
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/176475

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/95732718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/176475

Security and Privacy via Cryptography

Having your cake and eating it too

wouter lueks

Copyright © 2017 Wouter Lueks

isbn: 978-94-92380-65-4
ipa dissertation series: 2017-08

Typeset using LATEX. Printed by gvo drukkers & vormgevers.
Cover design by Loes Kema at gvo drukkers & vormgevers.

This research is supported by the research program Sentinels (www.
sentinels.nl) as project ‘Revocable Privacy’ (10532). Sentinels is being
financed by Technology Foundation stw, the Netherlands Organization
for Scientific Research (nwo), and the Dutch Ministry of Economic Af-
fairs.

The work in this thesis has been carried out under
the auspices of the research school ipa (Institute
for Programming research and Algorithmics).

This work is licensed under a Creative Commons
Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.
org/licenses/by/4.0/

www.sentinels.nl
www.sentinels.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Security and Privacy via Cryptography

Having your cake and eating it too

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op

maandag 9 oktober 2017
om 16:30 uur precies

door

Wouter Lueks

geboren op 28 december 1986
te Emmen

promotor

prof. dr. B.P.F. Jacobs

copromotor

dr. J.-H. Hoepman

manuscriptcommissie

prof. dr. E.R. Verheul
prof. dr. G. Danezis (University College London, Verenigd Koninkrijk)
prof. dr. I.A. Goldberg (University of Waterloo, ON, Canada)
prof. dr. ir. B. Preneel (KU Leuven, België)
dr. G. Neven (IBM Zürich, Zwitserland)

ACKNOWLEDGMENTS

It is hard to believe that with the writing of these acknowledgments
I am finishing my PhD thesis, thus completing a project that I have
been working on for the past five years. During this time, I had the
pleasure to meet and work with many people. Without you, this thesis
would not have been possible and life would probably have been boring.
Therefore, a heartfelt thank you to all of you! (These thanks apply even
more so to those of you who I forgot to mention explicitly.)
First of all, I would like to thank Jaap-Henk, my daily supervisor, for

drawing me into the field of privacy, for allowing me to develop myself,
for teaching me how to write, for his critical feedback, and for the many
interesting discussions we had together (most of which I remember
taking place on board a train).
I would also like to thank Bart, my promotor, for always having a

listening ear, for helping me in the final stages of writing this thesis,
but most of all, for welcoming me into the irma project—I still fondly
remember our first meetings about it.
As part of the irma project, I had the pleasure to work with many

people: Brinda, Gergely, Maarten, Pim, Roland, and Ronny. Thank you!
During the last two years, I worked with Fabian and Sietse to turn irma
into a viable product. Gentlemen: it has been a pleasure.
I hadmany wonderful colleagues in Nijmegen. In particular, Gergely,

we went onmany trips together and talked a lot. Yet, I too wish we could
have talked more. Pim, it was a pleasure working with you on the irma
project. Merel, while we did not talk often enough, I very much valued
our little chats and ‘tea breaks’. Thanks, Peter, for always taking the
time to answer my questions. Finally, a warm thank you to all my office
mates: Anna, Brinda, Fabian, Freek, Gergely, Merel, Paulan, and Sietse,
who guaranteed that a visit to Nijmegen was always fun.
Nijmegen was not my only base of operations. In fact, I spent a lot of

time at the Cyber Security & Robustness department of tno in Gronin-
gen. I would like to thank my colleagues there for the many lunch-
time discussions we had. In particular, Lenny, Henny, Paul, Reinder,
Richard, Frank, Jan, and Gerben, thank you. In Groningen, I shared
an office with Geert. I will miss our many discussions and his matter-
of-fact views on the world. Finally, Maarten, I think it is safe to say we
discussed life, the universe, and everything. I would not have wanted to
miss it, and I am honored that you agreed to be one of my paranymphs.
Shortly after I beganmy PhD, the Privacy & Identity Lab was founded.

v

vi acknowledgments

This multidisciplinary lab allowedme to meet a diverse group of people
and showed me that the world revolves around more than technology
alone. In particular, I would like to thank Marc, Ronald, Bert-Jaap, Jelte,
Jaap-Henk, Dimitra, Paulan, Merel, Martin, Claudia, and Lorenzo for
our discussions and collaborations.
In the spring of 2014, I visited Ian Goldberg at the University of Wa-

terloo in Canada. Thanks, Ian, for hosting me, for introducing me to
the world of systems security and for showing me how to write a paper
without stressing. I am also happy to have had such a great group of
fellow students in the CrySP lab: Jalaj, Erinn, Nik, Cecylia, Tao, Tariq,
Sukhbir, and Sarah, thank you all for welcoming me to Canada.
I would also like to thank my committee for taking the time to read

my thesis, and for providing me with valuable feedback.
This journey would not have been possible without the support of my

friends. Lise and Erwin, Maarten, and Paul, thanks for the many visits,
cookies and cakes, and discussions. Marie-Sarah, thanks for being my
travel companion and showing me how to cut the clutter. Elena and
Patricia, thank you for making me feel at home in Madrid. And finally,
to the Muppets: Nynke, Erik, and René, thanks for the many trips we
went on together, and themany wonderful evenings of cooking, playing
games, and chats. It would not have been the same without you.
Finally, I would like to thank my family. Thanks, mum and dad, for

always supporting me, whatever I chose to do. Thanks, Maarten, for
showing me how to be serious and enjoy life at the same time.

Wouter Lueks
August 2017, Madrid

SUMMARY

Digital technologies play an ever-increasing role in our daily lives. How-
ever, these technologies are also frequently data driven. Governments
and companies alike collect more andmore data about us to offer better
services, to fight crime and terrorism, and to prevent fraud. The result:
we have less privacy than ever.
Yet, privacy is important. A lack of privacy harms individuals by lim-

iting their freedom to live their personal lives and by limiting their per-
sonal development. The chilling effect of a lack of privacy harms people
by changing how they behave. They change their behavior not because
they do anything illegal, but because of how that behavior could be con-
strued. The actual collection and aggregation of personal data enabled
by a lack of privacy is, of course, similarly harmful. It can, for example,
lead to exclusions, to incorrect conclusions being drawn about a person,
or to unexpected spreading of personal information.
A lack of privacy, however, does not just harm individuals but also

societies. Without the protection of privacy, it is much harder to de-
velop the critical mindset that is so essential for a democratic society to
function properly.
While privacy is important, there are many arguments why privacy

should not be increased. In this thesis we focus on two common argu-
ments against (increasing) privacy, and show that the situation is more
nuanced.
The first of these arguments is that an increase of privacy results in a

decrease of security. In Chapter 3 we reintroduce the notion of revocable
privacy to show that it is possible to build systems that offer privacy and
security simultaneously. As long as users follow the rules of the revo-
cable privacy system, they are fully anonymous. Only if they violate the
rules can their anonymity be reduced. To show the usefulness of this
approach, Chapter 3 highlights scenarios that could benefit from revo-
cable privacy, and indicates which systems already exist that implement
this notion of revocable privacy.
A common reason for online platforms to disallow anonymous users

is the potential for abuse. In Chapter 4 we introduce the revocable pri-
vacy system vote-to-link. It enables Wikipedia, and other online plat-
forms, to allow anonymous access for editors (or users in general), while
simultaneously enablingWikipedia to recover from abuse by misbehav-
ing users. By default a user’s actions are unlinkable. However, if mod-
erators deem an action to be abusive, they can vote on this action. Once

vii

viii summary

an action accumulates sufficient votes, the system can link all other ac-
tions by the same user within a limited time frame. In this way, the
other potentially malicious actions by that user are distinguished from
all remaining actions, and can thus quickly be examined or removed.
Whereas the vote-to-link system implements the rule that an action

should not be marked malicious by too many moderators, the dis-
tributed encryption scheme from Chapter 5 implements the rule that a
party should not cause events at too many different locations. The dis-
tributed encryption scheme solves the canvas cutters problem—canvas
cutters are criminals that rob trucks parked along highway rest stops
by cutting their canvas—in a privacy friendly manner by identifying
only those cars that stop at many rest stops. We simplify Hoepman
and Galindo’s original distributed encryption scheme, add proper key
evolution—this is essential in many scenarios—and propose a batched
solution that is more efficient for small plaintext domains such as the
set of license plates.
The second argument against privacy that this thesis addresses is that

privacy friendly solutions are not practical. We show, however, that the
vote-to-link system and the distributed encryption scheme are efficient
enough to use in practice.
Attribute-based credentials (abcs) are digital alternatives to identity

documents, loyalty cards, etc. Abcs have strong privacy guarantees,
however, to protect the security of the system when a credential car-
rier is lost, stolen or abused, it should be possible to revoke credentials.
In Chapter 6 we propose the first privacy friendly revocation scheme
for abcs that is fast enough to be practical even when these abcs are
implemented on smart cards.
Private information retrieval (pir) allows clients to retrieve records

from a database, without the operators of that database learning which
records it retrieved. Achieving these privacy properties is computation-
ally intensive for the database servers. In Chapter 7 we show how we
can batch queries from many clients to reduce the load on the database
servers. This new scheme is efficient enough to apply pir to certifi-
cate transparency, a system to detectmisbehaving certificate authorities,
thereby making it privacy friendly.
These results show that the two common arguments against privacy

that we address in this thesis are not universally true. In fact, we show
that we can build practical systems that achieve security and privacy si-
multaneously, showing that security can often be achieved without neg-
atively impacting privacy. Hence, reasoning against privacy requires
more nuanced arguments than that more privacy always harms secu-
rity or is not practical.

SAMENVATT ING

Digitale technologie speelt een steeds grotere rol in ons dagelijks leven.
Vaak worden grote hoeveelheden persoonlijke data gebruikt voor deze
technologieën. Overheden en bedrijven verzamelen meer en meer data
over ons om betere diensten te kunnen leveren, misdaad en terrorisme
te bestrijden, en fraude te voorkomen. Het resultaat: we hebbenminder
privacy dan ooit.
Toch is privacy belangrijk. Een gebrek aan privacy schaadt indivi-

duen. Het beperkt de persoonlijke ontwikkeling van mensen en hun
vrijheid om hun privéleven naar eigen inzicht in te richten. Door een
gebrek aan privacy veranderen mensen hun gedrag, niet omdat zij iets
illegaals doen, maar uit angst over hoe dit gedrag door anderen geïn-
terpreteerd zou kunnen worden. Van een gebrek aan privacy gaat dus
een verlammend effect uit. Bovendien kan het verzamelen en aggre-
geren van persoonlijke data onder andere leiden tot uitsluiting en het
trekken van onjuiste conclusies over individuen. Ook bestaat het gevaar
dat persoonlijke data verder verspreid worden dan verwacht.
Een gebrek aan privacy schaadt echter niet alleen individuen, maar

berokkent ook schade aan de samenleving als geheel. Zonder de be-
schermende werking van privacy is het veel moeilijker voor burgers om
een kritische blik te ontwikkelen, terwijl deze juist essentieel is voor het
goed functioneren van een democratische samenleving.
Hoewel privacy belangrijk is, bestaan er veel argumenten voor het

niet beter beschermen van privacy. In dit proefschrift richten we ons
op twee veelgebruikte argumenten tegen (het beter beschermen van)
privacy, en laten we zien dat de werkelijkheid genuanceerder is.
Het eerste argument is dat het beter beschermen van privacy resul-

teert in een vermindering van veiligheid. In hoofdstuk 3 herintroduce-
ren we het concept van revocable privacy om te laten zien dat het mo-
gelijk is om systemen te bouwen die tegelijkertijd privacy en veiligheid
bieden. Zolang gebruikers zich houden aan de regels van het revoca-
ble privacy systeem zijn ze volledig anoniem. Alleen als ze deze regels
schenden, kan hun anonimiteit ingeperkt worden. Omhet nut van deze
aanpak te illustreren benoemt hoofdstuk 3 een aantal scenario’s die baat
hebben bij revocable privacy. Daarnaast geeft dit hoofdstuk aan welke
bestaande systemen reeds revocable privacy bieden.
Een veelvoorkomende reden voor online platformen om anoniem ge-

bruik niet toe te staan is het risico op misbruik. In hoofdstuk 4 in-
troduceren we het revocable privacy systeem vote-to-link. Dit systeem

ix

x samenvatting

biedt Wikipedia, en andere online platformen, demogelijkheid om ano-
nieme bewerkingen (of acties van gebruikers in het algemeen) toe te
staan, terwijl het tegelijkertijd het platform in staat stelt te herstellen
van misbruik door anonieme gebruikers. Standaard zijn de acties van
een gebruiker onkoppelbaar. Echter, wanneer moderatoren menen dat
een actie onwenselijk is, kunnen zij hun stem uitbrengen op deze ac-
tie. Wanneer een actie voldoende stemmen heeft verzameld, kan het
systeem alle andere acties van dezelfde gebruiker aan elkaar koppelen
(binnen een vooraf vastgelegd tijdsbestek). Op deze manier kunnen
de andere potentieel onwenselijke acties van diezelfde gebruiker onder-
scheiden worden van de overige acties, en daarmee sneller onderzocht
of verwijderd worden.
Het vote-to-link systeem implementeert de regel dat een actie niet

door te veel moderatoren als onwenselijk mag worden gemarkeerd.
Het gedistribueerde versleutelingsschema (Engels: distributed encryp-
tion scheme) uit hoofdstuk 5 implementeert de regel dat een partij niet
op te veel verschillende locaties gebeurtenissen mag veroorzaken. Het
schema lost het zeilsnijdersprobleem op—zeilsnijders zijn crimine-
len die vrachtwagens die geparkeerd staan langs snelwegen beroven
door hun zeil open te snijden. Het schema doet dat door op een pri-
vacyvriendelijke manier alleen die auto’s te identificeren die op veel
parkeerplaatsen stoppen. We vereenvoudigen Hoepman en Galindo’s
originele gedistribueerde versleutelingsschema, voegen echte sleutel-
rotatie toe—dit is essentieel voor veel toepassingen—en stellen een
gegroepeerde aanpak voor die veel efficiënter is voor kleine bericht-
ruimtes zoals die van kentekenplaten.
Het tweede argument tegen het beter beschermen van privacy dat

we onder de loep nemen in dit proefschrift is dat privacyvriendelijke
oplossingen niet praktisch zouden zijn. We laten echter zien dat zowel
het vote-to-link systeem als het gedistribueerde versleutelingsschema
efficiënt genoeg zijn in de praktijk.
Attribuutgebaseerde credentials (abcs) zijn digitale alternatieven

voor identiteitsdocumenten, klantenkaarten, etc. Abcs bieden sterke
privacygaranties. Echter, om de veiligheid van het abc systeem te be-
schermenmoeten credentials ingetrokken kunnen worden wanneer de
credentialdrager verloren geraakt, gestolen, of misbruikt is. In hoofd-
stuk 6 introduceren we het eerste privacyvriendelijke intrekschema
voor abcs dat snel genoeg is, zelfs wanneer deze op een chipkaart
geplaatst worden.
Private information retrieval (pir) maakt het mogelijk voor clients

om een rij uit een database op te halen, zonder dat de databaseserver
erachter komt welke rij wordt opgehaald. Het bewerkstelligen van deze
sterke privacy-eigenschap vergt veel rekenkracht van de databaseserver.

samenvatting xi

In hoofdstuk 7 laten we zien hoe we verzoeken van vele clients kunnen
groeperen om zodoende de rekendruk op de databaseservers te vermin-
deren. Dit nieuwe schema is efficiënt genoeg om pir toe te passen op
certificate transparency, een systeem dat ontwikkeld is om afwijkend
gedrag van aanbieders van webcertificaten te detecteren. Zo wordt cer-
tificate transparency privacyvriendelijk.
Deze resultaten tonen aan dat de twee veelgebruikte argumenten te-

gen een betere bescherming van privacy die we behandelen in dit proef-
schrift niet algemeen waar zijn. Sterker nog, we laten zien dat we prak-
tische systemen kunnen bouwen die zowel veiligheid als privacy bie-
den, en dus veiligheid bewerkstelligen zonder privacy te verminderen.
Kortom, argumenten tegen privacy vereisen meer nuance. Het beter
beschermen van privacy gaat niet noodzakelijk ten koste van onze vei-
ligheid en praktische overwegingen zijn geen belemmering.

CONTENTS

acknowledgments v

summary vii

samenvatting ix

1 introduction 1
1.1 The importance of privacy 1
1.2 Research question 4

1.2.1 Privacy versus security 5
1.2.2 The efficiency of privacy-enhancing technolo-

gies 8
1.3 Organization of this thesis 10
1.4 Contribution per chapter 10

2 preliminaries 13
2.1 Notation 13
2.2 Groups and bilinear maps 13

2.2.1 Cyclic groups 13
2.2.2 Bilinear maps 14

2.3 Modelling security and adversaries 15
2.3.1 Random oracle model 16

2.4 Cryptographic assumptions 17
2.5 Secret sharing 20

2.5.1 Distributed generation of secret shares 21
2.5.2 Non-interactively generating pseudorandom

secret-sharings 25
2.6 Zero-knowledge proofs of knowledge 25
2.7 Anonymous credentials 26

2.7.1 An example credential scheme: bbs+ creden-
tials 28

3 revocable privacy: principles and use cases 31
3.1 Revisiting the concept of revocable privacy 33

3.1.1 Levels of anonymity 33
3.1.2 Improving the definition 34
3.1.3 Systems and rules 35
3.1.4 Architecture of a system 36

3.2 Use cases 39

xiii

xiv contents

3.2.1 Threshold rules 40
3.2.2 Predicate rules 44
3.2.3 Decision rules 45
3.2.4 Complex rules 48
3.2.5 Fuzzy rules 49

3.3 Technologies 51
3.3.1 Threshold primitives 51
3.3.2 Decision primitives 52

3.4 Analysis 54
3.4.1 Limitations 54

3.5 Conclusions 55

4 vote to link 57
4.1 System design and assumptions 60

4.1.1 Architecture 60
4.1.2 Threat model and security goals 62

4.2 The idea of the basic scheme 63
4.3 Preliminaries 64

4.3.1 cca secure threshold encryption 64
4.3.2 ElGamal encryption 70

4.4 A vote-to-link scheme 71
4.4.1 Our scheme 71
4.4.2 User anonymity 73
4.4.3 A variant: identifyingmisbehaving users 79

4.5 A vote-to-link schemewithmoderator anonymity 80
4.5.1 The idea 80
4.5.2 Outsider anonymity 82
4.5.3 Full anonymity for moderators 86
4.5.4 Shuffling randomized keys 89
4.5.5 Probabilistic checking ofmoderator keys 90

4.6 Vote-to-link in practice 91
4.6.1 Choosing parameters 91
4.6.2 Prototype implementation 91

4.7 Related work 93
4.8 Conclusions 94

5 distributed encryption 97
5.1 The idea 99
5.2 Preliminaries 100

5.2.1 A redundant injective map 100
5.3 A new distributed encryption scheme 104

5.3.1 Syntax 104
5.3.2 Security definition 106
5.3.3 Hoepman and Galindo’s de scheme 107

contents xv

5.3.4 A new distributed encryption scheme 110
5.3.5 Security of the de scheme 110

5.4 Forward-secure DE scheme 114
5.4.1 A key-evolution scheme 115
5.4.2 A key-evolving distributed encryption scheme 120
5.4.3 Applying this idea to Hoepman and Galindo’s

scheme 123
5.5 Efficient solutions for small domains 124

5.5.1 Syntax 124
5.5.2 Security definition 125
5.5.3 The scheme 126

5.6 Analysis and conclusions 129
5.6.1 Practical considerations 130
5.6.2 Theoretical performance 130
5.6.3 Implementation 131
5.6.4 Conclusion 134

6 fast revocation of attribute-based credentials 135
6.1 The idea 136

6.1.1 Verifier-local revocation 136
6.1.2 Our scheme 137

6.2 Credentials with revocation 139
6.3 The full scheme 141
6.4 Security model and proofs 144

6.4.1 Unlinkability game 145
6.4.2 Unavoidability game 148

6.5 Multiple generators 152
6.5.1 Multiple generators for revocation 153
6.5.2 Distinguishing credentials 153
6.5.3 Making multiple generators work 154

6.6 Integrating our scheme with bbs+ credentials 155
6.7 Implementation 156

6.7.1 How to revoke a credential 157
6.7.2 Instantiating epochs 158
6.7.3 How to choose the epochs 159
6.7.4 Experiments 159
6.7.5 The size of a revocation list 161

6.8 Related work 163
6.9 Discussion and conclusion 166

7 sublinear scaling for private information re-
trieval 167
7.1 Background 169

7.1.1 Goldberg’s robust it-pir scheme 169

xvi contents

7.1.2 Batch codes 170
7.1.3 Matrix multiplication algorithms 174

7.2 Batch codes as matrix multiplication 175
7.2.1 An example 175
7.2.2 General batch codes asmatrixmultiplication 176
7.2.3 Comparison with Strassen’s algorithm 177

7.3 Application: Certificate Transparency 178
7.3.1 Proving that a certificate is included in the

log 179
7.3.2 The number of web certificates 180
7.3.3 Retrieving proofs of inclusion using pir 180

7.4 Implementation and evaluation 182
7.4.1 Implementation 182
7.4.2 Experiments 182

7.5 Conclusions 186

8 conclusions 187
8.1 Overview 187
8.2 Future work 188
8.3 General conclusions 189

bibliography 191

notation and symbols 207

glossary 213

index 215

about the author 217

1
INTRODUCTION

Time: January 15, 2014, 14.00h etz
Observations: Subject is searching for information on Tor,
has downloaded Tor, and is looking up how Tor hidden ser-
vices work and what level of protection they provide. Sub-
ject is also visiting anonymous whistle blowing systems of
major us and Dutch newspapers. Many of them are backed
by SecureDrop. (…) Subject is now reading documentation
about and analyses of SecureDrop.
Analysis: What is subject hiding? Does he want to visit the
dark web? What reason could there be to do so? Does the
subject possess classified information that he wants to leak?

The subject? Me. Did I really look into all these topics? Yes. Was my
behavior really observed? Unknown. I do know that I felt self-conscious
researching these topics.1 In fact, I wondered if I would have been better
off using Tor to do this research in the first place, or at least should have
used an academic rather than domestic internet connection. I did not
feel self-concious because I did not have a good reason to make these
queries, and not because I felt that I was doing anything wrong, but
because of how my behavior could be viewed from the outside. I was
concerned that I’d be called to explain my interest in this gray area of
the internet.

1.1 the importance of privacy

The above experience illustrates the harmful chilling effects of (govern-
mental) surveillance—it has the potential to change how people behave.
Yet, privacy, and by extent the people it affects, is not harmed by surveil-
lance alone. For example, governments can also harm me by collecting
fragmented, possibly outdated information about me from my online
behavior and then using these data to deny me access to the country
or to other services (particularly, if this decision is made by an opaque
machine learning algorithm operating on these data).

1 At the time we were researching whether the Dutch equivalent to crime Crime Stoppers,
Stichting M, could safely offer anonymous reporting via the Internet rather than via the
telephone system. This research resulted in a report for the wodc (Dutch: Wetenschap-
pelijk Onderzoek- enDocumentatiecentrum, English: Research andDocumentation Cen-
tre) an independent organization within the Dutch ministry of Safety and Justice [85].
Later, a journal paper [84] summarizing the report was published.

1

2 introduction

Privacy is also not just affected by governments. I can equally easily
be harmed by companies collecting data about me, be it from public
social media pages or from more private browsing habits. Such harm
occurs, for example, when such a profile about me is later used to de-
termine whether I am eligible for a loan, or whether I can obtain an
insurance product only at a higher price.
These scenarios exemplify several types of privacy harms. In his pri-

vacy taxonomy, Solove identifies manymore types of harms [151] (includ-
ing many interesting examples). Besides harms resulting from the col-
lection of information, such as surveillance as in the example at the start
of this chapter, harmmay also result from information processing, such
as exclusion based on information collected and aggregation of data to
make it more valuable as in the two examples above. Another class of
privacy harms is caused by dissemination of data, for example, because
information is spread more widely than you expected or because the
information that is disseminated is not even correct.
The harms resulting from a lack of privacy are not always universally

accepted. For example, the chilling effect of surveillance has long been
called into question (it is very difficult to create a control group). How-
ever, recent research has confirmed its existence. To study the chilling
effect of mass surveillance, Marthews and Tucker [118] as well as Pen-
ney [137] compared the online behavior of internet users before and after
the Snowden revelations in June 2013. Marthews and Tucker showed a
significant change in search behavior: after the Snowden revelations,
users were less likely to google for topics that could ‘get them in trou-
ble’ with the government. Similarly, Penney showed that users signifi-
cantly less frequently looked up Wikipedia articles related to terrorism
after the revelations.
A common argument against a call for more privacy (in particular

in relation to government surveillance) is that ‘I have nothing to hide,
therefore I have nothing to fear’. The leading example of this chapter
shows why it is flawed. The argument presumes that you only have
something to hide if you do something wrong. Yet, I felt like hiding
my behavior, not because I was doing something wrong, but because of
how it could be construed. See Solove [152] for a more comprehensive
discussion of the issues with the nothing-to-hide argument.
So far, we have focussed on how (a lack of) privacy harms individu-

als. However, it also affects society as a whole. As Solove paraphrases
John Dewey: “the value of protecting individual rights emerges from
their contribution to society” [152]. For a democratic society to function,
journalists, researchers, activists, writers and others should be free to
explore, report, and criticise. However, as Cohen argues [49], a lack of
privacy has even further reaching consequences. Privacy is a prerequi-

1.1 the importance of privacy 3

site for a critical mindset—which is essential in a democratic society—
to develop in the first place. Without privacy, a person’s developing
mindset may succumb to the pressure of companies and governments
to become “fixed, transparent, and predictable” [49]. Therefore, privacy
should not only be protected because of the harm that is otherwise in-
flicted upon individuals, it should even more so be protected to ensure
the functioning of a democratic society as a whole.
So, we should protect privacy. However, what do we mean by pri-

vacy? In general, privacy is difficult to define [97, 151]. We briefly sum-
marize Koops et al. [97] to show the pluriformity of privacy. In an effort
to conceptualize privacy, Koops et al. identified two groups of privacy
types (“things that can be ‘watched’ or intruded upon” [97]). The first
group is captured by the notion of ‘being let alone’. It encompasses the
right to control access to one’s body (bodily privacy); to control access to
one’s private space, such as a home (spatial privacy); to freedom from
interference in communication (communicational privacy); and to free-
dom from interference with property used in public (proprietary pri-
vacy). The second group is captured by the notion of ‘self-development’.
It encompasses the freedom to develop one’s interests and beliefs (intel-
lectual privacy); to make intimate decisions (decisional privacy); to be
free to associate with others (associational privacy), and the freedom to
be one’s self even in public (behavioral privacy).
As the scenarios described above show, data about people has the po-

tential to affect many of these types. That is why Koops et al. consider
the informational privacy as an overarching aspect that “does not pro-
tect the body, space communications, behaviors, etc., directly, but pro-
tects the information about these” [97]. It is this digital type of privacy
that we seek to protect in this thesis.
The new general data protection regulation (gdpr) aims to protect

the personal data of eu citizens [135]. It describes several principles by
which personal data should be protected. For example, the gdpr re-
quires that data is processed ‘lawfully, fairly and in a transparent man-
ner’, that the data are only used for the purpose for which they have
been collected (‘purpose limitation’), and that they are only stored for
as long as this purpose requires (‘storage limitation’). On the technical
side, the gdpr requires that the integrity and confidentiality of data is
guaranteed and that only the minimal amount of data required for the
processing should be stored. In this thesis we focus on data minimiza-
tion as the primary means to protect personal data, and thereby digital
privacy. The reason for this focus is that cryptography has the potential
to drastically minimize the amount of (identifiable) data stored, without
impacting the usefulness of that data.

4 introduction

1.2 research question

It seems then, that, if privacy is so important, we should aim to maxi-
mize it. However, there are also many arguments against privacy. Com-
panies frequently claim to need your personal data to offer better ser-
vices. Governments, too, claim to need personal data to offer better
services as well as to combat fraud, identity theft, crime, and terrorism.
Underlying these arguments is a subtle balancing act. The argument

is usually not that privacy is not important. No, privacy, when compared
to other goals, is simply found to be less important. In this thesis, I
focus on two such comparisons:

1. more privacy means less security, so, security being more impor-
tant than privacy, we cannot increase privacy; and

2. we cannot use privacy friendly solutions as they are too inefficient
(or not possible at all) compared to non privacy-friendly solutions.

This thesis will show that the situation is more nuanced and that these
comparisons are not generally true.
When balancing security and privacy, there is a tendency to rely solely

on procedural and legal measures to protect (personal) data and thereby
privacy. Instead in this thesis, we aim to provide rigid cryptographic
protections to ensure that these data cannot be abused.2 In particular,
in this thesis we answer the following main research question.

Canwe use cryptography to construct new practical systems
that offer security and privacy simultaneously, without hav-
ing to rely on procedural or legal measures?

To answer this question, we consider three subquestions:

1. What do we mean by systems that offer security and privacy si-
multaneously, but do not primarily rely on procedural or legal
measures?

2. Can we build new systems that use cryptography to offer security
and privacy simultaneously?

3. Can we make our systems offering both security and privacy effi-
cient enough to be used in practice?

To show how this thesis answers these subquestions, we revisit the two
leading comparisons.

2 Simply encrypting data is not the answer. While encrypting data protects against some
attacks by outsiders, internally, the data can simply be decrypted and then misused.

1.2 research question 5

1.2.1 Privacy versus security

There seem to be limits to how much privacy we can enjoy. One way
for people to obtain privacy online is to ensure that they are anonymous.
Yet, in a real-world society where everyone is unconditionally anony-
mous, nobody can be held accountable for their behavior, and the secu-
rity of the society suffers (for example, it would be impossible to hold
criminals accountable for their actions because they are indistinguish-
able from other citizens). This might be as undesirable as having no
privacy. In fact, this lack of accountability is reason for David Daven-
port to argue that we should not seek anonymous communication on
the internet, because the price of anonymity would be too high [53].
Davenport’s argument implies a trade-off between security and pri-

vacy. He is not the only one to make this argument. For example,
the current head of the Dutch intelligence agency aivd recently argued
that “you should wonder how much security your privacy is worth to
you” [120].3

nsa security consultant Ed Giorio phrased the trade-off between se-
curity and privacy in even stricter terms in an interview with The New
Yorker. He states that “privacy and security are a zero-sum game” [163].
A zero-sum game is a game in which the gain of one party is compen-
sated by an equal loss of the other party. Or, applied to security and pri-
vacy: any gain in privacy results in an equal loss of security. Many have
argued that this is a false trade-off [82, 140, 142, 143]. Indeed, it is easy
to give examples where increased security comes at no cost to privacy:
to protect your bike against theft you secure it with a good lock (rather
than putting it under round-the-clock surveillance) and to protect bank
notes against forgeries we use strong anti-counterfeit measures (rather
than tracing all bank notes). In fact, by increasing your privacy, you
may even increase your personal security. For example, you can protect
yourself against identity fraud by decreasing the amount of personal
information you disseminate.
The rhetoric of security versus privacy is compelling: of course

people want more security—surely we all want to stop terrorists, pe-
dophiles and tax evaders—and people are often willing to give up
privacy to achieve this. But this is precisely why the security versus
privacy rhetoric is dangerous. If you accept the premise that increased
security comes at a cost to privacy, you will not look for equally effective
solutions that have no (or a reduced) privacy impact. Yet, the preceding
examples demonstrate: we can gain security without losing any privacy
in the real world.

3 Translated from Dutch: “Dan moet je je dus afvragen hoeveel veiligheid is je privacy je
eigenlijk waard?”

6 introduction

In the digital realm it is equally possible to have security without im-
pacting privacy. Consider the example of anonymous digital cash. At
first sight, the existence of such a system might seem impossible: how
can we have digital cash, which is therefore trivial to duplicate, that can
be spend anonymously, so that double spenders cannot be identified?
Already in 1988, Chaum, Fiat and Naor proposed an anonymous cash
system that found a way out of this conundrum [44]: you are anony-
mous as long as you spend your digital coins once. If, however, you
double spend, the system can identify you and hold you accountable.
While in this system not everyone is unconditionally anonymous any-
more, you do have a guaranteed level of anonymity as long as you do
not misbehave, i.e., double spend.
Hoepman rekindled the term revocable privacy—the term was first

used by Stadler in his PhD thesis [155]—to emphasize the fact that it is
often possible to find digital solutions that have security and privacy si-
multaneously [82]. The notion of revocable privacy embodies the same
‘anonymous until you misbehave’ concept as was already present in
Chaum et al.’s work. In this thesis—see Chapter 3 for a more thor-
ough discussion—we use the following definition for revocable privacy,
where the notion of a rule serves to define desired or good behavior:

A system implements revocable privacy if the architecture of
the system guarantees a predefined level of anonymity for a
participant as long as she does not violate a predefined rule.

This definition demands that a user’s privacy is protected through archi-
tectural means, that is, the way the system is constructed using cryptog-
raphy, rather than through procedures or regulations. In other words,
if you do not violate the predefined rule, there is no way your anonymity
can be reduced (except by breaking the underlying cryptographic as-
sumptions). As Kapor argues, the architecture “more than the regu-
lations which govern its use, significantly determines what people can
and cannot do” [91]. Regulations are easy to change, even retroactively,
can be sidestepped, or simply ignored. By encoding the rules into the
architecture of the system, we make them much more resilient.
A system that uses a trusted third party to enforce a rule, as suggested,

for example, by Micali [119] and by Stadler in his earlier work on re-
vocable privacy [155], does not offer the required level of architectural
protection, and thus does not satisfy this notion of revocable privacy.
(It is easy to see why: the trusted third party can always change the
rule.) If trusted parties are used, the rule should explicitly specify their
role in the system. This approach to revocable privacy therefore also
forces transparency: all ways in which the user can (potentially) lose
anonymity need to be captured by the rules of the system.

1.2 research question 7

The notion of revocable privacy, and the systems that implement it,
clearly refute the claim that to have security, we need to give up privacy.
It also suggests an alternative to Davenport’s plea for no anonymous
communication: rather than having no anonymity at all, a revocable
privacy system can be used to hold those that misbehave accountable
without impacting the anonymity of others.
Chapter 3 revisits Hoepman’s research on revocable privacy, and

more thoroughly discusses what we mean by revocable privacy. That
chapter thereby also answers the first subquestion “What do we mean by
systems that offer security and privacy simultaneously, but do not primarily
rely on procedural or legal measures?” Chapter 3 also explores potential
use cases that could benefit from revocable privacy. While this overview
is by no means exhaustive, it does provide a starting point for our fur-
ther research. Finally, this chapter briefly recalls some existing systems
and constructions that already solve some of these use cases.
To answer the second subquestion, “Can we build new systems that

use cryptography to offer security and privacy simultaneously?”, Chapters 4
and 5 respectively demonstrate two specific revocable-privacy systems:
vote-to-link and forward-secure distributed encryption.
The vote-to-link system helps online platforms such as Wikipedia re-

cover from malicious anonymous users. While allowing anonymous
editors would have clear benefits forWikipedia, such anonymity also en-
ables abusive behavior that is hard to recover from.4 Whereas existing
systems can prevent anonymous users thatmisbehaved frommisbehav-
ing again, the vote-to-link system helps to quickly identify past actions
of misbehaving users. To do so, it implements the following rule: fewer
than k moderators should mark the user’s edits as malicious. If a user
violates this rule, the system can link all actions of that user within a
limited time frame. This eases recovery from abuse by highlighting the
other possibly malicious actions performed by the user within that time
frame. On the other hand, if a user’s edits are never marked by at least
k moderators, all its edits remain fully unconditionally anonymous and
thus unlinkable.
The vote-to-link system fromChapter 4 uses trusted parties, themod-

erators, to decide if users behave maliciously, because misbehavior is
difficult to codify. Yet, we claim that the vote-to-link system does imple-
ment revocable privacy. The crucial distinction is in how we phrase the
rule: rather than requiring that users do not behave maliciously (and
letting the trusted third parties enforce this rule), we require that fewer
than k moderators mark the user’s behavior as malicious. Hence, the

4 Since edits are fully anonymous, i.e., unlinkable, it is not possible to determine whomade
them, even worse, it is not even possible to determine which edits were made by the same
user. So, even if some malicious edits are identified it is not possible to determine which
other edits were made by the same malicious user.

8 introduction

role of the trusted parties, the moderators in this case, is captured by
the rule.
The forward-secure distributed encryption scheme from Chapter 5

implements the rule that parties should cause suspicious events at fewer
than k different locations. The distributed encryption scheme can be
used to detect criminals that rob trucks parked at rest stops along a high-
way. Typically, these criminals will visit more truck stops than regular
road users, therefore, picking a suitable threshold k makes it possible to
distinguish the criminals from the regular vehicles. To do so, automatic
number plate recognition systems create distributed encryption cipher-
texts corresponding to each car that visits a rest stop. Only if a user
violates the rule can the identity of that users (i.e., the license plate) be
recovered from these ciphertexts.

1.2.2 The efficiency of privacy-enhancing technologies

The perception that privacy and security are at odds with one another
is not the only issue that affects the adoption of privacy-enhancing tech-
nologies. Efficiency is another one. Privacy-enhancing technologies
typically requiremore cryptography than their non-private counterparts.
(The latter need to ensure only that the security requirements are met.)
As a result, using privacy-enhancing technologies might incur a perfor-
mance penalty.
As an example, consider abc systems. An abc contains a collection of

attributes describing the user. These attributes can be identifying, such
as name, date of birth, and social security number; and non-identifying,
such as place of residence, gender, and age. The credential is digitally
signed by an issuer to attest to the validity of the attributes contained in
the credential.
When using privacy-friendly abcs, a user can decide which attributes

to reveal to a verifier and which ones to hide (the verifier can still deter-
mine the validity of the revealed attributes). Privacy-friendly abcs are
often also unlinkable: if a verifier is shown a credential with the same
non-identifying attributes twice, the verifier cannot determine whether
those credentials belong to the same user or to two different users. In
particular, it has no way of recognizing the credential.
The core functionality of abcs is to allow users to show credentials to

verifiers. To make an abc system useable, these operations should be
fast. As part of the ‘I Reveal My Attributes” (irma) project,5 we devel-
oped a fast, user-friendly, implementation of abcs based on Idemix [36,

5 See https://www.irmacard.org and https://privacybydesign.foundation/irma/. Recently
the irma project has shifted focus to a smart phone based implementation because they
offer a much better user interface than smart cards.

https://www.irmacard.org
https://privacybydesign.foundation/irma/

1.2 research question 9

87]. One of the irma team’s contributions was to make a full smart
card implementation of abcs that can prove possession of a credential
in approximately one second [162].
However, a practical deployment of abcs also requires that credentials

can be revoked when the smart card that holds them is lost, stolen or
abused. In essence this is a security measure designed to protect the
security of the system as a whole. The question is, how do you revoke
a credential that you cannot recognize? (If you could recognize the cre-
dential, it would be linkable.)
There already existedmany theoretical revocation schemeswith excel-

lent privacy protection. Some of them even have a constant time over-
head (i.e., independent of the number of revoked credentials). However,
in practice they were simply too slow (even the constant-time schemes
caused a slowdown of a least a couple of seconds). In Chapter 6 we
achieve a truly practical revocation scheme with minimal overhead for
smart cards by very slightly loosening the privacy guarantees.
This example again shows the need to think about security and pri-

vacy simultaneously. Privacy-friendly abcs offer good privacy, but they
would not be deployed without revocation as a security measure to pre-
vent abuse. Furthermore, it shows the importance of efficiency. Even
though all the cryptographic systems existed to build privacy-friendly
abcs with revocation, they were too slow to practically deploy. So, not
only is it important to design privacy-enhancing technologies, it is
equally important to analyse and, if necessary, improve their efficiency.
To answer the third subquestion, “Can we make our systems offering

both security and privacy efficient enough to be used in practice?”, Chap-
ters 4 and 5 contain experimental results to show that the vote-to-link
systems and the distributed encryption schemes are practical.
Starting with Chapter 6 we change tack and no longer focus on the

type of conditional anonymity offered by revocable privacy, but seek to
design efficient systems that offer both security and privacy. The first
of these is the revocation scheme in Chapter 6 we discussed above. The
second is a more efficient private information retrieval method in Chap-
ter 7. We show howwe can answer queries from clients more efficiently
by batching them, rather than answering them one by one. While pri-
vate information retrieval by itself is already a very useful construction
in general, we also show how certificate transparency (which offers se-
curity against rogue certificate authorities) in particular can be made
privacy friendly (so that users do not leak the sites they visit) using our
batched private information retrieval scheme. The sublinear scaling of
our new scheme reduces the performance concerns in this application.
The performance aspects of these four chapters answer the third sub-

question.

10 introduction

1.3 organization of this thesis

The chapters in this thesis are mostly self-contained. However, Chap-
ters 4 to 7 rely on cryptography to achieve their goals. We introduce the
relevant cryptographic concepts and notation in Chapter 2.
It is also advisable to read Chapter 3 before reading Chapters 4 and 5

as the latter rely on the notion of revocable privacy, which we introduce
in Chapter 3.

1.4 contribution per chapter

The following list summarizes each chapter, indicates corresponding
publications, and highlights my own contributions therein.

Chapter 3 revisits the principle of revocable privacy and explores po-
tential applications of revocable privacy. In particular, we con-
sider two ways for the user to interact with the system: interac-
tive and passive. The type of interaction implies different secu-
rity guarantees. Furthermore, we explore different consequences
of violating rules of the system. To apply these ideas, we also ex-
plore some real-world use cases that can benefit from the ideas of
revocable privacy, and derive the underlying abstract rules. This
approach allows us to highlight which abstract rules can already
be implemented, for which ones we propose solutions in this the-
sis, and which remain open.

This chapter is based on the article

Wouter Lueks, Maarten H. Everts, and Jaap-Henk
Hoepman. “Revocable Privacy: Principles, Use Cases,
and Technologies”. In: apf 2015. lncs vol. 9484.
Springer, 2016, pp. 124–143. doi: 10.1007/978-3-319-
31456-3_7.

This article was jointly written by Maarten Everts, Jaap-Henk
Hoepman and myself. Maarten Everts and I conducted the in-
terviews and brainstorm sessions to extract the revocable privacy
use cases, and extract the underlying abstract rules. In addition,
I improved the original definition of revocable privacy, analyzed
the consequences of different types of user interaction and related
the rules to existing primitives. Jaap-Henk Hoepman provided
many helpful suggestions and improvements.

Chapter 4 solves the problem of recovering from abuse by anony-
mous users. Whereas other systems effect future consequences

1.4 contribution per chapter 11

of misbehavior, our vote-to-link system helps to recover from ear-
lier, anonymous, misbehavior by linking actions by misbehaving
users within a limited time frame. To protect the privacy of the
user, such linking is only possible when sufficiently many mod-
erators agree. In addition, we propose a variant that also allows
the moderators to vote anonymously.

This chapter is based on the article

Wouter Lueks, Maarten H. Everts, and Jaap-Henk
Hoepman. “Vote to Link: Recovering from Misbe-
having Anonymous Users”. In: wpes 2016. acm, 2016,
pp. 111–122. doi: 10.1145/2994620.2994634.

The conception of the idea of the vote-to-link scheme is joint work
by the authors. My contribution is the formalization of the vote-
to-link scheme, proving its correctness, designing the moderator-
anonymous solutions, implementing the schemes to assess their
practicality, and writing the paper. Maarten Everts and Jaap-Henk
Hoepman provided many helpful comments and suggestions to
improve the paper.

Chapter 5 presents improved distributed encryption (de) schemes
that can be used to implement threshold rules. More precisely,
it allows recovery of a message only if that same message has
been encrypted by a sufficient number of different senders. Our
solution improves the original scheme by Hoepman and Galindo
by relying on weaker trust assumptions and only requiring a reg-
ular cyclic group setting, rather than a bilinear group setting. In
addition, we present a batched solution that is faster for small
message spaces. Furthermore, both schemes support proper
(rather than trivial) key-evolution.

This chapter is based on the article

Wouter Lueks, Jaap-Henk Hoepman, and Klaus Kur-
sawe. “Forward-Secure Distributed Encryption”. In:
pets 2014. lncs vol. 8555. Springer, 2014, pp. 123–142.
doi: 10.1007/978-3-319-08506-7_7.

This article is the culmination of many brainstorm sessions of
Jaap-Henk Hoepman and myself. In addition, Klaus Kursawe
proposed the batching scheme and sketched a proof of its secu-
rity. This approach inspired the improved regular de scheme. I
formalized the proof sketch, constructed the forward-secure key-
evolution scheme and wrote most of the paper.

Chapter 6 presents a fast revocation scheme for attribute-based cre-
dentials that is fast enough to be implemented on smart cards,

12 introduction

while being efficient for verifiers too. To achieve this speed-up,
we trade a small amount of linkability: user’s authentications are
linkable within small time frames.

This chapter is based on the journal article

Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman,
and Pim Vullers. “Fast revocation of attribute-based
credentials for both users and verifiers”. In: Computers
& Security 67 (2017), pp. 308–323. issn: 0167-4048.
doi: 10.1016/j.cose.2016.11.018.

which is an extended and revised version of the conference article

Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman,
and Pim Vullers. “Fast Revocation of Attribute-Based
Credentials for Both Users and Verifiers”. In: ifip sec
2015. ifip aict vol. 455. Springer, 2015, pp. 463–478.
doi: 10.1007/978-3-319-18467-8_31.

The initial idea of using a single generator per epoch and per ver-
ifier is joint work by the authors. Gergely Alpár and I constructed
a first rough draft of the paper, that I then refined into the current
chapter. In particular, I formalized the scheme, proved its secu-
rity, proposed extensions, and analyzed the storage requirements.
Pim Vullers analyzed the smart card performance, whereas I es-
timated the verifier performance. Gergely Alpár and Jaap-Henk
Hoepman also provided many helpful comments that improved
this paper.

Chapter 7 proposes a sublinear scaling scheme for multi-client infor-
mation-theoretic pir. We decrease the per-query computation
time for pir servers by allowing the servers to batch queries and
answer them simultaneously.

This chapter is based on the article

Wouter Lueks and Ian Goldberg. “Sublinear Scaling
for Multi-Client Private Information Retrieval”. In: fc
2015. lncs vol. 8975. Springer, 2015, pp. 168–186. doi:
10.1007/978-3-662-47854-7_10.

IanGoldberg proposed the use of Strassen’s algorithm to speed up
the pir servers, and he recognized the relation between Strassen’s
algorithm and batch codes. I analyzed this relation, implemented
Strassen’s algorithm in Percy++ [74], a C++ library for pir, and
fine-tuned and analyzed its performance. In addition, I examined
certificate transparency as a potential use case for our improved
batched pir scheme. The paper is joint work by the authors.

2
PREL IMINARIES

In this chapter we cover preliminaries that are used in the following
chapters of this thesis. We refer to Katz and Lindell [93] for a more
general introduction to the topics we discuss in Sections 2.2 to 2.5 and
of modern cryptography in general.

2.1 notation

We first introduce some notation. We write Zp to denote the integers
modulo p, andZ∗p to denote its units. In this thesis, p is usually a prime,
so then Zp is a field. We write a ∈R A to indicate that a is chosen uni-
formly at random from the (finite) set A. We denote the set {1, . . . , n}
by [n]. The cardinality of a set A is denoted by |A|.
We indicate the set of all strings by {0, 1}∗, while the set of all strings

of length ℓ is denoted by {0, 1}ℓ. Wewrite x ∥ y to denote the concatena-
tion of the strings x and y. We denote the length of a string x ∈ {0, 1}∗
in bits by |x|. A matrix A is typeset in bold. We denote the xor opera-
tor, which can be applied (component wise) to bits, strings, vectors and
matrices, by ⊕.
We write A,B, etc., for algorithms and adversaries. Since these algo-

rithms are often randomized, we write x ← A(y) to denote that x is the
random variable denoting the output of the algorithm A when run on
input y. The symbols ⊤ and ⊥ denote success and failure respectively.
Finally, we write lg a to denote the logarithm base 2 of a, and ln a to

denote the natural logarithm of a.

2.2 groups and bilinear maps

The schemes in this thesis rely on regular cyclic groups and bilinear
groups. We introduce these here.

2.2.1 Cyclic groups

Almost all schemes in this thesis rely on cyclic groups (the exception
is the pir scheme in Chapter 7 that only relies on fields). We give a
short introduction here, and refer to Katz and Lindell [93, Section 8.3]
for a more extensive treatment. Typically, we writeG for a cyclic group,
and g, with g ∈ G, for its generator. In this thesis, we write all groups

13

14 preliminaries

multiplicatively. Moreover, all groups we consider are of prime order p.
To precisely define the hardness of problems such as the discrete log-

arithm problem—see Section 2.4—we use a polynomial time algorithm
G that generates a description of a group of a given size. More precisely,
G takes as input a security parameter 1ℓ and outputs a tuple (G, p, g)
describing a group G of order p generated by g, such that p is ℓ bits.1

In our schemeswe often use hash functions thatmap strings to group
elements. Often, such hash functions can indeed be constructed. For
example, it is possible to hash to cyclic groups that are constructed using
regular elliptic curves over a prime field [23], to the quadratic residues
(apply a regular hash function and then square the result to obtain a
quadratic residue), and to (subgroups of) Z∗p [87].

2.2.2 Bilinear maps

Our vote-to-link scheme (see Chapter 4) and Hoepman and Galindo’s
distributed encryption scheme (see Section 5.3.3) rely on bilinear maps.
We summarize the important facts and definitions, and refer to Gal-
braith [68] and Galbraith et al. [69] for amore extensive treatment. Con-
sider a pair of cyclic groups (G1,G2), both of prime order p, with gen-
erators g and h respectively. We call such a pair a bilinear group pair
when there exists a bilinear map ê : G1 ×G2 → GT mapping these
groups into a target group GT of prime order p such that

• the map is bilinear, i.e., for all a, b ∈ Zp we have ê(ga, hb) =

ê(g, h)ab;

• the map is non-degenerate, i.e., ê(g, h) is a generator of GT ; and

• the map is efficiently computable.

Unless otherwise specified, we write g, g0, g1, etc., for generators of
groupG1, and h, h0, h1, etc., for generators of groupG2. We frequently
call such a bilinear map a pairing.
Galbraith et al. identify three different types of pairings [69]:

type 1 In type 1 pairings G1 = G2.

type 2 In type 2 pairingsG1 ̸= G2, but there exists an efficiently com-
putable homomorphism ϕ : G2 → G1.

type 3 In type 3 pairings G1 ̸= G2, and no efficiently computable ho-
momorphisms between the groups G1 and G2 exist.

1 The unary encoding 1ℓ of ℓ ensures that the group generator algorithm G runs in polyno-
mial time with respect to its inputs. See Section 2.3.

2.3 modelling security and adversaries 15

There are also type 4 pairings, but they are less common, so we omit
them here. In this thesis we also do not use type 1 pairings, as our
schemes require the decisional Diffie-Hellman (ddh) problem (see Def-
inition 2.5 below) to be hard in at least G1, which is not the case if
G1 = G2. In addition, there exist serious attacks on type 1 pairings de-
fined over fields of characteristic 2 or 3 [1, 2, 75], basically rendering them
insecure. Finally, even when defined over a large prime field, type 1 pair-
ings are significantly slower than type 3 alternatives [69].
Type 3 pairings are generally more efficient than type 2 pairings and,

additionally, allow efficient hashing ontoG2 (hashing ontoG1 is always
possible) [69]. However, type 3 pairings are also not free from attacks.
Recent improvements by Kim and Barbulescu [96] imply that the dis-
crete logarithm (dl) problem (see Definition 2.4 below) in the common
256 bits Barreto-Naehrig curve is significantly weaker than previously
expected. Rather than obtaining 128 bits security, these curves now only
offer approximately 96 bits of security.2

As for regular cyclic groups, we define a generation algorithm IG that
takes as input a security parameter 1ℓ and outputs a tuple (ê(·, ·),G1,
G2,GT , p, g, h, gT) describing the bilinear map ê : G1×G2 → GT , the
bilinear groupsG1,G2 and the target groupGT generated by g, h and gT
respectively, and the group order p (which is ℓ bits). Another reason not
to use type 1 pairings is that such a polynomial time generator typically
does not exist for these schemes.

2.3 modelling security and adversaries

In this thesis we prove the security (or privacy) of our schemes by first
defining a game that captures the notion of security (or privacy) that we
wish to achieve, and then showing that no realistic adversary can win
this game. We refer to Katz and Lindell [93, Section 3.1.2] for a more
extensive introduction. Realistic in this case means: adversaries run
in probabilistic polynomial time. Our schemes are not secure against
unbounded adversaries (with the notable exception of the information-
theoretic private information scheme that we extend in Chapter 7).

Definition 2.1 An algorithmA is called polynomial time if there exists a
polynomial p such thatA running on any input x ∈ {0, 1}∗ terminates
within p(|x|) steps.3

A probabilistic polynomial time algorithm is, additionally, allowed
to make coin tosses with a fair coin, and to use this randomness in

2 https://ellipticnews.wordpress.com/2016/09/02/crypto-and-ches-2016-santa-barbara-
ca-usa/, last accessed February 17, 2017

3 A step is a basic, constant time, operation of the machine running the algorithm.

https://ellipticnews.wordpress.com/2016/09/02/crypto-and-ches-2016-santa-barbara-ca-usa/
https://ellipticnews.wordpress.com/2016/09/02/crypto-and-ches-2016-santa-barbara-ca-usa/

16 preliminaries

its computation. In fact, for cryptography this randomness is essential.
Without it, private keys, for example, could not be generated. An alter-
native formulation, and the one we use here, is that the algorithm has
access to an extra input r, traditionally called the random tape because
these algorithms are formally modelled as Turing machines, contain-
ing uniformly random bits. This input should be long enough. If the
algorithm runs in p(n) steps for an input of length n, then a random
tape r ∈R {0, 1}p(n) is surely long enough.

Definition 2.2 An algorithm A is called probabilistic polynomial time
(ppt) if the algorithm A′(·) = A(·, r) is polynomial time where r is
a string of uniformly random bits of sufficient length. (Note that A′
needs to run in polynomial time with respect to the length of its input,
independent of r.)

We cannot, usually, achieve perfect security. Often, there is a very
small chance that an adversary simply breaks the scheme as a result
of a lucky guess, for example, by guessing the private key of a party.
To allow for these events, we still call a scheme secure, as long as these
‘lucky’ events occur only with extremely small probability. We formalize
this notion of being extremely small using the notion of negligibility.

Definition 2.3 A function f from the natural numbers to the non-
negative real numbers is called negligible if for every positive polynomial
p there exists an N such that f (n) < p(n)−1 for all n > N. We write
negl(n) to denote an arbitrary negligible function.

This definition is asymptotic. So, while the function 100 · 1.01−n is
negligible and will eventually be smaller than any inverse polynomial
function, it is certainly not small for reasonable sizes of n.

2.3.1 Random oracle model

The proofs of our schemes are in the random oracle model. In the ran-
dom oracle model for a hash function H : {0, 1}∗ → Y, the adversary
is given access to a random oracle that it can query on an input x when-
ever it wishes to evaluate the hash function H(x). This oracle models
a random function. More precisely, on a new input x the oracle picks
a random y ∈R Y and returns it, while on a repeated input x it repeats
the same output y as it gave earlier.
In the regular world, though, we instantiate the scheme by replacing

the random oracle with a regular hash function. Hence, a proof of se-
curity in the random oracle model is only a heuristic argument that the
scheme as composed with the real hash function is also secure.

2.4 cryptographic assumptions 17

Despite evidence that this random oracle model is not perfect—it is
hard to formalize what it means for a hash function to be a good ap-
proximation of a random oracle, and there exist (contrived) examples in
which this heuristic fails altogether—we prefer to use the random ora-
cle model because it yields schemes that are generally more elegant and
efficient, while the security proof still provides a reasonable guarantee
of security and privacy. We refer to Katz and Lindell [93, Section 5.5] for
a more thorough discussion.
In our security reductions, we control the random oracle that is pro-

vided to the adversary. In particular, we can replace the random output
y ∈R Y with specifically crafted outputs for some of the inputs x. For
example, rather than outputting a random element y ∈R G from the
group G of order p, we could return an element gα for some known
randomizer α ∈R Zp. Such changes cannot be detected by the adver-
sary provided two conditions are met:

1. The adversary did not query the input x before (as the random
oracle needs to provide consistent answers).

2. The distribution of the special outputs is still indistinguishable
from uniform. This is the case in the example: gα is uniformly
distributed over G.

While the random oracle model also allows us to learn the inputs to the
random oracle, we do not use this feature in the proofs in this thesis.

2.4 cryptographic assumptions

The security of the schemes in this thesis depends on a number of cryp-
tographic assumptions. These assumptions are typically of the form:
“the probability that an adversary succeeds is negligible”. To allow for
this asymptotic definition of security, we parametrise our schemes with
a security parameter ℓ. This parameter dictates the difficulty of the
scheme. It typically determines the length of keys, and the sizes of
groups. For example, the assumptions we define here depend on the
group generation algorithms G(1ℓ) and IG(1ℓ) from, respectively, Sec-
tions 2.2.1 and 2.2.2. To allow these algorithms to run in polynomial
time with respect to this security parameter, we pass the security pa-
rameter to these algorithms in its unary encoding 1ℓ (i.e., the string of
ℓ consecutive 1-bits).
We now introduce the complexity assumptions we use in this the-

sis. In the security proofs in the remainder of this thesis we use these
to show that, provided these assumptions hold, the adversary also has
a negligible probability of breaking the security or privacy of our new
schemes.

18 preliminaries

Definition 2.4 The discrete logarithm (dl) problem in a cyclic groupG
is defined as follows. On input of a tuple (g, X) ∈ G2, output x such
that X = gx. We say the dl assumption holds relative to G if for all ppt
algorithms A there exists a negligible function negl such that

Pr[x ← A((G, p, g), X) ∧ X = gx] ≤ negl(ℓ),

where the probability is over the output (G, g, p) ← G(1ℓ), the choice
of X ∈R G and the random bits of A.

Definition 2.5 The decisional Diffie-Hellman (ddh) problem in a cyclic
group G is defined as follows. On input of a tuple (g, X = gx, Y =
gy, Z = gz) ∈ G4, output 1 if z = xy and 0 otherwise. We say the ddh
assumption holds relative to G if for all ppt algorithms A there exists a
negligible function negl such that∣∣∣Pr[A((G, p, g), gx, gy, gxy) = 1)]−

Pr[A((G, p, g), gx, gy, gz) = 1)]
∣∣∣ ≤ negl(ℓ),

where the probability is over the output (G, g, p)← G(1ℓ), the random
choices of x, y, z ∈R Zp and the random bits of A.

The hardness of the dl and ddh problems in the bilinear groups
G1,G2 and GT is defined by the obvious extension of these definitions
where the algorithm A is now also supplied with the description of the
other groups and the bilinear map. More precisely, we say that the as-
sumption holds inGi with respect to the bilinear group generation algo-
rithm IG, if in the above definitions algorithm IG replaces G, g ∈ Gi,
andA is supplied with the full output (ê(·, ·),G1,G2,GT , p, g, h, gT) of
IG instead of the output (G, p, g) of G.
The Bilinear Diffie-Hellman problem in a type 1 pairing setting—in

this caseG1 = G2 andG1 andG2 are generated by g—asks to compute
ê(g, g)abc given (g, ga, gb, gc) [90]. In this thesis we require a decision
version of this problem [22], but in the type 3 setting rather than the
type 1 setting. There exist different versions of this assumption in the
literature [42]. These versions differ in whether elements with the ex-
ponents a, b, and c are given in just one group (G1 or G2) or both. A
common variant is the following type 3 version.

Definition 2.6 The decisional bilinear Diffie-Hellman (dbdh-3) problem
in a type 3 bilinear group pair (G1,G2) is defined as follows [41]. On
input of a tuple (g, A1 = ga, B1 = gb, C1 = gc, h, A2 = ha, C2 =
hc, Z = gz

T) ∈ G4
1 ×G3

2 ×GT output 1 if z = abc and 0 otherwise. We

2.4 cryptographic assumptions 19

say the dbdh-3 assumption holds relative to IG if for all ppt algorithms
A there exists a negligible function negl such that∣∣∣Pr[A(γ, ga, gb, gc, ha, hc, gabc

T) = 1]−

Pr[A(γ, ga, gb, gc, ha, hc, gz
T) = 1]

∣∣∣ ≤ negl(ℓ),

where the probability is over the output γ = (ê(·, ·),G1,G2,GT , p, g, h,
gT)← IG, the random choices of a, b, c, z ∈R Zp and the random bits
of A.
In fact, in the proof of our vote-to-link scheme we can do with a

slightly weaker variant, dbdh-3b, where we omit C1 = gc from the prob-
lem instance.

Definition 2.7 The decisional bilinear Diffie-Hellman (dbdh-3b) prob-
lem in a type 3 bilinear group pair (G1,G2) is defined as follows [41].
On input of a tuple (g, A1 = ga, B1 = gb, h, A2 = ha, C2 = hc, Z =
gz

T) ∈ G3
1 ×G3

2 ×GT output 1 if z = abc and 0 otherwise. We say the
dbdh-3b assumption holds relative to IG if for all ppt algorithmsA there
exists a negligible function negl such that∣∣∣Pr[A(γ, ga, gb, ha, hc, gabc

T) = 1]−

Pr[A(γ, ga, gb, ha, hc, gz
T) = 1]

∣∣∣ ≤ negl(ℓ),

where the probability is over the output γ = (ê(·, ·),G1,G2,GT , p, g, h,
gT)← IG, the random choices of a, b, c, z ∈R Zp and the random bits
of A.
The following version of the q-SDH problem is from the Journal of

Cryptography version of Boneh and Boyen’s paper [21]. In particular, it
no longer relies on the existence of an efficiently computable isomor-
phism from G2 to G1.

Definition 2.8 The q-Strong Diffie-Hellman (q-sdh) problem in a bilin-
ear group pair (G1,G2), both of prime order p, generated by g and h
respectively, is defined as follows [21]. On input of a tuple (g, gx, gx2

,
. . . , gxq

, h, hx) ∈ Gq+1
1 × G2

2, output a pair (c, g1/(x+c)) ∈ Zp × G1
for a freely chosen value c ∈ Zp \ {−x}. We say the q-sdh assumption
holds relative to IG if for all ppt algorithms A there exists a negligible
function negl such that

Pr[A(γ, gx, gx2
, . . . , gxq

, hx) = (c, g1/(x+c))] ≤ negl(ℓ),

where the probability is over the output γ = (ê(·, ·),G1,G2,GT , p, g, h,
gT)← IG, the random choice of x ∈ Zp, and the random bits of A.

20 preliminaries

We sometimes write that a problem, for example the ddh problem,
is hard. By this we mean that the corresponding assumption holds.

2.5 secret sharing

Secret sharing allows a secret to be distributed among many parties, so
that only qualified subsets of these parties can recover any information
about the secret. A common variant is threshold secret sharing, or k-out-
of-n secret sharing, where any k parties (out of a total of n parties) can
recover the secret, while any coalition of size strictly less than k obtains
no information at all about the secret.
Many of the schemes developed in this thesis rely on some form of

threshold structure: in our distributed encryption scheme, a plaintext
can only be recovered when it has been encrypted by k senders; in our
vote-to-revoke scheme, a user’s actions can only be linked when at least
k moderators agree; and in the it-pir scheme, secret sharing is used to
recover the original record from k servers.

shamir’s secret sharing scheme. The most common secret
sharing scheme, and the one we use in our schemes, is Shamir’s se-
cret sharing scheme [146]. To share a secret s in a field F4 such that
any k out of n parties can recover it, first generate k − 1 coefficients
f1, . . . , fk−1 ∈R F and construct the secret-sharing polynomial f (X) =
s + ∑k−1

i=1 fiXi. Each party i, with index i ∈ F \ {0} is then given the
secret share si = (i, f (i)).
Given k of these secret shares we can recover the underlying secret

using Lagrange coefficients.

Definition 2.9 Let I ⊂ F be a set of indices of size k, then the cor-
responding Lagrange polynomials are given by λIi (X) = ∏j∈I ,j ̸=i

X−j
i−j .

Any polynomial f (X) ∈ F[X] of degree k− 1 can then be interpolated
by k points (i, f (i)), i ∈ I , as f (X) = ∑i∈I λIi (X) f (i). With some
abuse of notation, we define the Lagrange coefficients as λIi = λIi (0).
For a polynomial f as before, we have f (0) = ∑i∈I λIi f (i).

Note that recovering the secret s from the shares is a linear operation.

additive secret sharing. We also use a simpler secret sharing
structure, called additive secret sharing, where the secret is simply split
into a number of random shares such that the sum of these shares
equals the secret. The distribution of the shares determines the access

4 In this thesis, we oftenworkwith the fieldZp (p is prime in this case) where p corresponds
to the order of a group. However, Shamir’s secret sharing can be defined for any field, as
we do here, or even for a module, provided some inverses in the underlying ring exist.

2.5 secret sharing 21

structure. While any access structure is possible, we focus on threshold
k-out-of-n access structures as for Shamir’s secret sharing.
To additively share a secret s with a k-out-of-n access structure, create

additive shares rA ∈R Zp for each set A ⊂ [n] of cardinality n− (k− 1)
subject to the constraint that

s = ∑
A⊂[n]

|A|=n−(k−1)

rA.

Give share rA to party i if i ∈ A. Any coalition of at least k parties jointly
knows all the shares (each additive share is not known to precisely k− 1
parties, therefore every share is known by at least one member of the
coalition), hence the secret can be recovered by adding the shares. For
any coalition with at most k− 1 parties there is at least one share rA that
none of themembers know, and hence this is indeed a proper k-out-of-n
secret sharing scheme.

2.5.1 Distributed generation of secret shares

While secret sharing schemes typically provide perfect protection
against unauthorized recovery of the secret, this protection does not
extend to the party—traditionally called the dealer—distributing the se-
cret in the first place. If the dealer cheats, the parties have no guarantee
that the threshold is as claimed, that the secret can even be recovered,
nor that the dealer does not leak the secret. Yet, schemes based on se-
cret sharing generally assume that no party by itself knows the shared
secret nor the complete secret sharing. One solution is to assume that
the dealer is trusted. Another is to let the parties themselves jointly
generate a new secret sharing, without the use of a trusted dealer. In
this section we explore two interactive protocols to achieve this, in the
next we discuss a non-interactive protocol.

Pedersen’s verifiable secret sharing scheme

We first introduce Pedersen’s verifiable secret sharing protocol [136].
This interactive protocol allows n parties to jointly compute a k-out-of-n
Shamir secret sharing of a random secret. As long as at least one party
behaves honestly the secret is indeed random, while at least k parties
are necessary to recover the shared secret.
In Pedersen’s verifiable secret sharing protocol, each party creates

a random secret-sharing polynomial. The sum of these—although it
will never be constructed in one place—is the final secret-sharing poly-
nomial. To prove correctness, each party commits to its polynomial.

22 preliminaries

These commitments require a groupG in which the dl problem is hard
to ensure that the commitments are hiding.5

Protocol 2.10 Pedersen’s verifiable secret-sharing (vss) protocol [136],
denoted by VSS(n, k,G, g, p), is an interactive protocol between n par-
ties, numbered 1 through n. The secret is in a field Zp and there is a
corresponding cyclic group G of prime order p, generated by g, such
that the dl problem in G is hard. Every party has a public signing key
that is known to all the other parties. The parties proceed as follows.

1. Every party i generates a secret xi ∈ Zp and coefficients fi,1, . . . ,
fi,k−1 ∈R Zp to create a k − 1 degree secret sharing polynomial
fi(X) = xi + fi,1X + · · ·+ fi,k−1Xk−1.

2. Party i commits to its polynomial. It does this by calculating Fi,0 =

gxi and Fi,j = g fi,j for j = 1, . . . , k− 1, signing these values and
publicly broadcasting them.

3. When every party has broadcast its polynomial commitments, ev-
ery party i sends its secret share for party j, sij = fi(j), and a
signature on sij securely to party j for j = 1, . . . , n.

4. Every party i checks if it received the correct secret share by com-
paring the share against the polynomial commitments. In partic-
ular, for every party j, it checks that gsji = Fj,0Fi

j,1 · · · Fik−1

j,k−1. If
any of these checks fail, party i will broadcast the corresponding
signature and secret share to identify the misbehaving party. If
any misbehaving parties are identified in this step, the protocol
aborts.6

5. Finally, party i computes its share si = ∑n
j=1 sji of the shared

secret.

When all the parties start out with a k − 1 degree secret sharing poly-
nomial fi then the resulting k− 1 degree secret sharing polynomial is
given by f = f1 + . . . + fn. Hence this protocol creates a k-out-of-n
secret sharing of f (0) = ∑n

i=1 fi(0) = ∑n
i=1 xi.

Sometimes it is useful to construct a public key corresponding to the
shared secret and the secret shares. We can easily extend Pedersen’s vss
scheme to do so.

5 For the security of this protocol and the following protocol (for additive shares) in isolation,
it is sufficient that the dl problem is hard in G. However, when using them inside other
protocols, we need to take into account that the commitments are public ‘representations’
of the secret shares. In practice, our schemes already require that the ddh assumption
holds in G as well, assuring that the commitments cannot be abused.

6 In practice a more fine-grained approach might be warranted, like excluding the shares
by the misbehaving parties. However, care is required to ensure that parties cannot be
excluded from participating by using this mechanism.

2.5 secret sharing 23

Protocol 2.11 The VSS+ variant of Pedersen’s vss protocol, denoted by
VSS+(n, k,G, g, p), proceeds by first running the original VSS(n, k,G,
g, p) protocol. Then the public key h corresponding to the shared secret
∑n

i=1 xi and the public key hi corresponding to secret shares si can be
calculated using solely public information

h = g∑n
i=1 xi =

n

∏
i=1

gxi =
n

∏
i=1

Fi,0,

hi = gsi = g∑n
j=1 sji =

n

∏
j=1

gsji =
n

∏
j=1

Fj,0Fi
j,1 · · · Fik−1

j,k−1.

Verifiable secret sharing of additive shares

Similarly to Pedersen’s vss scheme, we can also verifiably create an addi-
tive secret sharing for a k-out-of-n access structure. The idea is similar:
each party creates a random secret sharing, commits to the secret shar-
ing, and then distributes the shares to the relevant parties. The final
secret sharing is the sum of these. The combination of multiple parties
ensures that the secret is indeed random as long as one participant is
honest, while the commitments ensure that the parties distribute the
shares properly.7

Protocol 2.12 The additive verifiable secret-sharing protocol, whichwe
denote by AVSS(n, k,G, g, p), is an interactive protocol between n par-
ties, numbered 1 through n. The secret is in a field Zp and there is a
corresponding group G, with generator g of the same order, such that
the dl problem in G is hard. Every party has a public signing key that
is known to all the other parties. The parties proceed as follows.

1. Every party i generates secret shares ri,A ∈R Zp for each A ⊂ [n]
of cardinality n − (k − 1). Let xi = ∑A⊂[n],|A|=n−(k−1) ri,A be
this party’s random secret.

2. Party i commits to its secret shares. It does this by calculating
Fi,A = gri,A for all subsets A ⊂ [n], |A| = n− (k − 1), signing
these values and broadcasting them.

3. When every party has broadcast its commitments, every party i
sends its secret shares for party j, that is, the shares ri,A such
that j ∈ A, and a signature on these, securely to party j for j =
1, . . . , n.

7 Despite repeated searches, I have not yet found a reference that contains this algorithm,
or, in fact, any algorithm for the distributed generation of an additive secret sharing.

24 preliminaries

4. Every party i checks that it received the correct secret shares by
checking the shares against the commitments. In particular, for
every party j and subset A ∋ i, it checks that grj,A = Fj,A. If
any of these checks fail, party i will broadcast the corresponding
signature and secret share to identify the misbehaving party. If
any misbehaving parties are identified in this step, the protocol
aborts.

5. Finally, party i computes its shares rA = ∑n
j=1 rj,A for all subsets

A ∋ i, of the shared secret.

When all the parties start out with randomly chosen additive shares,
then this protocol creates a k-out-of-n additive secret sharing of the value
∑n

i=1 ∑A ri,A.

Again, we can extend this protocol to publish the public key corre-
sponding to the shared secret.

Protocol 2.13 The AVSS+ variant of the AVSS protocol, denoted by
AVSS+(n, k,G, g, p), proceeds by first running the original AVSS(n, k,
G, g, p) protocol. Then the public key h corresponding to the shared
secret

n

∑
i=1

∑
A⊂[n]

|A|=n−(k−1)

ri,A

can be calculated using solely public information:

h = g∑n
i=1 ∑A ri,A =

n

∏
i=1

∏
A

gri,A =
n

∏
i=1

∏
A

Fi,A,

where A ranges over all subsets of [n] of cardinality n− (k− 1).

We prove that this AVSS protocol is a proper verifiable secret-sharing
protocol.

Theorem 2.14 The additive verifiable secret-sharing protocol is such that as
long as one party is honest and the protocol completes, the secret sharing is
random, and any subset of k honest parties can recover the same secret.

Proof. In the protocol, every party acts as a dealer. Hence, if at least one
of them is honest, the resulting secret sharing is completely random,
i.e., indistinguishable from a sharing generated by a trusted party.
Next, we show that any subset of k honest users recovers the same se-

cret. Since the protocol completed successfully, no honest party aborted
in step 4. From this, it follows that all honest parties have the same view
of the set of shares {ri,A}A of each party i (as the signed commitments
Fi,A fix each of these values for all honest users), so, if parties i0, i1 ∈ A
then both received the same share ri,A. Therefore, any subset k honest
parties can combine their shares to recover the same secret.

2.6 zero-knowledge proofs of knowledge 25

2.5.2 Non-interactively generating pseudorandom secret-sharings

The downside of Pedersen’s vss algorithm is that it requires communi-
cation among all the parties. This is undesirable when parties cannot
communicate with each other, but also when they are not necessarily
online at the same time.
It would be easier if the parties could derive a new Shamir secret

sharing from an initial sharing of a secret, without communication with
each other. Unfortunately, a Shamir secret sharing itself cannot be used
for this. Instead, we create a new Shamir secret sharing without com-
munication using Cramer et al.’s share conversion scheme [52]. This
scheme converts an additive secret sharing into a Shamir secret shar-
ing.
To additively share a secret s using a k-out-of-n access structure, we

proceed as before and generate a share rA for each set A ⊂ {1, . . . , n}
of cardinality n− (k− 1) such that s = ∑A rA. The share rA is given
to each party i such that i ∈ A.
The advantage of an additive secret sharing is that when all parties

change a share rA in the same way—for example by hashing it—the
result is a new valid secret sharing of a fresh random secret. This is not
possible for a Shamir secret sharing.
To convert the additive shares into a Shamir secret sharing, Cramer et

al. [52] create a secret sharing polynomial f that party i can evaluate only
at point i. Define, for every set A ⊂ {1, . . . , n} of cardinality n− (k− 1),
the unique k− 1 degree polynomial gA such that:

gA(X) =

{
1 if X = 0
0 if X ∈ {1, . . . , n} \ A.

Then, we construct the secret sharing polynomial f (X) as follows:

f (X) = ∑
A⊂{1,...,n}
|A|=n−(k−1)

rA · gA(X).

This polynomial is indeed of the desired degree and f (0) = s. By con-
struction of the polynomials gAs, party i can evaluate f only at f (i).
Furthermore, since gA(0) = 1 we have that f (0) = s, as desired.

2.6 zero-knowledge proofs of knowledge

A zero-knowledge proof of knowledge allows a prover to prove validity
of a statement, for example that it knows the discrete logarithm x of a
public key A = gx, without revealing anything beyond the validity of
this statement. In particular, for the example, the prover does not reveal

26 preliminaries

anything about the value of x beyond that it knows it. These proofs are
proofs of knowledge because there exists a knowledge extractor that on
input of a successful prover can extract the values of which knowledge
is being proven; in the example, the extractor recovers the value x. We
refer to, for example, Smart [150, Chapter 21] for a general introduction.
In our schemes we often use zero-knowledge proofs to let untrusted

parties prove that they followed the protocol correctly. We use a sim-
plified version of the notation of Camenisch and Stadler [39] to denote
these zero-knowledge proofs. More specifically, we write

PK {(x, y) : A = gx ∧ B = gxhy}

to denote the interactive zero-knowledge proof of knowledge of the val-
ues x and y, such that A = gx and B = gxhy. The verifier only learns
the validity of this proof and the values of A, B, g, h, but not the values
before the colon, x and y, of which knowledge is being proven.
An interactive proof of knowledge as above, can be converted into a

non-interactive proof using the Fiat-Shamir heuristic [64]. In this case
we write

SPK {(x, y) : A = gx ∧ B = gxhy} (m)

to denote the signature proof of knowledge (proving the same relation
as above), over the message m.

2.7 anonymous credentials

Anonymous credentials, and attribute-based credentials (abcs) in par-
ticular, are a cryptographic alternative to traditional credentials such as
driver’s licenses and passports. They allow a user to prove that she has
a certain attribute, e.g. membership of a group (or a set of attributes as
for abcs), and sometimes relations and inequalities among attributes,
without becoming identifiable or linkable because of this.
While anonymous credentials can sometimes encode only a single

boolean attribute, they can often containmultiple attributes. Hence, we
prefer the term attribute-based credentials for those that contain mul-
tiple attributes.8 Abcs contain a set of attributes, typically encoded as
numbers, that a user can selectively reveal to a verifier. Even when some
attributes are hidden, the verifier can still assess the validity of the cre-
dential. Again, the identity of the user remains hidden.
There are many methods to construct credentials. One could use an

attribute-based credential system such as U-Prove [25] or Idemix [35],
or directly construct credentials using an appropriate signature scheme

8 In fact, the ABC4Trust project even uses the term privacy-enhancing attribute-based creden-
tials to emphasize that these credentials offer good privacy protection [34].

2.7 anonymous credentials 27

User (U)Issuer (I) issues to
Verifier (V)

shows to

Figure 2.1: Interactions between parties in a credential system.

such as bbs+ signatures [11] (all of these support attributes). If the is-
suer and the verifier are the same party, you could even use algebraic
anonymous credentials [40].
To prevent users from combining credentials from different peo-

ple, credentials are usually bound to a secret key x. Our schemes are
(mostly) agnostic to the choice of credential scheme, so we just write
C(x) to denote a credential over the secret key x, and C(x, a1, . . . , aL)
to denote a credential over the secret key x and attributes a1, . . . , aL.
A typical credential scheme comprises the following three parties, see

also Figure 2.1.

issuer The issuer issues credentials to users. It ensures that the cor-
rect data are stored in the credential, before signing it. A typical
credential scheme has multiple issuers.

user The user holds a set of credentials, obtained from one or more
issuers. In attribute-based credential systems, she can disclose
a (user defined) selection of attributes from any number of her
credentials to a verifier to obtain a service.

verifier The verifier, sometimes called relying party or service provi-
der, checks that the credential is valid, the revealed attributes (if
any) are as required, and the credential is not revoked. Based on
the outcome, it may provide a service to the user.

The process by which a user obtains a credential is called issuance.
While the process of showing possession of a credential is called show-
ing or verification.
Our vote-to-revoke system in Chapter 4 relies heavily on anonymous

credentials, because it allows users to use a unique identity and prove
properties about it without revealing their particular identities. In Chap-
ter 6 we extend attribute based credential schemes with efficient means
of revoking credentials. Both schemes require the following properties:

unforgeability It is not possible for any party in the system to forge
a credential C(x) over a new key x without the help of the issuer.

unlinkability The showing of a credential gives no information
about the owner to the verifier. In particular, it is not possible for
an adversary to distinguish between two users (of its choosing)

28 preliminaries

when it is shown a credential of one of them. (Provided that the
set of disclosed attributes is the same for both users.)

zero-knowledge proofs The showing of a credential C(x) can be
combined with a zero-knowledge proof that proves a statement
about x.

2.7.1 An example credential scheme: bbs+ credentials

A simple credential scheme can be built using bbs+ signatures [11]. We
use bbs+ signatures as an example because its setting—it uses a type 3
pairing and relies on a discrete-logarithm based assumption—meshes
well with our other schemes that also use cyclic groups and discrete-
logarithm based assumptions.
We first describe the signature scheme, and then show how this leads

to an anonymous credential scheme. We present a variant of Au et al.’s
original bbs+ scheme, due to Camenisch et al. [30], that does not require
an efficiently computable isomorphism from G2 to G1. This allows us
to use the more efficient type 3 pairings.

Scheme 2.15 (bbs+ signatures [11, 30]) The bbs+ signature scheme is
given by the algorithms BBS.KeyGen, BBS.Sign, and BBS.Verify.

• BBS.Setup(1ℓ). On input of a security parameter ℓ this algorithm
generates a type 3 bilinear group pair (G1,G2), both of prime
order p of ℓ bits, generated by g and h respectively. The pairing
is given by ê : G1 ×G2 → GT , where GT is generated by gT =
ê(g, h). It publishes (ê(·, ·),G1,G2,GT , p, g, h, gT).

• BBS.KeyGen((ê(·, ·),G1,G2,GT , p, g, h, gT)). The key genera-
tion algorithm takes as input a description of the groups (ê(·, ·),
G1,G2,GT , p, g, h, gT) as above. It randomly chooses genera-
tors B0, . . . , BL ∈R G1. Next, the algorithm picks a private key
γ ∈R Zp and computes w = hγ. The algorithm publishes a de-
scription of the groups (and related functions) and returns private
key γ and the public key ∆ = (w, B0, . . . , BL).

• BBS.Sign((m1, . . . , mL), γ, ∆). To sign a tuple of messages (m1,
. . . , mL) ∈ ZL

p using a private key γ and corresponding public
key ∆ = (w, B0, . . . , BL), randomly generate e, s ∈R Zp and set

A =

(
gBs

0

L

∏
i=1

Bmi
i

) 1
e+γ

∈ G1.

The signature σ on (m1, . . . , mL) is then given by (A, e, s).

2.7 anonymous credentials 29

• BBS.Verify ((m1, . . . , mL), σ, ∆). The verification algorithm takes
as input a tuple of messages (m1, . . . , mL) ∈ ZL

p , a signature σ =
(A, e, s), and a public key ∆ = (w, B0, . . . , BL). It then checks
that

ê(A, whe) = ê(gBs
0

L

∏
i=1

Bmi
i , h). (2.1)

If the equation holds, it returns ⊤ otherwise it returns ⊥.

Camenisch et al. prove the following theorem.

Theorem 2.16 (Camenisch et al. [30]) The bbs+ signature scheme is ex-
istentially unforgeable under adaptive chosen message attacks provided the
q-sdh assumption holds.

To use a signature scheme as a credential scheme two things need
to change: (1) it should be possible to sign messages without the signer
knowing these messages (because in a credential scheme the creden-
tial typically contains the user’s private key that binds the credential to
the user and that key should not become known to the issuer) and (2)
it should be possible to prove possession of a signature without being
linkable.
The user can run the following BBS.Issue protocol with an issuer to

get a signature on attributes (a1, . . . , aL), such that the issuer does not
learn the values of the attributes (ai)i∈H [11].

• BBS.Issue(). The BBS.Issue protocol is run jointly by a user and
a issuer (acting as a signer). Let (a1, . . . , aL) be the user’s private
input, the message tuple to be signed. The issuer has as input
the private key γ. Let D ⊂ [L] be the set of indices of attributes
determined by the issuer. Then, the attributes with indices in
H = [L] \ D are determined by the user (the issuer does not
learn the value of these attributes). First, the user creates a com-
mitment

C = Bs′
0 ∏

i∈H
Bai

i

using a random s′ ∈ Zp, sends it to the issuer, and proves it is
well formed:

PK

{
((ai)i∈H, s′) : C = Bs′

0 ∏
i∈H

Bai
i

}
. (2.2)

If the proof verifies, the issuer randomly generates s′′, e ∈R Zp,
sets

A =

(
gBs′′

0 C ∏
i∈D

Bai
i

) 1
e+γ

∈ G1

30 preliminaries

and returns the transient signature (A, e, s′′) to the user. The user
calculates s = s′ + s′′ and stores the real signature σ = (A, e, s).

It is easy to verify that the resulting signature σ is indeed a correct sig-
nature on the attributes a1, . . . , aL, and that the issuer does not learn
anything about the attributes (ai)i∈H due to the information theoretic
hiding property of the commitment C. The user can extend the proof of
knowledge in equation (2.2) to prove other relations about the attributes
(for example that one of the attributes is the private key corresponding
to the user’s public key).
A user can also show that she has certain attributes by proving posses-

sion of a signature over these attributes [11]. She hides the signature σ
and hidden attributes (ai)i∈H using a zero-knowledge proof. The zero-
knowledge proof convinces the verifier that the signature σ = (A, e, s)
satisfies equation (2.1). This proof is due to Au et al. [11] and is con-
structed as follows.
Let g1 and g2 be two extra generators in G1, and let H and D be

the set of hidden and disclosed attributes as before. First, the user cre-
ates a commitment C1 = Agr1

2 to A, where r1 ∈R Zp is a randomizer,
and then commits to the randomizer as well using C2 = gr1

1 gr2
2 where

r2 ∈R Zp. Then, she sends these commitments to the verifier. These
commitments perfectly hide the value of A. Finally, she engages in the
following zero-knowledge proof with the verifier:9

PK

{
(r1, r2, α1, α2, e, (ai)i∈H, s) : C2 = gr1

1 gr2
2 ∧ Ce

2 = gα1
1 gα2

2 ∧

ê(C1, w)ê(C1, h)e = ê(g, h)ê(B0, h)s

∏
i∈H

ê(Bi, h)ai ∏
i∈D

ê(Bi, h)ai ê(g2, w)r1 ê(g2, h)α1

}
,

to prove that she indeed possesses a signature (in the proof α1 = er1
and α2 = er2).
In the following wewill typically just write PK{(a1, a2) : C(a1, a2)} to

denote a proof of knowledge involving a credential C over the attributes
a1 and a2, even if the credential is actually constructed using bbs+ sig-
natures. If we want to be more explicit, we abuse notation and write

PK

{
(A, e, (ai)i∈H, s) : Ae+γ = gBs

0 ∏
i∈H

Bai
i ∏

i∈D
Bai

i

}
to denote the proper disclosure proof given above.

9 For clarity we have been slightly liberal in our notation, and did not restrict ourselves to
known terms on the left hand side of the equality signs. It is easy to see that all equations
can be brought into this form.

3
REVOCABLE PR IVACY: PR INCIPLES AND USE
CASES

As we saw in Chapter 1, one way to refute the rhetoric of security ver-
sus privacy is to demonstrate systems that have both in equal measures.
To this end, Hoepman rekindled the term revocable privacy to describe
systems that have both security and privacy. The core idea of revoca-
ble privacy arises from the realisation that it is not the data themselves
that are (or should be) important, but rather the violations of certain
rules that manifest themselves in the data. Data related to people who
do not violate any rules are irrelevant, and, in fact, these people should
remain anonymous, as if no data on their behavior was ever collected.
Revocable privacy is a design principle that ensures this property. Infor-
mally speaking, a system offers revocable privacy if users of the system
are guaranteed to be anonymous except when they violate a predefined
rule, or, even more directly: in a system with revocable privacy users
are anonymous until they misbehave.
To ensure privacy, the system’s anonymity guarantees cannot rely on

policy and regulations alone. It is all too easy to ignore policy, to sidestep
it, or to change it retroactively. As a result, data that were collected for
one specific purpose can easily be reused for another—violating people’s
privacy. A key aspect of a system implementing revocable privacy is to
prevent this type of function creep through technical means: it should
not be possible to change the rules retroactively.
In Chapter 1 we already briefly mentioned the example of an anony-

mous electronic cash system by Chaum, Fiat and Naor [44], which we
revisit here. This electronic cash system actually implements revocable
privacy (although Chaum et al. did not use this term). Users have elec-
tronic coins, which they can spend as if they were physical coins, in ef-
fect making an untraceable digital payment system in which the users’
privacy is guaranteed. However, to maintain security, this anonymity
cannot be unconditional. If it were, it would allowmisbehaving users to
double-spend the digital coins without consequence. Instead, the revo-
cable privacy aspect of the design guarantees that users are anonymous,
as long as they spend the digital coins only once. When they do spend
a coin twice, their identity can be recovered from the two transaction
records of the two spendings. Any single transaction record, however,
gives no information about the identity of the user. This is thus a per-
fect example of the principle of revocable privacy.

31

32 revocable privacy: principles and use cases

In general, to ensure anonymity for rule-abiding users, data must be
collected in a special manner. In Chaum et al.’s electronic cash system,
the cut-and-choose paradigm is used to ensure that a single transaction
record gives no information, whereas two records for the same coin re-
veal the identity of the culprit. Distributed encryption [83, 114], see Chap-
ter 5, offers another method for creating threshold based rules. Using
distributed encryption, the user’s identity is revealed only if she causes
an event to happen at sufficiently many different locations.
While Chaum et al.’s electronic cash could be seen as such a scheme

with a threshold of two, it differs significantly from distributed encryp-
tion. In the first, the user actively partakes in the transaction, whereas
in the second, the user deliberately does not take part. As a result,
these systems have different privacy guarantees and trust assumptions.
These different aspects of revocable privacy have not been explored yet.
In all previous work on revocable privacy [82, 83, 110, 114], the focus

was on identifying users who violate the rules. However, in some situ-
ations, such an approach might be too strong. For example, anonymity
is the core property of Tor [59], so it should never be possible to deanon-
imize users. Yet, Tor can also be abused. In order to stop abuse, some
approaches, such as blacklistable anonymous credentials (blac), aim to
block misbehaving users, rather than to identify them [159].1

This chapter’s first contribution, in Section 3.1, is to re-examine revo-
cable privacy in a more general setting. We consider the implications
of different security models, and explore ramifications of users’ actions
that are less invasive than simply identifying users, for example, block-
ing users and linking their actions. In fact, in Chapter 4 we create a vote-
to-link system that links a user’s actions (within a limited time frame)
when she misbehaves.
Next, we explore and classify some use cases for revocable privacy in

Section 3.2. We generalize the underlying rules of the use cases into
abstract rules. These use cases illustrate that even if a user has violated
a rule, she did not necessarily do something wrong. In fact, we will
explore some systems where a violation only means that closer exami-
nation is necessary.
The abstract rules for the use cases make it possible to link them to

specific techniques. Our final contribution, in Section 3.3, is to give a
brief non-technical overview of existing techniques that can be used to
implement revocable privacy. For each technique, we indicate which
abstract rules it can implement. This not only shows which use cases
we can already solve, but also highlights which abstract rules we cannot

1 Nymble [160] is a related system that can be used to block misbehaving users. However,
it relies on a trusted party that can make users linkable if they misbehave, so we do not
consider it further in this chapter.

3.1 revisiting the concept of revocable privacy 33

yet implement. We analyse the latter in Section 3.4 to reveal interesting
new research directions. We also discuss some general limitations of
revocable privacy. Finally, we conclude this chapter in Section 3.5.
We stress that revocable privacy is not a license for unchecked sur-

veillance. The use cases explored in this chapter come from various
sources. Some of them are real, others are purely hypothetical. Inmany
cases the legality and/or morality of the situation described in the use
case is debatable. We have included them for the sole purpose of inves-
tigating the types of rules a system with revocable privacy might need
to implement in the future. Inclusion of a use case in this chapter does
not mean that we endorse it in any way.

3.1 revisiting the concept of revocable privacy

In this sectionwewill (re)define revocable privacy. We first explore what
it means to be anonymous and what levels of anonymity exist.

3.1.1 Levels of anonymity

At first sight it may seem that anonymity is an all-or-nothing property:
either you have it or you do not. This is false. There are many shades
of anonymity, ranging from fully anonymous to fully identified. For
example, users might be pseudonymous: their actions are known un-
der a fixed identifier—the pseudonym—but it is not necessarily known
which pseudonym belongs to which user.
Some pseudonyms can be easily related to the owner’s full identity by

at least one party (but not necessarily by everyone). For example, your
social security number, bank account number, and passport number,
can be related to your full identity by, respectively, the government, the
bank and the government again. Other pseudonyms, such as the ran-
domly generated identifier stored in a website’s cookie, are often much
harder to relate to the owner’s full identity, although analysis of transac-
tions related to such pseudonyms generally still allow identification [131].
See, for example, Leenes [102] for a more thorough discussion of differ-
ent types of identifiability based on pseudonyms.
To improve their anonymity, users can use different pseudonyms

with different parties or in different situations. They can even use pseu-
donyms that change frequently. (We use variants of these temporary
pseudonyms in Chapters 4 and 6.) However, it is possible to have
even stronger forms of anonymity. When a user’s actions are unlink-
able, it is impossible to determine whether two actions were performed
by the same user or by different users. (This linking is trivial in a
pseudonymous system with fixed pseudonyms.) When we say that a

34 revocable privacy: principles and use cases

system is fully anonymous, we mean that it has this level of unlinkabil-
ity. See Pfitzmann and Hansen [138] for a more thorough discussion of
pseudonymity, anonymity and unlinkability.
Alternatively, we canmeasure a user’s anonymity mathematically [58,

145]. To this end, we calculate for each user the probability that she
performed a given action, taking into account the prior knowledge of
the adversary. Full anonymity in this setting means that all users are
equally likely to have performed an action.
These ranges in anonymity have two consequences when dealing

with revocable privacy. First, you can lose anonymity (because you vio-
lated a rule) without becoming fully identified. For example, you could
become temporarily linkable as in Chapter 4. Second, it is better to see
losing anonymity in relation to other participants in the system, as some
systems may not offer full anonymity in the first place.

3.1.2 Improving the definition

Hoepman [82] originally defined revocable privacy as follows:

“A system implements revocable privacy if the architecture
of the system guarantees that personal data are revealed
only if a predefined rule has been violated.”

There are some problems with this specific definition. First, the rule
explicitly mentions personal data. Companies, however, might have an
equally big desire for protecting their corporate data (e.g., their busi-
ness processes). Moreover, as we explored in the previous section, re-
vealing personal data is not always necessary; there are other ways to
lose anonymity, for example, by making actions linkable. Sometimes,
it even suffices just to block the user.
The definition could also be extended to include cases where reveal-

ing a user’s personal information could be positive to the user, rather
than just negative, as we have discussed so far.2 One example is privacy-
friendly matching on a dating site, where you get each other’s contact
information only if the profiles match. However, we think that such sys-
tems should not be classified as having revocable privacy, as this makes
the definition too broad, almost to the point of including all privacy-
enhancing technologies.
The second problem we have with this definition is that it is very easy

to misread it and assume that if a person were to violate the rule then
personal data are revealed. However, it does not say that. It states just
that personal data may be revealed only if the rule is violated.

2 In fact, we suggested this approach in our technical report [110].

3.1 revisiting the concept of revocable privacy 35

We incorporate these suggestions into the following revised defini-
tion of revocable privacy. We focus on anonymity rather than personal
data and rephrase the rule to clarify that violating a rule does not neces-
sarily imply the release of personal information.

Definition 3.1 A system implements revocable privacy if the architec-
ture of the system guarantees a predefined level of anonymity for a par-
ticipant as long as she does not violate a predefined rule.

As required, this definition does not say anything about the conse-
quences when a participant does violate the rule. In practice there will
be a consequence. If the system implements revocable privacy this usu-
ally means that the participant loses anonymity. However, this defini-
tion also allows for revocable privacy systems where the consequences
do not reduce anonymity, for example when the violator is blocked from
making further actions.

3.1.3 Systems and rules

In the above definition, we consider the system as the environment with
which the user interacts, andwithin which certain rules should bemain-
tained. For example, in Chaum et al.’s electronic cash scheme, this sys-
tem is the payment environment.
Rules are part of the system, and we require them and their parame-

ters to be predefined. For example, if the abstract rule is “A participant
is allowed to cause an event atmost k times”, then the threshold k should
be defined for every instantiation. This requirement prevents function
creep and ensures clarity. If, instead, parameters should be config-
urable afterwards—e.g., if some criteria are not known in advance—the
rule should explicitly state this. Similarly, using a trusted third party to
enforce a rule is not allowed. If, instead, it is necessary to rely on the
decision of third parties, the rule should explicitly capture that too.
We impose no other restrictions on the rules as this allows us to best

capture the notion of ‘anonymity until violation of the rules’. In particu-
lar, we do not demand the rules to be known to the participants. While
it is better that the rules are known to prevent the chilling effect, there
might be circumstances where they must be kept secret.
We realize that the freedom in choosing rules (and keeping them se-

cret) makes the rules a very powerful instrument. In fact, a rule might
simply require all events to be output, or allow parameters to be set to
non privacy-friendly values. Thus, careful scrutiny of the rules is of the
utmost importance. The designers of the rules must ensure that the
reduction in privacy that results from violating a rule is proportional to
the detected behavior.

36 revocable privacy: principles and use cases

Ensuring proportionality is particularly important when violation of
a rule does not necessarily imply that the participant is misbehaving. It
may only be an indication of misbehavior (as in the canvas cutters use
case, see Section 3.2.1) or even that the participant might be harmed (as
in the detecting child abuse case, see Section 3.2.3).

3.1.4 Architecture of a system

What does it mean for the architecture of the system to protect the
anonymity of well-behaving users? As we argued before, policies and
procedures do not offer sufficient protection against function creep and
misuse of the data in the future. We cannot assume that the raw data
remain secure forever. Instead, it is much better, as Kapor [91] argues,
to rely on the architecture of the system (the manner in which it is built,
including the cryptography) to enforce the rules and to guarantee the
anonymity of rule-abiding participants.
However, systems implementing revocable privacy cannot always of-

fer unconditional anonymity either. It matters how the user’s actions
are observed within the system. For example, if the system sees what
the user does, but needs to forget it, we have to trust the system to actu-
ally forget. In this section, we explore the trust assumptions in a system
implementing revocable privacy.
To determine these assumptionswe examine howdata are collected—

is the identity of the user ever known?—and how they are stored. We
consider three conceptually different methods. For reference, we first
describe the traditional method where the user is known and the data
are stored in the clear. In the second method, the user is still identified,
but only processed information is stored; the user’s identity is forgotten.
In the third, the user is never identified.
In all of these situations, data resulting from the user’s actions are

stored. A final post-processing procedure, that is based on the rule,
takes these data as input and outputs data such that a (negative) con-
sequence for the participants can be effected. Usually, these data will
reduce the anonymity, but they might also be used just to block fur-
ther access to the system—as is the case in blacklistable anonymous
credentials (blac). Both how the data are encoded and how they are
post-processed depend on the rule. In a system with revocable privacy,
it is not possible to change the rule and then reprocess old data (that
were collected using a different rule) according to the new rule.

3.1 revisiting the concept of revocable privacy 37

Plaintext logging

For contrast, we first describe the obvious method for implementing
a system with rules. Users are never anonymous with respect to the
system. Every relevant action by the user—relevant with respect to the
rules that are to be enforced—is stored together with the user’s identity.
Violations of the rules are detected by checking the rules against the

stored data. Since the user’s identity is also stored, any consequence to
the user’s actions can immediately be enforced.
Any anonymity guarantees offered by such a traditional system rely

on the policies and regulations that protect access to the stored data and
that govern the data retention policies. Hence, trust lies in the policies.
Because this is not an architectural protection, we say that such a system
does not offer revocable privacy.
One way to bolster the protection is to add one or more trusted third

parties that decide if the rule is violated and then carry out the desired
consequence. Hoepman [82] says such a system, which he calls of the
spread responsibility type, does have revocable privacy. However, since
the system does not enforce the rule we do not consider that to be the
case in this chapter. Instead, we focus solely on systems that, according
to Hoepman, have a self-enforcing architecture, where the architecture
determines if the anonymity guarantee can be weakened.
Similarly, Stadler, in his thesis [155], also proposes the use of trusted

third parties (or ‘trustees’) that can revoke a users anonymity when there
is a need to do so. Since these trusted third parties can enforce any rule,
we do not consider these systems to have revocable privacy.
Schwartz et al. take a related approach to revocable privacy in their

contractual anonymity system recap [144]. In our terminology, using
recap, a user agrees to abide by a set of rules by registering her iden-
tity and the set of rules with an accountability server. Thereafter, the
user can interact anonymously with the system. If she ever violates the
rules, the system can ask the accountability server to reveal the identity
of the user after presenting proof of the violation. The key difference
with Stadler is that the accountability server is not arbitrarily trusted, in-
stead, users use remote attestation to verify that the software running on
the accountability server will reveal a user’s identity only if she violates
the agreed upon rules. While relying on the physical security provided
by trusted computing (or hardware security modules for that matter)
is surely better than simply trusting a third party, we focus instead on
solutions that rely solely on cryptographic assumptions.

38 revocable privacy: principles and use cases

Non-interactive sensors with encoding

The second method uses sensors to process users’ actions before stor-
ing them in encrypted form. This approach drastically improves the
anonymity guarantees, without requiring changes to the users of the
system. As with plaintext logging, the actions of the participant and its
identity are visible to the system, however, they are never stored directly.
Instead, a sensor (there can bemany sensors in a system) observes these
actions and identities, and then transforms them, based on the rule, into
encrypted data. Only these encrypted data are stored. The sensors are
non-interactive: they do not communicate with the observed user.
The encryptionmethod is special. There is no key that can be used to

decrypt the data. Onlywhen the encrypted data correspond to a violation
of the rule, can they be decrypted to produce some useful output.
To guarantee anonymity, we need to trust that the sensors behave as

specified. In particular, we trust that sensors do not store their inputs.
In addition, many sensors use private keys, in which case we trust them
to keep these secret too. These private keys ensure that even if the sen-
sors’ outputs are deterministic (i.e., the sensors do not use randomness)
an attacker cannot simply confirm a suspected event based on the stored
data by simply calculating the same function as the sensor.
Despite these strict trust assumptions on the sensor, these systems

can be very useful because they can be used as a drop-in replacement
for traditional systems. In particular, they do not require any changes
to the user’s side. For example, non-interactive sensors can be used to
enforce speed limits based directly on cars’ license plates (rather than
equipping all cars with equipment to communicate directly with road
side equipment). Of course, the sensors and the rest of the system still
need to be adapted to work with the encrypted data. In some sense, the
sensors act on behalf of the user.
In Chapter 5 we construct a distributed encryption scheme that is of

this type, i.e., the sensors are non-interactive and do not communicate
with the observed parties. It shows, among other things, how to imple-
ment speed limiting with revocable privacy.

mitigating the trust required in the sensors. In some
cases, such as the threshold system described in Section 3.3.1, the sen-
sors are distributed. In this case, it may be possible that some are com-
promised, while the system as a whole still offers (some) anonymity.
Another approach that is useful in this setting is to make sure that

the system is forward secure. Loosely speaking this would imply that if
a sensor is compromised, it impacts only future events. Our distributed
encryption scheme in Chapter 5 has this property. We will discuss this
property further in that chapter.

3.2 use cases 39

Interactive sensors

In the third and final method, there is no sensor that simply observes
the user; the user herself needs to be actively involved and interact with
the sensor. We see this structure in existing systems offering revocable
privacy. For example, in Chaum et al.’s electronic cash system the user
interacts with the receiver to spend a coin, whereas in blac the user
constructs a proof that at that point in time she was not blacklisted.
The advantage of this approach is that the user can use this inter-

action to hide some information, in particular her identity, from the
sensor, so that it is never known to the system. As a result, the user’s
anonymity does not rely on the trustworthiness of parties within the sys-
tem. The downside is that the user needs to interact with the sensors.
However, the user cannot hide all data. The system still needs to en-

force the rule. In systems with interactive sensors, the users provide
the encrypted data that are used to enforce the rule themselves—as op-
posed to systems with non-interactive sensors, where sensors produce
these encrypted data on behalf of the user.
Sensors should verify that the data constructed by the user is correct,

lest the user avoid the consequences of violating the rule. However,
since the user’s identity is hidden, the sensor cannot rely on its own
inputs to verify correctness. Instead, this burden falls on the participant:
she needs to convince the sensor that the supplied data is correct. For
example, in blac the user uses an anonymous credential to bind the data
she produces to her identity, without revealing that identity. To enable
these proofs, the user usually keeps track of some secret information.
In Chapter 4 we construct a vote-to-link scheme that is of this type,

i.e., the users communicate actively with the sensor. In this scheme,
users prove that they supplied the correct values by relating them to
anonymous credentials in their possession.

3.2 use cases

We now present a number of use cases that could benefit from revoca-
ble privacy. These use cases are the result of interviews with security
experts, internal discussions and a review of the privacy-enhancing tech-
nologies literature. This overview is by no means exhaustive. Instead,
it serves as a motivation for revocable privacy and as a source of insight
into the abstract rules underlying these cases. We use these abstract
rules to determine which cases we can already solve, and for which ones
we need to develop new primitives.
We omit some of the use cases from our original analysis [110]. As

we discussed in Section 3.1.2, we omit cases where the user would ben-
efit from having its anonymity revealed. Other cases we omit because

40 revocable privacy: principles and use cases

they are too vague or not interesting. Finally, we omit cases that simply
give too much power to a government agency, even if only suspicious
behavior would be detected.
We sort and categorize the use cases based on the type of rule that

the system should enforce. The rules are roughly ordered by complex-
ity. We start with three simple classes. The first class is that of threshold
rules, where an event should not happen too often. The second class,
containing predicate rules, consists of rules that logically combine sim-
pler events. The third class covers cases where the rule encodes a hu-
man decisionmaking element—for example, a judge signing a warrant.
Next, we consider two classes of more complicated rules. The first

class covers rules that aremore complex than any of the aforementioned.
For example, rules about flows on graphs (useful in tax situations) and
about combining (private) information into the decision making pro-
cess. The second class covers rules that are fuzzy and would normally,
evenwhen no anonymity is required, involvemachine learning and data
mining techniques.
For each of these classes we present several use cases. For every use

case, we describe the case, extract an abstract rule and note the con-
sequence of violating that rule. While the use cases focus on specific
scenarios, the abstract rules generalize the rule within these scenarios.
It ignores the scenario specific details. This makes it easier to deter-
mine which use cases have similar rules, and which techniques might
be used to solve a use case using revocable privacy. Table 3.1 presents
an overview of all use cases, recording the type of sensor,3 the source of
the use case, and potential solutions.

3.2.1 Threshold rules

A threshold rule has the form “a certain action should be performed no
more than k times (within a certain time period)”. The most common
consequence of violating the rule is to reveal the violator’s identity, how-
ever, it is also possible to block the user. A threshold of one is possible
in some of these scenarios. The following use cases work with thresh-
old rules.

Canvas cutters

This case, as well as the following two cases, focusses on detecting bad
or suspicious behavior involving cars. As cars are generally not able to
communicate with roadside equipment, we focus on the scenario where

3 Since we limit ourselves to revocable privacy solutions, we only consider non-interactive
and interactive sensors, and omit plaintext logging.

3.2 use cases 41

an automatic number plate recognition system reads the license plates
of passing cars. This makes using a non-interactive sensor the only
viable option.
Criminals frequently loot trucks parked at rest stops by cutting the

canvas that protects the goods (hence the name of the use case). One
way to detect these criminals is to look for cars that enter several dif-
ferent rest stops within a couple of hours [158]. These cars are suspi-
cious. While false positives cannot be eliminated—e.g., police cars and
road-side assistance vehicles may cause them as well—most hits will
correspond to suspicious behavior.

abstract rule Given n sensors at different locations, a participant
should trigger fewer than k different sensors within a given time
period.

consequence of violation The system learns the identity of the
participant.

Object surveillance

Related to the previous problem is the problem of casing: criminals
checking out a location, such as a sensitive piece of infrastructure, mul-
tiple times. These criminals can be detected by looking for cars that pass
by this location frequently. This case is not the same as the canvas cut-
ters use case. In particular, here all events contribute to the threshold,
whereas for the canvas cutters case the number of different locations of
the events matters. Again, false positives cannot be eliminated.

abstract rule Given one or more sensors, a participant should trig-
ger fewer than k sensors (counting repeats) within a given time
period.

consequence of violation The system learns the identity of the
participant.

Average speed checking

Besides spot checking with a speed camera, some countries have de-
ployed average speed checking systems which measure a car’s speed
along a stretch of road. For spot checks it is immediately clear whether
an observed car is speeding. However, average speed checking requires
some form of storage to determine the time it took a car to traverse
a stretch of road. Phrased as a revocable privacy problem: the sys-
tem should output the license plates of cars that pass two measuring
station—one in the beginning and one at the end—within a too short
time period.

42 revocable privacy: principles and use cases

abstract rule Given n sensors at different locations, a participant
should trigger fewer than k different sensors in any time period
of a given length.

consequence of violation The system learns the identity of the
participant.

Sale of valuable objects

Consider the notarized sale of valuable objects such as houses. Objects
that change hands frequently may indicate fraud or money laundering
and may therefore be suspicious. To detect these sales—while keeping
non-suspicious sales private—authorities may want to inspect those ob-
jects that are processed by many different notaries.4

In this scenario, keeping sales private protects the privacy of the legiti-
mate owners. However, the system operates on the identity of the object.
Since these objects cannot yet act on their own behalf, non-interactive
sensors must be used.

abstract rule Same as for canvas cutters (but for objects instead of
participants).

consequence of violation The system learns the identity of the
object.

Anomalies in logs

Servers keep activity logs. These logs can be used to detect attacks. One
example of such an attack are repeated log-in attempts from the same
remote system. These are easy to spot in the logs as they all originate
from the same system. However, it is usually not necessary keep the
logs for all the authentic users.
By nature of the system (the remote systems are identified by ip ad-

dress) we can use non-interactive sensors to detect which remote sys-
temmakes frequent fraudulent login attempts. These systems can then
be blocked.

abstract rule Same as for object surveillance.

consequence of violation The system learns the identity of the
participant or the system blocks the participant from further ac-
cessing the system.

4 Alternatively, the system may also detect objects that are sold often in general, making
the rules the same as in the object surveillance use case.

3.2 use cases 43

Sharing anonymous resources

Some systems give people anonymous access to a resource on the basis
that they can prove something—e.g., that they have a license to a game,
or that they are of a certain age. While this anonymity is good for the
user, it also makes it trivial to share the access with any number of peo-
ple without detection. To limit this sharing, people could be allowed
only a limited number of accesses per time period. When this value is
exceeded—it should be chosen in such a way that under normal use it
is not—the identity of the presumed sharer is revealed or the presumed
sharer is blocked from accessing the system.
Since the user and the system already interact, we prefer interactive

sensors.

abstract rule Participants can perform actions. A participant of the
system should perform each action fewer than k times per time
period.

consequence of violation The system learns the identity of the
participant.

No-shows in anonymous reservations

Consider anonymous reservations of resources such as cinema seats,
museum access or computing resources based on unlimited access
subscriptions. Resources are often scarce, making no-shows undesir-
able. For example, the (non-anonymous) restaurant reservation app
OpenTable allows restaurants to charge fees for no-show reservations
and OpenTable deactivates accounts in case of too many no-shows.5

If the system is fully anonymous, however, it is not possible to dis-
courage no-shows. Instead, we would like to construct a system that
either blocks or deanonymizes a user if she does not use a reservation,
or fails to do so too often, but lets honest users be anonymous. Note the
difference with the abstract rule for sharing anonymous resources: the
event that should not happen too often is negative (i.e., not claiming the
reserved resources) rather than positive.

abstract rule Participants can reserve resources. Participants may
fail to claim a reserved resource fewer than k times per time pe-
riod.

consequence of violation The system learns the identity of the
participant or the system blocks the participant from making fur-
ther reservations.

5 https://community.opentable.com/t5/My-Account/What-is-your-cancellation-and-no-
show-policy/ta-p/95 last visited July 3, 2017.

https://community.opentable.com/t5/My-Account/What-is-your-cancellation-and-no-show-policy/ta-p/95
https://community.opentable.com/t5/My-Account/What-is-your-cancellation-and-no-show-policy/ta-p/95

44 revocable privacy: principles and use cases

Electronic cash

As we discussed in the introduction, another common case for revoca-
ble privacy is electronic cash [43]. Users are given digital coins that they
can spend anonymously. However, they are not allowed to spend the
same coin twice. This form of electronic cash is a threshold systemwith
a threshold of two.
As before, using a non-interactive sensor is not desirable as the user

already interacts with the receiver of the coin when she is spending it.

abstract rule Participants can perform actions (e.g., spend a spe-
cific coin). Participants may perform each action at most once.

consequence of violation The system learns the identity of the
participant.

3.2.2 Predicate rules

Not all rules are as simple as limiting the occurrence of an event. In this
section we consider a class of rules that combine different indicators,
similar to logical formulas.

Social welfare fraud

In the Netherlands people can receive social welfare when they are un-
employed. The amount received depends on the number of people
in the household. In particular, people receive less welfare when they
share living expenses. Some people defraud the system by incorrectly
reporting that they live alone.
To detect possible cases of fraud, the municipality of Groningen

looked for people who received social welfare and who indicated living
alone but had higher utility consumptions (water, gas, electricity and
waste) than would correspond to a one person household.6 This search
required collecting information from different sources. Using revoca-
ble privacy, it would be possible to combine these data, and only recover
the suspected violations.
Data can be supplied to the system either using non-interactive sen-

sors (for example, the utility companies and the government) or directly
by the cooperating welfare recipients (the system verifies that they be-
have honestly).

6 The original source, http://gemeente.groningen.nl/algemeen-nieuws/2010-1/sociale-
dienst-spoort-bijna-driehonderd-gevallen-van-bijstandsfraude-op (Dutch, last accessed
January 29, 2012), is currently unavailable. The same technique is mentioned
on http://www.nu.nl/politiek/2670044/aanpak-bijstandsfraude-bestandskoppeling.html
(Dutch, last accessed February 17, 2017).

http://gemeente.groningen.nl/algemeen-nieuws/2010-1/sociale-dienst-spoort-bijna-driehonderd-gevallen-van-bijstandsfraude-op
http://gemeente.groningen.nl/algemeen-nieuws/2010-1/sociale-dienst-spoort-bijna-driehonderd-gevallen-van-bijstandsfraude-op
http://www.nu.nl/politiek/2670044/aanpak-bijstandsfraude-bestandskoppeling.html

3.2 use cases 45

abstract rule Let DI be a set of data items associated with a partici-
pant I, and letP be a predicate over such data items. ThenP(DI)
must be false.

consequence of violation The system learns the identity of the
participant.

Detecting terrorist activity

Contrary to the canvas cutters use case, law-enforcement-like casesmay
instead depend on a combination of various indicators to find criminals.
One rather primitive example works as follows. A person who buys
fertilizer, rents a van and scouts a government building in a short period
of time may be planning to make and set off a bomb.
Any one of these events might be totally benign. It is only the combi-

nation that leads to suspicion. In practice, the rules may be more com-
plicated and involve different data items. Usually, the actual actions
and the identity of the person performing them are known, making
non-interactive sensors the most obvious choice.

abstract rule Same as for social welfare fraud.

consequence of violation The system learns the identity of the
participant.

3.2.3 Decision rules

All previous rules depend only on the inputs they receive. Given these
inputs, the outcome is clear. People do not take part in the decision
making process. However, sometimes this decision process is essen-
tial. For example, we do not know how to codify the rule “posts should
not be offensive.” Such a rule is better suited for human decision mak-
ing. In this section, we discuss a few rules that include human decision
making.

Detecting child abuse

This first rule is actually a threshold rule, but with human decisions as
input. Professionals working with children, e.g., doctors and teachers,
may suspect abuse. However, for fear of causing undue panic and be-
cause reports would become part of the child’s record, they may decide
not to report this. These concerns would be alleviated if these reports
could be made in such a way that a child’s identity becomes available
only when a predetermined number of professionals agree that a child
might be abused. In this situation using an interactive sensor is truly

46 revocable privacy: principles and use cases

undesirable as it would alert the child or its guardians to the suspicion
of abuse.

abstract rule Given n deciders, fewer than k deciders should mark
a participant as suspect.

consequence of violation The system learns the identity of the
participant.

Blocking anonymous edits

In the previous case it was essential that there was no interaction with
the participant (the child). Here, we consider another case where in-
teraction is possible: anonymously editing Wikipedia pages. Given the
sensitive nature of some Wikipedia pages, it would be beneficial to al-
low anonymous edits. Yet, this anonymity can also facilitate abuse, and
this abuse is usually not easily detected automatically. Yet, people are
good at this task, in fact, Wikipedia is based on this principle.
To protect the system, an anonymous user should be blocked from

making further edits if one or several of her edits have been classified
as abusive. Even though a moderator can classify an edit as abusive,
and thus block a user, the moderator should never be able to recover
the identity of the editor. Contrary to the detecting child abuse case, the
following abstract rule acts on the participant’s actions, rather than on
the participant herself.

abstract rule Participants can perform actions. A participant
should perform fewer than k bad (as determined by the system)
actions per time period.

consequence of violation The system blocks the participant
from performing further actions.

Linking anonymous edits

By blocking malicious editors the system limits the damage that these
editors can do in the future. However, as we explain in Chapter 4, this
might not suffice. A lot of damage might already have been done by the
malicious editor before she is eventually blocked.
To help the system recover from abuse, the vote-to-link system from

Chapter 4 instead links previous actions of a malicious editor within a
limited time window (say, a day). Since this decision is rather invasive,
the edits should only be linked if a sufficient number of moderators
agree to do so.

3.2 use cases 47

Since the user already interacts with the system, an interactive sen-
sor should be preferred (in particular because a non-interactive solution
would allow the system to see the participant’s identity).

abstract rule Given n moderators. Participants can perform ac-
tions. Each action should be marked as bad by fewer than k
moderators.

consequence of violation The system links the actions of the
participant within a predetermined time window.

Deanonymizing comments

Like edits on Wikipedia, some posts on an online bulletin board might
be made anonymously. Another method of discouraging abusive com-
ments is to hold the authors accountable by actually revealing their iden-
tity. As with linking, the identity of the author should only be revealed
if a sufficient number of moderators agree to do so.
It is possible to build this system with a non-interactive sensor. How-

ever, the user already interacts with the system, so an interactive sensor
provides better privacy.

abstract rule As for linking anonymous edits.

consequence of violation The system learns the identity of the
participant.

Wiretapping policy

Typically, law enforcement agencies require permission, for example
from a judge or other authority, before they can legally tap phone and
internet connections. However, this is enforced only by policy.
To increase privacy, telecom operators could send the requested data

to law enforcement agencies in such a way that the agencies can only
access this information after the required permission has been obtained.
In this case, the telecom operator acts as a non-interactive sensor.
This case is more restrictive than general key-escrow methods like

the Clipper chip [126], which would also allow decryption of communi-
cation as well as access to prior communications. Instead, the focus
here is to enforce the legal requirements that law enforcement must ob-
tain permission from a judge before they may place a wiretap and thus
receive future communications (the data received as a result of the tap
might still be encrypted by the user).

abstract rule Given n trusted parties. Participants can perform ac-
tions. None of the trusted parties decides that the participant’s
behavior is suspicious.

48 revocable privacy: principles and use cases

consequence of violation The system learns the actions of the
participant that occur after the participant has been marked sus-
picious.

3.2.4 Complex rules

We now discuss rules that are more complex, for example because they
operate on graphs and labeled data, or because they use auxiliary infor-
mation that should be protected as well.
In principle, the rules in this class can be described by any determin-

istic computer program. However, to illustrate how hard some of these
tasks can be, we also discuss fuzzy rules, based on for examplemachine
learning, in the next section.

Riot control

In 2009/2010 there were riots between two ethnic groups in Culem-
borg (a city in the Netherlands). The police knew that the rioters might
receive reinforcements from certain parts of the country. To prevent
them from arriving, they wanted to detect these groups en route, and
block the highway exits into Culemborg at the appropriate times.
To detect these groups, they automatically read license plates. If a

group of more than four cars originating from the reinforcement area
was detected on the highway, they closed the highway exit.
Two things make this case interesting. One, the goal is not to

deanonymize specific cars, but rather to detect a group of cars from
a specific area. Two, in order to make this system work auxiliary infor-
mation is required about where cars are registered.

abstract rule Let DI be a set of data items associated with a par-
ticipant I, and let P be a predicate over such data items. Given
a sensor observing participants, then fewer than k participants I
such that P(I) is true should be observed by the sensor within a
given time period.

consequence of violation The system learns that a match has
been found.

Money flow anomalies

Some types of tax fraud manifest themselves in discrepancies in money
flows between companies. In particular, whatever company A claims
to have sold to B should also be reported as bought from A by B. How-
ever, cash flows between companies also reveal strategies and other sen-
sitive economical information that companies would rather not share.

3.2 use cases 49

Instead of just sharing this information, the tax office and the compa-
nies could build a revocable privacy system where a company’s name is
revealed only if it incorrectly reported its cash flow.

abstract rule Given a graph, with the participants represented by
nodes and the edges representing money flows between them.
Participants should report the flows over their adjacent edges cor-
rectly.

consequence of violation The system learns the identity of the
participants and their reported flows.

3.2.5 Fuzzy rules

Until nowwe discussed situations where the participants are easy to rec-
ognize because they have a unique identifier (e.g., license plate, social
security number, name). However, this is not the case, for example,
when only video of a person is available. Even if it is possible to rec-
ognize people using facial recognition, we may still need to recognize
suspicious behavior. This brings us to the realm of fuzzy and probabilis-
tic computation. We consider this class separately because we suspect
it is even harder to solve these cases using revocable privacy.

Object surveillance based on people

This first use case is similar to the object surveillance case earlier, but
with the twist we described in the previous paragraph: we have only
video of the people in the system. We want to know if someone cases a
location, but without the convenience of a fixed identifier.
In a system without revocable privacy, we could (maybe) collect facial

features of all recorded people and determine how often they show up.
To do this in a privacy friendly manner would require a system that can
take faces as input, and keep track of how often a specific face has been
seen. Furthermore, even if this works on features that are derived from
the image, the original(s) are necessary to make future identification
possible. This is why we classify this case as fuzzy.

abstract rule Given one or more cameras acting as sensors, a par-
ticipant should be seen by fewer than k sensors (counting repeats)
within a given time period.

consequence of violation The system obtains a picture or video
of the participant.

50 revocable privacy: principles and use cases

Table 3.1: An overview of the use cases and their sensor type, source (klpd is
the Dutch abbreviation for the Dutch National Police), and applicable
techniques. The sensor type is non-interactive (n-i), interactive (i) or
both. The techniques are distributed encryption (de, Section 3.3.1 and
Chapter 5), k-times anonymous credentials (k-aa, Section 3.3.1), black-
listable anonymous credentials (blac, Section 3.3.2), the vote-to-link
system (vtl, Chapter 4), group signatures (gs, Section 3.3.2) and se-
cure multi-party computation (mpc, Section 3.4).

Use case Type Source Technique

Canvas cutters n-i klpd de
Object surveillance n-i klpd Unknown
Average speed checking n-i klpd & Lueks et

al. [114]
de

Sale of valuable objects n-i Lueks et al. [114] de
Anomalies in logs n-i Biskup and Flegel [16] Unknown
Sharing anon. resources i Camenisch et al. [31] k-aa
No-show reservation i Internal discussion Unknown
Electronic cash i Chaum et al. [44] k-aa

Social welfare fraud both Municipality of
Groningen

Unknown

Terrorist activity n-i Internal discussion Unknown

Child abuse n-i Internal discussion de
Blocking anon. edits i Tsang et al. [159] blac
Linking anon. edits i Lueks et al. [112] vtl
Deanonym. comments both Interview gs & vtl
Wiretapping policy n-i Interview Unknown

Riot control n-i klpd Unknown
Money flow anomalies i Sharemind

application [19]
mpc

Object surveillance 2 n-i Internal discussion Unknown
Camera footage n-i Internal discussion

and Sound
Intelligence [153]

Unknown

3.3 technologies 51

Retrieving camera footage after a crime

Many cities install cameras to increase safety. One way to use these
cameras is as a remote viewing tool, so that it is easier to monitor many
locations at once. However, often the camera feeds are also stored in
case something untoward happens later on. When nothing bad hap-
pens, the data can safely be discarded. The data are only stored to obtain
more information after a crime has been detected.
If the system automatically detects bad situations (for example based

on sounds [153]), the system could encode the data, and only release past
records when a bad situation is detected. Hence, the system guarantees
that the privacy sensitive recordings are released only when necessary.
Relying on a human operator to make the decision to reveal footage,

would put this use case back in the decision-making class of cases.

abstract rule Given video cameras (placed at different locations) ob-
serving the behavior of participants, the system (or the operator
thereof) should not detect improper behavior.

consequence of violation The system obtains footage around
the time of the violation.

3.3 technologies

In this section, we review some technologies from the past twenty years
that can be used to implement revocable privacy. Table 3.1 shows which
techniques apply to which use cases.7 This list is by no means an ex-
haustive literature review. In particular, there exist many variants of the
schemes that we mention here. This section primarily serves as a brief
overview of techniques that apply to the use cases we collected.

3.3.1 Threshold primitives

First, we discuss primitives that can implement threshold rules.

Distributed encryption

The distributed encryption primitive [83, 114] was specifically designed
to solve revocable privacy problems with a threshold rule, in particular,
the canvas cutters scenario. As such, it describes how non-interactive

7 Biskup and Flegel proposed a system [16] to solve the object surveillance and anomalies
in logs cases. However, their solution requires the sensor to store a (partial) record of
all events, it thus does not offer the anonymity that our definition of revocable privacy
requires. We do not know of a solution for these cases that implements revocable privacy
as we defined here.

52 revocable privacy: principles and use cases

sensors (automatic number plate recognition (anpr) stations at the rest
stops) can encrypt messages (license plates) in such a way that only
if enough encryptions (by different stations) of the same message are
available they can be combined to recover the original message.
Obviously, any corrupted sensor can encrypt any message of an at-

tacker’s choosing. So the system guarantees security only as long as not
too many sensors are corrupted.
The distributed encryption primitive counts only events, while many

of the use cases count events per time period. In most cases, it suffices
to start a new instance of the distributed encryption scheme for every
new time period, thereby enforcing that the counts are reset after each
interval ends. If it is instead required that no more than a number of
events happen in any time interval of a given length (no matter when
that interval commenced), this approach does not work. Chapter 5 de-
scribes how to approximate the desired behavior by using overlapping
instances of a distributed encryption scheme.
Combining the encrypted messages to recover the messages is not

very efficient; it is exponential in the threshold. However, if the number
of messages is small and they can be enumerated, like for license plates,
then the batching technique in Chapter 5 allows the system to trade
space for time, making it reasonably efficient.

k-times anonymous credentials

Whereas the previous primitive uses non-interactive sensors, k-times
anonymous credentials [31] allow participants to directly interact with
the sensors. As a result, the trust assumptions are much weaker. The
system gives every user a credential. The user can use this credential to
anonymously authenticate k times per time period. If the user authen-
ticates more often, her identity becomes known.
Effectively, the user can create k different (random) numbers per in-

terval. If the user authenticatesmore often, she is bound to reuse one of
the previous ones. This makes it easy and efficient to detect violations
of the rule. Extensions make it also possible for a user to exceed the
limit a couple of times (possibly in different time periods) before her
identity is revealed. These schemes are a generalization of electronic
cash schemes [10, 32, 43, 44] where the threshold is one: every coin
may be spend only once.

3.3.2 Decision primitives

We now discuss techniques that can be used to implement decision-
based revocable privacy rules.

3.3 technologies 53

Blacklistable anonymous credentials

Blacklistable anonymous credentials [159] make it possible for a service
provider to block users from future authentication if the user misbe-
haved in an earlier session. To enable this, the user uses his (certified)
private key to generate a new, random token for every authentication.
These tokens are bound to the user (but, without the user’s private key
it is impossible to determine to which user they belong). In addition,
the user proves that it did not generate any of the tokens that the service
provider placed on the blacklist.
If the service provider later detects abuse, it can add that session’s

token to the blacklist. The corresponding user can then no longer prove
that its tokens are not on the blacklist and loses access to the service.
Alternatively, the user can prove that it has no more than k tokens on
the blacklist, thus the system allows a few bad actions.
The complexity of this protocol is linear in the number of items on

the revocation list, making it inefficient. Some techniques can be used
to reduce the complexity [80].
Blacklistable anonymous credentials are a specific form of anony-

mous blacklisting systems—we refer to Henry and Goldberg [79] for
an overview—that are particularly privacy friendly. There exist other
schemes that are more efficient, but they rely on trusted third parties
to enforce the rules.

Group signatures with distributed management

A group signature scheme allows members of a group to digitally sign
documents on behalf of the group [45]. The signers are anonymous
in the sense that it is known only that they belong to the group, not
which specific member signed a specific message. A special party, the
tracing agent, can overcome this anonymity and determine who created
a specific signature, thereby revealing the identity of the signer.
Already this scheme can be used to implement the simple rule that

you lose your anonymity when the tracing agent decides that this should
happen. However, in some sense we are then back to having a single,
trusted third party. Instead, we can distribute the powers of the tracing
agent. In a group signature scheme with a distributed tracing agent,
several agents need to cooperate before the identity of the signer can be
recovered [70]. As long as at most a predefined number of the tracing
agents are malicious, the anonymity of honest users is guaranteed.

54 revocable privacy: principles and use cases

3.4 analysis

In the preceding section, we reviewed some techniques that can be used
for revocable privacy. Unfortunately, we do not know of existing primi-
tives for many of the more complex rules. Only the threshold use cases
are covered reasonably well by existing techniques. Since the object
surveillance and anomalies in logs cases are similar in structure, these
cases might admit a simple solution too.
For decision-based rules, there are some existing techniques that help

solve some of the use cases. This again suggests that we might be able
to develop techniques for the remaining wiretapping policy case.
Nevertheless, there are some very generic techniques that could help

implement the remaining rules using the revocable privacy paradigm.
First, the field of privacy-preserving data mining [3] might help in solv-
ing some of the anomalies like social welfare fraud.
Finally, secure multi-party computation allows multiple parties, each

with their own private input, to compute any shared function over the
data, see, for example, Smart [150, Chapter 22] for an introduction. All
inputs are kept private; only the output is shared. While this technique
works, in theory, for any computation, including machine learning al-
gorithms, it is also very computationally intensive.
Moreover, secure multi-party computation cannot solve all rules be-

cause of its structure. Firstly, secure multi-party computation assumes
that the computing parties can communicate to exchange (potentially
many) messages. This is not realistic for all problems. Secondly, the
underlying trust assumption for secure multi-party computation—that
at least one party participating in the computation is honest—may not
match the specifics of the rule.
For example, the Sharemind company successfully used their multi-

party computation platform to solve several real-world problems on pri-
vate data [19, 20], one of which is the money flow problem [19]. How-
ever, the rule they enforce is subtly weaker than the rule in the original
problem statement: if two out of the three computing parties collude,
the anonymity of properly-reporting participants can no longer be guar-
anteed. The original statement does not allow disclosure of properly-
reporting participants under any circumstance.

3.4.1 Limitations

We briefly discuss two limitations of revocable privacy. The first is that
to obtain better anonymity without losing security, we have to pay in
computing power. This is especially the case for the non-interactive
sensor techniques that we discussed. However, we think that this cost

3.5 conclusions 55

is often acceptable. In particular, the systems we present in this thesis
confirm this.
The other limitation stems from the fact that most use cases and all

solutions describe positive effects. A participant performs an action,
and as a result of doing so, can violate a rule. It seems much harder
to handle negative events: what if you follow the rules if you do some-
thing, rather than not do it? Consider, as an example, the rule that if
you observe someone misbehaving, you have to report it.

3.5 conclusions

We have argued why revocable privacy is an important construct that
can be used to increase the privacy of a system’s participants whilemain-
taining security. We have classified systems with revocable privacy into
two classes:8 those with non-interactive sensors and those with inter-
active sensors. Furthermore, we have clarified the definition and have
generalized it to include different types of consequences for violating
the rules.
We have also explored use cases that benefit from a revocable privacy

approach. This not only illustrates the usefulness of revocable privacy,
but also allows us to compile some abstract rules that revocable privacy
techniques should be able to implement. We have described some of
these techniques and showed which problems they solve.
The comparison between the abstract rules and existing revocable pri-

vacy techniques identifies interesting directions of future work in the
area of revocable privacy. Based on the fact that many threshold-based
rules and decision-based rules already have corresponding primitives,
we expect that the remaining ones may be solvable as well. Further-
more, we identify whole classes of more challenging research direction
in finding techniques for the other use cases that lack corresponding
techniques, most notably social welfare fraud detection, detecting ter-
rorist activity, riot control, and object surveillance based on people.
The first three of these rely on predicates over data associated to the

participants: the first two require the implementation of rules where
such a predicate must be false, whereas the third case requires the rule
that the predicates may not be true for too many observed participants
in a time window. Finally, the fourth is a simple threshold rule (a partic-
ipant may not be observed too often), but rather than the participant’s
identity being available, only pictures of participants are available.

8 As we explained before, we do not consider the plaintext sensors because they do not
provide revocable privacy

4
VOTE TO L INK

Many interactive websites either completely disallow anonymous access
or block anonymous users from making changes—for example, Wiki-
pedia does not allow edits by users using the Tor network.1 While there
are benefits to allowing anonymous access, websites apparently feel that
the cost in terms of abuse outweighs these benefits.
In this chapter we present the vote-to-link system. It shifts the bal-

ance between the costs and benefits of anonymous access. The system
allows fully anonymous actions, while, at the same time, enabling link-
ing of a malicious user’s actions to make it much easier to recover from
abuse. The vote-to-link system is constructed in such a way that, after
at least k moderators mark an action as bad, the system can identify all
other actions by the same user within a limited time frame (which we
call an epoch). Without the cooperation of at least k moderators, users’
actions remain anonymous and unlinked.
To further reduce the impact of linking a user’s actions—the judge-

ment might have been erroneous, or a user’s earlier actions might have
been benign—the linking is limited to a predefined time window. Note
that even if many moderators are malicious, the worst they can do is
link a user’s actions within epochs, never across epochs, nor can they
directly deanonymize her.

revocable privacy. The vote-to-link system implements revoca-
ble privacy. In particular, it solves the ‘linking anonymous edits’ use
case, as described in Section 3.2.3. As long as actions are not marked
as bad by at least k moderators, users retain their full anonymity. If,
on the other hand, an action is marked as bad by at least k modera-
tors, that user’s anonymity is only reduced: her actions within that time
frame become linkable (but her identity is still unknown). Users actively
communicate with the system. The system therefore has an interac-
tive sensor—the service provider hosting the website—and the user’s
anonymity is fully guaranteed even if the service provider is malicious.

1 https://en.wikipedia.org/wiki/Wikipedia:Advice_to_users_using_Tor last accessed Febru-
ary 17, 2017. Naturally, Wikipedia also does not allow registering sock puppet accounts via
Tor (that would defeat the purpose of blocking Tor in the first place). While registering
accounts outside of Tor is possible, even those accounts are normally not exempt from
the Tor block (see https://en.wikipedia.org/wiki/Wikipedia:IPBE, last accessed February 17,
2017).

57

https://en.wikipedia.org/wiki/Wikipedia:Advice_to_users_using_Tor
https://en.wikipedia.org/wiki/Wikipedia:IPBE

58 vote to link

a leading example: wikipedia. To see why linking an abusive
user’s edits within a limited time frame is useful, we return to the ex-
ample of editing Wikipedia. We wish to emphasize that it makes sense
for editors to be anonymous—for example when they edit controversial
articles. However, this anonymity also enables abuse by anonymous
editors that maliciously change pages.
To reduce abuse, Wikipedia could deter users from being abusive.

For example, Wikipedia could block abusive users from further access-
ing the system (for example, blac [159] allows service providers to block
anonymous users without identifying them). Alternatively, it could use
a reputation system that reduces an abusive user’s reputation so that it
is more difficult for the abusive user to make edits in the future. Or, it
could even fully deanonymize abusive users in a name-and-shame fash-
ion. However, when such measures fail to actually deter a user from
being malicious, she can still do a lot of damage. Our vote-to-link sys-
tem helps mitigate this damage.
A combination of four factors ensures that undeterred users can still

do a lot of damage. One, people are needed to detect abuse, so, time
passes before the first violation is detected and the deterrent is effected.
Two, this delay is exacerbated if only a small percentage of actions is
bad, requiring moderators to examine many edits before finding one
abusive edit. Three, until the first violation is detected, the abusive user
is free to continue acting anonymously (and these actions are, by nature
of the anonymity, unlinkable). Four, an abusive user can performmany
actions, as rate limiting would also adversely affect honest users.2

The vote-to-link system reduces the damage by invalidating the sec-
ond and third factor: after sufficiently many moderators agree that a
particular edit is bad, all that user’s edits within a time frame (maybe
24 hours is appropriate here) become linkable. Hence, the moderation
effort can be focussed on those edits that are already highly suspect.
While the actions of abusive editors can be linked (after enoughmod-

erators vote to do so) to make it easy to find all other abusive actions
by that user, the anonymity of honest users is guaranteed: actions are
unlinkable if there are too few votes. Moreover, the identity of an editor
is never revealed. To the best of our knowledge this is a novel approach
to combat malicious edits.

2 For example, the Wikipedia editor Giraffedata regularly makes about 80 edits within one
hour (see https://backchannel.com/meet-the-ultimate-wikignome-10508842caad, last ac-
cessed February 17, 2017), while themost prolificWikipedia editor Ser Amantio di Nicolao
averages 60 edits an hour assuming 8 hours of editing every day of the year (see https://
en.wikipedia.org/wiki/Wikipedia:List_of_Wikipedians_by_number_of_edits, last accessed
February 17, 2017), while his/her burst rate is most likely much higher.

https://backchannel.com/meet-the-ultimate-wikignome-10508842caad
https://en.wikipedia.org/wiki/Wikipedia:List_of_Wikipedians_by_number_of_edits
https://en.wikipedia.org/wiki/Wikipedia:List_of_Wikipedians_by_number_of_edits

vote to link 59

our contributions. Our first contribution is the idea of a vote-to-
link scheme. At a high level it works as follows. For every transaction
a user wants to perform at a service provider (for example, editing a
Wikipedia page), she must create a linking token. The linking token is
bound to her cryptographic identity. Given this token, it is possible to
identify all other transactions by that user within the current epoch. A
groupmanager provides each user with atmost one anonymous creden-
tial certifying the user’s cryptographic identity (we assume Sybil attacks
are not easily possible, see Section 4.1.2).
To protect the linking token, the user encrypts it to the moderators’

public key using a threshold encryption scheme. Finally, to perform
the transaction, she sends the encrypted linking token and a zero-
knowledge proof of correct encryption (i.e., she anonymously proves
that the encrypted linking token belongs to the identity in her anony-
mous credential) to the service provider. Moderators can vote to link
the user’s transaction by partially decrypting the linking token (they can
do so without communicating with other moderators).
If, at some point in time, enough moderators have voted, the service

provider can decrypt the linking token (using the partial decryptions
provided by the moderators) and hence link all the user’s actions within
that epoch. The anonymity of the user is guaranteed by distributing
the voting power invested in the moderators. However, even if all mod-
erators are malicious, their capabilities are limited: they can only link
users within epochs, not across epochs. The service provider itself has
a purely facilitating role; even if it is malicious, it cannot link a user’s
actions. We first introduce the high level structure of our approach in
Section 4.1, introduce the basic cryptographic ideas in Section 4.2, then
describe preliminaries in Section 4.3, and, finally, describe our vote-to-
link scheme in full in Section 4.4.
Our second contribution is to allow moderators to vote anonymously

(normally, the structure of the threshold encryption scheme identifies
voting moderators). While procedural measures can protect the votes
to some extent, we prefer to not rely on those to protect the identity of
the votingmoderators. Hence, we have created two variants of our basic
vote-to-link scheme that allows moderators to vote anonymously at the
cost of reduced efficiency. We present these schemes in Section 4.5.
Our third and final contribution is an implementation of our proto-

cols, showing the practicality of our approach. We present these results,
and other aspects of deploying a vote-to-link system, in Section 4.6.
While the vote-to-link scheme may seem similar to group signatures

with a distributed groupmanager—in fact, we borrow ideas from group
signatures—wewish to emphasize that there are significant differences.
First, the goal of our scheme is to make a user’s actions linkable within

60 vote to link

an epoch, rather than identify the signer of a single message. Second,
while distributed tracing managers allow a similar voting process, they
do not allow anonymous voting. We cover relatedworkmore extensively
in Section 4.7, before concluding this chapter in Section 4.8.

4.1 system design and assumptions

In this section we describe the architecture of our vote-to-link system,
and its assumptions.

4.1.1 Architecture

The system consists of one group manager and several users, service
providers, and moderators, each with their own role in the system. For
clarity, we focus on a system with only one service provider. In practice,
it might be desirable to have multiple service providers. Our solution is
easily extended in this direction.

group manager (gm) The group manager (gm) sets up the system.
It ensures that a user in the system has at most one identity (for
example, by requiring that a user has access to a scarce resource,
see below). This ensures that the user cannot prevent linking
of her actions by creating new identities. To allow the user to
use this identity anonymously, the gm provides the user with an
anonymous credential.

user (u) Users access services offered by the service provider. To
enable access they need an anonymous credential from the gm.
The users’ actions at a service provider can be linked only when
enough moderators vote to enable this; normally, users’ actions
are anonymous. Users are not assumed to be always online.

service provider (sp) The service provider allows users to anony-
mously perform transactions (provided they supply the correct
information). As part of performing the transaction, the user
proves to the sp that she has an anonymous credential. The ser-
vice provider determines the length of an epoch.

moderator (m) The moderators monitor the users’ activities. They
can vote on an action to indicate their desire to link all other ac-
tions of the user who performed this voted-upon action. When
sufficient moderators have voted on the same action, all actions
by that user within this epoch become linkable. The group of
moderators can be specific to each service provider. Moderators
are also not assumed to be always online.

4.1 system design and assumptions 61

U1

U2

U3

sp

t1

t2, t4, t5, t7

t3, t6

M1

M2

M3

ψ1 = VoteToLink(t2)

ψ2 = VoteToLink(t5)

ψ3 = VoteToLink(t2)

(a) Interactions among parties

epoch ϵ0 epoch ϵ1 epoch ϵ2 epoch ϵ3

time

t1 t2 t3 t4 ψ1 t5 ψ2 t6 ψ3 t7

sp uses ψ1, ψ3 to link
transactions t2, t4, t5

(b) Timeline of interaction events

Figure 4.1: An example of the vote-to-link system with 3 users (U1, U2, U3), 3
moderators (M1, M2, M3) and a threshold k = 2. Figure (a) shows
how the users and the moderators interact with the service provider:
users send transactions (t1, . . . , t7) to the service provider. The sp
publishes these transactions in a public record after checking their
validity. The moderators monitor these transactions, and, whenever
they detect a malicious one, send a vote to link to the service provider
(ψ1, ψ2, ψ3). Figure (b) shows a timeline of events at the service
provider. After the sp receives k = 2 votes on transaction t2, it can
link it to the other transactions t4, t5 made by the same user in that
epoch (note that t7 is not linked because it was performed in another
epoch).

62 vote to link

The groups of users and moderators do not have to be mutually exclu-
sive. In fact, moderators may also be users, or even, all users may be
moderators as well.
Because the users’ credentials are anonymous, users can use them

to prove that they correctly constructed the encrypted linking tokens,
without otherwise revealing anything about their identity, nor becoming
linkable because of using the credential. To maintain anonymity, users
(and moderators) communicate with the sp via an anonymous channel.
Figure 4.1 gives an overview of an example vote-to-link system. The

figure shows how a user’s actions become linkable as a result of the
moderators’ votes. For clarity, we omitted the group manager.
Only the service provider and the group manager are assumed to be

always online (but note that the only consequence of a group manager
being offline is that new users cannot join). The moderators can cast
votes completely non-interactively. This ensures that the system can
still function even when the vast majority of the moderators are offline.

4.1.2 Threat model and security goals

Our system has two security goals (we formalize these in Game 4.9 in
Section 4.4.2 and Game 4.12 in Section 4.5.2).

user anonymity As long as an adversary controls at most k− 1mod-
erators, it cannot link an honest member’s transactions with non-
negligible advantage.

moderator anonymity Users that collude with up to n − 2 mod-
erators cannot determine the identity of a non-colluding voting
moderator with non-negligible advantage.

The user anonymity goal strictly implies that users cannot be iden-
tified either. Furthermore, for user anonymity, we make no security
assumptions about the users and the service provider. In fact, even if
they are completely malicious, the anonymity of the honest users re-
mains fully protected. Clearly, we can allow at most k− 1 moderators
to be malicious. For moderator anonymity, we assume that the user
performing the transaction and the sp do not collude.
Finally, we assume that the sp acts in its own interest by honestly fol-

lowing the protocol, so that the actions ofmisbehaving users can indeed
be linked after sufficient votes have been cast.

about sybil attacks. To ensure that all user’s actions can be
linked after voting, we require, like many other anonymous systems
with an accountability feature, that users have only one identity. Our

4.2 the idea of the basic scheme 63

system by itself is not robust against Sybil attacks [60], and protecting
against them is outside the scope of this chapter.
We do acknowledge that protecting against Sybil attacks is difficult.

However, some protection can be achieved when the group manager
issues credentials based on some scarce resource (for example, ip ad-
dress, phone number or a national electronic id card). See Henry and
Goldberg for an overview [79].

4.2 the idea of the basic scheme

After presenting the high level structure of our scheme, we now sketch
how to construct the linking tokens that can be used to link a user’s
actions. We follow an idea by Nakanishi and Funabiki [124]. As mathe-
matical setting we use a bilinear group pair (G1,G2) of prime order p
with ê : G1 ×G2 → GT the corresponding bilinear map and g ∈ G1
and h ∈ G2 the generators. Let x be the user’s secret key and H :
{0, 1}∗ → G1 a cryptographic hash function. We use this hash func-
tion to transform a description of the epoch ϵ (for example, ϵ could be
the current date to get 24 hour epochs) into a generator gϵ = H(ϵ).
The user’s linking token for epoch ϵ is given by r = gx

ϵ . With
each transaction, the user publishes auxiliary values t1 = hz and
t2 = ê(gϵ, t1)

x for a random z ∈R Zp. The user’s linking token
r—which is normally unknown—can be used to link transactions by
this user. The linking token r thus acts as a trapdoor. To check whether
a transaction with auxiliary values t′1, t′2 wasmade by a user with linking
token r, the SP can simply check whether ê(r, t′1) = t′2.
So, given the linking token, the sp can link the actions of the user

within an epoch. To enable linking when the moderators vote to do
so, the user creates an encrypted linking token T = TDH.Enc(w, r, τ)
by encrypting the linking token r labeled with the transaction τ with
the moderators’ public key w using the k-out-of-n threshold encryption
scheme that we present in the next section. To ensure that the user
cannot cheat, she has to prove in zero-knowledge that T, t1, and t2 are
correct and correspond to her anonymous credentialC(x) certifying her
cryptographic identity or secret key x.3

If a moderator later feels that a transaction is inappropriate, the mod-
erator can cast a vote to link the user’s actions by partially decrypting
the encrypted linking token T. When a sufficient number of decryption
shares are published, the vote passes, and the sp can use the decryption
shares to recover the linking token r, allowing the user’s transactions to
be linked.

3 Recall from Section 2.7 that we write C(x) to denote an anonymous credential over the
private key x.

64 vote to link

4.3 preliminaries

In this section we cover some of the (cryptographic) preliminaries nec-
essary to describe our schemes.

4.3.1 cca secure threshold encryption

To encrypt the linking tokens, we need need an encryption scheme that
is both verifiable—to ensure that the encrypted linking tokens are well-
formed—and threshold decryptable—to allow the moderators to create
decryption shares when necessary. Furthermore, in our user anonymity
game (see Game 4.9) the adversary can request decryption shares of any
ciphertext except the challenge ciphertext. To ensure that it cannot learn
anything about the challenge ciphertext, we require cca security.
In this section we show a variant of the Shoup and Gennaro’s tdh2

threshold encryption scheme [147] that can verifiably encrypt group el-
ements, rather than strings. The core of the original scheme is simi-
lar to hashed ElGamal in a cyclic group G generated by g: the cipher-
text of a message m for a public key w = gκ is of the form (c, u) =
(m⊕ H(wa), ga). In our tdh2’ variant we replace c with m · wa.

Scheme 4.1 (tdh2’) The setting of this scheme is in a cyclic groupG of
prime order p. Let H′ : {0, 1}∗ → Zp be a cryptographic hash function.
The encryption function takes a label as additional parameter. This label
is not encrypted, but it is bound to the ciphertext. The decryptors use
this label to decide whether they want to decrypt the ciphertext. The
scheme is given by the following algorithms.

• TDH.Setup(1ℓ). On input of the security parameter ℓ, the setup
algorithm generates a cyclic group G of prime order p generated
by g, such that p is ℓ bits. It publishes (G, p, g).

• TDH.KeyGen(n, k, (G, p, g)). On input of the number n of decryp-
tors, the threshold k, and a cyclic group (G, p, g) as above, the
TDH.KeyGen algorithm proceeds as follows. It picks coefficients
f0, . . . , fk−1 ∈R Zp and defines the secret sharing polynomial
f (X) = ∑k−1

i=0 fiXi. Let κi = f (i) and wi = gκi for 0 ≤ i ≤ n.
Write κ = κ0 = f (0) for the private key andw = gκ for the public
key. Next, the algorithm generates a random generator ḡ ∈R G
and publishes the public parameters (G, g, ḡ, p), the ciphertext
space C = G × {0, 1}∗ × G2 × Z2

p, the public key w, and the
verification key VK = (w1, . . . , wn).4 Every decryptor i gets the
private key δi = (i, κi).

4 Contrary to the basic vote-to-link scheme, we cannot use the verification keys to verify
the decryption shares in the moderator-anonymous schemes, since using them would

4.3 preliminaries 65

• TDH.Enc(w, m, L). On input of a public key w, a message m and
a label L, the TDH.Enc algorithm creates a ciphertext as follows.
First, it generates a, s ∈R Zp and sets

c = m · wa, u = ga, û = gs, v = ḡa, v̂ = ḡs.

Then, it calculates e = H′(c ∥ L ∥ u ∥ û ∥ v ∥ v̂) and sets
d = s + ae. The ciphertext is ψ = (c, L, u, v, e, d). Note that the
tuple (û, v̂, e, d) basically forms a non-interactive signature proof
of knowledge of the form

SPK {(a) : u = ga ∧ v = ḡa} (c ∥ L).

• TDH.Dec(δi, ψ). On input of a ciphertext ψ = (c, L, u, v, e, d) and
a decryption key δi = (i, κi) the decryptor first verifies that the
ciphertext is well-formed. To this end it calculates:

û = gdu−e and v̂ = ḡdv−e,

and checks that e = H′(c ∥ L ∥ u ∥ û ∥ v ∥ v̂). If this check fails,
it returns ψi = (i,⊥). Otherwise, it generates a random si ∈R Zp
and computes

ui = uκi , ûi = usi , and ŵi = gsi ,

before calculating ei = H′(ui ∥ ûi ∥ ŵi) and the response di =
si + eiκi. The decryptor returns ψi = (i, ui, ei, di). Note that
the tuple (ûi, ŵi, ei, di) basically forms a non-interactive proof of
knowledge of the form

SPK {(κi) : ui = uκi ∧ wi = gκi} ().

• TDH.ShareVerify(ψi, VK, ψ). On input of a ciphertext ψ = (c, L,
u, v, e, d) a decryption share ψi and a verification key VK = (w1,
. . . , wn) the TDH.ShareVerify algorithm proceeds as follows to
check that the decryption share is correct. First, it checks that the
ciphertext ψ is well-formed, as before. If ψ is not well-formed,
it returns ⊤ if ψi = (i,⊥) and ⊥ otherwise. If the ciphertext
is well-formed, then ψi should be of the form (i, ui, ei, di) (the
algorithm returns ⊥ if it is not). Next, it calculates

ûi = udi u−ei
i and ŵi = gdi w−ei

i ,

to check the non-interactive proof of knowledge. It returns ⊤ if
ei = H′(ui ∥ ûi ∥ ŵi) and ⊥ otherwise.

identify the voting moderators. We do use the verification keys in the full moderator-
anonymous scheme to check the validity of the user-generated tdh2’ keys, see Sec-
tion 4.5.3.

66 vote to link

• TDH.Combine(ψ, {ψi1 , . . . , ψik}). Given a ciphertext ψ and a set
of k shares the combine algorithm proceeds as follows. It tests
the validity of its inputs: letting I = {i1, . . . , ik}, the algorithm
checks that |I| = k; it checks that ψ is well-formed; and, it checks
that the decryption shares are valid by checking that

TDH.ShareVerify(ψij , VK, ψ) = ⊤

for all j = 1, . . . , k. It returns ⊥ if any test fails. Otherwise, every
decryption share ψi is of the form (i, ui, ei, di) for i ∈ I , so

m = c ∏
i∈I

u−λIi
i

is the plaintext. It returns m.

It is easy to see that the scheme is correct: for all messages m and ci-
phertexts ψ = TDH.Enc(w, m, L) and for all sets of k decryption shares
ψi1 , . . . , ψik we have that TDH.Combine(ψ, {ψi1 , . . . , ψik}, VK) = m.
The proof of security for the original tdh2 scheme strictly relies on

the hash-function used to create the ciphertext element c = m⊕H(wa).
Since we do not have such a hash function, we give a new proof of the
cca security. But, before we can do so, we need to define the cca security
game for threshold encryption schemes. We specify the game directly
for our tdh2’ scheme.

Game 4.2 (Threshold cca security [147]) The threshold cca game be-
tween an adversary A and the challenger proceeds as follows.

setup phase The adversary chooses the number n of decryptors and
the threshold k. It also chooses k − 1 decryptors it wants to cor-
rupt.5 The challenger first runs TDH.Setup(1ℓ) to set up the
group (G, p, g), and then runs the TDH.KeyGen(n, k, (G, p, g))
algorithm. It gives the private decryption keys of the k − 1 cor-
rupted decryptors to the adversary. The challenger keeps the
other keys for its own use.

query phase During the query phase, the challenger can make any
Dec(i, ψ) queries of any non-corrupted host i with ciphertext ψ of
its choosing.

challenge phase At some point the adversary chooses messages
m0, m1 ∈ G and a label L and sends them to the challenger.
The challenger randomly picks a bit b ∈R {0, 1} and sends ψ =
TDH.Enc(w, mb, L) to the adversary.

5 Note this is the static model where the to be corrupted servers have to be announced up
front.

4.3 preliminaries 67

restricted query phase The adversary can make Dec queries as
before, except at ψ.

output phase Finally, the adversary outputs a bit b′ as its guess for
b. The adversary wins if b′ = b.

The advantage of an adversary A is given by AdvccaA = 2
∣∣Pr[b = b′]−

1
2

∣∣, where the probability is over the random bits of the challenger and
the adversary. The tdh2’ encryption scheme is threshold cca secure if
AdvccaA is negligible for every ppt algorithm A.

We now give a small lemma that we will use in our proof. (We don’t
strictly need this lemma, but it makes the proof clearer.)

Lemma 4.3 The proofs of knowledge in the TDH.Enc and TDH.Dec algo-
rithms can be simulated in the random oracle model for H′.

Proof. We start with the zero-knowledge proof in TDH.Enc. Given any
u, v ∈ G proceed as follows. Generate a random e, d ∈ Zp and set

û = gdu−e and v̂ = ḡdv−e.

Then, using the fact that we operate in the random oracle model, back
patch H′ such that e = H′(c ∥ L ∥ u ∥ û ∥ v ∥ v̂). It is easy to see that
this proof verifies. Also, since û, v̂ are random and generated by us, the
back patching fails (i.e., because the adversary already queried the hash
function on this precise input) with negligible probability.
Similarly, we can simulate the proof of knowledge in the TDH.Dec

function. Given any ui and wi we proceed as follows. Pick a random
ei, di ∈R Zp and set

ûi = udi u−ei
i and ŵi = gdi w−ei

i .

Then back patch H′ such that e = H′(ui ∥ ûi ∥ ŵi). It is easy to see
that this proof verifies. As before, the back patch fails with negligible
probability.

Theorem 4.4 The tdh2’ scheme is cca secure in the random oracle model
for H′, assuming that the ddh assumption holds in G.

Proof. In this proof we show that we can replace the proper challenge
ciphertext with a random ciphertext without the adversary detecting this.
Clearly, in the latter case, the adversary has no chance of winning the
cca game.
Recall, the ciphertext is given by ψ = (c = m · wa, L, u = ga, v =

ḡa, e, d), where (c, u) forms the actual encoding part, and (v, e, d) the
proof of correctness. This proof proceeds in two steps. First, we show

68 vote to link

that an adversary cannot detect that we replace the correct v component
in the challenge ciphertext with a random element from G, provided
the ddh assumption in G holds. Second, we show that we can also
replace the correct c component with a random element fromGwithout
the adversary detecting this, again, provided the ddh assumption in G
holds. Clearly in the latter case the ciphertext is essentially random, so
the adversary does not have an advantage. This proves cca security. We
now give the details.
We first prove that we can replace v in the challenge ciphertext with

a random element from G. Assume that an adversary exists that can
detect whether v has been replaced by a random element. We show how
we can use such an adversary to solve a ddh instance. We simulate the
entire game honestly, except for the challenge query. Let (g, X, Y, Z) =
(g, gx, gy, gz) be a ddh instance in G. Our goal is to decide whether
z = xy or not. To do so, we will encode this problem into v. If z = xy
then v is correctly formed, otherwise it is random. Thus, any algorithm
that can decide on the well-formedness of v can be used to solve the
ddh-problem.
We set up the system as in the TDH.KeyGen(n, k, (G, p, g)) algorithm,

with one exception. Instead of generating ḡ randomly we pick β ∈R Zp

and set ḡ = Yβ. Clearly, ḡ is a random generator from G as required.
Let κ be the private key. Obviously, we can answer all decryption queries
honestly, as the challenger knows all the required keys.
Nowwe show how to answer the challenge query for the encryption of

message m0 or m1 with label L. The challenger first picks a random bit
b ∈ {0, 1}. Then, it picks a random element α ∈R Zp and sets u = Xα,
so a = xα. Then, c = mb · uκ is correctly formed. We let v = Zαβ. Now,
if z = xy then v = Zαβ = (gyβ)xα = ḡxα = ḡa as required. Otherwise,
v is a random element inG. The proof of knowledge we simulate as per
Lemma 4.3. So the simulation is perfect, and hence any adversary that
can distinguish between a correctly formed v and a random element
can be used to solve the ddh-problem. In particular, if the adversary
indicates that v is correctly formed, output 1 to indicate that z = xy,
and 0 otherwise.
Now that we have seen that we can replace the v element with a ran-

dom element under the ddh assumption, we proceed by replacing the c
component with a random element. Again, we assume that there exist
an adversary that can detect whether c is correctly formed, given that v
has already been replaced by a random element.
This time, the setup is more complicated. Again, we will use a ddh

instance (g, X, Y, Z) inG. Let g be the generator. Now, we let the public
key w = X, so κ = x (but, we do not know κ). Assume, w.l.o.g., that the
corrupted servers are numbered 1, . . . , k− 1. Choose their key-shares

4.3 preliminaries 69

randomly κ1, . . . , κk−1 ∈R Zp, and let wi = gκi be their corresponding
verification keys. Let I = {0, 1, . . . , k− 1}, then for k ≤ j ≤ n we have

wj = wλI0 (j)
k−1

∏
i=1

wλIi (j)
i ,

by Lagrange interpolation. Furthermore, we pick a random element
α ∈R Zp and set ḡ = wα. This allows us to answer decryption queries,
because the proof of knowledge essentially forces the adversary to give
us ḡa = (wa)α. This completes the setup.
We will now show how to answer decryption queries for server j, with

k ≤ j ≤ n. Let ψ = (c, L, u, v, e, d) be the ciphertext. If the ciphertext
is not valid, simply return (j,⊥). If the ciphertext is valid, then with
overwhelming probability v = ḡa, and hence v1/α = wa = uκ . We now
use Lagrange interpolation on the set I = {0, 1, . . . , k− 1} to find uj:

uj = vλI0 (j)/α
k−1

∏
i=1

uκiλ
I
i (j).

Once again, we simulate the proof of knowledge, as per Lemma 4.3.
Finally, we show how to deal with a challenge query of two messages

m0, m1 ∈ G and label L. First, pick a bit b ∈R {0, 1} and set u = Y, and
v ∈R G (by our first step, this is as the adversary now expects). Finally,
set c = mb · Z. Now, if z = xy then c is correctly formed as before,
otherwise c is random. Any adversary that distinguishes between a well-
formed c and a random c breaks the ddh assumption. In particular, if
the adversary indicates that c is correctly formed, output 1 to indicate
that z = xy, and 0 otherwise.
We have seen how, in two steps, we canmodify the protocol in such a

way that the ciphertext gives no information about the plaintext. Hence,
the adversary cannot win.

In our security proof for our vote-to-link scheme, we require that the
tdh2’ scheme is secure even if the challenger canmakemany challenge
queries, in the sense of the following game.

Game 4.5 (Real-or-random threshold cca security) The real-or-random
threshold cca game between an adversary and the challenger proceeds
as follows.

setup phase As in the threshold cca security game Game 4.2. Addi-
tionally, the challenger picks a bit b ∈R {0, 1}.

query phase In the query phase, the adversary can make the follow-
ing two queries.

70 vote to link

• Dec(i, ψ). The adversary can make decryption queries for
ciphertext ψ of any non-corrupted host i, as long as ψ was
not the result of an Enc query.

• Enc(m, L). The adversary can also make challenge encryp-
tion queries for message m and label L. Depending on b,
the challenger answers as follows. If b = 0, the challenger
returns ψ = TDH.Enc(w, m, L) and otherwise returns ψ =
TDH.Enc(w, m, L) for m ∈R G.

output phase Finally, the adversary outputs a bit b′ as its guess for
b. The adversary wins if b′ = b.

The advantage of an adversary A is given by Advror-ccaA = 2
∣∣Pr[b =

b′]− 1
2

∣∣, where the probability is over the random bits of the challenger
and the adversary. The tdh2’ encryption scheme is threshold cca se-
cure in the real-or-random sense if Advror-ccaA is negligible for every ppt
algorithm A.

A standard hybrid argument shows that if a scheme is secure accord-
ing toGame4.2 then it is also secure in the sense ofGame4.5 albeit with
a loss of tightness proportional to the number of encryption queries
made. See Bellare et al. [13] for an example of such a reduction.

Corollary 4.6 The tdh2’ scheme is cca secure in the sense of the real-or-
random threshold cca game (see Game 4.5) in the random oracle model for
H′, assuming that the ddh assumption holds in G.

4.3.2 ElGamal encryption

In our full moderator-anonymous scheme, we use use ElGamal encryp-
tion [63] to encrypt the moderators’ decryption shares.

Scheme 4.7 (ElGamal encryption) The ElGamal encryption scheme in
a cyclic groupG with generator g of prime order p is defined as follows.

• Setup(1ℓ). On input of the security parameter ℓ, the setup algo-
rithm generates a cyclic group G of prime order p generated by
g, such that the size of p is ℓ bits. It publishes (G, p, g).

• KeyGen((G, g, p)). Given a cyclic group G of order p generated
by g as above, choose a private key y ∈R Zp and set the corre-
sponding public key Y = gy. Return (y, Y).

• Enc(Y, m). To encrypt a message m ∈ G with a public key Y pick
a randomizer a ∈R Zp and create the ciphertext c = (c1, c2) =
(m ·Ya, ga).

4.4 a vote-to-link scheme 71

• Dec(y, c). To decrypt a ciphertext c = (c1, c2) using the private
key y compute m = c1/cy

2.

ElGamal encryption is multiplicatively homomorphic. Defining the
product of two ElGamal ciphertexts to be the result of component wise
multiplication, we have

Enc(Y, m1) · Enc(Y, m2) = Enc(Y, m1 ·m2).

In Section 4.5 we use this homomorphic property to obtain a fully
moderator-anonymous vote-to-link scheme. In that section we also use
ElGamal’s simple structure to randomize a public key and to trans-
form ciphertexts for this randomized public key into ciphertexts for the
original public key.

• Randomize(Y, α). To randomize a public key Y ∈ G using a ran-
domizer α ∈ Zp compute Y = Y · gα.

• Derandomize(c̄, α). To derandomize a ciphertext c̄ = (c̄1, c̄2) that
is encrypted with a randomized public key Y = Randomize(Y, α)
with randomizer α, calculate c = (c̄1/c̄α

2 , c̄2).

It is easy to check that for Y = Randomize(Y, α) and c̄ = Enc(Y, m) we
have c = Derandomize(c̄, α) = Enc(Y, m).

4.4 a vote-to-link scheme

In this section we introduce our basic vote-to-link scheme. We first
present the full scheme that expands upon the main ideas sketched at
the start of this chapter and Section 4.2, and then prove user anonymity.

4.4.1 Our scheme

The following scheme formalizes the ideas presented above.

Scheme 4.8 (Vote-to-link) Our vote-to-link scheme with threshold k and
n moderators is given by the following algorithms.

• Setup(1ℓ, n, k). To set up the system, the group manager first
runs SetupGM(1ℓ) and then SetupModerators(1ℓ, n, k). Finally,
it generates a hash function H : {0, 1}∗ → G1.

• SetupGM(1ℓ). The SetupGM algorithm is run by the group man-
ager responsible for adding users. The group manager first sets
up an anonymous credential schemewith security level ℓ in which
the gm is an issuer. Next, it generates a bilinear group pair (G1,
G2), both of prime order p such that the size of p is ℓ bits, with

72 vote to link

generators g and h respectively, and a bilinearmap ê : G1×G2 →
GT such that the ddh problem is hard in G1. It publishes the
public information for the anonymous credential scheme, and a
description of the groups, generators and bilinear map.

• SetupModerators(1ℓ, n, k). Run the TDH.KeyGen(n, k,G1, g, p)
algorithm. This algorithm gives each moderator a voting key δi,
and publishes themoderator public keyw and the verification key
VK.

• UserJoin(). The UserJoin protocol is run by the group manager
and a user. The gm authenticates the user and confirms that she
is eligible to join the system. If so, the gm issues a credential C(x)
over the user’s secret key x to the user. The groupmanager stores
additional information to ensure that the user only receives one
credential.

• PerformTransaction(ϵ, τ). The PerformTransaction protocol is
run between the user and a service provider. Let x be the user’s
secret key, ϵ the current epoch, and τ the transaction that the
user wants to perform. The user calculates the current epoch
generator gϵ = H(ϵ) ∈ G1, generates z ∈R Zp, and calculates
the linking token r = gx

ϵ and auxiliary information t1 = hz

and t2 = ê(gϵ, t1)
x. Next, she creates the encrypted6 linking

token T = TDH.Enc(w, r, τ) and generates a signature proof of
knowledge that she generated all these values correctly:7

π = SPK{(C, x, z, α) : C(x) ∧ t1 = hz ∧ tx
1 = hα∧

T = TDH.Enc(w, gx
ϵ , τ) ∧ t2 = ê(gϵ, h)α}(τ). (4.1)

In this proof α = xz. The user sends the transaction record
t = (τ, T, t1, t2, ϵ, π) to the sp. The sp executes the transaction
if the proof π is correct and T is well-formed (see TDH.Dec in
Scheme 4.1). The sp stores the transaction record t.

• VoteToLink(δi, t). On input of a transaction record t = (τ, T, t1,
t2, ϵ, π) and voting key δi, the moderator checks that the label in
ciphertext T matches the transaction τ. If the label is correct, it
calculates the decryption share ψi = TDH.Dec(δi, T) and sends
ψi to the sp. The sp calls TDH.ShareVerify(ψi, VK, T) to verify the
vote before accepting it.

6 It is essential that the user verifies that the moderators’ public key w indeed belongs to
the moderators.

7 The part of the proof involving t1 and t2 has been adapted from Nakanishi and Fun-
abiki [124]. For the T = TDH.Enc(w, gx

ϵ , τ) conjunct the prover proves that T indeed
encrypts gx

ϵ , i.e., that it knows a such that c = gx
ϵ wa and u = ga, where c and u are

components of T.

4.4 a vote-to-link scheme 73

• Link(t, {ψi1 , . . . , ψik}). On input of k decryption shares {ψi1 , . . . ,
ψik} and a transaction record t = (τ, T, t1, t2, ϵ, π) the service
provider recovers the linking token r = TDH.Combine(T, ψi1 , . . . ,
ψik) (or aborts if the decryption fails). The sp now uses this link-
ing token to find all other transactions by the same user in epoch
ϵ: for each transaction t′ = (τ′, T′, t′1, t′2, ϵ, π′) in epoch ϵ the sp
tests whether

ê(r, t′1) = t′2.

If the equation holds, the sp adds transaction τ′ to the list of trans-
actions by the same user.

The vote-to-linkmechanism is effected as follows. When amoderator
detects a bad transaction, it calls VoteToLink and sends the resulting
decryption share to the sp (the decryption shares are stored with the
transaction). When the sp has collected enough decryption shares it
runs Link to find all other transactions by the same user in that epoch.8

In addition, if a user’s linking token is recovered within the current
epoch, the sp can use the test in Link to block transactions from that user
for the remainder of this epoch by testing the submitted t1, t2 values.
Correctness of this scheme is easy to verify. The service provider veri-

fies the proofπ which ensures that the user has a valid credential, that T
contains an encrypted linking token, and that the auxiliary values t1, t2
are well-formed. Since credentials are unforgeable, a user is forced to
create linking tokens belonging to her own identity. Because of the se-
curity of the revocation scheme by Nakanishi and Funabiki [124], the
linking tokens can be used to link all the user’s transactions within this
epoch.
The TDH.KeyGen(n, k,G1, g, p) algorithm used as part of the Setup-

Moderators scheme is non-interactive and relies on a trusted party to
create the initial secret sharing. Alternatively, the moderators could
jointly run the VSS+(n, k,G1, g, p) protocol (see Protocol 2.11 in Sec-
tion 2.5.1) as an interactive variant that does not rely on a trusted party.

4.4.2 User anonymity

We now show that well-behaving users remain anonymous. More pre-
cisely, we show that unlinked users in epoch ϵ, i.e., users for which the
linking token for epoch ϵ has not been recovered, are anonymous. We
first define the full user anonymity game, see also Section 4.1.2.

8 The sp should guide the voting process to prevent the situation where there are many bad
transactions with only a few votes. Instead, the sp should rank suspicious transactions by
the number of votes so that if a transaction is indeed bad, the threshold is reached quickly.
In fact, even non-moderators could report bad actions to bring them to the moderator’s
attention more quickly.

74 vote to link

Game 4.9 (User anonymity) The user anonymity (ua) game is a game
between an adversary A and a challenger. The game proceeds in five
phases. Each user in the system is identified by a user identifier id of
the adversary’s choosing. The challenger keeps track of a set of honest
users UH and a set of users UC that are under the adversary’s control.

setup phase At the start of the game the adversary informs the chal-
lenger about the number n of moderators and the threshold k
it wants to use. In addition, the adversary indicates a set C ⊂
{1, . . . , n} of cardinality k − 1 of moderators it wants to corrupt.
The challenger runs Setup to set up the group manager and mod-
erators. The adversary receives the keys of the corrupted moder-
ators at the end of the SetupModerators routine. The challenger
manages the other moderator keys. Finally, the challenger sets
UH = ∅ and UC = ∅.

query phase In the query phase the adversary can make the follow-
ing queries:

• AddU(id). The adversary can make an AddU(id) query to
request that a user with identifier id is added to the system.
The challenger creates this user and runsUserJoin on behalf
of this user with the gm. The challenger stores the user’s
private information and the credential. It adds id to UH .

• JoinU(id). The adversary makes a JoinU(id) query to re-
quest that a user it constructed, i.e., the adversary chooses
the keys, joins the system. To this end, the adversary runs
theUserJoin protocol—on behalf of the user—with the gm—
controlled by the challenger. The new user will have identi-
fier id and the challenger adds id to UC.

• CorruptU(id). The adversary can request to corrupt user
with identifier id ∈ UH . The challenger looks up the user’s
private information and credential and gives them to the ad-
versary. It also adds id to UC and removes id from UH .

• TransactSP(id, ϵ, τ). The adversary canmake TransactSP(id,
ϵ, τ) queries to request that a user with id ∈ UH (the adver-
sary can simulate this query for corrupted users) runs the
PerformTransaction(τ) protocol for epoch ϵ where the adver-
sary acts as sp.9 The adversary receives all the information
that the sp would normally receive, including the transaction
record t.

9 Allowing the adversary to select the ϵ gives the adversary slightly more power, in an actual
system time does not run backwards.

4.4 a vote-to-link scheme 75

• VoteToLink(j, t). The adversary makes a VoteToLink(j, t)
query to request the decryption share ψj from moderator
j ̸∈ C on transaction t. In response, the challenger runs
VoteToLink(δj, t) on behalf ofmoderator j (which has decryp-
tion key share δj) and returns the result to the adversary.

challenge phase Eventually the adversary will select two users with
identifiers id0, id1 ∈ UH , a transaction τ and an epoch ϵ such that
the users id0 and id1 are unlinked in epoch ϵ. More precisely,
the adversary should not have made any VoteToLink queries on
transaction records t produced by either user id0 or id1 in epoch
ϵ. The challenger picks a bit b ∈R {0, 1} and acts as if the ad-
versary called TransactSP(idb, ϵ, τ). Let t∗ be the corresponding
transaction record.

restricted query phase After the challenge query the adversary
can continue tomake queries as before, with the following restric-
tions. It is not allowed to call CorruptU on the users id0, id1, nor
is it allowed tomake VoteToLink queries involving any transaction
record t produced by either id0 or id1 in epoch ϵ. (In particular,
the adversary is not allowed to call VoteToLink on the challenge
transaction t∗. The adversary can already create k− 1 decryption
shares because of the corrupted moderators it controls.)

output phase Eventually the adversary will output a guess b′ of bit
b. The adversary wins if b = b′.

At any point in time the adversary can run Link (because anyone can run
this algorithm). The advantage of adversary A in this user anonymity
game is given by AdvuaA (1ℓ) = 2

∣∣Pr[b = b′]− 1
2

∣∣, where the probability
is over the random bits of the challenger and the adversary. We say
the vote-to-link scheme has user anonymity if AdvuaA (1ℓ) is negligible for
every ppt adversary A.

Theorem 4.10 The vote-to-link scheme has user anonymity in the random
oracle model for H provided that the tdh2’ is cca secure and the dbdh-3b
(see Definition 2.7) assumption holds.

Proof. This proof consists of two steps. One, because of the cca security
of the tdh2’ encryption scheme, the adversary does not learn anything
about the plaintext of the encrypted linking token T. Hence, it does not
learn anything about the linking token. In fact, we can replace the real
encrypted linking tokens for the challenge users by random ones with-
out the adversary noticing. We use the random oracle to simulate the
proof π. Two, because the linking token is unknown, the dbdh-3b as-
sumption and a proof similar to the one byNakanishi and Funabiki [124]

76 vote to link

ensures that the adversary cannot link users through the auxiliary infor-
mation either. We will now give the full details.
We first prove security for a simpler version of the user anonymity

game in which the adversary outputs the challenge users id0, id1 and
the challenge epoch ϵ∗ during the setup phase. Let this user anonymity
game be G0. Define the game G1 as the game similar to G0 in which
the encrypted linking token T in the response to the transaction
queries TransactSP(idi, ϵ∗, τ) for users id0 and id1 in epoch ϵ∗, and
in the challenge query have been replaced by the random ciphertext
T = TDH.Enc(w, m, τ), where m ∈R G1. Because of the cca security
of the tdh2’ scheme (we use the real-or-random variant) games G0 and
G1 cannot be distinguished.
More formally, suppose we have an adversaryA0 that can distinguish

game G0 from G1. We now show how to construct an adversary B0 that
breaks the cca security of the tdh2’ scheme. Adversary B0 controlsA0.
During the setup phase adversaryA0 outputs the threshold k, the num-

ber n of moderators, a set C of k− 1 adversaries it wants to corrupt and
the challenge users id0, id1 and challenge epoch ϵ∗. Adversary B0 runs
SetupGM to set up the group manager. It controls all the keys. Next,
instead of running SetupModerators, it relaysA0’s choice of k, n and C
to its challenger during the setup phase of the real-or-random cca secu-
rity game. Adversary B0 obtains the decryption keys δi for moderators
i ∈ C, which it relays to A0. This completes the setup phase.
During the query phase adversary B0 answers AddU, JoinU, and

CorruptU, queries honestly (it has all the information required to
do so). On a query TransactSP(id, ϵ, τ) it proceeds as follows. If
id = idi, i ∈ {0, 1} and ϵ = ϵ∗, it replaces the encrypted linking
token T by calling its encryption oracle on the linking token r and label
τ. It simulates the proof of knowledge π. In all other cases, it answers
the TransactSP query honestly.
To answer a VoteToLink query for moderator j and transaction record

t = (τ, T, t1, t2, ϵ, π) it runs VoteToLink as the moderator would, except
for the TDH.Dec call. It uses its oracle to request the decryption share
ψj of T from moderator j and returns ψj. If A0 does make a query for
a transaction record t resulting from a TransactSP query on user id0 or
id1 in epoch ϵ∗ then A0 loses, and B0 aborts.
During the challenge phase adversary A0 outputs a transaction τ that

it wants to be performed by either id0 or id1, in epoch ϵ∗. Adversary B0
picks a bit β ∈R {0, 1} and answers the challenge query as if the adver-
sary made a TransactSP(idβ, ϵ∗, τ) query (that is, it uses its encryption
oracle to create the encrypted linking token T).
During the restricted query phase adversary A0 continues to make

queries as in the query phase. Adversary B0 answers them as before.

4.4 a vote-to-link scheme 77

Finally, A0 outputs a guess b′ ∈ {0, 1} for the game Gb′ that it be-
lieves it just played. If B0 had access to an encryption oracle producing
real ciphertexts, then it perfectly simulated game G0. If it had access
to a random oracle, it perfectly simulated game G1. So, if A0 outputs
b′ = 0, adversary B0 outputs 1 (as a guess that its oracle outputs real
ciphertexts) and otherwise outputs 0. Any advantage that A0 has in
distinguishing G0 from G1 results in the same advantage for B0 in dis-
tinguishing the real oracle from the random oracle in the tdh2’ cca
security game. Since tdh2’ is cca secure, adversary A0 cannot exist.
We now continue from the situation in G1, i.e., all the encrypted link-

ing tokens of the challenge users id0 and id1 contain randommessages.
As such, the adversary never learns anything about the true value of the
linking tokens. Define game G2 as the game where we replace t1 and t2
in the transaction record t by random values in the challenge query. Any
adversary A1 that can distinguish game G1 from G2 breaks the dbdh
assumption.
More formally, suppose that we have an adversaryA1 that can distin-

guish game G1 from G2. We now show how to construct an adversary
B1 that can solve the dbdh-3b problem, i.e., B1 gets as input an instance
(g, A1 = ga, B1 = gb, h, A2 = ha, C2 = hc, Z = gz

T) ∈ G3
1 ×G3

2 ×GT
and it needs to decide whether is real, i.e., z = abc, or random, i.e.,
z ∈R Zp. This part of the proof is a straightforward translation of
Nakanishi and Funabiki’s proof of anonymity [124] to the Type 3 setting.
We model H : {0, 1}∗ → G1 as a random oracle. Adversary B1

answers hash queries consistently. On input of a new hash query for
epoch ϵ it picks an exponent δϵ ∈R Zp. If ϵ = ϵ∗ it returns gϵ∗ =

Bδϵ
1 = gbδϵ , otherwise, it returns gϵ = gδϵ . These generators are still

randomly distributed, as desired.
The setup phase proceeds as in the game. During the query phase,

adversary B1 answers AddU(id), JoinU(id), and CorruptU(id) queries
honestly as long as id ̸= id0, id1. (Note that A1 never makes JoinU or
CorruptU queries on id0 and id1 by assumption.) On a query AddU(idi),
i ∈ {0, 1}, adversary B1 picks a randomizer ξi ∈R Zp and proceeds as if
user idi’s private key is aξi. Since it does not know these user’s private
keys, it will simulate the proof of knowledge of knowing a credential
over this key.
Adversary B1 answers VoteToLink queries honestly. On input of a

query TransactSP(id, ϵ, τ) adversary B1 proceeds as follows. If id ̸=
id0, id1 then B1 uses that user’s secret key to answer the query as usual.
For user id = idi, i ∈ {0, 1} it proceeds as follows. It picks z ∈R Zp

78 vote to link

and sets:

t1 = hz

t2 = ê(gϵ, A2)
ξiz

Now, t2 = ê(gϵ, ha)ξiz = ê(gϵ, hz)aξi and hence is exactly as it should
be. If ϵ = ϵ∗, B1 replaces the encrypted linking token with a random
ciphertext T = TDH.Enc(w, m, τ) for m ∈R G1. If ϵ ̸= ϵ∗, the linking
token r is given by gaξi

ϵ = (gδϵ)aξi = (ga)δϵξi = Aδϵξi
1 , which it encrypts

as normal. In both cases, B1 simulates the proof π.
During the challenge phase adversary A0 outputs a transaction τ that

it wants to be performed by either id0 or id1, in epoch ϵ∗. Adversary B0
proceeds as follows. It picks a bit b ∈R {0, 1} and it sets t1 = Cz

2 and
t2 = Zzδϵ∗ ξb . If Z = ê(g, h)abc then

t2 = Zzδϵ∗ ξb = (ê(g, h)abc)zδϵ∗ ξb = ê(gbδϵ∗ , hcz)aξb = ê(gϵ∗ , t1)
aξb ,

as in game G1. However, when Z ∈R GT then t1 and t2 are completely
random, as in G2. Adversary B1 completes the transaction as before by
simulating the proof and using a random encrypted linking token.
During the restricted query phase adversary A0 continues to make

queries as in the query phase. Adversary B1 answers them as before.
Finally, A1 outputs a guess b′′ ∈ {1, 2} for the game Gb′′ that it be-

lieves it just played. Now, if Z = ê(g, h)abc then B1 precisely simulated
G1. Otherwise, it precisely simulated G2. Hence, if b′′ = 1, then B1
outputs 1 (to indicate that z = abc), and 0 otherwise. So, if A1 distuin-
guishes G1 from G2 it can be used to solve dbdh-3b instances. Hence,
such a distinguisher cannot exist.
We have now reduced the game G0 to game G2 in which both the

encrypted linking tokens T and the values t1 and t2 have been replaced
by random values for the challenge user. All that remains is the anony-
mous credential. Clearly, if an adversary can distinguish the users id0
and id1 based on this information, than it breaks the anonymity of the
anonymous credential scheme, so such an adversary also cannot exist.
This proves that no adversary can win G0.
We started out bymaking a slight simplification to the user anonymity

game by asking the adversary to output the challenge users and the chal-
lenge epoch to obtain game G0. In our final reduction we simply guess
these values to simulate an adversary against G0. If at any point this
guess turns out to be wrong (for example because the real adversary
makes VoteToLink queries on transactions from our challenge users
corresponding to the challenge epochs, or if it outputs different values
during the challenge phase) we simply abort and try again. This proves
the final result.

4.4 a vote-to-link scheme 79

4.4.3 A variant: identifying misbehaving users

Above we presented a scheme that allowed the system to recover from
bad actions by linking all the actions from a malicious user within an
epoch. An anonymous blacklisting system would simultaneously en-
sure that a user cannot abuse the system again. In some scenarios, the
threat of blacklistingmight not be a sufficient deterrent, especially when
the damage done by malicious actions cannot easily be repaired.
One area where such recovery from damage might be harder is the

area of online review sites of commodities or services. On the one hand,
it is in the reviewers’ interest to remain anonymous so they can honestly
evaluate the product without risk of retaliation by the manufacturer or
the service provider. Especially in the hotel industry there have been
several reports10 of customers being fined after leaving critical reviews.
On the other hand, as is also pointed out in these reports, the anonymity
can also be abused, and once slanderous or false comments have been
made, they tend to stick around.
For these scenarios we propose an extra deterrent: bad behavior leads

to revealing the user’s identity. We follow the same ideas as before, but
now we construct a scheme where moderators can act on complaints
by voting to deanonymize users, instead of just linking a users actions.
This requires only a few changes to the protocol we presented above.
First, the group manager records the user’s public key gx and other

information necessary to identify a user when the user joins. When
the user performs a transaction she simply uses her public key as the
linking token (i.e., r = gx) and proves correctness as before. She omits
the auxiliary values t1 and t2 because they are not necessary.
In the combination step the sp directly recovers the user’s public key

that was stored in the encrypted linking token, and can use this to iden-
tify the user, possibly with the help of additional information stored by
the group manager.

Security and anonymity

The security and anonymity guarantees we derived in the previous
section still hold for this variant. This variant does have a different
anonymity guarantee: revoking a user identifies her—rather than link
transactions—but does so only for a single transaction: no linking
occurs.

10 http://edition.cnn.com/2014/08/04/travel/bad-hotel-review-fine-backlash/, last accessed
February 17, 2017, and http://www.bbc.com/news/technology-30100973, last accessed
February 17, 2017.

http://edition.cnn.com/2014/08/04/travel/bad-hotel-review-fine-backlash/
http://www.bbc.com/news/technology-30100973

80 vote to link

4.5 a vote-to-link scheme with moderator anonymity

In this section, we present two schemes that allow the moderators to
vote anonymously. We first present the gist of these schemes, then de-
fine moderator anonymity, and, finally, present both schemes in full.

4.5.1 The idea

In the scheme described in the previous section, moderators cannot
vote anonymously. This is because Shamir’s secret sharing scheme is
used (as part of the threshold encryption scheme) to share the moder-
ators’ private key κ. That is, we create a polynomial f of degree k − 1
such that f (0) = κ. Each moderator is then given a share (i, f (i)) as
its decryption key. While partially decrypting typically hides f (i), the
index i (which identifies the moderator) is essential to recover the plain-
text. To protect the moderators from retaliation we present two modi-
fied schemes that allow the moderators to vote anonymously.
The first scheme assumes that moderators trust each other, but do

not trust other users of the system. The moderators generate new se-
cret shares (of the same secret) for every transaction—since the secret
stays the same, so does the moderators’ public key. These shares are
Shamir secret shares as before, but the moderator’s index depends on
the transaction. As a result, the shares look random for outsiders, how-
ever, the relation between indices and transactions is known to each of
the moderators.
More precisely, the moderators non-interactively derive a secret in-

jective function σ : {1, . . . , n} → Zp (the injective function is trans-
action specific) and a secret-sharing polynomial f σ sharing the fixed
secret κ for each transaction. However, while every moderator knows
the injective function σ, moderator i can evaluate the polynomial f σ

at only one point: σ(i). Each moderator uses its single secret-share
(σ(i), f σ(σ(i))) to partially decrypt the ciphertext corresponding to this
transaction. This perfectly hides the identity of the voting moderators
from the users. Since the transaction-specific function σ is known to
all moderators, all moderators can identify the voting moderators.
In the case that moderators also do not trust each other we propose a

second scheme where the user and the service provider interact. To
achieve full anonymity for the moderators, the user and the service
provider run a simple three step protocol. In essence, the user and the
sp run a smallmix network, ensuring that as long as the service provider
and the user do not collude, no party can determine the identity of the
votingmoderators. To enable this protocol, eachmoderator has a public
encryption key. The idea is as follows, see also Figure 4.2:

4.5 a vote-to-link scheme with moderator anonymity 81

Y1 Ŷ1

Yn Ŷn

shuffle and randomize moderator public keys

Step 1: sp

ψ1 ψ̂1 c1

ψn ψ̂n cn

shuffle decryption shares

encrypt to Ŷ1

encrypt to Ŷn

Step 2: user

Ŷ1, . . . , Ŷn

c1 C1

cn Cn

unshuffle and derandomize

for moderator 1

for moderator n

Step 3: sp

c1, . . . , cn

Figure 4.2: Conceptual representation of themix network constructed by the user
and the service provider to enable full moderator anonymous vot-
ing. The sp shuffles and randomizes the moderator public keys Yi
and sends them to the user. The user encrypts shuffled decryption
shares ψi with these shuffled and randomized keys and sends the
resulting ciphertexts back to the sp. The sp, finally, undoes its shuf-
fling and randomization to obtain moderator-specific encrypted de-
cryption shares.

82 vote to link

1. The service provider shuffles and randomizes the moderators’
public keys and sends them to the user.

2. The user creates a new threshold encryption key and encrypts its
linking token with this new key. To facilitate decryption, she en-
crypts a shuffled decryption share for each of the shuffled and
randomized public keys she received from the service provider.

3. The service provider unshuffles and derandomizes the cipher-
texts containing the encrypted decryption shares and publishes
themwith the transaction record. Moderators will simply decrypt
their ciphertexts to recover their decryption shares and cast their
votes.

Assuming, for the moment, that both the user and the service provider
are honest, it is easy to see that this gives anonymity for the voting mod-
erators. First, because the service provider shuffles and randomizes the
moderators’ public keys, the user does not know to which moderator it
gave which share. So, if a moderator reveals or uses a share, the user
does not learn anything about the identity of the moderator. Second,
because the user assigns random shares to each moderator, the service
provider does not learn which moderator received which share. Hence,
the service provider cannot recognize the voting moderators either.
In practice, we cannot assume that the user is honest—she might

want to avoid consequences of bad behavior. Therefore, the user has
to prove that she acted honestly. Similarly, we also cannot assume that
the service provider is honest. In particular, the sp can deanonymize
the user if it generated new keys for the moderators, hence the service
provider too needs to prove that it shuffled and randomized the original
public keys correctly.

4.5.2 Outsider anonymity

In the first vote-to-link system with anonymity for moderators, the iden-
tities of the votingmoderators are only hidden from entities that are not
part of the moderator group. Hence, we call this type of anonymity out-
sider anonymity.
To obtain outsider anonymity, we proceed in two steps to create a

fresh secret-sharing polynomial for the same shared secret key κ. Each
moderator is assigned a new index based on the transaction record (the
secret, or in our case the decryption key, needs to remain the same to
ensure that the corresponding public key is known when the user con-
structs the transaction record). The steps are as follows.

1. We modify Cramer et al.’s share conversion scheme (see Sec-
tion 2.5.2) to derive a polynomial f σ(X) such that moderator

4.5 a vote-to-link scheme with moderator anonymity 83

i can evaluate it at σ(i), for some injective function σ—rather
than a polynomial that moderator i evaluates at point i. In other
words, σ(i) is nowmoderator i’s index corresponding to the share
f σ(σ(i)). The derived polynomial f σ still shares the secret key κ.

2. The polynomial we derive in the previous step is not completely
random (to achieve that directly we would also have to change
the underlying additive secret shares, but we cannot easily do this
without changing the moderators’ public key). The reason is that
σ determines how f σ changes, and there are fewer injective func-
tions than there are secret-sharing polynomials for a given secret.
To correct this, we add a fully random zero-sharing polynomial
z(X) to f σ(X).

Recall that in the share conversion scheme by Cramer et al., see Sec-
tion 2.5.2, the secret-sharing polynomial f (X) is given by

f (X) = ∑
A⊂{1,...,n}
|A|=n−(k−1)

rA · gA(X),

where the degree k− 1 polynomial gA(X) has zeros at points not in A,
and gA(0) = 1. The value rA is known to all parties i ∈ A, so party i
can evaluate f (i).
In the following scheme, we change the zeros of the polynomials gA

based on an injective function σ. As a result, party i can evaluate f
at σ(i). However, to evaluate f , it needs to know the permuted gAs
and hence the injective function σ. This limits the scheme to outsider
anonymity.
Since the secret-sharing polynomial changes for each transaction, we

cannot use the verification keys of the tdh2’ scheme. We simply omit
them. (The cca security of the tdh2’ scheme is not affected, as the
ciphertext itself can still be validated.)

Scheme 4.11 (Outsider-anonymous scheme) To obtain a vote-to-link
scheme with outsider anonymity we start with our regular vote-to-link
scheme (see Scheme 4.8) and modify it to allow outsider-anonymous
voting.

• SetupModerators(1ℓ, n, k). To set up themoderators, generate ad-
ditive shares rA ∈R Zp for each A ⊂ [n] of cardinality n− (k− 1),
set κ = ∑A rA and generate w = gκ . Next, generate a base
coefficient ζ ∈R Zp for the zero-sharing polynomial and an in-
jective function key θ ∈R {0, 1}ℓ, and choose a family of injec-
tive functions inj : {0, 1}ℓ → ([n] → Zp) and a cryptographic
hash function H′′ : {0, 1}∗ → {0, 1}ℓ (recall, the hash function

84 vote to link

H′ : {0, 1}∗ → Zp was already defined for the tdh2’ scheme).
Furthermore, as in TDH.KeyGen, generate a random generator
ḡ ∈R G1 and publish the public parameters (G1, g, ḡ, p) and the
ciphertext space C = G1×{0, 1}∗×G2

1×Z2
p. Finally, each mod-

erator is given a voting key δi = (i, (rA)A∋i, ζ, θ).

• VoteToLink(δi, t). Given a voting key δi = (i, (rA)A∋i, ζ, θ) and a
transaction record t the moderator proceeds as follows. First, let
the injective function σ = inj(H′′(θ ∥ t)) : [n] → Zp be based
on the transaction record t. Then, it calculates:

f σ(σ(i)) = ∑
A⊂{1,...,n}
|A|=n−(k−1)

rA · gσ
A(σ(i)),

where

gσ
A(X) =

{
1 if X = 0
0 if X ∈ σ({1, . . . , n} \ A).

Furthermore, moderator i calculates the zero-sharing polynomial

z(X) =
k−1

∑
j=1

H′(ζ ∥ j ∥ t)X j.

and creates the decryption key δ′i = (σ(i), f σ(σ(i)) + z(σ(i)). Fi-
nally, it runs VoteToLink(δ′i , t) of the original scheme.

The SetupModerators algorithm uses a trusted party to generate the
initial additive secret shares. Alternatively, the moderators can run
the AVSS+(n, k,G1, g, p) protocol (see Protocol 2.13 in Section 2.5.1) to
jointly generate the required additive shares rAs and the public key w,
without relying on a trusted party. Next, they jointly compute the coeffi-
cient ζ by adding n coefficients, each randomly chosen by a moderator.

anonymity of the scheme. All we changed with respect to the
original scheme is how the decryption keys are generated. Since the un-
derlying additive shares still have the same threshold k, user anonymity
is still guaranteed.
Next, we prove outsidermoderator anonymity. We first define the full

moderator anonymity game.

Game 4.12 (Moderator anonymity) Themoderator anonymity (ma) game
is a modification of the user anonymity game (see Game 4.9), again
between an adversary and a challenger. It proceeds in five phases:

4.5 a vote-to-link scheme with moderator anonymity 85

setup phase At the start of the game the adversary informs the chal-
lenger about the number n of moderators and the threshold k it
wants to use. The challenger runs SetupGM to set up the group
manager and SetupModerators to set up the moderators. Finally,
the challenger sets the set of corrupted moderators C = ∅.

query phase The adversary controls all users (hence, it cannot make
AddU and CorruptU queries). It can make JoinU, TransactSP and
VoteToLink queries as in the user anonymity game (note that the
VoteToLink queries are restricted to uncorruptedmoderators). Ad-
ditionally, it can make the following query:

• CorruptM(i). The adversary request the corruption of amod-
erator i. The challenger gives all keys of moderator i to the
adversary and adds i to C.

challenge phase Eventually, the adversary requests votes on a valid
transaction record t of its choosing. To do so, it sends t and two
sets of moderators M0 and M1 to the challenger. The challenger
verifies that the transaction record t is valid and new (i.e., it was
not used earlier with a VoteToLink query), that the sets are of equal
size, i.e., |M0| = |M1|, and that there are no corrupted modera-
tors in the query sets, i.e., (M0 ∪ M1) ∩ C = ∅; the challenger
aborts otherwise. Finally, the challenger picks a bit b ∈ {0, 1}
and then returns VoteToLink(i, t) for each moderator i ∈ Mb.

restricted query phase The adversary can make JoinU as well as
TransactSP queries as before. The VoteToLink(i, t) query can only
be made on non-challenge transaction records.

output phase Finally, the adversary outputs a guess b′ for bit b. The
adversary wins if b′ = b.

The advantage of adversary A is given by AdvmaA (1ℓ) = 2
∣∣Pr[b = b′]−

1
2

∣∣, where the probability is over the random bits of the challenger and
the adversary.

Definition 4.13 We say the voting scheme has full moderator anonymity
if the advantage AdvmaA (1ℓ) is negligible for every ppt adversary A.

Definition 4.14 We say the voting scheme has outsider moderator
anonymity if the advantage AdvmaA (1ℓ) is negligible for every ppt ad-
versary A that makes no corruption queries CorruptM.

Theorem 4.15 The outsider-anonymous vote-to-link scheme offers outsider
anonymity for moderators in the random oracle model for H′.

86 vote to link

Proof. We prove that the adversary cannot have an advantage in the
outsider moderator-anonymity game. Instead of using the actual
VoteToLink function, we define the stronger function where VoteToLink
always returns the derived decryption key δ′i = (σ(i), h(σ(i))), where
h = f σ + z (recall that f σ and z depend on the transaction τ).
It is easy to see that the challenge query provides no information to

the adversary about the true value of b, the challenge bit used in the
moderator anonymity game. We show this in two steps.
First, note that the zero-sharing polynomial z is uniquely determined

by the hash function H′. Since the adversary does not know the secret
input θ, we can patch H′ in the random oracle model to produce any
coefficients, and hence any polynomial z, we want. We can thus replace
h = f σ + z by a truly randomly chosen secret-sharing polynomial h̃ of
degree k− 1 such that h̃(0) = κ without the adversary detecting this.
Second, the final set of indices {σ(i) | i ∈ Mb} does not leak any in-

formation about b either, because of the family of injective functions
inj. Hence, we replace these by truly random indices and return a set
of randomly chosen index-value pairs (j, h̃(j)) to the adversary. Clearly,
these do not give the adversary any advantage in winning themoderator
anonymity game.

4.5.3 Full anonymity for moderators

We now present a mechanism that offers full anonymity to the modera-
tors. The price is a reduction in efficiency for the user. In the outsider
anonymity scheme, adding anonymity to the moderators does not cost
the user anything. In the scheme we propose here, the user incurs an
extra cost linear in the number of moderators.
The sp and the user follow the three steps that we outlined above and

that are shown in Figure 4.2. However, since the user needs to prove
that she shuffled the shares correctly, step 2 is somewhat more com-
plicated. Recall that the user creates decryption shares, shuffles them,
and encrypts them to the shuffled moderators’ keys. To facilitate the
proof of correctness, the user first encrypts the new decryption shares
with a known ElGamal key, then shuffles these ciphertexts, and finally
reencrypts these shuffled ciphertexts to the actual moderator keys. For
each of these sub steps the user creates a proof that she did so correctly.

Scheme 4.16 (Fully-anonymous scheme) To construct a vote-to-link
scheme with full anonymity for moderators, we start with our regu-
lar vote-to-link scheme (see Scheme 4.8) and modify it to allow fully
anonymous voting.

• SetupModerators(1ℓ, n, k). Each moderator i generates an ElGa-

4.5 a vote-to-link scheme with moderator anonymity 87

mal key-pair (yi, Yi) = KeyGen(G, g, p) and publishes its public
key Yi. It privately stores its voting key δi = yi.

• PerformTransaction(ϵ, τ). The PerformTransaction protocol is
run between a user and a service provider on input of a transac-
tion τ. It proceeds in three steps.

Step 1. The user registers the transaction τ, the service provider
replies by sending a list of randomized and shuffled moderator
public keys Ŷ1, . . . , Ŷn, i.e., the sp picks a permutation σSP : [n]→
[n] and randomizers αi ∈R Zp, and uses these to randomize the
ElGamal public keys accordingly (see Section 4.3.2):

Ŷi = Randomize(YσSP(i), αi).

The service provider then sends Ŷ1, . . . , Ŷn to the user together
with a proof

πSP = SPK
{
((αi)i∈[n], σSP) : Ŷi = Randomize(YσSP(i), αi)

}
(τ)
(4.2)

that it randomized and shuffled actual moderator keys, see Sec-
tion 4.5.4 for how to construct πSP.

Step 2. The user checks the proof πSP and aborts if it is incor-
rect.11 Then, she runs TDH.KeyGen(n, k, (G1, p, g)) to create a
fresh tdh2’ private key κ and public key w with verification keys
wi = gκi corresponding to the decryption key shares (i, κi). Next,
she creates her encrypted linking token T = TDH.Enc(r, w, τ) =
(c, L, u, v, e, d) and auxiliary information t1, t2, and proves that
she did so correctly by calculating proof π as in Equation 4.1 in
the original protocol, except for the fact that she uses a fresh key
for the moderators.

Finally, she encrypts the decryption key shares for each of the ran-
domized public keys Ŷ1, . . . , Ŷn:

1. Let ψi = (i, ui) = TDH.Dec((i, κi), T) be the decryption
shares. The user generates an ElGamal key-pair (y′, Y′) =
KeyGen(G, g, p) and encrypts the decryption share’s compo-
nents:12

ĉi = Enc(Y′; gi, ui)

We encrypt gi instead of the actual index i, since our ElGa-
mal encryption scheme and the proofs we build upon them

11 In addition, as with the previous scheme, the user needs to verify the authenticity of the
moderators’ public keys.

12 Throughout the remainder of this scheme, when we operate on tuples of messages, we
simply write Enc(Y; m0, m1) instead of the longer (Enc(Y, m0), Enc(Y, m1)).

88 vote to link

require group elements. The user then proves that these are
generated correctly, i.e., that ui = uκi , using the proof:

πa = SPK
{
(y′, (κi)i∈[n]) : Y′ = gy′∧

∀i ∈ [n]
[
wi = gκi ∧ ĉi = Enc(Y′; gi, uκi)

]}
(τ).

2. She chooses a random permutation σU : [n] → [n] and
permutes the ciphertexts ĉi according to σU :

c̃i = ĉσU(i)Enc(Y
′; 1, 1),

and proves that she shuffled correctly:

πb = SPK
{
(σU) : ∀i ∈ [n]

[
c̃i = ĉσU(i)Enc(Y

′; 1, 1)
]}

(τ)

using, for example, Groth’s verifiable shuffle protocol [76].

3. Finally, the user reencrypts the shuffled ciphertexts c̃i to the
randomized and shuffled moderators’ public keys Ŷi to get
ciphertexts ci and proves that she did so correctly:

πc = SPK
{
((ji, κ′i)i∈[n]) : ∀i ∈ [n]

[
c̃i = Enc(Y′; gji , uκ′i) ∧ ci = Enc(Ŷi; gji , uκ′i)

]}
(τ).

Here the user uses that she knows the content of all the ci-
phertexts.

The user, finally, sends the tuple tU = (T, t1, t2, w, Y′, π, πa, πb,
πc, (ĉi, c̃i, ci, wi)i∈[n]) to the sp.

Step 3. The service provider receives tU and:

– it checks that the verification keys w1, . . . , wn and w0 :=
w are consistent using Lagrange interpolation. In particu-
lar, it sets I = {0, . . . , k − 1} and checks that, for all i ∈
{k, . . . , n},

wi = ∏
j∈I

w
λIj (i)
j ;

– it verifies the correctness of the proofsπ, πa, πb, andπc; and

– it recovers ciphertext Ci for moderator i:

Ci = Derandomize(c
σ−1

SP (i), α
σ−1

SP (i)), (4.3)

and publishes these together with tU as the transaction
record.

4.5 a vote-to-link scheme with moderator anonymity 89

• VoteToLink(δi, τ). Moderator i decrypts Ci using its voting key
δi to recover the pair (gj, uκj) for some j. The moderator uses an
algorithm such as baby-step giant-step to recover j (this only takes
O(
√

n) time, see for example Katz and Lindell [93, Section 9.2.2]
for an introduction). Then, it publishes (j, uκj).

anonymity of the scheme. First, we show anonymity for the
user. The user sets up a completely new system for every transaction,
but while tU contains many values, these are either already present in
the original protocol (like the public key w and verification keys wi) or
zero-knowledge proofs. So, we only need to concern ourselves with the
ciphertexts. Of these, only moderator i can decrypt Ci. This ensures
that every moderator receives at most one share, and hence guarantees
user anonymity.
We already argued that the shuffling by both the user and the service

provider ensures anonymity for the moderators as long as the user and
the sp do not collude.

Theorem 4.17 The fully anonymous vote-to-link scheme (Scheme 4.16) of-
fers full anonymity for moderators.

4.5.4 Shuffling randomized keys

In the first step of the fully anonymous vote-to-link protocol, the sp shuf-
fles randomizedmoderator keys. Just as for the user’s proof of shuffling,
the sp uses Groth’s verifiable shuffle protocol [76] to construct the proof
πSP, however, the randomization of the moderators’ public keys using
Randomize complicates this proof slightly.
The trick to seeing why we can apply Groth’s protocol is to reinter-

pret the Randomize function in a special ElGamal encryption scheme.
In particular, let ĝ ∈R G1 be a random generator, and g ∈ G1 the corre-
sponding public key. Then, the encryption of m ∈ G1 is Enc′(g, m) =
(m · gβ, ĝβ), where β ∈R Zp. Note that when ĝ is truly random the
ciphertexts cannot be decrypted.
Now, we reinterpret the original public keys as ciphertexts in this

scheme, i.e., Yi becomes Hi = Enc′(g, Yi) = (Yi, 1) (i.e., we use β = 0).
Similarly, we can reinterpret Ŷi = Randomize(YσSP(i), αi) as

Ĥi = HσSP(i) · Enc
′(g, 1) = (YσSP(i) · g

αi , ĝαi),

where encryption Enc′(g, 1) uses the ephemeral key αi. Hence, Ĥ1, . . . ,
Ĥn are simply shuffled and randomized versions of the original cipher-
texts H1, . . . , Hn. And this is exactly what we can prove using Groth’s
verifiable shuffle protocol.

90 vote to link

4.5.5 Probabilistic checking of moderator keys

In step 3 of the full moderator anonymous vote-to-link scheme the ser-
vice provider checks the validity of the verification keys w0, . . . , wn. The
naive version of this verification is slow: it requires O(kn) group opera-
tions, whereas all other protocol steps areO(n). In our implementation
we replaced this check with a probabilistic check which only requires
O(n) group operations, thereby bringing it in line with the other oper-
ations.
The probabilistic checking algorithm uses the fact that if two polyno-

mials are different, their evaluation at a randompoint is different as well
with overwelming probability. This idea is not new. It is, for example,
used to create short polynomial commitment schemes [92].

1. Create a cover of {0, . . . , n} consisting of sets of size k. For exam-
ple, letting r = ⌊ n

k ⌋, the r + 1 sets I0, . . . , Ir given by

Ii = {0 + ik, 1 + ik, . . . , k− 1 + ik} for 0 ≤ i < r

Ir = {n− (k− 1), . . . , n}

form such a cover. (We always use the same cover.)

2. Each set of verification keys (wj)j∈Ii defines its own degree k− 1
polynomial fi in the exponent, i.e., wj = g fi(j). (Such a polyno-
mial always exists, since a degree k− 1 polynomial has k degrees
of freedom.) Pick a random element α ∈R Zp and evaluate the
polynomials at this point

g fi(α) = ∏
j∈Ii

w
λ
Ii
j (α)

j .

To check that all fi are equal and hence that the verification keys
are correctly formed, test if g f0(α) = g fi(α) for all 0 < i ≤ r.

Using this algorithm, we only do k group operations per covering sub-
sets. Since we have ⌊ n

k ⌋+ 1 of these subsets, the complexity is indeed
O(n), as desired.

Theorem 4.18 The probabilistic verification key checking algorithm pre-
sented above is correct.

Proof. It is easy to see that if the verification keys are generated honestly,
the algorithm accepts. We now show that if the verification keys were
not generated correctly, the algorithm detects this with overwhelming
probability.

4.6 vote-to-link in practice 91

If the verification keys were not correctly generated, there exists an
i ∈ {1, . . . , r} such that f0 ̸= fi. Since f0 ̸= fi, they agree at at most k−
1 points (otherwise they would be equal). We choose α randomly, and
after the user has fixed the verification keys. Hence, the probability that
f0 and fi agree on α is (k− 1)/p which is negligible as required.

4.6 vote-to-link in practice

In this section we explain how to choose parameters, and analyse the
efficiency of our vote-to-link schemes.

4.6.1 Choosing parameters

The length of an epoch determines the utility of linking a user’s action.
Choosing a longer epoch ensures that amalicious user’s actions become
linkable over a longer time span. Hence, it is easier to locate all other
bad actions by that same user. On the other hand, choosing longer
epochs also increases the invasiveness of linking actions. Special care
has to be taken when the decision to vote is very subjective. Since a vote
to link effectively reduces a user’s anonymity to an epoch-dependent
pseudonym, the length of an epoch should be smaller in this case.
For our leading example, editingWikipedia, we believe that an epoch

of 24 hours strikes a good balance: the system can easily recover from
bursty misbehavior, while inadvertent linking is not too damaging.
To reduce inadvertent linking to a minimum, moderators and the

voting threshold must be carefully selected. Ideally, a system has only
a few trusted moderators, in which case the threshold can be small as
well. If the number of moderators cannot be kept low, the threshold
should be set to a sizable percentage of the number of moderators to
ensure that the ‘bad apples’ cannot influence the vote too much.

4.6.2 Prototype implementation

To evaluate the performance of our two schemes, we built and tested a
proof-of-concept implementation13 in C using the relic cryptographic
library [8].14 We implemented only the protocols’ cryptographic parts,
but the communication parts are easily added. We ran all experiments
on a single core of an Intel i5-6200U running at 2.30GHz. Most code
can be optimized further, and is easily parallelizable.
We used bbs+ signatures [11] as anonymous credential scheme which

13 https://github.com/wouterl/vote-to-link
14 We set up relic to use an optimized 254-bit BN curve.

https://github.com/wouterl/vote-to-link

92 vote to link

26 27 28 29 210

10−1

100

101

Number of moderators (n) – log scale

Ti
m
e
(s
)–

lo
g
sc
al
e

Timings for the anonymous vote-to-link scheme

Total
Step 1 (sp)
Step 2 (U)
Step 3 (sp)

Figure 4.3: Running time of the total PerformTransaction protocol of the anony-
mous vote-to-revoke scheme for a threshold k = 32, as well as run-
ning times for the individual steps. As expected, the running time
increases linearly in the size of n. (Communication cost is not taken
into account.)

work in the type 3 setting which we also use for the linking tokens, see
Section 2.7.
The non-anonymous vote-to-link scheme is very fast. The Perform-

Transaction protocol takes about 5ms for both the user and the service
provider. The size of a single transaction record is about 1 KiB. Vote-
ToLink takes about 0.5ms. After the sp receives k votes, it recovers the
linking token in about 20 ms (for k = 32) and can then check about
2800 transactions per second against the recovered linking token.
The outsider anonymous version of the vote-to-link scheme is identi-

cal to the non-anonymous vote-to-link scheme as far as users and service
providers are concerned. The performance for those parties is therefore
identical. While we did not implement the outsider anonymous version,
we expect a serious performance impact for the moderators. To cast a
vote, the moderators must evaluate the polynomial f σ, which requires
O((n

k−1)k) field operations (the extra factor k is because the moderators
also need to evaluate each of the polynomials gσ

A). Since voting hope-
fully does not occur too frequently, a longer running time for VoteToLink
might be acceptable. If the cost becomes too high, it is better to switch
to the full moderator anonymous protocol.
Figure 4.3 shows the running times of the PerformTransaction proto-

col for the full moderator anonymous protocol. TheO(n) complexity of
the proofs15 causes a significant slow-down. However, a running time
of 7 seconds for a large number of moderators like 1024 is still practi-

15 We replaced the verification of thewi ’s in step 3 by theO(n) probabilistic variant described
in Section 4.5.5.

4.7 related work 93

cal. The size of the transaction record increases linearly from 47KiB
for n = 64 to 732KiB for n = 1024. Moderators can run VoteToLink in
5ms for n = 1024.

4.7 related work

Many systems have been developed that cover methods for dealing with
misbehaving users. Perhaps one of the best known approaches are
group signatures [45], which allow group members to anonymously
signmessages on behalf of the group. We refer to, for example, Manulis
et al. [117] for an overview. An essential aspect of group signatures is the
ability to open or trace a signature to determine which group member
created it. Typically, this power rests with either the group manager or
a separate tracing manager.
Recent work has looked into creating group signatures where the trac-

ing manager is distributed among many parties [67, 70, 116, 165]. Only
when a specific number of parties agree can the signer of a signature be
traced, i.e., identified. Another extension to group signatures is that of
traceable signatures [94], which allows the group manager to produce
tracing tokens that can be used to recognize signatures by the same
user—similar to our vote-to-link scheme. The novelty of our scheme is
the combination of the idea of a distributed tracing manager—the mod-
erators in our case—and the linking of a user’s actions within a limited
time window (in the traceable signatures scheme [94] linking is global).
Many recent group signature schemes also offer revocation: giving

a revocation manager the ability to block misbehaving users. In partic-
ular, we wish to highlight Nakanishi and Funabiki’s scheme [124]. It
offers backwards unlinkable revocation by using revocation tokens that
are different for every epoch. Upon revocation the tokens for all future
epochs are published. We employ this mechanism too. However, we
instead use the revocation token for the current epoch to temporarily
link a user’s actions.
Also outside the realm of group signatures researchers looked into

methods for deterring misbehavior. For example, the Nymble system
seeks to block misbehaving Tor users, but uses a trusted party to do
so [160]. The blacklistable anonymous credentials (blac) [159] instead
blocks users without using a trusted party. In both cases the goal is
to simply block the misbehaving user. But, as we have indicated, often
othermethods are required to recover from abuse. If this is the case, our
scheme can be used on top of such an anonymous blocking scheme.
Anonymous reputation systems such as RepCoin [7] and Anon-

Rep [164] offer another method to hold users accountable for their
actions. The users’ behavior is reflected in their reputation. While

94 vote to link

RepCoin only supports positive feedback, AnonRep also allows actions
to be downvoted. In both cases, the change in reputation only affects
future actions. Hence, past misbehavior remains unidentified, contrary
to our system.
Desmedt and Frankel were among the first tomention threshold cryp-

tosystems and threshold encryptions [55]. In this chapter we created a
verifiable variant of the more recent Shoup and Gennaro [147] scheme
which is cca secure. Of more recent interest is the scheme by Deler-
ablée and Pointcheval [54] which allows encryptors to precisely select
the threshold under which the message is to be encrypted. To make
this possible, a trusted party—similar to the group manager in group
signatures—assigns decryption keys to decryptors. This makes this
scheme not applicable to our scenario because we do not want such
an all-powerful party to exist. Another threshold encryption scheme is
the one by Libert and Yung [106], which is secure against adaptive ad-
versaries and is secure in the standard model. The downside is that
they have to rely on a less common setting—a composite order bilin-
ear group. Furthermore, the message is embedded in the target group,
making it impossible to apply the linkingmechanismwhich itself relies
on pairings.
Either by design or as a result of the specific construction, these

threshold cryptosystems identify the decryptors—the moderators in
our scheme. In most schemes, this is a direct result of using Shamir’s
secret sharing scheme. There has been some research into anonymous
secret sharing schemes, but none of these are applicable to our sce-
nario. Blundo and Stinson’s anonymity of secret sharing schemes [18]
merely deals with the theoretical optimization of secret share sizes
when you have to include the identity of the share-holder in the share.
The shares themselves may still identify the share-holder, in fact, the
Shamir share (i, f (i)) (rather than just f (i)) is ‘anonymous’ by their def-
inition. Guillermo et al. present some truly anonymous schemes [77]—
they prove that given the shares you cannot determine the sharehold-
ers from which these shares originated. However, the schemes they
present are theoretical and lack efficient secret recovery algorithms.
This makes it impossible to use them to construct an anonymous ver-
sions of threshold encryption schemes such as tdh2.

4.8 conclusions

In this chapter we have introduced a new efficient vote-to-link scheme
inwhich a group ofmoderators can decide to link a user’s actions within
an epoch when they detect abuse. We think that this scheme is espe-
cially useful in combination with an anonymous blocking scheme such

4.8 conclusions 95

as blac: blac ensures that the user cannot continue her abuse, while
the vote-to-link system ensures that abuse prior to the block can be re-
vealed if the moderators decide this is necessary.
The concept of linking a user’s actions within epochs also sets our so-

lution apart from the open mechanism of group signatures, that always
work on a single signature—and future ones in case of revocation—
rather than identifying a set of signatures belonging to the same user,
and traceable signatures, that do not limit the tracing capabilities.
In addition to this, we introduced two less efficient, but still prac-

tical variants that offers anonymity for the moderators in addition to
anonymity for the users at the cost of efficiency. We think that this en-
ables interesting scenarios, in particular if the moderators could other-
wise experience retaliation because of their actions, or could be coerced
into acting.
We do wonder if it is possible to build a non-interactive fully anony-

mous version of our scheme. In effect, this would give an anonymous
threshold encryption scheme. Alternatively, it would be interesting to
explore if pratical anonymous secret-sharing schemes can be built, and
to use that to construct a vote-to-link scheme.

5
DISTR IBUTED ENCRYPT ION

In this chapter, we revisit the distributed encryption scheme proposed
by Hoepman and Galindo [83]. Distributed encryption is the dual of the
usual threshold encryption schemes. In a threshold encryption scheme,
decryptors can decrypt a ciphertext to produce decryption shares; the
plaintext can only be recovered given at least k decryption shares (pro-
duced by different decryptors) corresponding to same ciphertext. In a
distributed encryption scheme on the other hand, senders can encrypt
plaintexts producing ciphertext shares; the plaintext can only be recov-
ered given at least k ciphertext shares (produced by different senders)
corresponding to the same plaintext.
As we saw in Chapter 3, distributed encryption is a primitive that can

be used to implement revocable privacy. In particular, it can be used
to implement the rule “if a person or an object generates more than
k events at different locations, its identity should be revealed.” To do
so, sensors that register such events are senders in a distributed encryp-
tion scheme that encrypt the corresponding identity for every event that
occurs. The scheme guarantees that the recipient of these ciphertexts
can recover the identity only if it can combine k ciphertext shares, i.e.,
encryptions, of the same identity created by different senders.
Chapter 3 describes several use cases that can be solved using dis-

tributed encryption: the canvas cutters case, the average speed checking
case, the sale of valuable objects case, and the child abuse case. In this
chapter we will focus on the first two: the canvas cutters case and the
average speed checking case.
Recall that the goal in the canvas cutters case is to detect cars that visit

many different rest stops along highways, as these might correspond to
the cars of criminals that rob the trucks that are parked at these rest
stops. To detect these cars using distributed encryption, place an au-
tomatic number plate recognition (anpr) system at each rest stop. For
each car that visits the rest stop, the anpr system creates a ciphertext
share corresponding to the car’s license plate. Only the ciphertexts cor-
responding to cars that visited at least k can be combined to reveal the
car’s license plate.
A distributed encryption scheme can also be used to enforce speed

limits in a privacy-friendly manner as follows. Place an anpr system at
the start and end of a stretch of highway, like in the specs system [154].
Suppose that a car is speeding if it takes at most t seconds to traverse

97

98 distributed encryption

this stretch. The anpr systems generate distributed encryption cipher-
text shares for every passing car. The system restarts, with fresh keys,
after time t, so only when a car is speeding can it generate two shares
before the keys are reset. To detect the speeding cars, the distributed
encryption system uses a threshold of two. To reliably detect speeding
cars, the detection system needs to runmultiple, staggered instances of
the distributed encryption scheme. The higher the number of parallel
instances, the better the accuracy. See Section 5.6 for the details.
The second application is especially challenging: the time frames are

short and the number of observations is high—during rush hours, sen-
sors may see 30 cars per minute per lane. In this chapter we propose
two new schemes that aremuchmore efficiently in these situations than
the distributed encryption scheme by Hoepman and Galindo [83].
In both applications, interaction between the cars and anpr systems

is infeasible: adding communication facilities to cars is costly. There-
fore, distributed encryption schemes should be non-interactive to offer
privacy in these situations. Techniques based on k-times anonymous
credentials [31] and threshold encryption schemes—see Hoepman and
Galindo [83] for a detailed discussion—are thus not appropriate. Also,
when using a distributed encryption scheme, the senders can imme-
diately encrypt their observations. Storing a plaintext copy, as would
be needed for a secure multi-party computation between the senders,
is therefore not necessary. We see this as an advantage. The non-
interactivity does imply, however, that the senders have to be trusted
to not store plaintext copies and to not frame users. See Section 3.1.4
for a broader discussion of interactive versus non-interactive sensors.
The first contribution of this chapter is a simpler distributed encryp-

tion scheme that does not use pairings, and satisfies stronger security
requirements than the original scheme by Hoepman and Galindo [83].
We present this scheme in Section 5.3. We extend it with a non-trivial
key-evolution method [66] to forward-securely [89] generate as many
keys as necessary while keeping the key-size constant, see Section 5.4.
The ability to restart the system with fresh keys is important in almost
all applications, including the speed-limiting example, because it en-
sures that only shares generated within the same time frame can be
combined. Hoepman and Galindo’s original solution requires that the
keys for every future time frame are generated in advance, and therefore
scales poorly.
The second contribution is a batched distributed encryption scheme.

It addresses the issue of inefficiency in traditional distributed encryp-
tion schemes in practice. The cost of recovering all encryptedmessages
from a set of ciphertexts shares is exponential: the only option is to try
all possible combinations of shares. Our batched solution, which we

5.1 the idea 99

present in Section 5.5, is much more efficient, at the cost of increased
storage requirements. The amount of storage is linear in the number
of possible messages. Hence this solution is feasible only if the domain
is small, as is the case for license plates. Nevertheless, we believe this
to be a worthwhile trade-off.
Our third and final contribution is a prototype implementation of our

schemes. In Section 5.6 we analyze the performance of our schemes,
suggest additions to our schemes that may be useful in practice and
present conclusions.

5.1 the idea

The structure of our new distributed encryption scheme is as follows.
Senders are given Shamir secret shares of the value 1. To encrypt a
message into a ciphertext share, senders first encode this message into
a group element, and then raise this message-specific group element
to the power of their secret share. Given enough of these ciphertext
shares, the combiner can use Lagrange interpolation to remove the se-
cret shares from the exponent thus recovering recover the message-
specific group element, and thereby the message itself.
In more detail, let G be a cyclic group of prime order p, such that

the ddh problem is hard in G. The protocol uses an injection χ :
{0, 1}ℓm → G to encode messages into group elements. The function
χ−1 is the inverse of χ, i.e., χ−1(χ(m)) = m for all m ∈ {0, 1}ℓm . This
mapping is redundant, i.e., with high probability a random group ele-
ment g ∈ G has no inverse under χ−1. We construct this map in the
next section.
Every sender i is given a secret share si ∈ Zp, corresponding to a k-

out-of-n Shamir secret sharing of a publicly known value, 1. Let f be the
corresponding degree k − 1 secret-sharing polynomial, i.e., f (0) = 1
and si = f (i). Sender i produces a ciphertext share for message m
as follows. First, it encodes the message into a generator χ(m) ∈ G.
Then, it uses its secret share to produce the ciphertext share ci = χ(m)si .
Given enough of these shares for the same message, the exponents can
be removed, and the original encoded message can be recovered. More
precisely, consider a set {ci1 , . . . , cik} of shares with I = {i1, . . . , ik} the
set of indices, then there exist Lagrange coefficients λIi1 , . . . , λIik such

that ∑i∈I λIi si = f (0) = 1. So, we can calculate

α = ∏
i∈I

cλIi
i = χ(m)∑i∈I siλ

I
i = χ(m) f (0) = χ(m).

As a result, m = χ−1(α). If the shares do not belong to the same mes-
sage, the resulting encoding will, with high probability, not be an en-

100 distributed encryption

coding of a message, and therefore fail to decode using χ−1.
If χ is not redundant, the scheme is insecure. Let m = χ−1(g) and

m = χ−1(g2). Then, given a share ci = χ(m)si = gsi , it is trivial to
make a share c′i = χ(m)si = g2si = (gsi)2 for m without help of the
sender. Effectively, this allows the attacker to generate ciphertext shares
for messages that it never queried. Hence, if the attacker is given fewer
than k shares of a message m̄ it can still decrypt it using the extra shares
it constructed. This breaks the security of the scheme (see Section 5.3.2
for the full definition of security).

5.2 preliminaries

To prove security of our schemes we have to assume the hardness of the
ddh problem, see Section 2.4 for its definition. Additionally, we model
most hash functions in the random oracle model.

5.2.1 A redundant injective map

We now describe how to construct the map χ, which maps messages
onto group elements in a redundant manner, as described in the previ-
ous section. First, we formalize what we mean by such a map.

Definition 5.1 We call a map ψ : A → B, with partial inverse ψ−1 :
B → A ∪ {⊥} a redundant injective map with security parameter ℓH if
it satisfies the following properties:

computable The functions ψ and ψ−1 are efficiently computable.
The function ψ may fail with negligible probability.

reversible For all a ∈ A we have ψ−1(ψ(a)) = a.

redundant The probability Pr[ψ−1(b) ̸= ⊥ : b ∈R B] is negligible.

The redundancy ensures that when we combine ciphertext shares be-
longing to different messages we can detect this because ψ−1 returns⊥
(note, this requires |B| to be at least 2ℓH |A|). The redundancy require-
ment only guarantees that randomly chosen elements in Bwill not have
an inverse with high probability. It is easy to adversarially choose b ∈ B
that does have an inverse (simply mapping an element from A first will
guarantee this).
To prevent the attack at the end of Section 5.1, it should not be pos-

sible for an adversary to construct special group elements and find the
messages that map to these group elements. In our security proof later
on, we use the following stronger programmability requirement, which
basically states that in the random oracle model we can change the re-
dundant injective map to send messages queried by the adversary to

5.2 preliminaries 101

arbitrary group elements. This property implies that the attack at the
end of Section 5.1 cannot work, as mapped group elements are essen-
tially randomly chosen group elements.

Definition 5.2 We say a redundant injective map is programmable in
the random oracle model if we can adaptively ensure that ψ(a) = b
for any queried a ∈ A and b ∈R B with overwhelming probability,
provided that ψ(a) was not queried before. In particular, we can make
these changes on the fly, as queries for a come in.

In our scheme, B must be a group. We give an example of a redun-
dant injective map that redundantly maps strings to elements of an el-
liptic curve (sub)groupG of prime order.1 Themap uses the same rejec-
tion sampling principle that is used to hash strings to group elements:
we use the string to determine a candidate x-coordinate of a point on
the curve. If this is a valid x, i.e., there is a corresponding y-coordinate
such that (x, y) is a point in the groupG then we accept, otherwise, we
slightly change the message and try again.2

Scheme 5.3 Our redundant injective map is defined by the algorithms
RIM.gen, RIM.map and RIM.unmap—the last two match χ and χ−1.

• RIM.gen(1ℓm , 1ℓH , E, (G, p)). This method takes as input a mes-
sage size ℓm, a security parameter ℓH , a description of an elliptic
curve E, and the desired subgroup G ⊂ E of prime order p. Let
F be the field over which E is defined, y2 = f (x) be the defining
equation of the elliptic curve E, and h be the cofactor ofG (that is,
E has hp points). Let ℓ′H = ℓH + 2 + ⌊lg h⌋ and let

ℓc =

⌊
lg
(

ℓH
lg(2h)− lg(2h− 1)

)⌋
+ 1

be the length of the counter. The algorithm aborts if it cannot
encode strings of bit length ℓm + ℓc + ℓ′H onto elements of F.3
The algorithm publishes two cryptographic hash functions H1 :
{0, 1}ℓm+ℓc → {0, 1}ℓ′H and H2 : {0, 1}ℓ′H → {0, 1}ℓm+ℓc , and

1 While this redundant injective map maps strings to group elements on an elliptic curve,
a very similar method works to map strings to elements of the quadratic residues (simply
check if the candidate point is a square).

2 In the paper on which this chapter is based, we used the Elligator map [15] to map
strings (with redundancy already added) to group elements. Unfortunately, Elligator
maps strings to a subset of the entire curve, rather than the prime-order subgroup that
we work in throughout this thesis (moreover, in this chapter it is essential that this group
is of prime order so that our secret sharing works). While we could solve this by rejection
sampling too, we opted to use the rejection samplingmethod directly. This has the added
benefit that implementing this map is easier than implementing the Elligator map.

3 If F = Zq with q a prime, then this means that q needs to be at least ℓm + ℓc + ℓ′H bits.

102 distributed encryption

the sizes ℓ′H and ℓc. Finally, the mapping maps strings {0, 1}ℓm

into E′ ⊂ G such that

E′ = {(x, y) | x is ℓm + ℓc + ℓ′H bits and y is ‘positive’} ∩G.4

• RIM.map(m). This function takes as input a message m ∈
{0, 1}ℓm . It initializes counter ctr to zero, the counter is rep-
resented by a fixed-width string of ℓc bits, and proceeds by incre-
menting ctr until the following steps do not reject the counter:

1. First, it creates an augmented message m′ = m ∥ ctr ∈
{0, 1}ℓm+ℓc .

2. It creates a candidate x coordinate x = (m′ ⊕ H2(r)) ∥ r ∈
F where r = H1(m′).5

3. It calculates y =
√

f (x), or rejects this counter if no such
y exists. The algorithm always chooses the same ‘positive’
square root.

4. Finally, it rejects this counter if (x, y) ̸∈ G.
The algorithm returns the point (x, y) ∈ G.

• RIM.unmap(c). Given a group element c = (x, y) ∈ G this func-
tion first parses x as b1 ∥ b2 such that b1 ∈ {0, 1}ℓm+ℓc and b2 ∈
{0, 1}ℓ′H , and returns⊥ otherwise. Else, it sets m′ = b1⊕H2(b2).
If H1(m′) = b2 it returns the leading ℓm bits of m (chopping off
the counter), else it returns ⊥.

Theorem 5.4 The map from Definition 5.1 is a programmable redun-
dant injective map in the random oracle model for H1 and H2, where
ψ = RIM.map, ψ−1 = RIM.unmap, A = {0, 1}ℓm , and B = E′

Proof. We first show that computability is satisfied. To do so, we need
to show that the procedure for RIM.map runs in (expected) polynomial
time. First, note that by construction of the sample point x using the
hash function, it is uniformly random for each new counter ctr. Second,
step 3 succeeds with probability negligibly close to 1⁄2 due to the Hasse-
Weil bound (see Silverman and Tate [148] for an introduction). Third,
the cofactor h is generally small—1, 2, 4 and 8 are common values—
hence step 4 succeeds with probability 1/h. Therefore, the algorithm
needs on average 2h steps to find a successful mapping, which is poly-
nomial (at least for elliptic curves, where h is small). Therefore, themap
is computable. Reversibility is clearly satisfied.

4 We require that y is positive to make square roots unique. In particular, if F = Zq then it
suffices to take square roots from 0, . . . , (q− 1)/2.

5 Strictly speaking, we need to encode the string (m′ ⊕ H2(r)) ∥ r into an element in F,
but for clarity we omit this as such encoding is generally straightforward.

5.2 preliminaries 103

The construction of ℓc ensures that the counter can be large enough
so that we almost always find a mapping. The probability that a counter
value is not accepted is PF = (2h− 1)/(2h). By construction, the algo-
rithm can try at least

t =
ℓH

lg(2h)− lg(2h− 1)
=

ℓH

lg 2h
2h−1

=
ℓH

lg P−1
F

different points. Then, the probability that all t possible counters fail is
negligible, in particular,

Pt
F = P

ℓH
lg P−1

F
F =

(
P

1
lg PF

F

)−ℓH

= 2−ℓH = negl(ℓH).

As an example, with a cofactor 8 we need to try, on average, 16 times
before finding a mapping. After making 1375 attempts, the probability
of all attempts failing is less than 2−128.
Next, we show that the map is redundant. For any c = (x, y) ∈R G

such that x = b1 ∥ b2 (with b1 ∈ {0, 1}ℓm+ℓc and b2 ∈ {0, 1}ℓ′H),
x is drawn uniformly at random from a subset of {0, 1}ℓm+ℓc+ℓ′H that
is 2h times smaller. Therefore, since H1 is a hash function, H1(b1 ⊕
H2(b2)) = b2 with probability at most 2h · 2−ℓ′H ≤ 2−ℓH , so the map is
redundant.
Finally, we show that the map is programmable. To do so, we show

that we can ensure that RIM.map(m) = g for any queried message
m ∈ {0, 1}ℓm and g ∈R E′ with overwhelming probability, provided
that RIM.mapwas not queried with m, i.e., that with H1 was not queried
with m ∥ ctr for any ctr.
Let g = b1 ∥ b2. In the following, we use the random oracles for H1

and H2 to ensure thatRIM.map(m) = g formessagem. The difficulty is
to ensure that the distribution of ctrmatches that of an actual mapping.
We ensure this by first sampling ctr. To do so, run RIM.map(m) as
normal until it finds a value of ctr for which the mapped point (x, y) is
accepted. The first ctr iterations of this procedure (recall that ctr starts
at zero), the point is rejected. For each rejection we have to make one
query for H1 and one for H2. Act as if the user made these queries, and
make these part of the oracles’ records.
The final, successful mappings of H1 and H2 we do not include in the

record. Instead, we set H1(m ∥ ctr) = b2. Then, since b2 is random,
with overwhelming probability it was not queried before and we can set
H2(b2) = (m ∥ ctr)⊕ b1. Since b1 and b2 are random, so is (m ∥ ctr)⊕
b1, therefore, the outputs are set to random values as required.

The programmability in the random oracle model guarantees that
the attack at the end of Section 5.1 does not work. Alternatively, we can

104 distributed encryption

also directly use the pre-image resistance of H1 to show that the attack
cannot work. To effect the attack, the attacker constructs a special ele-
ment g ∈ G (this element is not random, hence the redundancy does
not help) and now needs to find a message m such that RIM.map(m) =
g = (x, y). To do so, letting x = b1 ∥ b2, the attack at first needs to find
a message m′ ∈ {0, 1}ℓm+ℓc such that m′ ⊕ H2(H1(m′)) ∥ H1(m′) =
b1 ∥ b2. Hence, the attacker needs to find a pre-imagem′ of H1 such that
H1(m′) = b2 (this is a necessary but not sufficient condition, since b1
will likely still be incorrect, andmoreover, m′ needs to include a counter
such that no smaller counters yield a successful mapping). Since H1 is
a cryptographic hash function, it is pre-image resistant, and the attack
cannot work.

5.3 a new distributed encryption scheme

In this section we present our new distributed encryption (de) scheme,
which we sketched in Section 5.1. Our new de scheme directly cre-
ates shares of the message instead of shares of an identity-based de-
cryption key that decrypts the message, as in Hoepman and Galindo’s
scheme [83].
The new distributed encryption scheme is simpler than Hoepman

and Galindo’s and no longer requires pairings. Furthermore, the new
structure allows us to define a non-trivial key-evolution method, which
seems impossible for the original scheme without compromising for-
ward security. To better illustrate these differences, we recall Hoepman
and Galindo’s scheme before formally presenting our own.
The structure of this section is as follows. We first recall the syntax

of a key-evolving distributed encryption scheme as defined by Hoep-
man and Galindo [83]; we then present their security definition, which
we generalize, and their distributed encryption scheme. Finally, we de-
scribe our own distributed encryption scheme, and prove its security.

5.3.1 Syntax

The syntax of a key-evolving distributed encryption scheme, as defined
by Hoepman and Galindo [83], is as follows (with the exception that we
have made the safety requirement explicit).

Syntax 5.5 (Key-evolving distributed encryption [83]) A k-out-of-n
key-evolving distributed encryption scheme with lifetime divided into
s epochs, or (k, n, s)-kde scheme, consists of four algorithms:

• KDE.Gen(1ℓ, k, n, s, 1ℓm). The key generation algorithm takes
as input a security parameter ℓ, a threshold k, the number n of

5.3 a new distributed encryption scheme 105

senders, the number s of epochs and a message size ℓm (in bits).6

It generates an initial encryption key S1,i for each sender i ∈ [n].
It returns the initial encryption keys, the system parameters, and
the message spaceM.

• KDE.UpdKey(Sϵ,i). The key update function KDE.UpdKey takes
an encryption key Sϵ,i as input and outputs the encryption key
Sϵ+1,i for the next epoch. This function aborts if ϵ + 1 > s.

• KDE.Enc(Sϵ,i, m). Given an encryption key Sϵ,i and a message m,
this function returns a ciphertext share c.

• KDE.Comb(C). Given a set C = {c1, . . . , ck} consisting of k ci-
phertext shares, the function KDE.Comb(C) either returns a mes-
sage m or ⊥.

Every key-evolving distributed encryption scheme must satisfy the fol-
lowing correctness and safety requirements.

correctness Create the encryption keys Sϵ,1, . . . , Sϵ,n by first running
KDE.Gen and then repeatedly updating them using KDE.UpdKey
to reach the required epoch ϵ. For all messages m and pairwise
disjoint senders ij we recover m, i.e., KDE.Comb(C) = m, if C =
{KDE.Enc(Sϵ,i1 , m), . . . ,KDE.Enc(Sϵ,ik , m)}.

safety Generate encryption keys Sϵ,1, . . . , Sϵ,n as for correctness. If
C = {KDE.Enc(Sϵ,i1 , mi1), . . . ,KDE.Enc(Sϵ,ik , mik)} with not all
messages mi1 , . . . , mik equal, then with overwhelming probability
KDE.Comb(C) = ⊥.

To make the system secure in practice, senders need to get their keys
in a secure manner, and, to ensure forward security, senders have to
destroy the old keys after updating them.
A distributed encryption scheme is a special case of a key-evolving

distributed encryption scheme.

Definition 5.6 (Distributed encryption) A k-out-of-n distributed encryp-
tion scheme, or (k, n)-de scheme, is a (k, n, 1)-kde scheme given by the
algorithms DE.Gen,DE.Enc, and DE.Comb such that

DE.Gen(1ℓ, k, n, 1ℓm) = KDE.Gen(1ℓ, k, n, 1, 1ℓm),

DE.Enc(Si, m) = KDE.Enc(S1,i, m), and

DE.Comb(C) = KDE.Comb(C).

6 In the original description the message size was implicit.

106 distributed encryption

5.3.2 Security definition

We define the forward security of a key-evolving distributed encryption
scheme by recalling its security game. We present the security game
by Hoepman and Galindo [83] in a slightly more general setting: mes-
sages that have been queried beforemay be used in the challenge phase,
provided this does not lead to a trivial win for the adversary.

Game 5.7 (kde forward-security game) Consider a (k, n, s)-kde key-
evolving distributed encryption scheme with security parameter 1ℓ

given by the four algorithms KDE.Gen, KDE.UpdKey, KDE.Enc and
KDE.Comb. Define the following forward-security game between a
challenger and an adversary A.
setup phase The challenger runs KDE.Gen(1ℓ, k, n, s, 1ℓm) to obtain

(S1,1, , . . . , S1,n) and sends a description of the message spaceM
and system parameters to the adversary.

find phase The challenger initializes the current epoch ϵ to 1, and
the set of corrupted senders I1,c to the empty set. The adversary
can issue the following three types of queries:

• corrupt(i). The adversary requests the corruption of sender
i. This query is only allowed before any encryption query
enc(i, m) has been made for the current epoch. If the query
is allowed, the challenger sends Sϵ,i to the adversary and it
adds i to Iϵ,c.

• enc(i, m). The adversary can request the ciphertext share on
m ∈ M produced by sender i ∈ [n], i /∈ Iϵ,c. The challenger
sends KDE.Enc(Sϵ,i, m) to the adversary.

• next(). On next-epoch queries next(), the challenger up-
dates the encryption keys of senders i ∈ {1, . . . , n} \ Iϵ,c
by setting Sϵ+1,i = KDE.UpdKey(Sϵ,i). The adversary is re-
sponsible for updating the keys of the other senders in Iϵ,c.
Finally, the challenger sets Iϵ+1,c = Iϵ,c and ϵ = ϵ + 1.

challenge phase The adversary A outputs a challenge epoch num-
ber ϵ∗ < s, indices Inc = {i1, . . . , it} corresponding to senders
fromwhich it wants to receive challenge ciphertexts and two equal
lengthmessagesm0, m1 ∈ M. Let r denote the cardinality of Iϵ∗ ,c
and Q0 and Q1 denote the senders at which messages m0 and m1
were queried respectively in epoch ϵ∗. The challenger aborts if
the challenge is not valid, i.e., if one of the following conditions
holds

• m0 or m1 was queried at a challenge sender, i.e., if (Q0 ∪
Q1) ∩ Inc ̸= ∅;

5.3 a new distributed encryption scheme 107

• a challenge sender was already corrupted, i.e., if Inc ∩ Iϵ∗ ,c ̸=
∅; or

• too many shares are known to the adversary for either m0
or m1. This is the case if max(|Q0 ∪ Iϵ∗ ,c| , |Q1 ∪ Iϵ∗ ,c|) +
|Inc| ≥ k.

Finally, the challenger chooses b ∈R {0, 1} and returns a chal-
lenge ciphertext share cϵ∗ ,i = KDE.Enc(Sϵ∗ ,i, mb) for each i ∈ Inc.

output phase The adversary A outputs a guess b′ ∈ {0, 1}. The
adversary wins if b = b′.

The advantage of adversaryA is given by AdvkdeA (1ℓ) = 2
∣∣Pr[b′ = b]−

1
2

∣∣, where the probability is over the random bits of the challenger and
the adversary. A kde scheme is called forward secure if AdvkdeA (1ℓ) is
negligible for every ppt adversary A.

Definition 5.8 We say a (k, n)-de scheme is secure if the corresponding
(k, n, 1)-kde scheme is forward secure.

Hoepman and Galindo prove the security of their scheme in a more
restrictedmodel: they only consider static adversaries and the challenge
messages must not have been queried in the challenge epoch.

Definition 5.9 A static and restricted adversary announces, before the
setup phase, which senders it will corrupt in what epoch, what the chal-
lenge epoch ϵ∗ is, and which senders it will query in this challenge
phase. In addition, the adversary is not allowed to request challenge
messages m0, m1 that were queried in the challenge epoch.7

We prove that our scheme is secure in the unrestricted model of
Game 5.7.

5.3.3 Hoepman and Galindo’s de scheme

We first recall the scheme proposed by Hoepman and Galindo [83].
Every ciphertext share for a message m contains an identity-based en-
cryption (ibe) of the message corresponding to the Boneh-Franklin ibe
scheme [22]. The message m itself is used as the identity. Normally, in
an ibe scheme, there exist a private key generator that can generate the
decryption key for a given identity. Instead of using a central authority,
in Hoepman and Galindo’s scheme, each sender immediately produces

7 There is no trivial reduction between the forward-security gamewith a static and restricted
adversary and the forward-security game with a general adversary. While it is possible to
guess the challenge epoch (and only incur a polynomial reduction in the success proba-
bility), there are (n

r) possible sets of corrupted senders, which can be exponential in the
inputs (since k is an upper bound for r).

108 distributed encryption

a share of the ibe decryption key corresponding to the identity m. The
private key generator is, as it were, distributed among the senders.
A distributed encryption ciphertext now consists of two parts: (1) the

ibe encryption of the message m under the identity m, and (2) a share
of the ibe decryption key for identity m. To combine k ciphertexts cor-
responding to the same message m, the combiner first recovers the ibe
decryption key corresponding to the identity m and then uses this key
to decrypt one of the ibe ciphertexts to recover the message.
To implement the ibe scheme, Hoepman and Galindo use a sym-

metric authenticated encryption (ae) primitive that uses GT , the target
group of a bilinear map, as the key space.8 Such a scheme is given by
two algorithms (we omit the key-generation algorithm as we useGT as
the key space): AE.Enc and AE.Dec. The ciphertext c of a message m
encrypted with a key K ∈ GT is given by c = AE.Enc(K, m). The mes-
sage is recovered by calling AE.Dec(K, c). If the ciphertext c does not
correspond to the encryption of a message, AE.Dec outputs ⊥.
More formally, Hoepman and Galindo’s de scheme works as follows.

Scheme 5.10 (de scheme [83]) Hoepman and Galindo’s de scheme uses
an authenticated encryption scheme given by the algorithmsAE.Enc and
AE.Dec. The de scheme is given by the following algorithms.

• DE.Gen(1ℓ, k, n, 1ℓm). The DE.Gen algorithm takes as input a se-
curity parameter ℓ, a threshold k, the number n of senders and the
message size ℓm. First, it generates a bilinear group pair (G1,G2),
both of prime order p such that p is ℓ-bits, with generators g and
h respectively, and a bilinear map ê : G1 ×G2 → GT such that
the ddh problem is hard inG1. Let H′ : {0, 1}∗ → G1 be a hash-
function mapping into G1. Finally, it picks a authenticated en-
cryption scheme with keys inGT given by the algorithms AE.Enc,
AE.Dec such that themessage space is at least ℓm bits. It publishes
a description of the groups, the bilinear map ê, the authenticated
encryption scheme and the hash function H′.

Next, it generates amaster secret e ∈R Zp and corresponding pub-
lic key E = he ∈ G2. It creates a Shamir k-out-of-n secret sharing
of the master secret e as follows. It picks f1, . . . , fk−1 ∈R Zp

and defines the k− 1 degree polynomial f (X) = e + ∑k−1
i=1 fiXi,

then f (0) = e. For sender i it creates a share Si = (i, si) where
si = f (i). It outputs Si for each sender, and publishes the public
key E.

8 This is a bit more subtle than Hoepman and Galindo led us to believe, as ae primitives
typically use two keys of ℓ bits to obtain a security level of ℓ bits. Fortunately, the order
of GT is also ℓ bits, so we can compute a cryptographic hash of the element from GT to
obtain the keys for the ae scheme.

5.3 a new distributed encryption scheme 109

• DE.Enc(Si, m). Given an encryption key Si = (i, si) and a mes-
sage m, generate a randomizer r ∈R Zp, calculate the symmetric
key K = ê(H′(m), E)r and create the ciphertext components

σi = H′(m)si , ρi = hr, γi = AE.Enc(K, m),

where (ρi, γi) forms the ibe encryption of m under the identity m,
while σi is the decryption key share. Return the ciphertext share
ci = (i, σi, ρi, γi).

• DE.Comb(C). Let C = {ci1 , . . . , cik}. Parse each share cij as (ij,

σij , ρij , γij). Construct
9 I = {i1, . . . , ik}, letΨ = ∏i∈I (σi)

λIi and
recover the key K = ê(Ψ, ρi1). Finally, return AE.Dec(K, γi1).

It is easy to see that this scheme is correct. Let I ⊂ [n] be a set of k
senders and ci = DE.Enc(Si, m) their ciphertext shares for a message
m. Then,

Ψ = ∏
i∈I

(σi)
λIi = ∏

i∈I
H′(m)siλ

I
i = H′(m)∑i∈I siλ

I
i = H′(m)e,

so

K = ê(Ψ, ρi) = ê(H′(m)e, hr) = ê(H′(m), he)r = ê(H′(m), E)r

is indeed the symmetric key used by sender i ∈ I , and hence m =
AE.Dec(K, γi) as desired. Safety follows form to observation that if not
all ciphertext shares belong to the same message m, then Ψ ∈R G1.
Hence, by the security of the ae scheme, AE.Dec(K, γi) outputs ⊥ with
overwhelming probability. Otherwise, it would be too easy to generate
valid ciphertexts for the random key Ψ.
Note, though, that this scheme does not offer protection against ac-

tive adversaries. It is trivial to create a set of ciphertexts that decrypt to
any message (simply generate a known sharing of a random secret and
run the normal combine protocol). Furthermore, if an adversary knows
k− 1 ciphertext shares by other senders, it can craft a ciphertext share
ci1 such that combining it with the known shares decrypts to any mes-
sage. For the latter attack to work, it is essential that the adversarially
constructed share is used as share i1 in the combine step.
Hoepman and Galindo proved the following theorem about the secu-

rity of their scheme.

Theorem 5.11 The Hoepman and Galindo de scheme is forward-secure
against static and restricted adversaries in the random oracle model for H′,

9 The index ij is included in cj to be able to explicitly reconstruct I and thus compute the
Lagrange coefficients λIij

given a set C.

110 distributed encryption

provided that the decisional bilinear Diffie-Hellman (dbdh) assumption
and the ddh assumption in G1 hold, and provided that the authenticated
encryption scheme is ind-cca secure.

Hoepman and Galindo make their de scheme key-evolving by pre-
generating Shamir secret shares and corresponding public keys for each
of the epochs. To transition to the next epoch, the senders securely
delete the current key-share and load the key-share for next epoch.

5.3.4 A new distributed encryption scheme

In Section 5.1 we gave a sketch of our new distributed encryption
scheme. Here we fill out the details. Correctness and safety follow
from the earlier discussion.

Scheme 5.12 (de scheme) The new distributed encryption (de) scheme
is given by the following algorithms, where RIM.gen,RIM.map and
RIM.unmap are as in Scheme 5.3.

• DE.Gen(1ℓ, k, n, 1ℓm) . Create a group G of prime order p, where
p ≈ 2ℓ, such that ddh is hard in G. Let E be the elliptic curve10

in which G is embedded. Call RIM.gen(1ℓm , 1ℓ/2, E, (G, p)) to
set up the redundant injective map. Note that this publishes the
hash functions H1 and H2, and the sizes ℓ′H and ℓc. LetM =
{0, 1}ℓm be the message space. Share the public value 1 using
Shamir’s k-out-of-n secret sharing as follows. Choose coefficients
f1, . . . , fk−1 ∈R Zp and use them to define the k− 1 degree poly-
nomial f (X) = 1 + ∑k−1

i=1 fiXi, then f (0) = 1. Every sender i
is given a share Si = (i, si) where si = f (i). Output Si for each
sender, and publish the group description (G, p).

• DE.Enc(Si, m) . Given an encryption key Si = (i, si) let αi =
RIM.map(m)si . Return ci = (i, αi).

• DE.Comb(C) . Let C = {ci1 , . . . , cik}. Parse each share cij as(
ij, αij

)
. ConstructI = {i1, . . . , ik}, let c = ∏i∈I (αi)

λIi and re-

turn RIM.unmap(c).

In Section 5.6.1 we sketch how to handle arbitrary-length messages.

5.3.5 Security of the de scheme

In this section we sketch the proof of the following theorem.

10 As explained in Section 5.2 using an elliptic curve is but one option. It is, for example,
also possible to construct a redundant injective map onto the quadratic residues.

5.3 a new distributed encryption scheme 111

Theorem 5.13 In the random oracle model for H1 and H2 the new dis-
tributed encryption scheme from Scheme 5.12 is forward-secure assuming the
ddh assumption holds in the group G.

We first give an ideal model for this scheme, and show that in this
model the de scheme is secure. We then prove that the ideal model and
the actual scheme are indistinguishable, hence proving the security of
the actual scheme as well.

The ideal scheme

In the ideal scheme the secret sharing is made specific to the message.
So, sender i uses a message-specific secret share sm,i to construct a ci-
phertext share (i, αi) = (i,RIM.map(m)sm,i) for message m. For each
m, the secret shares sm,1, . . . , sm,n form a random k-out-of-n sharing of
the secret 1.
The reader may wonder at this point, if it still suffices to use a degree

k− 1 polynomial. Traditional uses of a secret sharing scheme suggest
that the degree should be k instead, since one secret share is already
known. This is not the case, for the following two reasons. First, know-
ing the secret itself does not help in the recovery as the generator, i.e.,
the encoding of the message, is actually unknown. Second, while it is
possible to guess the generator, thus giving k shares in total, an extra
share is needed to verify that guess.

Lemma 5.14 The ideal de scheme is secure.

Proof. By construction of the secret shares we only need to consider the
shares for the challenge messages m0 and m1; all others are completely
independent. After the challenge the attacker knows at most k − 1 ci-
phertext shares. Hence, no information is leaked as with only k − 1
shares, both sets of shares are equally likely to combine toRIM.map(m0)
as they are to RIM.map(m1). In fact, for each set of shares there exists
a kth share that reconstructs the desired value.

Indistinguishability of ideal and real scheme

Suppose an attacker can solve ddh problems, i.e., given (g, X =
gx, Y = gy, Z = gz) it can decide whether z = xy. Then it can break
our scheme as follows. It picks three different messages m, m0, m1,
and calculates g = RIM.map(m) and X = RIM.map(m)si , for the
latter it uses one query. Then it sets Y = RIM.map(m0) and obtains
Z = RIM.map(mb)

si as a response to its challenge query on m0 and m1.
Now, b = 0 if and only if z = xy in the ddh problem, thus breaking
the de security as well.

112 distributed encryption

1

k−
r−

1

k−
r

k−
1 k n

1

κ−1
κ

κ+1

qE

w
e
de
te
rm

in
e

de
te
rm

in
ed

by
se
cr
et
sh
ar
in
g

co
rr
up
te
d

ideal shares

real shares

senders

m
es
sa
ge
s

Figure 5.1: This diagram shows which type of secret shares are used in the proof
of Lemma 5.15 to answer the encryption queries for themessages. The
messages m1, . . . , mκ−1 are answered using ideal shares, the mes-
sages mκ+1, . . . , mqE are answered using real shares. The shares for
mκ are real or random depending on the ddh instance. The diagram
also shows how we construct these shares. The first k − r − 1 we
determine, the next r shares are fixed because the adversary has cor-
rupted these senders. The remaining shares follow from the secret
sharing scheme.

The indistinguishability proof that we present below shows that any
attacker has to solve a ddh problem. The proof is in the hybrid model,
see Figure 5.1. Queries for the first κ − 1 messages will be answered
using ideal shares, then the κth message will get either ideal or real
shares depending on whether z = xy in the ddh instance, and the
remaining message will have real shares. We use the programmability
of the redundant injective map to ensure that the generators we choose
are used for the messages where we have to use real shares. Induction
on κ shows that any distinguisher between ideal and real shares thus
solves the ddh instance.
To construct the shares corresponding to the different senders while

still ensuring proper secret-sharing we duplicate the ddh instance, com-
bine it with the corrupted shares, and derive the remaining shares based
on the underlying secret sharing scheme.

Lemma 5.15 The ideal and the real de schemes are indistinguishable pro-
vided the ddh assumption holds in G and the redundant injective map is
programmable.

Proof. For this proof we use a hybrid scheme that is parametrized by κ.
Let (g,X = gx, Y = gy, Z = gz) be a ddh instance for G, our task is to
decide whether z = xy.

5.3 a new distributed encryption scheme 113

LetMQ = (m1, . . . , mqE) be the message queries made by the ad-
versary to the redundant injective map. (We do not know the value of
these messages yet, but by the programmability of the redundant injec-
tive map we can change what they map to as these queries come in.)
In the hybrid scheme, the ciphertext shares corresponding to mes-

sages in the set MI = {m1, . . . , mκ−1} will be created using ideal
shares, whereas the ciphertext shares for messages inMR = {mκ+1,
. . . , mqE} will be created using the real shares, see Figure 5.1. If z = xy
(of the ddh instance) then the hybrid scheme uses real shares for mκ

and ideal shares otherwise. Any distinguisher for the two variants will
thus solve the ddh instance. Induction over κ completes the proof.
We now show how to play the security game. Initially we generate

γm ∈R Zp for all m ∈ MR such that gγm ∈ E′ and we generate γmκ ∈R
Zp such that Xγmκ ∈ E′. This is possible since |G| / |E′| < 4 and
can be done without knowing the queries in advance.11 As queries for
m come in to the redundant injective map (i.e., for this instantiation of
the redundant injective map, as queries for m′ = m ∥ ctr come in to the
H1 oracle), use the programmability of the redundant injective map to
set RIM.map(m) = gγm for m ∈ MR and to set RIM.map(mκ) = Xγmκ .
Then we play the game as follows. Initially, set the set of corrupted

senders, Ic, to the empty set. The attacker only makes corruption
queries at the start of the game. For every corrupt(i) query, add i to Ic
and generate an arbitrary secret-share si ∈R Zp and send Si = (i, si) to
the challenger. The challenger aborts and the adversary loses if |Ic| ≥ k.
We now consider three cases of enc(i, m) queries. The first, where

m ∈ MI , for which the answers will be using ideal shares, the second
when m = mκ and the third when m ∈ MR, for which the answers will
be using real shares.
Without loss of generality, we assume that the r corrupted senders

are numbered k − r, . . . , k − 1, see Figure 5.1. As we cannot play with
the corrupted senders, the corresponding shares are always given by
enc(i, m) = RIM.map(m)si for k − r ≤ i ≤ k − 1 and all messages
m ∈ M.12 This determines r shares. Furthermore, RIM.map(m)1 is
also a valid share, giving r + 1 determined shares. In the following we
show how to answer the enc(i, m) queries with 1 ≤ i ≤ k− (r + 1) for
all three cases.
Case 1. For messages m ∈ MI generate ideal secret shares sm,i

for senders 1 ≤ i ≤ k − (r + 1). The ciphertext shares are given by
enc(i, m) = RIM.map(m)sm,i .

11 Recall that E′ consists of all points on the curve whose x coordinate is not too big, and
whose y coordinate is ‘positive’. We can easily increase ℓm or ℓc so that the constraint
on x loses at most half the points. The constraint on y removes half of the points again,
explaining the bound of 4.

12 In this proof we omit the sender’s index and just write enc(i, m) = RIM.map(m)si .

114 distributed encryption

For the remaining messages we use the ddh instance (g, X =
gx, Y = gy, Z = gz) to compute the answers to the enc(i, m) queries.
First, create an extension as follows. Generate di, ei ∈R Zp for 1 ≤
i ≤ k− (r + 1) and set Yi = Ydi gei and Zi = Zdi Xei . It can be shown
that (g, X, Yi = gyi , Zi = gzi) are ddh tuples such that zi = xyi when
z = xy in the original problem, and zi ∈R Zp otherwise [125]. We then
act as if si = yi for 1 ≤ i ≤ k− (r + 1).
Case 2. For mκ the ciphertext shares for 1 ≤ i ≤ k − (r + 1) are

given by enc(i, mκ) = Zγmκ
i . If zi = xyi then we have enc(i, mκ) =

(gxγmκ)yi = RIM.map(mκ)si , making the shares real. Otherwise, the
zi’s are random, thus the shares are ideal.
Case 3. For all other messages m ∈ MR the ciphertexts for 1 ≤ i ≤

k− (r + 1) are given by

enc(i, m) = Yγm
i = (gγm)yi = RIM.map(m)si ,

as desired.
We now determined k shares for every message m, the responses for

senders k, . . . , n, see Figure 5.1, are calculated from these by interpolat-
ing the exponents

enc(i, m) = RIM.map(m)1λI0 (i)enc(1, m)λI1 (i) · · · enc(k− 1, m)λIk−1(i),

where I = {0, . . . , k− 1}. We have now described how to answer en-
cryption queries in the find phase. In the challenge phase we create
shares in exactly the same manner after first picking a bit b ∈R {0, 1}
and then constructing the shares for message mb.
Since the ddh problem is hard, two subsequent hybrid schemes are

indistinguishable. Thus, the ideal scheme and the real scheme are in-
distinguishable as well.

5.4 forward-secure de scheme

The keys of our de scheme consist of Shamir secret shares. To cre-
ate a forward secure scheme we need to forward-securely evolve these
shares. The difficulty in evolving these shares is twofold. One, our use
cases do not allow communication among senders, hence distributed
share generation techniques likes those in Section 2.5.1 cannot be used.
Two, when non-interactively evolving secrets the traditional approach of
using hash chains destroys the threshold structure of the secret shares.
In this section we present a key-evolution scheme that uses an un-

derlying additive secret sharing. This additive sharing can be securely
evolved using hash chains, while we can, at the same time, use share
conversion on each additive sharing to obtain new Shamir secret shares
with the correct threshold structure.

5.4 forward-secure de scheme 115

∅ Z1,i Z2,i . . . Zϵ,i

z1,i z2,i zϵ,i

gzs uzs uzs uzs

ezs

ezs

ezs
Figure 5.2: Graphical representation of an evolving zero-sharing scheme.

Whenwe combine this key-evolving schemewith our newdistributed
encryption schemes we obtain a forward-secure distributed encryption
scheme. We prove the forward security of the combination in Sec-
tion 5.4.2. In the next section we prove the forward security of the
combination with the batched scheme.

5.4.1 A key-evolution scheme

The scheme we present in this section forward securely generates
Shamir secret shares of the value 0, which we call an evolving zero-
sharing scheme. Simply adding 1 to each share produces a secret
sharing of the value 1, as required for our de scheme. The evolving
zero-sharing scheme combines ideas from Cramer et al. [52], see also
Section 2.5.2, for the conversion of additive shares to Shamir shares;
and ideas from Ohkubo et al. [130] to construct the hash chains.
We take the following approach, see Figure 5.2. Time is split into

epochs. Every sender i has an internal state Zϵ,i for the current epoch
ϵ. The states of all senders combined implicitly define a zero-sharing
polynomial zϵ. The states are constructed in such a way that every
sender can, without interacting with other senders, derive its zero-share
zϵ,i = zϵ(i) for that epoch. To move to the next epoch, every sender can
individually update its internal state. After destroying the previous in-
ternal state it is not possible to retrieve any information on it from the
current internal state.

Syntax of an evolving zero-sharing scheme

The informal description of the scheme captured in the previous section
can be formalized as follows.

Syntax 5.16 A k-out-of-n evolving zero-sharing scheme for s epochs and a
field F is given by three algorithms: gzs, uzs and ezs which respectively
generate an initial sharing, update a share to the next epoch and evalu-
ate a zero-share for the current epoch. In more detail these algorithms
work as follows, see also Figure 5.2.

116 distributed encryption

• gzs(1ℓ, k, n, s,F) takes as input a security parameter ℓ, the thresh-
old k, the number n of senders, the number s of epochs, and a
secret sharing field F. It outputs initial states Z1,1, . . . , Z1,n.

• uzs(Zϵ,i) is a non-interactive protocol that takes as input the cur-
rent state Zϵ,i and outputs a new state Zϵ+1,i or aborts.

• ezs(Zϵ,i) takes as input the current state Zϵ,i and outputs a zero-
share zϵ,i.

This definition describes a non-interactive scheme because our use
cases require this. Interactive schemes are much easier to build. For ex-
ample, Pedersen’s vss protocol, see Protocol 2.10 in Section 2.5.1, could
easily function as an evolving zero-sharing scheme. Instead of calcu-
lating new shares based on the previous epoch, the senders just run
the vss protocol to obtain a fresh zero-sharing. This has the additional
benefit of being self-healing.

Forward security of the evolving zero-sharing scheme

Intuitively, forward security requires that no matter what an adversary
learns in later epochs (it might, for example, corrupt all senders), it
cannot use this knowledge to obtain additional information on the cur-
rent epoch (for example, to distinguish between the two challenge mes-
sages). The key-evolving de scheme we construct in this section derives
its forward security from the keys generated by its evolving zero-sharing
scheme. We now define the notion of forward-security of an evolving
zero-sharing scheme, which essentially states that even if you obtain
the entire internal state of all senders in a later epoch, you do not learn
any extra information about the resulting zero-shares (which form the
keys for the underlying de scheme) for the current state. This is pre-
cisely what we need to prove security of the combined key-evolving de
scheme.
Consider a epoch ϵ. Clearly, an adversary has the biggest advantage

in learning more about epoch ϵ, if it gets the complete state of the sys-
tem in epoch ϵ + 1. The following definition formalizes the notion that
the adversary cannot obtain any extra information on the zero-shares
in epoch ϵ in terms of a distinguishability game. The adversary’s goal
is to distinguish two situations based on the zero-shares it receives for
the challenge epoch ϵ. In the first, the challenger follows the proto-
col honestly. In the second, the challenger replaces the zero-shares
with random zero-shares, subject to the constraint that the resulting
zero-shares match the view the adversary already had obtained through
corruptions—note that this fixes the polynomial if the adversary has cor-
rupted k− 1 senders. In both cases the adversary additionally receives

5.4 forward-secure de scheme 117

the internal state of all senders for epoch ϵ + 1. We note that it is very
liberal to give the adversary all zero-shares in epoch ϵ, as in the actual
combination with the de schemes, the zero-shares will be kept secret.

Game 5.17 (Evolving zero-sharing (ezs) forward-security game) Con-
sider a k-out-of-n evolving zeros-sharing scheme for s epochs defined
over the field F given by the algorithms gzs, uzs and ezs. Define the
following game between the challenger and an adversaryA. The game
consists of a setup phase and a challenge phase.

setup phase The challenger runs gzs(1ℓ, k, n, s,F) and obtains, for
each sender i, the initial state Z1,i.

query phase The challenger initializes the current epoch ϵ to 1, and
the set of corrupted senders I1,c = ∅. The adversary can issue
the following set of queries:

• corrupt(i). The adversary can request sender i to be cor-
rupted. The challenger sends Zϵ,i to the adversary and it
adds i to Iϵ,c.

• zeroshares(). The adversary can request all the zero-sharing
shares for the current epoch. The challenger calculates
zϵ,i = ezs(Zϵ,i) for each sender and sends these to the
adversary.

• next(). On a next() query the challenger updates the states
of senders i by setting Zϵ+1,i = uzs(Zϵ,i). Finally, the chal-
lenger sets Iϵ+1,c = Iϵ,c and ϵ = ϵ + 1.

challenge phase In the challenge phase the adversary A outputs
a challenge epoch ϵ∗. If the adversary already queried the chal-
lenger using zeroshares() in the challenge epoch ϵ∗ the adver-
sary loses. Otherwise, the challenger chooses a bit b ∈ {0, 1}. If
b = 0 it responds as if the adversary made a zeroshares() query
in epoch ϵ∗. Otherwise, it creates random zero-shares (subject
to the constraint imposed by the corrupted senders) and returns
these. More precisely, it randomly generates a zero-sharing poly-
nomial z of degree k− 1, such that z(i) = 0 for all i ∈ Iϵ∗ ,c, and
returns ezs(Zϵ∗ ,i) + z(i) for each sender i.

output phase Finally the adversary A outputs a guess b′ ∈ {0, 1}.
The adversary wins if b = b′.

The advantage of adversary A is given by AdvezsA (1ℓ) = 2
∣∣Pr[b = b′]−

1
2

∣∣, where the probability is over the random bits of the challenger and
the adversary. We say the evolving zero-sharing scheme is forward-secure
if AdvezsA (1ℓ) is negligible for every ppt adversary A.

118 distributed encryption

Key-evolution scheme

We follow a variant of Cramer et al. [52]’s share conversion scheme, see
Section 2.5.2, in constructing a zero-sharing polynomial in such a way
that sender i can only evaluate the polynomial at the point i. For every
set A ⊂ [n] of cardinality n− (k− 2) we define the k− 1 degree polyno-
mial gA(X) = X ∏i∈[n]\A(X − i). Hence, gA(0) = 0 and gA(X) = 0
for all X /∈ A. Our zero-sharing polynomial zϵ is then given by

zϵ(X) = ∑
A⊂[n]

|A|=n−(k−2)

rϵ,A · gA(X),

where a factor rϵ,A is known only to the senders i ∈ A. By construction,
zϵ is of degree k− 1 and zϵ(0) is indeed 0. It can be shown that k− 2 col-
luding parties cannot recover zϵ. Furthermore, for every zero-sharing
polynomial z of degree k− 1, there exist values for the rϵ,As such that
zϵ = z. This gives the following scheme.

Scheme 5.18 (Evolving zero-sharing scheme) The evolving zero-sharing
scheme is given by the following three algorithms.

• gzs(1ℓh , k, n, s,F). On input of a security parameter ℓh, a thresh-
old k, the number n of senders and a field F proceed as follows.
First, create two hash functions h1 : {0, 1}ℓh → {0, 1}ℓh and h2 :
{0, 1}ℓh → F. Next, for each A ⊂ [n] of cardinality n− (k− 2)
generate a random share r̄1,A ∈R {0, 1}ℓh and for each sender i
set Z1,i = (r̄1,A)A∋i.

• uzs(Zϵ,i). This algorithm is non-interactive. First, parse Zϵ,i as
(r̄ϵ,A)A∋i, and set r̄ϵ+1,A = h1(r̄ϵ,A) for A such that i ∈ A. Then
return Zϵ+1,i = (r̄ϵ+1,A)A∋i.

• ezs(Zϵ,i). To derive the zero-share, parse Zϵ,i as (r̄ϵ,A)A∋i. Then,
set rϵ,A = h2(r̄ϵ,A) for A such that i ∈ A and determine

zϵ,i = zϵ(i) = ∑
A⊂[n]

|A|=n−(k−2)

rϵ,A · gA(i).

Finally, return zϵ,i.

We first prove the following lemma.

Lemma 5.19 Let Ic be a set of senders controlled by the adversary, let r̂ϵ,A for
A ⊂ [n] of cardinality n− (k− 2) be additive shares as before and let zϵ be
the resulting zero-sharing polynomial given by

zϵ(X) = ∑
A⊂[n]

|A|=n−(k−2)

r̂ϵ,A · gA(X).

5.4 forward-secure de scheme 119

Similarly, let z̃ϵ be the zero-sharing polynomial induced by the additive shares
r̃ϵ,A, i.e.,

z̃ϵ(X) := ∑
A⊂[n]

|A|=n−(k−2)

r̃ϵ,A · gA(X).

Then, for each zero-sharing polynomial z of degree k− 1 such that z(i) = 0
for all i ∈ Ic, there exists additive shares r̃ϵ,A subject to the constraint that
r̃ϵ,A = r̂ϵ,A for all A with A ∩ Ic ̸= ∅, such that z̃ϵ = zϵ + z.

Proof. Let r = |Ic|. If r ≥ k − 1, then z is identically zero, and hence
the statement is clearly true. So, assume that r < k− 1. Without loss
of generality, we assume that Ic = {n− r + 1, . . . , n}.
We choose the shares r̃ϵ,A. To show that we did so correctly, we show

that z̃ϵ = zϵ + z for k− 1 non-zero points. This suffices because both
zero-sharing polynomials z̃ϵ and zϵ + z are of degree k − 1. We set
r̃ϵ,A = r̂ϵ,A for A ∩ Ic ̸= ∅ as required. This ensures that z̃ϵ(i) =
zϵ(i) + z(i) for i ∈ Ic, fixing the first r points. Let c = k− 1− r be the
remaining number of points to check. Note that

z̃ϵ(i) = ∑
A⊂[n]

|A|=n−(k−2)

r̃ϵ,AgA(i) = ∑
A∩Ic ̸=∅

r̂ϵ,AgA(i)︸ ︷︷ ︸
fixed

+ ∑
A∩Ic=∅

r̃ϵ,AgA(i)︸ ︷︷ ︸
not fixed

,

where the fixed part contains values that are known to the adversary, and
hence cannot be changed. The not-fixed part can, however, be changed,
since those additive shares are unknown to the adversary. Consider the
sets:

Ai = [n] \ ({1, . . . , i− 1, i + 1, . . . , c} ∪ Ic)

= {i, k− r, . . . , n− r}

for i ∈ [c]. These sets are of cardinality n− (k− 2) and are such that
only set Ai influences the value for sender i (and not any other j ∈
[c] ∪ Ic, j ̸= i), i.e.

z̃ϵ(i) =

 ∑
A⊂[n]

|A|=n−(k−2),∀j:A ̸=Aj

r̃ϵ,AgA(i)

+ r̃ϵ,Ai gAi (i),

for i ∈ [c]. Now, set r̃ϵ,A = r̂ϵ,A for all A ̸= Ai. Then, choose the r̃ϵ,Ais
such that z̃ϵ(i) = zϵ(i) + z(i) holds for i ∈ [c] (by the construction
of the Ai, these choices are independent). Since z̃ϵ equals zϵ + z at k
points (including the point 0), we achieved the desired equality.

120 distributed encryption

The construction and the proof of the following lemma are inspired
by the Ohkubo et al. scheme [130].

Theorem 5.20 The evolving zero-sharing scheme from Scheme 5.18 is for-
ward secure in the random oracle model for h2.

Proof. Let Zϵ∗ ,i = (r̄ϵ∗ ,A)A∋i and let zϵ∗ be the zero-sharing polynomial
in challenge epoch ϵ∗, corresponding to the normal situation, i.e., when
b = 0. Now, we show how to change this to zϵ∗ + z by modifying the
random oracle for h2 in such a way that this cannot be detected by the
adversary.
Let r̂ϵ∗ ,A = h2(r̄ϵ∗ ,A) be the additive shares that would be derived in

the normal situation b = 0. Use Lemma 5.19 on r̂ϵ∗ ,A and Ic to construct
r̃ϵ∗ ,A such that the polynomial z̃ϵ∗ they induce is equal to zϵ∗ + z.
We now show how to change h2 in the random oracle model so that

for b = 1, we ensure that rϵ∗ ,A = h2(r̄ϵ,A) = r̃ϵ,A for all A, so that we
induce the polynomial zϵ∗ + z as desired.
By construction, r̂ϵ∗ ,A = r̃ϵ∗ ,A for most sets A. For these sets we do

not change h2. For the sets A such that r̃ϵ∗ ,A ̸= r̂ϵ∗ ,A,13 by construction
A ∩ Ic = ∅ for these sets A, we change h2 by setting h2(r̄ϵ∗ ,A) = r̃ϵ∗ ,A.
These changes to the random oracle succeed with overwhelming prob-
ability, because (1) the new r̃ϵ∗ ,A is random by construction, (2) the ad-
versary does not know the (random) value r̄ϵ∗ ,A, and (3) because of h1 it
cannot learn anything about r̄ϵ∗ ,A using information from later epochs.
After changing h2 we are in the situation b = 1, since the adversary

cannot detect the changes, the two situations are indistinguishable.

Generating the initial additive shares

The evolving zero-sharing scheme as described here still uses a trusted
party to create the initial set of base additive shares r̄1,A ∈R {0, 1}ℓh .
If some form of one-time initial communication among the senders is
possible, they could use the AVSS+(n, k− 1,G, g, p) protocol (see Pro-
tocol 2.12 in Section 2.5.1) to jointly generate these base additive shares
(here (G, p, g) is a cyclic group of sufficient size in which the dl prob-
lem is hard).

5.4.2 A key-evolving distributed encryption scheme

In this section we build a key-evolving de scheme using the evolving
zero-sharing scheme of the previous section. The latter scheme gen-
erates as many distributed zero-sharing polynomials as we want. By

13 By the construction in Lemma 5.19 this is only the case for c ≤ k− 1 values.

5.4 forward-secure de scheme 121

adding the constant polynomial 1 to this polynomial we obtain the key-
sharing polynomial in our de scheme.

Scheme 5.21 (kde scheme) The key-evolving distributed encryption
(kde) scheme is constructed from the our new distributed encryption
scheme given by the algorithms DE.Gen, DE.Enc and DE.Comb, and
the evolving zero-sharing scheme from Scheme 5.18 given by the algo-
rithms gzs, uzs and ezs. It is defined by the following four algorithms.

• KDE.Gen(1ℓ, k, n, s, 1ℓm). The KDE.Gen algorithm first runs the
algorithm DE.Gen(1ℓ, k, n, ℓm) to obtain the group description
(G, p) and the redundant injective map information (E, H1, H2)
which it outputs as well. Here group G is of prime order p. It
then calls gzs(1ℓ, k, n, s,Zp) to obtain Z1,1, . . . , Z1,n, sets s1,i =
1 + ezs(Z1,i) and outputs S1,i = (i, s1,i, Z1,i) for each sender.

• KDE.UpdKey(Sϵ,i). Let Sϵ,i = (i, sϵ,i, Zϵ,i). The algorithm then
sets Zϵ+1,i = uzs(Zϵ,i) and sϵ+1,i = 1 + ezs(Zϵ+1,i) and returns
Sϵ+1,i = (i, sϵ+1,i, Zϵ+1,i) or aborts if uzs aborts.

• KDE.Enc(Sϵ,i, m). Let Sϵ,i = (i, sϵ,i, Zϵ,i). To encrypt a message
m, algorithm KDE.Enc returns the result of DE.Enc((i, sϵ,i), m).

• KDE.Comb(C). To combine ciphertexts it runs DE.Comb(C).

Efficiency

The evolving zero-sharing scheme has complexity (n
k−2) in both space

and time to store and evaluate the zero-shares. While this number is
exponential, it is almost always much smaller than the cost of recover-
ing all k-times encrypted plaintexts in a real scenario (see Table 5.1 on
page 130). In particular, it is comparable to recovering a single message
in the batched scheme which we will present in the next section. Fur-
thermore, its space complexity is independent of the number of epochs,
which is a big gain with respect to the original scheme by Hoepman
and Galindo [83] where the space complexity is linear in the number of
epochs. In many practical applications this number will be a lot bigger
than (n

k−2).

Security

The security of the kde scheme can easily be reduced to that of the de
scheme by using the properties of the evolving zero-sharing scheme.

Theorem 5.22 The new kde scheme is forward secure (in the sense of
Game 5.7) provided that the de scheme is secure (in the sense of Defini-
tion 5.8) and the evolving zero-sharing scheme is forward secure (in the
sense of Game 5.17). The proof is in the random oracle model for h2.

122 distributed encryption

We first give a sketch of the proof.

Sketch. We reduce the security of the kde scheme to that of the de
scheme. To set up the system we generate random r̄1,As. We guess
the challenge phase ϵ∗ and simulate all epochs except ϵ∗, where we use
our de oracle. To ensure that this is not detected we must ensure that
corrupted hosts have the correct secret shares. We do this by modifying
h2(r̄ϵ∗ ,A) in the random oracle model on r̄ϵ∗ ,As that were not yet known
to the adversary. Then, queries in epoch ϵ∗ can be answered by our de
oracle. The distribution of the secret shares does not correspond to the
initial r̄1,As, however, the forward-security of the evolving zero-sharing
scheme ensures this cannot be detected.

Proof. Suppose we have an adversary A against the kde scheme. We
then build an adversary B against the underlying de scheme. Adver-
saryB receives the systemparameters from the challenger and forwards
them toA. Next, adversary B makes a guess ϵ∗ for the challenge epoch
and initializes the set of corrupted senders Ic to ∅.
Adversary B will fully simulate all epochs, except epoch ϵ∗, where

it will use its oracle to answer the queries. For all A ⊂ [n], such that
|A| = n− (k− 2) generate r̄1,A ∈R {0, 1}ℓh .
We now look into the details of the evolving zero-sharing scheme. By

generating r̄1,A’s we have completely fixed the system, but we still need
to ensure that epoch ϵ∗ can be answered using our oracles. To this end
we will change the value of the hash function h2(r̄ϵ∗ ,Ai) for specific sets
Ai belonging to corrupted parties i. These sets Ai will be chosen in
such a way, that r̄ϵ∗ ,Ai is not known to any previously corrupted party.
To see how to answer corrupt(i) queries, we first focus on epoch

ϵ∗ as we have to ensure that corrupted hosts derive the correct secret
shares, i.e., shares that correspond to those returned by our de ora-
cle, in epoch ϵ∗. Let Ic be the set of senders that were corrupted ear-
lier and fϵ∗ the secret-sharing polynomial induced by the values r̄ϵ∗ ,A.
First, we corrupt sender i using our oracle to obtain its internal state
(i, sϵ∗ ,i) = corrupt(i). We need to ensure that fϵ∗(i) = sϵ∗ ,i. Pick a
set Ai of cardinality n − (k − 2) such that Ic ∩ Ai = ∅ and i ∈ Ai.
This is possible, since the constraints in the challenge phase require
|Ic ∪ {i}| < k, therefore, |Ic| will be at most k − 2. For all other sets
A ∋ i obtain rϵ∗ ,A = h2(r̄ϵ∗ ,A) as usual. Then choose rϵ∗ ,Ai such that:

sϵ∗ ,i = fϵ∗(i) = 1 + ∑
A⊂[n]

|A|=n−k+1

rϵ∗ ,A · gA(i).

By the choice of the set Ai the coefficient r̄ϵ∗ ,Ai is not known to any cor-
rupted host, hence we can use the random oracle model to ensure that

5.4 forward-secure de scheme 123

h2(r̄ϵ∗ ,Ai) = rϵ∗ ,Ai . With overwhelming probability the adversary can-
not detected this as the r̄ϵ∗ ,Ais are random. This construction ensures
that corrupted hosts derive the correct secret shares in epoch ϵ∗. Finally,
return (i, (r̄ϵ,A)A∋i) in response to a corrupt(i) query in epoch ϵ.
Now B proceeds as follows. For all epochs except ϵ∗ it knows the

complete state of the system, and can thus answer all A’s queries. For
epoch ϵ∗, all corrupted hosts will, by construction of the hash-function,
have the correct secret shares for this epoch. All other queries can be
answered by the oracle.
The forward security of the evolving zero-sharing scheme ensures

that it is not possible for the adversary to detect that the underlying
secret sharing in epoch ϵ∗ (we use the one induced by our de oracle)
does not match the r̄ϵ,As of the key-evolving scheme.14

In the challenge phase, A will announce its challenge epoch ϵ′. If
ϵ′ ̸= ϵ∗, then B aborts. Otherwise, B will pass the challenge fromA on
to its own oracle. Finally, B outputs whatever A outputs. Adversary B
has the same advantage as A up to a factor 1/s for guessing the epoch.
This proves the result.

5.4.3 Applying this idea to Hoepman and Galindo’s scheme

Unfortunately, the idea of forward-securely evolving zero-shares does
not apply nicely to Hoepman and Galindo’s scheme. The core of the
problem is that the underlying identity-based encryption scheme re-
quires the public ibe key E = he to be known to all parties. Hence,
to non-interactively evolve the secret e, all senders need to construct
new shares of the new secret, but also the new public ibe key needs to
be known to all parties. While the former is possible using Cramer’s
share conversion scheme, see Section 2.5.2, it does not enable the latter
without communication. We do not know of any approach that does
enable the non-interactive generation of Shamir secret shares and the
simultaneous publishing of the corresponding public key.
At the same time, evolving the secret e—rather than just the way

it is shared, as we do in our kde scheme—is essential in Hoepman
and Galindo’s scheme. Suppose it is kept constant, then, in some later
epoch, the adversary can corrupt k senders, and recover the secret e. Us-
ing this secret, it can also calculate the ibe key H(m0)

e, try to decrypt
its challenge ciphertext shares, and hence win the game.

14 This proof only changes h2 for corrupted hosts, whereas the proof of Theorem 5.20
changes h2 for non-corrupted hosts, so they can indeed be combined.

124 distributed encryption

5.5 efficient solutions for small domains

As was already analyzed by Hoepman and Galindo [83], using a dis-
tributed encryption will be rather inefficient. In the current definition,
the only way to find all messages that were encrypted by at least k differ-
ent senders is through brute-force. In particular, we need to try to com-
bine all possible combinations of k shares from different senders and
verify whether that combination yields a match. Simple tricks, such as
attaching the hash of the message to the ciphertext shares, do not work,
as they allow an attacker to test if the shares belong to a given message.
In this section, we explore a time-memory trade-off that is more effi-

cient for small message domains. The crucial difference with the previ-
ous sections is that we will now operate in a batched setting. At the end
of a epoch the sender generates a share for everymessage. It generates
a proper share for every message it needs to send, as before, and a ran-
dom value for all other messages. Now, we know directly which shares
belong to a given message. This reduces the exponential term in the
combing phase considerably. Also, since the message is known a priori,
the only remaining task of the combiner is to determine whether this
message was encrypted by a sufficient number of senders. In particular,
we can replace the redundant injective map with a hash function.

5.5.1 Syntax

For small message spaces, the following definition of a batched key-
evolving distributed encryption scheme makes sense.

Syntax 5.23 A k-out-of-n batched key-evolving distributed encryption
scheme with lifetime divided into s epochs, or (k, n, s)-bkde scheme,
consists of the following four algorithms.

• BKDE.Gen(1ℓ, k, n, s,M). Given the security parameter 1ℓ, the
threshold k, the number n of senders, the number s of epochs,
and a message spaceM, it generates an initial encryption key
S1,i for each sender i ∈ [n]. It returns these encryption keys as
well as the system parameters.

• BKDE.Enc(Sϵ,i, M). Given an encryption key Sϵ,i corresponding
to sender i at epoch ϵ and a set ofmessages M ⊂M, this function
returns a vector Ci of ciphertext shares of length |M|.

• BKDE.UpdKey(Sϵ,i). The key update function takes as input Sϵ,i
and outputs the key Sϵ+1,i for the next epoch. The function aborts
if ϵ + 1 > s.

5.5 efficient solutions for small domains 125

• BKDE.Comb(C1, . . . , Cn). Given the ciphertext share vectors C1,
. . . , Cn produced by the senders, the function BKDE.Comb re-
turns a set of messages M.

A key-evolving batched distributed encryption scheme must satisfy the
following correctness and safety requirements.

correctness Let the encryption keys Sϵ,i be generated as above. Con-
sider n subsets Mi ⊂ M, and let Ci = BKDE.Enc(Sϵ,i, Mi) for
each sender i. Then the result M of BKDE.Comb(C1, . . . , Cn) is
such that m ∈ M if m ∈ Mi for at least k different Mi.

safety Let Mi, Ci for i ∈ [n] and M be as for correctness. If m ̸∈ Mi for
at least n− k + 1 different Mi, then m ̸∈ M with overwhelming
probability.

5.5.2 Security definition

The following game captures the security properties of our protocol.
The game is very similar to the forward-security game of the regular kde
forward-security game. The biggest change is in the challenge phase.
In the regular kde game the adversary only gets the shares for one of
the challenge messages. However, in the batched scheme, the adver-
sary knows which shares belong to which message (as this is fixed by
the row in which the shares appear). To mimic this, while still encod-
ing the challenge query, the challenger gets shares corresponding to
both challenge messages, but only the shares corresponding to one of
the messages are real. The challenger’s task now is to decide which of
these it is.15

Game 5.24 (Batched KDE forward-security game) Consider a (k, n, s)-
bkde batched key-evolving distributed encryption scheme. Since the
batched kde forward-security game is very similar to the kde forward-
security game of a (k, n, s)-kde scheme (see Game 5.7), we note only
the changes. The algorithms BKDE.Gen and BKDE.UpdKey replace the
algorithms KDE.Gen and KDE.UpdKey.

setup phase First, the adversary outputs amessage spaceM it wants
to attack, then the setup phase runs as before.

find phase The adversary is allowed to make bcorrupt(i), bnext()
and benc(i, Mi) queries. The first two are implemented us-
ing corrupt(i) and next() respectively. On input of a query

15 In the original version of this game we gave the adversary only the set of real shares (and
omitted the random ones, as a result the relation between the shares and their proper
rows in the scheme was not evident). While there exists an easy reduction between these,
we believe this new game more faithfully represents the adversary’s capabilities.

126 distributed encryption

benc(i, Mi), where i ∈ [n], sender i is not yet corrupted, i.e., i /∈
Iϵ,c, and Mi ⊂M, the challenger sends the vector BKDE.Enc(Sϵ,i,
Mi) to the adversary.

challenge phase If the challenge on m0 and m1 at hosts Inc is valid
(see Game 5.7, where Q0 and Q1 are defined analogously: sender
j ∈ Qi if mi ∈ Mj for any benc(j, Mj) query in epoch ϵ∗), the
challenger chooses b ∈R {0, 1}, sets

Cj = BKDE.Enc(Sϵ∗ ,j, {mb}) = (cmj)m∈M

for each j ∈ Inc. It then returns the tuples of ciphertext shares
(cm0 j, cm1 j) to the challenger for each j ∈ Inc.

output phase The output phase is unchanged.

The adversary A’s advantage is defined as AdvbkdeA (1ℓ) = 2
∣∣Pr[b′ =

b]− 1
2

∣∣, where the probability is over the random bits of the challenger
and the adversary. A batched key-evolving distributed encryption (bkde)
scheme is called forward secure if AdvbkdeA (1ℓ) is negligible for every ppt
adversary A.

5.5.3 The scheme

In the batched scheme, sender i outputs a complete vector of ciphertext
shares Ci = (cmi)m∈M at the end of an epoch. Let H : {0, 1}∗ → G
be a cryptographic hash function, and (i, zi) be sender i’s k-out-of-n se-
cret share of the secret zero. An element cmi then equals H(m)zi when
sender i been asked to encrypt m, and cmi ∈R G otherwise. Intuitively,
when the secret shares are unknown, these two are indistinguishable.
The full scheme is given by the following definition. Note the similari-
ties with our kde scheme.

Scheme 5.25 (Batched kde scheme) Let (gzs, uzs, ezs) be an evolving
zero-sharing scheme. The following algorithms define a batched key-
evolving distributed encryption (bkde) scheme.

• BKDE.Gen(1ℓ, k, n, s,M). Generate a cyclic group G such that
its order p is of size ℓ bits. Then construct a hash function H :
{0, 1}∗ → G. Create the secret sharing of zero by calling gzs(k, n,
s,Zp) to obtain Z1,1, . . . , Z1,n. Let z1,i = ezs(Z1,i). Output S1,i =
(z1,i, Z1,i) for each sender, together with a description of G and
the hash function H.

5.5 efficient solutions for small domains 127

• BKDE.Enc(Sϵ,i, M). Let Sϵ,i = (zϵ,i, Zϵ,i), and return the cipher-
text share vector Ci = (cmi)m∈M such that for all m ∈ M

cmi =

{
H(m)zϵ,i if m ∈ M
h ∈R G otherwise.

• BKDE.UpdKey(Sϵ,i). Let Sϵ,i = (zϵ,i, Zϵ,i). Set Zϵ+1,i = uzs(Zϵ,i)
and zϵ+1,i = ezs(Zϵ+1,i). Return Sϵ+1,i = (zϵ+1,i, Zϵ+1,i) or
abort if uzs does.

• BKDE.Comb(C1, . . . , Cn). For each m ∈ M, do the following.
Consider all shares (cm1, . . . , cmn) corresponding to message m
from senders 1 through n. For all possible combinations of index
sets I ⊆ {1, . . . , n} of size k verify whether

∏
i∈I

(cmi)
λIi = 1.

If so, add m to the set of messages to return.

The structure of this scheme is similar to that of our new de and
kde schemes. Correctness and safety are easy to check. The proof
of security of the batched key-evolving distributed encryption scheme
closely follows the argument in Sections 5.3.5 and 5.4.2. In particular,
we again construct an idealized version of this scheme—with different
zero-shares for each plaintext—which is trivially secure, and then prove
that the ideal scheme and the real scheme are indistinguishable.
Wefirst prove security of the non key-evolving version. In this version

the evolving zero-sharing scheme is omitted and the keys consist solely
of the zero-shares. In the ideal version of the scheme, these zero-shares
are message specific. For each message m ∈ M sender i uses the
message-specific zero-share zm,i. The shares zm,1, . . . , zm,n form a k-
out-of-n zero-sharing. We first prove the analog to Lemma 5.14.

Lemma 5.26 The ideal batched de scheme is secure.

Proof. Again, we only consider the shares corresponding to the chal-
lenge messages m0 and m1 (the other are completely independent). Af-
ter the challenge query, the adversary has at most k − 1 non-random
shares for each challenge message. To decide which bit b its challenger
picked, it needs to decide whether the challenge shares corresponding
to m0 or to m1 are non-random. However, even if the k− 1 shares of a
challenge message are real shares, then they are still indistinguishable
from random, since the k-out-of-n zero-shares are random for eachmes-
sage (and have precisely k− 1 degrees of freedom). Therefore, the ad-
versary cannot decide whether m0 or m1 received extra challenge shares
in the challenge query.

128 distributed encryption

Lemma 5.27 In the random oracle model for H, the ideal and real batched
(non key-evolving) distributed encryption schemes are indistinguishable, pro-
vided that the ddh assumption in G holds.

The following proof is very similar to the proof of Lemma 5.15. We
make three noticeable changes. One, we replace the secret shares of
the value one by the secret shares of the value zero. Two, because of the
batched structure, all possible messages are already known, and we do
not need to use the random oracle to extract them. Three, we do not
need to use the redundant injective map, instead we directly control the
random oracle H.

Proof. For this proof we use a hybrid scheme that is parametrized by κ.
Let (g, A = ga, B = gb, C = gc) be a ddh instance for G, our task is to
decide whether c = ab.16

Let (m1, . . . , m|M|) be the ordered plaintexts. In the hybrid scheme,
the ciphertext shares corresponding to messages in the setMI = {m1,
. . . , mκ−1} will be created using ideal shares, whereas the ciphertext
shares for messages inMR = {mκ+1, . . . , m|M|} will be created using
the real shares, compare with Figure 5.1. If c = ab (of the ddh instance)
then the hybrid scheme uses real shares for mκ and ideal shares oth-
erwise. Any distinguisher for the two variants will thus solve the ddh
instance. Induction over κ completes the proof.
We now show how to play the security game. Initially we generate

γm ∈R Zp for all m ∈ MR ∪ {mκ}. We answer hash queries for m ∈
MR using gγm , while we answer the hash query H(mκ) using Aγmκ .
All other hash-queries are answered normally.
Then we play the game as follows. Initially, let the set of corrupted

senders Ic be the empty set. The attacker onlymakes corruption queries
at the start of the game. For every bcorrupt(i) query, add i to Ic and
generate an arbitrary secret-share zi ∈R Zp and send Si = (i, zi) to the
challenger. The challenger aborts and the adversary loses if |Ic| ≥ k.
We now show how to answer benc(i, Mi) queries. In particular, we

show how to construct the components cmi of the resulting vector Ci. If
m ̸∈ Mi, simply pick cmi ∈R G. We now consider three cases given that
m ∈ Mi: the first, where m ∈ MI , for which the answers will be using
ideal shares, the second when m = mκ and the third when m ∈ MR,
for which the answers will be using real shares.
Without loss of generality, we assume that the r corrupted senders

are numbered k− r, . . . , k− 1, compare with Figure 5.1. As we cannot
play with the corrupted senders, the corresponding shares are always
given by cim = H(m)zi for k− r ≤ i ≤ k− 1 and all messages m ∈ M.

16 Note that we deviate from our standard notation for ddh instances to prevent notational
conflicts with the zero-shares.

5.6 analysis and conclusions 129

This determines r shares. Furthermore, 1 = H(m)0 is also a valid
share, giving r + 1 determined shares. In the following we show how
to construct cim where 1 ≤ i ≤ k− (r + 1) for all three cases.
Case 1. For messages m ∈ MI generate ideal secret shares zm,i for

senders 1 ≤ i ≤ k− (r + 1). The components are cim = H(m)zm,i .
For the remaining messages we use the ddh instance (g, A =

ga, B = gb, C = gc) to compute cim. Create extra ddh instances
(g, A, Bi = gbi , Ci = gci) as in the proof of Lemma 5.15 such that
ci = abi when c = ab in the original problem, and ci ∈R Zp otherwise.
We then act as if zi = bi for 1 ≤ i ≤ k− (r + 1).
Case 2. For mκ the components for 1 ≤ i ≤ k− (r + 1) are given by

cimκ
= Cγmκ

i . If ci = abi then cimκ
= (gaγmκ)bi = H(mκ)zi , making the

shares real. Otherwise, the ci’s are random, thus the shares are ideal.
Case 3. For all other messages m ∈ MR the components for 1 ≤ i ≤

k− (r + 1) are given by

cim = Bγm
i = (gγm)bi = H(m)zi ,

as desired.
We now determined k components for every message m, the re-

sponses for senders k, . . . , n, see Figure 5.1, are calculated from these
by interpolating the exponents:

cim = 1 · enc(1, m)λI1 (i) · · · enc(k− 1, m)λIk−1(i),

where I = {0, . . . , k − 1}. We have now described how to answer
encryption queries. During the challenge phase, we use precisely the
same mechanism for constructing the components after selecting the
challenge bit b.
Since the ddh problem is hard, two subsequent hybrid schemes are

indistinguishable. Thus, the ideal scheme and the real scheme are in-
distinguishable as well.

Using precisely the same reasoning as in the proof of Theorem 5.22,
we obtain the following theorem of security of the batched scheme.

Theorem 5.28 In the random oracle model for h2, the bkde scheme is for-
ward secure provided that the batched (non key-evolving) de scheme and the
evolving zero-sharing scheme are forward secure.

5.6 analysis and conclusions

In this section, we first, informally, describe two modifications to our
kde scheme that might be useful in practice. Then, we compare the
performance of the regular kde scheme against that of the batched kde
scheme for two use cases.

130 distributed encryption

Table 5.1: Performance comparison between the kde and the batched kde (bkde)
schemes. The table shows the number of exponentiations inG needed
to recover all messages encrypted by k senders, and the number of
ciphertext shares stored at the end of an epoch. Here m is the number
of messages encrypted by each sender.

Speed limiting Canvas cutters

n = 2, |M| = 107 n = 8, |M| = 107

Formula k = 2, m = 600 k = 4, m = 400

kde

G exp. (n
k)m

k 1× 360 · 103 70× 26 · 109

Storage nm 1, 200 3, 200

bkde

G exp. (n
k)k |M| 1× 10 · 106 280× 10 · 106

Storage n |M| 20 · 106 80 · 106

5.6.1 Practical considerations

We propose two small extensions that can improve the kde scheme in
practice. Our kde scheme works only with fixed-length messages. It
is, however, possible to handle longer messages as well. First, append a
hash of themessage to authenticate themessage as a whole. Then, split
the message into appropriately sized chunks and run the de scheme
for each of them. After recovering the multiple blocks, combine them
and check the hash before outputting the message. This procedural
extension allows encrypting arbitrary length messages.
The downside of this procedural approach is that it duplicates the

redundancy for every block. Another approach would be to change the
redundant injective map itself to map longer messages to a tuple of
group elements (and then raise each of these to the secret shares).
The second improvement deterministically encrypts the message

with the public key of the combiner before running the de scheme
itself. This ensures that only the combiner—which is still assumed to
be honest—can successfully recover the encrypted messages even if
ciphertexts leak.

5.6.2 Theoretical performance

Table 5.1 shows the two methods’ time complexity for recovering all
messages that are encrypted by at least k different senders in terms of

5.6 analysis and conclusions 131

group operations, and the space complexity in terms of stored ciphertext
shares. A naive use of the standard combine operation in a de scheme
suggests that (n

k)kmk exponentiations in G are required to recover all
messages encrypted by k senders. However, for a given subset of k
senders, each share is only raised to the power of a single Lagrange
coefficient. Therefore, only (n

k)m
k exponentiations in G are necessary.

Table 5.1 also gives numbers for two specific use cases. In both, we as-
sume the total number of vehicles is 10 million, like in the Netherlands.
For the first, a speed-monitoring example, we choose the parameters to
monitor a 20 kilometer stretch of highway—for simplicity, we assume
there are no exits—with one anpr system placed at the beginning, and
one at the end. This situation is also illustrated by Figure 5.3. As an op-
timization, the first station only creates shares for the newest instance,
this reduces the combining cost. We set the epoch length to 10 min-
utes. Every minute, we start a parallel instance of the system. This set-
ting guarantees that every car that traverses this stretch of highway in
9 minutes or less—its speed is then at least 20/(9/60) ≈ 133 km/h—
generates two shares in the same instance, and is thus always caught,
while cars going between 120 km/h and 133 km/hmay be caught. Using
20 parallel instances, instead of 10, will lower this bound to 126 km/h.
Suppose that 600 cars pass the anpr systems during an epoch. The

regular kde scheme is more efficient in this setting due to the relatively
small number of shares. In this setting, our key-evolution schemes en-
sure that the senders do not need to store 60 · 24 keys for every day the
system is operational, instead they store only two.
The second use case is the canvas cutters case we reintroduced at

the start of this chapter. In this scenario, criminals frequently visit rest
stops along a highway, cut open the canvas on lorries, and rob them.
The criminals can typically be recognized by looking for cars that visit
rest stops rather frequently. Suppose we monitor 8 rest stops, and con-
sider a car suspicious if it visits at least 4 within a 4 hour period. Sup-
pose 400 (different) cars visit each rest stop per period. Here, the bkde
scheme is clearly better. The exponential factor in the regular scheme
quickly drives up the number of combines needed. In fact, this would
be exacerbated if traffic increases. Nevertheless, these cases also illus-
trate that if storage is an issue, or fewer shares are expected, then it is
better to use the non-batched scheme.

5.6.3 Implementation

To evaluate the performance of our two new schemes and to compare
them against Hoepman and Galindo’s scheme, we built and tested a
prototype implementation for each of the three schemes in C using the

132 distributed encryption

anpr 1 anpr 2
20 km

(a) Placement of anpr stations along a stretch of highway

0 1 2 3 4 5 6 7 8 9 10 11 12

time (min)

1
2inst. 1

1
2inst. 2

1
2

inst. 3

(b) Timeline of staggered de instances

Figure 5.3: Figure (a) shows the placement of the anpr systems in the speed-
limiting example. Non-speeding cars need at least 10 minutes to tra-
verse this stretch of highway. Figure (b) show the first three stag-
gered distributed encryption instances. Every minute a new instance
is started. Every instance runs for 10 minutes. The first anpr station
monitors for 1 minute, the second for the full 10 minutes. A speeding
car that traverses the 20 kilometer stretch of highway in less than 9
minutes is always detected by both anpr stations in one instance, and
is thus caught. A car that does not speed is never seen by more than
one anpr station per instance.

5.6 analysis and conclusions 133

Table 5.2: The running times of our prototype implementations of Hoepman and
Galindo’s de scheme (hgde), our new de scheme (kde) and our new
batched de scheme (bkde) for each of the two use cases shown in
Table 5.1. All numbers are on a single core.

Implementation Speed limiting Canvas cutters

hgde 134 s –
kde 4 s –
bkde 190 s 35 h

relic cryptographic library [8].17 We ran all experiments on a single
core of an Intel i5-6200U running at 2.30GHz. All code is trivially
parallelizable. Both implementations recover all encrypted messages
by trying all possible combinations of ciphertext shares.
As a small optimization, the implementations disregard shares for

which they already found a correspondingmessage. This pruning helps
speed up the combining process when there are many messages that
can be recovered. Table 5.2 compares the performance of these imple-
mentations on the two use cases.
The difference in run time between Hoepman and Galindo’s de

scheme and our new de scheme is solely due to the extra pairing oper-
ation that Hoepman and Galindo’s scheme needs. The run time of our
new kde scheme, however, is better than one would expect based on
the number of exponentiations in G. This is because for small values
of n and k the Lagrange coefficients—which are used as exponents
when combining ciphertexts—are decidedly non-random. We see that
our new de scheme is more than fast enough for the speed limiting ex-
ample. It outperforms the batched de scheme. Moreover, the batched
scheme needs about 8 minutes to populate the initial share vector with
random group elements.
The canvas cutters scenario remains much more challenging. The

non-batched schemes simply require too much time. Based on the rela-
tive complexity of the two problems, our new non-batched de scheme re-
quires about 8months to complete (not taking into account the fact that
the Lagrange coefficients become less favourable in the canvas cutters
scenario). While the 35 hours of our batched scheme is still a bit long,
the results in Section 6.7 suggest that using a fully optimized curve gives
a factor 2 speedup. Moreover, the scheme is also trivially parallelizable,
bringing this just within the realm of practicality.

17 We again set up relic to use an optimized 254 bits bn curve. While we could have used
a regular curve for our new schemes, we opted to use the same optimized setting—and
thus used G = G1 for our schemes.

134 distributed encryption

5.6.4 Conclusion

In this chapter, we presented a new distributed encryption scheme that
is simpler than previous solutions, and uses weaker assumptions. Fur-
thermore, we described a key-evolving variant that offers proper key evo-
lution and is therefore forward secure. Additionally, we demonstrated a
batched variant of our new distributed encryption scheme that is much
more efficient for small message domains.
None of the known distributed encryption schemes offer semantic se-

curity; senders always produce the same ciphertext for a given message.
It would be very interesting to see solutions that use randomization to
avoid this problem, although we suspect that this requires some kind
of interactivity. Furthermore, it would be interesting to see if our dis-
tributed encryption schemes can be sped up to reduce their running
times.

6FAST REVOCATION OF ATTRIBUTE -BASED
CREDENTIALS

More and more governments are issuing electronic identity (eid) cards
to their citizens [103, 127, 129]. These eid cards can be used both of-
fline and online for secure authentication with the government and
sometimes with other parties, such as shops. Attribute-based creden-
tials (abcs) [34] are an emerging technology for implementing eid cards
because of their flexibility and strong privacy guarantees, and because
they can be fully implemented on smart cards [162]. Every credential
contains attributes that the user can either reveal or keep hidden. Such
attributes describe properties of a person, such as her name and age. As
we saw in the introduction, abcs enable a range of scenarios from fully-
identifying to fully-anonymous. When using a credential fully anony-
mously (i.e., without revealing any identifying attributes), proper abc
technologies guarantee that the credential is unlinkable: it is not possi-
ble to connect multiple uses of the same credential.
When abcs are applied, the carriers on which the credentials are

stored (for example, smart cards) can be lost or stolen. In such cases,
it is important that users can revoke these credentials to ensure that
they can no longer be (ab)used. This is also necessary when the owner
of the credential herself abuses it. Revocation may, in fact, happen
often. As an example, the nationwide Belgian eid system’s revocation
list contains more than 375 000 credentials [33] for just over 10 million
citizens. A practical revocation scheme must therefore efficiently deal
with such large revocation lists.
Unfortunately, the unlinkability of abcs precludes the use of standard,

identity-based revocation. There exist many privacy-friendly revocation
schemes, with different trade-offs in terms of efficiency (both for users
and verifiers), connectivity requirements, and anonymity. It turns out
to be hard to satisfy all of these simultaneously. All revocation schemes
proposed so far suffer from at least one of the following two problems:
(1) they rely on computationally powerful users, making the scheme un-
suitable for smart cards, the obvious carrier for a national eid; or (2)
they place a high load on verifiers, resulting in long transaction times.
The research presented in this chapter was part of the ongoing re-

search project “I Reveal My Attributes” (irma).1 The goal of this project
is to demonstrate the practicality of attribute-based credentials. Within

1 See https://www.irmacard.org and https://privacybydesign.foundation/irma/.

135

https://www.irmacard.org
https://privacybydesign.foundation/irma/

136 fast revocation of attribute-based credentials

the project, we implemented the entire user-side of the credentials on a
smart card [162] and are currently working on secure implementations
on smartphones to enable large key sizes and to provide a better user
interface. In this chapter we focus on the smart card setting.

our contribution. Our contribution is a new revocation scheme
that has very low computational cost for users and verifiers alike; it is
efficient even in the smart card setting, and can therefore be used in
practice. We introduce the main idea in Section 6.1. Adding revocation
to an credential scheme, see Section 2.7 for a general introduction, in-
troduces new parties and, in case of our revocation scheme, also extra
requirements. We explain these in Section 6.2. We then describe the
full revocation scheme in Section 6.3. In our scheme, verifiers need only
constant time on average to check revocation status, making it as fast
as traditional non-anonymous revocation schemes. Furthermore, the
users’ computational overhead is small (and updates by users to their
own internal state to reflect revocations are not necessary). Our scheme
is based on epochs that divide time into short (configurable) intervals. A
user is unlinkable, except if she uses her credential more than once per
epoch at the same verifier. We achieve this by generalizing the direct
anonymous attestation (daa) domain-specific pseudonyms. We model
the security of our scheme and prove that our scheme is secure in this
model—see Section 6.4. To mitigate the linkability within an epoch,
we explore the idea of using multiple generators in Section 6.5. Our re-
vocation scheme works with most credential schemes. As an example,
we instantiate it for bbs+ credentials (see Section 2.7) in Section 6.6.
In Section 6.7, we give pointers for implementing our scheme in prac-
tice, and give experimental results as evidence of the feasibility of our
scheme. Finally, we review related work in Section 6.8 and conclude
this chapter in Section 6.9.

6.1 the idea

Our scheme enables efficient and privacy-friendly revocation of creden-
tials. As our scheme resembles verifier-local revocation (vlr) schemes
[9, 24, 28], we describe those first.

6.1.1 Verifier-local revocation

The mathematical setting is a cyclic groupG with prime order p. Every
credential encodes a random revocation value r ∈ Zp. If a credential has
to be revoked, its revocation value r is added to the global revocation
list RL. When the user shows the credential to a verifier, the verifier

6.1 the idea 137

needs to check whether the user’s revocation value r appears on the
revocation list RL. To facilitate this check without revealing r itself, the
user chooses a random revocation generator h ∈R G, calculates the
revocation token R = hr , and sends

(h, R) = (h, hr) (6.1)

to the verifier during showing. The user also proves that the revoca-
tion value r embedded into R corresponds to the credential she is show-
ing. This proof depends on the type of credential—see Section 6.6 for
an example. Each verifier holds a copy of the revocation list RL =
{r1, . . . , rk}. To check whether the credential is still valid, the verifier
checks whether hrj = R for each rj ∈ RL and rejects the credential if
one of these equalities holds. This form of verifier-local revocation has
some problems in practice:

1. Because the user chooses the revocation generator h at random,
the work for the verifier increases linearly with the number of
items on the revocation list. This quickly causes performance
problems.

2. The scheme is not forward-secure. Once the verifier obtains a
revocation value r, the verifier can link all past and future interac-
tions involving this value, if it stores the tuples (h, R) from (6.1).
Some solutions have been proposed to solve this problem—see
Section 6.8—but they are not efficient enough for our purposes.

Our scheme addresses these two disadvantages.

6.1.2 Our scheme

We propose to split time into epochs and to use one generator per epoch
and per verifier—this is a generalization of the direct anonymous at-
testation approach of creating domain specific pseudonyms based on a
per-verifier generator, see Section 6.8. Using one per-epoch per-verifier
generator limits the user to one showing per verifier per epoch if she
wants to remain unlinkable (which is not a problem when epochs are
small) but makes revocation checking very fast for the verifier. The user
uses the per-epoch per-verifier generator gϵ,V to create the values in (6.1).
In particular, she sends R = gr

ϵ,V to the verifier.
To check whether the credential is revoked the verifier does not need

to know the raw revocation values. Instead, a semi-trusted party, the
revocation authority (ra), can store the raw revocation values of revoked
users, and provide the verifier with a revocation list:

RLϵ,V = {gr1
ϵ,V , . . . , grk

ϵ,V}.

138 fast revocation of attribute-based credentials

The credential is revoked if R ∈ RLϵ,V . This check takes only O(1)
time on average using associative arrays. The average time complexity
thus decreases from linear to constant in the length of the revocation
list gϵ,V . While some computation load shifts to the ra, the ra does no
more work creating the list than a verifier in the vlr scheme does for
every verification. Also, the verifier can no longer link transactions in
different epochs since it does not have the bare revocation values.

epochs and generators. The length of an epoch must be suffi-
ciently short so that a user normally never shows her credential twice
within the same epoch to the same verifier. If the epoch and verifier
specific generator is reused, the corresponding activities of the user be-
come linkable (but only within that epoch and at that verifier).
The generators form an attack vector for a malicious adversary to link

users’ activities. It is not sufficient for the user to keep track of the
generators she used before. A malicious verifier could take one fixed
generator gϵ,V , and then create a new one by picking a randomexponent
x ∈R Zp and sending gx

ϵ,V to the user. All revocation tokens are then
easily reduced to the same base gϵ,V , without the user ever seeing a
similar generator.
To prevent this attack, users should calculate the generators them-

selves. The easiest method—and the one we propose here—is to use
a hash function and let the generator gϵ,V for a verifier V and epoch ϵ
equal H(ϵ ∥ V), where H is a hash function from the strings to the
groupG (construction such hash functions is not always trivial, but can
usually be done, also see Section 2.2.1) and the epoch ϵ is derived from
the current time.2

how to revoke a credential? In this chapter we consider two
approaches to revoke a credential. Revocation is either user-initiated
or system-initiated. When revocation is always user-initiated, only the
owner can revoke a credential, and will do so when the credential (car-
rier) is lost or stolen. When revocation can also be system-initiated, the
system can revoke a credential when the credential’s owner loses the
right to use that credential, e.g., when the owner does not pay for a sub-
scription or when the owner abuses the credential. In our system, the
choice boils down to the question: who knows the revocation value r?
When revocations are always user-initiated, only the owner needs

to know the revocation value r. When her credential carrier is lost or
stolen, she provides the revocation value r to the revocation authority.
The revocation authority can then use this value to revoke the corre-
sponding credential.

2 In Section 6.7.2 we explain how embedded devices like smart cards can keep track of time.

6.2 credentials with revocation 139

Escrow Agent (ea)
stores revocation values

of all credentials

Revocation Agent (ra)
stores revocation values

of all revoked credentials

sends
revocation value of
revoked credential

User (U)
has credential C(r)

Issuer (I) Verifier (V)

revokes credential

(user initiated)

issues
credential

C(r)

shows
credential

C(r)

revokes credential (system initiated)

Figure 6.1: Interactions between parties in our revocation system. The escrow
agent (ea) is only present when the system supports system-initiated
revocation. There is typically only one revocation authority and one
escrow agent, but there may be multiple issuers, verifiers and users.

When revocation can (also) be system-initiated, the revocation author-
ity needs to be able to obtain the revocation value of revoked credentials.
To this end, we introduce a trusted escrow agent that stores all the re-
vocation values of all credentials. Then, when a party (for example, an
issuer or a verifier) wants to revoke a credential, that party provides ev-
idence to the escrow agent why it wants to revoke that credential. If
the escrow agent accepts the evidence, it looks up the corresponding re-
vocation value and sends it to the revocation authority. The revocation
authority will use the revocation value as before to revoke the credential.
In this case, no cooperation of the user is required. Also see Figure 6.1
for how the parties interact.
The downside of the system-initiated approach is that the escrow

agent has a lot of power: it can use the revocation values to link a user’s
actions, even if her credential is not yet revoked. This is why we con-
sider both approaches in tandem.

6.2 credentials with revocation

In this chapter we focus on revocation of credential schemes. We al-
ready introduced the necessary parties—users, issuers and verifiers—
in Section 2.7. We repeat the description of the issuer, as its role is
extended when the scheme is used with system-initiated revocation.

issuer The issuer issues credentials to users. It ensures that the cor-
rect data are stored in the credential. A typical credential scheme
has multiple issuers. If system-initiated revocation is supported,

140 fast revocation of attribute-based credentials

we assume that issuers internally assign an identifier id to each
credential that they issue. This allows issuers to later refer to cre-
dentials when they want to revoke them. (This identifier is of
course never revealed to a verifier.)

In a credential scheme with revocation, a revocation authority and,
if system-initiated revocation is supported, an escrow agent, are also
present. Figure 6.1 shows how the parties interact.

revocation authority The revocation authority is responsible for
revoking credentials. It revokes credentials on request of users
and, when present, the escrow agent. The revocation authority
keeps track of all the revoked credentials. If necessary, it sends
revocation information to users and verifiers.

escrow agent The escrow agent can initiate the revocation of cre-
dentials upon request of users (when they lack the information
to revoke their credentials directly), verifiers and issuers. The es-
crow agent stores all information necessary to fulfil this task. If it
decides to grant a revocation request, it sends the required infor-
mation to the revocation authority.

Recall from Section 2.7 that we write C(a1, . . . , aL) to denote a creden-
tial over the L attributes a1, . . . , aL. Our scheme is independent of the
choice of credential scheme, but we impose three restrictions on it:

1. The credential must be able to encode a revocation value r from a
sufficiently large set.3 This value can be used to identify a revoked
credential. We write C(r) to denote a credential that contains the
revocation value r. Depending on the type of credential, other
attributes may be present.

2. The issuer should be able to issue a credential C(r) without learn-
ing the revocation value r. Otherwise, the issuer can use it to trace
credentials. Depending on whether the system supports system-
initiated revocation, the revocation value is blindly supplied by the
user or the escrow agent. Most credential schemes support the re-
quired forms of blind issuing. In Section 6.6 we show this for the
bbs+ credential scheme.

3. The showing protocol must be extensible to provide the verifier
with the revocation token R = gr

ϵ,V and a proof that R and C(r)

3 For simplicity, we focus on attribute-based credentials, but this is not strictly necessary.
Any credential scheme that can encode the revocation value and that satisfies the second
restriction can be used with our scheme. One example would be to use the user’s private
key as the revocation value (although, in this case, extra care should be taken when using
system-initiated revocation).

6.3 the full scheme 141

contain the same revocation value r. Fortunately, most credential
schemes already rely on zero-knowledge proofs, and these can
readily be extended to include the required proof of equality.

This chapter focuses on credentials that are multi-show unlinkable,
i.e., a verifier cannot link multiple showings of the same credential.
When credentials are only single-show unlinkable the situation is differ-
ent. Single-show unlinkable credentials are either used multiple times
and are then naturally linkable (and hence easier to revoke) or used only
once to remain unlinkable. Our methods also apply to this latter case of
single-show credentials that are used only once. To compensate, a user
has multiple versions of the same credentials over the same attributes.
If every version of the credential contains the same revocation value,
then they can all be revoked simultaneously using our techniques.

6.3 the full scheme

We now describe the full scheme. It expands on the intuition described
in Section 6.1 by explicitly stating how the parties interact. Section 6.7
shows how to implement this scheme. Our scheme always supports
user-initiated revocation. In addition, it can be configured to support
system-initiated revocation.
The revocation authority runs the SetupRA algorithm once.

• SetupRA(1ℓ). This algorithm takes as input a security parameter
1ℓ. It chooses a cyclic group G of prime order p with generator
g such that the ddh problem is hard in G and p has ℓ bits. Fur-
thermore, it picks a hash function H : {0, 1}∗ → G that maps
strings onto this group. It outputs (G, g, p, H). These parame-
ters are public and known to all other parties. The ra keeps track
of the current epoch ϵ, which it initializes to 0, and the initially
empty master revocation listMRL containing revoked credentials
identified by their revocation values.

If system-initiated revocation is supported, the escrow agent is present.
The escrow agent runs the following setup algorithm.

• SetupEA(). The escrow agent (ea) keeps track of a list RV contain-
ing a tuple (id, rid) for each issued credential with identifier id
storing the corresponding revocation value rid ∈ Zp.

Users and verifiers run the algorithms SetupU and SetupV respectively.

• SetupU(). The user keeps track of the current epoch ϵ. She also
stores sets TC of the verifiers that she has shown credential C to
in this epoch. Initially, TC = ∅.

142 fast revocation of attribute-based credentials

• SetupV(). The verifier calls GetRevocationList to get an initial
revocation list from the revocation authority—see below. It also
keeps track of the current epoch ϵ.

At the beginning of a new epoch, all parties increase the current epoch
ϵ by 1. In particular, we assume that all users know the current epoch.4

At the start of a new epoch, users additionally clear the lists TC of ver-
ifiers that have seen credential C in this epoch. Every verifier V runs
the GetRevocationList protocol with the revocation authority to get its
revocation list for the current epoch.

• GetRevocationList(). This protocol is run between a verifier V
and the revocation authority. The parties execute the following
steps:

1. The verifier V identifies itself to the revocation authority.

2. The revocation authority

a) calculates the generator gϵ,V = H(ϵ ∥ V) ∈ G for
verifier V;

b) computes the sorted list

RLϵ,V = sort({gr
ϵ,V | r ∈ MRL}); and

c) sends RLϵ,V to verifier V.

Sorting the revocation lists RLϵ,V ensures that unlinkability is preserved
for all previous activities, even for revoked users (if |MRL| > 1).5

To obtain a credential, the user and issuer run the ObtainCredential
protocol. This protocol describes two variants, one for user-initiated
revocation (in which case the user generates the revocation value r), and
one for system-initiated revocation (in which case the ea generates r).

• ObtainCredential(I). This protocol is run between a user U wish-
ing to obtain a credential, an issuer I, and, only if the system
is configured to support system-initiated revocation, the escrow
agent. The parties proceed as follows.

– If the system is not configured with system-initiated revoca-
tion, the user U and issuer I run the normal issuance proto-
col. As part of this protocol, the user generates its revocation
value r ∈R Zp, on which the issuer blindly issues a creden-
tial C(r). This credential might contain other attributes, but

4 As we explain in Section 6.7.2, epochs are represented as time intervals. Users test their
knowledge of the current time against this interval to make sure the interval is not in the
past.

5 For this purpose, it suffices to sort on the representation of the elements. All that matters
is that the order depends only on information in the list itself.

6.3 the full scheme 143

as we explained in Section 6.2, we omit these, as our focus
is on the revocation scheme.

– If the system is configured with system-initiated revocation,
the escrow agent generates the revocation value r ∈R Zp for
the credential, and sends it to the user. The user and the ea
then jointly run the issuance protocol with the issuer. The
ea blindly provides the revocation value r to the issuer, while
the user provides the other attributes (if any) as in the nor-
mal issuance protocol to the issuer. Again, the user obtains
the credential C(r). Internally, the issuer assigns an iden-
tifier id to the credential, provides this identifier to the ea,
and stores a record of the issuance process. The ea adds the
tuple (id, r) to its list RV.

Most credential schemes can be extended to support the second
configuration where the ea determines the revocation value. In
Section 6.6 we show how to do so for bbs+ credentials.

If the user wishes to revoke one of her credentials with revocation value
r, she runs the following protocol.

• UserInitiatedRevoke(r). When the revocation authority is asked
to revoke a credential with revocation value r, it adds r to the mas-
ter revocation listMRL.

If, on the other hand, another party in the system wishes to revoke a
credential they can run the following protocol with the escrow agent.

• SystemInitiatedRevoke(id, (R, ḡ), evidence). The escrow agent
can be asked to revoke a credential by supplying either the cre-
dential’s identifier id or a corresponding revocation token R gen-
erated using generator ḡ. The caller additionally supplies some
evidence evidence. The ea first examines evidence to determine
if this is sufficient grounds for revocation. If the ea decides to
grant the request, it recovers the revocation value rid as follows.

– If the credential identifier id is supplied, it looks up the pair
(id, rid) ∈ RV to find rid .

– If the tuple (R, ḡ) is supplied, the ea iterates over (id, rid) ∈
RV to find the revocation value rid such that ḡrid = R.

If the ea cannot find the revocation value it returns an error. Oth-
erwise, it makes a UserInitiatedRevoke(rid) request to the ra.

The idea of using the revocation token R to identify the corresponding
credential is identical to the tracing mechanism provided by Boneh and
Shacham [24]. In Section 6.7.1 we discuss some extra options for revok-
ing credentials in practice.

144 fast revocation of attribute-based credentials

To show a credential, the user and the verifier run the ShowCredential
protocol. The user takes as input the verifier V and a credential. She
sends the revocation token to the verifier and proves that she has a cor-
responding credential. The verifier checks the validity of the credential
and whether it has been revoked.

• ShowCredential(C, V). This protocol is run by a user taking as
input a credential C and a verifier V. The user interacts with a
verifier.6 The protocol proceeds as follows.

1. The user aborts if V ∈ TC (before contacting V).

2. The user calculates the verifier and epoch specific generator
gϵ,V = H(ϵ ∥ V), and adds V to the list of seen verifiers TC.

3. The user sends her revocation token R = gr
ϵ,V to the veri-

fier. Here, r is the revocation value encoded into the user’s
credential C(r).

4. The user and the verifier run the normal showing proto-
col for the user’s credential C(r), but in addition the user
proves in zero-knowledge that her revocation token R is well-
formed, i.e., that the exponent r is the same as the revocation
value encoded in the credential. Section 6.6 shows an exam-
ple of such a proof for bbs+ credentials.

5. The verifier checks the validity of the credential and whether
R is well-formed. Finally, it confirms that R is not on its
revocation list RLϵ,V for the current epoch. It aborts if any
of these checks fail.

The list TC and the epoch ϵ uniquely determine the generators that the
user has used for credential C in this epoch. The checks above ensure
that the user never reuses a generator. Also, the user always calculates
the generators herself. This prevents the verifier from cheating with the
generators.
Checking that R ̸∈ RLϵ,V can be done in constant time (on average) if

the verifier processes the revocation list RLϵ,V into an associative array.
Some tricks help keep the size of the revocation lists manageable—see
Section 6.7.5.

6.4 security model and proofs

A good revocation scheme needs to satisfy two properties: (1) non-
revoked credentials are still unlinkable, and (2) a revoked credential is

6 For our revocation scheme it is not necessary that the user authenticates the verifier, she
relies on her own input of the verifier V to determine the generator. However, for a
credential scheme in general, it is essential to authenticate the verifier, lest the user reveal
attributes to a party to whom she did not want to reveal them.

6.4 security model and proofs 145

no longer usable. In this section, we prove that our scheme has these
two properties, which we call unlinkability and unavoidability.
For both security definitions, we use credentials that are indistin-

guishable from one another. Most credential schemes provide this type
of unlinkability, as long as the revealed attributes (if any) are the same.
For unavoidability, we also require that credentials are unforgeable, but
all credential schemes that we know of satisfy this property.

6.4.1 Unlinkability game

We say that a revocation scheme is unlinkable if no adversary can win
the following game. This game is very similar to the anonymity games
defined for group signatures [24, 117] in general, and the backward un-
linkable anonymity game of Nakanishi and Funabiki [124] in particular.

Game 6.1 (The unlinkability game) In the unlinkability game, the ad-
versary’s goal is to determine which of two credentials is shown to him.
Let S be a credential scheme, n the number of credentials in the system,
and ℓ the security parameter.

setup phase To set up the system, the challenger runs SetupRA(1ℓ)
on the ra and SetupEA() on the ea. It sets up the credential sys-
tem S and initializes n users using SetupU(). Then, it issues
corresponding credentials C1, . . . , Cn containing revocation val-
ues r1, . . . , rn using the ObtainCredential protocol to these users.
Finally, it initializes the current epoch ϵ to 0. The adversary is
responsible for setting up the verifiers.

query phase The adversary may issue the following queries.

• CorruptCredential(i). The adversary can request credential
Ci to be corrupted. It receives the revocation value ri and the
entire internal state of the credential.

• Verify(V, i). The adversary can request to act as verifier V for
credential Ci in the ShowCredential(Ci, V) protocol.

• Revoke(i). The adversary can ask to revoke credential Ci.
The challenger calls UserInitiatedRevoke(ri) on the ra.7

• NextEpoch. The adversary requests to move to the next
epoch. The challenger ensures that the revocation authority
and the users move to the next epoch and updates its own
epoch ϵ as well. The adversary is responsible for moving
the epoch of the verifiers.

7 This oracle call also captures the abilities given by regular SystemInitiatedRevoke calls, as
the adversary can always identify the credentials (except in the challenge phase).

146 fast revocation of attribute-based credentials

The verifiers under the adversary’s control can at any point in time
make GetRevocationList queries to the ra.

challenge phase Let the current epoch be ϵ∗. The adversary selects
two credentials with identifiers i0 and i1 and a verifier V∗ such
that linking is not trivial, i.e.,

1. neither credential i0 nor i1 was revoked in ϵ∗ or earlier,

2. neither credential i0 nor i1 was corrupted, and

3. verifier V∗ did not verify the credentials i0 and i1 during
epoch ϵ∗.

The challenger then picks a bit b ∈ {0, 1} at random and runs
Verify(V∗, ib) (as defined above) with the adversary.

restricted queries phase The adversary can make CorruptCre-
dential, Verify, Revoke and NextEpoch queries as in the query
phase. However, the adversary is not allowed to call Corrupt-
Credential on the challenge credentials i0 and i1. Furthermore,
during the challenge epoch ϵ∗, the adversary is not allowed to
revoke the challenge credentials i0 and i1 nor make Verify(V∗, i0)
and Verify(V∗, i1) queries on them.

output phase The adversary outputs a bit b′. It wins if b = b′.

The advantage of an adversary A for a credential system S is given by
AdvLINKA = 2

∣∣Pr[b = b′] − 1
2

∣∣, where the probability is over the ran-
dom bits of the challenger and the adversary. The revocation scheme
for credential scheme S is unlinkable if AdvLINKA is negligible for every
probabilistic polynomial time (ppt) algorithm A.

This game models the fact that the revocation authority is trusted; it
will not give the raw revocation values to the adversary. The game also
models the forward security of the scheme. The adversary is allowed
to revoke the challenge credentials i0 and i1 in epochs beyond ϵ∗, but
should nevertheless have a negligible advantage in distinguishing the
credentials in epoch ϵ∗.
In the following reduction we let the revocation token R of the chal-

lenge users depend on a ddh instance. As a result, we do not know its
discrete logarithm, so we cannot create the equality proof required in
the protocol. Instead, we require that we can forge this proof in the re-
duction. In most applications, this proof will be a non-interactive zero-
knowledge proof resulting from the Fiat-Shamir heuristic [64]. In this
case, our reduction can forge these proofs assuming a random oracle.
(For regular zero-knowledge proofs we can use rewinding techniques.)

6.4 security model and proofs 147

Theorem 6.2 Our credential scheme with our revocation scheme is unlink-
able (in the sense of Game 6.1) in the random oracle model provided that the
ddh problem is hard in the groupG and the underlying credential system is
unlinkable.

Proof. We reduce the security of our revocation scheme to the hardness
of the ddh problem. We encode the ddh instance into the revocation
token of two specific users. We do this in such a way that in the chal-
lenge epoch ϵ∗ we give the correct token if z = xy and a random one
otherwise. Any distinguisher thus breaks ddh.
More precisely, we construct a new game, which we call the random-

challenge-token game, in which the revocation token R = g
rib
ϵ∗ ,V∗ of

the challenge user ib (picked by the challenger) is replaced by a random
token R ∈R Zp. Our claim is that no adversary can distinguish the
normal unlinkability game from this random-challenge-token game.
If this claim holds, we can replace the revocation token in the chal-

lenge of the regular indistinguishability game with a random token
without being detected. Clearly, if the revocation token is random, the
adversary has no extra information with respect to the regular unlinka-
bility game for credentials. Therefore, since the credentials themselves
are unlinkable, the adversary has, by definition, no chance of winning
the random-challenge-token game. As a result, the adversary also can-
not win the unlinkability game for credential schemes extended with
our revocation mechanism.
We now prove that no adversaryA can distinguish the normal unlink-

ability game from the random-challenge-token game. Suppose such an
adversary A does exist. We will construct a challenger B that breaks
the ddh assumption. As input, the challenger B takes a ddh problem
(g, X = gx, Y = gy, Z = gz), and B’s task is to determine whether
z = xy or z ∈R Zp.
First, challenger B guesses the challenge epoch ϵ∗, the challenge ver-

ifier V∗ and the special credentials i0 and i1. Challenger B generates
n − 2 revocation values ri ∈R Zp for all i ̸= i0, i1 and issues n − 2
credentials C(ri) corresponding to these values. For credentials i0, i1,
it picks random values a0, a1, c0, c1 ∈R Zp, and it will act as if creden-
tial ib’s revocation value rib equals x · ab for b ∈ {0, 1}. It also creates
corresponding credentials C(c0) and C(c1). It does not know ri0 or ri1
themselves, and since cb ̸= rib , challenger B always needs to fake the
equality proofs involving C(cb).
Note that the challenger can answer almost all queries honestly. The

only changes that we make are how it computes revocation tokens for
users i0 and i1, and how it answers hash and challenge queries.
The challenger changes the random oracle H to choose the gener-

ators gϵ,V . A judicious choice of the generators makes it possible to

148 fast revocation of attribute-based credentials

create the revocation token for credentials i0, i1, even though x is un-
known. For every epoch ϵ and verifier V the challenger chooses an
exponent eϵ,V ∈R Zp. For verifier V = V∗ in epoch ϵ = ϵ∗ the chal-
lenger sets gϵ∗ ,V∗ = H(ϵ∗ ∥ V∗) := Yeϵ∗ ,V∗ . For all other ϵ, V pairs,
it sets gϵ,V = H(ϵ ∥ V) := geϵ,V . The challenger runs the adversary
A, and honestly answers all queries not involving credentials i0, i1. For
credential id, d ∈ {0, 1} it creates the revocation token as

Rϵ,V,id = g
rid
ϵ,V = (geϵ,V)x·ad = (gx)eϵ,V ·ad = Xeϵ,V ·ad

unless V = V∗ and ϵ = ϵ∗. For d ∈ {0, 1}, if the adversary ever makes
a Verify(V∗, id) query in epoch ϵ∗, corrupts credential id, or revokes cre-
dential id at or before epoch ϵ∗8 challenger B aborts. In all cases, the
challenger forges the proof of equality of the revocation value and cre-
dential C(cd) using its random oracle.
Eventually, the adversary makes its challenge query for credentials

î0, î1 at verifier V in epoch ϵ. If B did not guess these correctly, i.e., if
ϵ∗ ̸= ϵ, {î0, î1} ̸= {i0, i1}, or V∗ ̸= V, it aborts. Otherwise, it picks
a bit b ∈R {0, 1} and answers with R = Zeϵ∗ ,V∗ ·ab (and forges the cor-
responding equality proof). If z = xy then R belongs to credential ib
(because then Z = Yx) and if z ∈R Zp then R is random. After the
challenge query, B answers the restricted queries as before.
IfA, at the end of the game, indicates that it plays the normal unlink-

ability game, then B answers 1 to indicate that z = xy and ifA indicates
that it plays the random-challenge-token game, then B answers 0 to in-
dicate that z ̸= xy. Any non-negligible advantage that A has in distin-
guishing the two games results in challenger B having a non-negligible
advantage for solving the ddh problem.

6.4.2 Unavoidability game

A revoked credential should no longer be usable in the ShowCredential
protocol. This requirement is expressed by the unavoidability game.
As this notion is very close to traceability in group signatures (see for
example Manulis et al. [117]), we express it using a similar game.
The idea of the game is that we revoke every credential that the ad-

versary obtains. The goal of the adversary is to use these credentials
to sidestep the revocation mechanism. The adversary has two options
to obtain a credential: it can corrupt an honest user’s credential or
it can request a credential to be issued to him. In the former situa-
tion, the game models a call to UserInitiatedRevoke to model that the
honest user revokes his credential. In the latter case, we must use

8 Even though we do not know rid we can still revoke credential id in later epochs because
we can calculate the revocation token Rϵ,V,id as shown.

6.4 security model and proofs 149

system-initiated revocation (a malicious user cannot be trusted to vol-
untarily revoke its credentials). To model this, the game makes a call to
SystemInitiatedRevoke. (As a direct consequence of this, if the system
does not support system-initiated revocation, then the adversary is not
allowed to obtain any new credentials in this game.)

Game 6.3 (The unavoidability game) In the unavoidability game, the
adversary’s goal is to convince the challenger’s verifier that it has a valid
and unrevoked credential while in fact all credentials it has are revoked.
Let S be a credential system, ℓ the security parameter and n the number
of honest users’ credentials in the system.

setup phase To set up the system, the challenger runs SetupRA(1ℓ)
on the ra and SetupEA() on the ea. It also sets up an issuer I
for credential system S to construct credentials and a verifier for
its own use. The challenger sets up the honest users by running
SetupU() for each of them. The challenger also runs the protocol
ObtainCredential(I) on behalf of each honest user i, so that they
obtain a credential Ci with revocation value ri. The adversary is
responsible for setting up the users it controls.

query phase The adversary may issue the following queries.

• CorruptCredential(i). The adversary can request the corrup-
tion of credential Ci. Then, ri is the revocation value corre-
sponding to this credential. The challenger sends the com-
plete credential Ci to the adversary. Thereafter, the chal-
lenger calls UserInitiatedRevoke(ri) to revoke the credential.

• ObtainCredential(id). The adversary can request a creden-
tial with identifier id to be issued to a user it controls. To
this end, the challenger lets the adversary run the system-
initiated revocation variant of the ObtainCredential(I) pro-
tocol with the escrow agent and the issuer (the challenger
controls the latter two entities). At the end of this protocol,
the adversary’s user now has a new credential C(r). The
challenger immediately makes a SystemInitiatedRevoke(id,
⊥,⊥) call to the ea to revoke this new credential (for the pur-
pose of this game, the escrow agent accepts ⊥ as evidence).

• Verify(V, i). The adversary can request to act as verifier V
for credential Ci in the ShowCredential(Ci, V) protocol.

• NextEpoch. The adversary requests to move to the next
epoch. The challenger ensures that the revocation authority,
the escrow agent, and the users it controls move to the next
epoch and updates its own epoch ϵ as well. The adversary

150 fast revocation of attribute-based credentials

is responsible for moving the epoch of the verifiers and the
users it has created or corrupted.

challenge phase The adversary picks a verifier V. The challenger
sets verifier V to the current epoch, and subsequently runs the
GetRevocationList algorithm to get the latest revocation list. The
adversary will run the ShowCredential protocol with this verifier.
The adversary wins if the verifier accepts.

The advantage of adversary A for a given credential scheme S is given
by AdvAVOIDA = Pr[V accepts], where the probability is over the random
bits of the challenger and the adversary. The revocation scheme for
credential scheme S is unavoidable if AdvAVOIDA is negligible for every
ppt algorithm A.

For simplicity we do not give the challenger the option to revoke cre-
dentials nor to obtain the revocation list since all this information is
already encoded into its credentials.

Theorem 6.4 Our revocation scheme is unavoidable (see Game 6.3) in
the random oracle model provided that the underlying credential scheme is
unforgeable.

We first provide a sketch of this proof.

Sketch. Suppose the challenger’s verifier accepts the credential C(r)
that is shown by the adversary. Since credentials are unforgeable, the
adversary obtained this credential using either a ObtainCredential or a
CorruptCredential query, thus the embedded revocation token r is on
the master revocation list MRL. Let gV be the verifier’s generator. The
equality proof guarantees that the revocation token R presented by the
adversary is of the form gr

V . Since gr
V is on the verifier’s revocation list,

the verifier will never accept the adversary’s proof.

To give amore formal security proof, we first define the unforgeability
of a credential scheme.

Game 6.5 (The unforgeability game) In the unforgeability game for a
credential system S , the adversary’s goal is to show possession of a cre-
dential with attributes that were not previously issued by the issuer. Let
ℓ be the security parameter and L the number of attributes contained
within each credential.

setup phase The challenger sets up the system by setting up the cre-
dential system S and a corresponding issuer I.

query phase The adversary may issue the following queries.

6.4 security model and proofs 151

• ObtainCredential(a1, . . . , aL). The adversary can request a
credential on the tuple of attributes (a1, . . . , aL). The chal-
lenger engages in the issue protocol with the adversary to
issue to the adversary a credential with these attributes. The
challenger controls the issuer I.

• VerifyCredential(a1, . . . , aL). The adversary can also request
that a credential with attributes (a1, . . . , aL) is shown to him.
To do so, the challenger issues himself a credentialC(a1, . . . ,
aL), and runs the showing protocol for this credential with
the adversary acting as verifier.

challenge phase The challenger sets up a verifierV and engages in
the showing protocol with the adversary. Let D ⊂ {1, . . . , L} be
the indices of the attributes that were disclosed by the adversary.
The adversary wins if the verifier accepts and the adversary never
made a ObtainCredential(a′1, . . . , a′L) query where a′i = ai for all
i ∈ D (note that if D = ∅, this implies that the adversary did not
make any ObtainCredential queries).

The advantage of adversary A is given by AdvFORGEA = Pr[A wins],
where the probability is over the random bits of the challenger and the
adversary. The credential scheme S is unforgeable if AdvFORGEA is neg-
ligible for every ppt algorithm A.

We can now formally prove Theorem 6.4.

Proof. Assume that an adversary A can break the unavoidability of our
revocation scheme as applied to a credential system S . We show how
to construct an adversary B that breaks the unforgeability of credentials
in the credential system S .
Adversary B plays the role of challenger in the unavoidability game,

and the role of adversary in the unforgeability game for the credential
system. Adversary B runs the setup and query phases of the unavoid-
ability game honestly. However, it does not construct its own issuer,
instead it makes use of its oracle access to the unforgeability challenger.
In particular:

• Adversary B picks revocation values ri for each honest user i dur-
ing the setup phase, but does not request credentials for them.

• Whenever the adversary A makes a Verify(V, i) query, adversary
B makes use of its VerifyCredential(ri) oracle to respond to the
request.

• If adversary A makes a CorruptCredential(i) query, adversary
B first makes an ObtainCredential(ri) query to its oracles to

152 fast revocation of attribute-based credentials

obtain a credential C(ri). It then sends this credential to ad-
versary A. As part of the game, adversary B also makes a
UserInitiatedRevoke(ri) call.

• If adversary A makes a ObtainCredential query, adversary B first
generates a revocation value r (acting as the ea) and then makes a
ObtainCredential(r) call to its challenger and relays the messages
toA as in the system-initiated variant of theObtainCredential pro-
tocol. Let id be the identifier of this credential, then B makes a
SystemInitiatedRevoke(id,⊥,⊥) call to revoke it.

During the challenge phase, adversary A runs the ShowCredential
protocol with B. Assume that A wins, i.e., B accepts the credential
that is shown to him (if A loses, adversary B aborts). Since B accepts,
the proof of knowledge produced by A shows that there is a revocation
value r such that (1) the credential C(r) shown by A is valid and (2) the
revocation token R is of the form R = gr

ϵ∗ ,V . Finally, since B accepts,
R ̸∈ RLϵ,V .
Since R ̸∈ RLϵ,V , B never made a request to issue a credential with

r as attribute (every time it made an ObtainCredential request, the cor-
responding revocation value was added to theMRL as a result of a sub-
sequent revocation call). Hence, the credential C(r) is a forgery.
To use this credential as a forgery, adversary B runs the knowledge

extractor on the proof of knowledge ofA to obtain the credentialC() and
the revocation value r. Adversary B then shows this credential, with the
revocation value r as part of the disclosed attributes, to its challenger.
Since r was never issued as part of a credential, adversary B wins the
unforgeability game.
To conclude, if an adversary breaks the unavoidability of the revoca-

tion scheme, then it must also break the unforgeability of the underly-
ing credential system.

6.5 multiple generators

The single generator protocol we described above is secure and efficient.
Yet, a user is linkable in exceptional cases: when she uses a credential
multiple times for the same verifier within one epoch (which is then too
long). Also, the load on the revocation authority can become quite high
(it needs to create a revocation list for each verifier). In this section, we
make a detour to explore the question whether multiple generators—
shared among the verifiers,9 or even per verifier—alleviate these minor
problems. The answer is positive, however, using multiple generators

9 This approach using global generators is similar to the starting point taken in the revoca-
tion technique by Verheul [161].

6.5 multiple generators 153

can make the user somewhat linkable (but less linkable than if the user
uses the same credential multiple times within an epoch in the original
scheme). Before we explain this linkability, we extend our scheme with
multiple generators.

6.5.1 Multiple generators for revocation

We propose two methods for creating multiple generators: the global
and the local. In the global method there are m generators (per epoch)
that are shared among the verifiers. In the local method there are m
generators (per epoch) for each verifier individually. In the latter case
m can be smaller than in the former.
Global generators ensure that the user has m different generators to

choose from. These can be spent at any verifier, several different gen-
erators can even be used at the same verifier. If m is smaller than the
number of verifiers, using global generators reduces the load on the re-
vocation authority as well. Local generators give the user m generators
per verifier instead of only one.
Instead of generating per-epoch per-verifier generators, we now cre-

ate the ith generator, with 1 ≤ i ≤ m as follows:

gϵ,i =

{
H(ϵ ∥ i) if mode is global
H(ϵ ∥ V ∥ i) if mode is local.

The verifier is implicit for local generators. The verifier can now request
revocation lists for each of these generators (for global generators the
ra will cache the responses). During showing, a user randomly picks
one of the unused generators (or aborts if she cannot). To this end, she
keeps track of the indexes of generators used in this epoch for global
generators, or pairs (V, i) when she used the ith verifier of verifier V.
She informs the verifier of her generator choice, and proves that she
created her revocation token R with respect to this generator.
This method was inspired by ideas for traceable signatures [48],

where signatures can be traced because the signer can only produce
a finite number of unique tags. When tracing a signature the tracing
agent produces all these tags, much like we generate revocation tokens
for all the generators. The traceable signature scheme does not suffer
from the problem we describe next because the (inefficient) proofs of
knowledge hide which generators are used.

6.5.2 Distinguishing credentials

The unlinkability game is easily extended to the above setting. We first
note some positive results. For local generators with m = 1 we exactly

154 fast revocation of attribute-based credentials

have the same scheme as before, with the same security requirements.
Similarly, if two credentials have never been used in this epoch (at this
verifier, for local generators), it can be shown that the adversary has no
chance of linking them.
However, when a credential is used multiple times, before the chal-

lenge phase, the user creates an internal state—the generators that she
has already used—that can be recognized by the verifier with a non-
negligible probability. This attack works independent of the mode.
The verifier only needs two credentials C0 and C1 to have an advan-

tage in the unlinkability game. It makes m − 1 verify queries to C0.
It can observe which generators C0 chooses, let g̃ be the generator it
did not yet use. The adversary makes no queries to C1. In the challenge
phase it again requests credentials C0 and C1. If the credential uses gen-
erator g̃ the adversary guesses it is communicating with C0, otherwise
it guesses C1. Since C0 always uses g̃ and C1 uses it with probability
1/m the adversary is correct with probability 1 − 1/(2m). Note that
this attack does not work if m = 1. A similar attack works for any two
credentials for which the internal state TC differs.
While it is not nice to have credentials that are linkable in this way,

the effect of this attack—that does not identify credentials directly, nor
makes them fully linkable—may be acceptable to either significantly
reduce the load on the ra for global generators, or allow the options
of multiple authentications with the same verifier within an epoch at a
small loss of privacy. (The original scheme makes the credentials fully
linkable in this case.)

6.5.3 Making multiple generators work

The essential difficulty in the multiple-generator scheme we sketched
above is that the user reveals the generator she used. This is not nec-
essary. Instead, given a set of generators gϵ,1, . . . , gϵ,m the user with
revocation value r can make a zero-knowledge proof that

R = gr
ϵ,1 ∨ R = gr

ϵ,2 ∨ · · · ∨ R = gr
ϵ,m.

The verifier checks if R is on any of its revocation lists (corresponding
to the m generators). It can be shown that this variant is secure.
This zero-knowledge proof is not complicated, but it is computation-

ally intensive for the user: its complexity is O(m). However, it provides
us with a trade-off between efficiency and perfect unlinkability. More-
over, when m is small, we still outperform other fast solutions (such as
accumulators, see Section 6.8) without requiring updates to the user.

6.6 integrating our scheme with bbs+ credentials 155

6.6 integrating our scheme with bbs+ credentials

In this section we explicitly show how our revocation scheme can be
integrated into a credential systemusing bbs+ signatures, as introduced
in Section 2.7.1. We can easily generalize these bbs+ signature to form
credentials over the attributes (a1, . . . , aL), the user’s private key x and
the revocation value r. This credential is given by the signature (A, e, s)
where e, s ∈ Zp and

A =

(
gBs

0Bx
U Br

R

L

∏
i=1

Bai
i

) 1
e+γ

∈ G1,

γ is the signer’s private key, and ∆ = (w = hγ
0 , BU , BR, B0, . . . , BL) is

the public key.
To incorporate the revocation mechanism, we first describe how a

credential is issued, and then how it is verified. As described in Sec-
tion 6.3, the system can provide user-initiated and system-initiated re-
vocation. In the former case, the user embeds the revocation value in
the credential, while in the latter case, the escrow agent does. We de-
scribe both.

Issuance in the case of user-initiated revocation

In a system in which only the user knows the revocation value r, the re-
vocation value is blindly signed by the issuer, in the same way that the
issuer already signed the blinded secret key skU . To highlight the differ-
ence with the system-initiated variant we recall the regular BBS.Issue
protocol, see Section 2.7.1, for this particular instance. The user first
commits to r, skU , and the other hidden attributes inH:

C = Bs′
0 Bx

U Br
R ∏

i∈H
Bai

i

using a random s′ ∈ Zp, and sends it to the issuer along with a proof
of knowledge of the exponents s′, x, {ai}i∈H. If the proof verifies, the
issuer randomly generates s′′, e ∈R Zp, sets

A =

(
gBs′′

0 C ∏
i∈D

Bai
i

) 1
e+γ

∈ G1,

and returns the transient signature (A, e, s′′) to the user. The user cal-
culates s = s′ + s′′ and stores the signature σ = (A, e, s).

156 fast revocation of attribute-based credentials

Issuance in the case of system-initiated revocation

In the case of system-initiated revocation, the escrow agent generates
the revocation value and supplies it to the issuer. Moreover, the ea and
the user share the generation of the random value s′ = s′ea + s′U . First,
both the ea and the user create a commitment: the ea commits to the
revocation value r using

Cea = Bs′ea
0 Br

R,

while the user commits to the secret key skU and the hidden attributes
using

CU = Bs′U
0 Bx

U ∏
i∈H

Bai
i .

They send their commitmentCea andCU to the issuer together with the
corresponding zero-knowledge proofs of knowledge via a secure and au-
thenticated channel (this allows the issuer to verify that the ea partici-
pated in the protocol). Furthermore, the ea sends the exponents s′ea, r
to the user. Similar to the other case, the issuer constructs the transient
signature (A, e, s′′) by computing

A =

(
gBs′′

0 CeaCU ∏
i∈D

Bai
i

) 1
e+γ

∈ G1

with random values s′′, e ∈R Zp. Finally, upon receiving (A, e, s′′) with
the corresponding proof of knowledge, the user constructs the signa-
ture (A, e, s) by computing s = s′ea + s′U + s′′.

Verification

Wecan easily integrate our revocation scheme in the selective disclosure
proof of such a credential (A, e, s). Suppose the user wants to prove that
she has a credential containing the disclosed attributes (ai)i∈D . She can
then construct the following proof of knowledge:

PK
{
(A, e, x, r, (ai)i∈H, s) :

Ae+γ = gBs
0Bx

U Br
R ∏

i∈H
Bai

i ∏
i∈D

Bai
i ∧ R = gr

ϵ,V
}

.

See Section 2.7.1 for how to instantiate the first conjunct of this proof.

6.7 implementation

We now address some implementation challenges when using our re-
vocation scheme.

6.7 implementation 157

6.7.1 How to revoke a credential

In the preceding part of this chapter we considered two options for re-
voking credentials: user-initiated and system-initiated. In this section
we revisit these options.
To revoke a credential one needs to know its revocation value. How-

ever, this value also poses a privacy risk: the party that stores it could re-
voke the credential and hence detect its use. Many revocation schemes
suffer from the same problem, see Section 6.8. Clearly, user-initiated
revocation offers better privacy, as the user controls who she gives the
revocation value to. However, she loses this control when she wants to
revoke her credential.

More privacy for user-initiated revocation

If the user does not trust the ra to only use her revocation value r to
revoke future uses of her credential, she can instead adopt the follow-
ing approach. Rather than sending the raw revocation value r to the
ra, the user calculates the revocation tokens herself for all verifiers and
all remaining epochs in which the credential is valid (assuming creden-
tials expire)—she uses the fact that the generators can be calculated in
advance.
This is costly, but does give forward-privacy for the user without trust-

ing the ra. To reduce this cost, the ra can add structure to the gen-
erators of a single epoch as follows. It picks zϵ,V ∈R Zp and sets
gϵ,V = H(ϵ)zϵ,V . The user only needs to do one exponentiation per
epoch—she calculates H(ϵ)r—and the ra creates the per-verifier spe-
cific values (as Rr

V = (H(ϵ)r)zϵ,V). The user is no longer able to check
the verifier specific generators herself (she does not know zϵ,V), instead,
the ra issues certificates on the verifiers’ generators.10 To ensure that
the user does not reuse generators (verifiers might collude and provide
each other’s signed generators to the user), the user stores the used,
verified generators instead.

Managing revocation values

If the system uses only user-initiated revocation, users need to store
their revocation values so that they are available in the case the creden-
tial needs to be revoked. This is not the case when the credentials (and
thus the revocation values) are stored on a smart card. So, when the card
is lost or stolen, the revocation values needed to revoke the credentials

10 To prevent the ra from being able to link credentials across epochs (this specific construc-
tion of the generators already allow it to do so within epochs), the certificate should also
include a zero-knowledge proof that the ra knows zϵ,V such that gϵ,V = H(ϵ)zϵ,V .

158 fast revocation of attribute-based credentials

need to be available elsewhere. One option would be to use a trusted
terminal to print the (card-generated) revocation values (for example as
a QR code) when a credential is issued. The user can then store the
revocation values separately from the card. Note that if system-initiated
revocation is enabled, the user can always use that avenue to revoke her
own credentials.

Escrowing revocation information

An alternative to storing all revocation values at the escrow agent, is to
escrow the revocation information during the showing protocol. Sim-
ilar to identity escrow [95], the user provides a verifiable encryption of
her revocation value (encrypted with the public key of the escrow agent)
to the verifier. While this does not protect against lost or stolen creden-
tials, it does allow verifiers to ask for revocation of a credential when
it can present sufficient grounds to do so. Since the user attaches the
encrypted revocation value to each showing, the escrow agent does not
need to store the revocation values anymore.
However, the escrow agent can still identify a user based on the en-

crypted revocation value, just like it can for our system-initiated revoca-
tion approach by checking the revocation token against the list of revoca-
tion values. Therefore, we do not gain any security, and lose efficiency,
because verifiable encryption is computationally intensive.
Once again, using an escrow agent trades privacy of the user for a

better security of the system as a whole. It depends on the application
of the system whether trusting the escrow agent is better than simply
allowing some abuse.

6.7.2 Instantiating epochs

To keep the protocol description simple, we assumed that all parties
are aware of the current epoch. To achieve this, epochs are, in practice,
based on time. The revocation authority determines the length of an
epoch, by specifying its start time ts and end time te, so the current
epoch ϵ is modelled by the tuple ϵ = (ts, te).
In step 2 of the ShowCredential protocol, the user checks that ts ≤

t ≤ te where t is the current time. If this equation is not correct, the
user aborts. In this way, users always use the correct generator.

Embedded devices

The above description does not suffice for smart cards, our target plat-
form, as they lack a built-in clock, and thus have no notion of time. Nev-

6.7 implementation 159

ertheless, an embedded device must also be able to calculate the gener-
ators itself, to prevent a verifier from adversarially choosing them.
We propose the following solution, similar to the method used in

Machine Readable Travel Documents, such as the new European pass-
port [29]. The embedded device keeps track of an estimate t∗ of the
current time. The estimate is always at or before the current time. Ev-
ery time the embedded device interacts with a verifier, it

1. receives a description of the current epoch (ts, te) signed by the
ra;

2. confirms that the epoch (ts, te) is possible given its time estimate
t∗ by checking that t∗ ≤ te (this is done in step 1 of the ShowCre-
dential protocol); and

3. updates its estimate t∗ ← max(ts, t∗) if the signature is valid.

The signature by the revocation authority on the epoch makes it impos-
sible for verifiers to trick the device into creating a too futuristic estimate
t∗ of the current time.

6.7.3 How to choose the epochs

Epochs determine during what period a credential is linkable. Ideally, at
most one showing happens at each verifier within an epoch. The period
between two showings wildly differs among applications. For example,
a citizen credential may be used only a couple of times a year for filing
tax returns with the government, while it may be used weekly to prove
having reached legal drinking age in a pub or a store. A credential for
accessing an online newspaper subscription could even be used daily.
At the same time, computing revocation lists for every epoch can

become computationally intensive and transferring the list uses band-
width. Therefore, we propose not to have a global epoch, but instead
create epochs per verifier. The length of the epoch should be chosen in
such a way that no credential is normally reused within the epoch for
that particular verifier.11 Using time to instantiate epochs (as described
in Section 6.7.2) allows us to use verifier-specific epochs easily.

6.7.4 Experiments

We did two experiments to prove the validity of our scheme: we esti-
mated the performance impact on our existing smart card implementa-

11 Note that when a user does use her credential more often within the same epoch a lot of
anonymity remains. The uses within this epoch are linkable, but they are still unlinkable
to uses in other epochs or at other verifiers. In particular, this will usually not reveal the
user’s identity.

160 fast revocation of attribute-based credentials

tion and tested the impact on the revocation authority. As the extra work
for the verifier is extremely small, we did not measure its overhead.

Fast smart card implementation

We estimate the efficiency of this scheme based on the work by Vullers
and Alpár [162] in the irma project. To assess the performance of the
implementation, we compare it to its version without revocation. Simi-
larly to Section 6.6, we add an extra attribute to every credential to hold
the revocation value.
As group G, we use a subgroup of Zq of prime order p. Here q is

a 1024-bit prime such that q − 1 = bp. This choice of q is small, but
matches the security level used in the implementation of Vullers and
Alpár [162]. The group G is cyclic and the ddh problem is hard. Fur-
thermore, hashing onto this group is rather easy. It takes five 256-bit
hash calculations to get a (statistically uniformly) random element in
Zq and one exponentiation to the power b, the cofactor, to obtain an ele-
ment in G [87]. The exponentiation can be precomputed as part of the
revocation value. Calculating a 256-bit hash takes about 10milliseconds.
We estimate a total extra time of 390milliseconds for including the revo-
cation value as an attribute, generating the revocation token and adding
the equality proof [139]. This is very practical. Since showing a creden-
tial takes 0.8–1.5 seconds, the overhead is limited too.
We estimate that the cost of verifying the epoch certificate (recall that

this certificate is necessary to keep track of time) is approximately 150
milliseconds.

Fast revocation list calculation

The main remaining burden of the revocation scheme is on the revo-
cation authority, which has to generate revocation lists for all verifiers,
and has to do so for each epoch. This can amount to a large number of
exponentiations. However, the reader should be aware that the amount
of work the revocation authority has to do per generator (i.e., per epoch
and per verifier) equals the work that a verifier has to do for every verifi-
cation in the standard vlr setting.
Idemix [36, 87] uses a modular arithmetic setting for their credential

scheme. One option is to reuse this setting to create a cyclic group G,
as described in the previous section. We created a (non-optimized) test
application, built using the gmp big number library12 to get an estimate
for the time required to build the revocation list. Our application cal-
culates approximately 7 500 revocation tokens per second on a single

12 The gnu multiple precision big number arithmetic library: https://gmplib.org/.

https://gmplib.org/

6.7 implementation 161

core of a first generation mobile Intel Core i7 at 2.66 GHz. This is al-
ready acceptable in a system with a small number of users and service
providers, for example with 450 service providers and 10000 revoked
users all lists can be generated in just 10 minutes.
However, nothing prevents us from choosing a more efficient group.

It does not matter for the proof of knowledge. The only impediment
might be that the smart card may not support this group. For reference,
we also created an optimized implementation using the elliptic curve
cryptography (ecc) library by Bernstein et al. [14]. The authors of this
library already went to great lengths to create fast exponentiation for a
fixed generator. We extended this library somewhat to also support dy-
namic generators (and do the pre-computation on the fly). This imple-
mentation performs approximately 50000 exponentiations per second,
on a single core 2.53 GHzmachine. This should be fast enough for even
nationwide deployment.
There is one technicality that one has to take care of when using an

ecc library such as the one by Bernstein et al. Often, points are rep-
resented internally in projective coordinates. This saves an expensive
inversion operation in the underlying field. However, it also means that
points do not have a unique representation. Such a unique representa-
tion is, however, essential to our fast revocation check. We normalize
the representation by using Montgomery’s trick [123] to calculate the in-
verses. By using this trick we only require 1 inversion and 3n multiplica-
tions to calculate n inverses. This causes a significant speedup over the
naive approach of normalizing each element separately. The inversion
cost is taken into account in the performance measures given above.
The specific curve we used above is generally not available on smart

cards, but other curves are; see for example Hein et al. [78]. Finally, our
results with the optimized ecc library suggest that also in the modular
arithmetic setting improvements in speed can still be obtained.

6.7.5 The size of a revocation list

Our scheme requires the distribution of revocation lists. It might seem
that when the revocation list contains many items, the size of these re-
vocation lists could become prohibitive. We will show that this is not
the case.
Throughout, let ν be the number of items on the revocation list. The

list contains group elements, therefore their size depends on the group.
We consider two types of cyclic groups, both of prime order p of about
256 bits. We follow the 2012 ecrypt advisory [61] in selecting sizes that
give long term protection:13

13 In the 2016 ecrypt-csa advisory [62] the key-sizes wemention here are considered secure

162 fast revocation of attribute-based credentials

• A cyclic subgroup of the integers modulo a prime q. For a group
order of 256 bits, q itself needs to have 3248 bits. A group element
is thus 406 bytes.

• An elliptic curve group of order p, such that p is about 256 bits.
Only the x coordinate and one bit for the y coordinate need to be
stored. Thus a group element takes about 32 bytes to represent.

Table 6.1 compares the storage requirements for a single revocation list,
for ν = 215, ν = 218 and ν = 221 elements. We see that especially for
the integers modulo q the storage requirements are considerable.
For traditional O(1) access structures, the verifier needs to store at

least the entire list itself, and additionally some overhead. Since we
only test membership of the revocation list, and do perform calcula-
tions based on the elements on the revocation list, it suffices to store the
hashes of the elements. This reduces the storage requirements immedi-
ately, see Table 6.1. However, if we accept a very small error probability,
we can do even better by applying Bloom filters.

Bloom filters

Bloom filters are a probabilistic data structure that can very efficiently
store revocation tokens, at a constant number of bits per item, inde-
pendent of the size of the item itself [17]. The number of bits per item
is so small that a Bloom filter gives a one or two orders of magnitude
improvement over storing the elements directly.
This increased efficiency comes at a price: the filter can give false

positives, i.e., it can claim that an element is on the revocation list, while
in fact it is not. However, the false positive rate can be made small. We
think that in this setting a small (in the order of 10−6) false positive
rate is acceptable for two reasons. One, in a practical system the error
probability due to other means (such as intermittent connections and
user error) is probably much higher, and two, when a sufficient number
of generators are available, the user can easily retry with a fresh one
(the probability that both fail is extremely small). In fact, we might even
accept a higher false positive rate if the verifier can always fall back to
an online check with the ra (that then does need to store the full list).
A Bloom filter is constructed as follows. It consists of a bit array of

length κ together with λ hash functions Hi thatmap strings into indices
of this array, i.e., theymap into the range {1, . . . , κ}. To store an item m
in the filter, calculate H1(m), . . . , Hλ(m), and set those bits in the array
to one. To check if an item m is on the list, calculate H1(m), . . . , Hλ(m).
If all these indices are set, the item is most likely in the filter.

for at least the next 10 years (until 2026), as opposed to the 2012 version that considered
them secure until 2040.

6.8 related work 163

Table 6.1: Comparison of storage requirements for a single revocation list. We
consider different sizes of the revocation list, and two types of groups:
the integers modulo q, with elements of 406 bytes and an elliptic curve,
with elements of 32 bytes. Verifiers in our scheme only domembership
tests with the revocation list, so instead of storing the elements them-
selves it suffices to hash them (with sha256 in this case), or to store
them in a Bloom filter. The data are parameterized by the false posi-
tive probability P of the Bloom filter (based on λ = ⌊ln(2)κ/ν⌋ hash
functions), the length κ of the filter and ν the number of revoked items.

Nr. of revoked items (ν)
215 218 221

Integers modulo q 13MiB 102MiB 812MiB
Elliptic curve 1MiB 8MiB 64MiB

Hashes of elements 1MiB 8MiB 64MiB
Bloom filter

P = 4.6 · 10−4, κ/ν = 16 64KiB 512 KiB 4MiB
P = 9.9 · 10−6, κ/ν = 24 96KiB 768KiB 6MiB
P = 2.1 · 10−7, κ/ν = 32 128KiB 1MiB 8MiB

It can be shown that the probability P of a false positive for a Bloom
filter storing ν items is given by

P ≈
(

1− e
−λν

κ

)λ
.

This probability is minimal for λ = ln(2)κ/ν. Table 6.1 shows that
a Bloom filter uses at least an order of magnitude less storage than a
traditional solution at acceptable false positive rates.
The number of hash function calls is small too. The biggest filter with

κ/ν = 32 and ν = 221 contains 226 items. We need λ = ⌊ln(2)32⌋ =
22 hash functions with a 26-bit output. If we make one sha256 call, we
get 256 bits, therefore we need tomake 3 sha256 calls (with appropriate
padding to get different hash functions) for every item.

6.8 related work

Revocation has been widely studied in the literature; we refer to, for ex-
ample, Lapon et al. [100] for a nice overview of current revocation tech-
niques for attribute-based (Idemix) credentials. Traditional revocation
techniques, such as crls and ocsps, require credentials to have a unique
identifier that is always visible to the verifier. A certificate revocation list
(crl) [50] is a list of revoked credential identifiers, published by the is-
suer. Alternatively, the verifier can ask the issuer if a credential is still

164 fast revocation of attribute-based credentials

Table 6.2: We compare crls [50], accumulators (acc) [33, 37, 128], traditional vlr
schemes [9, 24, 28], vlr schemes with backward unlinkability (vlr-
bu) [124], blacklistable anonymous credentials (blac) [159], and our
scheme (ours). We compare the complexity of the operations and
data transfers. A proving time of 1 means that it is constant, while a
proving time of |RL| means that it scales linearly with the size of the
revocation list. Of all the constant-time proving schemes, the accumu-
lator has the biggest overhead. Our scheme is the only privacy-friendly
scheme that has constant-time proving and verification while users do
not need to receive updates.

crl acc vlr vlr-bu blac ours

User can be offline ✓ × ✓ ✓ ✓ ✓
Data to verifier

per epoch |RL| 1 |RL| |RL| |RL| |RL|
per update 1 1 1 1 1 1
Proving (time) 1 1 1 1 |RL| 1
Verifying (time) 1 1 |RL| |RL| |RL| 1
Privacy - + +/- + + +

valid using the online certificate status protocol (ocsp) [141]. Both situa-
tions require the credential to be recognizable, which is undesirable for
abcs. However, revocation is fast: there is no extra work required on
the side of the user, and the verifier can test validity in constant time.
Domain-specific pseudonyms [26, 87, 99] only slightly improve the

situation: instead of being globally linkable, different uses are only link-
able by the same verifier, but not across different verifiers. We believe
this still weakens the unlinkability too much.
A final trick would be to use verifiable encryptions, see for example

Camenisch and Shoup [38], to encode the revocation information at the
cost of less efficiency. A trusted third party can then decrypt the cipher-
text and check whether the credential has been revoked. Clearly this
party is privy to too much information, and such a solution should thus
be avoided.
We now focus our attention on solutions that do offer sufficient pri-

vacy guarantees for the user. Table 6.2 compares these schemes with
our scheme and the crl scheme. A digital accumulator is a constant-
sized representation of a set of values. Every value in the accumula-
tor comes with a witness, which enables efficient membership checks.
Camenisch and Lysyanskaya [37] proposed an updatable accumulator
that can be used for revocation. A credential is unrevoked as long as

6.8 related work 165

it appears on the whitelist, represented by the accumulator. Another
approach is to accumulate revoked credentials to create a blacklist. A
credential is unrevoked if it is not on this blacklist [104, 128].
Accumulators change. For whitelists, this is after an addition; for

blacklists, this is after a revocation. Thus users need to receive updates
(for schemes such as Camenisch et al. [33], these updates are public and
can be provided by the verifier) and process them, inducing extra load
on carriers such as smart cards. Additionally, the (non-)membership
proofs are expensive. Lapon et al. [100] show an overhead of 300% in
the showing protocol. Other schemes, such as Libert et al. [105] are
equally inefficient, making them impractical.
Where accumulators place the load on users—who need to get new

witnesses after revocations or additions—and the revocation authority—
who needs to create those witnesses—verifier-local revocation (vlr) [9,
24, 28] places the majority of the load at the verifier. As we saw in Sec-
tion 6.1, the verifier needs to do a check that is linear in the length of the
revocation list, however, apart from sending the extra revocation token,
the extra work for the user is minimal.
A downside of traditional vlr schemes is that once a user is revoked,

all of its transactions (also past ones) become linkable. Nakanishi and
Funabiki [124] proposed a vlr scheme that is backward unlinkable, such
as our scheme. Similar to our scheme, they create different revocation
tokens per epoch, so that verifiers cannot use the revocation token for
the current epoch and apply it to earlier ones. However, their scheme
is still linear in the number of revoked users, and needs to perform a
pairing operation per revoked user. This makes it less efficient than
previous solutions as well as our solution. The security of their scheme
hinges on the fact that the per-epoch revocation tokens are maintained
by a trusted party. It thus requires the same trusted party as our scheme.
Direct anonymous attestation (daa) [27, 28] uses the same technique

as Boneh and Shacham’s vlr scheme to revoke tags—that is, the user (or
tag in the daa terminology) creates a tuple (h, hskU) for a random gener-
ator hwhere skU is the user’s private key. A rogue user’s tuples can then
be recognized because her private key skU is known, see Section 6.1. In
daa this same mechanism is also used to derive domain-specific pseu-
donyms. To do so, the user creates the generator h as the hash of the
verifier’s basename. We generalize this by creating a generator not only
based on the verifier’s identity, but also on the current epoch. Choosing
generators in this fashion drastically limits the linkability that a user
would otherwise incur, also see above.
Blacklistable anonymous credentials (blac) [159] take a different ap-

proach to revocation: misbehaving users can be blacklisted without re-
quiring a trusted third party (ttp) to provide a revocation token. In every

166 fast revocation of attribute-based credentials

transaction, the user provides a ticket, similar to our revocation token,
that is bound to the user. To blacklist a user, the verifier places this
ticket on the blacklist. In the second step of the authentication, the user
proves that her ticket is not on the blacklist. The complexity of this proof
is linear in the number of items on the blacklist, so this scheme places a
high load on the user. Even if a user’s credential is revoked, the verifier
does not learn her identity, nor can the verifier trace her.
Finally, the faust [107] and unlinkable serial transactions [157] sys-

tems suggest another method to prevent users from becoming linkable
when a user uses her credential more than once per epoch at the same
verifier. To do so, after the first showing of her unrevoked credential
at a verifier in an epoch, the verifier blindly issues a token to the user.
The next time the user contacts this verifier within the same epoch, the
user uses this token to prove that she was not revoked in this epoch.
(If tokens are one-time use, the verifier issues a new token after every
use of a credential.) This approach only leaks that the user authenti-
cated before. However, because of its construction, credentials cannot
be revoked during the epoch once they have been used once.

6.9 discussion and conclusion

Our revocation scheme is fast. It can be combined with abc showing
protocols and can be fully implemented on a smart card. It incurs min-
imal overhead, while at the same time the revocation check can be per-
formed efficiently by the verifier. We created a security model for our
scheme and proved that our scheme is forward secure as long as the re-
vocation authority is trusted. We showed that we can remove this trust
assumption when the users calculate the revocation tokens themselves.
Finally, we showed that by using multiple generators we can even limit
the linkability within an epoch.
To obtain this speedup, we traded some traceability, but with an ap-

propriate choice of epoch length this should not be a problem in practice.
The fact that this enables us to create a revocation system that is truly
practical makes this a worthwhile trade-off.
We believe our scheme is a valuable contribution to making large

scale attribute-based credentials possible. It would be interesting to in-
vestigate protocols that further reduce the trust assumption on the re-
vocation authority.

7
SUBL INEAR SCAL ING FOR PRIVATE
INFORMATION RETRIEVAL

Private information retrieval (pir) was introduced in the seminal work
of Chor et al. in 1995 [47]. In pir, a client wishes to retrieve information
from online database servers while revealing to the database operators
no information about what data she seeks. That this is even possible is
counterintuitive, but consider the trivial download scheme: the database
server sends the entirety of the database to the client, who searches it
herself. This is clearly private, but comes at a high communication
cost for large databases. Non-trivial pir schemes aim to achieve the
same level of privacy while transmitting far less data. The simplest pir
schemes assume that the database consists of an array of equal-sized
blocks, and that the client knows the index of the block she wishes to
retrieve. However, previous work showed that this simple query mech-
anism can be used as a black box to realize more expressive database
search functionality, including search by keywords [46] and private sql
queries [132].
Chor et al.’s original 1995 work showed that one cannot have both

information-theoretic privacy (i.e., privacy even when the server is com-
putationally unbounded) and a sublinear (in the size of the database)
communication cost if only one server is used. Information-theoretic
pir (it-pir) schemes, however, circumvent this impossibility result by
using multiple database servers and a noncollusion assumption—that at
most a bounded number of servers (less than the total number) will
collude against the client. They achieve a communication cost much
smaller than the size of the database, and modern ones additionally
achieve robustness—even if some of the servers are unresponsive, buggy,
or actively malicious, the client can nonetheless retrieve her informa-
tion (and identify the misbehaving servers) [12, 57, 72].
If information-theoretic privacy is not required, computational pir

(cpir) schemes can be used. These schemes rely on computational
or cryptographic assumptions to guarantee privacy against a single
database server at low communication cost [98]. Devet and Gold-
berg [56] also recently proposed a hybrid pir scheme that combines
a cpir scheme with an it-pir scheme to achieve some of the desirable
properties of both (in particular, fast computation and lower commu-
nication costs), while hedging against violations of either the computa-
tional or noncollusion assumptions.

167

168 sublinear scaling for private information retrieval

While much effort has gone into reducing the communication costs
of pir protocols, it is also important to consider the computational cost.
A pir server typically must process the entirety (or at least a significant
fraction) of the database when handling each query, lest it learn infor-
mation about what the client is likely not seeking.
Not all pir schemes can beat the trivial download approach. Sion

and Carbunar [149] found that it would always be faster to simply down-
load the entire database than to use Kushilevitz and Ostrovsky’s cpir
scheme [98]. Later, Olumofin and Goldberg [133] noted that a more
modern cpir scheme by Aguilar-Melchor and Gaborit [5], as well as a
number of it-pir schemes, are orders of magnitude faster than the triv-
ial download scheme. However, the computation costs are still nontriv-
ial, requiring on the order of 1 s of cpu time1 per gigabyte of database
size, for each it-pir query. Recent improvements by Aguilar-Melchor
et al. [4] show that cpir using lattice-based schemes is, in fact, practi-
cal. The performance of their xpir scheme comes within one order of
magnitude of modern it-pir schemes.
In order to reduce the per-query cpu cost, a number of authors have

proposed batch techniques, in which a pir server performs a compu-
tation over the database and a batch of simultaneous queries, result-
ing in less work than computing over the database once for each query
separately. Henry et al. [81] propose a batching method based on ramp
schemes particular toGoldberg’s it-pir scheme [72], while Ishai et al. [88]
use batch codes (discussed in more detail below) to provide multi-query
computational speedups for any pir scheme.
Both of these proposals, however, require that the clients construct

their queries in a special way to achieve the batching speedups. This
means that these approaches help only in those scenarios where sin-
gle clients (or closely cooperating groups of clients) are fetching large
batches of queries at the same time.

our contributions. In this work, we address the more general
case in which a pir server wishes to process a batch of queries simulta-
neously, whether they were received all from the same client, each query
from a unique client, or anything in between. We approach this prob-
lem by first observing a mathematical relationship between Ishai et al.’s
method of applying batch codes to speed up it-pir and a special case of
matrix multiplication where the left matrix has a specific structure, see
Section 7.2. We then generalize this observation to the case of general
matrix multiplication. In doing so, we remove all restrictions on the
structure of the queries to be batched. We accept a more modest batch-

1 However, this cpu time is almost completely parallelizable if multiple cores or servers are
available.

7.1 background 169

ing speedup to remove the single (or coordinated) client restriction and
to remove the potentially large amount of communication induced by
Ishai et al.’s method.
We apply our new technique to the setting of Certificate Trans-

parency, see Section 7.3, in which web clients fetch information about
tls certificates from log servers, but should hide from the log servers
which certificate’s information it fetches. This appears to be a perfect
opportunity to employ pir, but the large number of non-cooperating
clients expected to use the system makes multi-client batching impera-
tive. We note that while batching queries reduces the total computation
time at the cost of increasing the latency for individual queries, this
extra latency is not an issue in this particular application. We imple-
mented our new technique on top of the open-source Percy++ pir
library [73]. In Section 7.4 we measure its performance.
While our practical improvements—a little more than a 4-fold speed-

up—are modest, we do offer sublinear scaling in the number of queries
for independent clients, something simpler improvements cannot offer.
Additionally, any other system-level optimizations can easily be used on
top of our algorithmic ones.

7.1 background

Our construction combines Goldberg’s robust it-pir scheme [72] with
fast matrix multiplication techniques inspired by batch codes. There-
fore, we first review and compare these notions.

7.1.1 Goldberg’s robust it-pir scheme

Goldberg models the database as an r × s matrix D over a finite field
F. Every row in D corresponds to a single block in the database (recall
that users are interested in retrieving such a block); every block consists
of s field elements. To request block i (non-privately) the client could
simply send i to the server. However, as a first step, we express the
pir operation as a vector-matrix multiplication before producing a true
privacy-friendly scheme. The client constructs the ith standard basis
vector ei of Fr (i.e., the vector of length r with all zeros except for a 1 in
the ith position) and sends it to the server. The requested block i is then
obtained by calculating the vector-matrix product ei ·D.
To make the query privacy friendly, the client in Goldberg’s scheme

creates a k-out-of-n Shamir secret sharing [146] of this standard basis
vector ei. It sends one share to each of the n database servers, which
compute the vector-matrix product with the database and return the re-
sult. Lagrange interpolation of the shared vectors gives the standard ba-

170 sublinear scaling for private information retrieval

sis vector; since matrix multiplication and Lagrange interpolation are
linear, interpolation of the results yields the ith block of the database.
The secret sharing scheme guarantees that as long as at most k − 1
servers collude, they learn nothing about the target block.
Goldberg’s scheme is robust [57, 72]. It permits some of the servers

to misbehave, while still enabling the client to recover her record and
identify the misbehavers.

communication cost. To read a single block, the client sends r
field elements to, and receives s field elements from, each server. For a
fixed database size of ν field elements, it is best to select r = s =

√
ν.

Henry et al. [81] show how to build on this simple fixed-block-size pir
primitive to handle more realistic databases with variable-sized records.

serving multiple simultaneous queries. Suppose a server
receives multiple queries v1, . . . , vq simultaneously. It could answer
them by computing the q vector-matrix products vi · D individually.
However, it can also first group the queries into one matrix Q where
row i consists of query vi. Then the server computes the matrix-matrix
product Q ·D. Row i of the result is the response to the ith query.
With a naive matrix multiplication algorithm the work the server

needs to do is the same in both cases: about 2qrs operations (qrs mul-
tiplications, and about the same number of additions). However, as we
will see, using better matrix-multiplication techniques will significantly
improve the situation.

ramp scheme. Henry et al. [81] replace the Shamir secret sharing in
Goldberg’s pir scheme with a ramp scheme. In this way, a single client
can encode more information in each server request, and can retrieve
q blocks instead of just 1 without increasing the per-server computation
or communication cost at all. The large drawback to this scheme (in
addition to being useful only for single clients makingmultiple queries,
and not for multiple clients making single queries) is that it must trade
some of the robustness of Goldberg’s scheme for extra parallel queries,
or conversely, that it requires q − 1 extra servers in order to maintain
the same level of robustness.

7.1.2 Batch codes

Batch codes can be used to answermultiple queries efficiently. The idea,
proposed by Ishai et al. [88], is to encode the database in a special way,
so that a single client can efficiently make multiple queries. This idea
is best illustrated using an example. As in the rest of this chapter, we

7.1 background 171

apply the batch codes to Goldberg’s it-pir scheme.
Suppose we want to prepare a database with r rows for two simulta-

neous queries. We create three separate databases: D1, containing the
first r/2 rows; D2, containing the last r/2 rows; and D3 = D1 ⊕D2.
Any two queries, say for blocks i1 and i2, can be answered by making at
most one pir query to each of the Di: if blocks i1 and i2 are not in the
same half of the database, the queries can be answered by making one
pir query to D1 and one to D2. Suppose, on the other hand, that i1 and
i2 are both in the first half. Then block i1 can be retrieved directly, while
block i2 is obtained by making one query to D2 and one to D3. Taking
the xor of the latter two results yields the desired row in the first half.
Two queries for the second half are handled similarly.
This procedure reduces the computational cost for the server. As we

saw in the previous section, a naive method requires 4rs field opera-
tions; in contrast, the batch code solution requires only 3rs field opera-
tions. (Again, half multiplications and half additions.)
Note that to hide which indices the client is querying she needs to

make a query to each of the three parts, even if two would suffice to
get the answer. This means that the client sends 3

2 r elements to, and
receives 3s elements from, each server. In the naive case she sends 2r
elements and receives only 2s elements.
In general, an (r, N, q, m) batch code will take a database of r blocks

and create m subdatabases, such that the total number of blocks in the
subdatabases is N. The code can be used to answer q queries bymaking
one request to each of the m subdatabases. The example we sketched
before gives an (r, 3

2 r, 2, 3) batch code.
Suppose we use an (r, N, q, m) batch code to speed up pir queries to

a database with r blocks, each consisting of s field elements. Let N1, . . . ,
Nm be the number of blocks in the m subdatabases (so that ∑i Ni = N).
To make q queries, a client needs to make one pir query to each of
the m subdatabases with respectively N1, . . . , Nm blocks. The query to
subdatabase i costs 2Nis field operations. Therefore the total computa-
tional load on the server is 2Ns. The client sends N group elements,
and receives ms elements.

Subcube batch code

Ishai et al. [88] generalize the sketch above as follows. First, instead of
splitting the database into 2 parts, it can be split into ℓ parts. A final
ℓ + 1th part is added, being the xor of all the previous parts. Again,
any two items can be obtained using ℓ+ 1 queries, one to each of the
subdatabases—if the two items happen to be in the same part it is nec-
essary to retrieve and calculate the xor of all the other items. This
gives rise to an (r, ℓ+1

ℓ r, 2, ℓ + 1) batch code. Obviously, this is good

172 sublinear scaling for private information retrieval

Table 7.1: Summary of batch codes with parameters [88]. The subcube code is
parametrized by t and ℓ ≥ 2, while the subset code is parametrized by
ℓ, r′ and 0 < α < 1

2 , where w = αℓ. The parameters r and r′ scale
the codes to support more blocks, without essentially changing their
structure.

Subcube Subset

Number of blocks (r) r r′(ℓw)

Sum of subdatabase sizes (N)
(
ℓ+1
ℓ

)t
r r′ ∑w

j=0 (
ℓ
j)

Number of queries (q) 2t ≥ 2w

Number of subdatabases (m) (ℓ+ 1)t ∑w
j=0 (

ℓ
j)

for computation, as the server needs to do only 2 ℓ+1
ℓ rs field operations.

While the sending cost drops to ℓ+1
ℓ r elements, the receiving cost rises

to (ℓ+ 1)s elements. (Note that the client always needs to retrieve the
ℓ+ 1 records to protect her privacy.)
For simplicity, let us return to the case where ℓ = 2. The scheme

can be applied recursively to answer more queries. Suppose the client
makes q = 4 queries. Group these into two pairs. Each pair can be an-
swered by making only one query to each of the three parts D1, D2, D3.
In total, two queries are made to each Di, so we can apply the above
scheme again, but now on the smaller databases.
Recursively applying this scheme gives a system that can handle

q = 2t queries. Table 7.1 summarizes the important parameters of this
scheme. By taking ℓ large, this scheme gets arbitrarily close to the opti-
mal processing time for the server: it can answer 2t queries with only
slightly more processing than is required for a single query. However,
the price is a higher communication cost for the client.

The subset batch code

Ishai et al. also describe another batch code that has more favourable
properties: the subset batch code. It is, however, also more complex.
We only summarize the results in Table 7.1, and refer to their paper [88]
for a full description of this scheme. The scheme is parametrized by ℓ,
r′, and 0 < α < 1

2 . The value w is then given by αℓ.
It can be shown that, for this code, doing q queries is approximately

(1 − α)/(1 − 2α) times more expensive than doing a single query.
Thus, picking a small α brings the computational overhead for the
server arbitrarily close to optimal. Contrary to the subcube codes the
communication overhead is also polynomial in q, however, in practice
the overhead turns out to be rather high, especially when α is small.

7.1 background 173

Table 7.2: Comparison of multi-query pir schemes: the naive scheme, the ramp
scheme [81], subcube batch codes (sbc) [88], and our work. We show
counts of per-server field operations, as well as the number of field
elements sent to and received from each server, the number of extra
servers the scheme requires to maintain the same robustness level as
for a single query, and an indication of whether independent clients
can use the method, or whether all queries must be sent by a single
client (or coordinated clients). The database consists of r blocks, each
containing s field elements. The number of simultaneous queries, q, is
assumed to be a power of 2, and much smaller than either r or s. Note
that our work achieves sublinear scaling of computation in the number
of queries q, while also admitting independent clients.

Naive Ramp sbc Our work

Fmult. qrs rs qlg((ℓ+1)/ℓ)rs q0.80735rs

F additions q(r− 1)s (r− 1)s (ℓ2−1)
ℓ qlg((ℓ+1)/ℓ)rs 8

3 q0.80735rs

Send qr r qlg((ℓ+1)/ℓ)r qr

Receive qs s qlg(ℓ+1)s qs

Extra servers 0 q− 1 0 0

Indep. clients ✓ × × ✓

Consider the following example. We want α to be somewhat small,
so we take ℓ = 20 so that with α = 0.2 we get w = 4. Suppose we
make q = 16 queries, Then, N/r = 1.279 so the computation cost
for 16 queries is only 27.9% more than for 1 query. However, we need
to receive m/q = 387 times more data than the naive approach for
q = 16 queries. So, using this code at low computational cost can incur
extremely high communication costs.

Challenges

The two main drawbacks of using batch codes for pir are: (1) the re-
quirement that all of the queries be generated by a single client (or by
closely cooperating clients); and (2) the increased communication cost,
which becomes especially prohibitive for large databases.
We will address both of these issues in this chapter. See Table 7.2

for a comparison of multi-query pir schemes. Although we only list
the subcube batch code and not the subset batch code in the table for
conciseness, the two salient challenges listed above are the same for
both types.

174 sublinear scaling for private information retrieval

7.1.3 Matrix multiplication algorithms

Naivematrixmultiplication of amatrixQ of size q× rwith a databaseD
of size r× s requires qrs multiplications and at least q(r− 1)s additions
(although most implementations will actually use qrs additions). For
two square matrices of size ν× ν the complexity is O(ν3).
Faster matrix multiplication algorithms exist that have an asymptotic

complexity with a better exponent. In this chapter we focus on Stras-
sen’s algorithm [156] because of its relative simplicity. This algorithm
achieves a time complexity of O(νlg 7) = O(ν2.8074). Faster algorithms
exist, such as that of Coppersmith andWinograd [51], which achieves an
even better bound of O(ν2.3729). However, this comes at the cost of a
much larger multiplicative constant.
Strassen’s algorithm is extremely simple. It splits each matrix into

four, equal-sized submatrices. A naive block-matrix multiplication of
these would require 8 multiplications of the smaller sized matrices.
However, using Strassen’s algorithm, only 7 are needed. This tech-
nique is then applied recursively to the multiplications of the smaller
matrices.

Strassen’s algorithm in detail

Strassen’s algorithm is best explained by looking at matrix multiplica-
tion from a block-matrix perspective. For simplicity, assume that all
matrices have size ν× ν where ν is even. If

Q =

(
Q11 Q12
Q21 Q22

)
and D =

(
D11 D12
D21 D22

)
,

then the matrix product R = Q ·D is given by

R =

(
R11 R12
R21 R22

)
,

where

R11 = Q11 ·D11 + Q12 ·D21

R12 = Q11 ·D12 + Q12 ·D22

R21 = Q21 ·D11 + Q22 ·D21

R22 = Q21 ·D12 + Q22 ·D22.

It thus reduces to 8 matrix multiplications of size ν/2. In Strassen’s
algorithm the following 7 matrix products are calculated first (note that

7.2 batch codes as matrix multiplication 175

in fields of characteristic 2, the + and − operations are the same):

M1 = (Q11 + Q22) · (D11 + D22)

M2 = (Q21 + Q22) ·D11

M3 = Q11 · (D12 −D22)

M4 = Q22 · (D21 −D11)

M5 = (Q11 + Q12) ·D22

M6 = (Q21 −Q11) · (D11 + D12)

M7 = (Q12 −Q22) · (D21 + D22).

The matrix product is then given by:

R11 = M1 + M4 −M5 + M7

R12 = M3 + M5

R21 = M2 + M4

R22 = M1 −M2 + M3 + M6.

Using this algorithm, only 7 matrix multiplications of size ν/2 are nec-
essary. Applying this trick recursively gives a complexity of O(νlg 7).

7.2 batch codes as matrix multiplication

We have seen that answering multiple pir queries in Goldberg’s proto-
col requires calculating the matrix-matrix product Q ·D, as the rows of
the resulting product are exactly the responses to the given queries. At
the same time, batch codes speed up this computation. Hence, batch
codes are in some way implementing fast matrix multiplication. In this
sectionwe identify this relation, explain the limitations of batch codes in
this application, and demonstrate the similarities with Strassen’s algo-
rithm. For simplicity of exposition (and because this is the typical case
in practice), we assume a field F of characteristic 2, so that additions are
just xors.

7.2.1 An example

In Section 7.1.2 we showed how a batch code can be used to reduce two
queries for the full database to three half-sized queries. In terms of ma-
trix multiplication, the client constructs its three half-sized queries
q1, q2, q3 and sends them to the server. The server expresses the

176 sublinear scaling for private information retrieval

database D as a concatenation of two parts, D =

(
D1
D2

)
, and con-

structs the matrices

Q =

 q1 0 0
0 q2 0
0 0 q3

3× 3

2 r

and M =

 I 0
0 I
I I

3
2 r×r

,

so that

M ·D =

 D1
D2

D1 ⊕D2

3
2 r×s

,

where Q is the block-diagonal matrix of the queries, I is the identity ma-
trix, and M is the matrix form of the batch code (representing the lin-
ear combinations of the parts that make up the resulting subdatabases).
(Note that we annotate the matrices with their dimensions.) The server
now computes the linear combinations of the parts, M ·D, and multi-
plies queries Q by them. This results in the familiar response structure

Q
3× 3

2 r
·M 3

2 r×r
·Dr×s = Q

3× 3
2 r
·

 D1
D2

D1 ⊕D2

3
2 r×s

=

 q1 ·D1
q2 ·D2

q3 · (D1 ⊕D2)

3×s

.

After receiving the results, the client combines the three rows as appro-
priate to recover the answers to her two original queries.

7.2.2 General batch codes as matrix multiplication

When using general batch codes to speed up pir we see a similar struc-
ture. Recall that an (r, N, q, m) batch code can answer q queries to a
database of r rows by splitting the computation across m subdatabases
K1, . . . , Km containing a total of N rows. In the preceding example—an
(r, 3

2 r, 2, 3) batch code—these subdatabases were K1 = D1, K2 = D2
and K3 = D1 ⊕D2. For general batch codes these subdatabases will
be more complicated linear combinations of the parts Di. The N × r
matrix M represents these linear combinations.
Again, the client first uses the batch code to convert her q queries into

m subqueries q1, . . . , qm, where each qi is a row vector of length equal
to the number of rows in Ki. She sends these to the server. The server
constructs the linear combinations of the parts, M ·D, and applies the

7.2 batch codes as matrix multiplication 177

queries to them

Qm×N · (MN×r ·Dr×s) =

 q1 0
. . .

0 qm

m×N

· (MN×r ·Dr×s) .

The server can quickly compute this product using the block-diagonal
structure of Q. The result is an m-row response. The client can com-
bine those m rows to produce her desired q blocks.
Note that it is the special structure of Q = Q ·M that enables the

server to speed up the matrix multiplication Q ·D. In the pir setting,
this necessitates thatQ be produced by a single client, or by cooperating
clients.

7.2.3 Comparison with Strassen’s algorithm

Strassen’s algorithm is similar to the matrix multiplication form of the
batch codes above. In particular it also

1. partitions the database into parts Di,

2. forms linear combinations of the parts Di to construct the sub-
databases Ki,

3. multiplies parts of the queries with the subdatabases, and

4. computes linear combinations of the products to produce the fi-
nal result.

However, there are also differences. First, batch codes require the
queries to be preprocessed by the client, or alternatively that the query
matrix Q is given by Q ·M as above. Strassen’s algorithm, on the other
hand, works with anymatrixQ. Second, batch codes are essentially one-
dimensional; as a result, steps 1, 2 and 3 above for batch codes operate
only on complete rows, while Strassen’s algorithm subdivides and takes
linear combinations of rows in addition to taking subsets of rows (in both
Q and D).
While Strassen’s algorithm has a higher server computational cost

than batch codes, the fact that Strassen’s algorithm can deal with any
matrix Q is of tremendous benefit. In our pir setting, this means that
clients do not need to coordinate their queries. Indeed, they do not need
to be aware that the server is implementing this optimization at all.

178 sublinear scaling for private information retrieval

7.3 application: certificate transparency

We now examine an application where multi-client pir is particularly
useful: Certificate Transparency.2 Websites use digital certificates to
tie possession of a particular private key to their domain name. These
certificates are signed by certificate authority (ca). To verify the validity
of a website the user’s browser checks that a ca it trusts signed the cer-
tificate (or that there is a certificate chain from a trusted ca leading to
the certificate). Events in recent years, such as the hack of the Dutch
ca DigiNotar [65], have shown that cas cannot be trusted uncondition-
ally. When a ca is compromised it can be used to issue false certificates
that allow third parties to eavesdrop on the communication between
a user and a website. The browser will not detect this as long as the
compromised ca is still trusted. Certificate Transparency, as described
in rfc 6962 [101], aims to detect wrongly issued certificates in a timely
manner without introducing extra trust assumptions. It roughly works
as follows.

1. Before a certificate is issued it is recorded by one or more log
servers. Each of these log servers creates a signed certificate times-
tamp (sct) for this certificate andwill eventually add the certificate
to an append-only data structure.

2. When presenting a certificate the website will also send along the
scts from the log servers. The browser will verify that at least one
trusted log server signed the certificate description.

3. The following consistency checks are done asynchronously by
monitors, who check the logs for suspicious certificates, and
auditors, who ensure the validity of the logs.

a) An auditor, usually the browser, will check that the log server
signed certificates do indeed appear in the append-only log
of the log server.

b) Auditors and monitors check that the logs are consistent;
i.e., that no certificates have been changed or retroactively
inserted into the log.

c) Monitors, usually cas and webservers, monitor the log to
detect inconsistencies such as two certificates, by different
cas, for the same domain.

2 Incidentally, as Goldberg and Devet explain [56], pir is also very useful to make regular
checking of revocation status of (traditional) certificates using certificate revocation lists
(crls) privacy friendly.

7.3 application: certificate transparency 179

f

c

a

c0 c1

b

c2 c3

e

d

c4 c5

c6

Figure 7.1: An example Merkle hash tree for 7 certificates c0, . . . , c6 encoded into
the leaves. For certificate c3 the proof of inclusion consists of all the
dotted nodes: c2, a and e. This proof can be checked as follows. First,
calculate the hash of the certificate to get c3. Then, b is the hash of c2
and c3; c is the hash of a and b; and, finally, f is the hash of c and e. If
the calculated root f matches the signed root the auditor is convinced
that the tree contains c3.

It is essential that the first consistency check is done, because monitors
can only detect falsely issued certificates when they appear in the log.
However, the first check also reveals to the log server which websites the
user is visiting. We will use multi-client pir to allowmany independent
clients to query a log server for the proofs of inclusion of certificates.

7.3.1 Proving that a certificate is included in the log

The certificates are recorded in aMerkle hash tree. AMerkle hash tree is
a binary tree, in which every leaf contains the hash of a certificate, while
every internal node contains the hash of its children. The root then
captures information about all the children. Periodically, log servers
add all the newly logged certificates to the tree and sign the new root.
The number of leaves, ν, determines the structure of theMerkle hash

tree. Let t be the largest power of 2 smaller than ν, so that t < ν ≤ 2t.
Then the left subtree of theMerkle hash tree of ν nodes is the full binary
tree with t leaves, while the right subtree is the Merkle hash tree of the
remaining ν− t nodes. See Figure 7.1 for an example.
This format allows log servers to construct a proof of inclusion of a

certificate for an auditor. The auditor already has the certificate, and
thus also the leaf corresponding to the certificate (the leaf contains the
hash of the certificate). The log server gives the auditor those node
hashes needed to recalculate the root of the tree starting with the cer-
tificate. The extra nodes needed for this proof are all the siblings on
the path from the leaf to the root; see Figure 7.1. Finally, the auditor
compares the calculated root with the signed root from the server.

180 sublinear scaling for private information retrieval

The length of the proof is no larger than the height of the tree. There-
fore, the size of the proof grows only logarithmically in the number of
leaves. The specification requires sha256 as the hash function for the
internal nodes, so a node contains 32 bytes of data.

7.3.2 The number of web certificates

To determine the feasibility of retrieving the proofs of inclusion using
pir, we need to estimate the number of active and valid tls certificates—
it does not make much sense to retrieve proofs for expired certificates.
We estimate the number of tls certificates based on the following
sources.

eff ssl observatory The eff ssl observatory3 observed about 1.4
million valid certificates in 2010.

public netcraft data In their public sample ofMay 2013,4 Netcraft
claimed that Symantec at that time had produced more than one
third of all certificates. In their April, 2012 press release5 Syman-
tec quotes 811, 511 installed certificates. This gives an estimate
of approximately 2.4 million certificates in 2012.

pilot ct server As of early July 2014, Google’s pilot certificate trans-
parency server had logged about 4.5 million certificates.6 It is not
clear how reliable this number is, since at that time there was no
incentive to add all certificates to this list. Also, the log is append-
only, so this number is probably higher than it should be.

ct observatory At the end of 2016, the ct observatory7 run by the
University of Bonn reports to have seen about 4.1 million cur-
rently valid certificates (out of a total of 19.4 million).

Given these data points, we estimate that the number of valid tls cer-
tificates is currently around 222 or approximately 4 million.

7.3.3 Retrieving proofs of inclusion using pir

Tomake privacy-friendly retrieval of the proofs of inclusion possible, we
store the proofs as records in a database and use pir to retrieve them.

3 https://www.eff.org/observatory
4 https://www.netcraft.com/internet-data-mining/ssl-survey/,
last accessed July 2014. These data have since been replaced by sample data from 2015
(checked on February 17, 2017).

5 https://www.symantec.com/about/newsroom/press-releases/2012/symantec_0419_01
6 Obtained by querying the server’s API: https://ct.googleapis.com/pilot/ct/v1/get-sth
7 https://www.ct-observatory.org/, accessed December 2016

https://www.eff.org/observatory
https://www.netcraft.com/internet-data-mining/ssl-survey/
https://www.symantec.com/about/newsroom/press-releases/2012/symantec_0419_01
https://ct.googleapis.com/pilot/ct/v1/get-sth
https://www.ct-observatory.org/

7.3 application: certificate transparency 181

To retrieve the proof, the client needs to know in which record the proof
is stored. In the original system, the proof is usually retrieved from the
log server by using the hash of the certificate itself, but that would vi-
olate our privacy requirements. Instead, we propose that webservers
provide the record indices of the certificates for which the server pro-
vides the scts to the clients (it is not possible to include these in the
x.509 certificate as the index is not yet known when the certificate is
created). Alternatively, an index structure such as a B+ tree could be
used in the typical way that pir lookups by keywords are done [46, 132].
To check a proof, the auditor needs three things: the certificate itself,

the list of sibling hashes, and the signed root. We assume that the au-
ditor has already retrieved the certificate in question. The signed root
can be directly retrieved as it does not give any information about the
specific certificate. Therefore, the proofs that are stored in the database
consist solely of the hashes that help in reconstructing the signed root.
We will next consider how these proofs are stored in the database.

Storing proofs in the pir database

We first count the number of proofs that need to be stored. The log
is append-only, and therefore keeps growing. However, expired certifi-
cates can safely be removed from the database of proofs. Regular clients
will not query for expired certificates, so a fallback to identifying meth-
ods is not a problem. Thus, we assume that the database only contains
proofs for valid certificates. We estimated this to be about 222 proofs.
In the following we consider a tree containing 2ℓ−1 < ν ≤ 2ℓ items.

The length of the inclusion proofs in such a Merkle tree is at most ℓ
hashes. However, it can be less; for example, the inclusion proof of
c6 in Figure 7.1 consists only of the nodes d and c. For simplicity, we
allocate the full ℓ hashes for every proof in the database, resulting in
proofs of 32ℓ bytes.
Goldberg’s pir scheme is most efficient when the number of blocks

equals the number of field elements per block [81]. It thus makes sense
to bundle multiple proofs into a single block (as the number of proofs
is exponential in ℓ, while the length of a proof is only linear in ℓ). The
location of a proof is then given by its block, and its index within the
block (the size of the tree fixes the length of the proofs). When this
location is provided by the webserver it should remain fixed while the
certificate is valid.
Given the size of a proof and the estimated number of valid tls cer-

tificates we get a storage requirement of 32 · 22 · 222 ≈ 0.7 · 232 bytes,
or about 3GiB. Therefore, in the following section, we evaluate our al-
gorithm on databases of sizes 1–4GiB.
We also note that, if the client is willing to reveal a subset of the

182 sublinear scaling for private information retrieval

database that contains the certificate she seeks, she can reduce the
server’s computational load at the cost of revealing some information
about her query [134]. While trivially downloading the entire subset
is one approach, pir offers a lower communication cost—only about
one block of information is sent to and from each pir server—without
leaking information about which certificate within the entire subset the
client is querying for.

7.4 implementation and evaluation

We implemented fast matrix multiplication using Strassen’s algorithm
as an extension to the Percy++ open-source pir library [73]. We imple-
mented Strassen for the small fields GF(28) and GF(216)—the finite
fields with 28 and 216 elements respectively—as well as the integers
modulo p. All measurements were taken in Ubuntu 12.04.4 lts run-
ning on a machine with eight Intel(R) Xeon(R) E7-8870 cpus, but each
pir server, which used only one core, was assigned to a different cpu.

7.4.1 Implementation

Strassen’s algorithm works perfectly when multiplying matrices where
all the dimensions are powers of two. In the pir setting, however, this
need not hold. Whenever one ormore of the threematrix dimensions (q,
r, or s) is odd, we split off the single excess row(s) and/or column(s) and
use the naive matrix multiplication algorithm for those products. The
resulting dimensions are all even, so that we can do another Strassen
recursive step.
Dealing with dimensions that are non-powers of two can be costly.

For example, a dimension of 2ℓ− 1 will incur extra calculations at every
step, resulting in a larger computation time than if the dimension were
2ℓ instead. Hence, our algorithm is designed to dynamically increase
the number of queries (by inserting a dummy all-zeroes query) if this
yields better performance.
Every recursion step yields a small overhead. Part of this is mitigated

by not allocating memory every time, but at small sizes the overhead
still trumps the gain possible. We have analyzed when this happens;
see Figure 7.2 for an example. We then tuned our implementation to
stop recursing at the optimal depth.

7.4.2 Experiments

For q less than about 165, the number of additions in Strassen’s algo-
rithm is slightly larger than for the naive algorithm due to the multi-

7.4 implementation and evaluation 183

0 1 2 3 4 5 6 7
0

0.5

1

1.5

Strassen level

N
or
m
al
iz
ed

cp
u
tim

e
pe
r
qu
er
y
(s
/G
iB
)

q = 64
q = 128

Figure 7.2: Normalized cpu time per query (seconds per GiB of database size) for
a 1GiB database consisting of 32768 32768-byte records over GF(28).
We plot different Strassen levels (i.e., depth of recursion in the Stras-
sen algorithm) and two numbers of queries, 64 and 128. Consider
the q = 64 case. After 6 Strassen steps, the problem size has been re-
duced to a 1× 512 matrix times a 512× 512 matrix, and the algorithm
bottoms out. In both cases it is better to skip this final reduction step.
Error bars are shown, but most are small, and may be difficult to see.

plicative constant of 8⁄3 (see Table 7.2). However, as explained above,
every recursive Strassen step reduces the number of multiplications by
a factor of 7⁄8 or 12.5%, starting with the very first. The small fields and
the integers modulo p have in common that multiplication is a lot more
expensive than addition; therefore, we expect that even one or two re-
cursive steps of Strassen’s algorithm would have a measurable effect
on the performance, and the measurements in Figure 7.2 bear this out.
The initial dimensions of the problem dictate howmany recursive steps
of Strassen’s algorithm can be applied, as each dimension is cut in half
at each step. In practice, we expect that it is the number of queries that
is the limiting factor (that is, q will be much smaller than either r or s),
so that is what we focus on.
Figure 7.3 compares the performance of our new algorithm with the

one in the 0.9.0 release of Percy++. All measurements are done over
GF(28), as that is the most efficient field supported by Percy++. We
notice that Percy++ slows down considerably when more queries are
used (we suspect cache issues may be to blame for this, but it was a
completely repeatable effect). Our scheme does not suffer from this
problem, and indeed produces the desired decrease in per-query cost as

184 sublinear scaling for private information retrieval

20 21 22 23 24 25 26 27 28
0

0.5

1

1.5

2

Number of queries (q)

N
or
m
al
iz
ed

cp
u
tim

e
pe
r
qu
er
y
(s
/G
iB
)

Timings for database of size 32768 × 32768 over GF(28)

Percy++
Our algorithm using Strassen
Analytic Strassen optimum

Figure 7.3: Comparison between the original GF(28) pir implementation in
Percy++ and our new version using Strassen. For the first part of the
graph, the new and original algorithms give the same results, as the
Strassen code is not invoked for small problem sizes. We can also eas-
ily see the effect of the hand-optimized loop in Percy++ for handling
q ≤ 3. We also compare our algorithm to the best theoretical improve-
ments that using Strassen’s algorithm can provide, using the fastest
per-query time of the original Percy++ code (q = 3) as a reference
point. Error bars are shown, but most are small, and may be difficult
to see. The peak memory usage of our algorithm (for q = 256) was
1422MiB, whereas Percy++ used 1060MiB.

7.4 implementation and evaluation 185

20 21 22 23 24 25 26 27 28
0

0.5

1

1.5

2

Number of queries (q)

N
or
m
al
iz
ed

cp
u
tim

e
pe
r
qu
er
y
(s
/G
iB
)

Timings for database of size 65536 × 65536 over GF(28)

Percy++
Our algorithm using Strassen
Analytic Strassen optimum

Figure 7.4: We repeat the experiment of Figure 7.3, but with a 4GiB database con-
sisting of 65536 65536-byte records. The peak memory usage of our al-
gorithm (for q = 256) was 5556MiB, whereas Percy++ used 4148MiB.

the number of queries increases. We observe a 4.4-fold performance
improvement over Percy++ for q = 256 simultaneous queries.
We have also drawn the analytical improvements we expect from us-

ing Strassen’s algorithm. Figure 7.3 shows the theoretical bound of
the optimal Strassen gain that would be possible, measured against
the fastest per-query time (obtained at q = 3) measured for the orig-
inal Percy++ code. For example, for 256 queries, this gain would be
(7

8)
8 ≈ 0.344. We see that we are quite close to this value, even though

we always skip the final Strassen step.
For each Strassen recursion step, our algorithm incurs an extra sub-

problem of 1/4 the size, which needs to be stored in memory. The
extra memory consumption as a result of this is at most a factor of
1
4 + (1

4)
2 + · · · = 1

3 . This is confirmed by the memory usage given
in Figures 7.3 and 7.4.

certificate transparency. Figure 7.4 shows performance mea-
sures for a 4GiB database, a size that nicely matches up with a log
server’s database of inclusions proofs. Again we see that using Stras-
sen’s algorithm gives a significant performance gain over just using

186 sublinear scaling for private information retrieval

single queries.
While batching queries results in a significantly lower processing

time per query, the latency does increase. However, this is not a
problem for auditing proofs of inclusion, as they are performed asyn-
chronously. In particular, the goal is to detect misbehaving log servers,
and not to protect users against falsely issued certificates directly. Some
latency is therefore acceptable.
If a lower latency is required, the algorithm can easily be parallelized.

Each of the seven Strassen subproblems is completely independent
from the others, and creating these and recombining the result is very
cheap. While we did not implement parallelization, we expect the
overhead of doing so to be extremely small.

7.5 conclusions

In this chapter we showed how we can significantly speed up pir
queries if we allow the server to batch queries, and answer them si-
multaneously. Such an idea was proposed earlier in the setting of
batch codes, but that proposal required coordination among the clients,
which is not desirable in the pir setting.
We analyzed batch codes in the setting of Goldberg’s pir scheme and

have shown that essentially they provide a fast method for doing ma-
trix multiplication under specific constraints on the matrices. However,
since multi-client pir in Goldberg’s scheme is essentially a matrix mul-
tiplication, we can use our method to obtain sublinear scaling in the
number of queries without requiring the queries to have been created
by a single client or cooperating clients.
We described how multi-client pir can be used to make certificate

transparency more privacy friendly. We implemented Strassen’s algo-
rithm as part of Percy++ and have shown that we indeed manage to get
a significant speedup when batching multi-client queries. While fur-
ther system-level optimizations to Percy++ (which is already heavily op-
timized) might give comparable speedups in absolute terms, these will
almost surely be a constant factor, whereas our algorithmic improve-
ments increasewith the number of simultaneous queries. Furthermore,
any such system-level optimizations are likely to be able to be combined
with our algorithmic improvements to yield compounded benefits.
Our implementation is open source and has been incorporated into

the 1.0 release of Percy++ [74].

8CONCLUSIONS

In the beginning of this thesis we set out to explore whether we could
build new practical systems that offer security and privacy simultane-
ously, without relying on legal and procedural measures. To answer
this question, we reexamined the notion of revocable privacy, and intro-
duced four practical systems that offer security and privacy simultane-
ously.

8.1 overview

Underlying the research question are two comparisons in which privacy
has to yield to other principles that are deemed more important. The
first comparison we questioned is the one of security versus privacy,
and the belief that increasing privacy necessarily reduces security. In
Chapter 3 we reexamined the concept of revocable privacy. In summary,
a system that implements revocable privacy offers full anonymity to all
participants that follow the rules, while it may reduce the anonymity of
those that do not.
In Chapter 3 we highlighted some use cases, in the real as well as

digital world, that could benefit from such an approach, and highlighted
a few existing solutions that already offer revocable privacy. To answer
the first aspect of the research question, we introduced two new systems
in Chapters 4 and 5 that also implemented revocable privacy.
Chapter 4 introduced the vote-to-link system. This system allows

users of an online platform, such as Wikipedia, to act anonymously,
while the system can protect itself against misbehavior from these
anonymous users. To do so, the vote-to-link system enables modera-
tors to vote on malicious actions. If a sufficient number of votes are
combined, all other actions by that same user within a predetermined
time frame can be identified. This linking ensures that the malicious
actions by that user can be distinguished from all the benign actions,
and can therefore be dealt with much more easily.
Chapter 5 introduces a new distributed encryption scheme. This

scheme implements a threshold rule: a user is not allowed to perform
an action at more than k different locations. If she does, her identity
will become known. Whereas users in the vote-to-link system interact
with the system themselves, the distributed encryption scheme is non-
interactive. Users are observed by sensors, that process their identity on

187

188 conclusions

the user’s behalf. Chapter 3 shows that such a non-interactive thresh-
old primitive is particularly suited for real-world applications where the
user’s identity can be derived, and where it would be too costly to in-
teract directly with the user. In particular, we applied it to two license
plate scenarios, showing that it is possible to identify suspicious cars,
without revealing any information about those cars that do not behave
suspiciously.
These three chapters together show that it is indeed possible to build

new systems that offer both security and privacy, and thereby also refute
the general claim that more privacy always comes at the cost of less
security. This brings us to the second aspect of the research question,
and the second comparison underlying it: are these systems practical?
Chapters 4 to 7 show that the systems we developed, and that all of-

fer both security and privacy, are practical. In Chapter 6 we presented
a new revocation scheme for attribute-based credentials that is particu-
larly efficient for both users and verifiers (typical privacy friendly revo-
cation schemes are not efficient enough for at least one of these). To
enable such efficiency, we trade a very small amount of anonymity to
obtain performance that is comparable to traditional non-private revoca-
tion schemes. Similarly, the basic vote-to-link scheme from Chapter 4
is also only a constant factor slower than the naive non-private solution.
The multi-client private information retrieval (pir) scheme from

Chapter 7 allows multiple clients to retrieve records from a database,
without revealing to that database which records they retrieved. Our
new scheme batches queries from many clients to offer an algorithmic
speed-up over the regular scheme. With this speedup, pir is practical
enough to use it to make certificate transparency privacy friendly.
However, even this batched scheme is still considerably less efficient

than the naive non-private scheme. Similarly, the distributed encryp-
tion scheme from Chapter 5 is considerably less efficient than its non-
private counterpart. So, while both schemes are fast enough to be used
in practical situations, using them does incur an efficiency cost.
This cost in efficiency might be an artifact of our current designs.

However, we believe that just as the performance of traditional it-pir is
bounded away from its non-private counterpart, the revocable privacy
based solutions may, in some cases, be inherently less efficient.

8.2 future work

Chapter 3 surveys a number of scenarios that could benefit from the no-
tion of revocable privacy. In this thesis we proposed solutions to some of
these, however, many of them remain as of yet unsolved. In particular,
it would be very interesting to find schemes that implement predicate

8.3 general conclusions 189

based rules, so that different primitives, such as distributed encryption,
can be combined to implement more complicated rules.
In particular, implementing a larger class of rules using revocable

privacy systems would further weaken the claim that privacy always
comes at the cost of security. As suggested in Chapter 3, rules based
on predicates or more general threshold rules might be relatively easy
to implement.
Focusing on our specific schemes, it would be interesting to see if

the moderator anonymous versions of the vote-to-link scheme can be
designed so that the performance degradation for the service provider
is somewhat lower.
For the distributed encryption scheme it would be interesting to see

whether we can prove a lower bound on its performance, and whether
ideas from Chapter 6—trading a small amount of privacy to obtain
much higher performance—can be applied to the distributed encryp-
tion scheme as well.

8.3 general conclusions

This work confirms that it is possible to achieve security and privacy si-
multaneously in various situations, even if, intuitively, this would seem
impossible. Moreover, the solutions we proposed here are practical:
they can be deployed in real-world scenarios. This shows that security
can often be achieved without negatively impacting privacy.
On the other hand, achieving both security and privacy does not come

for free. If privacy-friendly solutions do not yet exist (fortunately many
of them do), they have to be designed and implemented, which is not
always easy. And even if they do exist, they might be less efficient—
though usually not prohibitively so—than non-private solutions.
Since privacy and security can often be obtained simultaneously, the

catch-all argument that we cannot have privacy because it would (al-
ways) come at the cost of security, is no longer universally valid. Instead,
I hope that this thesis, and the ideas contained therein, contribute to a
more balanced discussion about the benefits and costs of privacy.

BIBL IOGRAPHY

[1] Gora Adj, Alfred Menezes, Thomaz Oliveira, and Francisco
Rodríguez-Henríquez. “Weakness of F36·1429 and F24·3041

for discrete logarithm cryptography”. In: Finite Fields and
Their Applications 32 (2015), pp. 148–170. issn: 1071-5797. doi:
10.1016/j.ffa.2014.10.009 (cit. on p. 15).

[2] Gora Adj, Alfred Menezes, Thomaz Oliveira, and Francisco
Rodríguez-Henríquez. “Weakness of F36·509 for Discrete Loga-
rithm Cryptography”. In: pairing 2013. lncs vol. 8365. Springer,
2014, pp. 20–44. doi: 10.1007/978- 3 - 319- 04873- 4_2 (cit. on
p. 15).

[3] Charu C. Aggarwal and Philip S. Yu, eds. A General Survey of
Privacy-Preserving Data Mining – Models and Algorithms. Vol. 34.
Advances inDatabase Systems. Springer, 2008. isbn: 978-0-387-
70991-8. doi: 10.1007/978-0-387-70992-5 (cit. on p. 54).

[4] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-
Olivier Killijian. “XPIR : Private Information Retrieval for Every-
one”. In: PoPETs 2016.2 (2016), pp. 155–174. doi: 10.1515/popets-
2016-0010 (cit. on p. 168).

[5] Carlos Aguilar-Melchor and Philippe Gaborit. “A Lattice-Based
Computationally-Efficient Private Information Retrieval Proto-
col”. In: weworc 2007. 2007. url: https://eprint.iacr.org/2007/
446 (cit. on p. 168).

[7] Elli Androulaki, Seung Geol Choi, Steven M. Bellovin, and Tal
Malkin. “Reputation Systems for Anonymous Networks”. In:
pets 2008. lncs vol. 5134. Springer, 2008, pp. 202–218. doi:
10.1007/978-3-540-70630-4_13 (cit. on p. 93).

[8] D. F. Aranha and C. P. L. Gouvêa.RELIC is an Efficient LIbrary for
Cryptography. url: https://github.com/relic-toolkit/relic (cit. on
pp. 91, 133).

[9] Giuseppe Ateniese, Dawn Xiaodong Song, and Gene Tsudik.
“Quasi-Efficient Revocation in Group Signatures”. In: fc 2002.
lncs vol. 2357. Springer, 2003, pp. 183–197. doi: 10.1007/3-540-
36504-4_14 (cit. on pp. 136, 164, 165).

[10] Man Ho Au, Sherman S. M. Chow, and Willy Susilo. “Short
E-Cash”. In: indocrypt 2005. lncs vol. 3797. Springer, 2005,
pp. 332–346. doi: 10.1007/11596219_27 (cit. on p. 52).

191

http://dx.doi.org/10.1016/j.ffa.2014.10.009
http://dx.doi.org/10.1007/978-3-319-04873-4_2
http://dx.doi.org/10.1007/978-0-387-70992-5
http://dx.doi.org/10.1515/popets-2016-0010
http://dx.doi.org/10.1515/popets-2016-0010
https://eprint.iacr.org/2007/446
https://eprint.iacr.org/2007/446
http://dx.doi.org/10.1007/978-3-540-70630-4_13
https://github.com/relic-toolkit/relic
http://dx.doi.org/10.1007/3-540-36504-4_14
http://dx.doi.org/10.1007/3-540-36504-4_14
http://dx.doi.org/10.1007/11596219_27

192 bibliography

[11] Man Ho Au, Willy Susilo, and Yi Mu. “Constant-Size Dynamic
k-TAA”. In: scn 2006. lncs vol. 4116. Springer, 2006, pp. 111–125.
doi: 10.1007/11832072_8 (cit. on pp. 27–30, 91).

[12] Amos Beimel and Yoav Stahl. “Robust Information-Theoretic
Private Information Retrieval”. In: Journal of Cryptology 20.3
(2007), pp. 295–321. issn: 1432-1378. doi: 10.1007/s00145-007-
0424-2 (cit. on p. 167).

[13] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. “A
Concrete Security Treatment of Symmetric Encryption”. In: focs
’97. ieee, 1997, pp. 394–403. doi: 10.1109/SFCS.1997.646128 (cit.
on p. 70).

[14] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang. “High-speed high-security signatures”. In: Journal
of Cryptographic Engineering 2.2 (2012), pp. 77–89. issn: 2190-
8516. doi: 10.1007/s13389-012-0027-1 (cit. on p. 161).

[15] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja
Lange. “Elligator: elliptic-curve points indistinguishable from
uniform random strings”. In: ccs 2013. acm, 2013, pp. 967–980.
doi: 10.1145/2508859.2516734 (cit. on p. 101).

[16] Joachim Biskup and Ulrich Flegel. “Transaction-Based Pseudo-
nyms in Audit Data for Privacy Respecting Intrusion Detection”.
In: raid 2000. lncs vol. 1907. Springer, 2000, pp. 28–48. doi:
10.1007/3-540-39945-3_3 (cit. on pp. 50, 51).

[17] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with
Allowable Errors”. In: Communications of the ACM 13.7 (July
1970), pp. 422–426. issn: 0001-0782. doi: 10 . 1145 / 362686 .
362692 (cit. on p. 162).

[18] Carlo Blundo and Douglas R. Stinson. “Anonymous secret shar-
ing schemes”. In:Discrete AppliedMathematics 77.1 (1997), pp. 13–
28. issn: 0166-218x. doi: 10.1016/S0166-218X(97)89208-6 (cit.
on p. 94).

[19] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht.
“How the Estonian Tax and Customs Board Evaluated a Tax
Fraud Detection System Based on Secure Multi-party Computa-
tion”. In: fc 2015. lncs vol. 8975. Springer, 2015, pp. 227–234.
doi: 10.1007/978-3-662-47854-7_14 (cit. on pp. 50, 54).

[20] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane,
Ville Sokk, and Riivo Talviste. “Students and Taxes: a Privacy-
Preserving Study Using Secure Computation”. In: PoPETs
2016.3 (2016), pp. 117–135. doi: 10.1515/popets-2016-0019 (cit. on
p. 54).

http://dx.doi.org/10.1007/11832072_8
http://dx.doi.org/10.1007/s00145-007-0424-2
http://dx.doi.org/10.1007/s00145-007-0424-2
http://dx.doi.org/10.1109/SFCS.1997.646128
http://dx.doi.org/10.1007/s13389-012-0027-1
http://dx.doi.org/10.1145/2508859.2516734
http://dx.doi.org/10.1007/3-540-39945-3_3
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1016/S0166-218X(97)89208-6
http://dx.doi.org/10.1007/978-3-662-47854-7_14
http://dx.doi.org/10.1515/popets-2016-0019

bibliography 193

[21] Dan Boneh and Xavier Boyen. “Short Signatures Without Ran-
dom Oracles and the SDH Assumption in Bilinear Groups”. In:
Journal of Cryptology 21.2 (Apr. 2008), pp. 149–177. issn: 1432-
1378. doi: 10.1007/s00145-007-9005-7 (cit. on p. 19).

[22] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryp-
tion from the Weil Pairing”. In: crypto 2001. lncs vol. 2139.
Springer, 2001, pp. 213–229. doi: 10.1007/3- 540- 44647- 8_13
(cit. on pp. 18, 107).

[23] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures
from theWeil Pairing”. In: Journal of Cryptology 17.4 (Sept. 2004),
pp. 297–319. issn: 1432-1378. doi: 10.1007/s00145-004-0314-9
(cit. on p. 14).

[24] Dan Boneh and Hovav Shacham. “Group signatures with
verifier-local revocation”. In: ccs 2004. acm, 2004, pp. 168–177.
doi: 10.1145/1030083.1030106 (cit. on pp. 136, 143, 145, 164, 165).

[25] Stefan A. Brands. Rethinking Public Key Infrastructures and Dig-
ital Certificates: Building in Privacy. MIT Press, Cambridge, MA,
USA, 2000 (cit. on p. 26).

[26] Stefan Brands, Liesje Demuynck, and Bart De Decker. “A Prac-
tical System for Globally Revoking the Unlinkable Pseudonyms
of Unknown Users”. In: acisp 2007. lncs vol. 4586. Springer,
2007, pp. 400–415. doi: 10.1007/978-3-540-73458-1_29 (cit. on
p. 164).

[27] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. “Direct
anonymous attestation”. In: ccs 2004. acm, 2004, pp. 132–145.
doi: 10.1145/1030083.1030103 (cit. on p. 165).

[28] Ernie Brickell, Jan Camenisch, and Liqun Chen. “The DAA
scheme in context”. In: Trusted Computing. Vol. 6. Professional
Applications of Computing. Institution of Engineering and
Technology, 2005. Chap. 5, pp. 143–174. isbn: 978-0-863-41525-
8. doi: 10.1049/PBPC006E_ch5 (cit. on pp. 136, 164, 165).

[29] BSI. Advanced Security Mechanisms for Machine Readable Travel
Documents – Extended Access Control (EAC). Tech. rep. TR-03110.
Bonn, Germany: Bundesamt für Sicherheit in der Information-
stechnik (BSI), 2006 (cit. on p. 159).

[30] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous
Attestation Using the Strong Diffie Hellman Assumption Revisited.
Cryptology ePrint Archive, Report 2016/663. 2016. url: http://
eprint.iacr.org/2016/663 (cit. on pp. 28, 29).

http://dx.doi.org/10.1007/s00145-007-9005-7
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1145/1030083.1030106
http://dx.doi.org/10.1007/978-3-540-73458-1_29
http://dx.doi.org/10.1145/1030083.1030103
http://dx.doi.org/10.1049/PBPC006E_ch5
http://eprint.iacr.org/2016/663
http://eprint.iacr.org/2016/663

194 bibliography

[31] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna
Lysyanskaya, and Mira Meyerovich. “How to win the clonewars:
efficient periodic n-times anonymous authentication”. In: ccs
2006. acm, 2006, pp. 201–210. doi: 10.1145/1180405.1180431
(cit. on pp. 50, 52, 98).

[32] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya.
“Compact E-Cash”. In: eurocrypt 2005. lncs vol. 3494.
Springer, 2005, pp. 302–321. doi: 10 . 1007 / 11426639 _ 18
(cit. on p. 52).

[33] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. “An
Accumulator Based on Bilinear Maps and Efficient Revocation
for Anonymous Credentials”. In: pkc 2009. lncs vol. 5443.
Springer, 2009, pp. 481–500. doi: 10.1007/978-3-642-00468-
1_27 (cit. on pp. 135, 164, 165).

[34] Jan Camenisch, Ioannis Krontiris, Anja Lehmann, Gregory
Neven, Christian Paquin, Kai Rannenberg, and Harald Zwingel-
berg. D2.1 Architecture for Attribute-based Credential Technologies.
Tech. rep. ABC4Trust, 2011 (cit. on pp. 26, 135).

[35] Jan Camenisch and Anna Lysyanskaya. “A Signature Scheme
with Efficient Protocols”. In: scn 2002. lncs vol. 2576. Springer,
2003, pp. 268–289. doi: 10 . 1007/3 - 540- 36413 - 7_20 (cit. on
p. 26).

[36] Jan Camenisch and Anna Lysyanskaya. “An Efficient System
for Non-transferable Anonymous Credentials with Optional
Anonymity Revocation”. In: eurocrypt 2001. lncs vol. 2045.
Springer, 2001, pp. 93–118. doi: 10 . 1007 / 3 - 540 - 44987 - 6 _ 7
(cit. on pp. 8, 160).

[37] Jan Camenisch and Anna Lysyanskaya. “Dynamic Accumulators
and Application to Efficient Revocation of Anonymous Creden-
tials”. In: crypto 2002. lncs vol. 2442. Springer, 2002, pp. 61–
76. doi: 10.1007/3-540-45708-9_5 (cit. on p. 164).

[38] Jan Camenisch and Victor Shoup. “Practical Verifiable Encryp-
tion and Decryption of Discrete Logarithms”. In: crypto 2003.
lncs vol. 2729. Springer, 2003, pp. 126–144. doi: 10.1007/978-
3-540-45146-4_8 (cit. on p. 164).

[39] Jan Camenisch and Markus Stadler. “Efficient Group Sig-
nature Schemes for Large Groups (Extended Abstract)”. In:
crypto ’97. lncs vol. 1294. Springer, 1997, pp. 410–424. doi:
10.1007/BFb0052252 (cit. on p. 26).

http://dx.doi.org/10.1145/1180405.1180431
http://dx.doi.org/10.1007/11426639_18
http://dx.doi.org/10.1007/978-3-642-00468-1_27
http://dx.doi.org/10.1007/978-3-642-00468-1_27
http://dx.doi.org/10.1007/3-540-36413-7_20
http://dx.doi.org/10.1007/3-540-44987-6_7
http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/BFb0052252

bibliography 195

[40] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. “Alge-
braic MACs and Keyed-Verification Anonymous Credentials”.
In: ccs 2014. acm, 2014, pp. 1205–1216. doi: 10.1145/2660267.
2660328 (cit. on p. 27).

[41] Sanjit Chatterjee and Alfred Menezes. “On cryptographic proto-
cols employing asymmetric pairings – The role of Ψ revisited”.
In: Discrete Applied Mathematics 159.13 (2011), pp. 1311–1322. issn:
0166-218X. doi: 10.1016/j.dam.2011.04.021 (cit. on pp. 18, 19).

[42] Sanjit Chatterjee and Palash Sarkar. Practical Hybrid (Hierarchi-
cal) Identity-Based Encryption Schemes Based on the Decisional Bi-
linear Diffie-Hellman Assumption. Tech. rep. CACR 2010-20. Cen-
ter for Applied Cryptographic Research, University of Waterloo,
ON, Canada, 2010. url: http://cacr.uwaterloo.ca/techreports/
2010/cacr2010-20.pdf (cit. on p. 18).

[43] David Chaum. “Blind Signatures for Untraceable Payments”. In:
crypto ’82. Springer, 1983, pp. 199–203. doi: 10 . 1007/978 - 1 -
4757-0602-4_18 (cit. on pp. 44, 52).

[44] David Chaum, Amos Fiat, and Moni Naor. “Untraceable Elec-
tronic Cash”. In: crypto ’88. lncs vol. 403. Springer, 1990,
pp. 319–327. doi: 10.1007/0-387-34799-2_25 (cit. on pp. 6, 31, 50,
52).

[45] David Chaum and Eugène van Heyst. “Group Signatures”. In:
eurocrypt ’91. lncs vol. 547. Springer, 1991, pp. 257–265. doi:
10.1007/3-540-46416-6_22 (cit. on pp. 53, 93).

[46] Benny Chor, Niv Gilboa, and Moni Naor. Private Information Re-
trieval by Keywords. Technical Report TR CS0917. Department of
Computer Science, Technion, Israel, 1997 (cit. on pp. 167, 181).

[47] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Su-
dan. “Private Information Retrieval”. In: focs 1995. ieee, 1995,
pp. 41–50. doi: 10.1109/SFCS.1995.492461 (cit. on p. 167).

[48] Sherman S. M. Chow. “Real Traceable Signatures”. In: sac 2009.
lncs vol. 5867. Springer, 2009, pp. 92–107. doi: 10.1007/978-3-
642-05445-7_6 (cit. on p. 153).

[49] Julie E. Cohen. “What Privacy is For”. In: Harvard Law Review
126.7 (2013), pp. 1904–1933 (cit. on pp. 2, 3).

[50] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280 (Proposed
Standard). Updated by RFC 6818. Internet Engineering Task
Force, May 2008 (cit. on pp. 163, 164).

http://dx.doi.org/10.1145/2660267.2660328
http://dx.doi.org/10.1145/2660267.2660328
http://dx.doi.org/10.1016/j.dam.2011.04.021
http://cacr.uwaterloo.ca/techreports/2010/cacr2010-20.pdf
http://cacr.uwaterloo.ca/techreports/2010/cacr2010-20.pdf
http://dx.doi.org/10.1007/978-1-4757-0602-4_18
http://dx.doi.org/10.1007/978-1-4757-0602-4_18
http://dx.doi.org/10.1007/0-387-34799-2_25
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1109/SFCS.1995.492461
http://dx.doi.org/10.1007/978-3-642-05445-7_6
http://dx.doi.org/10.1007/978-3-642-05445-7_6

196 bibliography

[51] Don Coppersmith and Shmuel Winograd. “Matrix Multiplica-
tion via Arithmetic Progressions”. In: Journal of Symbolic Com-
putation 9.3 (Mar. 1990), pp. 251–280. issn: 0747-7171. doi: 10.
1016/S0747-7171(08)80013-2 (cit. on p. 174).

[52] Ronald Cramer, Ivan Damgård, and Yuval Ishai. “Share Con-
version, Pseudorandom Secret-Sharing and Applications to Se-
cure Computation”. In: tcc 2005. lncs vol. 3378. Springer, 2005,
pp. 342–362. doi: 10.1007/978-3-540-30576-7_19 (cit. on pp. 25,
115, 118).

[53] David Davenport. “Anonymity on the Internet: Why the Price
May Be Too High”. In: Communications of the ACM 45.4 (2002),
pp. 33–35. issn: 0001-0782. doi: 10.1145/505248.505267 (cit. on
p. 5).

[54] Cécile Delerablée and David Pointcheval. “Dynamic Thresh-
old Public-Key Encryption”. In: crypto 2008. lncs vol. 5157.
Springer, 2008, pp. 317–334. doi: 10.1007/978-3-540-85174-5_18
(cit. on p. 94).

[55] Yvo Desmedt and Yair Frankel. “Threshold cryptosystems”. In:
crypto ’89. lncs vol. 435. Springer, 1990, pp. 307–315. doi: 10.
1007/0-387-34805-0_28 (cit. on p. 94).

[56] Casey Devet and Ian Goldberg. “The Best of Both Worlds: Com-
bining Information-Theoretic and Computational PIR for Com-
munication Efficiency”. In: pets 2014. lncs vol. 8555. Springer,
2014, pp. 63–82. doi: 10 .1007/978- 3 - 319- 08506- 7_4 (cit. on
pp. 167, 178).

[57] Casey Devet, Ian Goldberg, and Nadia Heninger. “Optimally
Robust Private Information Retrieval”. In: usenix 2012. usenix,
2012, pp. 269–283. url: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/devet (cit. on
pp. 167, 170).

[58] Claudia Díaz, Stefaan Seys, Joris Claessens, and Bart Preneel.
“Towards Measuring Anonymity”. In: pets 2002. lncs vol. 2482.
Springer, 2002, pp. 54–68. doi: 10.1007/3-540-36467-6_5 (cit.
on p. 34).

[59] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor:
The Second-Generation Onion Router”. In: usenix 2004. 2004,
pp. 303–320. url: https : / /www.usenix . org /conference/ 13th -
usenix - security - symposium / tor - second - generation - onion -
router (cit. on p. 32).

http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1145/505248.505267
http://dx.doi.org/10.1007/978-3-540-85174-5_18
http://dx.doi.org/10.1007/0-387-34805-0_28
http://dx.doi.org/10.1007/0-387-34805-0_28
http://dx.doi.org/10.1007/978-3-319-08506-7_4
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/devet
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/devet
http://dx.doi.org/10.1007/3-540-36467-6_5
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router

bibliography 197

[60] John R. Douceur. “The Sybil Attack”. In: iptps 2002. lncs vol.
2429. Springer, 2002, pp. 251–260. doi: 10.1007/3-540-45748-
8_24 (cit. on p. 63).

[61] ECRYPT II. ECRYPT II Yearly Report on Algorithms and Key
Lengths (2011-2012). Revision 1.0. 2012 (cit. on p. 161).

[62] ECRYPT-CSA. D5.2: Algorithms, Key Size and Protocols Report
(2016). Revision 1.0. 2016 (cit. on p. 161).

[63] Taher ElGamal. “A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms”. In: IEEE Transactions
on Information Theory 31.4 (July 1985), pp. 469–472. issn: 0018-
9448. doi: 10.1109/TIT.1985.1057074 (cit. on p. 70).

[64] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical
Solutions to Identification and Signature Problems”. In: crypto
’86. lncs vol. 263. Springer, 1987, pp. 186–194. doi: 10.1007/3-
540-47721-7_12 (cit. on pp. 26, 146).

[65] Fox-IT BV. Black Tulip: Report of the investigation into the DigiNo-
tar Certificate Authority breach. Delft, TheNetherlands, Aug. 2012
(cit. on p. 178).

[66] Matthew K. Franklin. “A survey of key evolving cryptosystems”.
In: International Journal of Security and Networks 1.1/2 (2006),
pp. 46–53. doi: 10.1504/IJSN.2006.010822 (cit. on p. 98).

[67] Jun Furukawa and Shoko Yonezawa. “Group Signatures with
Separate and Distributed Authorities”. In: scn 2004. lncs vol.
3352. Springer, 2005, pp. 77–90. doi: 10.1007/978-3-540-30598-
9_6 (cit. on p. 93).

[68] Steven D. Galbraith. “Pairings”. In: Advances in Elliptic Curve
Cryptography. Vol. 317. London Mathematical Society Lecture
Note Series. Cambridge University Press, 2005. Chap. IX. isbn:
978-0-511-11029-0 (cit. on p. 14).

[69] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart.
“Pairings for cryptographers”. In: Discrete Applied Mathematics
156.16 (2008), pp. 3113–3121. issn: 0166-218x. doi: 10.1016/j.dam.
2007.12.010 (cit. on pp. 14, 15).

[70] EssamGhadafi. “Efficient Distributed Tag-Based Encryption and
Its Application to Group Signatures with Efficient Distributed
Traceability”. In: latincrypt 2014. lncs vol. 8895. Springer, 2015,
pp. 327–347. doi: 10.1007/978-3-319-16295-9_18 (cit. on pp. 53,
93).

[72] Ian Goldberg. “Improving the Robustness of Private Informa-
tion Retrieval”. In: s&p 2007. ieee, 2007, pp. 131–148. doi: 10 .
1109/SP.2007.23 (cit. on pp. 167–170).

http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1109/TIT.1985.1057074
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1504/IJSN.2006.010822
http://dx.doi.org/10.1007/978-3-540-30598-9_6
http://dx.doi.org/10.1007/978-3-540-30598-9_6
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1007/978-3-319-16295-9_18
http://dx.doi.org/10.1109/SP.2007.23
http://dx.doi.org/10.1109/SP.2007.23

198 bibliography

[73] Ian Goldberg, Casey Devet, Paul Hendry, and Ryan Henry.
Percy++ project on SourceForge. http : / / percy . sourceforge . net.
Version 0.9.0. Accessed Sept. 2014. 2013 (cit. on pp. 169, 182).

[74] Ian Goldberg, Casey Devet, Wouter Lueks, Ann Yang, Paul
Hendry, and Ryan Henry. Percy++ project on SourceForge.
http://percy.sourceforge.net/. Version 1.0. Accessed Nov. 2014.
2014 (cit. on pp. 12, 186).

[75] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel.
“Breaking ‘128-bit Secure’ Supersingular Binary Curves – (Or
How to Solve Discrete Logarithms in F24·1223 and F212·357)”. In:
crypto 2014. lncs vol. 8617. Springer, 2014, pp. 126–145. doi:
10.1007/978-3-662-44381-1_8 (cit. on p. 15).

[76] Jens Groth. “A Verifiable Secret Shuffle of Homomorphic En-
cryptions”. In: Journal of Cryptology 23.4 (Oct. 2010), pp. 546–
579. issn: 1432-1378. doi: 10.1007/s00145-010-9067-9 (cit. on
pp. 88, 89).

[77] Mida Guillermo, Keith M. Martin, and Christine M. O’Keefe.
“Providing Anonymity in Unconditionally Secure Secret Sharing
Schemes”. In: Designs, Codes and Cryptography 28.3 (Apr. 2003),
pp. 227–245. issn: 1573-7586. doi: 10 . 1023 / A : 1024198519111
(cit. on p. 94).

[78] Daniel M. Hein, Johannes Wolkerstorfer, and Norbert Felber.
“ECC Is Ready for RFID - A Proof in Silicon”. In: sac 2008. lncs
vol. 5381. Springer, 2009, pp. 401–413. doi: 10.1007/978-3-642-
04159-4_26 (cit. on p. 161).

[79] Ryan Henry and Ian Goldberg. “Formalizing Anonymous Black-
listing Systems”. In: s&p 2011. ieee, 2011, pp. 81–95. doi: 10.1109/
SP.2011.13 (cit. on pp. 53, 63).

[80] Ryan Henry and Ian Goldberg. “Thinking inside the BLAC box:
smarter protocols for faster anonymous blacklisting”. In: wpes
2013. acm, 2013, pp. 71–82. doi: 10.1145/2517840.2517855 (cit. on
p. 53).

[81] Ryan Henry, Yizhou Huang, and Ian Goldberg. “One (Block)
Size Fits All: PIR and SPIR with Variable-Length Records via
Multi-Block Queries”. In: ndss 2013. The Internet Society, 2013.
url: http://internetsociety.org/doc/one-block-size- fits-all-pir-
and- spir - variable - length- records-multi - block - queries (cit. on
pp. 168, 170, 173, 181).

[82] Jaap-Henk Hoepman. “Revocable Privacy”. In: ENISA Quarterly
Review 5.2 (June 2009), pp. 16–17. issn: 1830-3609 (cit. on pp. 5,
6, 32, 34, 37).

http://percy.sourceforge.net
http://percy.sourceforge.net/
http://dx.doi.org/10.1007/978-3-662-44381-1_8
http://dx.doi.org/10.1007/s00145-010-9067-9
http://dx.doi.org/10.1023/A:1024198519111
http://dx.doi.org/10.1007/978-3-642-04159-4_26
http://dx.doi.org/10.1007/978-3-642-04159-4_26
http://dx.doi.org/10.1109/SP.2011.13
http://dx.doi.org/10.1109/SP.2011.13
http://dx.doi.org/10.1145/2517840.2517855
http://internetsociety.org/doc/one-block-size-fits-all-pir-and-spir-variable-length-records-multi-block-queries
http://internetsociety.org/doc/one-block-size-fits-all-pir-and-spir-variable-length-records-multi-block-queries

bibliography 199

[83] Jaap-Henk Hoepman and David Galindo. “Non-interactive Dis-
tributed Encryption: A New Primitive for Revocable Privacy”. In:
wpes 2011. acm, 2011, pp. 81–92. doi: 10.1145/2046556.2046567
(cit. on pp. 32, 51, 97, 98, 104, 106–108, 121, 124).

[84] Jaap-Henk Hoepman, Bert-Jaap Koops, and Wouter Lueks.
“Anoniem misdaad melden via Internet: technische en juridis-
che risico’s”. Dutch. In: Nederlands Juristenblad 43 (Dec. 2014),
pp. 3056–3063 (cit. on pp. 1, 218).

[85] Jaap-Henk Hoepman, Bert-Jaap Koops, and Wouter Lueks.
Haalbaarheid van een anoniem misdaadmeldpunt via het Internet.
Een quickscan. Dutch. Nijmegen/Den Haag, 2014. url: https :
//www.wodc.nl/onderzoeksdatabase/2398-wenselijkheid- en-
haalbaarheid-van-online-anoniem-melden-van-misdaden.aspx
(cit. on p. 1).

[87] IBM Research Zürich Security Team. Specification of the Iden-
tity Mixer Cryptographic Library, version 2.3.4. Tech. rep. IBM Re-
search, Zürich, Feb. 2012 (cit. on pp. 8, 14, 160, 164).

[88] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
“Batch codes and their applications”. In: stoc 2004. acm, 2004,
pp. 262–271. doi: 10.1145/1007352.1007396 (cit. on pp. 168, 170–
173).

[89] Gene Itkis. “Forward Security – Adaptive Cryptography: Time
Evolution”. In:Handbook of Information Security. Vol. 3. JohnWi-
ley and Sons, 2006, pp. 927–944. isbn: 978-0-471-64832-1 (cit.
on p. 98).

[90] Antoine Joux. “A One Round Protocol for Tripartite Diffie-
Hellman”. In: ants iv. lncs vol. 1838. Springer, 2000, pp. 385–
394. doi: 10.1007/10722028_23 (cit. on p. 18).

[91] Mitchell Kapor.Architecture is Politics (and Politics is Architecture).
Original at http://blog.kapor.com/?p=29 last accessed January
3, 2017 via https://web.archive.org/web/20060615043915/http:
//blog.kapor.com/?p=29. 2006 (cit. on pp. 6, 36).

[92] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
“Constant-Size Commitments to Polynomials and Their Appli-
cations”. In: asiacrypt 2010. lncs vol. 6477. Springer, 2010,
pp. 177–194. doi: 10.1007/978-3-642-17373-8_11 (cit. on p. 90).

[93] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryp-
tography. 2nd ed. Chapman & Hall/CRC Cryptography and Net-
work Security Series. CRC press, Taylor & Francis Group, 2014.
isbn: 9781466570269 (cit. on pp. 13, 15, 17, 89).

http://dx.doi.org/10.1145/2046556.2046567
https://www.wodc.nl/onderzoeksdatabase/2398-wenselijkheid-en-haalbaarheid-van-online-anoniem-melden-van-misdaden.aspx
https://www.wodc.nl/onderzoeksdatabase/2398-wenselijkheid-en-haalbaarheid-van-online-anoniem-melden-van-misdaden.aspx
https://www.wodc.nl/onderzoeksdatabase/2398-wenselijkheid-en-haalbaarheid-van-online-anoniem-melden-van-misdaden.aspx
http://dx.doi.org/10.1145/1007352.1007396
http://dx.doi.org/10.1007/10722028_23
http://blog.kapor.com/?p=29
https://web.archive.org/web/20060615043915/http://blog.kapor.com/?p=29
https://web.archive.org/web/20060615043915/http://blog.kapor.com/?p=29
http://dx.doi.org/10.1007/978-3-642-17373-8_11

200 bibliography

[94] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. “Traceable
Signatures”. In: eurocrypt 2004. lncs vol. 3027. Springer, 2004,
pp. 571–589. doi: 10.1007/978-3-540-24676-3_34 (cit. on p. 93).

[95] Joe Kilian and Erez Petrank. “Identity Escrow”. In: crypto ’98.
lncs vol. 1462. Springer, 1998, pp. 169–185. doi: 10 . 1007 /
BFb0055727 (cit. on p. 158).

[96] TaechanKim andRazvan Barbulescu. “Extended TowerNumber
Field Sieve: A New Complexity for the Medium Prime Case”. In:
crypto 2016. lncs vol. 9814. Springer, 2016, pp. 543–571. doi:
10.1007/978-3-662-53018-4_20 (cit. on p. 15).

[97] Bert-Jaap Koops, Bryce Clayton Newell, Tjerk Timan, Ivan Ško-
rvánek, Tom Chokrevski, and Maša Galič. “A Typology of Pri-
vacy”. In: University of Pennsylvania Journal of International Law
38.2 (2017), pp. 483–575. url: http://scholarship.law.upenn.edu/
jil/vol38/iss2/4 (cit. on p. 3).

[98] Eyal Kushilevitz and Rafail Ostrovsky. “Replication is NOT
Needed: SINGLE Database, Computationally-Private Infor-
mation Retrieval”. In: focs ’97. ieee, 1997, pp. 364–373. doi:
10.1109/SFCS.1997.646125 (cit. on pp. 167, 168).

[99] Mirosław Kutylowski, Łukasz Krzywiecki, Przemysław Kubiak,
and Michał Koza. “Restricted Identification Scheme and Diffie-
Hellman Linking Problem”. In: intrust 2011. lncs vol. 7222.
Springer, 2011, pp. 221–238. doi: 10.1007/978-3-642-32298-3_15
(cit. on p. 164).

[100] Jorn Lapon, Markulf Kohlweiss, Bart De Decker, and Vincent
Naessens. “Analysis of Revocation Strategies for Anonymous
Idemix Credentials”. In: cms 2011. lncs vol. 7025. Springer, 2011,
pp. 3–17. doi: 10.1007/978-3-642-24712-5_1 (cit. on pp. 163, 165).

[101] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Trans-
parency. RFC 6962 (Experimental). Internet Engineering Task
Force, June 2013. url: http://www.ietf.org/rfc/rfc6962.txt (cit.
on p. 178).

[102] Ronald E. Leenes. “Do they know me? Deconstructing identifia-
bility”. In:University of Ottawa Law and Technology Journal 4.1&2
(2007), pp. 135–161 (cit. on p. 33).

[103] Anja Lehmann et al. Survey and Analysis of Existing eID and Cre-
dential Systems. Tech. rep. Deliverable D32.1. FutureID, 2013 (cit.
on p. 135).

http://dx.doi.org/10.1007/978-3-540-24676-3_34
http://dx.doi.org/10.1007/BFb0055727
http://dx.doi.org/10.1007/BFb0055727
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://scholarship.law.upenn.edu/jil/vol38/iss2/4
http://scholarship.law.upenn.edu/jil/vol38/iss2/4
http://dx.doi.org/10.1109/SFCS.1997.646125
http://dx.doi.org/10.1007/978-3-642-32298-3_15
http://dx.doi.org/10.1007/978-3-642-24712-5_1
http://www.ietf.org/rfc/rfc6962.txt

bibliography 201

[104] Jiangtao Li, Ninghui Li, and Rui Xue. “Universal Accumulators
with Efficient Nonmembership Proofs”. In: acns 2007. lncs vol.
4521. Springer, 2007, pp. 253–269. doi: 10 . 1007 /978 - 3 - 540 -
72738-5_17 (cit. on p. 165).

[105] Benoît Libert, Thomas Peters, and Moti Yung. “Group Signa-
tures with Almost-for-Free Revocation”. In: crypto 2012. lncs
vol. 7417. Springer, 2012, pp. 571–589. doi: 10.1007/978-3-642-
32009-5_34 (cit. on p. 165).

[106] Benoît Libert and Moti Yung. “Non-interactive CCA-Secure
Threshold Cryptosystems with Adaptive Security: New Frame-
work and Constructions”. In: tcc 2012. lncs vol. 7194. Springer,
2012, pp. 75–93. doi: 10 . 1007/978 - 3 - 642 - 28914 - 9_5 (cit. on
p. 94).

[107] Peter Lofgren and Nicholas Hopper. “FAUST: Efficient, TTP-
Free Abuse Prevention by Anonymous Whitelisting”. In: wpes
2011. acm, 2011, pp. 125–130. doi: 10 . 1145 / 2046556 . 2046572
(cit. on p. 166).

[108] Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman, and Pim
Vullers. “Fast Revocation of Attribute-Based Credentials for
Both Users and Verifiers”. In: ifip sec 2015. ifip aict vol. 455.
Springer, 2015, pp. 463–478. doi: 10.1007/978-3-319-18467-8_31
(cit. on pp. 12, 217).

[109] Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman, and Pim
Vullers. “Fast revocation of attribute-based credentials for both
users and verifiers”. In: Computers & Security 67 (2017), pp. 308–
323. issn: 0167-4048. doi: 10.1016/j.cose.2016.11.018 (cit. on
pp. 12, 217).

[110] Wouter Lueks, Maarten H. Everts, and Jaap-HenkHoepman. Re-
vocable Privacy 2012 – use cases. Tech. rep. 35627. TNO, 2012 (cit.
on pp. 32, 34, 39).

[111] Wouter Lueks, Maarten H. Everts, and Jaap-Henk Hoepman.
“Revocable Privacy: Principles, Use Cases, and Technologies”.
In: apf 2015. lncs vol. 9484. Springer, 2016, pp. 124–143. doi:
10.1007/978-3-319-31456-3_7 (cit. on pp. 10, 218).

[112] Wouter Lueks, Maarten H. Everts, and Jaap-Henk Hoep-
man. “Vote to Link: Recovering from Misbehaving Anony-
mous Users”. In: wpes 2016. acm, 2016, pp. 111–122. doi:
10.1145/2994620.2994634 (cit. on pp. 11, 50, 217).

http://dx.doi.org/10.1007/978-3-540-72738-5_17
http://dx.doi.org/10.1007/978-3-540-72738-5_17
http://dx.doi.org/10.1007/978-3-642-32009-5_34
http://dx.doi.org/10.1007/978-3-642-32009-5_34
http://dx.doi.org/10.1007/978-3-642-28914-9_5
http://dx.doi.org/10.1145/2046556.2046572
http://dx.doi.org/10.1007/978-3-319-18467-8_31
http://dx.doi.org/10.1016/j.cose.2016.11.018
http://dx.doi.org/10.1007/978-3-319-31456-3_7
http://dx.doi.org/10.1145/2994620.2994634

202 bibliography

[113] Wouter Lueks and Ian Goldberg. “Sublinear Scaling for Multi-
Client Private Information Retrieval”. In: fc 2015. lncs vol. 8975.
Springer, 2015, pp. 168–186. doi: 10.1007/978-3-662-47854-7_10
(cit. on pp. 12, 218).

[114] Wouter Lueks, Jaap-Henk Hoepman, and Klaus Kursawe.
“Forward-Secure Distributed Encryption”. In: pets 2014. lncs
vol. 8555. Springer, 2014, pp. 123–142. doi: 10.1007/978- 3- 319-
08506-7_7 (cit. on pp. 11, 32, 50, 51, 218).

[116] Mark Manulis. “Democratic Group Signatures: on an Example
of Joint Ventures”. In: asiaccs 2006. acm, 2006, p. 365. doi: 10.
1145/1128817.1128882 (cit. on p. 93).

[117] Mark Manulis, Nils Fleischhacker, Felix Günther, Franziskus
Kiefer, and Bertram Poettrering. Group Signatures: Authentica-
tion with Privacy. Tech. rep. Bundesamt für Sicherheit in der
Informationstechnik (BSI), 2012 (cit. on pp. 93, 145, 148).

[118] AlexMarthews andCatherine E. Tucker.Government Surveillance
and Internet Search Behavior. 2015. doi: 10.2139/ssrn.2412564 (cit.
on p. 2).

[119] Silvio Micali. “Fair Public-Key Cryptosystems”. In: crypto ’92.
lncs vol. 740. Springer, 1992, pp. 113–138. doi: 10.1007/3- 540-
48071-4_9 (cit. on p. 6).

[120] Huib Modderkolk. “‘Dreiging is in jaren nog niet zo groot ge-
weest’”. In: Volkskrant (Sept. 2016) (cit. on p. 5).

[123] Peter L. Montgomery. “Speeding the Pollard and Elliptic
Curve Methods of Factorization”. In: Mathematics of Com-
putation 48.177 (1987), pp. 243–264. issn: 0025-5718. doi:
10.1090/S0025-5718-1987-0866113-7 (cit. on p. 161).

[124] Toru Nakanishi and Nobuo Funabiki. “Verifier-Local Revocation
Group Signature Schemes with Backward Unlinkability from Bi-
linearMaps”. In: asiacrypt 2005. lncs vol. 3788. Springer, 2005,
pp. 533–548. doi: 10.1007/11593447_29 (cit. on pp. 63, 72, 73, 75,
77, 93, 145, 164, 165).

[125] Moni Naor and Omer Reingold. “Number-theoretic Construc-
tions of Efficient Pseudo-random Functions”. In: Journal of the
ACM 51.2 (Mar. 2004), pp. 231–262. issn: 0004-5411. doi: 10 .
1145/972639.972643 (cit. on p. 114).

[126] National Institute of Standards and Technology. “Escrowed
Encryption Standard”. In: Federal Information Processing
Standard (FIPS) vol. 185. Feb. 1994 (cit. on p. 47).

http://dx.doi.org/10.1007/978-3-662-47854-7_10
http://dx.doi.org/10.1007/978-3-319-08506-7_7
http://dx.doi.org/10.1007/978-3-319-08506-7_7
http://dx.doi.org/10.1145/1128817.1128882
http://dx.doi.org/10.1145/1128817.1128882
http://dx.doi.org/10.2139/ssrn.2412564
http://dx.doi.org/10.1007/3-540-48071-4_9
http://dx.doi.org/10.1007/3-540-48071-4_9
http://dx.doi.org/10.1090/S0025-5718-1987-0866113-7
http://dx.doi.org/10.1007/11593447_29
http://dx.doi.org/10.1145/972639.972643
http://dx.doi.org/10.1145/972639.972643

bibliography 203

[127] Ingo Naumann and Giles Hogben. “Privacy features of Euro-
pean eID card specifications”. In: Network Security 2008.8 (Aug.
2008), pp. 9–13. issn: 1353-4858. doi: 10.1016/S1353- 4858(08)
70097-7 (cit. on p. 135).

[128] Lan Nguyen and Christian Paquin. U-Prove Designated-Verifier
Accumulator Revocation Extension. Tech. rep. MSR-TR-2014-85.
Microsoft Research, June 2014 (cit. on pp. 164, 165).

[129] OECD. “National Strategies and Policies for Digital IdentityMan-
agement in OECD Countries”. In:OECDDigital Economy Papers
177 (2011). issn: 2071-6826. doi: 10.1787/5kgdzvn5rfs2-en (cit. on
p. 135).

[130] Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. “Effi-
cient Hash-Chain Based RFID Privacy Protection Scheme”. In:
ubicomp 2004, workshop privacy. Sept. 2004 (cit. on pp. 115,
120).

[131] Paul Ohm. “Broken Promises of Privacy: Responding to the Sur-
prising Failure of Anonymization”. In: UCLA Law Review 57.6
(2008). issn: 0041-5650. url: http ://www.uclalawreview.org/
broken - promises - of - privacy - responding - to - the - surprising -
failure-of-anonymization-2/ (cit. on p. 33).

[132] Femi G. Olumofin and Ian Goldberg. “Privacy-Preserving
Queries over Relational Databases”. In: pets 2010. lncs vol.
6205. Springer, 2010, pp. 75–92. doi: 10.1007/978-3-642-14527-
8_5 (cit. on pp. 167, 181).

[133] Femi G. Olumofin and Ian Goldberg. “Revisiting the Computa-
tional Practicality of Private Information Retrieval”. In: fc 2011.
lncs vol. 7035. Springer, 2012, pp. 158–172. doi: 10.1007/978-3-
642-27576-0_13 (cit. on p. 168).

[134] Femi G. Olumofin, Piotr K. Tysowski, Ian Goldberg, and Urs
Hengartner. “Achieving Efficient Query Privacy for Location
Based Services”. In: pets 2010. lncs vol. 6205. Springer, 2010,
pp. 93–110. doi: 10.1007/978-3-642-14527-8_6 (cit. on p. 182).

[135] European Parliament and European Council. “Regulation (EU)
2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural personswith regard to the
processing of personal data and on the free movement of such
data, and repealingDirective 95/46/EC (General Data Protection
Regulation)”. In: Official Journal of the European Union 119 (Apr.
2016), pp. 1–88. url: http://data.europa.eu/eli/reg/2016/679/oj
(cit. on p. 3).

http://dx.doi.org/10.1016/S1353-4858(08)70097-7
http://dx.doi.org/10.1016/S1353-4858(08)70097-7
http://dx.doi.org/10.1787/5kgdzvn5rfs2-en
http://www.uclalawreview.org/broken-promises-of-privacy-responding-to-the-surprising-failure-of-anonymization-2/
http://www.uclalawreview.org/broken-promises-of-privacy-responding-to-the-surprising-failure-of-anonymization-2/
http://www.uclalawreview.org/broken-promises-of-privacy-responding-to-the-surprising-failure-of-anonymization-2/
http://dx.doi.org/10.1007/978-3-642-14527-8_5
http://dx.doi.org/10.1007/978-3-642-14527-8_5
http://dx.doi.org/10.1007/978-3-642-27576-0_13
http://dx.doi.org/10.1007/978-3-642-27576-0_13
http://dx.doi.org/10.1007/978-3-642-14527-8_6
http://data.europa.eu/eli/reg/2016/679/oj

204 bibliography

[136] Torben P. Pedersen. “A Threshold Cryptosystem without a
Trusted Party (Extended Abstract)”. In: eurocrypt ’91. 1991,
pp. 522–526. doi: 10.1007/3-540-46416-6_47 (cit. on pp. 21, 22).

[137] Jonathon W. Penney. “Chilling Effects: Online Surveillance and
Wikipedia Use”. In: Berkeley Technology Law Journal 31.1 (2016),
pp. 117–182. issn: 1086-3818. doi: 10.15779/Z38SS13 (cit. on p. 2).

[138] Andreas Pfitzmann and Marit Hansen. A terminology for talking
about privacy by data minimization: Anonymity, Unlinkability, Un-
detectability, Unobservability, Pseudonymity, and Identity Manage-
ment. v0.34. Aug. 2010. url: http : / / dud . inf . tu - dresden . de /
literatur/Anon%5C_Terminology%5C_v0.34.pdf (cit. on p. 34).

[139] Antonio de la Piedra, Jaap-Henk Hoepman, and Pim Vullers.
“Towards a Full-Featured Implementation of Attribute Based
Credentials on Smart Cards”. In: cans 2014. lncs vol. 8813.
Springer, 2014, pp. 270–289. doi: 10.1007/978- 3 - 319- 12280-
9_18 (cit. on p. 160).

[140] Julian Sanchez. The Trouble With “Balance” Metaphors. Accessed:
June 29, 2017. 2011. url: http://www.juliansanchez.com/2011/
02/04/the-trouble-with-balance-metaphors/ (cit. on p. 5).

[141] S. Santesson,M.Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. X.509 Internet Public Key Infrastructure Online Certifi-
cate Status Protocol - OCSP. RFC 6960 (Proposed Standard). In-
ternet Engineering Task Force, June 2013 (cit. on p. 164).

[142] Bruce Schneier. “Protecting Privacy and Liberty”. In: Crypto-
Gram (Sept. 2001). url: https : / /www . schneier . com/ crypto -
gram/archives/2001/0930.html#8 (cit. on p. 5).

[143] Bruce Schneier. “What Our Top Spy Doesn’t Get: Security and
Privacy Aren’t Opposites”. In: Wired (Jan. 2008). url: http : / /
www.wired.com/politics/security/commentary/securitymatters/
2008/01/securitymatters_0124?currentPage=all (cit. on p. 5).

[144] Edward J. Schwartz, David Brumley, and Jonathan M. McCune.
“Contractual Anonymity”. In: ndss 2010. The Internet Society,
2010. url: https : //www. internetsociety .org/doc/contractual -
anonymity (cit. on p. 37).

[145] Andrei Serjantov andGeorge Danezis. “Towards an Information
Theoretic Metric for Anonymity”. In: pets 2002. lncs vol. 2482.
Springer, 2002, pp. 41–53. doi: 10.1007/3-540-36467-6_4 (cit. on
p. 34).

[146] Adi Shamir. “How to Share a Secret”. In: Communications of the
ACM 22.11 (Nov. 1979), pp. 612–613. issn: 0001-0782. doi: 10 .
1145/359168.359176 (cit. on pp. 20, 169).

http://dx.doi.org/10.1007/3-540-46416-6_47
http://dx.doi.org/10.15779/Z38SS13
http://dud.inf.tu-dresden.de/literatur/Anon%5C_Terminology%5C_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon%5C_Terminology%5C_v0.34.pdf
http://dx.doi.org/10.1007/978-3-319-12280-9_18
http://dx.doi.org/10.1007/978-3-319-12280-9_18
http://www.juliansanchez.com/2011/02/04/the-trouble-with-balance-metaphors/
http://www.juliansanchez.com/2011/02/04/the-trouble-with-balance-metaphors/
https://www.schneier.com/crypto-gram/archives/2001/0930.html#8
https://www.schneier.com/crypto-gram/archives/2001/0930.html#8
http://www.wired.com/politics/security/commentary/securitymatters/2008/01/securitymatters_0124?currentPage=all
http://www.wired.com/politics/security/commentary/securitymatters/2008/01/securitymatters_0124?currentPage=all
http://www.wired.com/politics/security/commentary/securitymatters/2008/01/securitymatters_0124?currentPage=all
https://www.internetsociety.org/doc/contractual-anonymity
https://www.internetsociety.org/doc/contractual-anonymity
http://dx.doi.org/10.1007/3-540-36467-6_4
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176

bibliography 205

[147] Victor Shoup and Rosario Gennaro. “Securing Threshold
Cryptosystems against Chosen Ciphertext Attack”. In: eu-
rocrypt ’98. lncs vol. 1403. Springer, 1998, pp. 1–16. doi:
10.1007/BFb0054113 (cit. on pp. 64, 66, 94).

[148] Joseph H. Silverman and John T. Tate. Rational Points on Ellip-
tic Curves. Undergraduate Texts in Mathematics. Springer, 2015.
isbn: 978-3-319-18587-3. doi: 10.1007/978-3-319-18588-0 (cit. on
p. 102).

[149] Radu Sion and Bogdan Carbunar. “On the Practicality of Pri-
vate Information Retrieval”. In: ndss 2007. The Internet Soci-
ety, 2007. url: https://www.internetsociety.org/doc/practicality-
private-information-retrieval (cit. on p. 168).

[150] Nigel P. Smart. Cryptography Made Simple. Information Security
and Cryptography. Springer, 2016. isbn: 978-3-319-21935-6. doi:
10.1007/978-3-319-21936-3 (cit. on pp. 26, 54).

[151] Daniel J. Solove. “A Taxonomy of Privacy”. In:University of Penn-
sylvania Law Review 154.3 (Jan. 2006), pp. 477–560 (cit. on pp. 2,
3).

[152] Daniel J. Solove. “‘I’ve Got Nothing to Hide’ and Other Mis-
understandings of Privacy”. In: San Diego Law Review 44 (Nov.
2007), pp. 745–772 (cit. on p. 2).

[153] Sound Intelligence. Sigard, aggression detection. Accessed: Jan-
uary 14, 2017. url: http://www.soundintel .com/uploads/pdf/
UK/Sound%20Intelligence%20Brochure%20%28EN%29.pdf
(cit. on pp. 50, 51).

[154] Speed Check Services. SPECS3 Network average speed check solu-
tions. Accessed: January 14, 2017. url: http://www.speedcheck.
co.uk/images/SCS_SPECS3_Brochure.pdf (cit. on p. 97).

[155] M. Stadler. “Cryptographic Protocols for Revocable Privacy”.
PhD thesis. Zürich: Swiss Federal Institute of Technology, 1996
(cit. on pp. 6, 37).

[156] Volker Strassen. “Gaussian elimination is not optimal”. English.
In: Numerische Mathematik 13.4 (Aug. 1969), pp. 354–356. issn:
0029-599X. doi: 10.1007/BF02165411 (cit. on p. 174).

[157] Stuart G. Stubblebine, Paul F. Syverson, and David M. Gold-
schlag. “Unlinkable serial transactions: protocols and applica-
tions”. In: ACM Transactions on Information System Security 2.4
(1999), pp. 354–389. issn: 1094-9224. doi: 10 . 1145 / 330382 .
330384 (cit. on p. 166).

http://dx.doi.org/10.1007/BFb0054113
http://dx.doi.org/10.1007/978-3-319-18588-0
https://www.internetsociety.org/doc/practicality-private-information-retrieval
https://www.internetsociety.org/doc/practicality-private-information-retrieval
http://dx.doi.org/10.1007/978-3-319-21936-3
http://www.soundintel.com/uploads/pdf/UK/Sound%20Intelligence%20Brochure%20%28EN%29.pdf
http://www.soundintel.com/uploads/pdf/UK/Sound%20Intelligence%20Brochure%20%28EN%29.pdf
http://www.speedcheck.co.uk/images/SCS_SPECS3_Brochure.pdf
http://www.speedcheck.co.uk/images/SCS_SPECS3_Brochure.pdf
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1145/330382.330384
http://dx.doi.org/10.1145/330382.330384

206 bibliography

[158] Fred Teeven. Beleidsvisie ANPR. Dutch. Feb. 2013. url: https://
www.rijksoverheid.nl/documenten/kamerstukken/2013/02/13/
beleidsvisie-anpr (cit. on p. 41).

[159] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith.
“BLAC: Revoking Repeatedly Misbehaving Anonymous Users
without Relying on TTPs”. In: ACM Transactions on Information
Systems Security 13.4 (2010), 39:1–39:33. issn: 1094-9224. doi: 10.
1145/1880022.1880033 (cit. on pp. 32, 50, 53, 58, 93, 164, 165).

[160] Patrick P. Tsang, Apu Kapadia, Cory Cornelius, and Sean W.
Smith. “Nymble: Blocking Misbehaving Users in Anonymizing
Networks”. In: IEEE Transactions on Dependable and Secure Com-
puting 8.2 (2011), pp. 256–269. issn: 1545-5971. doi: 10 . 1109 /
TDSC.2009.38 (cit. on pp. 32, 93).

[161] Eric R. Verheul. Practical backward unlinkable revocation in FIDO,
German e-ID, Idemix andU-Prove. Cryptology ePrint Archive, Re-
port 2016/217. 2016. url: http://eprint.iacr.org/2016/217 (cit. on
p. 152).

[162] PimVullers andGergely Alpár. “Efficient Selective Disclosure on
Smart Cards Using Idemix”. In: idman 2013. ifip aict vol. 396.
Springer, 2013, pp. 53–67. doi: 10.1007/978- 3- 642- 37282- 7_5
(cit. on pp. 9, 135, 136, 160).

[163] Lawrence Wright. “The Spymaster”. In: The New Yorker (Jan.
2008). url: http://www.newyorker.com/magazine/2008/01/21/
the-spymaster (cit. on p. 5).

[164] Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa
Syta, Chao Teng, and Bryan Ford. “AnonRep: Towards
Tracking-Resistant Anonymous Reputation”. In: nsdi 2016.
usenix, Mar. 2016, pp. 583–596. isbn: 978-1-931971-29-4.
url: https : / /www . usenix . org / conference / nsdi16 / technical -
sessions/presentation/zhai (cit. on p. 93).

[165] Dong Zheng, Xiangxue Li, Changshe Ma, Kefei Chen, and Jian-
hua Li. Democratic Group Signatures with Threshold Traceability.
Cryptology ePrint Archive, Report 2008/112. 2008. url: http://
eprint.iacr.org/2008/112 (cit. on p. 93).

https://www.rijksoverheid.nl/documenten/kamerstukken/2013/02/13/beleidsvisie-anpr
https://www.rijksoverheid.nl/documenten/kamerstukken/2013/02/13/beleidsvisie-anpr
https://www.rijksoverheid.nl/documenten/kamerstukken/2013/02/13/beleidsvisie-anpr
http://dx.doi.org/10.1145/1880022.1880033
http://dx.doi.org/10.1145/1880022.1880033
http://dx.doi.org/10.1109/TDSC.2009.38
http://dx.doi.org/10.1109/TDSC.2009.38
http://eprint.iacr.org/2016/217
http://dx.doi.org/10.1007/978-3-642-37282-7_5
http://www.newyorker.com/magazine/2008/01/21/the-spymaster
http://www.newyorker.com/magazine/2008/01/21/the-spymaster
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai
http://eprint.iacr.org/2008/112
http://eprint.iacr.org/2008/112

NOTATION AND SYMBOLS

This chapter provides a brief overview of the frequently used notation
and symbols. In a few situations we deviate from the common notation
to prevent symbol collisions.

notation

Sets
a ∈R A choose a uniformly at random from the

set A
Section 2.1

[n] the set {1, . . . , n} Section 2.1
|A| the cardinality of A Section 2.1

Strings
{0, 1}∗ the set of all binary strings Section 2.1
{0, 1}ℓ the set of all strings binary strings of

length ℓ
Section 2.1

|x| the length in bits of a string x Section 2.1
x ∥ y the concatenation of the strings x and y Section 2.1

Matrices and vectors
D, Q, R, . . . matrices (set in bold) Section 2.1
0 all-zero matrix Section 7.2
I identity matrix Section 7.2
ei the ith basis vector Section 7.1
⊕ component wise XOR on bits, strings,

vectors and matrices
Section 2.1

Algorithms and adversaries
A,B, . . . algorithms and adversaries Section 2.1
x ← A(y) random variable output x of A when

run on y
Section 2.1

Logarithms
lg a the base-2 logarithm of a Section 2.1
ln a the natural logarithm of a Section 2.1

207

208 notation and symbols

general symbols

c ciphertext
ê bilinear map from G1 ×G2 to GT Section 2.2.2
f polynomial, usually a secret-sharing

polynomial
g generator of G or G1 Section 2.2
gT generator of GT Section 2.2.2
h generator of G2 Section 2.2.2
i, j, ij indices
k threshold Section 2.5
ℓ security parameter Section 2.4
m message
n number of parties
p the order of the cyclic group Section 2.2
rA additive share for subset A Section 2.5.2
si Shamir secret share Section 2.5
C(a1, a2) anonymous credential over the

attributes a1 and a2

Section 2.7

H, H′, . . . Cryptographic hash functions
ϵ epoch
λIi Lagrange coefficient for an index i in a

coalition I
Section 2.5

λIi (X) Lagrange polynomial for an index i in a
coalition I

Section 2.5

π a (signature) proof of knowledge
F field
G generic cyclic group, usually of prime

order p
G1,G2,GT cyclic groups in bilinear setting of

prime order p
Zp the integers modulo p, usually a field Section 2.1
Z∗p the units of Zp Section 2.1
⊤ denotes success Section 2.1
⊥ denotes failure or error Section 2.1

symbols used in Chapter 4

c1, c2 Elgamal ciphertext components Scheme 4.7
c, ĉ, c̃ ciphertext pairs of shuffled and

encrypted decryption shares
Scheme 4.16

notation and symbols 209

d response of ZK-proof in tdh2
ciphertext

Scheme 4.1

di response of ZK-proof in tdh2
decryption share

Scheme 4.1

e challenge of ZK-proof in tdh2
ciphertext

Scheme 4.1

ei challenge of ZK-proof in tdh2
decryption share

Scheme 4.1

ḡ tdh2 extra generator Scheme 4.1
gϵ generator for epoch ϵ Scheme 4.8
r linking token Scheme 4.8
t transaction record Scheme 4.8
t1, t2 linking information Scheme 4.8
u part of the tdh2 ciphertext Scheme 4.1
ui part of the tdh2 decryption share Scheme 4.1
v part of the tdh2 ciphertext Scheme 4.1
w tdh2 and moderators public key Scheme 4.1
wi tdh2 public key corresponding to κi Scheme 4.1
y ElGamal secret key Scheme 4.7
yi private ElGamal key of anonymous

moderator i
Scheme 4.16

x user secret key Scheme 4.8
z zero-sharing polynomial Scheme 4.11
H hash function from {0, 1}∗ to G1 Scheme 4.8
H′ hash function from {0, 1}∗ to Zp Scheme 4.1
H′′ hash function from {0, 1}∗ to {0, 1}ℓ Scheme 4.11
L tdh2 label Scheme 4.1
Y ElGamal public key Scheme 4.7
Yi public ElGamal key of anonymous

moderator i
Scheme 4.16

Y′ random user’s public key Scheme 4.16
Ŷi shuffled and randomized moderator

public key
Scheme 4.16

T encrypted linking token Scheme 4.8
VK tdh2 verification key Scheme 4.1
αi a public key randomizer used by the SP Scheme 4.16
δi tdh2 decryption key of party i Scheme 4.1
δi voting key of moderator i Scheme 4.8
ζ secret for zero-sharing polynomial Scheme 4.11
θ permutation key Scheme 4.11

210 notation and symbols

κ tdh2 private key Scheme 4.1
κi tdh2 secret share of private key Scheme 4.1
π transaction proof Scheme 4.8
πa, πb, πc user shuffle proofs Scheme 4.16
σ permutation of moderator indices Scheme 4.11
σSP, σU SP and user permutations of moderator

keys
Scheme 4.16

τ transaction Scheme 4.8
ψ tdh2 ciphertext Scheme 4.1
ψi tdh2 decrypted ciphertext share Scheme 4.1

symbols used in Chapter 5

cim component in vector Ci for message m Scheme 5.25
e hgde secret key Scheme 5.10
f the cubic function defining the elliptic

curve
Scheme 5.3

h the cofactor of the group on the elliptic
curve

Scheme 5.3

h1 hash function from {0, 1}ℓh to {0, 1}ℓh Section 5.4.1
h1 hash function from {0, 1}ℓh to F Section 5.4.1
ℓm number of bits used for plaintext Scheme 5.3
ℓh number of bits of hash in EZS scheme Section 5.4.1
ℓH desired number of bits used for hash

function
Scheme 5.3

ℓ′H actual number of bits used for hash
function

Scheme 5.3

ℓc number of bits used for counter Scheme 5.3
r number of corrupted senders Section 5.3.5
r̄ϵ,A base additive share for set A in epoch ϵ Section 5.4.1
s number of epochs Syntax 5.5
sϵ,i secret share of sender i in epoch ϵ Scheme 5.21
sm,i ideal secret share for message m and

sender i
Section 5.3.5

x x-coordinate on the elliptic curve Scheme 5.3
y y-coordinate on the elliptic curve Scheme 5.3
zϵ,i zero-share of sender i in epoch ϵ Section 5.4.1
zm,i ideal zero-share for message m and

sender i
Section 5.5.3

Ci vector of ciphertext shares of sender i Syntax 5.23
E elliptic curve Scheme 5.3

notation and symbols 211

E hgde public key Scheme 5.10
E′ subset of curve into which RIM maps Scheme 5.3
H1 hash function from {0, 1}ℓm+ℓc to

{0, 1}ℓ′H
Scheme 5.3

H2 hash function from {0, 1}ℓ′H to
{0, 1}ℓm+ℓc

Scheme 5.3

K hgde derived symmetric key Scheme 5.10
M set of messages, subset ofM Syntax 5.23
Sϵ,i encryption key of sender i in epoch ϵ Syntax 5.5
Zϵ,i zero-sharing key of sender i in epoch ϵ Syntax 5.16
αi part of DE ciphertext share from sender

i
Scheme 5.12

γi hgde ciphertext share component of
sender i

Scheme 5.10

κ index in hybrid argument Section 5.3.5
ρi hgde ciphertext share component of

sender i
Scheme 5.10

σi hgde ciphertext share component of
sender i

Scheme 5.10

ψ redundant injective map Definition 5.1
ψ−1 inverse redundant injective map Definition 5.1
M message space Syntax 5.5

symbols used in Chapter 6

gϵ,V generator for epoch ϵ and verifier V Section 6.1
m number of generators per epoch Section 6.5
r revocation value Section 6.1
ri ith revocation value Section 6.1
ts, te start and end time of an epoch Section 6.7.2
t∗ estimated current time Section 6.7.2
Hi hash function i of Bloom filter Section 6.7.5
MRL master revocation list containing

revocation values
Section 6.3

P false positive probability of Bloom filter Section 6.7.5
R revocation token Section 6.1
RLϵ,V revocation list for epoch ϵ and verifier V Section 6.1
RV list of credential identifiers and

revocationvalue tuples
Section 6.3

κ size of the Bloom filter Section 6.7.5

212 notation and symbols

λ number of hash functions in Bloom
filter

Section 6.7.5

ν length of the revocation list Section 6.7
TC used generators for credential C Section 6.3

symbols used in Chapter 7

ℓ size of split in subcube batch code Section 7.1.2
subset batch code parameter Section 7.1.2
depth of three representing ν
certificates

Section 7.3

m number of subdatabases in batch code Section 7.1.2
n number of PIR servers Section 7.1
q number of queries Section 7.1
r number of rows in the database Section 7.1
r′ subset batch code parameter Section 7.1.2
s number of field elements per row in the

database
Section 7.1

t subcube batch code recursion depth Section 7.1.2
vi the ith PIR query Section 7.1
w subset batch code parameter Section 7.1.2
D the PIR database Section 7.1
GF(28) Galois field of 256 elements
Ki batch code subdatabase i Section 7.2
M matrix representation of batch code Section 7.2
N total number of blocks in all

subdatabases in batch code
Section 7.1.2

Q matrix of queries Section 7.1
α subset batch code parameter Section 7.1.2
ν total number of certificates Section 7.3

GLOSSARY

abc attribute-based credential
ae authenticated encryption
anpr automatic number plate recognition
bkde batched key-evolving distributed encryption
blac blacklistable anonymous credentials
ca certificate authority
cca chosen ciphertext attack
cpir computational pir
crl certificate revocation list
daa direct anonymous attestation
dbdh decisional bilinear Diffie-Hellman
ddh decisional Diffie-Hellman
de distributed encryption
dl discrete logarithm
ecc elliptic curve cryptography
gdpr general data protection regulation
hgde Hoepman and Galindo’s de scheme
ibe identity-based encryption
ip internet protocol
it-pir information-theoretic pir
kde key-evolving distributed encryption
klpd koninklijke landelijke politie dienst (Dutch)
mpc multi-party computation
ocsp online certificate status protocol
pir private information retrieval
ppt probabilistic polynomial time
sct signed certificate timestamp
sdh strong Diffie-Hellman
ttp trusted third party
vlr verifier-local revocation
vss verifiable secret-sharing

213

INDEX

abc, 8, 26, 135
revocation, 9, 135
revocation scheme, 141

anonymous credential, see also
abc, 26, 60

anpr system, 97
attribute-based credential, see

abc
avss protocol, 23

batch codes, 170
subcube, 171
subset, 172

bbs+ credential, 28
bbs+ signature, 28
bilinear map, 14
blac, 53
blacklistable anonymous

credentials, see blac
bloom filter, 162

canvas cutters, 40, 97
certificate authority, 178
certificate transparency, 169,

178
credential, 26

daa, 136, 137, 165
dbdh-3 problem, 18
dbdh-3b problem, 19
ddh problem, 18
de, see distributed encryption
decisional bilinear

Diffie-Hellman
problem, 18

decisional Diffie-Hellman
problem, 18

direct anonymous attestation,
see daa

discrete logarithm problem, 18
distributed encryption, 51, 97,

104
forward-security game,

106
key-evolving scheme, 121
scheme, 110
scheme, by Hoepman and

Galindo, 108
syntax, 104

distributed encryption,
batched, 124

forward-security game,
125

key-evolving scheme, 126
syntax, 124

dl problem, 18

ElGamal encryption, 70
ElGamal randomization, 71
escrow agent, 140
evolving zero-sharing

forward-security game, 117
scheme, 118
syntax, 115

group signature, 53

interactive sensor, 39
irma, 8, 135
issuer, 27

Lagrange coefficient, 20
Lagrange polynomial, 20

matrix multiplication, 174
Strassen’s algorithm, 174

moderator, 60

negligible, 16

215

216 index

non-interactive sensor, 38
non-interactive

zero-knowledge
proof, 26

pairing, see bilinear map
Pedersen’s vss protocol, 22
polynomial time, 15
ppt, 16
private information retrieval,

167
computational, 167
Goldberg’s scheme, 169
information theoretic, 167

probabilistic polynomial time,
see ppt

q-sdh problem, 19
q-Strong Diffie-Hellman

problem, 19

random oracle model, 16
real-or-random threshold cca

game, 69
redundant injective map, 100

instantiation, 101
programmable, 101

revocable privacy, 6, 35, 57, 97
revocation authority, 140

secret sharing, 20
additive, 20
Shamir’s, 20
share conversion, 25

Strassen’s algorithm, 174
Sybil attack, 62

tdh2’ scheme, 64
threshold cca game, 66
threshold encryption, 63, 64

unavoidability game, 149
unforgeability, 27

game, 150
unlinkability, 27, 33

game, 145
user, 27

verifiable secret sharing
scheme, 21

verifier, 27
verifier-local revocation, see vlr
vlr, 136, 165
vote-to-link, 57

basic scheme, 71
fully anonymous scheme,

86
moderator anonymity

game, 84
outsider anonymous

scheme, 83
user anonymity game, 74

vss scheme, 21

zero-knowledge proof, 25

ABOUT THE AUTHOR

Wouter Lueks was born in Emmen, the Netherlands, on December 28,
1986. He attended secondary education at the Esdal College in Emmen,
where he graduated in 2005. He then started a double-degree program
inMathematics and Computing Science at the University of Groningen,
the Netherlands. In 2008, he received his bachelor’s degrees, while in
2011 he received his master’s degrees from the same university. All four
were awarded the distinction cum laude.
From 2011 to 2016, he was a PhD student at the University of Nijme-

gen, the Netherlands, where he worked on this thesis under the super-
vision of Jaap-Henk Hoepman and Bart Jacobs. During this time, he
also worked for one and a half years on the irma project, which aims
at making attribute-based credentials practical. In the spring of 2014,
he made a research visit to the University of Waterloo, Canada to work
with Ian Goldberg on private information retrieval.
In February 2017, he started working as a post-doctoral researcher at

the IMDEA Software Institute in Madrid. There, he collaborates with
Carmela Troncoso on electronic voting systems and privacy-enhancing
technologies.

list of publications

The following is a list of academic publications that Wouter authored
or co-authored (in reverse-chronological order):

1. Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman, and Pim
Vullers. “Fast revocation of attribute-based credentials for both
users and verifiers”. In: Computers & Security 67 (2017), pp. 308–
323. issn: 0167-4048. doi: 10.1016/j.cose.2016.11.018.

2. Wouter Lueks, Maarten H. Everts, and Jaap-Henk Hoepman.
“Vote to Link: Recovering from Misbehaving Anonymous Users”.
In: wpes 2016. acm, 2016, pp. 111–122. doi: 10 . 1145/2994620.
2994634.

3. Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman, and Pim
Vullers. “Fast Revocation of Attribute-Based Credentials for
Both Users and Verifiers”. In: ifip sec 2015. ifip aict vol. 455.
Springer, 2015, pp. 463–478. doi: 10.1007/978-3-319-18467-8_31.

217

http://dx.doi.org/10.1016/j.cose.2016.11.018
http://dx.doi.org/10.1145/2994620.2994634
http://dx.doi.org/10.1145/2994620.2994634
http://dx.doi.org/10.1007/978-3-319-18467-8_31

218 about the author

4. Wouter Lueks, MaartenH. Everts, and Jaap-HenkHoepman. “Re-
vocable Privacy: Principles, Use Cases, and Technologies”. In:
apf 2015. lncs vol. 9484. Springer, 2016, pp. 124–143. doi:
10.1007/978-3-319-31456-3_7.

5. Jaap-Henk Hoepman, Wouter Lueks, and Sietse Ringers. “On
Linkability and Malleability in Self-blindable Credentials”. In:
wistp 2015. lncs vol. 9311. Springer, 2015, pp. 203–218. doi:
10.1007/978-3-319-24018-3_13.

6. Wouter Lueks and Ian Goldberg. “Sublinear Scaling for Multi-
Client Private Information Retrieval”. In: fc 2015. lncs vol. 8975.
Springer, 2015, pp. 168–186. doi: 10.1007/978-3-662-47854-7_10.

7. Jaap-Henk Hoepman, Bert-Jaap Koops, and Wouter Lueks.
“Anoniem misdaad melden via Internet: technische en juridis-
che risico’s”. Dutch. In: Nederlands Juristenblad 43 (Dec. 2014),
pp. 3056–3063.

8. Wouter Lueks, Jaap-Henk Hoepman, and Klaus Kursawe.
“Forward-Secure Distributed Encryption”. In: pets 2014. lncs
vol. 8555. Springer, 2014, pp. 123–142. doi: 10.1007/978-3-319-
08506-7_7.

9. Bassam Mokbel, Wouter Lueks, Andrej Gisbrecht, and Bar-
bara Hammer. “Visualizing the quality of dimensionality
reduction”. In: Neurocomputing 112 (2013), pp. 109–123. doi:
10.1016/j.neucom.2012.11.046.

10. Gergely Alpár, Lejla Batina, and Wouter Lueks. “Designated
Attribute-Based Proofs for RFID Applications”. In: rfidsec 2012.
lncs vol. 7739. Springer, 2013, pp. 59–75. doi: 10.1007/978- 3-
642-36140-1_5.

11. Bassam Mokbel, Wouter Lueks, Andrej Gisbrecht, Michael Biehl,
and Barbara Hammer. “Visualizing the quality of dimensionality
reduction”. In: esann 2012. 2012. url: https://www.elen.ucl.ac.
be/Proceedings/esann/esannpdf/es2012-99.pdf.

12. Andrej Gisbrecht, Wouter Lueks, Bassam Mokbel, and Barbara
Hammer. “Out-of-sample kernel extensions for nonparametric
dimensionality reduction”. In: esann 2012. 2012. url: https :
/ /www.elen .ucl . ac .be/Proceedings/esann/esannpdf /es2012 -
25.pdf.

http://dx.doi.org/10.1007/978-3-319-31456-3_7
http://dx.doi.org/10.1007/978-3-319-24018-3_13
http://dx.doi.org/10.1007/978-3-662-47854-7_10
http://dx.doi.org/10.1007/978-3-319-08506-7_7
http://dx.doi.org/10.1007/978-3-319-08506-7_7
http://dx.doi.org/10.1016/j.neucom.2012.11.046
http://dx.doi.org/10.1007/978-3-642-36140-1_5
http://dx.doi.org/10.1007/978-3-642-36140-1_5
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2012-99.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2012-99.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2012-25.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2012-25.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2012-25.pdf

about the author 219

13. Wouter Lueks, Ivan Viola, Matthew van der Zwan, Henk Bekker,
and Tobias Isenberg. “Spatially Continuous Change of Abstrac-
tion in Molecular Visualization”. In: biovis 2011. Extended ab-
stract and poster. 2011.

14. Matthew van der Zwan, Wouter Lueks, Henk Bekker, and Tobias
Isenberg. “Illustrative Molecular Visualization with Continuous
Abstraction”. In: Computer Graphics Forum 30.3 (2011), pp. 683–
690. doi: 10.1111/j.1467-8659.2011.01917.x.

http://dx.doi.org/10.1111/j.1467-8659.2011.01917.x

T ITLES IN THE IPA DISSERTAT ION SER IES
S INCE 20 1 4

J. van den Bos. Gathering Evi-
dence: Model-Driven Software En-
gineering in Automated Digital
Forensics. Faculty of Science,
UvA. 2014-01

D. Hadziosmanovic. The Pro-
cess Matters: Cyber Security in In-
dustrial Control Systems. Faculty
of Electrical Engineering, Math-
ematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recom-
mender Systems. Faculty of Electri-
cal Engineering, Mathematics &
Computer Science, UT. 2014-03

C.-P. Bezemer. Performance
Optimization of Multi-Tenant
Software Systems. Faculty of
Electrical Engineering, Mathe-
matics, and Computer Science,
TUD. 2014-04

T.M. Ngo. Qualitative and Quan-
titative Information Flow Analy-
sis for Multi-threaded Programs.
Faculty of Electrical Engineering,
Mathematics & Computer Sci-
ence, UT. 2014-05

A.W. Laarman. Scalable Multi-
Core Model Checking. Faculty
of Electrical Engineering, Math-
ematics & Computer Science,
UT. 2014-06

J. Winter. Coalgebraic Charac-
terizations of Automata-Theoretic
Classes. Faculty of Science, Math-
ematics and Computer Science,
RU. 2014-07

W. Meulemans. Similarity Mea-
sures and Algorithms for Carto-
graphic Schematization. Faculty
of Mathematics and Computer
Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Explor-
ing Model-Based Testing. Faculty
of Electrical Engineering, Math-
ematics & Computer Science,
UT. 2014-09

A.P. van der Meer. Domain Spe-
cific Languages and their Type
Systems. Faculty of Mathe-
matics and Computer Science,
TU/e. 2014-10

B.N. Vasilescu. Social Aspects of
Collaboration in Online Software
Communities. Faculty of Math-
ematics and Computer Science,
TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the
Gap between Active Learning and
Real-World Systems. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2014-12

N. Noroozi. Improving Input-
Output Conformance Testing Theo-
ries. Faculty of Mathematics and
Computer Science, TU/e. 2014-13

M. Helvensteijn. Abstract Delta
Modeling: Software Product Lines
and Beyond. Faculty of Math-
ematics and Natural Sciences,
UL. 2014-14

P. Vullers. Efficient Implemen-
tations of Attribute-based Creden-
tials on Smart Cards. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2014-15

F.W. Takes. Algorithms for An-
alyzing and Mining Real-World
Graphs. Faculty of Mathe-
matics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of
Record Linkage. Faculty of Math-
ematics and Natural Sciences,
UL. 2014-17

G. Alpár. Attribute-Based Identity
Management: Bridging the Crypto-
graphic Design of ABCs with the
Real World. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2015-01

A.J. van der Ploeg. Efficient
Abstractions for Visualization and
Interaction. Faculty of Science,
UvA. 2015-02

R.J.M. Theunissen. Supervisory
Control in Health Care Systems.
Faculty of Mechanical Engineer-
ing, TU/e. 2015-03

T.V. Bui. A Software Architecture
for Body Area Sensor Networks:
Flexibility and Trustworthiness.
Faculty ofMathematics and Com-
puter Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’
Teamwork from within the IDE.

Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TUD. 2015-05

T. Espinha. Web Service Grow-
ing Pains: Understanding Ser-
vices and Their Clients. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network
Aggregation for Vehicular Net-
works. Faculty of Electrical En-
gineering, Mathematics & Com-
puter Science, UT. 2015-07

E. Costante. Privacy throughout
the Data Cycle. Faculty of Math-
ematics and Computer Science,
TU/e. 2015-08

S. Cranen. Getting the point —
Obtaining and understanding fix-
points in model checking. Faculty
of Mathematics and Computer
Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2015-10

J.E.J. de Ruiter. Lessons learned
in the analysis of the EMV and
TLS security protocols. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2015-11

Y. Dajsuren. On the Design of an
Architecture Framework and Qual-
ity Evaluation for Automotive Soft-
ware Systems. Faculty of Math-
ematics and Computer Science,
TU/e. 2015-12

J. Bransen. On the Incremen-
tal Evaluation of Higher-Order At-

tribute Grammars. Faculty of Sci-
ence, UU. 2015-13

S. Picek. Applications of Evolu-
tionary Computation to Cryptol-
ogy. Faculty of Science, Math-
ematics and Computer Science,
RU. 2015-14

C. Chen. Automated Fault Local-
ization for Service-Oriented Soft-
ware Systems. Faculty of Electrical
Engineering, Mathematics, and
Computer Science, TUD. 2015-15

S. te Brinke. Developing Energy-
Aware Software. Faculty of Electri-
cal Engineering, Mathematics &
Computer Science, UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Sys-
tems. Faculty of Science, Math-
ematics and Computer Science,
RU. 2015-17

J.C. Rot. Enhanced coinduction.
Faculty of Mathematics and Nat-
ural Sciences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2015-19

D. Gebler. Robust SOS Spec-
ifications of Probabilistic Pro-
cesses. Faculty of Sciences, De-
partment of Computer Science,
VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying
functional behaviour of concurrent
programs. Faculty of Electrical En-
gineering, Mathematics & Com-
puter Science, UT. 2015-21

R.J. Krebbers. The C standard
formalized in Coq. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming.
Faculty of Mathematics and Nat-
ural Sciences, UL. 2016-01

S.J.C. Joosten. Verification of
Interconnects. Faculty of Math-
ematics and Computer Science,
TU/e. 2016-02

M.W. Gazda. Fixpoint Logic,
Games, and Relations of Con-
sequence. Faculty of Mathe-
matics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Anal-
ysis and Verification of Embedded
Systems for Healthcare. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2016-04

P.M. Heck. Quality of Just-in-
Time Requirements: Just-Enough
and Just-in-Time. Faculty of
Electrical Engineering, Mathe-
matics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Mod-
els to Safety Assurance – Apply-
ingModel-Based Techniques to Sup-
port Safety Assurance. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2016-06

B. Ege. Physical Security Analysis
of Embedded Devices. Faculty of

Science, Mathematics and Com-
puter Science, RU. 2016-07

A.I. van Goethem. Algorithms for
Curved Schematization. Faculty
of Mathematics and Computer
Science, TU/e. 2016-08

T. van Dijk. Sylvan: Multi-
core Decision Diagrams. Faculty
of Electrical Engineering, Math-
ematics & Computer Science,
UT. 2016-09

I. David. Run-time resource
management for component-based
systems. Faculty of Mathe-
matics and Computer Science,
TU/e. 2016-10

A.C. van Hulst. Control Synthe-
sis using Modal Logic and Partial
Bisimilarity – A Treatise Supported
by Computer Verified Proofs. Fac-
ulty of Mechanical Engineering,
TU/e. 2016-11

A. Zawedde. Modeling the Dy-
namics of Requirements Process Im-
provement. Faculty of Mathe-
matics and Computer Science,
TU/e. 2016-12

F.M.J. van den Broek. Mobile
Communication Security. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2016-13

J.N. van Rijn. Massively Collabo-
rative Machine Learning. Faculty
of Mathematics and Natural Sci-
ences, UL. 2016-14

M.J. Steindorfer. Efficient Im-
mutable Collections. Faculty of Sci-
ence, UvA. 2017-01

W. Ahmad. Green Computing:
Efficient Energy Management of
Multiprocessor Streaming Applica-
tions via Model Checking. Faculty
of Electrical Engineering, Math-
ematics & Computer Science,
UT. 2017-02

D. Guck. Reliable Systems – Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical En-
gineering, Mathematics & Com-
puter Science, UT. 2017-03

H.L. Salunkhe. Modeling and
Buffer Analysis of Real-time
Streaming Radio Applications
Scheduled on Heterogeneous Mul-
tiprocessors. Faculty of Mathe-
matics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of
private matters: Privacy of commu-
nication on the Internet and in the
Internet of Things (IoT). Faculty of
Science, Mathematics and Com-
puter Science, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Fac-
ulty of Mathematics and Com-
puter Science, TU/e. 2017-06

D. Landman. Reverse Engineer-
ing Source Code: Empirical Studies
of Limitations and Opportunities.
Faculty of Science, UvA. 2017-07

W. Lueks. Security and Privacy
via Cryptography – Having your
cake and eating it too. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2017-08

	Acknowledgments
	Summary
	Samenvatting
	Introduction
	The importance of privacy
	Research question
	Privacy versus security
	The efficiency of privacy-enhancing technologies

	Organization of this thesis
	Contribution per chapter

	Preliminaries
	Notation
	Groups and bilinear maps
	Cyclic groups
	Bilinear maps

	Modelling security and adversaries
	Random oracle model

	Cryptographic assumptions
	Secret sharing
	Distributed generation of secret shares
	Non-interactively generating pseudorandom secret-sharings

	Zero-knowledge proofs of knowledge
	Anonymous credentials
	An example credential scheme: bbs+ credentials

	Revocable Privacy: principles and use cases
	Revisiting the concept of revocable privacy
	Levels of anonymity
	Improving the definition
	Systems and rules
	Architecture of a system

	Use cases
	Threshold rules
	Predicate rules
	Decision rules
	Complex rules
	Fuzzy rules

	Technologies
	Threshold primitives
	Decision primitives

	Analysis
	Limitations

	Conclusions

	Vote to Link
	System design and assumptions
	Architecture
	Threat model and security goals

	The idea of the basic scheme
	Preliminaries
	cca secure threshold encryption
	ElGamal encryption

	A vote-to-link scheme
	Our scheme
	User anonymity
	A variant: identifying misbehaving users

	A vote-to-link scheme with moderator anonymity
	The idea
	Outsider anonymity
	Full anonymity for moderators
	Shuffling randomized keys
	Probabilistic checking of moderator keys

	Vote-to-link in practice
	Choosing parameters
	Prototype implementation

	Related work
	Conclusions

	Distributed Encryption
	The idea
	Preliminaries
	A redundant injective map

	A new distributed encryption scheme
	Syntax
	Security definition
	Hoepman and Galindo's de scheme
	A new distributed encryption scheme
	Security of the de scheme

	Forward-secure DE scheme
	A key-evolution scheme
	A key-evolving distributed encryption scheme
	Applying this idea to Hoepman and Galindo's scheme

	Efficient solutions for small domains
	Syntax
	Security definition
	The scheme

	Analysis and conclusions
	Practical considerations
	Theoretical performance
	Implementation
	Conclusion

	Fast Revocation of Attribute-Based Credentials
	The idea
	Verifier-local revocation
	Our scheme

	Credentials with revocation
	The full scheme
	Security model and proofs
	Unlinkability game
	Unavoidability game

	Multiple generators
	Multiple generators for revocation
	Distinguishing credentials
	Making multiple generators work

	Integrating our scheme with bbs+ credentials
	Implementation
	How to revoke a credential
	Instantiating epochs
	How to choose the epochs
	Experiments
	The size of a revocation list

	Related work
	Discussion and conclusion

	Sublinear scaling for Private Information Retrieval
	Background
	Goldberg's robust it-pir scheme
	Batch codes
	Matrix multiplication algorithms

	Batch codes as matrix multiplication
	An example
	General batch codes as matrix multiplication
	Comparison with Strassen's algorithm

	Application: Certificate Transparency
	Proving that a certificate is included in the log
	The number of web certificates
	Retrieving proofs of inclusion using pir

	Implementation and evaluation
	Implementation
	Experiments

	Conclusions

	Conclusions
	Overview
	Future work
	General conclusions

	Bibliography
	Notation and symbols
	Glossary
	Index
	About the author

