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Survey of methanotrophic diversity 
in various ecosystems by degenerate methane 
monooxygenase gene primers
Mohammad Ghashghavi* , Mike S. M. Jetten and Claudia Lüke

Abstract 

Methane is the second most important greenhouse gas contributing to about 20% of global warming. Its mitigation 
is conducted by methane oxidizing bacteria that act as a biofilter using methane as their energy and carbon source. 
Since their first discovery in 1906, methanotrophs have been studied using a complementary array of methods. One 
of the most used molecular methods involves PCR amplification of the functional gene marker for the diagnostic of 
copper and iron containing particulate methane monooxygenase. To investigate the diversity of methanotrophs and 
to extend their possible molecular detection, we designed a new set of degenerate methane monooxygenase prim-
ers to target an 850 nucleotide long sequence stretch from pmoC to pmoA. The primers were based on all available 
full genomic pmoCAB operons. The newly designed primers were tested on various pure cultures, enrichment cultures 
and environmental samples using PCR. The results demonstrated that this primer set has the ability to correctly 
amplify the about 850 nucleotide long pmoCA product from Alphaproteobacteria, Gammaproteobacteria, Verrucomi-
crobia and the NC10 phyla methanotrophs. The new primer set will thus be a valuable tool to screen ecosystems and 
can be applied in conjunction with previously used pmoA primers to extend the diversity of currently known meth-
ane-oxidizing bacteria.
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Introduction
Methane is the second most important greenhouse gas 
contributing to about 20% of global warming (Intergov-
ernmental Panel on Climate Change 2014). The global 
methane budget is estimated to be around 600  Tg  a−1 
(Dubey 2001) which is dominated by biogenic sources, 
where natural wetlands (23%), and rice fields (21%) (Fren-
zel 2000) account for almost half of the total budget 
(Chen and Prinn 2005). Methanogenic archaea are 
assumed to be the sole producers of methane that reside 
in these environments (Cicerone and Oremland 1988; 
Conrad et  al. 1999; Joulian et  al. 1997). These archaea 
are also present in waste treatment systems, intestines of 
ruminants and termites and landfills acting as additional 
 CH4 sources. Therefore, microbial methanogenic activity 

is responsible for nearly 75% of the methane emitted to 
the atmosphere (Chen and Prinn 2005).

This process, is however, vastly mitigated by methano-
trophic microorganisms that oxidize a large part of the 
produced  CH4 (Cappelletti et al. 2016; Crevecoeur et al. 
2015; Dumont and Murrell 2005; Reeburgh et  al. 1993; 
Oshkin et al. 2014). It has been estimated that of the pri-
mary productivity, roughly 1% ends up in  CH4; half of 
which is emitted into the atmosphere while the other half 
is consumed by methanotrophs (Reeburgh and Whjalen 
2007; Aronson et  al. 2013). While anaerobic methane-
oxidizing archaea consume more than 75% of the  CH4 
produced in certain marine sediments (Reeburgh and 
Whjalen 2007; Beal et al. 2009; Egger et al. 2014), aerobic 
methane-oxidizing bacteria (MOB) that live at the inter-
face between anoxic and oxic zones in marine environ-
ments (Bender and Conrad 1992; Lüke et al. 2016; Padilla 
et  al. 2016), freshwater wetlands and rice fields (Lüke 
et  al. 2014) have been estimated to consume up to 90% 

Open Access

*Correspondence:  mghash@science.ru.nl 
Department of Microbiology, Radboud University, Heijendaalsweg 135, 
6525, AJ, Nijmegen, The Netherlands

http://orcid.org/0000-0001-5622-3463
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13568-017-0466-2&domain=pdf


Page 2 of 11Ghashghavi et al. AMB Expr  (2017) 7:162 

of the  CH4 produced in these environments (Hanson and 
Hanson 1996). Alpha- and gammaproteobacterial metha-
notrophs have further been shown to be dominant meth-
ane consumers in acidic peatlands (Esson et  al. 2016; 
Deng et  al. 2013; Putkinen et  al. 2014). Since their dis-
covery over 100 years ago (Söhngen 1906), many aspects 
of methanotrophic bacteria have been studied (Whit-
tenbury et  al. 1970; Bédard and Knowles 1989; Hanson 
and Hanson 1996; Lidstrom 2006; Trotsenko and Murrell 
2008). At the moment, several groups of aerobic bacteria 
are known that convert methane by means of a copper- 
and/or iron-containing enzyme called methane monoox-
ygenase (MMO) (Murrell et  al. 2000). Methanotrophic 
archaea play a prominent role in the anaerobic oxida-
tion of methane and use methyl coenzyme-M reductase 
(MCR) (Knittel and Boetius 2009; Haroon et  al. 2013; 
Welte et al. 2016).

Two different forms of MMO exist: a soluble MMO 
(sMMO) encoded by mmoX, mmoY and mmoZ and a 
particulate MMO encoded by pmoCAB (Lieberman 
and Rosenzweig 2005). The membrane bound particu-
late methane monooxygenase (pMMO) catalyzes the 
hydroxylation of methane. It exists in virtually all metha-
notrophs while sMMO has only been shown in certain 
genera such as Methylococcus, Methylosinus, Methy-
locystis, Methylomonas and Methylocella (Murrell et  al. 
2000). The more recent discovery of Methylocella silves-
tris (Crombie and Murrell, 2014), Methyloferula stellata 
(Dedysh et al. 2015), and Methylocella palustris (Dedysh 
et al. 2000) has illustrated that some MOB do indeed pos-
sess only sMMO and would not be targeted in pMMO-
focused molecular studies (Dunfield et al. 2003; Dedysh 
et  al. 2000; Vorobev et  al. 2011; Vekeman et  al. 2016a). 
pMMO belongs to the ammonia monooxygenase super-
family and has been shown to be of high biogeochemi-
cal and chemical relevance (Bédard and Knowles 1989; 
Hakemian and Rosenzweig 2007). This is due to the tight 
correlation that exists between this family and the glob-
ally important methane and nitrous oxide fluxes (Conrad 
1996). This makes copper containing (Cu) MMO genes 
extremely useful markers in biological feedback stud-
ies looking at global climate change (Singh et  al. 2010). 
Moreover, PCR-based environmental surveys have 
identified the ecological distribution and relevance of 
CuMMO-containing organisms correlated to gas flux, 
land use and climatic conditions (Coleman and the ref-
erences within 2012). It has also been postulated that 
this group of enzymes could be correlated to processes 
other than methanotrophy and ammonia oxidation such 
as butane-oxidation (Coleman et  al. 2012; Crombie and 
Murrell 2014). Therefore molecular approaches, such as 
PCR with specific primer sets are a fast and convenient 

method to screen for the diversity of such enzymes in 
various environments (Murrell et  al. 1998; Mitsumori 
et al. 2002; Siljanen et al. 2012).

The crystal structure of pMMO has been determined 
to a resolution of 2.8  Å from Methylococcus capsulatus 
(Bath) and the enzyme has been found to be a trimer 
with an α3β3ɣ3 polypeptide arrangement (Lieberman 
and Rosenzweig 2005). The PmoA subunit contains non-
heme iron in its center and for long was proposed to be 
the site of substrate hydroxylation. The soluble PmoB 
subunit hosts two metal centers, modelled as mononu-
clear copper and dinuclear copper, while a third metal 
center occupied by zinc is located within the membrane 
(Lieberman and Rosenzweig 2005).

Molecular surveys showed that MOB are present, 
amongst others, in natural wetlands (Costello et al. 2002; 
Samad and Bertilsson 2017), marine ecosystems (Veke-
man et  al. 2016b), permafrost thaw ponds (Crevecoeur 
et  al. 2015), peatlands (Lau et  al. 2015) and flooded 
rice-fields (Krüger et  al. 2001; Lüke et  al. 2009; Balasu-
bramanian and Rosenzweig 2007; Zheng et  al. 2008). 
Since pMMO was initially assumed to be present in all 
methane oxidizing bacteria, it has been used in molecu-
lar approaches to investigate methanotrophic diversity 
(Semrau et al. 1995; Holmes et al. 1999; Chi et al. 2012; 
Saidi-Mehrabad et  al. 2013). More specifically pmoA, 
coding for the beta subunit of pMMO, was found to be 
highly conserved and as a result used as a functional gene 
marker (Holmes et al. 1995a, b; Bourne et al. 2001; Cos-
tello et  al. 2002; Kolb et  al. 2003; Luesken et  al. 2011b; 
Wang et al. 2017).

In addition, pmoA amplicon pyrosequencing has been 
used to look at methanotrophic diversity in depth (Kip 
et  al. 2011; Lüke and Frenzel 2011; Han and Gu 2013; 
Knief 2015). For all the PCR based methods, the used 
primers unfortunately do not encompass all different 
phyla of MOB to the same extent (Bergmann et al. 2011) 
nor do they cover new phyla such as Verrucomicrobia 
(Sharp et  al. 2014; Erikstad and Birkeland 2015) and 
NC10. In the latter cases, more phylum specific primers 
had to be designed to investigate the presence of ‘Can-
didatus Methylomirabilis oxyfera’ in various ecosystems 
(Luesken et  al. 2011b). Recently several genomes of dif-
ferent MOB have been sequenced by the Omega consor-
tium (Khmelenina et  al. 2013; Kits et  al. 2013; Khadem 
et  al. 2012; Stephenson et  al. 2017) and thus a much 
larger gene dataset is now available to design new prim-
ers to potentially cover a larger methanotroph diversity. 
Here we introduce a new set of degenerate primers that 
can be used to examine the diversity of MOB in various 
environments with the potential ability to target all pres-
ently known methanotrophic phyla. The new primers 
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have the capability to target pmoC and pmoA and the 
intergenic region in between those genes. Application of 
the primers to various ecosystem resulted in the detec-
tion of pmoCA of Alphaproteobacteria, Gammapro-
teobacteria, Verrucomicrobia and NC10 within their 
respective habitats. Neither ammonia oxidizers, nor the 
recently discovered comammox (van Kessel et  al. 2015; 
Pjevac et al. 2016) were detected with these primers. Fur-
thermore, since the binding sites of the primers imme-
diately flank the intergenic region between the genes 
pmoC and pmoA, they generate MOB lineage specific 
fragments. This unique property could be used in high 
throughput sequence analysis experiments for recovering 
diverse lineages in further environmental studies.

Materials and methods
Construction of pmoCAB operon database and primer 
design
A total of 83 different full genomic methane monooxy-
genase along with the isoenzyme PXM and ammonia 
monooxygenase gene sequences available on MaGe were 
downloaded (Vallenet et  al. 2006; Sievers and Higgins 
2014). This included Alpha-, Gamma-, and Betaproteo-
bacteria (AOB), Verrucomicrobia, NC10, Mycobacterium, 
Nocardia, SAR cluster, divergent PXM operon and sec-
ond operons from Methylocystis parvus OBBP, Methylo-
cystis sp. BN69, Methylosinus sp. LW3, and Methylosinus 
sp. LW4 (Table  1). The genes were aligned in pmoCAB 
operon configuration. In cases where an organism’s 
genome contained more than one copy of the operon, 
all copies were included in the pipeline. Sequences were 
aligned using MUSCLE (Edgar 2004) and the alignment 
was imported into ARB (Ludwig et al. 2004). Nucleotide 
sequences were translated into protein sequences and 
phylogenetic trees were constructed based on the amino 
acid sequences. Furthermore, using the ‘Probe’ tool, 
primers that were capable of covering all (or as much as 
possible) phyla were designed within ARB. The param-
eters for the primer design were: 18 nucleotides in length, 
GC content of 50–70%, and minimum group coverage of 
at least 50%. Furthermore, the primers were made spe-
cific to MOB so that they had more than five mismatches 
with ammonium monooxygenase amo gene sequences of 
ammonia oxidizing bacteria (AOB).

A set of primers covering pmoC, the intergenic region, 
and pmoA were ultimately designed (Table  2) and 
ordered from Biolegio (Nijmegen, the Netherlands). The 
forward primer, called pmoC374, with the reverse primer, 
called pmoA344 resulted in product length of roughly 
850 base pairs (bp) (Table 3). There are slight variations 
between different lineages. This is caused by variation in 
on average, 120 bp long intergenic region between pmoC 
and pmoA.

DNA extraction and PCR conditions
Total DNA was extracted from methanotrophic pure 
and enrichment cultures and from various environmen-
tal samples. Table 4 provides an overview on the cultures 
and samples used in this study. DNA was extracted using 
the  PowerSoil® DNA Isolation Kit from MO BIO Labora-
tories (Carlsbad CA, USA) following the protocol of the 
manufacturer. The primers were tested using polymerase 
chain reaction (PCR), gradient PCR, touchdown PCR 
and nested PCR on all of the samples. The optimized pro-
tocol consisted of initial denaturation step at 96  °C for 
5 min, followed by 35 cycles at 96 °C for 1 min, annealing 
at 55 °C for 1 min and elongation at 72 °C for 2 min. The 
final elongation step was done for 10 min at 72 °C.

Excision from gel after gel electrophoresis, purifica-
tion, ligation and transformation of the amplified PCR 
products were done following the protocol described 
by Luesken et al. 2011a. At least 20 random clones were 
picked for each environmental sample in a blue-white 
screening and the plasmids were isolated for each PCR 
product with the GeneJet Miniprep Kit (Fermentas, Vil-
nus, Lithuania). The samples were sent to BaseClear 
(Leiden, the Netherlands) for sequencing of the cloned 
product using M13 forward primer (Luesken et  al. 
2011a).

Sequence analysis
The resulting sequences were checked for quality using 
Chromas Lite 2.1.1.0 (Technelysium Pty Ltd). Once erro-
neous sequences were removed, the results were blasted 
(BLASTx) using the publically available tools on National 
Center for Biotechnology Information (NCBI). Sequences 
matching with AMO superfamily were imported into 
ARB, translated into protein sequences and aligned to 
the previously mentioned pmoCAB operon dataset using 
ARB built-in aligner tools. Phylogenetic tree construction 
was performed on the amino acid alignment using maxi-
mum parsimony and maximum likelihood methods with 
bootstrapping of 100 times. Consensus sequences based 
on the fraction and frequency of residues at a specific 
alignment position within pmoC from all sequences were 
used to generate the tree.

Sequences are deposited in Genbank with Accession 
Numbers KY883458–KY883555 (Additional file 1: Table 
S1).

Results
The design of new primers was obtained by using all 
available pmoCAB operon sequences from MaGe. Inter-
estingly, pmoB contained no conserved sequence stretch 
as a potential primer target site. Looking at the full oper-
ons, the only conserved regions resided within pmoC and 
pmoA. A new region at the nucleotide position 374 within 
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Table 1 Aligment of the new pmoCA primers on all the available genomic sequences from different phyla. Wobble posi-
tions are shown in yellow

Gammaproteobacteria pmoC374 pmoA344 

Methylobacter tundripaldum SV96 operon 2 ACAGAGCAAGATGGTACATGGCATCA TAAACTTCTGGGGTTGGACTTATT

Methylobacter sp. AQVZv1 operon 1 ACAGAGCAAGATGGTACTTGGCATCA TGAATTTCTGGGGTTGGACTTATT

Methylovulum miyakonese strain HT12 operon 1 ACAGAGCAAGATGGTACTTGGCATCA TGAACTTCTGGGGTTGGACATATT

Methylobacter luteus IMV-B-3098T operon 1 ACTGAGCAAGACGGTACATGGCATCA TGAACTTCTGGGGATGGACATATT

Methylobacter marinus A45 operon 1 ACTGAGCAAGACGGTACATGGCATCA TGAACTTCTGGGGATGGACATATT

Methylomicrobium alcaliphilum 20Z operon 1 ACTGAGCAAGATGGTACTTGGCATCA TCAACTTCTGGGGATGGACATACT 

Methylomicrobium buryatense 5G operon 1 ACAGAGCAAGACGGTACATGGCATCA TCAACTTCTGGGGATGGACATACT 

Methylomonas sp. M11Bv1_22234 operon 2 ACAGAGCAAGACGGTACATGGCACCA TGAACTTCTGGGGCTGGACTTACT 

Methylomonas sp. MK1  operon 2 ACAGAGCAAGACGGTACATGGCACCA TGAACTTCTGGGGCTGGACATACT 

Methylomicrobium album BG8 operon 1 ACCGAACAAGATGGCACGTGGCATCA TCAACTTCTGGGGATGGACTTACT 

Methylosarcina lacus LW14 opeorn 1 ACCGAACAAGATGGTACATGGCATCA TCAACTTCTGGGGATGGACTTACT 

Methylosarcina fibrata AML-C10 operon 1 ACAGAGCAAGATGGTACATGGCATCA TCAACTTCTGGGGATGGACTTACT 

Methyloglobulus morosus operon 3 ACAGAGCAAGACGGCACATGGCATCA TCAATTTCTGGGGTTGGACATACT 

Methylococcus capsulatus Bath A2855 operon 2 ACCGAGCAGGACGGCACCTGGCATCA TCAACTTCTGGGGCTGGACCTACT 

Methylococcus capsulatus Bath A1798 operon 1 ACCGAGCAGGACGGCACCTGGCATCA TCATGCCATGCTCACCATGGGTGA

Methylocaldum szegediense O-12 ACCGAGCAGGATGGCACCTGGCACCA TCAACTTCTGGGGTTGGACCTACT 

Methylohalobius crimeensis operon 2 ACCGAGCAGGACGGCACCTGGCACCA TCAACTTCTGGGGATGGACCTACT 

Methylohalobius crimeensis operon 1 ACCGAGCAGGACGGCACCTGGCACCA TCAACTTCTGGGGATGGACCTACT 

Nitrosococcus watsonii ACCGAGCAGGATGGTGCCTGGCATCA TTAATTTCGTAGGGTTCACCTATT

Nitrosococcus oceani ATCC 19707 ACCGAGCAGGATGGTGCTTGGCATCA TTAATTTCGTAGGGTTTACCTATT

Nitrosococcus halophilus ACCGAGCAGGATGGTACCTGGCATCA ATAACTTCTACGGTTTCACCTACT 

Alphaproteobacteria pmoC374 pmoA344 

Methylocys�s rosea SV97T operon 1 ACCGAGCAGGACGGCACCTGGCACAT TCAACTTCTGGGGCTGGACCTACT 

Methylocys�s rosea SB2 operon 3 ACGGAGCAGGACGGCACCTGGCACAT TCAACTTCTGGGGCTGGACCTACT 

Methylocys�s rosea SV97T operon 2 ACCGAGCAGGACGGCACCTGGCACAT TCAACTTCTGGGGCTGGACCTACT 

Methylocys�s sp. BN69 operon 2 ACGGAGCAGGACGGCACCTGGCACAT TCAACTTCTGGGGCTGGACCTACT 

Methylocys�s sp. BN69 operon 3 ACGGAGCAGGACGGCACCTGGCACAT TCAACTTCTGGGGCTGGACCTACT 

Methylocys�s parvus OBBP operon 2 ACGGAGCAGGACGGCACCTGGCACAT TCAACTTCTGGGGCTGGACCTATT

Methylosinus sp. ATCC operon 1 ACGGAGCAGGACGGCACCTGGCATAT TCAACTTCTGGGGCTGGACCTATT

Methylosinus sp. LW3 operon 2 ACGGAGCAGGACGGCACCTGGCACAT TGAACTTCTGGGGCTGGACCTACT 

Methylosinus sp. LW3 operon 3 ACGGAGCAGGACGGCACCTGGCACAT TGAACTTCTGGGGCTGGACCTACT 

Methylosinus sp. LW4 operon 1 ACCGAGCAGGACGGCACCTGGCATAT TGAACTTCTGGGGCTGGACCTATT

Methylosinus sp. LW4 operon 3 ACCGAGCAGGACGGCACCTGGCATAT TGAACTTCTGGGGCTGGACCTATT

Methylocys�s parvus OBBP operon 1 ACCGAGCAGGACGGCACCTGGCATCA ACAATTTCTGGGGTTGGACCTTCT

Methylocys�s sp. BN69 operon 1 ACCGAGCAGGACGGCACCTGGCACCA ACAACTTCTGGGGCTGGACCTTCT

Methylosinus sp. LW3 operon 1 ACCGAGCAGGACGGCACCTGGCATCA ACAACTTCTGGGGCTGGACCTTCT

Methylosinus sp. LW4 operon 2 ACCGAGCAGGACGGCACCTGGCATCA ACAATTTCTGGGGCTGGACCTTTT

Methylocapsa acidiphila B2 ACCGAGCAGGACGGCACCTGGCACCA CCAATTTCTGGGGTTGGACCTATT
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the PmoC subunit of Methylococcus capsulatus (Bath), as 
a reference, was found to be highly conserved amongst all 
the phyla tested in this experiment. The forward primer 
binding site encodes for a glutamine residue at 126th 
base within the crystal structure of pmoC anchored 
to the membrane in Methylococcus capsulatus (Bath) 

whereas the reverse primer binding site encodes a phe-
nylalanine residue at 107th base within pmoA. Our newly 
designed forward primer was compared to Holmes’ for-
ward primer and the results are shown in Tables 1 and 2. 
As the tables illustrate, with zero mismatches, pmoC374 
is able to target three out of the seven available sequences 

Table 1 continued

Methylacidiphilum fumariolicum SolV operon 2 ACTGAGCAAGATGGGACATGGCATCA GGAACTTCTGGGGTTGGGGCACTT

Methylacidiphilum fumariolicum SolV operon 3 GTTGAACAGGATGGAGTATGGCATTC TCAATTGGTGGGGATGGTTCAGTT

Methylacidiphilum infernorum V4 operon 1 ACAGAGCAGGACGGCACATGGCATCA GGAATTTCTGGGGTTGGACACACT

Methylacidiphilum infernorum V4 operon 2 ACCGAGCAAGATGGGACTTGGCATCA GGAATTTTTGGGGTTGGGGGACCT

Methylacidiphilum infernorum V4 operon 3 GTTGAGCAAGATGGGGTTTGGCATTC TTAACTGGTGGGGTTGGTTTAGTT

Verrucomicrobium sp. ACGGAGCAGGACGGCACCTGGCACCA TCAACTTCAATGGATGGACCCATT

Alkane monooxygenases pmoC374 pmoA344 

Mycobacterium chubuense GCCGAAGAGGACGCCACTTGGCACCA CGAGTTTTGATCTGTGGGCGCACC

Mycobacterium rhodesiae GCCGAGGAGGACGCCGCCTGGCACCA TCAACTTCGACTGGTGGGCCAACA

SAR324 cluster pmoC374 pmoA344 

SAR324 cluster bacterium GCCTAATCTGGATGGCTCGTGGCATCA TTCAGTGGGATGTTATGATAGGCT

NC10 pmoC374 pmoA344 

Candidatus Methylomirabilis oxyfera ACCGAGCAGGACGGGACGTGGCACCA TTAACTTTTACTATTGGGCCTGGT

PXM (pMMO isoenzyme) pmoC374 pmoA344 

Methylomonas sp. MK1 GCCGAGCAGGACAACTCCTGGCATCA TCGCTTACCACTACTGGAACTATT

Methylomonas sp. M11 GCCGAACAGGACAATTCCTGGCACCA TTGCCTACCATTACTGGAACTATT

Methylobacter luteus GCCGAGCAAGATAATTCCTGGCATCA TTGCCTATCACTACTGGAACTATT

Methylobacter marinus GCCGAGCAAGACAATTCCTGGCATCA TTGCCTATCACTACTGGAACTATT

Methylobacter tundripaldum SV96 GCCGAACAGGATAATTCCTGGCATCA TCGCCTATCATTATTGGAATTATT

Methyloglobulus morosus GCCGAGCAAGATAACTCCTGGCATCA TTGCCTACCACCTATGGAATTATT

Methylocys�s rosea SV97T GCGGAGCAGGACAATTCCTGGCATCA TCGCCTATCACATGTGGAACTTTT

Methylocys�s SB2 GCGGAGCAGGACAATTCCTGGCATCA TCGCCTATCACATGTGGAACTTTT

Methylomonas sp. MK1 GCCGAACAAGATAATGCCTGGCATCA CCGCCTATCAAATTTGGACCAATT

Methyloglobulus morosus GGGGAACAAGACAATGCCTGGCACCA TTGCCTACCACCTCTGGACGAATT

Betaproteobacteria pmoC374 pmoA344 

Nitrosomonas sp. AL212 operon 1 ACCGAACAGGATGCAAGCTGGCACCA GGGGATTTTACTGGTGGTCGCATT

Nitrosomonas sp. AL212 operon 2 ACCGAACAGGATGCAAGCTGGCACCA GGGGATTTTACTGGTGGTCGCATT

Nitrosomonas sp. AL212 operon 3 ACCGAACAGGATGCAAGCTGGCACCA GGGGATTTTACTGGTGGTCGCATT

Nitrosomonas sp. Is79A3 operon 1 ACCGAACAAGATGCATCGTGGCACCA GGGGCTTCTACTGGTGGTCACATT

Nitrosomonas sp. Is79A3 operon 2 ACCGAACAAGATGCATCGTGGCACCA GGGGCTTCTACTGGTGGTCACATT

Nitrospira mul�formisoperon 1 ACCGAACAGGACGCCTCCTGGCACCA GGGGTTTCTACTGGTGGTCGCACT 

Nitrospira mul�formisoperon 2 ACCGAACAGGACGCCTCCTGGCACCA GGGGTTTCTACTGGTGGTCGCACT 

Nitrospira mul�formisoperon 3 ACCGAACAGGACGCCTCCTGGCACCA GGGGTTTCTACTGGTGGTCGCACT 

Nitrosomonas europaea operon 1 ACGGAGCAAGATGCCTCCTGGCACCA GGGGATTCTACTGGTGGTCACACT 

Nitrosomonas europaea operon 2 ACGGAGCAAGATGCCTCCTGGCACCA GGGGATTCTACTGGTGGTCACACT 

Nitrosomonas eutropha operon1 ACGGAGCAAGATGCCTCCTGGCACCA GGGGTTTCTACTGGTGGTCACACT 

Nitrosomonas eutropha operon2 ACGGAGCAAGATGCCTCCTGGCACCA GGGGTTTCTACTGGTGGTCACACT 

Verrucomicrobia pmoC374 pmoA344 

Methylacidiphilum fumariolicum SolV operon 1 ACGGAGCAAGACGGCACGTGGCATCA GGAATTTCTGGGTTGGCACACTACC
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from Verrucomicrobia. If a single mismatch is allowed, 
five out of the seven sequences from Verrucomicrobia are 
targeted by pmoC374 whereas pmoA189 (Holmes et  al. 
1995a, b) with one mismatch still does not target any 
verrucomicrobial pMMO gene. The details of the novel 

primer set with regards to number of mismatches are 
listed in Table 2.

Initially, pmoA189 target region was thought to be a 
good matching reverse primer, however, a secondary 
conserved region at the 334th position within the pmoA 
gene was found. The pmoC374 with pmoA344 combina-
tion yielded a PCR product of the correct size in the sam-
ples tested, while the same could not always be observed 
when it was used in combination with pmoA189. In 
Table 1 and 2, it can be observed that pmoA344 has the 
ability to target 17 out of the 19 sequences belonging to 
Gammaproteobacteria with zero mismatches. Based on 
sequence information, pmoA334 does not have the abil-
ity to target NC10 phylum and it needs two or more 

Table 2 Comparison of targeting ability between two newly designed degenerate primers and pmoA189

Percent sequence coverage of all pmoCAB available sequences within each phylum were calculated by looking at how many sequences each primer could target. 
Targeting ability is also shown for zero, one, two and three mismatches within each primer

Phylum pmoC374 pmoA344 pmoA189

Mismatches Mismatches Mismatches

0 1 2 3 0 1 2 3 0 1 2 3

Gammaproteobacteria 10/18 18/18 18/18 18/18 16/18 18/18 18/18 18/18 7/18 18/18 18/18 18/18

Alphaproteobacteria 16/16 16/16 16/16 16/16 14/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16

Verrucomicrobia 3/7 5/7 5/7 6/7 0/7 0/7 1/7 3/7 0/7 0/7 0/7 3/7

NC10 1/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1 1/1 1/1 1/1

Table 3 The new pMMO primers designed based 
on aligned pmoC, A, and B compared to pmoA189

MT melting temperature, %GC GC content in percentage

Primers Sequence MT %GC

PmoC374 5′-AGCARGACGGYACNTGGC-3′ 42,9 56

PmoA189 5′-GGNGACTGGGACTTCTGG-3′ 40,3 56

PmoA344 5′-ANGTCCAHCCCCAGAAGT-3′ 42,9 50

Table 4 Over view of  the strains, enrichment culture and  environmental samples tested in  this study to  detect pmoCA 
gene sequences

Name/sample Description Origin/location reference

Methylocystis rosea Pure culture
Alphaproteobacteria

DSMZ 17621

Methylosinus sporium Pure culture
Alphaproteobacteria

DSMZ 17706

Methylomonas lenta Pure culture
Gammaproteobacteria

Hoefman et al. 2014

Methyloacidimicrobium fagopyrum 3C Pure culture
Verrucomicrobia

van Teeseling et al. 2014

Methyloacidiphilum fumariolicum SolV Pure culture
Verrucomicrobia

Pol et al. 2007

Methylomirabilis oxyfera (DAMO) Enrichment culture
NC10 phylum

Ooijpolder, NL
Ettwig et al. 2008

Sludge from waste water treatment plant (WW) Environmental sample Lieshout, NL
Luesken et al. (2011a, b)

Bulk soil form paddy field (BS) Environmental sample Vercelli, Italy
Vaksmaa et al. (2016)

Rhizosphere of rice plants (ROOT) Environmental sample Vercelli, Italy
Vaksmaa et al. (2016)

Enrichment culture with paddy field soil (RV) Enrichment culture Vaksmaa et al. (2016)

Volcanic mud (VM) Environmental sample Campi Flegrei caldera, Italy
Pol et al. (2014)



Page 7 of 11Ghashghavi et al. AMB Expr  (2017) 7:162 

mismatches to target species belonging to Verrucomicro-
bia. However, this primer improved the ability to target 
both Verrucomicrobia and the NC10 phyla in our study 
when pure isolates were used as positive control in the 
PCR reaction. The resulting sequences from the vari-
ous enrichment cultures and environmental samples are 
depicted in Fig. 1.

The pmoCA sequences obtained from the paddy 
field sample were closely related to well-known genera 
including Methylosinus, Methylocystis, Methylococcus, 

Methylocaldum, Methylohalobius, Methylomicrobium, 
Methylobacter and Methylomonas. Furthermore, the 
pmoCA of pure cultures of Methylocystis rosea and Methy-
losinus sporium belonging to Alphaproteobacteria and 
Methylomonas lenta (Hoefman et  al. 2014) belonging to 
Gammaproteobacteria could all be amplified with the new 
primer set. From previous studies, two isozymes of pMMO 
with various methane oxidation kinetics were found to be 
present in Methylocystis sp. strain SC2 (Baani and Liesack 
2008), the new primers also amplified the second pmoCA 

ROOT and BS clones (12)

VM, WW, BS clones (10)
Methylocaldum szegediense

WW clones (6)
Methylococcus capsulatus Bath

WW clone (KY883539) 
Methylohalobius crimeensis

ROOT clones (9)

BS clones (3)
Methylosarcina lacus LW14 

BS clone (KY883472) 
Methylomicrobium album BG8

BS clone (KY883473)
Methylomicrobium

Methylosarcina fibrata
Methyloglobulus morosus

Methylobacter (2)
BS clone (KY883474)

Methylovulum miyakonense strain HT12
Methylobacter sp. 

BS clone (KY883475)
Methylobacter tundripaludum SV96

DAMO clone (KY883550)
Methylomonas sp. M1

ROOT clone (KY883508)
ROOT clone (KY883509)

AOB−Nitrosococcus (3)
BS clones (5)

BS clone (KY883481) 
ROOT clone (KY883510)

OBBP
sp. ATCC

ROOT clone (KY883511)
ROOT clone (KY883512)

VM clone (KY883522)
VM clone (KY883523)

BS clone (KY883482) 
BS clone (KY883483) 

sp BN69
BS clone (KY883484) 

SV97T 
SB2 

BS clone (KY883486)
WW clone (KY883540)

BS clone (KY883487)
Methylosinus (2)

BS clone (KY883488)
VM clones (5)

VM clone (KY883530)
Methylosinus sp. LW3 

BS clone (KY883490)
OBBP 

sp BN69
BS clone (KY883491)

DAMO clone (KY883551)DAMO clone (KY883552)
Methylocapsa acidiphila B2

RV clones (8)
Candidatus Methylomirabilis oxyfera DAMO

DAMO clone (KY883553)
RV clone (KY883549)

RS clone (KY883554)
RS clone (KY883555)
Methylacidiphilum fumariolicum SolV

Methylacidiphilum infernorum V4 
Methyloacidiphilum (2)

Verrucomicrobium sp.

Alkane monooxygenase (2)
SAR324 cluster bacterium

pXMO (10)

0.10

Bootstrap value ≥ 90%

Bootstrap value ≥ 70%

BS clone (KY883485) 

Methylacidiphilum fumariolicum SolV (operon 3) (2)

VM clone (KY883529)

BS clone (KY883489)

ROOT clone (KY883513)

Gammaproteobacteria

Alphaproteobacteria

Verrucomicrobia

NC10

Fig. 1 Representing available pMMO sequences including the sequence obtained in this study. The tree was constructed using consensus 
sequence, based on the fraction and frequency of residues at an alignment position chosen within pmoC using both ARB’s PHYML (amino Acids) 
tool within the maximum likelihood method and Phylip PROTPARS within the maximum parsimony method. Since the two trees were highly similar, 
only maximum likelihood is shown here. Due to size limitation, the tree is partially collapsed for an easier illustration and pXMO is used as the out-
group instead of AOB sequences that are omitted from this figure. The tree was built with 100 bootstraps and the ranges of values are shown with 
the respective colored circles at each node. Clone sequences with their respective accession numbers are highlighted in blue and the numbers in the 
brackets correspond to the number of sequences within a group. Gammaproteobacteria, Alphaproteobacteria, NC10 and Verrucomicrobia are clearly 
distinguished in the figure. Origin of clones: BS bulk soil, ROOT rhizosphere, VM volcanic mud, WW waste water sludge, RV bioreactor enrichment 
from vercelli, RS Methylacidiphilum fumariolicum SolV, DAMO Methylomirabilis oxyfera enrichment culture
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in DNA extracted from the paddy soil. Methylocaldum- 
and Methylococcus-like species were also found in Waste 
Water samples. Furthermore, both alpha- and gammapro-
teobacterial pmoCA were found in the volcanic mud 
sample. Lastly, the pmoCA of the verrucomicrobial metha-
notroph Methylacidiphilum fumarolicum SolV could be 
amplified as well from a pure culture (Fig. 1).

In our experiment, only the Verrucomicrobia pMMO 
sequence most closely related to the ones in Alphaproteo-
bacteria and Gammaproteobacteria could be detected. 
The new primer set was also used on a pure mesophilic 
Verrucomicrobia strain Methyloacidimicrobium fag-
opyrum 3C resulting in gene product of the correct 
size and gene sequence. The primers do not amplify 
sequences related to the pmoC3 group. In both anoxic 
enrichment cultures (DAMO and RV) tested, the pmoCA 
of NC10 phylum bacterium Methylomirabilis oxyfera 
could be amplified (Fig. 1). In the case of Methylomonas 
lenta that does contain the genes for pXMO, only pmoCA 
gene sequences were detected, while the pXMO was 
not amplified. Lastly, no AMO (ammonia monooxyge-
nase), PXM (alternative methane monooxygenase) or the 
recently discovered comammox amo were targeted nor 
amplified with this primer set in any of the environmen-
tal samples or the negative controls used in this study.

Discussion
In the era of ‘omics’, molecular approaches using either 
specific or degenerate primers are still of high impor-
tance, especially in ecological studies where many samples 
need to be investigated or screened. They allow for a quick 
and robust detection of uncultivated microbes and aid in 
hypothesizing the community structure and the key pro-
cesses that occur in certain environments, at the molec-
ular level. As our knowledge and understanding of these 
environments expands, the tools that are used to investi-
gate also need to be updated. More specifically, identifica-
tion of the diverse organisms responsible for the oxidation 
of methane within various environments will help to bet-
ter understand the key players involved in the methane 
cycle and evaluate their potential effectiveness as a bio-
logical methane filter. The currently available pmoA based 
primers are over 10  years old and since known MOB 
diversity has since been extended, a novel primer set with 
broader amplification ability would be highly beneficial 
in molecular studies. It is also important to distinguish 
between copper monooxygenases belonging to the AMO 
superfamily to ensure the detection of MOB and not AOB 
or the more recently discovered comammox (van Kessel 
et al. 2015; Pjevac et al. 2016; Pinto et al. 2015).

The use of all available pmoCAB operon sequences 
from MaGe allowed for the design of new prim-
ers (Table  1). Interestingly pmoB, which in previous 

studies has been suggested as the active site of the meth-
ane monooxygenase enzyme (Culpepper and Rosenzweig 
2012; Lieberman and Rosenzweig 2005) contained no 
conserved sequence stretch as a potential primer target 
site. The only conserved regions that could be observed 
resided within pmoC and pmoA, both of which encode 
for primarily membrane bound subunits (Lieberman 
and Rosenzweig 2005). Overall, PmoA is by far the most 
conserved subunit of this enzyme. Since for long it was 
thought to be the catalytic subunit as well, primers were 
designed based on this gene and have since become the 
academic standard in this line of research and used to 
date in many studies (Lüke and Frenzel 2011; Rastogi 
et al. 2009; Kip et al. 2011). However, due to the two mis-
matches that occur at the 10th position within pmoA 
target region, previously unknown phyla (i.e. Verrucomi-
crobia or NC10) remain undetected and demand the 
design of phylum specific primers (Luesken et al. 2011b). 
This variation in sequence identity is also one of the 
reasons why this study focused on the whole pmoCAB 
operon instead of the PmoA subunit alone (Table 2).

Previous studies have looked into analysis of MOB 
community in rice fields by targeting 16S rRNA, pMMO 
and methanol dehydrogenase (Henckel et  al. 1999) and 
observed a large variety of MOB. The new primer set 
used in this study was also able to detect a wide array of 
pmoCA sequences from both the bulk soil as well as the 
rhizosphere of an Italian rice paddy field, a waste water 
treatment sample, and volcanic mud samples. Further 
in anoxic Methylomirabilis oxyfera enrichment cultures 
started with paddy field or Ooijpolder sediment, many 
different pmoCA sequences could be retrieved (Fig. 1).

Furthermore, the pmoCA of the verrucomicrobial meth-
anotroph Methylacidiphilum fumarolicum SolV could be 
amplified. This strain contains three complete pmoCAB 
operon structures that resemble the one observed in pro-
teobacterial methanotrophs, plus a fourth pmoC copy. As 
expected, the primers do not amplify sequences related 
to the pmoC3 group as it is further downstream in the 
genome and the primers do not bind there.

Most sequences from the Waste Water Treatment Plant 
biomass used in this study were closely related to Methy-
lococcus genus as was previously observed (Luesken 
et  al. 2011a). Lastly, no AMO (ammonia monooxyge-
nase), PXM (alternative methane monooxygenase) or the 
recently discovered commamox amo were targeted nor 
amplified with this primer set in any of the environmen-
tal samples which is an indication of the specificity. How-
ever, with some modification of the primer sequence, 
the same or similar sites can be used to only target AOB 
instead of MOB (Pjevac et al. 2016; Wang et al. 2017).

This study illustrates that when primer pmoC374 was 
used in combination with pmoA344, PCR amplification 
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yielded the correct gene product from various envi-
ronmental samples and MOB strains. Such observa-
tion could not be made when pmoA189 was used as the 
reverse primer. At times, there were multiple bands that 
occurred at the expected size within the gel. When each 
band was excised from the gel, all corresponded to the 
correct product. Since the pmoCA sequence covers the 
intergenic region, the slightly different nucleotide length 
observed in the PCR product is possibly due to the vari-
ation that exists in this region. This was more apparent 
when environmental samples were used as opposed to 
pure isolates, which further supports our hypothesis.

The obtained results expand our knowledge with regard 
to primer target ability based solely on in silico coverage as 
supposed to experimental results, since the new targeting 
sites would not be desirable due to occurring mismatches. 
Furthermore, the new pMMO primer set was able to 
amplify the correct product and sequence from all cur-
rently known methanotrophic phyla. If used in conjunction 
with Holmes’ forward primer, the resulting product could 
be used in future next generation sequencing studies for a 
more extensive look at the bacterial community structure. 
The concurrent use of this primer set along with ones based 
solely on pmoA would allow for a much lesser bias when 
it comes to studies that look at the general diversity of the 
methanotrophic community within various environments. 
It also permits for the simultaneous detection of Alphapro-
teobacteria, Gammaproteobacteria, Verrucomicrobia and 
NC10 phyla with broader sequence variation.
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