1, r), z < z1

and where

C±j (kit) =
∑
n

B±nj(kit)

∫ z2−a

z1+a

fn(z)e∓ik1izz dz

The kernel in the system of integral equations in (7.7) simpli�es to

Knn′(r, r′; ξ) =
N − 1

k3
1

P (r′|r)
∑
n′′

Tnn′′(ξ)Pn′′n′(k2(r′ − r))

=
g(r, r′)n0

k3
1

∑
n′′

Tnn′′(ξ)Pn′′n′(k2(r′ − r))

where we used the pair correlation function in (E.3), and the right-hand side sim-
pli�es to

〈dn〉 (r; ξ) =
∑
n′

Tnn′(ξ)
∑
j=1,2

∫∫
R2

B+
n′j
†
(kt)e

ik+
1 ·raj(kt) dkx dky

which for a plane wave becomes, see above (7.8)

〈dn〉 (r; ξ) =
∑
n′

Tnn′(ξ)e
ik1k̂i·rp

∑
j=1,2

B+
nj(kit)(−1)l+τ+j+1Aj

=
∑
n′

Tnn′(ξ)e
ik1k̂i·rp4πil−τ+1Aτn(k̂i) ·E0
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since ∑
j=1,2

(−1)jB+
nj(kit)Aj = 4πi−l+τ−1Aτn(k̂i) ·E0

The expansions coe�cients of the incident plane wave in regular spherical vector
waves are [25]

Ei(r) = E0eik1k̂i·r

where [25]
aτn = 4πil−τ+1Aτn(k̂i) ·E0

which implies

〈dn〉 (r; ξ) = eik1k̂i·rp
∑
n′

Tnn′(ξ)an

This special case is in agreement with the results in [23].

9 Approximations

Two di�erent approximations of the �nal expression of the transmission and re�ec-
tion coe�cients are of interest � tenuous (sparse) media and the low frequency
approximation.

9.1 Tenuous media

If the number density of the scatterers is small, we can approximate the solution
to the system of integral equations in (7.10) by the �rst iteration (�rst order in the
number density n0)

fn(z) ≈ dn(z), z ∈ [z1 + a, z2 − a]

which implies from (7.9)

k2

∫ z2−a

z1+a

fn(z)e±ik2izz dz =
∑
n′

〈Tnn′〉
∑
j=1,2

T 1
j (kit)Aj

×
B+
n′j
†
(kit)

(
I+

D

)
+R2

j (kit)B
−
n′j
†
(kit)

(
D
I−

)
1−R1

j(kit)R
2
j (kit)

where

I± = k2

∫ z2−a

z1+a

e±2ik2izz dz = ± k2

2ik2iz

(
e±2ik2iz(z2−a) − e±2ik2iz(z1+a)

)
= ±k2e±ik2iz(z2+z1)

2ik2iz

(
e±ik2izD − e∓ik2izD

)
=
k2e±ik2iz(z2+z1)

k2iz

sin k2izD (9.1)
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and D = z2 − z1 − 2a. From (7.15) and (7.16) we obtain an explicit expression
of the coherent (averaged) transmitted and re�ected �elds 〈Et(r)〉 and 〈Er(r)〉.
respectively.

〈Et(r)〉 =
8π2n0

k2k2iz

∑
j=1,2

T 2
j (kit)

{
R1
j(kit)

∑
nB

−
nj(kit)

∫ z2−a
z1+a

fn(z′)eik2izz
′

dz′

1−R1
j(kit)R

2
j (kit)

+

∑
nB

+
nj(kit)

∫ z2−a
z1+a

fn(z′)e−ik2izz
′

dz′

1−R1
j(kit)R

2
j (kit)

}
ϕ+
j (kit; k3, r)

+
∑
j=1,2

Tj(kit)Ajϕ
+
j (kit; k3, r), z > z2

and

〈Er(r)〉 =
8π2n0

k2k2iz

∑
j=1,2

T 1
j (kit)

{∑
nB

−
nj(kit)

∫ z2−a
z1+a

fn(z′)eik2izz
′

dz′

1−R1
j(kit)R

2
j (kit)

+
R2
j (kit)

∑
nB

+
nj(kit)

∫ z2−a
z1+a

fn(z′)e−ik2izz
′

dz′

1−R1
j(kit)R

2
j (kit)

}
ϕ−j (kit; k1, r)

+
∑
j=1,2

Rj(kit)Ajϕ
−
j (kit; k1, r), z < z1

9.1.1 Normal incidence

A more comprehensive expression of the coherent transmitted and re�ected �elds is
obtained if we specialize to normal incidence, kit = 0. From (5.11), (5.12), (5.17),
and (6.1), we obtain (j = 1, 2)

R1
j (0) = −(−1)jrz1e

2ik1z1

R1
j(0) = (−1)jrz1e

−2ik2z1

R2
j (0) = −(−1)jrz2e

2ik2z2

Rj(0) = −(−1)j
rz1 + rz2e

2ik2(z2−z1)

1 + rz1rz2e
2ik2(z2−z1)

e2ik1z1

and 

T 1
j (0) = tz1e

ik1z1e−ik2z1

T 1
j (0) =

η1

η2

tz1e
ik1z1e−ik2z1

T 2
j (0) = tz2e

ik2z2e−ik3z2

Tj(0) =
tz1tz2e

ik2(z2−z1)eik1z1e−ik3z2

1 + rz1rz2e
2ik2(z2−z1)

where 
rz1 =

η2 − η1

η2 + η1

rz2 =
η3 − η2

η3 + η2


tz1 =

2η2

η2 + η1

= 1 + rz1

tz2 =
2η3

η3 + η2

= 1 + rz2
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and from (D.4)

B+
nj(0) = i−lδm1

√
2l + 1

8π

{
−iδτj

{
cos β
sin β

}
− δτj

{
− sin β
cos β

}}
The upper (lower) line in this expression in the brace parentheses corresponds to
σ = e (σ = o), and

B−nj(0) = (−1)l+τ+jB+
nj(0)

and
B±nj

†
(0) = (−1)l+τ+j+1B±nj(0)

The expansion coe�cients of the plane wave are

Aj = 4πE0 ·
(

iδj1β̂ − δj2k̂t

)
The following sums are needed, see also (A.2):∑

j=1,2

B+
nj
†
(0)Aj = ilδm1

√
2π
√

2l + 1E0 ·
{
δτ1

{
−ŷ
x̂

}
− iδτ2

{
x̂
ŷ

}}
= 4πil−τ+1An(ẑ) ·E0 (9.2)

and∑
j=1,2

R2
j (0)B−nj

†
(0)Aj

= i−lδm1

√
2π
√

2l + 1rz2e
2ik2z2E0 ·

{
δτ1

{
−ŷ
x̂

}
+ iδτ2

{
x̂
ŷ

}}
= 4πi−l+τ−1rz2e

2ik2z2An(ẑ) ·E0 (9.3)

and for normal incidence, we get

k2

∫ z2−a

z1+a

fn(z)e±ik2z dz = 4π
tz1e

ik1z1e−ik2z1

1 + rz1rz2e
2ik2(z2−z1)∑

n′

il
′−τ ′+1 〈Tnn′〉An′(ẑ) ·E0

(
I+ + (−1)l

′+τ ′+1k2Drz2e
2ik2z2

k2D + (−1)l
′+τ ′+1I−rz2e

2ik2z2

)
where, see (9.1)

I± = e±ik2(z2+z1) sin(k2D)

and D = z2 − z1 − 2a.
To proceed, we need the sums∑

j=1,2

R1
j(0)B−nj(0)ϕ+

j (0; k3, r)

= − ilδm1

4π

√
2l + 1

8π
rz1e

−2ik2z1

{
δτ1

{
−ŷ
x̂

}
− iδτ2

{
x̂
ŷ

}}
eik3z

= − il−τ+1rz1e
−2ik2z1

4π
An(ẑ)eik3z
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and

∑
j=1,2

B+
nj(0)ϕ+

j (0; k3, r) =
i−lδm1

4π

√
2l + 1

8π

{
δτ1

{
−ŷ
x̂

}
+ iδτ2

{
x̂
ŷ

}}
eik3z

=
i−l+τ−1

4π
An(ẑ)eik3z

Similarly, we get ∑
j=1,2

B−nj(0)ϕ−j (0; k1, r) =
il−τ+1

4π
An(ẑ)e−ik1z

and ∑
j=1,2

R2
j (0)B+

nj(0)ϕ−j (0; k1, r) =
i−l+τ−1rz2e

2ik2z2

4π
An(ẑ)e−ik1z

and ∑
j=1,2

Ajϕ
+
j (0; k3, r) = E0eik3z, −

∑
j=1,2

(−1)jAjϕ
−
j (0; k1, r) = E0e−ik1z

These results give the �nal expressions of the coherent (averaged) transmitted and
re�ected �elds, 〈Et(r)〉 and 〈Er(r)〉, respectively, with a plane wave impinging
normally to the slab, see (7.15) and (7.16). We get

〈Et(r)〉 =
∑
j=1,2

{
8π2n0

k2
2

T 2
j (0)

{
R1
j(0)

∑
nB

−
nj(0)

∫ z2−a
z1+a

fn(z′)eik2z′ dz′

1−R1
j(0)R2

j (0)

+

∑
nB

+
nj(0)

∫ z2−a
z1+a

fn(z′)e−ik2z′ dz′

1−R1
j(0)R2

j (0)

}
+ Tj(0)Aj

}
ϕ+
j (0; k3, r)

=
8π2n0

k3
2

tz1tz2e
ik1z1eik2(z2−z1)eik3(z−z2)

(1 + rz1rz2e
2ik2(z2−z1))

2

∑
nn′

An(ẑ) 〈Tnn′〉An′(ẑ) ·E0

×

{
i(l+l

′)−(τ+τ ′)rz1e
−2ik2z1I+ − i(l−l

′)−(τ−τ ′)rz1rz2e
2ik2(z2−z1)k2D

+ i(l
′−l)−(τ ′−τ)k2D − i−(l+l′)+(τ+τ ′)rz2e

2ik2z2I−

}
+ tslabeik1z1E0eik3(z−z2), z > z2

where the transmission coe�cient for the homogeneous slab is

tslab =
tz1tz2e

ik2(z2−z1)

1 + rz1rz2e
2ik2(z2−z1)

(9.4)
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and

〈Er(r)〉 =
∑
j=1,2

{
8π2n0

k2
2

T 1
j (0)

{∑
nB

−
nj(0)

∫ z2−a
z1+a

fn(z′)eik2z′ dz′

1−R1
j(0)R2

j (0)

+
R2
j (0)

∑
nB

+
nj(0)

∫ z2−a
z1+a

fn(z′)e−ik2z′ dz′

1−R1
j(0)R2

j (0)

}
+Rj(0)Aj

}
ϕ−j (0; k1, r)

=
8π2n0

k3
2

η1

η2

t2z1e
ik1z1e−2ik2z1e−ik1(z−z1)

(1 + rz1rz2e
2ik2(z2−z1))

2

∑
nn′

An(ẑ) 〈Tnn′〉An′(ẑ) ·E0

×

{
−i(l+l

′)−(τ+τ ′)I+ + i(l−l
′)−(τ−τ ′)rz2e

2ik2z2k2D

+ i(l
′−l)−(τ ′−τ)rz2e

2ik2z2k2D − i−(l′+l)+(τ ′+τ)r2
z2

e4ik2z2I−

}
+ rslabeik1z1E0e−ik1(z−z1), z < z1

where the re�ection coe�cient for the homogeneous slab is

rslab =
rz1 + rz2e

2ik2(z2−z1)

1 + rz1rz2e
2ik2(z2−z1)

This is an explicit expressions of the coherent transmitted and re�ected �elds
in the approximation of tenuous scatterers. The last terms in these expressions
are the direct transmitted and re�ected �elds, and they are obvious. The �rst
terms, however, are more complex, and not easy to derive from elementary physical
arguments. In these terms, the transition matrix appears to the �rst power, which
indicates that single scattering approximation has been adopted.

We can simplify this expression further by identifying the forward scattering and
backscattering dyadics of a single (deterministic) scatterer in the slab background
material [25, Ex. 7.1 and 7.2]

S(ẑ, ẑ) =
4π

ik2

∑
n,n′

i(l
′−l)−(τ ′−τ)An(ẑ)Tnn′An′(ẑ)

and

S(−ẑ, ẑ) = − 4π

ik2

∑
n,n′

i(l+l
′)−(τ+τ ′)An(ẑ)Tnn′An′(ẑ)

or by the use of the parity of the vector spherical harmonics (A.1)

S(−ẑ,−ẑ) =
4π

ik2

∑
n,n′

i(l−l
′)−(τ−τ ′)An(ẑ)Tnn′An′(ẑ)

and

S(ẑ,−ẑ) = − 4π

ik2

∑
n,n′

i−(l+l′)+(τ+τ ′)An(ẑ)Tnn′An′(ẑ)
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We get

〈Et(r)〉 =
2πin0

k2
2

tslabeik1z1eik3(z−z2)

1 + rz1rz2e
2ik2(z2−z1)

{
−rz1S(−ẑ, ẑ)e−2ik2z1I+

− rz1S(−ẑ,−ẑ)rz2e
2ik2(z2−z1)k2D + S(ẑ, ẑ)k2D

+ S(ẑ,−ẑ)rz2e
2ik2z2I−

}
·E0 + tslabeik1z1E0eik3(z−z2), z > z2

and

〈Er(r)〉 =
2πin0

k2
2

η1

η2

t2z1e
ik1z1e−2ik2z1e−ik1(z−z1)

(1 + rz1rz2e
2ik2(z2−z1))

2

{
S(−ẑ, ẑ)I+

+ S(−ẑ,−ẑ)rz2e
2ik2z2k2D + S(ẑ, ẑ)rz2e

2ik2z2k2D

+ S(ẑ,−ẑ)r2
z2

e4ik2z2I−

}
·E0 + rslabeik1z1E0e−ik1(z−z1), z < z1

If we restrict to spherical, dielectric obstacles of radius a and material parameters ε
and µ so that Tnn′ is diagonal in its indices (we adopt the notion tτl for the transition
matrix entries [25, Chap. 8]), the expressions simplify [25, Ex. 7.3]. We get

S(ẑ, ẑ) = S(−ẑ,−ẑ) =
I2

2ik2

∞∑
l=1

(2l + 1) (t1l + t2l)

and

S(ẑ,−ẑ) = S(−ẑ, ẑ) =
I2

2ik2

∞∑
l=1

(−1)l(2l + 1) (t1l − t2l)

The transmission coe�cient t de�ned as 〈Et(r)〉 = tE0eik3(z−z2) then is

t =
3f

4(k2a)3

tslabeik1z1

1 + rz1rz2e
2ik2(z2−z1)

{(
1− rz1rz2e2ik2(z2−z1)

)
k2D

∞∑
l=1

(2l + 1) (t1l + t2l)

+ (rz2 − rz1) eik2(z2−z1) sin(k2D)
∞∑
l=1

(−1)l(2l + 1) (t1l − t2l)

}
+ tslabeik1z1

where we used the dimensionless volume fraction, f = n04πa3/3, and where we also
used

− rz1e−2ik2z1I+ + rz2e
2ik2z2I−

= −rz1e−2ik2z1eik2(z2+z1) sin(k2D) + rz2e
2ik2z2e−ik2(z2+z1) sin(k2D)

= (−rz1 + rz2)e
ik2(z2−z1) sin(k2D)

where D = z2 − z1 − 2a.
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Similarly, the re�ection coe�cient r is de�ned as 〈Er(r)〉 = rE0e−ik1(z−z1) where

r =
3f

4(k2a)3

η1

η2

t2z1e
ik1z1e−2ik2z1

(1 + rz1rz2e
2ik2(z2−z1))

2

{
2rz2e

2ik2z2k2D
∞∑
l=1

(2l + 1) (t1l + t2l)

+
(
e2ik2z1 + r2

z2
e2ik2z2

)
eik2(z2−z1) sin(k2D)

∞∑
l=1

(−1)l(2l + 1) (t1l − t2l)

}
+ rslabeik1z1

where we used

I+ + r2
z2

e4ik2z2I− = eik2(z2+z1) sin(k2D) + r2
z2

e4ik2z2e−ik2(z2+z1) sin(k2D)

=
(
e2ik2z1 + r2

z2
e2ik2z2

)
eik2(z2−z1) sin(k2D)

Further simpli�cations occur if the material on both sides of the slab are identical,
i.e., ε1 = ε3 and µ1 = µ3. Then rz2 = −rz1 and

t = tslabeik1z1

{
1 +

3f

4(k2a)3

k2D
(
1 + r2

z1
e2ik2(z2−z1)

)
1− r2

z1
e2ik2(z2−z1)

∞∑
l=1

(2l + 1) (t1l + t2l)

− 6f

4(k2a)3

rz1 sin(k2D)eik2(z2−z1)

1− r2
z1

e2ik2(z2−z1)

∞∑
l=1

(−1)l(2l + 1) (t1l − t2l)

}
(9.5)

where

tslab =

(
1− r2

z1

)
eik2(z2−z1)

1− r2
z1

e2ik2(z2−z1)

This result shows several similarities with the corresponding result with no slab
present [23], and a numerical implementation of the result in this section, simulating
air bubbles (ε = ε1 = ε3 and µ = µ1 = µ3) in a dielectric slab of resin, is illustrated
in Figure 3.

9.2 Low-frequency approximation

The aim of this section is to solve the integral equation (7.10) for low frequencies
for spherical particles of radius a, or, more precisely, small k2a.

9.2.1 Normal incidence

To simplify the analysis, we assume ε1 = ε3 and µ1 = µ2 = µ3 (the same materials
on both sides of the slab, and all materials have the same magnetic properties) and
we assume the plane wave impinges normally to the slab, i.e., kit = 0.

If the spherical particles of radius a are of the same magnetic properties as the
slab, µ = µ2, and with a permittivity ε, then the transition matrix entries of the
scatterers to leading order in powers of k2a are [25]

t21 = T2σ11,2σ11 =
2i(k2a)3

3
y, σ = e, o (9.6)
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k̂i

Figure 3: The transmissivity T = |t|2 (t given in (9.5)) as a function of the electrical
size k1a for a slab of thickness (z2−z1)/a = 10 and constant volume fraction f = 0.01
consisting of spherical voids of radius a (same material as the outside the slab). The
materials parameters are identical on both sides of the slab, i.e., ε1 = ε3 and µ1 = µ3.
The material parameters of the slab are ε2/ε1 = 2.4(1 + 0.001i) and µ2/µ1 = 1. The
tenuous approximation of the transmissivity with a slab background is depicted in
black. The blue curve corresponds to the transmissivity without scatterers, and the
curve T = 1 is also shown.

where

y =
ε− ε2
ε+ 2ε2

All other entries of the transition matrix contribute with higher order terms in k2a.
We proceed by identifying the dominant power in k2a in the kernel Knn′(z, z

′; ξ),
see (7.14), which originates from l = 1. The simplest model for the pair correlation
function g(r) is the hole correction function, i.e., g(r) = H(r − 2a), where H(x)
denotes the Heaviside function. With only l = 1 and m = 1 contributing, the
function Cnn′(kt; z) in (7.13), to leading order in powers of k2a, the transition matrix
entries are [23,24]

Cτσ11,τσ11(0; z) = −2π

O(1), |z| ≥ 2a

i
12− 3(z/a)2

32k2a
+O(1), |z| < 2a

τ = 1, 2 σ = e, o

The lateral Fourier transform of the pair correlation function, see (7.12), for the
hole correction becomes

G(kt; z) = 4π2k2
2δ(kt)− 2π(k2d(z))2J1(ktd(z))

ktd(z)
= O(1)
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These estimates imply that the kernel Knn′(z, z
′) in (7.14) has the dominant term

(only τ = 2 contributes due to the assumption that the scatterers have the same
magnetic properties as the surrounding slab)

K2σ11,2σ11(z, z′) = − 3ft21

2(k2a)3


O(1), |z − z′| ≥ 2a

i
12− 3

(
z−z′
a

)2

32k2a
+O(1), |z − z′| < 2a

σ = e, o

where the dimensionless volume fraction, f = n04πa3/3. All other components of
the kernel contributes with higher order terms in k2a. The integral equation (7.10)
to leading order in k2a is (we suppress the index τ = 2, m = 1, and l = 1)

fσ(z) +
3ifk2t21

64(k2a)4

∫ z2−a

z1+a

H(2a− |z − z′|)

(
12− 3

(
z − z′

a

)2
)
fσ(z′) dz′

= dσ(z), z ∈ [z1, z2], σ = e, o

where H(x) is the Heaviside function. We notice that the two integral decouple, and
it su�ces to solve one of them. Under the assumptions made in this section, the
right-hand side dσ(z) in (7.9) is

dσ(z) = t21

∑
j=1,2

T 1
j (0)Aj

B+
2σ11j

†
(0)eik2z +R2

j (0)B−2σ11j
†
(0)e−ik2z

1−R1
j(0)R2

j (0)

= 4πt21tz1e
ik1z1e−ik2z1A2σ11(ẑ) ·E0

eik2z + rz2e
2ik2z2e−ik2z

1 + rz1rz2e
2ik2(z2−z1)

=
√

6πt21tz1e
ik1z1e−ik2z1

{
x̂
ŷ

}
·E0

eik2z + rz2e
2ik2z2e−ik2z

1 + rz1rz2e
2ik2(z2−z1)

, σ = e, o

where we used (9.2) and (9.3).
Our main goal is to evaluate the transmitted and re�ected �elds, and for this

we need to compute the dominant contribution to the integrals
∫ z2−a
z1+a

fσ(z)e±ik2z dz.

Therefore, multiply the integral equation with k2e±ik2z and integrate over z ∈ [z1 +
a, z2 − a]. The result is (the domain of integration is depicted in Figure 4)

y±σ +
3ifk2

2t21

64(k2a)4

∫ z2−a

z1+a

∫ z2−a

z1+a

H(2a− |z − z′|)

(
12− 3

(
z − z′

a

)2
)

e±ik2(z−z′)

× e±ik2z′fσ(z′) dz′ dz = D±σ , σ = e, o

where

y±σ = k2

∫ z2−a

z1+a

fσ(z)e±ik2z dz

and where the right-hand side is

D±σ = k2

∫ z2−a

z1+a

dσ(z)e±ik2z dz =

√
6πt21

tz1e
ik1z1e−ik2z1

1 + rz1rz2e
2ik2(z2−z1)

{
x̂
ŷ

}
·E0

(
I+ + k2Drz2e

2ik2z2

k2D + I−rz2e
2ik2z2

)
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z

z′

z1 z1 + a z2z2 − a

z1

z1 + a

z2

z2 − a

A

z′ = z + 2a

z′ = z − 2a

Figure 4: The domain of integration in z and z′. The red area A shows the region
where the kernel K(z − z′) is non-zero. The domain A is exaggerated.

where, see (9.1)
I± = e±ik2(z2+z1) sin(k2D)

and D = z2 − z1 − 2a. The upper (lower) line in the parentheses corresponds to
the plus (minus) sign in the exponent on the left-hand side. Moreover, the upper
(lower) line in the braces corresponds to σ = e (σ = o).

Make a change in variables in the integral equation, z → t = z − z′. The new
domain of integration is depicted in Figure 5. The integral equation (7.10) becomes
to leading order in k2a

y±σ +
3ifk2

2t21

64(k2a)4

∫∫
A′

(
12− 3

(
t

a

)2
)

e±ik2te±ik2z′fσ(z′) dz′ dt = D±σ , σ = e, o
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4a

t

z′

0−D D

z1 + a

z2 − a

z′ = z2 − a− t

z′ = z1 + a− t

A′

Figure 5: The domain of integration in t and z′. The red area A′ shows the region
where the kernel K(z − z′) is non-zero, and D = z2 − z1 − 2a. The domain A′ is
exaggerated.

To leading order in powers of k2a, the integral is

k2
2

∫∫
A′

(
12− 3

(
t

a

)2
)

e±ik2te±ik2z′fσ(z′) dz′ dt

≈ k2y
±
σ

∫ 2a

−2a

(
12− 3

(
t

a

)2
)

e±ik2t dt

= k2ay
±
σ

∫ 2

−2

(
12− 3u2

)
e±ik2au du = 32k2ay

±
σ +O((k2a)2)

which implies to leading order in k2a

y±σ =
D±σ

1 + 3ift21
2(k2a)3

, σ = e, o

Finally, we can now form the transmitted �eld 〈Et(r)〉, see (7.15), by the use of
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the sums over j that is found in Section 9.1.1. The result is

〈Et(r)〉 =
∑
j=1,2

{
8π2n0

k2
2

T 2
j (0)

{
R1
j(0)

∑
nB

−
nj(0)

∫ z2−a
z1+a

fn(z′)eik2z′ dz′

1−R1
j(0)R2

j (0)

+

∑
nB

+
nj(0)

∫ z2−a
z1+a

fn(z′)e−ik2z′ dz′

1−R1
j(0)R2

j (0)

}
+ Tj(0)Aj

}
ϕ+
j (0; k3, r)

=
9ft21

4(k2a)3

tz1tz2e
ik1z1eik2(z2−z1)eik3(z−z2)

(1 + rz1rz2e
2ik2(z2−z1))

2

E0

1 + 3ift21
2(k2a)3

×

{
−rz1e−2ik2z1I+ − rz1rz2e2ik2(z2−z1)k2D + k2D + rz2e

2ik2z2I−

}
+ tslabeik1z1E0eik3(z−z2), z > z2

where the dimensionless volume fraction, f = n04πa3/3. The transmission coe�cient
t de�ned as 〈Et(r)〉 = tE0eik3(z−z2) then is

t =
9ft21tslabeik1z1

4(k2a)3 + 6ift21

{
(rz2 − rz1) eik2(z2−z1) sin(k2D)

1 + rz1rz2e
2ik2(z2−z1)

+

(
1− rz1rz2e2ik2(z2−z1)

)
k2D

1 + rz1rz2e
2ik2(z2−z1)

}
+ tslabeik1z1 (9.7)

Similarly, the re�ected �eld is, see (7.16)

〈Er(r)〉 =
∑
j=1,2

{
8π2n0

k2
2

T 1
j (0)

{∑
nB

−
nj(0)

∫ z2−a
z1+a

fn(z′)eik2z′ dz′

1−R1
j(0)R2

j (0)

+
R2
j (0)

∑
nB

+
nj(0)

∫ z2−a
z1+a

fn(z′)e−ik2z′ dz′

1−R1
j(0)R2

j (0)

}
+Rj(0)Aj

}
ϕ−j (0; k1, r)

=
9ft21

4(k2a)3

η1

η2

t2z1e
ik1z1e−2ik2z1

(1 + rz1rz2e
2ik2(z2−z1))

2

E0

1 + 3ift21
2(k2a)3{

I+ + rz2e
2ik2z2k2D + rz2e

2ik2z2k2D + r2
z2

e4ik2z2I−

}
e−ik1(z−z1)

+ rslabeik1z1E0e−ik1(z−z1), z < z1

The re�ection coe�cient r de�ned as 〈Er(r)〉 = rE0e−ik1(z−z1) then is

r = 9ft21
η1

η2

t2z1e
ik1z1e−2ik2z1

(1 + rz1rz2e
2ik2(z2−z1))

2

1

4(k2a)3 + 6ift21{
2rz2e

2ik2z2k2D +
(
e2ik2z1 + r2

z2
e2ik2z2

)
eik2(z2−z1) sin(k2D)

}
+ rslabeik1z1

To leading order in the volume fraction f , we get further simpli�cations of the



47

transmission and re�ection coe�cients.

t =
9ft21tslabeik1z1

4(k2a)3

{
(rz2 − rz1) eik2(z2−z1) sin(k2D)

1 + rz1rz2e
2ik2(z2−z1)

+

(
1− rz1rz2e2ik2(z2−z1)

)
k2D

1 + rz1rz2e
2ik2(z2−z1)

}
+ tslabeik1z1

and

r =
9ft21

4(k2a)3

η1

η2

t2z1e
ik1z1e−2ik2z1

(1 + rz1rz2e
2ik2(z2−z1))

2{
2rz2e

2ik2z2k2D +
(
e2ik2z1 + r2

z2
e2ik2z2

)
eik2(z2−z1) sin(k2D)

}
+ rslabeik1z1

which agree with the results in Section 9.1.1 for a non-magnetic material at low
frequencies.

9.2.2 Further simpli�cations and approximations

Further simpli�cations occur if the material on both sides of the slab are identical,
i.e., ε1 = ε3 and µ1 = µ3. Then rz2 = −rz1 and (9.4) reads

tslab =

(
1− r2

z1

)
eik2(z2−z1)

1− r2
z1

e2ik2(z2−z1)

and from (9.7) (k2d = k2(z2 − z1))

te−ik1z1

tslab

= 1 +
3i

2

fy

1− fy

{
−2rz1e

ik2d sin(k2d)

1− r2
z1

e2ik2d
+

(
1 + r2

z1
e2ik2d

)
k2d

1− r2
z1

e2ik2d

}
where we approximated D = d and introduced the low-frequency expansion of the
transition matrix, see (9.6), and y = (ε− ε2)/(ε+ 2ε2).

The result in this section is illustrated in Figures 6 and 7, simulating air bubbles
in a dielectric slab of resin. The low-frequency behaviour shown in Figure 6 shows
that all three curves agree in the interval k1a ∈ [0, 0.5] � which approximately
corresponds to the interval Re k2a ∈ [0, 1.25] in the slab parameters.

If also the volume fraction f is low, we have agreement with the corresponding
expression in Section 9.1.

The dominant contribution in powers of the electric thickness k1d = k1(z2 − z1)
is also of interest. The transmission coe�cient for the homogeneous slab has the
following expansion in powers of k1d = k1ad/a [25]:

tslabe−ik1d =

(
1− r2

z1

)
ei(k2−k1)d

1− r2
z1

e2ik2d

=
(
1 + i(k2 − k1)d+O

(
(k1d)2

))(
1 + 2i

r2
z1

1− r2
z1

k2d+O
(
(k1d)2

))
= 1 + i

1 + r2
z1

1− r2
z1

k2d− ik1d+O
(
(k1d)2

)
= 1 + i

ε1 + ε2
2
√
ε1ε2

k2d− ik1d+O
(
(k1d)2

)
= 1 + i

ε1 + ε2
2ε1

k1d− ik1d+O
(
(k1d)2

)
= 1 + i

ε2 − ε1
2ε1

k1d+O
(
(k1d)2

)



48

0.5 1 1.5 2

0.7

0.8

0.9

1

k1a

|t|2

k̂i

Figure 6: The low-frequency behavior of the transmissivity T = |t|2 (t given
in (9.7)) as a function of the electrical size k1a for a slab of thickness (z2−z1)/a = 10
and constant volume fraction f = 0.01 consisting of spherical voids of radius a (same
material as the outside the slab). The materials parameters are identical to the ones
in Figure 3. The black curve depicts the tenuous media approximation and the
blue curve the low-frequency approximation. The green curve gives the transmis-
sivity for a homogeneous slab with the homogenized permittivity in (9.8) and the
transmissivity for the slab without any voids is given in dashed curve.

and (to leading order in k1d)

te−ik1z1

tslab

= 1 +
3i

2

fy

1− fy

(
1− rz1eik2d

)2

1− r2
z1

e2ik2d
k2d = 1 +

3i

2

fy

1− fy
1− rz1eik2d

1 + rz1e
ik2d

k2d

= 1 +
3i

2

fy

1− fy
1− rz1
1 + rz1

k2d+O
(
(k1d)2

)
= 1 +

3i

2

fy

1− fy

√
ε2
ε1
k2d+O

(
(k1d)2

)
These approximations imply (to leading order in k1d)

te−ik1d =

(
1 + i

ε2 − ε1
2ε1

k1d

)(
1 +

3i

2

fy

1− fy
ε2
ε1
k1d

)
eik1z1

=

(
1 + i

ε2 − ε1
2ε1

k1d+
3i

2

fy

1− fy
ε2
ε1
k1d

)
eik1z1

and the transmitted electric �eld is

〈Et(r)〉 =

(
1 + 1 + i

ε2 − ε1
2ε1

k1d+
3i

2

fy

1− fy
ε2
ε1
k1d

)
E0eik1z, z > z2
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Figure 7: The transmissivity |t|2 as a function of the volume fraction f for a slab
of thickness d/a = 10 and constant electric size k1a = 0.01 consisting of spherical
voids of radius a (same material as the outside the slab). The materials parameters
are identical to the ones in Figure 3. The low-frequency approximation of the trans-
missivity is displayed in black and the tenuous approximation is given in blue. The
dashed line depicts the transmissivity in a slab without scatterers. The green curve
gives the transmissivity for a homogeneous slab with the homogenized permittivity
in (9.8).

This expression of the transmission coe�cient t can be compared with the trans-
mission coe�cient of a non-magnetic, dielectric slab of thickness d = z2 − z1 with
permittivity ε′ in a background material ε1. The thin thickness approximation is

〈Et(r)〉 =

(
1 + i

ε′ − ε1
2ε1

k1d+O
(
(k1d)2

))
E0eik1z

Equating these expressions gives

ε′

ε1
=
ε2
ε1

+
3fy

1− fy
ε2
ε1

or

ε′ = ε2 +
3fyε2
1− fy

= ε2
1 + 2fy

1− fy
(9.8)

which is the Clausius-Mossotti relation [17].

10 Conclusions

The results presented in this paper generalize the analysis reported in [23], where
the background material was identical everywhere. The generalization reported in
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Figure 8: The transmissivity |t|2 as a function of the volume fraction f for a slab
of thickness d/a = 10 and constant electric size k1a = 0.01 consisting of spherical
voids of radius a (same material as the outside the slab). The materials parameters
are identical to the ones in Figure 3. The low-frequency approximation of the trans-
missivity is displayed in black and the tenuous approximation is given in blue. The
dashed line depicts the transmissivity in a slab without scatterers. The green curve
gives the transmissivity for a homogeneous slab with the homogenized permittivity
in (9.8).

this paper extends the results such that defects in a slab can be handled, e.g.,
air bubbles. The analysis solves the boundary value with an arbitrary number of
general scatterers inside a slab with di�erent material parameters. Moreover, the
results explicitly identify the scattering contribution from the particles themselves.
In particular, a potentially lossy background material hosting the particles is covered.
A lossy background material has been causing controversial arguments over time
regarding extinction [2, 32, 33]. The method developed in this paper avoids this
controversy.

The complex scattering problem of randomly located obstacles in a slab with
di�erent material is solved employing a systematic use of two main tools: 1) the
integral representation of the solution of the Maxwell equations, 2) decomposition
of the Green dyadic for the electric �eld in free space in spherical and planar vector
waves. In addition, we also employ transformations between planar and spherical
vector waves. The statistical treatment is general, but the details is only analyzed in
full detail for the uniformly distributed obstacles and for the hole correction. Several
generalizations of the results presented in this paper are possible as well as a numer-
ical implementation of the theory. These extensions and numerical implementations
are reported elsewhere.
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Appendix A Spherical vector waves

The vector spherical harmonics de�ned on the unit sphere are [4, 25]
A1n(r̂) =

1√
l(l + 1)

∇× (rYn(r̂)) =
1√

l(l + 1)
∇Yn(r̂)× r

A2n(r̂) =
1√

l(l + 1)
r∇Yn(r̂)

A3n(r̂) = r̂Yn(r̂)

where the (scalar) spherical harmonics are denoted by Yn(r̂) de�ned as

Yn(r̂) = Yn(θ, φ) =

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)

{
cosmφ
sinmφ

}
where Pm

l (x) are the associated Legendre functions, and where the Neumann factor
is de�ned as

εm = 2− δm0, i.e.,

{
ε0 = 1

εm = 2, m > 0

The index n is a multi-index for the integer indices l = 1, 2, 3, . . ., m = 0, 1, . . . , l,
and σ = e,o (even and odd in the azimuthal angle).4 From these de�nitions we see
that the �rst two vector spherical harmonics, A1n(r̂) and A2n(r̂), are tangential to
the unit sphere Ω in R3 and they are related as{

r̂ ×A1n(r̂) = A2n(r̂)

r̂ ×A2n(r̂) = −A1n(r̂)

The vector spherical harmonics form an orthonormal set over the unit sphere Ω
in R3, i.e., ∫∫

Ω

Aτn(r̂) ·Aτ ′n′(r̂) dΩ = δnn′δττ ′

where dΩ is the surface measure on the unit sphere.
The parity of the vector spherical harmonics is

Aτn(−r̂) = (−1)l+τ+1Aτn(r̂), τ = 1, 2 (A.1)

The explicit values for r̂ = ẑ are
A1σml(ẑ) = δm1

√
2l + 1

8π

{
−ŷ
x̂

}
= −δm1

√
2l + 1

8π
ẑ ×

{
x̂
ŷ

}
A2σml(ẑ) = δm1

√
2l + 1

8π

{
x̂
ŷ

} (A.2)

4The index set at several places in this paper also denotes a four index set, and includes the τ
index. That is, the index n can denote n = {σ, l,m} or n = {τ, σ, l,m}.



52

The radiating solutions to the Maxwell equations in vacuum are de�ned as (out-
going spherical vector waves)

u1n(kr) =
ξl(kr)

kr
A1n(r̂)

u2n(kr) =
1

k
∇×

(
ξl(kr)

kr
A1n(r̂)

)
Here, we use the Riccati-Bessel functions ξl(x) = xh

(1)
l (x), where h

(1)
l (x) is the

spherical Hankel function of the �rst kind [46]. These vector waves satisfy

∇× (∇× uτn(kr))− k2uτn(kr) = 0, τ = 1, 2

and they also satisfy the Silver-Müller radiation condition [6]. Another representa-
tion of the de�nition of the vector waves is

u1n(kr) =
ξl(kr)

kr
A1n(r̂)

u2n(kr) =
ξ′l(kr)

kr
A2n(r̂) +

√
l(l + 1)

ξl(kr)

(kr)2
A3n(r̂)

A simple consequence of these de�nitions is
u1n(kr) =

1

k
∇× u2n(kr)

u2n(kr) =
1

k
∇× u1n(kr).

In a similar way, the regular spherical vector waves vτn(kr) are de�ned [4].
v1n(kr) =

ψl(kr)

kr
A1n(r̂)

v2n(kr) =
ψ′l(kr)

kr
A2n(r̂) +

√
l(l + 1)

ψl(kr)

(kr)2
A3n(r̂)

where the Riccati-Bessel functions ψl(x) = xjl(x), where jl(x) is the spherical Bessel
function [46].

Appendix B The translation matrices

The translation properties of the spherical vector waves are instrumental for the
formulation and the solution of the scattering problem of many individual scatterers.
These translation properties are well know, and we refer to, e.g., [4] for details.

Let r′ = r + d, see Figure 9. Then

un(kr′) =
∑
n′

Pnn′(kd)vn′(kr), r < d
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Figure 9: The relation between the translated origins O and O′ and the position
vectors r and r′ at the di�erent origins.

Translation in the opposite direction is identical to the transpose of the translation
matrices, i.e.,

Pt(kd) = P(−kd)

Denote the spherical coordinates of r, r′, and d by (r, θ, φ), (r′, θ′, φ′), and
(d, η, ψ), respectively. The translation matrices for a translation d (d ≤ 0) are [4]

P1σml,1σm′l′(kd) = (−1)m
′
Cml,m′l′(kd, η) cos(m−m′)ψ

+ (−1)σCml,−m′l′(kd, η) cos(m+m′)ψ

P1σml,1σ′m′l′(kd) = (−1)m
′+σ′Cml,m′l′(kd, η) sin(m−m′)ψ

+ Cml,−m′l′(kd, η) sin(m+m′)ψ, σ 6= σ′

P1σml,2σ′m′l′(kd) = (−1)m
′+σDml,m′l′(kd, η) cos(m−m′)ψ

−Dml,−m′l′(kd, η) cos(m+m′)ψ, σ 6= σ′

P1σml,2σm′l′(kd) = (−1)m
′
Dml,m′l′(kd, η) sin(m−m′)ψ

+ (−1)σDml,−m′l′(kd, η) sin(m+m′)ψ

P2σml,τσ′m′l′(kd) = P1σml,τσ′m′l′(kd), τ = 1, 2
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where

Cml,m′l′(kd, η) =
(−1)m+m′

2

√
εmεm′

4

×
l+l′∑

λ=|l−l′|

il
′−l+λ(2λ+ 1)

√
(2l + 1)(2l′ + 1)(λ− (m−m′))!
l(l + 1)l′(l′ + 1)(λ+ (m−m′))!

×
(
l l′ λ
0 0 0

)(
l l′ λ
m −m′ m′ −m

)
[l(l + 1) + l′(l′ + 1)− λ(λ+ 1)]

× h(1)
λ (kd)Pm−m′

λ (cos η)

Dml,m′l′(kd, η) =
(−1)m+m′

2

√
εmεm′

4

×
l+l′∑

λ=|l−l′|+1

il
′−l+λ+1(2λ+ 1)

√
(2l + 1)(2l′ + 1)(λ− (m−m′))!
l(l + 1)l′(l′ + 1)(λ+ (m−m′))!

×
(
l l′ λ− 1
0 0 0

)(
l l′ λ
m −m′ m′ −m

)√
λ2 − (l − l′)2

×
√

(l + l′ + 1)2 − λ2h
(1)
λ (kd)Pm−m′

λ (cos η)

where εm = 2− δm,0 is the Neumann factor, and where

(
· · ·
· · ·

)
denotes Wigner's

3j symbol [11], and

(−1)σ =

{
1, σ = e

−1, σ = o

Note that the factors il
′−l+λ in Cml,m′l′(d, η) and il

′−l+λ+1 in Dml,m′l′(d, η) are always
real numbers, due to the conditions on the Wigner's 3j symbol.

We notice that the translation matrices have the form

Pnn′(kd) =
l+l′∑

λ=|l−l′|+|τ−τ ′|

h
(1)
λ (kd)

(
Ann′λ(ψ)Pm−m′

λ (cos η) +Bnn′λ(ψ)Pm+m′

λ (cos η)
)

B.1 Average w.r.t. the azimuthal angle ψ

The integral of the translational matrix w.r.t. the azimuthal variable ψ is relevant,
see (7.13). Explicitly, the non-zero contributions for a general m ≥ 0 are

∫ 2π

0

A1eml,1em′l′λ(ψ) dψ = 2π(−1)mδmm′Cmll′λ∫ 2π

0

A1eml,2om′l′λ(ψ) dψ = 2π(−1)mδmm′Dmll′λ∫ 2π

0

A2oml,1em′l′λ(ψ) dψ =

∫ 2π

0

A1oml,2em′l′λ(ψ) dψ∫ 2π

0

A2oml,2om′l′λ(ψ) dψ =

∫ 2π

0

A1oml,1om′l′λ(ψ) dψ
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

∫ 2π

0

A1oml,1om′l′λ(ψ) dψ = 2π(−1)mδmm′Cmll′λ∫ 2π

0

A1oml,2em′l′λ(ψ) dψ = −2π(−1)mδmm′Dmll′λ∫ 2π

0

A2eml,1om′l′λ(ψ) dψ =

∫ 2π

0

A1eml,2om′l′λ(ψ) dψ∫ 2π

0

A2eml,2em′l′λ(ψ) dψ =

∫ 2π

0

A1eml,1em′l′λ(ψ) dψ

and the average over the function B becomes

∫ 2π

0

B1eml,1em′l′λ(ψ) dψ = 2πδmm′δm,0Cmll′λ∫ 2π

0

B1eml,2om′l′λ(ψ) dψ = −2πδmm′δm,0Dmll′λ∫ 2π

0

B2oml,1em′l′λ(ψ) dψ =

∫ 2π

0

B1oml,2em′l′λ(ψ) dψ∫ 2π

0

B2oml,2om′l′λ(ψ) dψ =

∫ 2π

0

B1oml,1om′l′λ(ψ) dψ



∫ 2π

0

B1oml,1om′l′λ(ψ) dψ = −2πδmm′δm,0Cmll′λ∫ 2π

0

B1oml,2em′l′λ(ψ) dψ = −2πδmm′δm,0Dml,ml′λ∫ 2π

0

B2eml,1om′l′λ(ψ) dψ =

∫ 2π

0

B1eml,2om′l′λ(ψ) dψ∫ 2π

0

B2eml,2em′l′λ(ψ) dψ =

∫ 2π

0

B1eml,1em′l′λ(ψ) dψ

The explicit form of the average is, see (7.13)

Ann′λ =

∫ 2π

0

Ann′λ(φ) dφ+

∫ 2π

0

Bnn′λ(φ) dφ

= 2π(−1)mδmm′



1e 2o 1o 2e

1e C D 0 0

2o −D C 0 0

1o 0 0 C −D
2e 0 0 D C

, m = 1, 2, . . .
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and

Ann′λ =

∫ 2π

0

Ann′λ(φ) dφ+

∫ 2π

0

Bnn′λ(φ) dφ

= 2πδmm′



1e 2o 1o 2e

1e C 0 0 0

2o 0 0 0 0

1o 0 0 0 0

2e 0 0 0 C

, m = 0

where

C = Cmll′λ =
il
′−l+λ(2λ+ 1)

2

√
(2l + 1)(2l′ + 1)

l(l + 1)l′(l′ + 1)

×
(
l l′ λ
0 0 0

)(
l l′ λ
m −m 0

)
[l(l + 1) + l′(l′ + 1)− λ(λ+ 1)]

D = Dmll′λ =
il
′−l+λ+1(2λ+ 1)

2

√
(2l + 1)(2l′ + 1)

l(l + 1)l′(l′ + 1)

×
(
l l′ λ− 1
0 0 0

)(
l l′ λ
m −m 0

)√
λ2 − (l − l′)2

√
(l + l′ + 1)2 − λ2

Appendix C Planar vector waves

Planar vector waves are commonly used in this paper. The planar vector waves
ϕ±j (kt; k, r), j = 1, 2, are de�ned as [4, 25]

ϕ±1 (kt; k, r) =
ẑ × kt

4πikt

eikt·rc±ikzz, ϕ±2 (kt; k, r) =
∓ktkz + k2

t ẑ

4πkkt

eikt·rc±ikzz (C.1)

where the lateral distance rc = xx̂ + yŷ, the lateral wave vector kt = kxx̂ + kyŷ,
the lateral wave number, kt = |kt|, and the longitudinal wave number kz is de�ned
by

kz =
(
k2 − k2

t

)1/2
=

{√
k2 − k2

t for kt < k

i
√
k2

t − k2 for kt > k

From these de�nitions, we identify j = 1 with a TE mode or ⊥ electric polarization,
and j = 2 with a TM or ‖ electric polarization.

The planar vector waves satisfy

∇×ϕ±j (kt; k, r) = kϕ±
j

(kt; k, r), j = 1, 2

where the dual index j of j is 1 = 2 and 2 = 1. Consequently,

∇×
(
∇×ϕ±j (kt; k, r)

)
= k2ϕ±j (kt; k, r), j = 1, 2

The planar vector waves satisfy orthogonality relations. These are collected in Ap-
pendix C.1.
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C.1 Orthogonality relations for the planar vector waves

In this appendix we collect a series of orthogonality relation of the planar vector
waves that is used in the analysis.

On a general plane surface S, which is de�ned as z = z0, we have

∫∫
S

ϕ±j
†
(kt; k, r) ·

(
ẑ ×ϕ∓j′(k

′
t; k, r)

)
dx dy = ∓ kz

4ik
δjj′δ(kt − k′t)∫∫

S

ϕ±j
†
(kt; k, r) ·

(
ẑ ×ϕ±j′(k

′
t; k, r)

)
dx dy = ±(−1)j

′
kz

4ik
e±2ikzz0δjj′δ(kt − k′t)

where the dagger † denotes a planar vector wave with reversed argument kt, i.e.,

ϕ±j
†
(kt; k, r) = ϕ±j (−kt; k, r).
Explicitly, on the planar surface S1, we have∫∫
S1

ϕ+
j
†
(kt; k1, r) ·

(
−ẑ ×ϕ±j′(k

′
t; k2, r)

)
dx dy

=
δ(kt − k′t)δjj′ei(k1z±k2z)z1

4i


∓ k2z

k2

, j = 1

k1z

k1

, j = 2

=
(∓1)jδ(kt − k′t)δjj′ei(k1z±k2z)z1

kjz
kj

4i
(C.2)

and∫∫
S1

ϕ−j
†
(kt; k1, r) ·

(
−ẑ ×ϕ±j′(k

′
t; k2, r)

)
dx dy

=
δ(kt − k′t)δjj′e−i(k1z∓k2z)z1

4i


∓ k2z

k2

, j = 1

− k1z

k1

, j = 2

= −
(±1)jδ(kt − k′t)δjj′e−i(k1z∓k2z)z1

kjz
kj

4i
(C.3)
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On the planar surface S2 we have use for∫∫
S2

ϕ+
j
†
(kt; k3, r) ·

(
ẑ ×ϕ±j′(k

′
t; k2, r)

)
dx dy

=
δ(kt − k′t)δjj′ei(k3z±k2z)z2

4i


± k2z

k2

, j = 1

− k3z

k3

, j = 2

= −
(∓1)jδ(kt − k′t)δjj′ei(k3z±k2z)z2 kj+1z

kj+1

4i
(C.4)

and∫∫
S2

ϕ−j
†
(kt; k3, r) ·

(
ẑ ×ϕ±j′(k

′
t; k2, r)

)
dx dy

=
δ(kt − k′t)δjj′e−i(k3z∓k2z)z2

4i


± k2z

k2

, j = 1

k3z

k3

, j = 2

=
(±1)jδ(kt − k′t)δjj′e−i(k3z∓k2z)z2 kj+1z

kj+1

4i
(C.5)

C.2 Expansion function for a given incident �eld

There is an alternative representation of the expansion functions aj(kt) for the
incident �elds Ei and H i in (4.2), see [25]

aj(kt) =− 2ik1

k1z

∫∫
S

ϕ−j
†
(kt; k1, r) · (ν̂ × iη0η1H i(r)) dS

− 2ik1

k1z

∫∫
S

ϕ−
j

†
(kt; k1, r) · (ν̂ ×Ei(r)) dS, kt ∈ R2, j = 1, 2

(C.6)

where the surface S is any plane surface to the left of S1, but to the right of the
volume Vi, which contains the sources of the incident �eld. For a given incident
�eld, this expression gives an explicit formula for the computation of the expansion
functions aj(kt).

Appendix D The Green dyadic

An important tool is the decomposition of the Green dyadic for the electric �eld in
free space. We decompose the Green dyadic in spherical vector waves, see [4, 25].

Ge(k, |r − r′|) = ik
∑
n

vn(kr<)un(kr>) (D.1)
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where the index n is a multi-index,5 and where r< (r>) is the position vector with
the smallest (largest) distance to the origin, i.e., if r < r′ then r< = r and r> = r′.
This expansion is uniformly convergent in �nite domains, provided r 6= r′ in the
domain [7]. The regular spherical vector waves vn(kr) and the radiating (out-going)
spherical vector waves un(kr) are de�ned in Appendix A.

The Green dyadic can also be decomposed in planar vector waves [4, 25].

Ge(k, |r − r′|) = 2ik
∑
j=1,2

∫∫
R2

ϕ±j (kt; k, r)ϕ∓j
†
(kt; k, r

′)
k

kz

dkx dky

k2
(D.2)

where the upper (lower) is used if z > z′ (z < z′), and where ϕ±j
†
(kt; k, r) =

ϕ±j (−kt; k, r).

D.1 Transformation spherical and planar vector waves

Of frequent use in this paper is the comparison between the two types of solutions
of the Maxwell equations � the spherical vector waves and the planar vector waves.

The outgoing spherical vector waves, un(kr), can be expressed in the planar
vector waves, ϕ±j (kt; r), j = 1, 2. This transformation reads, see [4, p. 183]

un(kr) = 2
∑
j=1,2

∫∫
R2

B±nj(kt)ϕ
±
j (kt; k, r)

k

kz

dkx dky

k2
, z >< 0 (D.3)

where6

B+
nj(kt) = i−lClm

{
−iδτj∆

m
l (kz/k)

{
cosmβ
sinmβ

}
− δτjπml (kz/k)

{
− sinmβ
cosmβ

}}
(D.4)

and
B−nj(kt) = (−1)l+m+τ+j+1B+

nj(kt)

where again the index j̄ is the dual index of j, de�ned by 1̄ = 2 and 2̄ = 1, and
where kt = kt(x̂ cos β + ŷ sin β), and

Clm =

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!

5Depending on the context, the index n consists of three or four di�erent indices, i.e., n = σml
or n = τσml, where τ = 1, 2, σ = e, o, m = 0, 1, 2, . . . , l, and l = 1, 2, 3, . . .. Both conventions are
used in this paper. For more details abut this convention, we refer to Ref. 25.

6There is an alternative de�nition of the transformation coe�cients B+
nj(kt).

B+
nj(kt) = i−l

{
−iδτjα̂ ·A2n(k̂)− δτjβ̂ ·A2n(k̂)

}
= i−l

{
iδτjβ̂ ·A1n(k̂)− δτjα̂ ·A1n(k̂)

}
where k̂ = x̂ sinα cosβ + ŷ sinα sinβ + ẑ cosα = (kt + ẑkz)/k, cosα > 0.
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The Neumann factor is de�ned as εm = 2− δm0, and

∆m
l (t) = −(1− t2)

1/2√
l(l + 1)

Pm
l
′(t), π

m
l (t) =

m√
l(l + 1) (1− t2)1/2

Pm
l (t)

where Pm
l (t) are the associated Legendre functions. Notice that the argument t can

take complex values.
Moreover, we make use of [4]

ϕ±j (kt; k, r) =
∑
n

B±nj
†
(kt)vn(kr) (D.5)

where B±nj
†
(kt) = (−1)l+τ+j+1B±nj(kt).

Appendix E Probability density functions

The statistical distribution of the N scatterers, positioned at rp, p = 1, 2, . . . , N ,
and the state, which is collected in one symbol ξp, p = 1, 2, . . . , N , is described by
the N -particle probability density function P (r1, . . . , rN ; ξ1, . . . , ξN). This function
quanti�es the probability of �nding the �rst scatterer in a volume element dv1 cen-
tered at r1 with its state in dξ1 centered at ξ1, the second scatterer in a volume
element dv2 centered at r2 with its state in dξ2 centered at ξ2, and, in general, the
pth scatterer within a volume element dvp centered at position rp with its state in
dξp centered at ξp as

P (r1, . . . , rN ; ξ1, . . . , ξN)
N∏
p=1

dvp dξp

The assumption of the independence of the state and position variables implies
that the N -particle probability density function takes the form

P (r1, . . . , rN ; ξ1, . . . , ξN) = P (r1, . . . , rN)
N∏
p=1

Ps(ξp)

where P (r1, . . . , rN) denotes the probability density function depending on the lo-
cation of the individual scatterer, and Ps(ξp) the probability density function de-
pending on the state of the pth scatterer. Conservation of probability implies∫

V N
s

P (r1, . . . , rN)
N∏
p=1

dvp = 1

and ∫
Ωs

Ps(ξ) dξ = 1
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where the integration is taken over Vs, which is the entire range of the scatterers'
positions,7 and the states is assumed to take values in the abstract space Ωs.

The probability density function P (r1, . . . , rN) is expressed in terms of condi-
tional probability densities according to the de�nition of conditional probability
density functions8,9

P (r1, . . . ,rN) = P (r1)P (r2, . . . , rN |r1)

= P (r1)P (r2|r1)P (r3, . . . , rN |r1, r2)

where P (r1) denotes the probability density of �nding scatterer 1 in a volume ele-
ment dv1 centered at r1, and where the function P (r2, . . . , rN |r1) is the conditional
probability density of �nding scatterer 2 in a volume element dv2 centered at r2

and scatterer 3 in a volume element dv3 centered at r3 etc., given scatterer 1 in a
volume element dv1 centered at r1. P (r2|r1) denotes the conditional probability
density of �nding scatterer 2 in a volume element dv2 centered at r2 provided scat-
terer 1 is known to be in a volume element dv1 centered at r1, and the function
P (r3, . . . , rN |r1, r2) is the conditional probability density of �nding scatterer 3 in a
volume element dv3 centered at r3 and scatterer 4 in a volume element dv4 centered
at r4 etc., given scatterer 1 in a volume element dv1 centered at r1 and scatterer 2
in a volume element dv2 centered at r2.

The single-scatterer and two-scatterer probability density functions P (rp) and
P (rp, rq) are computed as

P (rp) =

∫
V N−1
s

P (r1, r2, . . . , rN)
N∏
r=1
r 6=p

dvr,

∫∫∫
Vs

P (r) dv = 1 (E.1)

and

P (rp, rq) =

∫
V N−2
s

P (r1, r2, r3, . . . , rN)
N∏
r=1
r 6=p,q

dvr,

∫
V 2
s

P (r1, r2) dv1 dv2 = 1 (E.2)

respectively. Moreover, we have by de�nition∫∫∫
Vs

P (rp, rq) dvq = P (rp)

7To be exact, the volume that the local origins, rp, can occupy. This volume is not the same
as the convex hull of all scatterer.

8The conditional probability density function is de�ned as [47, Sec. 7.2]

P (rk+1, . . . , rN |r1, . . . , rk) =
P (r1, . . . , rN )

P (r1, . . . , rk)

9Since the order of numbering is arbitrary, we specialize to scatterers 1 and 2. Any other
combination of scatterers follows with a similar notation.
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From these de�nitions and the de�nition of the conditional probability density func-
tion, we also have

P (r1)

∫
V N−1
s

P (r2, . . . , rN |r1)
N∏
r=2

dvr =

∫
V N−1
s

P (r1, r2, . . . , rN)
N∏
r=2

dvr = P (r1)

and therefore ∫
V N−1
s

P (r2, . . . , rN |r1)
N∏
r=2

dvr = 1

The two-scatterer probability density functions P (rp, rq) and the conditional
probability density function P (rq|rp) are related as

P (rp, rq) = P (rp)P (rq|rp)

and ∫∫∫
Vs

P (rq|rp) dvq = 1

The average of a function f(r1, . . . , rN ; ξ1, . . . , ξN) over all position variables is
denoted

〈f〉 =

∫
ΩN

s

∫
V N
s

P (r1, . . . , rN)
N∏
p=1

Ps(ξp)f(r1, . . . , rN ; ξ1, . . . , ξN)
N∏
p=1

dvp dξp

If the position and state of the �rst scatterer are held �xed and all other scatterers
are averaged over, we use the notion

〈f〉 (r1; ξ1) =

∫
ΩN−1

s

∫
V N−1
s

P (r2, . . . , rN |r1)
N∏
p=2

Ps(ξp)

× f(r1, . . . , rN ; ξ1, . . . , ξN)
N∏
p=2

dvp dξp

and

〈f〉 (r1) =

∫
ΩN

s

∫
V N−1
s

P (r2, . . . , rN |r1)
N∏
p=1

Ps(ξp)

× f(r1, . . . , rN ; ξ1, . . . , ξN)
N∏
p=2

dvp

N∏
p=1

dξp

if we also include the average over the state variable ξ1.



63

With scatterer 1 and 2 held �xed, we use the notion

〈f〉 (r1, r2; ξ1, ξ2) =

∫
ΩN−2

s

∫
V N−2
s

P (r3, . . . , rN |r1, r2)
N∏
p=3

Ps(ξp)

× f(r1, . . . , rN ; ξ1, . . . , ξN)
N∏
p=3

dvp dξp

and a similar notation for any other combination of scatterers.

E.1 Number density functions

Of special interest is (single-scatterer) number density function n1(r) de�ned by

n1(r) =
N∑
p=1

δ(r − rp)

This de�nition implies ∫∫∫
Vs

n1(r) dv = N

which gives the total number of scatterers in Vs. The average number density is
(use (E.1))

〈n1(r)〉 =

∫
V N
s

P (r1, . . . , rN)n1(r)
N∏
p=1

dvp =
N∑
p=1

P (r) = NP (r)

If the medium is statistically homogeneous, the single-particle probability density
function is simple (denote the volume of Vs by |Vs|)

P (r) =


1

|Vs|
=
n0

N
, r ∈ Vs

0, r /∈ Vs

where the number density is10

n0 = 〈n1(r)〉 =
N

|Vs|

The two-scatterer number density function n2(r, r′) is de�ned as

n2(r, r′) =
N∑
p=1

N∑
q=1
q 6=p

δ(r − rp)δ(r′ − rq)

10More exactly, the density or concentration of local origins.
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The de�nition implies ∫∫∫
Vs

n2(r, r′) dv′ = (N − 1)n1(r)

The average two-particle number density is (use (E.2))

〈n2(r, r′)〉 =

∫
V N
s

P (r1, . . . , rN)n2(r, r′)
N∏
p=1

dvp

=
N∑
p=1

∑
q=1
q 6=p

P (r, r′) = N(N − 1)P (r, r′)

The pair distribution function g(r, r′) is now de�ned in terms of the one- and
two-scatterer number densities. The de�nition of the pair distribution function is

〈n2(r, r′)〉 = 〈n1(r)〉 〈n1(r′)〉 g(r, r′)

We expect the two-scatterer probability density function P (r, r′)→ P (r)P (r′) (in-
dependent random variables) as |r−r′| → ∞, and we therefore predict g(r, r′)→ 1
in this limit. We can express the two-scatterer probability density function P (r, r′)
in terms of the pair distribution function as

P (r, r′) =
〈n1(r)〉 〈n1(r′)〉 g(r, r′)

N(N − 1)
=
NP (r)P (r′)g(r, r′)

N − 1

or in terms of the conditional probability density function P (r′|r) as

P (r′|r) =
NP (r′)g(r, r′)

N − 1

For a homogeneous medium, we get

〈n2(r, r′)〉 = n2
0g(r, r′)

and

P (r, r′) =
Ng(r, r′)

|Vs|2(N − 1)
=
n2

0g(r, r′)

N(N − 1)
, P (r′|r) =

n0g(r, r′)

N − 1
(E.3)

As the number of scatterers becomes large, the two-scatterer probability density
function P (r, r′) → g(r, r′)/|Vs|2 and the conditional probability density function
P (r′|r)→ g(r, r′)/|Vs|.

Appendix F Overview of the notation

This paper contains many symbols and variables. In the following table selection of
the most important symbol are explained.
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Symbol Explained Page

E Electric �eld 3
H Magnetic �eld 3
Ei Incident electric �eld 6
Er Re�ected electric �eld 6
Et Transmitted electric �eld 12
Ge Green dyadic for the electric �eld in free space 4
ϕ±j Planar vector waves 56
un Radiating spherical vector waves 52
vn Regular spherical vector waves 52
An Vector spherical harmonics 51
Pnn′(kd) Translation matrix of spherical vector waves 52

B±nj, B
±
nj
†

Transformation operators between spherical and planar waves 59
F±j (kt) Expansion coe�cients 13
C±j (kit) Averaged expansion coe�cients 31
Tnn′ Transition matrix for the particles 8

η0 Wave impedance of vacuum 3
η Relative wave impedance 3
ε Relative permittivity 3
µ Relative permeability 3
k Wave number 3

z1 Position of the left interface of the slab 3
z2 Position of the right interface of the slab 3
d Thickness of the slab, i.e., d = z2 − z1

a Radius of the spherical particles
D z interval of possible origins, i.e., D = z2 − z1 − 2a = d− 2a

R1
j Re�ection coe�cient from the left side of the left interface 15

T 1
j Transmission coe�cient (left to right) of the left interface 15
R1
j Re�ection coe�cient from the right side of the left interface 16
T 1
j Transmission coe�cient (right to left) of the left interface 16
R2
j Re�ection coe�cient from the left side of the right interface 17

T 2
j Transmission coe�cient (left to right) of the right interface 17
rz1 Re�ection coe�cient at normal incidence of the left interface 36
rz2 Re�ection coe�cient at normal incidence of the right interface 36
tz1 Transmission coe�cient at normal incidence of the left interface 36
tz2 Transmission coe�cient at normal incidence of the right interface 36
rslab Re�ection coe�cient at normal incidence of the slab 39
tslab Transmission coe�cient at normal incidence of the slab 38
tj(kt) Amplitude of the transmitted �eld 20
rj(kt) Amplitude of the re�ected �eld 22
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k Wave vector
kt Transverse wave vector
kz z component of the wave vector
α, β Polar and azimuth angle of the wave vector

f Volume fraction of particles
n0 Number density of particles
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