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A B S T R A C T

Social anxiety disorder (SAD) is a prevalent and disabling mental disorder, associated with significant psychiatric co-
morbidity. Previous research on structural brain alterations associated with SAD has yielded inconsistent results con-
cerning the direction of the changes in gray matter (GM) in various brain regions, as well as on the relationship between
brain structure and SAD-symptomatology. These heterogeneous findings are possibly due to limited sample sizes. Multi-
site imaging offers new opportunities to investigate SAD-related alterations in brain structure in larger samples.

An international multi-center mega-analysis on the largest database of SAD structural T1-weighted 3T MRI scans to
date was performed to compare GM volume of SAD-patients (n=174) and healthy control (HC)-participants (n=213)
using voxel-based morphometry. A hypothesis-driven region of interest (ROI) approach was used, focusing on the basal
ganglia, the amygdala-hippocampal complex, the prefrontal cortex, and the parietal cortex. SAD-patients had larger GM
volume in the dorsal striatum when compared to HC-participants. This increase correlated positively with the severity of
self-reported social anxiety symptoms. No SAD-related differences in GM volume were present in the other ROIs. Thereby,
the results of this mega-analysis suggest a role for the dorsal striatum in SAD, but previously reported SAD-related changes
in GM in the amygdala, hippocampus, precuneus, prefrontal cortex and parietal regions were not replicated. Our findings
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emphasize the importance of large sample imaging studies and the need for meta-analyses like those performed by the
Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium.

1. Introduction

Social anxiety disorder (SAD) is one of the most common anxiety
disorders (Stein and Stein, 2008), with an estimated lifetime prevalence
between 6 and 13 percent (Kessler et al., 2012; Stein et al., 2010).
Patients with SAD are characterized by intense fear of, distress in, and
avoidance of situations in which they may be scrutinized (American
Psychiatric Association, 2013). The disorder is highly disabling, as
impairments in social life and work situations are frequently reported
(Mack et al., 2015). In addition, the disorder is associated with sig-
nificant psychiatric co-morbidity, such as depressive disorders and
substance abuse (Stein and Stein, 2008). These findings stress the need
for improvements in the treatment of SAD. Understanding the neuro-
biological mechanisms that underlie this disorder has the potential to
advance treatment.

Previous magnetic resonance imaging (MRI) studies on brain
anatomy differences in SAD have reported heterogeneous findings,
implicating regions such as the frontal cortex, the parietal cortex, oc-
cipital cortex, temporal regions and subcortical limbic areas, as re-
viewed by Brühl et al. (2014a); see also Goodkind et al. (2015) re-
porting on a transdiagnostic meta-analysis of structural neuroimaging
studies. Several of these changes were correlated with clinical char-
acteristics, such as the severity of social anxiety symptoms (Brühl et al.,
2014b; Frick et al., 2014a; Irle et al., 2014, 2010; Liao et al., 2011; Syal
et al., 2012; Talati et al., 2013; Tükel et al., 2015) or disease duration
(Meng et al., 2013). In addition, recent treatment studies in SAD-pa-
tients have identified structural changes in bilateral caudate and pu-
tamen, right thalamus and cerebellum after 8-weeks of paroxetine
treatment (Talati et al., 2015) and alterations in parieto-occipital and
prefrontal GM volumes after cognitive behavioral group therapy
(Steiger et al., 2016), while a classification study using multi-voxel
pattern analysis was able to discriminate SAD-patients from healthy
control participants based on the pattern of regional gray matter (GM)
volume over the whole brain (Frick et al., 2014b). Together, these
studies provide evidence for the idea that certain brain regions are
clinically associated with SAD.

Functional MRI (fMRI) studies have also identified important candi-
date brain regions that may be related to structural changes associated
with SAD-related psychopathology. These fMRI studies, typically ex-
amining brain activity in response to emotional stimuli or in response to
cognitive tasks (Brühl et al., 2014a), most consistently point towards an
increase of brain activation in SAD in the bilateral amygdala and hippo-
campus, prefrontal brain regions, bilateral insula, bilateral parietal cortex
and bilateral precuneus, while findings on the direction of changes in the
basal ganglia are mixed (Brühl et al., 2014a; Cremers and Roelofs, 2016).
In addition, studies on functional connectivity, during rest as well as
during cognitive tasks (Brühl et al., 2014a), revealed changes in con-
nectivity of, among others, the putamen (Cremers et al., 2015) and the
amygdala (Hahn et al., 2011; Pannekoek et al., 2013; Sladky et al., 2015),
while recent positron emission tomography (PET) studies showed de-
creased serotonin receptor binding (Lanzenberger et al., 2007) and in-
creased serotonin synthesis and transporter availability in the hippo-
campus, amygdala, anterior cingulate cortex (ACC) and striatal regions
like the putamen and globus pallidus (Frick et al., 2015; Furmark et al.,
2016). These results, together with the findings of a treatment study re-
vealing a relationship between changes in amygdala structure and
amygdala function in SAD (Månsson et al., 2016), suggest that the brain
regions showing functional changes in SAD overlap to a large extent with
the regions that have showed differences in brain structure.

However, the available evidence with respect to structural brain

alterations in SAD is inconclusive, as both increases as well as decreases
in GM volumes in various brain regions have been reported (Brühl
et al., 2014a). Furthermore, findings concerning the relationship be-
tween brain structure and SAD-symptoms are inconsistent (Brühl et al.,
2014b; Frick et al., 2014a; Irle et al., 2014; Tükel et al., 2015). These
heterogeneous results are possibly due to differences in the employed
methods, as well as the relatively small sample sizes employed in stu-
dies on SAD-related changes in brain structure (ranging from 12 to 67
SAD-patients), and variability in clinical parameters between the sam-
ples. Recent advances in multi-site imaging offer new opportunities to
investigate the structural brain alterations associated with SAD.

In this international multi-center mega-analysis, which is part of the
European and South African Research Network in Anxiety Disorders
(EURSANAD) program initiated by the Anxiety Disorders Research
Network (Baldwin and Stein, 2012), we investigated GM volume in a-
priori defined regions of interest (ROIs) in a sample of 174 SAD-patients
and 213 healthy control participants, using an optimized voxel-based
morphometry (VBM) protocol (Ashburner and Friston, 2000; Lerch
et al., 2017). VBM analyses have the advantage of using unbiased,
standardized methods to investigate brain structure, and have been
extensively used to investigate alterations in brain morphology across
numerous major psychiatric conditions (Ashburner and Friston, 2000;
Goodkind et al., 2015). The large sample of the present work provides
the best statistical power to date to investigate GM alterations asso-
ciated with SAD. Data were collected in multiple scan centers located in
five countries (Germany, South Africa, Sweden, the Netherlands and the
United States of America). Based on the available evidence reviewed
above, our analysis focused on changes in GM volume in four a-priori
defined ROIs that seem to be most prominently involved in SAD: the
basal ganglia, the amygdala-hippocampal complex, the prefrontal
cortex and the parietal cortex including the precuneus. Given the mixed
findings on SAD-related increases versus decreases in GM in the pre-
vious structural MRI studies (Brühl et al., 2014a), we did not make
specific predictions about the direction of the changes within these
ROIs. Significant results within the ROIs were followed up by regression
analyses to investigate the relationship between GM volumes and the
severity of social anxiety symptoms within the patient group.

2. Material and methods

2.1. Participants

Structural T1-weighted 3T MRI scans were collected at research
centers located in Europe, Africa and North-America, and brought to-
gether for quality control and initial analysis in Cape Town, South-
Africa. Final analyses took place in Leiden, the Netherlands. The initial
sample consisted of 251 SAD-patients and 230 healthy control (HC)-
participants (Table 1), and results on these datasets have been pub-
lished previously (Boehme et al., 2015; Boehme et al., 2014a, 2014b;
Cremers et al., 2014; Geiger et al., 2016; Howells et al., 2015; Klumpp
et al., 2016; Månsson et al., 2015; Månsson et al., 2013; Pannekoek
et al., 2013; Phan et al., 2013; Syal et al., 2012; van Tol et al., 2010) –
see nline Supplementary Document 1 for more details on the in- and
exclusion criteria and recruitment of participants for each sample. At
each site, the local ethical committee approved data-collection and all
participants provided written informed consent after the procedure had
been fully explained.

Participants (18 years or older) were recruited through public an-
nouncements (online and within the community), consumer advocacy
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groups, general practitioners and clinical centers, and screened using
structured clinical interviews in their native language: the Mini-
International Neuropsychiatric Interview (Sheehan et al., 1997), the
Composite Interview Diagnostic Instrument version (Kessler and Ustün,
2004) or the Structured Clinical Interview for DSM-IV disorders (First
et al., 1998). SAD-patients had to meet criteria for a primary diagnosis
of SAD, while HC-participants had to be free of any psychopathology.
General MRI contraindications (ferromagnetic implants, claus-
trophobia, pregnancy) were a reason for exclusion in both groups.

In addition to the T1-weighted 3T MRI scans, demographic (age,
gender, handedness) and clinical data were collected at each research
center. Furthermore, information about education level, comorbidity,
medication use and the scores on several questionnaires (Liebowitz
Social Anxiety Scale (LSAS) (Heimberg et al., 1999), Beck Depression
Inventory (BDI) (Beck et al., 1988) and State-Trait Anxiety Inventory
(STAI) (Spielberger et al., 1970)) were available for a subset of parti-
cipants.

2.2. Data acquisition, quality checks and final sample

Parameters of the T1-weighted MRI scans are presented in Table 2.
Scans from SAD-patients with comorbid psychopathology other than
any other anxiety disorder or major depressive disorder (MDD) were
excluded from the analysis (n= 42, see Table 1 and Inline Supple-
mentary Table 1). Next, scans were extensively checked for pathology
and quality, leading to the exclusion of an additional 28 scans (Table 1).
Furthermore, all scans from the research center in Uppsala (n = 24
SAD-patients) were excluded due to the lack of scans from HC-partici-
pants from this center, necessary for our analytic approach. This re-
sulted in a final sample of 174 SAD-patients and 213 HC-participants.
Characteristics of the final sample are presented in Table 3. Statistical
analyses on differences between groups were performed using IBM SPSS
Statistics (Version 23), with a significance level of p < 0.05.

2.3. Voxel-based morphometry analysis

Voxel-wise GM volumes were investigated using an optimized
voxel-based morphometry (VBM) protocol, using the default pipeline as
implemented in FSL (version 5.0.7) (Good et al., 2001; Smith et al.,
2004). Structural T1-weighted images were first brain-extracted using
FSL and Freesurfer software. Each brain was closely visually inspected
and brain-extraction was repeated until all non-brain tissue was prop-
erly removed from the image. Subsequently, images were segmented
into GM, white matter (WM) and cerebrospinal fluid (CSF) (Zhang
et al., 2001). Next, a study-specific GM template was created, in order
to avoid biases during registration that could favour either the SAD or
HC-group (Good et al., 2001), by randomly selecting GM images from
an equal number of SAD-patients and HC-participants from each re-
search center (n = 166 SAD-patients and 166 HC-participants). These
GM images were non-linearly registered to the Montreal Neurological
Institute (MNI) T1-template brain, averaged and flipped along the x-

axis to create a left-right symmetric study-specific GM template with a
resolution of 2 × 2 × 2 mm. Subsequently, the original GM images
from all participants were non-linearly registered to this template
(Andersson et al., 2007), modulated to correct for local expansion or
contraction and smoothed using a kernel with an isotropic Gaussian
kernel (σ= 3 mm).

2.4. Region of interest (ROI) analysis: differences between groups

In order to maximize the statistical power to detect GM differences
between SAD-patients and HC-participants, we used a region of interest
(ROI) approach (Poldrack, 2007) focusing on brain areas in which
functional and structural brain changes related to SAD have been re-
ported previously (see Introduction). Four ROIs were created in stan-
dard space (resolution 2 × 2× 2 mm) using the Harvard-Oxford Cor-
tical Structural Atlas and Harvard-Oxford Subcortical Structural Atlas
implemented in FSLView (version 3.2.0). The basal ganglia ROI con-
sisted of voxels with a probability of at least 50% of belonging to the
bilateral accumbens, caudate, pallidum or putamen (total size of ROI:
3224 voxels, 25,792 mm3). The second ROI, the amygdala-hippocampus
ROI, consisted of voxels with a probability of at least 50% of belonging
to the bilateral amygdala, hippocampus and the anterior and posterior
parahippocampal gyrus (total size of ROI: 3066 voxels, 24,528 mm3).
The prefrontal cortex ROI included voxels with a probability of at least
50% of belonging to the middle frontal gyrus, the subcallosal cortex, the
anterior cingulate gyrus, paracingulate gyrus, frontal medial cortex and
frontal orbital cortex (total size of ROI: 20,601 voxels, 164,808 mm3).
Finally, the parietal ROI encompassed voxels with a probability of at
least 50% of belonging to the superior parietal lobule, the precuneus
cortex and the posterior cingulate gyrus (total size of ROI: 5478 voxels,
43,824 mm3).

Within these ROIs, we examined differences in GM volume between
SAD-patients and HC-participants using a general linear model (GLM).
In this model, scan center (coded by dummy variables) and gender were
added as nuisance regressors and age and total GM volume were in-
cluded as covariates. Before we analyzed this GLM, we tested the
homogeneity of regression slopes assumption that applies to covariate
analysis, by building a separate GLM that included a diagnosis-by-age
and a diagnosis-by-total GM regressor in addition to the other re-
gressors. No significant interactions at the whole-brain level were ob-
served, thus justifying the use of the abovementioned GLM that in-
vestigated the effect of diagnosis while correcting for the covariates.

Voxelwise statistics were applied using permutation-based non-
parametric testing (5000 permutations), correcting for multiple com-
parisons across space. FSL's default threshold-free cluster enhancement
(TFCE) was used to detect significant clusters (Smith and Nichols, 2009)
and we used a familywise error (FWE)-corrected threshold of p < 0.05
within each ROI. Given the fact that ROIs were a priori defined and are
part of a network of brain areas involved in SAD (Brühl et al., 2014a),
we report p-values uncorrected for the number of ROIs. Significant re-
sults within the ROIs were followed up by a multiple regression analysis

Table 2
Characteristics of T1-weighted MRI scans.

Country Research site/sample Scanner Voxels Dimensions

Germany University of Jena; University of Münster Siemens/TrioTim 3T 192 × 256 × 256 1 × 1× 1 mm
The Netherlands VU Medical Center Amsterdam - NESDA study Philips 3T 170 × 256 × 256 1 × 1× 1 mm

University of Groningen - NESDA study Philips 3T 170 × 256 × 256 1 × 1× 1 mm
Leiden University Medical Center - NESDA study Philips 3T 170 × 256 × 256 1 × 1× 1 mm
Leiden University Medical Center - Social Anxiety Study Philips 3T 256 × 256 × 140 0.875 × 0.875 × 1.2 mm

South-Africa University of Cape Town; Stellenbosch University Siemens Magnetom Allegra 3T 128 × 256 × 256 1.33 × 1× 1 mm
Sweden Umeå University General Electric 3T 512 × 512 × 176 0.48 × 0.48 × 1 mm

Uppsala University Philips Achieva 3T 480 × 480 × 170 0.5 × 0.5 × 1 mm
United States of America University of Chicago GE Signa System 3T 256 × 256 × 120 0.94 × 0.94 × 1.5 mm

University of Illinois GE Signa System 3T 256 × 256 × 182 0.86 × 0.86 × 1 mm
University of Michigan GE Signa System 3T 256 × 256 × 124 1 × 1× 1.2 mm
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using IBM SPSS Statistics, in order to examine the relationship between
average individual GM volume in the extracted cluster and the severity
of total social anxiety symptoms (measured with the LSAS), while
controlling for scan center, gender, age and total GM volume. In line
with previous work (Frick et al., 2014a; Irle et al., 2014; Meng et al.,
2013; Syal et al., 2012), this analysis was performed in SAD-patients
only.

For reasons of completeness, we also performed an exploratory
whole-brain VBM analysis to examine a main effect of diagnosis and
interactions with age and scan center outside the predefined ROIs using

the same GLM. Again, we used TFCE-results based on an FWE-corrected
threshold of p < 0.05.

3. Results

3.1. Sample characteristics

Characteristics of SAD-patients (n= 174) and HC-participants
(n = 213) are presented in Table 3. SAD-patients did not differ from
HC-participants in terms of age, gender, level of education, handedness

Table 3
Demographic and clinical characteristics of social anxiety disorder (SAD)-patients and healthy control (HC) participants

SAD (n = 174) HC (n = 213) Statistical analysis

Mean SD Mean SD p

Age (years) 30.6 10.0 32.4 10.5 0.13 Independent Samples
Mann-Whitney U test

Age of onset (years)a 14.8 7.1

SAD (n = 174) HC (n = 213) Statistical analysis

n % n % p

Males 72 41.4 97 45.5 0.41 χ2 test
Education levelb 0.10 χ2 test
Low 1 0.7 6 3.2
Intermediate 56 36.8 54 29.0
High 95 62.5 126 67.7

Right-handed 172 98.9 206 96.7 0.17 χ2 Test
Comorbidity
SAD only 114 65.5
SAD + MDD 8 4.6
SAD + MDD + PD 2 1.1
SAD + GAD 10 5.7
SAD + GAD+ SP 3 1.7
SAD + GAD+ PD 2 1.1
SAD + PD 3 1.7
SAD + SP 6 3.4
Unknown 26 14.9

Medication use at time of scanc 24 14.2
SSRI 17
Betablocker 2
Antidepressivum NOS 4
Unknown medication 1

SAD (n = 174) HC (n = 213) Statistical analysis

Mean SD Mean SD p

Liebowitz Social Anxiety Scale
(LSAS)d

77.9 17.9 14.3 12.6 <0.001 Independent Samples
Mann-Whitney U test

Beck Depression Inventory
(BDI)e

13.8 8.8 2.3 3.2 <0.001 Independent Samples
Mann-Whitney U test

State-Trait Anxiety Inventory -
State scoref

43.2 10.1 20.9 11.0 <0.001 Independent Samples
T-Test

State-Trait Anxiety Inventory -
Trait scoref

50.1 10.2 22.6 11.5 <0.001 Independent Samples
T-Test

Total Gray Matter Volume
(mL)

519.3 49.9 522.3 58.7 0.47 Independent Samples
Mann-Whitney U test

GAD: generalized anxiety disorder; MDD: Major Depressive Disorder; NOS: not otherwise specified; PD: panic disorder; SP: specific phobia; SSRI: selective serotonin reuptake inhibitor
a Data from 65 SAD-patients.
b Data from 152 SAD-patients and 186 HC-participants.
c Data from 169 SAD-patients.
d Data from 148 SAD-patients and 140 HC-participants.
e Data from 113 SAD-patients and 111 HC-participants.
f Data from 75 SAD-patients and 73 HC-participants.
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and total GM volume, but they reported significantly more social an-
xiety symptoms (measured with the LSAS) and anxiety symptoms
(measured with the STAI) in comparison to HC-participants. In addi-
tion, SAD-patients reported significantly more depressive symptoms
than HC-participants as measured with the BDI. It should, however, be
noted that the degree of reported depression symptoms in the SAD-
patients indicates only minimal depression (mean ± standard devia-
tion: 13.8 ± 8.8) (Beck et al., 1988), whereas the mean scores on the
LSAS for the SAD-patients (mean ± standard deviation: 77.9 ± 17.9)
are in line with a clinical diagnosis of SAD (Mennin et al., 2002).

3.2. ROI analyses: differences between SAD-patients and HC-participants

There was an effect of diagnosis in the basal ganglia ROI: SAD-pa-
tients had larger GM volume in the right putamen, extending into the
pallidum (Fig. 1A and B; extent = 78 voxels, peak coordinate in MNI
space: X = 26, Y = −8, Z = 0; p = 0.022, small-volume corrected;
result did not survive correction when all ROIs were taken together),
with a small effect size (β = 0.14, Cohen's d = 0.20). A subsequent
analysis, that regressed social anxiety symptoms within the SAD-pa-
tients on individual extracted GM volume in this region, revealed a
significant positive correlation with a small effect size (zero-order
correlation: Spearman's rho = 0.21, p = 0.010; multiple regression
analysis while controlling for scan center, gender, age and total GM
volume: β = 0.13, p = 0.048; see also Fig. 1C).

Given the fact that SAD often co-occurs with major depressive dis-
order (MDD) (Stein and Stein, 2008), we investigated whether the GM

difference in the putamen was influenced by comorbid depression, by
performing three subsequent analyses. Firstly, we excluded SAD-pa-
tients with a diagnosis of comorbid MDD (excluded: n= 10 SAD-pa-
tients; Table 3) and performed a multiple regression analysis with in-
dividual GM volume of the right putamen cluster as dependent variable,
and diagnosis as independent variable while controlling for scan center,
age, gender and total GM volume (remaining sample: n = 164 SAD-
patients and 213 HC-participants). This analysis still showed a sig-
nificant effect of diagnosis (β = 0.14, p = 0.002). Secondly, we ex-
cluded participants with a BDI score ≥ 30, indicating severe depression
(Beck et al., 1988), (excluded: n = 7 SAD-patients; remaining sample:
n = 106 SAD-patients and 111 HC-participants). Again, the effect of
diagnosis was significant (β = 0.14, p= 0.017). In the third analysis,
we examined the relationship between BDI-score and GM volume in the
SAD-group (n= 113 SAD-patients; regression analysis, controlling for
scan center, age, gender, and total GM volume). This analysis revealed a
significant effect of BDI-score on GM volume (β = 0.17, p = 0.034).
Importantly, when LSAS-score and BDI-score were both entered in the
regression model, the effect of BDI was not significant anymore
(β = 0.13, p= 0.13), while LSAS-score was still a significant predictor
of GM volume (β = 0.16, p= 0.049). These results indicate that var-
iation in BDI-scores in the SAD-sample did not significantly account for
GM variance in the putamen-pallidum over and above effects of LSAS.

However, when we performed two additional sensitivity analyses to
investigate the effect of 1st general comorbidity and 2nd medication use
on the GM difference in the putamen, using multiple regression ana-
lyses with individual GM volume of the right putamen cluster as

Fig. 1. (A) Larger GM volume in social anxiety disorder (SAD)-patients (n = 174) relative to healthy control (HC)-participants (n = 213) in the right dorsal striatum (p < 0.05, small-
volume corrected). (B) Dot density plot illustrating the group difference in GM volume in the dorsal striatum. (C) Scatterplot illustrating the relationship between social anxiety symptoms
in a subset of SAD-patients (n = 148; measured with the Liebowitz Social Anxiety Scale, LSAS) and GM volume in the dorsal striatum (Spearman's rho = 0.21, p < 0.05).
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dependent variable, and diagnosis as independent variable while con-
trolling for scan center, age, gender and total GM volume, the effect of
diagnosis lacked significance (sensitivity analysis 1, including only
SAD-patients without comorbidity: remaining sample: n= 114 SAD-
patients and 213 HC-participants; β = 0.06, p = 0.28; sensitivity ana-
lysis 2, including only SAD-patients without present medication use:
remaining sample: n = 59 SAD-patients and 117 HC-participants;
β = 0.13, p = 0.13).

There were no clusters in the basal ganglia ROI where HC-partici-
pants had larger GM volume relative to SAD-patients. In addition, we
did not find significant group-differences in the other ROIs using the
VBM approach. To explore these null-findings, we extracted the in-
dividual GM volumes from the regions within each of the larger ROIs
tested and examined the presence of between-group differences using
multiple regression analyses controlled for scan center, age, gender and
total GM volume. Because of the exploratory nature of these analyses,
we corrected for the number of tests using Bonferroni-correction (13
regions, p ≤ 0.004). There were no regions in which the effect of di-
agnosis was significant at this Bonferroni-corrected significance level
(Inline Supplementary Table 2), although two effects were significant at
the uncorrected level. Furthermore, we explored the possibility that
these null-findings were present due to gender differences between
patients, by investigating gender x diagnosis interactions. Again, no
significant interactions were found at the Bonferroni-corrected sig-
nificance level (p ≤ 0.004) (see Inline Supplementary Table 2).

3.3. Whole-brain analysis: no group-differences

The exploratory whole-brain VBM analysis did not reveal a sig-
nificant main effect of diagnosis. Significant diagnosis-by-age or diag-
nosis-by-scan center interactions were also not observed at whole-brain
level.

4. Discussion

In this study we investigated differences in GM volume between
SAD-patients and HC-participants, in the largest sample of 3T structural
MRI scans available for analysis to date (n = 174 SAD-patients and 213
HC-participants). We used a hypothesis-driven ROI approach and fo-
cused on differences in GM volume in the amygdala-hippocampal
complex, the basal ganglia, the prefrontal cortex and parietal areas. The
results showed larger GM volume in the right putamen in SAD-patients
in comparison to HC-participants (Fig. 1A and B), and this increase in
GM was positively correlated with the total score on the Liebowitz
Social Anxiety Scale (LSAS) within the patient group (Fig. 1C). This
effect remained significant when we performed several sensitivity
analyses examining the effect of comorbid depression; however, the
effect did not survive in two other sensitivity analyses in which patients
with any type of comorbidity and medication use were excluded, pos-
sibly due to the fact that the remaining sample size was relatively small.

We did, however, not find diagnosis-related alterations in GM vo-
lumes in the amygdala-hippocampal, prefrontal or parietal ROIs.
Furthermore, there were no group differences in an exploratory whole-
brain analysis. To examine these results, we performed post-hoc ana-
lyses to examine group differences in individual structures of these
ROIs, but again, no SAD-related GM differences were present (Inline
Supplementary Table 2). Furthermore, we checked whether GM dif-
ferences between male and female SAD-patients might have con-
founded the results, but we did not find significant gender x diagnosis
interactions (Inline Supplementary Table 2).

4.1. No SAD-related changes in amygdala-hippocampal, prefrontal and
parietal ROIs

The null-findings in the amygdala-hippocampal, prefrontal and
parietal ROIs were unexpected, because previous studies have reported

SAD-related changes in GM in, among others, the amygdala, hippo-
campus, precuneus, prefrontal cortex and parietal regions (Brühl et al.,
2014b; Irle et al., 2014; Irle et al., 2010; Liao et al., 2011; Machado-de-
Sousa et al., 2014; Meng et al., 2013; Syal et al., 2012; Talati et al.,
2013; Tükel et al., 2015). Although applying the usual caveats when
interpreting null effects, our results based on the largest SAD-patient
sample to date suggest that GM volume in regions outside the basal
ganglia is likely not systematically related to SAD and thus might not
underlie the alterations in brain functioning consistently reported and
replicated in these regions (Brühl et al., 2014a). This idea is in line with
the findings of a recent voxel-wise machine learning study, which
suggested that SAD is easier to detect using multivariate analyses that
take into account the global relationships between gray matter volume
alterations in different regions than by applying analyses that only
focus on local changes in specific brain regions (Frick et al., 2014b).

With respect to the previous studies reporting SAD-related GM dif-
ferences, it should be noted that the findings of these studies were often
inconsistent, with increases as well as decreases in the same regions
having been reported (e.g. for the amygdala, see Irle et al., 2010;
Machado-de-Sousa et al., 2014; Meng et al., 2013); see also Brühl et al.
(2014b) and Syal et al. (2012) reporting no volumetric differences be-
tween SAD-patients and HC-participants, and Shang et al. (2014), who
did not observe changes in amygdalar GM volumes in a meta-analysis
on structural neuroimaging findings across several anxiety disorders.
These inconsistencies are most likely due to small sample sizes, which
may have increased the probability of obtaining false-positive findings
(Blackford, 2017; Button et al., 2013) – see also Cremers and Roelofs
(2016) for a critical overview of neuroimaging research findings in
SAD. Furthermore, the inconsistencies are likely due to differences in
methodology, for example the use of manual vs. automatic segmenta-
tion, the choice and size of ROIs, and to differences in clinical char-
acteristics. Thus, the results of this study stress the need for studies with
sufficient sample sizes and meta-analyses such as those performed by
the Enhancing NeuroImaging Genetics through Meta-Analysis (EN-
IGMA) Consortium and its working groups (Bearden and Thompson,
2017; Thompson et al., 2014).

4.2. Larger GM volume in right putamen

We did find GM differences in the right putamen, which, together
with the caudate, forms the dorsal striatum (Marchand, 2010). The
striatum is the major input structure of the basal ganglia, receiving
information from the cortex, amygdala and hippocampus. The dorsal
striatum is part of a network that is important for learning actions based
on their predicted outcomes (i.e. reward-related behaviour), as well as
for regulating cognitive and emotional behaviour (Marchand, 2010;
Shohamy, 2011; Stathis et al., 2007); for a recent review on the role of
the striatum in anxiety we refer to Lago et al. (2017). Interestingly, our
findings converge with earlier research on the structural and functional
basis of inhibited temperament, a characteristic that refers to the innate
tendency to be shy, quiet and extremely cautious in novel social and
non-social situations (Miskovic and Schmidt, 2012). Inhibited tem-
perament substantially increases the risk for developing SAD (Clauss
and Blackford, 2012; Fox and Kalin, 2014) and is correlated with larger
volumes of both the amygdala and the caudate in young adults, and
hyperactivation in, among other areas, putamen, globus pallidus and
caudate (Clauss et al., 2015; Clauss et al., 2014) – see Inline Supple-
mentary Table 3 for coordinates of these and other findings discussed in
this section. Moreover, Clauss and colleagues showed that the GM in-
crease in the caudate was positively related to the level of activation in
this area in response to neutral faces (Clauss et al., 2014). Because
larger GM volume of the caudate was also associated with increased
functional connectivity to regions that respond to social stimuli, the
authors have proposed that larger caudate volume might facilitate the
saliency of social and novel stimuli for individuals with an inhibited
temperament, which could predispose them for developing SAD (Clauss
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et al., 2014). Combined with our observation that SAD is associated
with larger GM volume in the putamen, it may be hypothesized that
structural changes in the dorsal striatum, as an integral part of limbic
circuitry (Stathis et al., 2007), might underlie the biased processing of
stimuli typically observed in SAD (Miskovic and Schmidt, 2012).

Evidence consistent with this idea comes from recent fMRI studies
on SAD-related threat processing (Cremers et al., 2015; Heitmann et al.,
2016). Anticipation of social punishment versus reward was associated
with increased local activity in the putamen in SAD-patients compared
to healthy controls. In addition, SAD-patients showed increased nega-
tive connectivity between the putamen and the ACC during social
punishment and reward compared to HC-participants (Cremers et al.,
2015). Another study indicated that viewing ecologically valid, dis-
order-related complex visual scenes evoked increased activation in
SAD-patients in, among others, the putamen and globus pallidus. Here,
hyperactivation in the dorsal striatum was accompanied by increased
connectivity with the amygdala, medial prefrontal cortex and ACC,
regions playing an important role in emotion processing (Heitmann
et al., 2016). These findings are supported by another resting-state
study indicating hyperconnectivity of the putamen and the globus
pallidus in SAD (Arnold Anteraper et al., 2014) and two meta-analyses
on task-related activity in SAD, reporting increased activation of the
globus pallidus (Gentili et al., 2016; Hattingh et al., 2013).

Additional support for our hypothesis comes from a within-subject
longitudinal study on the neuro-anatomical effects of paroxetine in a
small sample of fourteen patients with SAD, showing treatment-related
decreases in symptom severity and concomitant reductions in GM in
bilateral caudate and putamen (Talati et al., 2015). Furthermore, a 1H-
magnetic resonance spectroscopy study demonstrated a relationship
between social anxiety symptoms and the concentration of choline
metabolites in the left caudate and right putamen (Howells et al.,
2015), while single-photon emission computed tomography (SPECT)
studies reported on alterations in the striatal dopaminergic system in
patients with SAD (Schneier et al., 2000; Tiihonen et al., 1997; van der
Wee et al., 2008), which are possibly related to striatal dysfunction
(Sareen et al., 2007). In addition, two recent PET studies indicated
enhanced serotonin synthesis capacity in the striatum (Frick et al.,
2015; Furmark et al., 2016). Given the role of serotonin in neuroplas-
ticity and brain circuit development (Lesch and Waider, 2012), con-
comitant brain structure alterations may be expected in this region.
Combined with these previous findings, our results support the idea
stated before (Brühl et al., 2014a; Gentili et al., 2016), that SAD-related
changes in brain function and structure may be found outside the tra-
ditional fear circuitry, consisting of the amygdala, insula, prefrontal
cortex and anterior cingulate cortex (Etkin and Wager, 2007).

Notwithstanding the results of the present study, it should be noted
that, despite the use of the largest database of structural MRI scans of

SAD-patients available to date, the effect sizes obtained in our study
were small (see Fig. 2 for an illustration of the relationship between
effect size and the power to detect an effect, given the sample size of our
study). However, small effect sizes are not uncommon for studies on
structural brain abnormalities in mental disorders (Ioannidis, 2011); we
refer the reader to the recent viewpoint articles by Blackford (2017)
and Reddan et al. (2017) for important insights on improving the va-
lidity and reproducibility of neuroimaging studies in psychiatry. Fur-
thermore, because of the hypothesis-driven ROI approach, we did not
correct the p-value for the number of ROIs tested. In addition, it should
be mentioned that the GM increase was present in a region with a low
GM density (mean GM volume ± SD in significant cluster: SAD-pa-
tients: 0.12 ± 0.05; HC-participants 0.10 ± 0.05; see also Fig. 1B).
Together with the fact that it is hard to link neuroimaging results
showing changes in brain structure directly to underlying cellular and
molecular mechanisms like synaptogenesis, neurogenesis and changes
in neuronal morphology (Lerch et al., 2017; Zatorre et al., 2012), this
finding underscores that more research is needed to understand how
the macroscopic SAD-related GM increase relates to effects at the mi-
croscopic level. It is also unclear, given the correlational nature of this
study, whether and how structural differences in the dorsal striatum
might play a causal or compensatory role in the pathogenesis of SAD.
This underscores the need for future longitudinal studies on SAD, as
well as for experiments that incorporate the dorsal striatum in animal
models of social anxiety (compare Fox and Kalin (2014)).

4.3. Study limitations and future studies

The present study has several limitations. First, data on medication
use and comorbidity were not available for all participants (Table 3).
Furthermore, only the current use of medication and present co-
morbidity were known, so we could not exclude heterogeneity within
the sample due to past medication-use or past comorbidity. Another
possible source of heterogeneity within the sample arises from the fact
that we pooled data from multiple research centers located in various
countries, which could add confounding effects of, for example, ethni-
city and differences in scanner settings. However, we do not believe
that these potential confounds have substantially influenced our results,
as we corrected for scan center within our statistical model and since
we did not find any diagnosis-by-scan center effects.

In the present study, we have exclusively investigated SAD-related
differences in GM volumes. Future studies on structural brain altera-
tions should examine changes in other parameters of brain anatomy,
like cortical thickness, white matter integrity, and the shape of brain
structures. The latter is especially interesting, given the recent insight
that the shape of the putamen exhibits moderate-to-high heritability
(Ge et al., 2016; Roshchupkin et al., 2016). This, together with the

Fig. 2. Illustration of relation between effect size and power to detect
effect, given the current sample size (n= 174 SAD-patients and
n = 213 HC-participants), calculated using https://www.ai-therapy.
com/psychology-statistics/power-calculator.
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understanding that SAD is familial and moderately heritable (Isomura
et al., 2015; Middeldorp et al., 2005; Scaini et al., 2014; Torvik et al.,
2016), raises the question whether putamen shape could be considered
a candidate endophenotype of SAD (compare Bas-Hoogendam et al.
(2016)) and it will be interesting to investigate this in future studies. In
addition, it would be worthwhile to perform multivariate pattern ana-
lyses (MVPA) (Adluru et al., 2013; Pereira et al., 2009) to examine
whether it is possible to discriminate SAD-patients from HC-partici-
pants based on GM volumes – see for example Frick et al. (2014b).
Together with ongoing work on the functional brain alterations, as well
as with the results of PET studies on brain metabolism in SAD, these
findings may aid in unraveling the neurobiological basis of this serious
and disabling disorder.

5. Conclusions

In summary, the results of the present mega-analysis of the largest
database of SAD brain scans to date showed larger GM volume in the
dorsal striatum in SAD, which correlated positively with the severity of
self-reported social anxiety symptoms. Combined with previous work
on inhibited temperament and imaging studies on SAD, our results
suggest that the dorsal striatum may play a role in the biased processing
of social stimuli that is characteristic of SAD psychopathology.
Importantly, we could not replicate GM alterations in the amygdala,
hippocampus, prefrontal cortex and precuneus, regions previously im-
plicated in SAD in imaging studies with smaller sample sizes. We take
these null-findings as an indication that large sample sizes and in-
vestigations such as the meta-analyses performed by the ENIGMA
Consortium are necessary for the reliable detection of neuro-anatomical
changes in SAD.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.08.001.
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