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Abstract. To do.

1 Introduction

In this paper we discuss the interaction between two recent additions to the
pure, lazy, functional programming language Clean 2.0(.1) [4, 9, 13]:

Dynamic types enable us to write programs that convert values (data and
functions) from the compile time world to the run time world in serialized
format and vice versa. Dynamics work over module and application bound-
aries.

Generic programming enables us to write general function schemes that work
for any data type. From these schemes the compiler can derive automatically
any required instance of a specific type. This is possible because at compile
time all types can be derived or verified.

In order to apply a generic function to a dynamic value in the current sit-
uation, the programmer needs to do an exhaustive type pattern-match on the
dynamic type. Apart from the fact that this is impossible, this is at odds with
the key idea of generic programming, because the programmer already did that
in the generic function definition!

One would imagine that it is alright to apply a generic function to any dy-
namic value. Because generic functions are functions that are defined on the
structure of types and their values they are ideal for application to dynamic
values. A dynamic value contains a complete type representation and a properly
linked-in Clean graph. Therefore, knowing the generic function to apply, one
should, in principle, be able to determine the correct instance of the generic
function.

The main problem is that the type representation of a dynamic is only known
at run time, while the instantiation of generic functions needs a compiler-type
that is known only at compile time. One obvious solution is to force the pro-
grammer not to use generic functions on unpacked dynamic values, but instead
extend the dynamic with the ‘generic’ functions that have to be applied to it.
When packing such a dynamic, adding the generic functions will suffice. This is
unfeasible, as it requires knowledge of all (future) contexts a dynamic value will
ever be applied in.



We show how to solve this problem without changing the compiler, and re-
lying only on the current implementation of generics and dynamics. The key to
the solution is to find a fixed representation for types that can be used both
at compile time (to work with compile time type representations), and at run
time (to work with dynamic type representations). Dynamics are always created
in a context in which their compile time type is known. We seize this opportu-
nity to additionally store conversion functions between the type of the dynamic
value and a generic dynamic type. The conversion functions are predefined once
generically. For types of kind ? stored in a dynamic, there is a fixed transforma-
tion rule that delivers the code for applying the generic function to the dynamic
content. In principle, this can be added in a compiler. As a consequence, the
programmer only needs to write a generic function definition (as usual), and the
compiler can, in principle, derive the dynamic version from it (but, as said, only
for kind ?).

Contributions of this paper are:

– We show how one can combine generics and dynamics in one single frame-
work in accordance with their current implementation in the compiler.

– We give examples of programs that exploit the combined power of generics
and dynamics. The main characteristic of these programs is that they are
universally applicable to dynamic values without preprogrammed knowledge
of specific types.

– The solution that we show can be implemented in any functional language
that has support for dynamics and generics. It also works for a language
that supports dynamics and overloading, at the expense of writing most of
the functions that we present manually.

We start the remainder of this paper with introductions to dynamics (Section
2) and generics (Section 3) with respect to core properties that we rely on. We
then show how the generic dynamic extension works, based on a small set of
type and function definitions (Section 4). A number of examples are given to
demonstrate the expressive power of the combination of generics and dynamics
(Section 5). We present related work (Section 6), our current and future plans
(Section 7), and conclude (Section 8).

2 Dynamics in Clean

The Clean system has support for dynamics in the style as proposed by Pil [11,
12]. Dynamics serve two major purposes:

Interface between static and run time types: Programs can convert val-
ues from the compile time world to the run time world and back again
without loss of type security.
Any Clean expression e that has (verifiable or inferable) type t can be formed
into a value of type Dynamic by: dynamic e :: t, or: dynamic e.



toDynamic :: [Dynamic]

toDynamic = [e1, e2, e3, dynamic [e1,e2,e3]]

where e1 = dynamic 50 :: Int

e2 = dynamic reverse :: [Real] -> [Real]

e3 = dynamic reverse [’a’..’z’] :: [Char]

Any Dynamic value can be matched in function alternatives and case ex-
pressions. A ‘dynamic pattern match’ consists of an expression pattern e-pat
and a type pattern t-pat as follows: (e-pat::t-pat). After successful match-
ing, e-pat has become a Clean expression, and t-pat a compile time type. It
is important to note that type variables in a type pattern do not indicate
polymorphism. Instead, they are bound to the offered type.

fromDynamic :: [Dynamic] -> (Int,[Real] -> [Real],[Char])

fromDynamic [ e1 :: Int, e2 :: [Real] -> [Real], e3 :: [Char] ]

= (e1, e2, e3)

dynApply :: Dynamic Dynamic -> Dynamic

dynApply (f :: a -> b) (x :: a) = dynamic (f x) :: b

Serialization: Being able to store values in a program in a dynamic format is
already useful: it allows flexible manipulation of data and functions. How-
ever, the main virtue of dynamics is that it allows programs to serialize and
deserialize values without loss of type security. Programs can work safely
with data and code that do not originate from themselves.
Making an effective and efficient implementation is hard work and requires
careful design and architecture of compiler and run time system. It is not our
intention to go into any detail of such a project, as these are presented in [15].
What needs to be stressed in the context of this paper is that dynamic values,
when read in from disk, contain a binary representation of a complete Clean
computation graph, a representation of the compile time type, and references
to the related rewrite rules. The programmer has no means of access to these
representations other than explained above.
Two library functions store and retrieve dynamic values in named files:

writeDynamic::String Dynamic *env -> (Bool,*env) | FileSystem env

readDynamic ::String *env -> (Bool,Dynamic,*env) | FileSystem env

The * in front of env is its uniqueness attribute which indicates that this
environment value will be passed around single-threadedly. It is an example
of the uniqueness type system [14] of Clean to handle safe destructive up-
dates in a pure functional language. The two functions also demonstrate the
explicit environment passing style of handling I/O in Clean.

At this stage, the Clean 2.0.1 system restricts the use of dynamics to basic,
algebraic, record, array, and function types. Polymorphism is not supported, so
functions such as the identity function (id :: a -> a) can not be stored as
such in a dynamic. Overloaded types and overloaded functions are still an open
issue, although it has been investigated by Pil [12]. Generics obviously haven’t
been taken into account, and that is what this paper addresses.



3 Generics in Clean

The Clean approach to generics [3] combines the polykinded types approach
developed by Hinze [6] and its integration with overloading as developed by Hinze
and Peyton Jones [7]. A generic function basically represents an infinite set of
overloaded classes. Programs define for which types instances of generic functions
have to be generated. During program compilation, all generic functions are
converted to a finite set of overloaded functions and instances. This part of
the compilation process makes use of the compile time type information that is
available.

As an example, we show the generic definition of the ubiquitous equality
function. It is important to observe that a generic function is defined in terms
of both the type and the value. Equality compares two arguments of the same
(unifiable) type:

generic gEq a :: a a -> Bool

This is the type signature that has to be satisfied by an instance for types of
kind ? (such as the basic types Integer, Real, Boolean, Character, and String).
The generic implementation compares the values of these types, and simply uses
the appropriate predefined instance for basic types of the overloaded equality
operator ==.

gEq{|Int|} x y = x == y

gEq{|Char|} x y = x == y

gEq{|Bool|} x y = x == y

gEq{|Real|} x y = x == y

gEq{|String|} x y = x == y

Non-basic types are constructed as sums (EITHER) of pairs (PAIR) – or empty
pair (UNIT) – of types. It is useful to have information about data construc-
tors (CONS) and record fields (FIELD), such as names, arity, priority, and so
on. These data types are predefined in Clean, and are collected in the module
StdGeneric.dcl.

:: UNIT = UNIT

:: EITHER a b = LEFT a | RIGHT b

:: PAIR a b = PAIR a b

:: CONS a = CONS a

:: FIELD a = FIELD a

The kind of these cases (UNIT : ?, CONS, FIELD : ? → ?, and EITHER, PAIR
: ? → ? → ?) determines the number and type of the higher-order function
arguments of the generic function definition. These are used to compare the sub
structures of the arguments (note that for equality, the additional information
is not really used).



gEq{|UNIT|} UNIT UNIT = True

gEq{|PAIR|} fx fy (PAIR x1 y1) (PAIR x2 y2) = fx x1 x2 && fy y1 y2

gEq{|EITHER|} fl fr (LEFT x) (LEFT y) = fl x y

gEq{|EITHER|} fl fr (RIGHT x) (RIGHT y) = fr x y

gEq{|EITHER|} fl fr _ _ = False

gEq{|CONS|} f (CONS x) (CONS y) = f x y

gEq{|FIELD|} f (FIELD x) (FIELD y) = f x y

The only case that is missing here is the function type (->), as one can not
define a feasible implementation of function equality.

The elements of the infinite set of overloaded functions represented by a
generic function are indexed with the kind, so for equality we have gEq?, gEq?→?,
gEq?→?→?, and so on. The generic function f of kind κ is denoted as: f{|κ|} and
can be used as any other overloaded function in a Clean program. Programs
must ask explicitly for an instance of type T of a generic function f by: derive
f T. The kind of T is derived by the compiler. Here is an example of a complete
Clean program:

module myTree

import StdEnv, StdGeneric

:: MyTree a = Leaf | Cons (MyTree a) a (MyTree a)

derive gEq MyTree // Generate the instance of gEq for MyTree

tree1 = Cons Leaf 5 (Cons Leaf 7 Leaf)

tree2 = Cons Leaf 2 (Cons Leaf 4 Leaf)

Start = ( gEq{|*|} tree1 tree2 // Value equality: False

, gEq{|*->*|} (const o const True)

tree1 tree2 // Structure equality: True

)

generic gEq a :: a a -> Bool // Definition as in this section

...

4 Dynamics + Generics in Clean

In this section we show how we enable programs that manipulate dynamics to use
any generic definition on any dynamic they have obtained. The current imple-
mentation of dynamics and generics in Clean imposes the following restrictions
on such a solution:

1. Generic functions are really ‘schemes’ from which instances of overloaded
functions can be generated. For this we need to know the type of the instance.



2. Clean expressions are unpacked from a dynamic using a type pattern. The
only static type information that is available at compile time are the con-
stants of the type pattern, the values of type pattern variables are only
known at run time after unification.

3. When packing a value in a dynamic, the type information is available (pro-
vided by program or infered by compiler). The constituents, however, may
result from dynamic type pattern variables (see dynApply in Section 2).

4. Generic functions should be ‘polymorphic’ for dynamic values. The opaque
dynamic type representation contains sufficient information to distil a run-
time type out of.

The main problem occurs when applying a generic function to a dynamic
value: we need to have or generate the proper instance of an overloaded function,
but we do not know what the dynamic type pattern variables will be unified with
statically.

The key idea of our solution is to include conversion functions to and from a
generic dynamic type representation whenever a value is packed into a dynamic.
This can be done automatically by a generic function, because when a value
is packed into a dynamic, its type is known. The generic dynamic type repre-
sentation is given in Section 4.1, and the conversion function in Section 4.2.
When unpacking a dynamic value, we can then extract both the dynamic type
representation and the generic dynamic type conversion functions. The first is
required for our ‘normal’ dynamic programming (to enforce unification between
the dynamic type representation and the static dynamic type pattern), and the
second is required to convert the dynamic value to the generic representation.

Our solution relies on the ability of the dynamics implementation that it is
able to store arbitrary Clean expressions, but does not change it. The definition
of generic functions also does not change in this framework. The programmer
writes a function that has the same type as the generic signature, except that
the overloaded type variables are replaced by Dynamics. We show this in Section
4.3. (We also show how to do this for functions with argument dynamics (Section
5.1) and result dynamics (Section 5.2.))

The ideal situation is that generic functions behave ‘polymorphically’: they
should work for any dynamic value. This means that we do not want the pro-
grammer to write his functions for dynamic values, but rather simply apply a
generic function to a dynamic value and let the compiler sort things out. In the
current proposal we can do this for generic functions of kind ?. This is presented
in Section 4.4.

4.1 A generic dynamic type representation

The first thing we need is a fixed representation for generic dynamic values:

:: GenRep

= GRInt Int | GRReal Real | GRBool Bool | GRChar Char | GRString String

| GRUnit



| GRPair GenRep GenRep

| GRLeft GenRep | GRRight GenRep

| GRCons GenericConsDescriptor GenRep

| GRField GenericFieldDescriptor GenRep

This type is very similar to the types that we used in Section 3. The main
difference is that GenRep is a sum type, rather than a collection of type construc-
tors. The key advantage is that we can easily specialize the generic functions to
GenRep in one go (Section 4.3).

The GenericConsDescriptor and GenericFieldDescriptor types are pre-
defined in StdGeneric. They contain the additional information a programmer
might need when handling the CONS and FIELD cases of a generic function. In
the generic equality example we had no need for them.

4.2 Conversion functions

Because we will have to do a great deal of back and forth conversion, it is
convenient to have the two conversion functions at hand. A value of type (Bimap
a b) is a pair of conversion functions of type a → b and b → a. A number of
predefined bimaps and standard combinators are provided, see Appendix A.

:: Bimap a b = { map_to :: a -> b, map_from :: b -> a }

Because we will need to convert any compile time type a to GenRep and back
again, we must have a (Bimap a GenRep) for this type. For this we define a
generic function genRep. (Note that of the basic types, we only show the Int
case, as the others are similar. In addition, note that the map_from functions are
partial functions.

generic genRep a :: Bimap a GenRep

genRep{|Int|} = {map_to = map_to, map_from = map_from}

where map_to x = GRInt x

map_from (GRInt x) = x

genRep{|UNIT|} = {map_to = map_to, map_from = map_from}

where map_to UNIT = GRUnit

map_from GRUnit = UNIT

genRep{|PAIR|} fx fy = {map_to = map_to, map_from = map_from}

where map_to (PAIR x y) = GRPair (fx.map_to x) (fy.map_to y)

map_from (GRPair x y) = PAIR (fx.map_from x) (fy.map_from y)

genRep{|EITHER|} fl fr = {map_to = map_to, map_from = map_from}

where map_to (LEFT x) = GRLeft (fl.map_to x)

map_to (RIGHT x) = GRRight (fr.map_to x)

map_from (GRLeft x) = LEFT (fl.map_from x)

map_from (GRRight x) = RIGHT (fr.map_from x)

genRep{|CONS of d|} fx = {map_to = map_to, map_from = map_from}

where map_to (CONS x) = GRCons d (fx.map_to x)

map_from (GRCons _ x) = CONS (fx.map_from x)

genRep{|FIELD of d|} fx = {map_to = map_to, map_from = map_from}

where map_to (FIELD x) = GRField d (fx.map_to x)

map_from (GRField _ x) = FIELD (fx.map_from x)



When packing and unpacking values of type a to a dynamic we also store
and read the corresponding (Bimap a GenRep).

4.3 Generic dynamic function definitions

The generic equality function gEq remains the same as in Section 3. Given this
generic function, we can ask the compiler to derive the proper instance for Gen-
Rep values. Because derived instances have to be asked for explicitly, also in-
stances of the type constructors on which GenRep relies need to be instances of
the generic function. In general, for an arbitrary generic function g this would
result in:

derive g GenRep,

GenericConsDescriptor,

GenericFieldDescriptor,

GenConsPrio,

GenConsAssoc,

GenericTypeDefDescriptor,

GenType

However, for gEq, only a derived instance for GenRep will do, given the fol-
lowing name equality for the extra CONS and FIELD descriptors:

derive gEq GenRep

gEq{|GenericConsDescriptor |} x y = gEq{|*|} x.gcd_name y.gcd_name

gEq{|GenericFieldDescriptor|} x y = gEq{|*|} x.gfd_name y.gfd_name

Now if we assume that we use the extended way of storing dynamics, then for
each dynamic value of type a we also have the corresponding (Bimap a GenRep).
The equality operation on dynamics uses this Bimap to convert dynamic values
to generic dynamic values, for which a generic equality function is available
(above we have just asked the compiler to derive it). Here is the definition of the
equality on dynamics:

dEq :: Dynamic Dynamic -> Bool

dEq ((x::a,epx)::(Dynamic,Bimap a GenRep)) ((y::a,epy)::(Dynamic,Bimap a GenRep))

= adaptEq (epx oo inv bimapDynamic) gEq{|*|} x y

where bimapEq a = a --> a --> bimapId

adaptEq ep = (bimapEq ep).map_from

dEq _ _

= False

To understand this quite concise function, let us dissect it:

– Let f = (epx oo inv bimapDynamic). Because (inv bimapDynamic) ::
Bimap Dynamic a and epx :: Bimap a GenRep, we have f :: Bimap
Dynamic GenRep. In other words, f transforms dynamic values to generic
dynamic representations and vice versa via the additionally stored bimap
epx.



– bimapEq :: (Bimap a b) → Bimap (a → a → c) (b → b → c), so
bimapEq f :: Bimap (Dynamic → Dynamic → c) (GenRep → GenRep
→ c).

– (bimapEq f).map_from is a conversion function of type (GenRep → GenRep
→ c) → (Dynamic → Dynamic → c).

– ((bimapEq f).map_from gEq{|*|}) :: Dynamic → Dynamic → Bool is
the desired function.

– We use the opaque dynamic type representation of x and y to enforce unifi-
cation. If type pattern matching succeeds, we are ensured that x and y will
have identical types.

4.4 Integration in Clean compiler

In this section we discuss the transformation rules that can be implemented in
the compiler to derive most of the code above automatically. To be done.

5 Examples of dynamics and generics

In this section we give two examples that exploit the combined power of dynamics
and generics. Both examples are useful tools when having a disk filled with
dynamic files. The first is a pretty printer of dynamic values, and the second is
a parser generator for dynamic values. In each example, we first give the generic
function definition, then present the code of the dynamic version, and finally
apply the dynamic version to an actual dynamic value.

In order to have a user-friendly tool, we make use of the Clean Object I/O
library to create a simple GUI. The module simpleGUI exports the function
simpleGUI that is parameterized with a function of type String → Dynamic →
env → env. Whenever a user drops a file on the GUI framework, it is checked if
that file contains a dynamic value, and if this is the case, the argument function
is evaluated. It is applied to the full path name of the file, dynamic content of
the file, and the GUI environment. We will not discuss this module any further,
as it is an easy exercise in Object I/O. For completeness, its code is presented
in Appendix C. The relevant type and function are:

:: DynamicIO env :== String -> Dynamic -> IdFun env

simpleGUI :: (DynamicIO (PSt Void)) -> IdFun *World

(IdFun is a predefined synonym type with: IdFun x :== x -> x. Void is
equivalent with Haskell’s (). A discussion of the PSt is out of scope, but it can
be considered as a full-fledged environment specialized for GUI operations.)

5.1 Pretty printer

Pretty printers belong to the classic examples of generic programming. In this
example we deviate a little from this well-trodden path by developing a program
that sends a graphical version of any dynamic value to a user selected printer.



The generic function The generic function pretty, given a value to display,
computes the bounding box (Box) and the function that actually draws the
value, if it is given the left-top corner of the bounding box (Point2 *Picture
-> *Picture). Because graphical metrics information depend on the resolution
properties of the output environment, the function is a state transformer on
*Pictures. Therefore, pretty has the following type:

generic pretty t :: t *Picture

-> ((Box,Point2 *Picture -> *Picture),*Picture)

(The Picture environment can be used to draw in any visual component
or the printer. It is predefined in the Clean Object I/O library [2], and so are
Point2 and Box:

:: Picture // abstract data type

:: Point2 = { x :: !Int, y :: !Int}

:: Box = { box_w :: !Int, box_h :: !Int }

In Clean, record types are surrounded by {}. Data type declarations start
with ::. The sort of type declaration is usually indicated by the separator, which
is = for algebraic and record types, and :== for synonym types.)

Basic values simply refer to the string instance that does the real work. It
draws the text and the enclosing rectangle (we assume that the getMetrics-
Info function returns the width and height of the argument string, proportional
margins, and base line offset of the font):

pretty{|Int|} x picture = pretty{|*|} (toString x) picture

pretty{|Real|} x picture = pretty{|*|} (toString x) picture

pretty{|Char|} x picture = pretty{|*|} (toString x) picture

pretty{|Bool|} x picture = pretty{|*|} (toString x) picture

pretty{|String|} s picture

# ((width,height,hMargin,vMargin,fontBase),picture)

= getMetricsInfo s picture

# bound = { box_w=2*hMargin + width, box_h=2*vMargin + height }

= ( ( bound

, \{x,y} -> drawAt {x=x+hMargin, y=y+vMargin+fontBase} s

o drawAt {x=x+1,y=y+1}

{box_w=bound.box_w-2,box_h=bound.box_h-2}

)

, picture

)

(In Clean, # allows convenient reuse of (in particular environment) names. If
r is a record value, and f one of its fields, then r.f selects the field value of r. In
a pattern match, {f} can be used to select the field value. Function composition
is predefined as o.)

The other cases only place the recursive parts at the proper positions and
compute the corresponding bounding boxes. The most trivial ones are UNIT,
which draws nothing, and EITHER, which continues recursively (poly)typically:



pretty{|UNIT|} _ picture = ((zero,const id),picture)

pretty{|EITHER|} pl pr (LEFT x) picture = pl x picture

pretty{|EITHER|} pl pr (RIGHT x) picture = pr x picture

PAIRs are drawn in juxtaposition with top edges aligned. A CONS draws the
constructor name on top, and puts the recursive component below the construc-
tor. The bounding boxes are centred. (Note that FIELDs are handled the same
way as CONSs are.)

pretty{|PAIR|} px py (PAIR x y) picture

# ((bx,fx),picture) = px x picture

# ((by,fy),picture) = py y picture

# bound = { box_w = bx.box_w + by.box_w

, box_h = max bx.box_h by.box_h

}

= ( ( bound, \pos -> fy {pos & x=pos.x+bx.box_w} o fx pos )

, picture

)

pretty{|CONS of {gcd_name}|} px (CONS x) picture

# ((bc,fc),picture) = pretty{|*|} gcd_name picture

# ((bx,fx),picture) = px x picture

# bound = { box_w = max bc.box_w bx.box_w

, box_h = bc.box_h + bx.box_h

}

= ( ( bound

, \pos -> fx {pos & x=pos.x + (bound.box_w-bx.box_w)/2

, y=pos.y+bc.box_h

}

o fc {pos & x=pos.x + (bound.box_w-bc.box_w)/2}

)

, picture

)

(If r is a record value, and v a new value for the field f , then {r & f=v} is a
new record value, equal to r, but with value v for field f .)

The dynamic function If we follow the implementation scheme for dynamic
functions (Section 4.3) we obtain the following code:

derive pretty GenRep

pretty{|GenericConsDescriptor|} _ picture = ((zero,const id),picture)

pretty{|GenericFieldDescriptor|} _ picture = ((zero,const id),picture)

dpretty :: Dynamic *Picture -> ((Box,Point2 *Picture -> *Picture),*Picture)

dpretty ((x::a,epx)::(Dynamic,Bimap a GenRep)) picture

= adaptPretty (epx oo inv bimapDynamic) pretty{|*|} (dynamic x::a) picture

where bimapPretty a = a --> bimapId --> bimapId

adaptPretty ep = (bimapPretty ep).map_from



However, this function pretty prints generic dynamic representations of dy-
namic values instead of the dynamic values. This is obvious, because we asked
the compiler to derive pretty for GenRep. In this case, we need to define our own
instance of pretty. We can do this by making good use of the generic pretty
function:

pretty{|GenRep|} v p = fp v p

where fp :: GenRep *Picture

-> ((Box,(Point2,Point2) *Picture -> *Picture),*Picture)

fp (GRInt x) p = pretty{|*|} x p

fp (GRReal x) p = pretty{|*|} x p

fp GRUnit p = pretty{|*|} UNIT p

fp (GRCons gcd x) p = pretty{|*->*|} fp (CONS x) p

fp (GRField gfd x) p = pretty{|*->*|} fp (FIELD x) p

fp (GRPair x y) p = pretty{|*->*->*|} fp fp (PAIR x y) p

fp (GRLeft l) p = pretty{|*->*->*|} fp fp (LEFT l) p

fp (GRRight r) p = pretty{|*->*->*|} fp fp (RIGHT r) p

Embedding in GUI The dynamic pretty printing function can now be used
in the argument function prettyprinter of simpleGUI. It sends the dynamic
content of any dropped file to the printer. For this we use the following functions
of the Object I/O library: defaultPrintSetup reads in the default printer setup,
and the function print actually does the printing. The third argument of print
is a Picture state transformer that produces the pages as a list of drawing
functions. Note that for reasons of simplicity we assume that the image will fit
on one page.

prettyprinter :: (DynamicIO *env) | FileEnv, PrintEnvironments env

prettyprinter

= \_ x -> snd o uncurry (print True False (pages x)) o defaultPrintSetup

where

pages :: Dynamic PrintInfo *Picture -> ([IdFun *Picture],*Picture)

pages dx _ picture

# ((boundBox_x,draw_x),picture) = dpretty dx picture

= ([draw_x zero],picture)

Start :: *World -> *World

Start world = simpleGUI prettyprinter world

5.2 Parser generator

Just as pretty printers, parsers also belong to the classic repertoire of generic
programming. In this section we develop an application that generates a parser
for expressions that have the same type as any dynamic value that is dropped
on it. Of course, we store the generated parser as a dynamic itself.



The generic function The generic parser function uses a small combinator
parser library [8]. We refer to Appendix B for a brief description of the com-
binators and functions. What we need to know right now is that parsers are
constructed by composition of basic continuation parsers of type (CParser s a
t). Such a continuation parser consumes (part of) an input sequence of symbols
of type s, and returns a result of type a. We will use a Character input sequence,
hence our generic parser generating function must be a (CParser Char a t):

generic parser a :: CParser Char a t

We adopt the convention that every continuation parser skips whitespace
first. The basic types have straightforward definitions: the Int and Real in-
stances use int and real, Char accepts any character between ‘’ (we do not
handle escape characters), and Booleans accept either True or False.

parser{|Int|} = sp int

parser{|Real|} = sp real

parser{|Char|} = sp (symbol ’\’’) &> satisfy (const True) <& symbol ’\’’

parser{|Bool|} = (sp (token [’True’]) &> yield True)

<!>

(sp (token [’False’]) &> yield False)

The standard polytypic cases are also not hard to figure out: UNITs require
no parsing at all and simply yield UNIT, parsing PAIRs parses the elements in
order and returns their results, and parsing the alternatives of EITHER simply
uses the <!> operator.

parser{|UNIT|} = yield UNIT

parser{|PAIR|} fx fy = sp fx <&> \x -> sp fy <&> \y -> yield (PAIR x y)

parser{|EITHER|} fl fr = (sp fl <&> \x -> yield (LEFT x))

<!>

(sp fr <&> \x -> yield (RIGHT x))

In order to create a parser for data constructors (CONS), we need access to
the actual name of the constructor. This is provided by the gcd_name field that
can be requested from the CONS instance.

parser{|CONS of {gcd_name}|} fx

= sp (symbol ’(’) &>

sp (token (fromString gcd_name)) &>

sp fx <&> \x ->

sp (symbol ’)’) &> yield (CONS x)

Predefined type constructors, such as tuples, lists, and records, have special
syntax, so we need to specialize these cases ourselves. We only show the list
instance: lists can be empty [], or contain a number of elements [e1,e2,. . . en].
If an initial element is parsed, we use the <*?> combinator to find the maximum
occurrences of list elements.



parser{|[]|} fx

= sp (symbol ’[’) &> ((sp (symbol ’]’) &> yield [])

<!>

(sp fx <&> \head ->

(<*?> (sp (symbol ’,’) &> sp fx)) <&> \tail ->

sp (symbol ’]’) &> yield [head:tail]

)

)

The dynamic function The dynamic version of the parser generator follows
a slightly different scheme than presented in Section 4.3. The reason is that a
parser is a function that is overloaded in the right-hand-side. This implies that
we do not have a bimap argument to work with. We solve this pragmatically
by adding an additional dynamic argument to these functions that contains the
bimap. This yields:

derive parser GenRep

dparser :: Dynamic -> CParser Char Dynamic Dynamic

dparser (ep::Bimap a GenRep)

= adaptParser (ep oo inv bimapDynamic) parser{|*|}

where bimapParser a = bimap{|*->*->*|} (bimap{|*->*->*|} a bimapId) bimapId

adaptParser ep = (bimapParser ep).map_from

Embedding in GUI We can now embed dparser in simpleGUI, as the function
storeParser. It is applied to a dynamic with file path name path, and dynamic
value (x :: a, bimap) where bimap :: Bimap a GenRep. It creates a new file
named (path +++ "parser") in which a parser p is stored that parses val-
ues of type a. The parser p is the value (begin (dparser bimap)) :: Parser
Char Dynamic. As promised, we also store the corresponding bimap, automat-
ically generated by genRep{|*|} :: Bimap (Parser Char Dynamic) GenRep.
The Start rule of the program simply passes storeParser to simpleGUI.

storeParser :: (DynamicIO *env) | FileSystem env

storeParser

= \path (((x::a),bimap)::(Dynamic,Bimap a GenRep))

-> snd o (writeDynamic

(path+++"parser")

(dynamic (dp,genRep{|*|})

::

(Dynamic, Bimap (Parser Char Dynamic) GenRep)

))

where p = begin (dparser (dynamic bimap :: Bimap a GenRep))

dp = dynamic p :: (Parser Char Dynamic)

Start :: *World -> *World

Start world = simpleGUI storeParser world



6 Related work

Cheney and Hinze [5] present a poor man’s dynamics that marries generic pro-
gramming with dynamics. Their solution is more verbose for the programmer
who needs to apply explicit unifications to dynamic types. Clean dynamics have
been designed and implemented to offer a rich man’s dynamics, taking care of
separate compilation issues, efficient graph and type representations, and version
management. An advantage of their approach is that it reconciles generic and dy-
namic programming right from start, which results in an elegant representation
of types that can be used both for generic and dynamic programming.

7 Current and future work

To do.

8 Conclusions

To do.
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A Bimap combinators

The Bimap type is a simple pair of two conversion functions. Two Bimaps are
predefined: bimapId is the pair of identity functions, and bimapDynamic packs
and unpacks values to and from dynamics. The combinators that we use in this
paper are: inv, which swaps the conversion functions of a (Bimap a b) to (Bimap
b a), oo, which forms the sequential composition (Bimap a c) of two arguments
(Bimap b c) and (Bimap a b), and finally, -->, which converts functions (a →
c) (b → d) if given conversion pairs (Bimap a b) and (Bimap c d).

:: Bimap a b = { map_to :: a -> b, map_from :: b -> a }

bimapId :: Bimap a a

bimapId = { map_to = id, map_from = id }

bimapDynamic :: Bimap a Dynamic | TC a

bimapDynamic = {map_to = map_to, map_from = map_from}

where map_to x = dynamic x :: a^

map_from (x :: a^) = x

inv :: (Bimap a b) -> Bimap b a

inv {map_to, map_from} = {map_to = map_from, map_from = map_to}

(oo) infixr 9 :: (Bimap b c) (Bimap a b) -> Bimap a c

(oo) f g = { map_to = f.map_to o g.map_to

, map_from = g.map_from o f.map_from

}



(-->) infixr 0 :: (Bimap a b) (Bimap c d) -> Bimap (a -> c) (b -> d)

(-->) x y = { map_to = \f -> y.map_to o f o x.map_from

, map_from = \f -> y.map_from o f o x.map_to

}

B Combinator parsers

Here is a brief summary of combinator parsers à la Koopman [8]. A parser is a
function of type (Parser s r) that reads an input sequence of s symbols, and
returns a list of successful parses (ParsResult s r). Each element is a pair of
the remaining input [s] and a value of type r:

:: Parser s r :== [s] -> ParsResult s r

:: ParsResult s r :== [([s],r)]

Parsers are constructed by glueing continuation parsers of type (CParser s
r t). Such a parser consumes an input sequence of s symbols, and returns results
of type r that contribute to the total result of type t. It uses continuations to
prevent the construction of intermediate data structures, and hence improve the
performance. Given any continuation parser p, (begin p) turns it into a parser.

:: CParser s r t :== (Suc s r t) -> (Xor s t) -> (Alt s t) -> Parser s t

:: Suc s r t :== r -> (Xor s t) -> (Alt s t) -> Parser s t

:: Xor s t :== (Alt s t) -> ParsResult s t

:: Alt s t :== ParsResult s t

begin :: (CParser s r r) -> Parser s r

We use the following combinators to construct continuation parsers: (yield
r) simply returns r without consuming input; (satisfy c) consumes and yields
the input that satisfies c; (token s) and (symbol s) consume and return their
argument; (sp p) first consumes whitespace and continues as p; (<*?> p) applies
p as many times as possible, returning the parsed results in a list; int and real
parse and return any integer and real value.

yield :: r -> CParser s r t

satisfy :: (s -> Bool) -> CParser s s t

token :: [s] -> CParser s [s] t | == s

symbol :: s -> CParser s s t | == s

sp :: (CParser Char r t) -> CParser Char r t

<*?> :: (CParser s r t) -> CParser s [r] t

int :: CParser Char Int t

real :: CParser Char Real t

(p <&> f) is the standard way of combining two parsers in the expected
way: first parse as p, and pass its result to f which returns a new parser that is
evaluated. Two useful variants are (p1 &> p2) and (p1 <& p2) which parse as p1

and p2 subsequently, but ignore the result of p1 and p2 respectively. Finally, (p1

<!> p2) proceeds as p1 if successful or p2 if not successful.



(<&>) infixr 6 :: (CParser s u t) (u -> CParser s v t) -> CParser s v t

( &>) infixr 6 :: (CParser s u t) (CParser s v t) -> CParser s v t

(<& ) infixr 6 :: (CParser s u t) (CParser s v t) -> CParser s u t

(<!>) infixr 4 :: (CParser s u t) (CParser s u t) -> CParser s u t

C simpleGUI Framework

implementation module simpleGUI

import StdEnv, StdIO, StdDynamic

:: DynamicIO env :== String -> Dynamic -> IdFun env

simpleGUI :: (DynamicIO (PSt Void)) -> IdFun *World

simpleGUI f

= startIO SDI Void id

[ ProcessClose closeProcess

, ProcessOpenFiles (\fs pState -> foldr (toDynamic f) pState fs)

]

where

toDynamic :: (DynamicIO (PSt Void)) String (PSt Void) -> PSt Void

toDynamic f fName pState

= case readDynamic fName pState of

(True,dyn,pState)

= case dyn of

((x::a),bimap)::(Dynamic,Bimap a GenRep)

= f fName dyn pState

_ = pState

(_,_,pState) = pState


