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Summary

Coal mining is responsible for 11% of total anthro-
pogenic methane emission thereby contributing con-
siderably to climate change. Attempts to harvest
coalbed methane for energy production are chal-
lenged by relatively low methane concentrations. In
this study, we investigated whether nutrient and acet-
ate amendment of a non-producing sub-bituminous
coal well could transform the system to a methane
source. We tracked cell counts, methane production,
acetate concentration and geochemical parameters
for 25 months in one amended and one unamended
coal well in Australia. Additionally, the microbial com-
munity was analysed with 16S rRNA gene amplicon
sequencing at 17 and 25 months after amendment

and complemented by metagenome sequencing at
25 months. We found that cell numbers increased
rapidly from 3.0 3 104 cells ml�1 to 9.9 3 107 in the
first 7 months after amendment. However, acetate
depletion with concomitant methane production
started only after 12–19 months. The microbial com-
munity was dominated by complex organic compound
degraders (Anaerolineaceae, Rhodocyclaceae and
Geobacter spp.), acetoclastic methanogens (Methan-
othrix spp.) and fungi (Agaricomycetes). Even though
the microbial community had the functional potential
to convert coal to methane, we observed no indication
that coal was actually converted within the time frame
of the study. Our results suggest that even though
nutrient and acetate amendment stimulated relevant
microbial species, it is not a sustainable way to trans-
form non-producing coal wells into bioenergy facto-
ries.

Introduction

Coal is the most important fossil fuel on the planet, com-
prising 70% of the total fossil fuel stock (Iram et al.,
2017). Coal mining has a big environmental impact and is
estimated to result in 24–42 Tg of methane emissions per
year. Methane in coalbeds is produced biologically or
thermogenically and escapes from both active and aban-
doned coal mines. This amounts to 11% of total yearly
anthropogenic methane emissions (Saunois et al., 2016)
and thus has a considerable climate impact due to the
high global warming potential of methane (34 for
100 years, (Myhre et al., 2013)). Coalbed methane can
be used as a more environmentally sustainable alterna-
tive to direct coal burning (Fakoussa and Hofrichter,
1999; Al-Jubori et al., 2009; Kinnon et al., 2010) as direct
coal burning leads to pollution in the form of heavy metals
and sulfur compounds (Querol et al., 1995). At the same
time, the exploitation of coalbed methane could effectively
reduce methane leaking into the atmosphere. In many
cases, coalbed methane harvesting is not profitable due
to unfavourable system properties, like highest rank coal
species or unfeasible methane production rates as well
as barriers to a selling market (Moore, 2012). As a result,
many active methane-producing coal systems are
neglected and thus remain sources of methane emission.
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Biogenic coalbed methane production requires a con-
sortium of anaerobes that convert coal compounds to
substrates for methanogenic archaea (Jones et al.,
2010). Recently, Mayumi and co-workers showed that
coal-derived methoxylated compounds can be directly
used for methanogenesis by Methermicoccus species
(Mayumi et al., 2016). Coal biosolubilization, the rate lim-
iting step, is carried out by fungi expressing peroxidases,
laccases, hydrolytic esterases and also abiotically by
alkaline metabolites and naturally occurring chelators
(Fakoussa and Hofrichter, 1999; Strazpo�c et al., 2008;
Papendick et al., 2011). The microbial degradation of
intermediates to volatile fatty acids (VFAs) and the sub-
sequent production of acetate and H2/CO2 fuels the
methanogens (Robbins et al., 2016).
In Australia, roughly 5000 coal seam gas wells were

operated in 2014 (Day et al., 2014) which accounted for
18% of the total gas production in 2014–2015 and
almost half of the total East Coast gas production (Ball
et al., 2016). Several studies focused on enhancing
methane production by applying nutrient, trace element
and biotic amendment to low-emitting coal seams (Jones
et al., 2010; Penner et al., 2010; €Unal et al., 2012). In
Australia, coalbed exploitation for biogas production has
gained more attention in the last decade and several
studies focused on characterizing and enriching microor-
ganisms from coal (Faiz and Hendry, 2006; Midgley
et al., 2010; Papendick et al., 2011; Robbins et al.,
2016). However, detailed data on the effects of nutrient
amendments on microbial communities in these systems
are scarce but highly needed to successfully optimize
coalbed methane production.
In this study, we analysed methane production, cell

counts, physicochemical properties of the well water and
acetate degradation in a sub-bituminous coal well over
the course of 25 months. We compared this data to the
microbial community composition at 17 months when
acetate consumption and methane production were
observed and at 25 months, the final time point, using
16S rRNA gene amplicon sequencing. For the 25 month
sample, the functional potential of the microorganisms
was investigated using a metagenome data set. This
data set was also interrogated to study the fungal,
archaeal and bacterial communities using ribosomal
rRNA gene based phylogeny. By combining this set of
complementary experiments, we could reconstruct the
complex microbial food web and assess the suitability of
nutrient and acetate amendment to transform non-produ-
cing coal seams into gas production sites.

Results and discussion

The two experimental coal wells are located at the Lith-
gow State Coal Mine in the Western Coal Fields of New

South Wales, Australia. The coal bearing layers are
located 80 m below ground level. About 2 m2 of coal is
continuously exposed to the groundwater that has a vol-
ume of 450 L, a pH of 7.9, an oxidation reduction poten-
tial of �232 mV (chemical potential relative to the
standard hydrogen electrode (SHE)) and a temperature
of 16°C. Groundwater flows were not assessed here but
they likely cause exchange and mixing of the water
body. After 25 months of operation, the pH was 8.2 and
the redox potential �197 mV. The headspace gas vol-
ume is circa 1000 L. The well was nutrient amended by
adding a final concentration of 1.8 mM ammonium and
1.9 mM phosphate in addition to 20 mM acetate in two
10 mM additions at 0 and 4 months. Nutrient and acet-
ate concentrations were pre-assigned according to pre-
liminary in vitro culture assays performed and modified
according to Jones et al. (2010). Nutrient and acetate
solutions were slowly released by drop tubing to 450 L
coal formation water in contact with the coal seam with a
feeding rate of about 0.5 L min�1 for a 2 L stock solu-
tion.

Amendment stimulated microbial growth and methane
production

The amended well showed considerable methane pro-
duction after 12 months, whereas in the unamended
well, no methane production was observed over the
course of the whole experiment (25 months, Fig. 1A).
These observations are in line with previous studies on
microbial coal conversion that showed that nutrient
amendment stimulated methane production from non-
producing coal systems (Laborda et al., 1997; Jones
et al., 2010; Penner et al., 2010). Interestingly, methane
emission was only observed after a prolonged lag phase
of 12 months in conjunction with acetate degradation
and stopped when acetate was depleted after about
18 months. This indicates that the microbial community
at the start of the experiment was not yet able to or not
abundant enough to convert acetate to methane. When
we analysed the cell numbers in the two coal wells, we
found that there was considerable growth in the
amended well in the beginning of the incubation
(3.0 9 104 cells ml�1 at 0 months; 9.9 9 107 cells ml�1

at 7 months, Fig. 1B) with a stabilization of the cell den-
sity after 7 months (2.4 9 108 cells ml�1 at 25 months)
and absence of growth in the control well (1.5 9 104

cells ml�1 at 0 months; 1.6 9 104 cells ml�1 at
25 months, Fig. 1B). The increase in cell numbers was
not correlated with a decrease in acetate concentration
or concomitant methane production so it was
presumably mainly due to the addition of nutrients that
were also limiting in the unamended coal well. After
about 11 months, acetate consumption and methane
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production were first observed, indicating a shift in micro-
bial community functioning. From this, it can be con-
cluded that acetate and nutrient amendment clearly
stimulated microbial growth and enabled the microbial
community to eventually convert acetate to methane. As
methane production stopped after acetate depletion,
these data also suggest that the methane-producing
microbial community was not able to thrive without exter-
nal addition of acetate (Fig. 1A) even though the micro-
bial biomass had increased by several orders of
magnitude (Fig. 1B). Stoichiometric analysis indicated
that about 25% of the acetate was converted to
methane, suggesting presence of syntrophic acetate oxi-
dation, which has been previously observed in organic
carbon-rich petroleum reservoirs (Mayumi et al., 2011).
Sulfate-dependent acetate oxidation was unlikely to
occur due to the rapid depletion of sulfate from 1 mM at
the start of the experiment (Table S1) to below the detec-
tion limit after 3 months (< 0.02 mM). The decrease in
methane after 19 months in the amended coal wells is
probably due to escape of methane from the coal well
rather than active degradation of methane. We analysed
the sequencing data for aerobic or anaerobic methan-
otrophs but did not find any indication (16S rRNA gene
and marker genes pmoA, mcrA) of aerobic or anaerobic
methane oxidation.
To get insight into the functioning of the microbial food

web and as indication as to why methane production

stopped after 15 months, we sampled the coal well
water at 17 and at 25 months to analyse the microbial
communities and their functional potential. Phylogenetic
analyses were performed on both 16S and 18S rRNA
genes and fungal ITS (Fig. 2, Table S2). Functional
analyses targeted genes encoding proteins involved in
complex organic compound degradation, metal reduc-
tion, electron transfer reactions and volatile fatty acid
metabolism (Table S2).

The fungal community has the potential for coal
biosolubilization

Fungi represented 15% of the combined 16S/18S rRNA
gene reads detected in the metagenome data set
(Fig. 2). The sequences were most related to species
within the Agaricomycetes class that contains well-char-
acterized wood-rotting fungi (Ohm et al., 2014). Addi-
tional identification based on fungal ITS sequences
supported identification up to the Basidiomycota division,
and most reads (89%) were closely related to Basid-
iomycota sp. MEL 2363319 (KP311433) (99% nt iden-
tity). In the metagenome, we found functional genes
encoding lignin, manganese and versatile peroxidases
that are involved in complex organic compound degrada-
tion. Even though these enzymes require oxygen as
co-substrate, Agaricomycetes have been previously
detected in several anoxic environments such as marine
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Fig. 1. Monthly methane and acetate concentration measurements in the amended coal well (A) and total cell count data for both the nutrient/
acetate amended and the control coal well (B). No methane production was observed in the control coal well. To the amended coal well,
10 mM acetate was added at 0 and 4 months respectively.
A: open squares (□), acetate concentration in mM; filled squares (■), total methane in mmol;
B: open squares (□), total cell count in cells ml�1 for the nutrient/acetate amended well; filled squares (■), total cell count in cells ml�1 for the
control well.
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ecosystems (reviewed by Manohar and Raghukumar,
2013), anoxic organic carbon-rich mangrove soils (Arfi
et al., 2011) and anoxic freshwater sediments (Zhang
et al., 2015). This suggests that extremely low oxygen
concentrations possibly penetrating into anoxic habitats
can still support such enzyme activities. Agaricomycetes
are the only class of fungi capable of substantial lignin
degradation (Floudas et al., 2012), which supports their
potential role in the breakdown of lignin-derived struc-
tures in coal as has been showed for filamentous fungi
(Hofrichter et al., 1997).

Community shifts from Anaerolinaceae to
Rhodocyclaceae as dominant potential complex organic
compound degraders

At 17 months, the Anaerolinaceae were quite abundant
(15% of 16S rRNA gene reads, Fig. 2) but almost com-
pletely disappeared at 25 months (< 0.2%). They were
replaced by the Rhodocyclaceae comprising the genera
Azoarcus and Thauera that were virtually absent at
17 months (< 0.4% of 16S rRNA gene reads) but
became dominant community members at 25 months
(23% of bacterial 16S rRNA gene reads in the amplicon
survey; 44% relative abundance in the metagenome,
Fig. 2). As there is no metagenome from the 17 month
sample available and Anaerolinaceae were nearly
absent at 25 months, a functional potential can only be
inferred. Interestingly, their potential in coal degradation
has not been suggested previously. However, Anaeroli-
neaceae were dominant after long-term enrichments with

long-chain n-alkanes-dependent methanogenic condi-
tions and occur in combination with sulfate reducers and
methanogens (Methanoculleus and Methanothrix) (Liang
et al., 2015, 2016). In addition, enrichment from aquifer
sediment with naphthalene (a polycyclic aromatic hydro-
carbon) showed high relative abundance of Anaerolin-
eaceae (5.7%–47.0%) and experimental evidence
showed that polycyclic aromatic hydrocarbon (PAH)
dioxygenases are present in Rhodocyclaceae and play a
role in PAH metabolism (Singleton et al., 2012; Che-
merys et al., 2014). The Rhodocyclaceae family mem-
bers Azoarcus and Thauera consist of anaerobic
aromatic compound degrading denitrifiers (Anders et al.,
1995; Liu et al., 2006). As the absolute cell counts did
not change considerably between the two sampling
points of 17 and 25 months (Fig. 1B), it is interesting to
note that the microbial community shifted towards a
higher abundance of Rhodocyclaceae. This might indi-
cate that the microbial community changed towards
degrading complex organic compounds from coal biosol-
ubilization. The involvement of both betaproteobacterial
species in the degradation of aromatic compounds was
supported by the presence of genes encoding benzyl-
succinate synthase (BssABC) and 4-hydroxybenzoyl-
CoA reductase (HcrAB) that previously have been
shown to be involved in benzoate and toluene degrada-
tion respectively (Hermuth et al., 2002; Barrag�an et al.,
2004) (Table S2). For Azoarcus, the functional analyses
revealed the presence of benzoate-coenzyme A ligase
(BzdA) which supported its capacity for benzoate degra-
dation (Barrag�an et al., 2004). The identification of
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metagenome

100

Relative abundance (%)
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Desulfovibrionaceae
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Christensenellaceae

Porphyromonadaceae

SR.FBR.L83

Comamonadaceae

Other

7550250

84%

1% 15%
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Fig. 2. Phylogenetic analysis of the microbial community at 17 and 25 months based on 16S/18S rRNA genes.
A. Bacterial taxonomy using 17 month and 25 month amplicon 16S rRNA gene data and 25 month metagenome bacterial 16S rRNA reads.
B. Relative abundance of bacteria, archaea and fungi (eukarya) based on total metagenome 16S/18S rRNA gene mapped reads at 25 months.
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Thauera aromatica was possible to species level and
was supported by both metagenomic 16S rRNA and
functional gene analyses. Its capacity for complex
organic compound degradation including relatively inert
aromatic compounds may be crucial in coal breakdown
processes (Hermuth et al., 2002; Boll, 2011; Kuntze
et al., 2011). Both Azoarcus and Thauera have been
observed before in sub-bituminous and bituminous
methane-producing coal seams (Li et al., 2008). Strik-
ingly, we did not detect nitrate in the coal well at the
start of the experiment (Table S1) so it is unclear what
terminal electron acceptors could have been used by
Thauera and Azoarcus.

Organic compounds could be further degraded by
Geobacter metallireducens

Both the 17 and 25 month amplicon sequencing data
indicated high relative abundance of Geobacteraceae
(22% and 33% of bacterial amplicon reads, respectively,
Fig. 2). The 25 month metagenomic data supported the
high relative abundance (32% of 16S rRNA reads,
Fig. 2) and allowed the identification of a single Geobac-
ter species present, namely Geobacter metallireducens
(100% sequence identity). G. metallireducens inhabits
freshwater sediments and couples metal reduction of
mainly iron and manganese to the complete anaerobic
oxidation of a wide variety of organic electron donors
including acetate, butyrate, ethanol, butanol, propanol
and aromatic hydrocarbons like toluene and phenol (Lov-
ley and Phillips, 1988; Lovley et al., 2004; Aklujkar et al.,
2009; Kuntze et al., 2011; Zhang et al., 2013). In
G. metallireducens, carbon fluxes can be balanced via
the acetate kinase/phosphotransacetylase (ACK/PTA)
pathway that converts acetyl-CoA to acetate with the
generation of ATP, as shown for Escherichia coli (el-
Mansi and Holms, 1989). This mechanism is present in
G. metallireducens and is hypothesized to be used when
excess organic compounds are present (Lovley and
Chapelle, 1995; Aklujkar et al., 2009; Speers and Reg-
uera, 2012). Whether this pathway can provide acetate
for methanogenesis in coal wells should be further inves-
tigated. Sequence analyses of metal reduction and com-
plex organic compound degradation genes supported
the potential role of G. metallireducens in these pro-
cesses (all with 100% protein sequence identity,
Table S2). Fe(III) reduction potential was analysed
based on cytochromes involved in iron reduction and
electron transfer mechanisms across the membrane. We
found the diheme cytochrome c peroxidase MacA in the
G. metallireducens draft genome (100% aa identity). In
G. sulfurreducens, MacA is involved in the electron
transfer pathway to Fe(III) (Butler et al., 2004; Seidel
et al., 2012). We also detected the triheme cytochrome

c7 Gmet_2902 (homologous to G. sulfurreducens PpcA).
Previous studies in both Geobacter species established
that these cytochromes are essential for electron transfer
reactions but do not directly reduce Fe(III) (Afkar and
Fukumori, 1999; Lloyd et al., 2003). As a candidate for
Fe(III) reduction we identified a gene encoding Gmetc6,
a homologue of a putative c-type outer membrane cyto-
chrome (OmcF), that showed 100% protein sequence
identity to the 74 aa conserved domain, indicating pres-
ence of an outer membrane electron transfer mechanism
(Kim et al., 2005; Mehta et al., 2005). Genes encoding
geopilin (PilA) and flagellar proteins for motility (FliCDS)
were found and indicated the capacity for chemotaxis,
direct substrate contact and importantly also electron
transfer (Childers et al., 2002; Tremblay et al., 2012;
Holmes et al., 2016). These factors can provide competi-
tive advantages in the presence of difficult to dissolve
Fe(III) and Mn(IV) minerals at high pH. Together with the
capacity to oxidize aromatic hydrocarbons, this supports
the potential role of Geobacter in metal reduction in the
amended coal well.

Desulfovibrio and Bacillus possess the capacity to
couple organic compound oxidation to iron reduction

The amplicon data at 17 and 25 months revealed that
Desulfovibrio accounted for 23% and 26% of the bacte-
rial reads, respectively, whereas metagenome 16S rRNA
reads indicated lower relatively lower abundance (10%)
(Fig. 2). 16S rRNA and phylogenetic analysis of genes
encoding sulfite reductase (DsvAB, the Dsr of Desul-
fovibrio vulgaris) revealed that D. vulgaris was the domi-
nant organism. Desulfovibrio vulgaris belongs to a group
of sulfate reducers that break down organic acids incom-
pletely and produce acetate as end-product (Heidelberg
et al., 2004). However, sulfate was not detected after the
first three months (< 0.02 mM) and FeS had accumu-
lated in the sediment (data not shown). Upon sulfate
depletion, D. vulgaris can switch to Fe(III) reduction, as
well as to the reduction of Cr(VI) and U(VI) that occur as
trace elements in sub-bituminous coal (Querol et al.,
1995; Heidelberg et al., 2004). However, whether this
strategy can be used by D. vulgaris to compete for oxi-
dized iron and to simultaneously produce acetate as
substrate for acetoclastic methanogenesis should be
further investigated.
Baccillaceae were nearly absent at 17 months (0.7%)

and more abundant at 25 months (2% and 5% of ampli-
con and metagenome 16S rRNA reads, respectively,
Fig. 2) with high 16S rRNA gene sequence identity to
Baccillus subterraneus, a species that can use Fe(III),
Mn(IV), nitrate, nitrite and fumarate as electron acceptors
(Kanso et al., 2002; Strazpo�c et al., 2008). A review by
Nealson and Saffarini (1994) indicated that the iron and
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manganese reduction capacity of Bacillus species was
more widespread (Nealson and Saffarini, 1994). Further
work to assess coupling of metal reduction to organic
compounds degradation and growth in Bacillus species
is required.

Acetoclastic Methanothrix (formerly: Methanosaeta)
species are responsible for methanogenesis

Both at 17 and 25 months, Methanosaetaceae were the
dominant archaeal family (≥ 99%). Based on the relative
abundance data from the metagenome, they constitute
1% of the total microbial community (Fig. 2). Methane
concentration measurements indicated highest methano-
genic activity between 12 and 19 months after amend-
ment. All members of the family Methanosaetaceae are
strictly acetoclastic methanogens, indicating that hydro-
genotrophic methanogenesis does not play a significant
role in the amended coal well. BLASTX analysis of raw
and de novo assembled reads that mapped to the
methyl-coenzyme M reductase protein subunit A (McrA)
sequence database indicated high identity to both
Methanothrix concilii GP-6 (1 contig with 94% protein
sequence identity) and uncultured methanogens predom-
inantly found in lake sediments (Denonfoux et al., 2013;
Youngblut et al., 2014; Lin et al., 2015; Pump et al.,
2015). More specifically, the one assembled contig was
very similar to the McrA sequence of an uncultured
Methanothrix sp. from 90 m deep Lake Pavin sediment
(95% protein sequence identity) (Denonfoux et al.,
2013), in line with high similarity of the 16S rRNA gene
sequence to uncultured Methanothrix species from Lake
Pavin sediment and water samples (Lehours et al.,
2005, 2007; Borrel et al., 2012). It is interesting to note
that Methanothrix co-occurred with Geobacter. A previ-
ous study by Jones et al. (2010) on bioaugmentation of
sub-bituminous coal showed degradation of single-ring
aromatics and long-chain alkanes and subsequent
methane production by a Geobacter spp. and Methan-
othrix concilii dominated culture. Experiments on micro-
bial aggregates and co-cultures showed that
Methanothrix-Geobacter clusters are electrically conduc-
tive which suggested that direct interspecies electron
transfer (DIET) plays an important role (Summers et al.,
2010; Morita et al., 2011; Rotaru et al., 2014; Holmes
et al., 2017). These processes could also be relevant in
the acetate and nutrient amended coal well.

A community with low complexity has the potential for
methanogenesis from coal but does not lead to
successful continued methane production

Using geochemical, 16S rRNA gene amplicon and meta-
genome sequencing, we established that the microbial

community in a nutrient and acetate amended Australian
coal well had the potential to break down coal to
methane (Fig. 3). The methane production data (Fig. 1A)
indicated that methane was generated by acetate con-
version rather than by coal degradation. It is puzzling
that the microbial community primarily consisted of com-
plex organic compound degraders, which would not have
an apparent role in the conversion of acetate to
methane. The second key observation is that nutrient
amendment lead to an increase in microbial cell counts
by four orders of magnitude, which did not result in direct
methane production from coal. Degradation of dead
microbial biomass could also play a role, but is unlikely
to serve as a major organic compound source for
methanogenesis. Both observations make it questionable
whether nutrient and acetate amendment will help to
sustainably generate coalbed methane from non-produ-
cing coal wells, even if such amendments stimulate the
microbial growth in general and help to bioaugment rele-
vant microorganisms such as acetoclastic methanogens
or complex organic compound degraders. In general,
biological methane production from coal is a promising
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Fig. 3. Proposed scheme illustrating the potential of the microbial
community to convert sub-bituminous coal to methane. The ground-
water level is 65 m below ground level and the coal bearing layers
are located 80 m below ground level. Fungi related to the Basidio-
mycota possess the capacity for coal biosolubilization. The bacterial
community has the capacity for complex organic compounds degra-
dation to volatile fatty acids (VFAs). Iron was detected as potential
electron acceptor for Desulfovibrio and Geobacter, and sulfate could
play a role only in the first three months. Acetoclastic Methanothrix
spp. were the dominant methanogens in the coal well. Although the
potential for bioconversion of the coal matrix was found, coalbed
methanogenesis could not be observed.
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alternative to direct coal burning as it reduces inorganic
and residual pollution in the form of heavy metals and
sulfur compounds. From our microbial food web analysis
coupled to the functional output of the nutrient and acet-
ate amended coal well, it is apparent that it is not
straightforward to link metabolic potentials to a system
output. More in situ data on microbial activity, functioning
and nutrient cycling are required to understand and over-
come bottlenecks in the biomethanation process from
coal.

Experimental procedures

Sample site

The two compared coal wells are located at the Lithgow
State Coal Mine in the Western Coal Fields of New
South Wales, Australia (Fig. S1). 30.6% of the raw sub-
bituminous coal in this study consisted of volatile hydro-
carbons; over 50% consisted of fixed carbon (Mark
Wainwright Analytical Centre, UNSW, Sydney, Australia).
NH4Cl and Na2PO4 for the amendments were purchased
from Ajax Finechem, Scoresby VIC, Australia and
Sigma-Aldrich, Castle Hill NSW, Australia respectively.
For the nutrient and acetate additions, a
100 m 9 0.5 mm (length 9 diameter) silicon tube was
lowered to the base of the well (80 m below ground
level) and concentrated nutrient solutions were gravity
fed (siphoned) into the subsurface in syringe-fed portions
of 100 ml. During the feed, the tube was repeatedly
manually raised and lowered from the bottom to the top
of the water column (approximately 20 m) ensuring even
distribution over the height of the water column. Lateral
mixing was achieved by passive diffusion and distur-
bances imposed in sampling operations. By gravity flow
the feeding rate was about 0.5 L min�1. Water sampling
was performed using a well bladder pump (PVC 3/8 in
discharge, ThermoFisher Scientific, Scoresby VIC, Aus-
tralia) deployed with a stainless steel drop tube and a
low refill ratio of 40:20 to avoid the removal of dissolved
gases in the formation water. The drop tube was lowered
to a depth of 75–78 m. The pump and connecting tubes
were drained between the wells to avoid carriage of
water between well sampling. Formation water for chemi-
cal and microbiological analyses was sampled monthly
over the 25 month operation period. Samples were
immediately processed as described below.

Ionic composition of the well water

Analyses of cation and anion concentrations were car-
ried out at the Mark Wainwright Centre (University of
New South Wales, Sydney NSW, Australia). Briefly,
cation (B, Ca, Fe, K, Mg, Mn, Na, P, S, Si) concentra-
tions were analysed using inductive coupled plasma

optical emission spectroscopy (ICP-OES, Opti-
ma7300DV, Perkin-Elmer, Waltham MA, USA) with a
Segmented-array Charged-coupled Device (SCD, Per-
kin-Elmer). The setting of the instrument was as follows:
forward power 1200–1400 W, reflected power 20.0 W,
nebulizer gas flow of 0.7 L min�1, plasma gas flow of
10.0–15.0 L min�1, aux gas flow of 0.3 L min�1. Anion
(F, Cl, Br, NO2

�, NO3
�, PO4

3�, SO4
2�) concentrations

were analysed using ion chromatography (IC, Dionex
ICS1000, Dionex Corporation, Sunnyvale CA, USA) with
conductivity detection using an Ion Pac AS14-4 mm col-
umn (Dionex Corporation) and a mobile phase of 0.8 M
Na2CO3/0.1 M NaHCO3. The instrument detection limits
were 0.02 mg L�1 for B, Si and Mn, 0.2 mg L�1 for Fe
and P, 0.5 mg L�1 for Ca, K, Mg, Na and S, 2 mg L�1

for F, NO2
�, NO3

� and Br, and 5 mg L�1 for Cl and
PO4

3�.

Total methane and acetate analyses

Total methane (headspace and dissolved) and acetate
concentrations were monitored monthly over a period of
25 months. Gas samples were taken from the well-head
apertures and were transferred directly into 10 ml gas-
tight serum vials using a gastight glass syringe. Dis-
solved methane in 100 ml sampled coal formation water
was analysed according to Kampbell and Vandegrift
(1998) with modifications. Briefly, formation water was
sampled anoxically into 120 ml nitrogen degassed serum
vials containing 1 ml of formic acid (Sigma-Aldrich, Cas-
tle Hill NSW, Australia). Subsequently, samples were
equilibrated to room temperature (20°C), and a 10 ml
headspace was created in the vials by replacing 10 ml
of liquid with 10 ml of nitrogen using a gastight glass
syringe. Vials were inverted and equilibrated for 24 h.
Methane from the headspace was analysed using a Shi-
madzu GC-2010 gas chromatograph with flame ioniza-
tion detection (GC-FID) fitted with a GASPRO PLOT
column (60 m 9 0.32 mm; Agilent Technologies, Mul-
grave VIC, Australia). The carrier gas was helium
(3 ml min�1), and inlet temperature was 250°C. Oven
temperature program: isothermal 100°C (1 min) and then
25°C min�1 to 250°C and held for 1 min. Gas samples
of 100 ll were withdrawn directly from the sampling
flasks using a pressure lockable gastight glass syringe
(SGE Analytical Science, Ringwood VIC, Australia) and
injected into the GC. Compounds were quantified by
comparison of the peak area of the unknown with an
eight-point calibration curve with a lower detection limit
of 0.2 lL. Calibration standards were made up in 60 ml
serum vials.
For the analyses of acetate concentrations, water was

filtered through a 0.2 lm syringe filter (Merck Millipore,
Bayswater VIC, Australia) and subsequently 900 ll
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filtered water was acidified with 100 ll formic acid (10%
v/v; Sigma-Aldrich, Castle Hill NSW, Australia) to a
pH < 2. Acetate (1 ll) was analysed by GC-FID (Shi-
madzu, Rydalmere NSW, Australia) using a DB-FFAP
column (30 m 9 0.32 mm; Agilent Technologies, Mul-
grave, Australia) with helium (1 mL min�1) as carrier
gas. Injection port was set at 250°C with split mode
(1:30). Oven temperature was set to 60°C for 1 min and
then 15°C min�1 to 250°C.

Cell counts

Coal formation water samples were immediately fixed by
the addition of glutaric dialdehyde (0.2 lm filtered, 2%
final concentration) and stored at 4°C in the dark. Prior
to analysis, an aliquot was diluted 1000-fold in particle-
free phosphate-buffered saline (0.9 g of NaCl, sodium
phosphate buffer 15 mM, pH 7.4, 0.2 lm filtered), thor-
oughly shaken and transferred to a microscopic slide
that was treated with a mounting medium (9.6% Mowiol
4-88, Sigma-Aldrich, Castle Hill NSW, Australia and 24%
glycerol) prior to applications. Cells were stained using
SybrGreen I (Sigma-Aldrich, Castle Hill NSW, Australia),
and counting was performed using a BX51 epifluores-
cence microscopy (Olympus, Notting Hill VIC, Australia)
as described by Lunau et al. (2005).

DNA extraction

After 17 and 25 months, DNA was extracted from 2 g of
well sediment using the phenol/chloroform extraction
method as described by Lueders and co-workers (Lued-
ers et al., 2004). Subsequently, DNA was precipitated
using polyethylene glycol 6000 (Sigma-Aldrich, St Louis
MI, United States), and the DNA pellet was washed
once with 70% ethanol and dissolved in 50 ll elution
buffer (Qiagen, Venlo, the Netherlands). Three parallel
extractions were carried out, and extracts were pooled
for each incubation treatment. DNA concentration and
purity were determined by standard agarose gel elec-
trophoresis and fluorometrically using RiboGreen assays
(Qubit Assay Kit, Invitrogen, Waltham MA, United States)
according to the manufacturer’s instructions.

DNA sequencing and data processing

Both the 17 and 25 month DNA samples were used for
16S rRNA gene amplicon sequencing on the IonTorrent
PGMTM. Amplification of the V3-V4 region of the bacterial
16S rRNA gene was performed using universal primers
Bac F341 (50-CCTACGGGNGGCWGCAG-30) and
Bac785R (50-GACTACHVGGGTATCTAATCC-30) (Klind-
worth et al., 2013) for 25 cycles. Archaeal 16S rRNA
genes were amplified with the universal archaeal primers

Archf349 (50- GYGCASCAGKCGMGAAW-30) and Archr
789 (50-GGACTACVSGGGTATCTAAT-30) (Klindworth
et al., 2013) for 30 cycles. Both PCR amplifications were
performed by 10 min 98°C initialization, 25/30 cycles of
1 min denaturation at 95°C, 1 min of annealing at 60°C,
2 min of elongation at 72°C and a 10 min final elonga-
tion step at 72°C. PCR products were purified using the
QIAquick PCR Purification Kit (Qiagen, Venlo, the
Netherlands) in two elution steps. 20 ll 55°C Milli-Q was
added to the spin column and incubated for 2 min prior
to centrifugation. Next, the eluate was put onto the spin
column, incubated at 55°C for 2 min and centrifuged
again as described in the manual. A 10 cycle nested
PCR with IonTorrent adapters was performed on the
purified PCR products using the same PCR protocol.
After PCR purification with the QIAquick PCR Purifica-
tion Kit as described above, PCR products were used
for library preparation and sequencing steps according
to the manufacturer’s instructions (Life Technologies,
Carlsbad CA, United States). Amplicon sequences were
quality checked for chimeras and clustered into OTUs
with a 97% identity cut-off value using the 454 SOP
(http://www.mothur.org/) (Schloss et al., 2009) with
IonTorrent modified protocols. Chimeras were checked
with the Uchime algorithm (Edgar et al., 2011). Taxon-
omy was assigned against the SILVA nr v123 database
using the MOTHUR taxonomy assigner (Schloss et al.,
2009). Data visualization was performed using the ‘VE-

GAN’ package in R (Oksanen et al., 2017).
Metagenome sequencing of the 25-month DNA sam-

ple was performed on the IonTorrent PGMTM. All library
preparation and sequencing steps were performed
according to the manufacturer’s instructions (Ion PGMTM

Template OT2 400 Kit, Life Technologies, Carlsbad CA,
United States). 100 ng genomic DNA was sheared in
four-one minute shear one minute cool down cycles
using a Bioruptor� Sonicator (Diagenode, Denville NJ,
United States). The library was prepared using the Ion
Plus Fragment Library Kit protocol. Size distribution and
concentration of the library was determined using the
Agilent 2100 Bioanalyzer (Agilent Technologies Inc.,
Santa Clara CA, United States). Sequencing was per-
formed using the Ion 318 Chip Kit v2.
Raw reads were quality checked using the CLC Geno-

mics Workbench 8.0 (CLCbio, Aarhus, Denmark).
Ambiguous sequences were trimmed off using an
ambiguous limit of 2 and a trim limit of 0.5. On both the
30 and 50 sides, the three terminal nucleotides were dis-
carded. To reduce noise, reads were subsequently fil-
tered, targeting reads with a length between 30 and
400 nt (5 153 485 reads) for de novo assembly and
100–400 nt (4 884 119 reads) for 16S rRNA and func-
tional gene analysis. For de novo assembly, minimum
contig size was set to 1000, word size to 35 and bubble
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size to 5000. Values for mismatch, insertion and deletion
cost were set to 2, 3 and 3, respectively, resulting in a
total of 12 527 contigs with an average length of 2624
base pairs. 85% of the reads (1.1 Gbp) were assigned
to a specific contig based on a length and similarity frac-
tion of 50% and 80% respectively.

Analysis of environmental genomes

The assembled contig data set was analysed based on
average read coverage and GC content per contig using
R (https://www.r-project.org/) (R Core Team, 2014) and
RSTUDIO v3 (https://www.rstudio.com/) (RStudio Team,
2014) with packages ‘GGPLOT2’ (Wickham, 2009) and
‘RCOLORBREWER 1.1-2’ (Neuwirth, 2011) (https://cran.r-pro
ject.org/web/packages/). The Geobacter environmental
draft genome bin was extracted based on a GC content
between 0.525 and 0.65 and a sequencing depth
between 100 and 325. The resulting bin contained 139
contigs of which 118 were most identical to Geobacter
metallireducens GS-15 (97% of bases, 3.4 Mbp,
≥ 99.9% nt identity). CheckM (Parks et al., 2015) con-
firmed presence of a single, 91.0% complete non-hetero-
geneous strain. Identity of the draft genome contigs was
determined by performing nucleotide BLAST searches
against the nt/nr collection database. The methanogen
environmental draft genome bin was extracted based on
a GC content between 0.475 and 0.575 and a sequenc-
ing depth between 3 and 10. The resulting bin contained
459 contigs of which 353 contigs were most identical to
Methanothrix concilii GP6 (86% of bases, 2.3 Mbp,
≥ 79.9% nt identity). CheckM showed strain heterogene-
ity of 11.1% and completeness of 76.8%, indicating the
bin likely contains a core genome of Methanothrix spe-
cies. Nucleotide BLAST on nine contigs with sequencing
depth > 500 indicated best hits to Geobacter metallire-
ducens GS-15 (six sequences, ≥ 99% identity) and
Azoarcus sp. (three sequences, ≥ 94% identity).

Phylogenetic 16S and 18S rRNA gene analysis

For the general species composition analysis, quality
trimmed reads were mapped against the Silva SSU non-
redundant database version 128 (https://www.arb-sil
va.de/) containing 645 151 reference sequences. Length
and similarity fraction were set to 50% and 70%, respec-
tively, and values for mismatch, insertion and deletion
cost to 2, 3 and 3, resulting in a total of 28 774 mapped
reads (0.59% of total). Sequences were submitted to the
SILVAngs data analysis server 1.3.5 (Quast et al., 2012)
and processed using default parameters. The species
distribution pattern remains similar when additionally cor-
recting for 16S rRNA gene copy numbers that are high
in the Proteobacteria and Firmicutes phyla (Klappenbach

et al., 2001; Acinas et al., 2004). Reads mapping to the
SSU database were extracted per genus. De novo
assembly was performed using automatic word and bub-
ble size and stringent similarity and length fraction
parameters of 0.95 to obtain near-complete 16S
sequences. Comparable approaches were taken previ-
ously (Bartram et al., 2011; Miller et al., 2011; Speth
et al., 2016). Additionally, quality trimmed reads were
mapped against the fungal internal transcribed spacer
(ITS) RefSeq Targeted Loci database containing 5362
sequences (PRJNA177353) as described above (Alvarez
et al., 2017).

Functional analyses

Draft genome and metagenome annotations were per-
formed using PROKKA version 1.10 with standard parame-
ters (Seemann, 2014). The Geobacter environmental
draft genome was first annotated against a Geobacter
reference data set containing nine annotated genomes.
Contig sequences were uploaded to the KEGG Automated
Annotation Server (KAAS) (Moriya et al., 2007) and
analysed using 40 most related reference organisms.
Specific protein sequence data sets for metal reduction,
complex organic compounds degradation and genus
specific genes were manually selected and downloaded
from the UNIPROT database (http://www.uniprot.org/) (The
UniProt Consortium, 2014). For the analysis of the fungal
community, fungal peroxidase databases were made for
lignin, manganese and versatile peroxidases by down-
loading nucleotide data from the NCBI database, filtering
for fungal sequences ≤ 100 000 bp. Reference data-
bases were imported in CLC and mapped against the
genomic data sets using the CLC BLASTX tool using the
standard parameters: expect: 10.0, match: 2, mismatch:
-3, gap costs existence: 5, gap cost extension: 2. Arte-
mis 16.0.0 was used for visualization of the annotation
results (Rutherford et al., 2000). Methanogen and
methanotroph functional gene analyses were performed
using McrA, MmoX and PmoA/AmoA protein sequence
databases and a non-redundant reference database
(Claudia L€uke, Radboud University, personal communi-
cation). Analysis of trimmed reads was performed using
the BLASTX (BLAST 2.2.25+) algorithm with e-value
0.0001 extracting first hits as target sequence. Func-
tional gene and non-redundant BLAST results with a bit-
score > 125 were merged. All reads had a BLAST score
ratio of > 0.8 (L€uke et al., 2016). Only McrA analysis
resulted in significant hits.

Nucleotide sequence accession numbers

All sequencing data were submitted to the GenBank data-
bases under the BioProject PRJNA321375. The assembled

ª 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

Microbiology of a nutrient amended coal well 9

https://www.r-project.org/
https://www.rstudio.com/
https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
https://www.arb-silva.de/
https://www.arb-silva.de/
http://www.uniprot.org/


IonTorrent data set from this study was submitted as
Sequence Read Archive study under accession number
SRP074879 (run SRR5328925). The amplicon data were
submitted as SAMN07344736 (17 month archaeal),
SAMN07344812 (17 month bacterial), SAMN07344862
(25 month archaeal) and SAMN07344863 (25 month
bacterial).
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Additional Supporting Information may be found online in
the supporting information tab for this article:

Table S1. Groundwater characteristics of the coal seam
well measured at the start of the experiment (0 months).
Table S2. Overview of SSU seed sequence and protein
sequence analyses.
Fig. S1. Schematic of a coal seam gas well.
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