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Abstract

We describe a model where breaking of W3 symmetry will lead to the emergence
of time and subsequently of space. Surprisingly the simplest such models which lead
to higher dimensional spacetimes are based on the four “magical” Jordan algebras
of 3x3 Hermitian matrices with real, complex, quaternion and octonion entries,
respectively. The simplest symmetry breaking leads to universes with spacetime
dimensions 3, 4, 6, and 10.
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1 Introduction

String field theory is notoriously complicated, but there is a baby version, namely
non-critical string field theory [1, 2, 3]. Non-critical string theory describes two-
dimensional quantum gravity coupled to a conformal field theory with a central
charge c < 1 and the corresponding string field theory aims to describe the dynam-
ics of merging and splitting of such strings. For c = 0 the situation is particularly
simple. One has creation and annihilation operators Ψ†(L) and Ψ(L) for spatial
universes of length L. An even simpler string field theory exists, CDT string field
theory [4]. The starting point is the continuum limit of 2d “causal dynamical tri-
angulations” (CDT) [5, 6], a limit which in the case of trivial spacetime topology is
2d quantum Horava-Lifshitz gravity [7] (for higher dimensional CDT which might
also be related to Horava-Lifshitz gravity [8], see e.g. [9, 10]). CDT string field
theory describes the dynamics of topology changes of spacetime. The Hamiltonian
involves terms like

Ψ†(L1)Ψ
†(L2)Ψ(L1 + L2), Ψ†(L1 + L2)Ψ(L2)Ψ(L1), (1)

which describe the annihilation of a universe of length L1 + L2 and the creation
of two universes of lengths L1 and L2, or the reverse process [4]. The interaction
term in the string field Hamiltonian thus contains products of three annihilation
and creation operators. The same is true for standard non-critical string theory
which is related to a special kind of W (3) symmetry which ensures that the par-
tition function can be viewed as a τ -function of certain coupling constants [11].
This led us to realize that one can obtain the CDT string field theory starting
from a so-called W (3) Hamiltonian by symmetry breaking [12]. The W (3) Hamil-
tonian has a natural, so-called absolute vacuum and offers no obvious spacetime
interpretation, but breaking the W (3)-symmetry led to a so-called physical vacuum
and the emergence of time and one spatial dimension. The purpose of this article
is to generalize the construction such that one can create universes with one time
direction and higher dimensional spaces. The simplest symmetry breaking leads to
spacetime dimensions 2+1, 3+1, 5+1 and 9+1.

In Sec. 2 we shortly review the W (3) Hamiltonian formalism introduced in [12]
and in Sec. 3 we generalize it to include internal degrees of freedom. This leads to
the introduction of the so-called magical Jordan algebras and it is the structures
of these algebras which result in spacetime dimensions 2+1, 3+1, 5+1 and 9+1.

2 The W (3) Hamiltonian

The formal definition of a W (3) algebra in terms of operators αn satisfying

[αm, αn] = mδm+n,0. (2)
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is the following

α(z) =
∑
n∈Z

αn
zn+1

, W (3)(z) =
1

3
:α(z)3 : =

∑
n∈Z

W
(3)
n

zn+3
. (3)

The normal ordering :(·): refers to the αn operators (αn to the left of αm for n > m)1

and we have

W (3)
n =

1

3

∑
k,l,m

:αkαlαm : δk+l+m,n. (4)

We then define the “absolute vacuum” |0〉 by the following condition:

αn|0〉 = 0, n < 0. (5)

and the so-called W -Hamiltonian ĤW by

ĤW := −W (3)
−2 = − 1

3

∑
k,l,m

:αkαlαm : δk+l+m,−2. (6)

Note that ĤW does not contain any coupling constants.
It was shown in [12] that by introducing a coherent state, which is an eigenstate

of α−1 and α−3 and which we denoted the “physical” vacuum state |vac〉, ĤW was
closely related to the CDT string field Hamiltonian Ĥ. We thus defined

|vac〉 ∝ eλ1α1+λ3α3|0〉, (7)

and we have
α−1|vac〉 = λ1|vac〉, α−3|vac〉 = 3λ3|vac〉. (8)

The main point is the following: because 〈vac|αn|vac〉 is different from zero for
n = −1 and n = −3, ĤW will now contain terms only involving two operators αl.
These terms can act like quadratic terms in Ĥ. At the same time the cubic terms
left in ĤW will act like the interaction terms in Ĥ, resulting in joining and splitting
of universes. Finally, the expectation values of α−1 and α−3 determine the coupling
constants of Ĥ. More precisely one has [12]

ĤW ∝ Ĥ + c4φ
†
4 + c2φ

†
2 (9)

where Ĥ is the CDT string field Hamiltonian. c4 and c2 are constants. The creation
operators φ†n are the αn, n > 0, while annihilation operators φn are related to αn,
n < 0, except that φ1 and φ3 are shifted by eigenvalues given in eq. (8), such that
φn|vac〉 = 0. Ĥ is normal ordered such that Ĥ|vac〉 = 0.

1We remark that this ordering is opposite to the standard ordering one would use in conformal
field theory. One can obtain the conventional ordering by the so-called ?-operation [3].
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By breaking the W (3) symmetry one can thus obtain CDT string field theory
except for one important point: the vacuum is not stable. The terms c4φ

†
4 + c2φ

†
2

cause universes of infinitesimal length to be created and the non-interacting part
of Ĥ, which explicitly can be written as

Ĥ0 = −
∞∑
l=1

φ†l+1lφl + µ

∞∑
l=2

φ†l−1lφl, (10)

might expand such an infinitesimal length space to macroscopic size. The relation
between the operators φl, φ

†
l and the operators Ψ(L), Ψ†(L) which annihilate and

create spatial universes of macroscopic length L is as follows

Ψ†(L) =
∑
l=0

Ll

l!
φ†l . (11)

When expressed in terms of Ψ(L) and Ψ†(L) the Hamiltonian (10) can be written
as

Ĥ0 =

∫ ∞
0

dL Ψ†(L)H0Ψ(L), H0 = −L ∂2

∂L2
+ µL, (12)

where the two terms on the rhs of eq. (12) corresponds to the two terms on the
rhs of eq. (10). It should now be clear why we denote the two terms on the rhs
of eq. (10) the kinetic and the cosmological term, respectively. H0 is the original
CDT Hamiltonian [5] for the evolution of a single 2d universe, without topology
changes. If µ > 0 a universe starting with zero (or more precisely infinitesimal)
length will have a (unnormalized) wave function and a corresponding expectation
value of the size of space at time T :

G(L, T ) = µL
e−
√
µL coth(

√
µT )

sinh2(
√
µT )

〈L〉 =
1
√
µ

tanh(
√
µT ). (13)

If µ < 0 the corresponding equations become (µ̃ = −µ):

G(L, T ) = µ̃L
e−
√
µ̃L cot(

√
µ̃ T )

sin2(
√
µ̃ T )

〈L〉 =
1√
µ̃

tan(
√
µ̃ T ). (14)

In this case the wave function only belongs to the Hilbert space of H0 for 0 < T <
π/(2
√
µ̃). At T = π/(2

√
µ̃) the universe has expansed to infinite size.

3 Generalization to higher dimensions

The above creation of space and time, described in [12], is limited to one space and
one time dimension. In order to create d-dimensional space we introduce an internal
index a, a = 1, . . . , d and consider the corresponding extended W (3) algebra. The
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classification of such W (3) algebras is closely related to the classification of Jordan
algebras (see [14] for a review of W algebras and their relations to Jordan algebras)
and surprisingly it turns out that only the four so-called magical Jordan algebras
allow us to make symmetry breakings which lead to CDT-like Hamiltonians of the
kind considered above. We will discuss the reason for that elsewhere [13], and
here we will just review how one defines the four magical Jordan algebras and the
corresponding W (3) Hamiltonians.

Let H3(F) denote the 3 × 3 Hermitian matrices with entries in F, where F =
R,C,H and O (the real numbers, the complex numbers, the quaternions and the
octonions). The H3(F)’s are real vector spaces of dimensions 6, 9, 15 and 27,
and they are Jordan algebras when one defines the algebra multiplication of two
elements as the anti-commutator of the corresponding matrices:

X ◦ Y :=
1

2
{X, Y }. (15)

If one defines the scalar product on H3(F) by

〈X, Y 〉 =
1

2
Tr (X ◦ Y ), (16)

it has an orthogonal decomposition

H3(F) = R · 13×3 ⊕ H̃3(F), (17)

where H̃3(F) denotes the traceless matrices. The H̃3(F)’s are real vector spaces
of dimensions d = 5, 8, 14, 26, respectively. Let Ea [ a = 1, . . . , d ] denote an
orthonormal basis of the vector space H̃3(F). The structure constant of the Jordan
algebra can be defined as

dabc :=
1

2
Tr ((Ea ◦ Eb) ◦ Ec). (18)

The structure constants are invariant under the action of the automorphism groups
of the algebras, which are SO(3), SU(3), USp(6) and F4 respectively. In the case
of H̃3(C) (equal as a real vector space to the Lie algebra su(3)) we can choose
as the Ea the standard Gell-Mann matrices λa of su(3), which satisfy the anti-
commutation relation

{λa, λb} =
4

3
δab · 13×3 +

1

2

∑
c

dabcλc (19)

λRa , a = 1, 3, 4, 6, 8 are 5 real, symmetric matrices and they form the 5-dimensional
basis Ea for H̃3(R). Ab = −iλb, b = 2, 5, 7 are real antisymmetric matrices. When
multiplied by i they form together with the λRa matrices the 8-dimensional basis
Ea for H̃3(C), as already mentioned. If the Ab matrices are multiplied by i, j, k,
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the generalised imaginary quaternions numbers they form together with the 5 λRa
the 14-dimensional basis Ea of H̃3(H). Finally, if the Ab matrices are multiplied
by the 7 generalised imaginary octonion numbers i, j, k, ī, j̄, k̄, ` they form together
with the λRa matrices the 26-dimensional basis Ea for H̃3(O).

The generalization of (2) - (6) is now straightforward. We define the current

α(z) =
∑
a

α(a)(z)Ea, α(a)(z) =
∑
n∈Z

α
(a)
n

zn+1
, (20)

W (3)(z) =
1

3
:Tr ((α(z) ◦ α(z)) ◦ α(z)) : =

∑
n∈Z

W
(3)
n

zn+3
, (21)

where the commutation relations are

[α(a)
m , α(b)

n ] = mδm+n,0 δa,b, (22)

and we find for the W (3) Hamiltonian the expression

ĤW := −W (3)
−2 = − 1

3

∑
k,l,m

∑
a,b,c

dabc :α
(a)
k α

(b)
l α

(c)
m : δk+l+m,−2. (23)

Again, this model only allows a spacetime interpretation after choosing a specific
coherent state. There are some interesting choices, but here we will only discuss
the simplest ones, namely some choices of breaking in the 8-direction and the 3-
direction. Instead of (7) and (8) we can choose

|vac〉8 ∝ eλ
(8)
1 α

(8)
1 +λ

(8)
3 α

(8)
3 |0〉, (24)

and we have

α
(8)
−1|vac〉8 = λ

(8)
1 |vac〉8, α

(8)
−3|vac〉8 = 3λ

(8)
3 |vac〉8. (25)

When one looks at the coefficients dab8 in order to obtain the non-interacting
part of the Hamiltonian (the equivalent of Ĥ0 given by (10)), firstly it is observed
that only coefficients daa8 are different from zero. This implies that the non-
interacting part of the Hamiltonian is diagonal in the “space” indices a. Next,
the only coefficient daaa which is different from zero is d888. Thus the only φ(a) field
which has a cubic self-interaction is the 8-field. The daa8 have the following values

daa8 =
1√
3

or − 1

2
√

3
, d888 = − 1√

3
. (26)

If we use the vacuum |vac〉8, the two groups will result in Hamiltonians with op-
posite signs. Let us assume that the symmetry breaking is chosen such that the
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non-interacting Hamiltonians with daa8 > 0 will correspond to the CDT Hamil-
tonians of the form (12), only carrying now an index a. The Hamiltonians with
negative daa8 will now have a negative kinetic term. We have several options when
addressing the negative Hamiltonians. The state |l〉(a) = (φ

(a)
l )†|vac〉 has macro-

scopic length L = 0. This wave function is basically l-times the derivative of δ(L).
In the case where the internal index a is such that the kinetic part of the Hamilto-
nian Ĥ

(a)
0 is positive, the time evolution of such an initial state, created from the

vacuum by the creation operators in (9) (with internal index a), will have the time
evolution shown in eqs. (13) or (14) (ignoring the cubic interaction terms in the
Hamiltonian). In some time interval the wave functions thus belong to the Hilbert
space of Hamiltonian. However, if the internal index a is such that the kinetic term
of Ĥ

(a)
0 is negative, the time evolution does not give us an acceptable wave function

(it is obtained from (13) by changing the sign of T ). Thus we can choose to insist
that a macroscopic state with macroscopic length is never created in this way for
modes where daa8 is negative. Let us first accept this viewpoint and assume that
macroscopic directions with daa8 < 0 are not excited by acting with φ

(a)†
l on |0〉8.

When we then look at the four magical algebras, we have for H̃3(R) two a
where daa8 = 1/

√
3. For H̃3(C) we have three a’s where daa8 = 1/

√
3. For H̃3(H)

we have five a’s where daa8 = 1/
√

3 and finally for H̃3(O) we have nine a’s where
daa8 = 1/

√
3. The symmetry breaking corresponds to breaking the automorphism

group of the W (3) algebras from SO(3) to SO(2), from SU(3) to SO(3), from
USp(6) to SO(5) and finally from F4 to SO(9). The extended spacetime dimensions
will be (including the time) 2+1, 3+1, 5+1 and 9+1 which are the dimensions of the
classical superstrings (the quantum superstring only survives in the ten-dimensional
case).

However, it is possible to take another point of view. If we consider the modes
αl or φl as the fundamental variables, it is up to us to find a continuum length
interpretation. For the positive Hamiltonian (11) was fine. If we obtain a negative
Hamiltonian with this prescription, we are free to change (11) to

Ψ†(L) =
∑
l=0

(−L)l

l!
φ†l . (27)

This will simple change the sign of L and thus the sign of the Hamiltonian since
it is linear in L. With such a change for the a’s where the kinetic part of Ĥ is
negative, all directions now have a positive kinetic Hamiltonian and all directions
now have the potential to develop a macroscopic length. However, there will not
isotropy between the directions anymore since the values of |daa8| will fall in three
groups so the global symmetry in space will be more complicated.

Let us finally mention that we can refine the symmetry breaking by multiplying
(24) by a coherent state operator in the 3-direction

|vac〉8,3 ∝ eλ
(3)
1 α

(3)
1 |vac〉8. (28)
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With this choice, the kinetic terms will be as before, positive and negative. If we
set the L assignment mentioned above such that all kinetic terms become positive,
the mass matrix takes a form such that we have 2, 3, 5 or 9 space directions which
follow eq. (14), i.e. expand to infinity, and the rest of the space directions, 2, 4, 8
or 16, stay bounded by a fixed radius, like in eq. (13). Especially, in the case of
H̃3(O), the number of space directions expanding to infinity is 9 and the number of
space directions staying compact is 16. The reader might recall that these numbers
of space dimensions (non-compact and compact) are also encountered in the case
of the heterotic string. Thus, by imposing an additional symmetry breaking in
the 3-direction of the internal space we have obtained symmetry breaking patterns
which resemble the first ones discussed, where we simply disregarded directions
with negative kinetic terms. A more detailed analysis of the symmetry breaking
pattern will appear elsewhere [13].

4 Discussion

The starting point for introducing the above mentioned model was that even the
baby versions of string field theory, the non-critical string field theories, tell us
surprising little about the actual creation of the universe. We wanted a starting
point from which space and time could emerge, maybe (illustrating our lack of
creativity) by some symmetry breaking. Such a toy model was presented in [12]
and by construction it was a 1+1 dimensional model. We have now tried to gen-
eralize this approach to higher dimensions, to create some dimension enhancement
mechanism, somewhat inspired by string theory where the dimension of spacetime
is “just” given by the number of Gaussian fields Xa which appears in the string
action. Since our starting point was a W (3) algebra, we were naturally led to W (3)

algebras with intrinsic symmetry. These are related to Jordan algebras and to our
surprise, only the four so-called magical Jordan algebras seemed to lead to a sim-
ple generalization of the one-component model studied in [12]. Of course a large
number of questions need to be clarified. Let us discuss a number of the issues.

Firstly, we have not at all discussed any dynamical mechanism leading to the
symmetry breaking of our W (3) model. If it is spontaneous, we have not yet found
any natural mechanism which would lead to such symmetry breaking. However,
one can imagine other ways of realizing the symmetry breaking. It is possible to
have an interaction such that

|vac〉λ3,λ1 ←→ |vac〉λ′3,λ′1 ⊗ |vac〉λ′′3 ,λ′′1 . (29)

Details of how to implement this will be published elsewhere [13]. If we denote
the theory described by ĤW as a “first quantized theory”, it would represent a
“second quantization”, in the sense that we then introduce a quantum theory
for the λ’s, which were before just c-numbers which labeled the different “vacua”
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and thus different coupling constants of the universes created. Via an interaction
which allows the process (29), the absolute vacuum |0〉 = |vac〉0,0 can become a
physical vacuum |vac〉λ3,λ1 and then time will emerge, as described in [12]. After

the emergence of time ĤW can trigger the creation of macroscopic space.
Secondly, how should we really think about the W (3) symmetry? The four

magical Jordan algebras lead to four classical W (3) symmetries. However, it is not
easy to promote these symmetries to quantum symmetries [15]. The commutators

[W
(3)
m ,W

(3)
n ] may lead to W (4) operators. For a number of W (3) algebras these W (4)

operators can be rewritten in a consistent way as a product of W (2) operators (i.e.
Virasoro algebra operators), and we have a closed W (2), W (3) algebra realized via
the free bosonic currents α(z) defined as in (3). However, for the four magical
algebras this does not work. These algebras then have to be viewed as embedded
in some larger algebras. Whether it should be the W (∞) algebra, which contains all
higher spin components W (N), or, as suggested in [16], one should use a different
decomposition, is not known. Following the line of thinking in [16], there seems to
be an interesting algebraic structure related to the magical Jordan algebras, even
at the quantum level. This is due to some interesting algebraic properties of the
structure constants dabc for the magical Jordan algebras. Naively, the extended W
algebra consists of

W (2|α,β)(z) =
1

2

∑
a,b

δab : ∂αα(a)(z)∂βα(b)(z) :,

W (3|α,β,γ)(z) =
1

3

∑
a,b,c

dabc :∂αα(a)(z)∂βα(b)(z)∂γα(c)(z) :,

W (4|α,β,γ,δ)(z) =
1

4

∑
a,b,c,d,e

dabedcde :∂αα(a)(z)∂βα(b)(z)∂γα(c)(z)∂δα(d)(z) :,

... (30)

where α, β, γ, δ, . . . run 0,1,2,. . . and indicate the number of derivatives of z.
However, some generators are not independent because of special properties of
structure constants. As examples of such properties we mention∑

b

dabb = 0
∑
d, e, f

dadedbefdcfd = − d− 2

12
dabc,

∑
e

dabedcde =
6

d+ 2

∑
e, f, g, h

daefdbfgdcghddhe =
1

3
δac δbd, (31)

where the indices with underline is symmetrized. The implications of relations like
the ones listed in (31) will be discussed elsewhere [13].

Until now we have just treated the different operators α(a) as indexed with a
“flavor”. The unbroken symmetry (SO(2), SO(3), SO(5) and SO(9)) allows us
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to transform these flavors dimensions into each other. However, in the four cases
we want space to be viewed as a 2, 3, 5 and 9 dimensional connected continuum,
respectively. Preferable, we want to be able to talk about these spaces as topological
spaces, e.g. 2, 3, 5 or 9 dimensional tori where the concept of neighborhoods or
maybe even distances make some sense. This might happen dynamically via the
cubic interaction, a possibility we find intriguing. Consider the simplest situation:
H̃3(R), and symmetry breaking in the 8-direction. We have d118 = d338 = 1/

√
3

and d888 = −1/
√

3. Thus, according to one of the point of views presented above,
space in the 8-direction will have no extension, but a 1-space and a 3-space can be
glued together at a “point” via 8-space. A set of such wormholes of 8-space, each
of which has infinitesimal length and connects one point of 1-space and one point
of 3-space, forms two-dimensional coordinates. We can image such a “knitting”
taking place everywhere and in this sense the interaction via the 8-direction mode
is what will create for us the genuine concept of a two-dimensional space for H̃3(R).
Similar considerations apply for the higher dimensional spaces coming from H̃3(C),
H̃3(H) and H̃3(O). The knitting mechanism has the potential to form the space
into a higher dimensional torus. Clearly this idea need to be substantiated by more
explicit calculations.

If we take the point of view that we allow “negative” L in the sense discussed
above, all directions now have an extension, also the 8-direction used for the “knit-
ting”, and if we want such a “knitting” picture to make sense we have create large
extended spaces and small spaces of “Planck size” and the 8-direction have to be
of Planck size. This can be done by having positive and negative “cosmological”
terms (µ and µ̃ in the notation of eqs. (13) and (14)) and insisting that the scale
1/
√
µ should be viewed as the Planck scale. Then, depending on the symmetry

breaking mass matrix, a number of dimensions will be of Planck size, while the
others will expand infinitely. Of course this picture is even more challenging than
the picture where some flavors could not be associated with any spatial extension,
since the flavors with macroscopic spatial extension acquire this extension within
Planck time (see eq. (14)). One needs a mechanism which slows down this ex-
pansion and in this context it is natural to think about Coleman’s mechanism for
lowering the cosmological constant [17]. Again we clearly need explicit calculations
to substantiate any claims, but contrary to Coleman’s situation we actually have a
model where questions of baby universe creation and annihilation can be answered
by calculations, although going beyond perturbation theory when it comes to the
creation and annihilation might be difficult (some calculation to all order exists in
CDT string field theory [18]).

As always, a model for the Big Bang and for the creation of the universe from
nothing creates more questions than it answers. This is also the case for this model.
However, it is an explicit model where hopefully explicit calculations can be per-
formed, and it might be that some cosmological predictions do not require the full
solution of the model and thus can be used to falsify the model when compared
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to observations. Alternatively they might be encouraging and then provide further
motivation for studying the model. As an example we have very preliminary in-
dications that the model can provide an explanation of dark energy which is not
related to any “bare” cosmological constant which might appear in the process of
symmetry breaking of the W (3) algebra. This will be published elsewhere, once we
feel more confident of a number of other features of the model.
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