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Abstract

Recent reports show that focusing attention on the location where pain is expected can

enhance its perception. Moreover, crossing the hands over the body’s midline is known to

impair the ability to localise stimuli and decrease tactile and pain sensations in healthy par-

ticipants. The present study investigated the role of transient spatial attention on the percep-

tion of painful and non-painful electrical stimuli in conditions in which a match or a mismatch

was induced between skin-based and external frames of reference (uncrossed and crossed

hands positions, respectively). We measured the subjective experience (Numerical Rating

Scale scores) and the electrophysiological response elicited by brief electric stimuli by ana-

lysing the P3 component of Event-Related Potentials (ERPs). Twenty-two participants

underwent eight painful and eight non-painful stimulus blocks. The electrical stimuli were

applied to either the left or the right hand, held in either a crossed or uncrossed position.

Each stimulus was preceded by a direction cue (leftward or rightward arrow). In 80% of the

trials, the arrow correctly pointed to the spatial regions where the stimulus would appear

(congruent cueing). Our results indicated that congruent cues resulted in increased pain

NRS scores compared to incongruent ones. For non-painful stimuli such an effect was

observed only in the uncrossed hands position. For both non-painful and painful stimuli the

P3 peak amplitudes were higher and occurred later for incongruently cued stimuli compared

to congruent ones. However, we found that crossing the hands substantially reduced the

cueing effect of the P3 peak amplitudes elicited by painful stimuli. Taken together, our

results showed a strong influence of transient attention manipulations on the NRS ratings

and on the brain activity. Our results also suggest that hand position may modulate the

strength of the cueing effect, although differences between painful and non-painful stimuli

exist.
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Introduction

Attention is a cognitive function crucial for the selection of sensory events that consequently

enter our awareness. Spatial attention is the ability to selectively process stimuli at a specific

location. To determine the location of external stimuli, the brain has to be able to represent

space according to different frames of reference. The internal (skin-based), and external refer-

ence frames are two specific types of space-representations [1–3]. The skin-based reference

frame is associated with the position of the receptive fields of the body and is reflected in the

spatial arrangement of neurons in the primary and secondary somatosensory cortex [4]. The

external reference frame is related to the estimation of our body’s posture in relation to its

external surroundings, based mostly on visual information [2,5]. Moreover, proper localisation

of pain and tactile stimuli is determined by integrating information from different modalities

and constructing spatial representations of the body parts and the surrounding space [5–7].

The internal and the external frames of reference can be brought into conflict by crossing

one’s arms over the body’s midline. When we cross our hands, the left hand (reflecting the

skin-based reference frame) is located in the right space (reflecting the external reference

frame), inducing a conflict between the skin-based and the external reference frames [3,8].

The resulting conflict was shown to impair tactile [4,5,8–10] and also painful [11] stimulus

localisation. For example, in studies where participants performed judgements about the order

of the stimuli presented in short temporal succession to both hands (the temporal order judg-

ment (TOJ) task), crossing the hands decreased the ability to determine the stimuli order

(crossed-hand deficit) [5,12–14]. Localisation of the tactile stimuli in crossed hands posture

was impaired due to difficulties in integrating conflicting information from different spatial

reference frames [4,14]. Moreover, previous studies have also shown that a conflict between

both frames of reference reduces pain in healthy participants (crossed-hands analgesia) [15–

17].

Apart from behavioural ratings and judgements, extracting event-related potentials (ERPs)

in response to painful and non-painful electric stimuli from the on-going electroencephalo-

gram (EEG) provides an excellent means to study directly the neural responses associated with

either congruent or incongruent internal and external reference frames [18–20]. For example,

Gallace et al. [15] (2011) reported that during the crossed hands condition, a decreased peak

amplitude of the N2-P2 ERP component was observed together with decreased subjective rat-

ings of both laser-evoked painful and electrically evoked non-painful stimuli (crossed-hands

analgesia). However, the magnitude of early components of the response elicited by somato-

sensory stimuli (e.g., the N1 wave of laser-evoked) was not affected by crossing the hands. The

authors assumed that the obtained behavioural (crossed-hands analgesia) and neural effects

(decreased ERP P2-N2) were associated with disrupted multimodal cortical processing of

somatosensory information caused by mismatch of skin-based and external reference frame.

One way to modulate participants’ spatial attention is to use cues preceding the presenta-

tion of the stimuli of interest. A classic paradigm for the study of spatial attention was origi-

nally developed by Posner [21]. In addition to many studies of visual perception, pain

perception has been shown to be modulated by manipulating spatial attention using the Pos-

ner paradigm. Ryckeghem and colleagues [22], who presented visual stimuli on either the

same side or the opposite side of painful stimuli, found that participants rated their sensations

as more painful when the visual cue was presented on the same side as the painful stimulus.

Moreover, other studies investigating the influence of spatial attention manipulations on pain

perception have reported that focusing attention on painful stimuli exaggerated the sensation

of pain [6,23], and focusing attention away from the stimulus location (either on another task
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or on another perceptual object) reduced pain and resulted in increased response latencies

[24,25].

Apart from modulating the subjectively reported experience of pain, attention affects ERPs

elicited by painful stimuli. In general, pain ERPs are characterised by a negative peak around

130–240 ms poststimulus and a positive peak around 230–390 ms poststimulus [26]. Crucially,

brain responses to incoming electrical stimuli appear in the time range in which cognitive

potentials, such as the P300 (P3), are usually observed [27–31]. Desmedt et al. [32] first

described that relevance and occurrence probability of somatosensory stimuli are associated

with P3 (P300) elicitation in human EEG brain. The P3 component is a family of waves that

peaks at around 250–400 ms and is intimately related to task performance [31,33]. There are at

least two variants of this component—P3a and P3b [24,26,29,30,34–37]. The amplitude of the

P3a component is usually smaller than P3b’s amplitude, with shorter latency and more frontal

topography (larger in Cz than Pz). What is important in the context of this study is that the

P3a component is thought to be an index of involuntary attention allocation to novel, salient

and threatening stimuli that appear outside of the attention focus [33–36,38], and the latency

of the P3 component is thought to be an index of stimulus processing speed [39]. As was

shown in studies by Legrain et al. [24,27], the laser-evoked P2 component (probably a P3a

component; for discussion see [40–42]) was enhanced for rare stimuli as compared to frequent

stimuli. Other studies have reported similar results, indicating that standard stimuli delivered

to the unattended location elicited ERPs of greater amplitude compared to ERPs elicited by

standard stimuli delivered to the attended location [41–43]. Accordingly, each electrical stimu-

lus in the present study was preceded by a visual cue (leftward and rightward arrows) that indi-

cated the spatial location of the stimulus application (right or left side; congruent cueing—

CC). In addition, to check the involvement of attentional processes, incorrect cues were occa-

sionally presented (i.e. 20% of the trials), which preceded an electrical stimulus that was deliv-

ered to the opposite spatial location than was indicated by the cue (right cue—left location or

left cue—right location; incongruent cueing—IC). Thus, in the present study, we expected a

modulation of both the peak amplitudes and peak latencies of the P3 component elicited by

painful and non-painful electric stimuli when attention was manipulated by cues [24,30,34–

37,44].

The use of cues makes the present study different from the study of Gallace et al. [15],

where participants’ hands were stimulated in an unpredictable manner without any additional

attentional focus on the side of laser painful and electric non-painful stimulus application. In

other words, the spatial location (right or left side) of the subsequent stimulus was unknown to

the participants. To our knowledge, there are no data indicating whether crossed-hands anal-

gesia can be also elicited when the participants’ attention is directed to the right or left spatial

location where electrical stimuli (pain or non-painful) are expected to be delivered. Moreover,

the design of our study required participants to switch their attention from trial to trial and the

occasional incorrectly cued stimulus induced a re-allocation of attention to a different location

in space. Consequently, such a design allowed us to explore the effects of transient spatial

attention [44]. Other studies that report the effects of the processing of tactile stimuli (with

either congruent or incongruent internal and external reference frames) in the time ranges of

80–160 and 200–300 ms post stimuli usually use a sustained manipulation of spatial attention

[18–20]. In these studies, by contrast to ours, participants’ attention is usually maintained on

one specific limb for the entire experimental block, and stimuli are consistently delivered to

either the attended or unattended side (a sustained manipulation of spatial attention) [18–20].

Thus it is worth studying whether the transient attentional effect is modulated by crossing the

hands.

Transient spatial attention in crossed and uncrossed hands positions - P3 and stimuli perception
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We focused our analysis on P3 components (probably P3a) due to the fact that the magni-

tude of late components (the N2-P2 wave of laser-evoked potentials), contrary to early ones

(the N1 component), was shown to be affected by crossing the hands [15]. Moreover, P3a is

one of three components (next to contralateral temporal negativity—CTN and fronto-central

negativity—FCN) that is elicited by electrical painful stimuli that appear to be involved in

detecting and orienting attention towards unattended somatic threats [36,38]. The relation

between the P3 component and attention allocation has been well documented [33–36,38,45]

but the functional role of this relation is still under investigation.

To sum up, the present study’s aim was to investigate the effect of transient spatial attention

on subjective intensity ratings of pain and tactile stimuli and on the P3 component elicited by

both types of electrical stimuli. Pursuing this aim, we used congruent and incongruent cues.

Additionally, the second goal of this study was to compare these effects under conditions of

matched and mismatched internal and external frames of reference (i.e. a crossed and an

uncrossed hands condition). Consequently, the current experiment created four different con-

ditions for each stimulus intensity (uncrossed congruent/incongruent cue conditions and

crossed congruent/incongruent cue conditions). Based on previous studies, we expected that,

for both painful and non-painful stimuli (S1 Fig):

1. The NRS ratings will be higher in the condition where the stimulus location is correctly sig-

nalled (congruent cueing condition) as compared to the condition where the stimulus loca-

tion is incorrectly signalled (incongruent cueing condition).

2. In the crossed hands condition, NRS ratings will be lower compared to the uncrossed

hands condition (i.e. crossed-hands analgesia).

3. The highest NRS pain ratings will occur after congruent cues compared to incongruent

cues specifically in the uncrossed hands condition, because in this condition there is a

match between the internal reference frame and the external reference frame. In the crossed

hands condition the cueing effect should be substantially decreased due to an impaired abil-

ity to localise stimuli caused by a mismatch between both frames of reference.

4. The ERP P3 component will have a higher amplitudes and will be delayed in latencies after

incongruently cued stimuli compared to congruently cued stimuli, because of the re-alloca-

tion of transient spatial attention.

5. The ERP P3 component amplitudes will be decreased by crossing the hands, due to a mis-

match between the internal and external frame of reference.

6. The ERP P3 amplitudes elicited by stimuli preceded by incongruent cues will be higher in

uncrossed conditions compared to the crossed conditions.

Material and methods

2.1. Participants

Twenty-five right-handed volunteers (4 males and 21 females) aged between 19 and 29

(mean = 22.8 ± 2.8 years), took part in the experiment. The sample size was based on a litera-

ture review of EEG and pain research–the number of participants that usually volunteer is

between twenty and twenty-five [46–49] and between fifteen and twenty [11,44,50] or even

twelve [15,51–53]. The volunteers were recruited amongst the student population of the Rad-

boud University Nijmegen, the Netherlands. All of the participants were healthy, free of pain,

and not taking any medication. Three female participants were excluded from the analyses
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due to excessive muscle and/or eye artefacts in the EEG. The data from the remaining 22 par-

ticipants were further analysed (mean age = 23.1 ± 2.9). All participants provided written

informed consent prior to the experiment. The participants were informed that they were par-

ticipating in a study of low and high electrical stimulus perception in two hand positions–

crossed and uncrossed. They were also informed that they could stop participating at any

point during the study without giving a reason. The participants received remuneration for

their participation in the study. The study was approved by the Ethics Committee Faculty of

Social Sciences of Radboud University in Nijmegen (ECG2012-1301-005) and by the Research

Ethics Committee at the Institute of Psychology of Jagiellonian University.

2.2. Procedure

The experiment was performed in a sound-attenuated laboratory room where the participants

were seated in a comfortable armchair in front of a computer screen (60 Hz refresh rate) at

a distance of roughly 50 cm, with both of their hands resting on the desk. The study consisted

of 2 phases: a preparation phase and a testing phase, lasting around 35 and 55 minutes, respec-

tively.

2.2.1. Painful and non-painful electrical stimuli. The magnitudes of the stimuli (painful

and non-painful) were individually determined for each of the participants during the prepara-

tion phase. Two intensities of electrical stimuli were used in the experiment, painful and non-

painful electric shocks, which were delivered by two Constant Current High Voltage Stimula-

tors (200 μs duration; Digitimer, Welwyn Garden City, England, Model DS7AH and DS7A)

through two concentric surface electrodes for electrical stimulation of nociceptive nerves (K

stimulating electrodes; Inomed, Germany). Each of the electrodes was attached to the outer

side of the right or left hand between the thumb and the index finger, over the superficial

branch of the radial nerve. During the preparation phase, the participants received a series of

electrical stimuli of increasing and decreasing intensity, delivered to the nondominant hand.

The participants’ task was to rate the magnitude of the stimuli verbally on a modified Numeri-

cal Rating Scale (NRS). The anchors used in the scale were 0 –no electrical sensation; 1, the sen-

sation threshold–‘I start to feel something’; 4, the pain threshold–‘It starts to be painful’; and 10,

the maximum pain tolerance–‘the strongest painful sensation imaginable’. To the participants,

the NRS score of 10 was explained as a painful stimulus that he or she does not want to receive

anymore. The scale resembles the one used in the study of Romero et al [54]. On this scale, val-

ues of 1, 4, and 10 indicate the somatosensory threshold (detection threshold—DT), the pain

threshold (PT) and the pain tolerance threshold (PTT), respectively. We defined three NRS

ratings for non-painful stimulation (from 1–3 on NRS) and used 4 on NRS to determine the

pain threshold (PT). We were interested in ratings representing non-painful (3 on NRS) up to

highly painful but tolerable stimuli (rating 8 on NRS).

Stimuli delivered in the preparation phase started at 0.1mA. Then the current was increased

by 0.1mA per step to determine the DT. Subsequently, the current was decreased until the par-

ticipant was unable to detect the stimulus. The cycle of increasing and decreasing the stimulus

was repeated until a stable threshold was obtained. This required only on average 2–3 increase/

decrease cycles for most of the participants. After the DT was determined, the current was sub-

sequently increased in increments of 0.2 mA until the PT was reached, and subsequently

decreased to the DT. This step was repeated three times before taking the average of the two

scores for the second and third repetition of a ‘3’ NRS rating of a non-painful stimulus. Next,

the current was increased in increments of 0.5 mA to detect the pain tolerance threshold (an

NRS score of 10) and decreased to the PT. This step was repeated three times before taking the

average of the two scores for the second and third repetition of an ‘8’ NRS rating as a painful

Transient spatial attention in crossed and uncrossed hands positions - P3 and stimuli perception
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stimulus. In doing so, the intensities of electrical stimuli that were individually selected for each

participant varied: the means for painful and non-painful stimuli intensities were, respectively:

12.54 ± 2.12 mA and 3.99 ± 1.12 mA; t(24) = -17.78, p< .001). Stimuli at intensities identified

as non-painful during the calibration phase were never reported as painful during the

experiment.

2.2.2. Electroencephalographic recordings and EEG preprocessing. Electroencephalog-

raphy (EEG) was recorded from 64 Ag/AgCl electrodes (Acticap, Brain Products, Munich,

Germany) according to the international 10–20 system. The reference electrode was located

on the right mastoid. Four electrooculographic electrodes (EOGs) were attached to the exter-

nal canthi of both eyes and above and below the left eye to monitor horizontal and vertical eye

movements. The EOG ground electrode was placed on the nose.

The impedance of the EEG electrodes was kept below 20 kO. In total, four hundred EEG tri-

als were presented in the two conditions (non-painful and painful electrical stimuli) for each

participant. Signals were recorded with a Brain Vision Recorder (Brain Products) using a 150

Hz low-pass filter, with a time constant of 10 s (0,016 Hz) and a 500 Hz sampling frequency.

The EEG data were re-referenced off-line to linked mastoids. Subsequently, the EEG signal

was filtered (bandpass 0.016–45 Hz; 24 dB) and epoched into 700 ms intervals (epochs between

200 ms before and 500 ms after stimulus onset). All epochs were corrected for eye-movements

using a method developed by Gratton et al. [55]. Next, trials with EEG activity exceeding

±100 μV were semi-automatically rejected. The number of rejected trials remained low

(mean = 0.87; SD = 1.77). Artefact-free single trials were averaged per participant and with

respect to the stimulus delivery condition. All EEG preprocessing was conducted using the

Brain Vision Analyzer (Brain Products).

The P3 peak amplitude component was defined as the most positive deflection within the

time window, 250–400 ms after stimulus onset respecting the guidelines of Picton et al. [56].

Only data from midline sites were further analysed (Fz, FCz, Cz, CPz, Pz) based on the litera-

ture [33,35,39,57–59] and by visual inspection in order to contrast late components of pain-

and non-pain-related somatosensory processing. The P3 latency was determined as the time

point of maximum positive amplitude on the Cz electrode in the 250–400 ms window. We

analysed P3 peak amplitudes recorded from five vertex electrodes in order to compare the

magnitude of P3 peak amplitude between electrodes and to be able to indicate if the P3a com-

ponent was elicited. In contrast to the P3b component, the P3a component is larger at the Cz

electrode than at the Pz electrode.

2.2.3. Testing phase. At the beginning of the testing phase, the participants were asked

to place both hands on the table at a distance of 40 cm from each other. After that, the stimula-

tion electrodes were attached to their right and left hands. Next, a large wooden tabletop

(59×50×15 cm) was slid into place above the arms of the participants to block them from view.

The participants were verbally instructed how properly to keep their arms in the uncrossed or

crossed positions, before the start of the experiment and between all blocks during the testing

phase. The white line in the middle of the wooden screen served as the reference point to sepa-

rate the right and left side. The participants were left alone in the laboratory room for the

remainder of the testing phase but were observed through a camera and received instructions

between blocks via a speaker.

The testing phase involved a total of 400 trials (200 trials for each stimulus type) presented

in 16 blocks. There were separate blocks for each stimulus intensity: eight blocks with painful

stimuli and eight blocks with non-painful stimuli. In 50% of the blocks the participants were

instructed to keep their hands uncrossed, and for the other 50% they were asked to cross their

hands. Thus, four blocks of painful stimuli were delivered to crossed hands and another four

blocks of painful stimuli were delivered to uncrossed hands. Similarly, four blocks of non-

Transient spatial attention in crossed and uncrossed hands positions - P3 and stimuli perception
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painful stimuli were delivered to crossed hands and four blocks of non-painful stimuli to

uncrossed hands. The order of the blocks was counterbalanced between the participants.

Within a block only one hand position was required, and no more than two consecutive blocks

were used with the same hand position.

Half of the stimuli were delivered to the left hand and half to the right hand. The maximum

number of consecutive stimuli delivered to one hand was three. Intertrial intervals (ITI) lasted

on average 7.00 ± 1.65 s (mean ± SD). Such intervals are considered to be large enough to

observe reproducible ERPs.

Both types of electrical stimuli were preceded by a sequence of two visual stimuli presented

at the centre of a computer screen. These stimuli were a white fixation cross (32×32 pixels)

and white arrows pointing to the right or the left (both 32×32 pixels), presented on a black

background for 500 ms and 1000 ms, respectively. See Fig 1A for an overview of the trial

timing.

The presentation of the arrow directed the participants’ attention to the spatial location of

subsequently presented electrical stimuli (right or left side) (Fig 2).

In 80% of the trials, the cue correctly indicated the upcoming side of space of the stimula-

tion (congruent cueing—CC), and in 20% of trials the cue incorrectly indicated where the

stimulus would be delivered (incongruent cueing—IC). A specific schema of the number of

subsequent congruent and incongruent cues was used (for more details, see Fig 1B). The

Fig 1. Overview of trial timing (A) and congruent and incongruent cue schemas used in the experi-

ment. Ad A. The “+” represents the fixation cross; the right and left arrows represent cue stimuli (during the

one trial one of the arrows was presented); the lightning flash represents the electric shock. The length of the

NRS epoch was about 3 seconds, which included the time for the participant to evaluate the stimulus plus time

for the experimenter to record the response. Ad B. Eight blocks consisted of 19 congruent and 5 incongruent

cue trials and the remaining eight blocks consisted of 21 congruent and 5 incongruent cue trials. The same

schema was used for the painful and non-painful stimulus blocks. In total, there were 16 blocks (8 painful and

8 non-painful stimulus blocks).

https://doi.org/10.1371/journal.pone.0182616.g001
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congruent and incongruent cue schemas were presented in a pseudo-random order in each of

the 16 blocks of the experiment. The stimuli presented in incongruent cue trials were always

preceded by at least one congruent cue and were never presented in the first positions within a

block. Each block consisted of a different number of trials in order to avoid habituation to the

length of the block and to avoid expectancy reactions with respect to the last couple of trials

and thus avoiding confounding ERP effects (for more details, see Fig 1B). The timing of events

preceding stimulation was not variable in order to avoid the situation where electrical stimuli

would be delivered in an unpredictable manner. Otherwise, it would have had a huge impact

on ERP components and pain ratings [60,61].

The participants were instructed at the beginning of each recording block: (1) to pay atten-

tion to the information about the stimulation intensity and their hands’ position; (2) to main-

tain their gaze at the fixation point; and (3) to pay attention to the arrow stimulus that would

indicate to which side the electrical stimulus would be delivered. In order to examine if the

crossed hands position significantly reduced the perceived intensity of the painful stimuli, the

participants rated the intensity of each of the painful and non-painful stimuli using a verbal

NRS. Moreover, the participants were instructed not to move their head or eyes, and to blink

as little as possible, especially during stimuli presentation.

2.3. Statistical analysis

We analysed the data obtained from painful and non-painful trials separately due to the fact

that both the NRS ratings and the ERP P3 component amplitudes elicited by painful stimuli

are known to be larger than the NRS ratings and the P3 amplitudes elicited by non-painful sti-

muli [29].

Fig 2. The four conditions of the experiment. In the uncrossed hands condition (top panel) we observe a

match between skin-based and external frames of reference (the left hand is placed in the left space). In

crossed hands condition (bottom panel) the left hand (reflecting the skin-based reference frame) is located in

the right space (reflecting the external reference frame), inducing a conflict between both reference frames.

Congruent cueing (left green panel): Left cue allocates participants attention to the left spatial location where

stimulus was predicted to appear. Incongruent cueing (right red panel): Left cue allocates participants

attention to the left spatial location where stimulus was predicted to appear but it was applied to the right hand.

Note that during the experimental phase vision of the hands was prevented and two types of cues were used

(leftward and rightward arrows); left arrow represents cue; the lightning flash represents the electric shock;

green shade represents the side of allocation of attention.

https://doi.org/10.1371/journal.pone.0182616.g002
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For behavioural data, to address the first and second aim of the study and to verify hypotheses

1–3, we performed two separate General Linear Model (GLM) repeated measures analyses: first

for painful NRS ratings and second for non-painful NRS ratings, using Cue (2 levels: congruent

and incongruent) and Hand Position (2 levels: crossed and uncrossed) as within-subject factors.

The statistically significant main effect of Cue and Hand Position tested our hypotheses 1 and 2,

respectively. In the case where statistically significant interaction of factors Cue and Hand Posi-

tion was observed, the F tests were followed by planned comparisons (appropriate planned con-

trasts by means of F tests) to test our a-priori defined third hypothesis. We investigated whether

a cueing effect was present in both hand positions by performing planned comparisons for con-

gruent versus incongruent cues separately in the uncrossed and crossed hands condition.

Statistical analyses of the EEG data were restricted to the EEG signals recorded from the mid-

line electrodes Fz, FCz, Cz, CPz and Pz due to the fact that amplitudes of the P3 component are

typically highest over the midline electrodes [33,35,39,57,58]. To address the first and second

aim of the study and to verify hypotheses 4–6, the P3 peak amplitudes were subjected to two

separate GLM repeated measures analyses: first for the painful and second for non-painful con-

ditions, which included three within-subject factors: Hand Position (2 levels: crossed and

uncrossed), Cue (2 levels: congruent and incongruent) and Electrode Location (5 levels: Fz,

FCz, Cz, CPz and Pz). The statistically significant main effects of Cue and Hand Position tested

our hypothesis 4 and 5, respectively. In accordance to our a-priori hypotheses, F test was fol-

lowed by planned comparisons tests when significant interactions of factors Cue and Hand

Position were observed. First we investigated whether a cueing effect was present in both hand

positions by performing planned comparisons for P3 peak amplitudes of congruently versus

incongruently cued stimuli, separately for uncrossed and crossed hands conditions. Next, we

performed planned comparisons for uncrossed hands versus crossed hands condition for P3

peak amplitudes elicited by incongruently cued stimuli (sixth hypothesis). Additionally, in

order to investigate if crossing the hands reduced the magnitude of cueing effect, we performed

a GLM for the difference of incongruent P3 and congruent P3 amplitudes (IC-CC difference)

with Hand position (2 levels: crossed and uncrossed) as within-subject factor.

Additional post-hoc comparisons (p adjustment for multiple comparison: Bonferroni)

were performed to investigate the presence of cueing effect on each of five midline electrodes.

Additionally, in order to compare the magnitude of cueing effect between analysed electrodes,

we performed a GLM for the difference of incongruent P3 and congruent P3 peak amplitudes

(IC-CC difference) with Electrode Location (5 levels: Fz, FCz, Cz, CPz and Pz) as within-sub-

ject factor. Next, F test was followed by post-hoc comparisons (p value adjusted for multiple

comparisons: Bonferroni).

The Cz latencies of the P3 components were analysed using a GLM with repeated measures

with Cue (2 levels: congruent and incongruent) and Hand position (2 levels: crossed and

uncrossed) as within-subject factors.

The Shapiro-Wilks test was used to assess the normality of distribution of investigated

parameters. All parameters in our study were normally distributed. The level of significance

was set at p< .05. Greenhouse–Geisser corrected p-values were reported where applicable. All

the analyses were conducted using SPSS Version 22 (IBM Corporation, Armonk, NY, USA).

Results

3.1. Behavioural results

The means of the NRS ratings of painful and non-painful stimuli in each of the four experi-

mental conditions are presented in Fig 3A. The summary of the GLM with repeated measures

for painful and non-painful NRS ratings is presented in Table 1.
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The behavioural results obtained for painful stimuli supported our first hypothesis. As was

indicated by a statistically significant main effect of Cue, the NRS ratings were higher in the

condition where the stimulus location was correctly signalled (congruent cueing) as compared

to the condition where the stimulus location was incorrectly signalled (incongruent cueing).

Moreover, the participants rated the stimuli on the NRS approximately equally in the crossed

and uncrossed hands conditions indicated by the non-significant main effect of Hand Position

(see Table 1). Thus, we did not observe crossed-hands analgesia as was suggested in the second

hypothesis. Finally, a no significant interaction effect of Cue × Hand Position was observed,

indicating that the cueing effect for painful stimuli was not significantly modulated by hand

position which is not in line with our third hypothesis.

The behavioural results obtained for non-painful stimuli did not support our first (overall

simple cueing effect) or second hypothesis (overall crossed-hands analgesia) as the main GLM

revealed no statistically significant main effect for Cue or for Hand Position (see Table 1). At

the same time, in contrast to our results on the painful stimuli, a significant Cue × Hand Posi-

tion interaction was found, indicating that hand position may influence the magnitude of the

cueing effect; this supports our third hypothesis. Given this effect, we performed separate

Fig 3. Graphs of the behavioural (A) and neurophysiological results (B and C) of the study. Behavi-

oural results (NRS ratings) are presented in panel (A). P3 amplitudes and P3 latencies are presented in

panels (B) and (C) respectively. Results for painful stimuli are presented on the left side of the figure and for

non-painful stimuli on the right side.

https://doi.org/10.1371/journal.pone.0182616.g003
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planned comparisons for uncrossed and crossed hands condition to investigate whether a cue-

ing effect was present in both conditions. The analysis revealed that the cueing effect was pres-

ent only in the uncrossed hands condition—participants rated stimuli preceded by congruent

cues as more intense than incongruent ones (F(1,21) = 10.94, p = .003, ŋ2
p = .34). In the crossed

hands condition we did not observe any effect of cueing (F(1,21) = 1.03, p = .34, ŋ2
p = .05) (Fig

3A). Thus, crossing the hands over the body’s midline abolishes the cueing effect that can be

observed in the uncrossed hand condition.

3.2. Electrophysiological results

P3 peak amplitude. The summary of the GLM with repeated measures of the P3 peak

amplitudes obtained for painful and non-painful stimuli is presented in Table 2. The P3 peak

amplitudes recorded from the five midline electrodes in the four experimental conditions are

presented in Fig 2B. The scalp topographies and the grand average ERPs recorded from the

five midline electrodes in painful and non-painful conditions are presented in Figs 4 and 5,

respectively.

The results of the GLM with repeated measures performed for P3 peak amplitude elicited

by painful stimuli showed a significant main effect of Cue (fourth hypothesis). However, anal-

ogously to the NRS ratings to the painful stimuli, no significant main effect of Hand Position

was observed (fifth hypothesis). Furthermore, the analysis revealed a significant Cue × Hand

Position interaction. Planned comparison showed that the P3 peak amplitudes in response to

painful stimuli preceded by incongruent cues were increased compared to those preceded by

the congruent cues, in both the uncrossed (F(1,22) = 32.01, p< .001, ŋ2
p = .60) and crossed

hands conditions (F(1,22) = 14.32, p = .001, ŋ2
p = .41) (Figs 3B and 4). Moreover, planned com-

parisons revealed that crossing the hands did not affect P3 peak amplitudes of the incorrectly

cued painful stimuli (F(1,22) = .85, p =. 37, ŋ2
p = .04) (sixth hypothesis). These analyses leave

the found Cue × Hand Position interaction unexplained. A subsequent GLM for the amplitude

difference of the incongruently and congruently cued stimuli did reveal a main effect of Hand

position (F(1,21) = 7.91, p = .01, ŋ2 = .04), indicating that the magnitude of the cueing effect of P3

amplitude of painful stimuli was more pronounced in uncrossed hands condition compared to

crossed one (Fig 3B). This result indicates that crossing the hands reduces the magnitude of the

cueing effect. A main GLM with repeated measures performed for P3 peak amplitude elicited

by painful stimuli showed also a significant main effect of Electrode Location, with the largest

values on the central sites (Cz and CPz) (Fig 4). Moreover a significant Cue × Electrode Loca-

tion interaction was also observed (see Table 2). Further analysis showed that the cueing effect

was present at five analysed vertex electrodes (post hoc ps< .001). Additional GLM analysis on

IC-CC difference of P3 peak amplitudes elicited by painful stimuli showed that the magnitude

of the cueing effect differed between analysed electrodes (F(4,84) = 6,09, p = .01, ŋ2 = .03). Further

Table 1. Summary of the GLM with repeated measures of the NRS ratings.

NRS–Painful stimuli–the main effects and interaction effects (df) F p ŋ2

Cue (1,21) 9.64 .005 .05

Hand Position (1,21) 1.31 .27 .002

Cue × Hand Position (1,21) 2.71 .11 .01

NRS–Non-painful stimuli–the main effects and interaction effects (df) F p ŋ2

Cue (1,21) 2.05 .17 .01

Hand Position (1,21) 2.93 .10 .01

Cue × Hand Position (1,21) 8.85 .007 .05

https://doi.org/10.1371/journal.pone.0182616.t001
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analysis indicated that the effect of cueing was more pronounced at frontal-central sites (mean

± SD: Fz: 5.10 ± 4.21 μV, FCz: 5.46 ± 4.70 μV and Cz: 5.00 ± 4.48 μV) than at more posterior

sites (mean ± SD: CPz: 4.17 ± 4.17 μV and Pz: 3.34 ± 3.74 μV).

For non-painful P3 peak amplitudes, the results of GLM with repeated measures showed a

significant main effect of Cue, revealing a more pronounced P3 amplitude in response to stimuli

following incongruent cues compared to congruent ones. Again, we obtained a non-significant

main effect of Hand Position; thus, crossing the hands did not influence the P3 peak amplitude,

which contradicts our fifth hypothesis. No Cue × Hand Position interaction effect was found,

suggesting that the strength of the cueing effect is not different when measured in the uncrossed

and crossed hands conditions (Fig 3B). Thus, the lack of statistical interaction runs contrary to

our sixth hypothesis. A significant main effect of Electrode Location and significant

Cue × Electrode Location interaction was found (see Table 2). Further post hoc analysis

revealed that the cueing effect was present for each of five vertex electrodes (Fig 5). Similarly to

the painful condition, we found that the P3 peak amplitudes elicited by incongruently cued

non-painful stimuli were relatively larger in comparison to the P3 amplitudes of congruently

cued stimuli. We also showed that the magnitude of the cueing effect (IC-CC difference) dif-

fered between the analysed electrodes (F(4,84) = 6,89, p = .003, ŋ2 = .03). We found that the effect

of cueing was less pronounced at Pz electrode (2.23 ± .63μV) compared to FCz, Cz and CPz

electrodes (mean ± SD: 3.82 ± .70 μV, 3.56 ± .68 μV and 3.23 ± .71 μV, respectively) (Fig 5).

P3 latency. The summary of the GLM with repeated measures of the P3 latencies obtained

separately for painful and non-painful stimuli is presented in Table 3.

The results revealed a significant main effect of Cue for both stimuli types, which is in line

with our fourth hypothesis. This result suggests that P3 peaked later when elicited by stimuli

following incongruent cues (mean ± SD: 326 ± 26 ms and 330 ± 25 ms for painful and non-

painful stimuli respectively) compared to congruent ones (mean ± SD: 309 ± 26 ms and

316 ± 29 ms for painful and non-painful stimuli respectively) (Fig 3C). Interestingly, for pain-

ful stimuli, longer P3 latency was measured in the crossed (mean ± SD: 323 ± 27 ms) compared

to the uncrossed hands condition (mean ± SD: 313 ± 24 ms), indicating that crossing the

hands may have influenced P3 latency.

Table 2. Summary of the GLM with repeated measures of the P3 amplitudes.

P3 amplitude–Painful stimuli–the main effect and the interaction effects (df) F P ŋ2

Cue (1,21) 28.94 < .001 .08

Hand Position (1,21) .34 .58 .001

Electrode Location (4,84) 80.53 < .001 .24

Cue × Hand Position (1,21) 8.62 .008 .01

Cue × Electrode Location (4,84) 6.09 .007 .002

Hand Position × Electrode Location (4,84) .47 .62 .0001

Cue × Hand Position × Electrode Location (4,84) 1.20 .30 .0003

P3 amplitude–Non-painful stimuli–the main effect and the interaction effects

(df)

F P ŋ2

Cue (1,21) 25.56 < .001 .06

Hand Position (1,21) .08 .80 .0002

Electrode Location (4,84) 63.33 < .001 .16

Cue × Hand Position (1,21) .17 .68 .0002

Cue × Electrode Location (4,84) 6.89 .003 .002

Hand Position × Electrode Location (4,84) 2.92 .07 .0008

Cue × Hand Position × Electrode Location (4,84) .21 .73 .0001

https://doi.org/10.1371/journal.pone.0182616.t002

Transient spatial attention in crossed and uncrossed hands positions - P3 and stimuli perception

PLOS ONE | https://doi.org/10.1371/journal.pone.0182616 September 5, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0182616.t002
https://doi.org/10.1371/journal.pone.0182616


Discussion

The present experiment used two manipulations to examine their effects on the perception

and processing of painful and non-painful electrical stimuli. These were transient spatial atten-

tion manipulation, using congruent or incongruent cueing, and an alteration of the frame of

reference by crossing the hands over the body midline. The perception of the stimuli was

quantified with a behavioural measure, namely subjective scoring; the processing was quanti-

fied with an electrophysiological measure, namely the P3 of the evoked potential. Our study

shows several main effects of cueing in different analyses, indicating that spatial attention

influences both subjectively perceived intensity (NRS scores) and processing (P3 amplitude

and P3 latency) of somatosensory stimuli. Except for the latency of the P3 following painful sti-

muli, we did not find other main effects of crossing the hands, demonstrating that crossing the

hands over the body’s midline decreased neither subjective ratings nor the P3 peak amplitude

of painful and non-painful stimuli. However, several Cue × Hand Position interaction effects

were found in different analyses, indicating that crossing the hands modulates the effect of

attention, though these modulating effects were only present for the non-painful NRS ratings

and for P3 peak amplitudes following painful stimuli.

Our behavioural findings showed that NRS ratings of painful stimuli were modulated by

the direction of spatial attention. The subjective NRS ratings were higher when attention was

Fig 4. Painful condition: the grand average ERPs from the midline electrodes (Fz, FCz, Cz, CPz and

Pz) (A) and spline interpolated maps of potentials representing scalp top-views of the P3 (250–400

ms) as a function of Hand Position (uncrossed and crossed) and Cue (congruent and incongruent)

(B). Ad A: The highest P3 peak amplitudes were observed at Cz and CPz electrodes. Ad B: The uncrossed

hands condition is on the left and the crossed hands condition is on the right. The colour scales—maximum

and minimum—are coded in red and blue, respectively.

https://doi.org/10.1371/journal.pone.0182616.g004
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focused on the same side where the electrical stimulation occurred (congruent condition),

compared to the ratings of the incongruent condition, which is consistent with our first

hypothesis. These findings align with previous reports indicating that focusing attention on a

nociceptive stimulus exaggerates pain [6,23]. Higher NRS scores of congruently cued painful

stimuli could also be associated with the observation that when a region of the body’s space is

cued by a stimulus in one modality, the processing of a stimulus from another modality

appearing in that region is also facilitated [22,62]. For non-painful stimuli, the cueing effect

Fig 5. Non-painful condition: the grand average ERPs from the midline electrodes (Fz, FCz, Cz, CPz

and Pz) (A) and spline interpolated maps of potentials representing scalp top-views of the P3 (250–

400 ms) as a function of Hand Position (uncrossed and crossed) and Cue (congruent and

incongruent) (B). Ad A: The highest P3 peak amplitudes were observed at Cz and CPz electrodes. Ad B:

The uncrossed hands condition is on the left and the crossed hands condition is on the right. The colour

scales—maximum and minimum—are coded in red and blue, respectively.

https://doi.org/10.1371/journal.pone.0182616.g005

Table 3. Summary of the GLM analysis of the P3 latencies.

P3 latency–Painful stimuli–the main effect and the interaction effects (df) F P ŋ2

Cue (1,21) 9.02 .007 .07

Hand Position (1,21) 16.40 .001 .24

Cue × Hand Position (1,21) .53 .47 .005

P3 latency–Non-painful stimuli–the main effect and the interaction effects (df) F P ŋ2

Cue (1,21) 14.43 .001 .14

Hand Position (1,21) .11 .75 .002

Cue × Hand Position (1,21) 1.75 .20 .02

https://doi.org/10.1371/journal.pone.0182616.t003
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failed to reach significance. However, for non-painful stimuli, we did observe a significant

interaction effect (Cue x Hand Position) that will be discussed below.

Contrary to our second hypothesis, crossing the hands over the body midline did not signif-

icantly influence the NRS scores for either painful or for non-painful stimuli. The fact that we

did not observe crossed-hands analgesia could be caused by a difference in the procedures of

the present study compared to previous studies by others [15,17]. In the study by Gallace et al.

[15], the side of the stimulus presentation was unknown to the participants; therefore, they did

not know to which spatial location the stimuli would be delivered. This clearly contrasts with

the present study, in which participants were cued with regard to the spatial location at which

the stimulation would be delivered. In our study the side of the stimulus application was cor-

rectly cued in 80% of the trials; therefore the processing of painful and non-painful stimuli was

facilitated (or inhibited with incongruently cued stimuli). The cueing effect might have over-

shadowed the hand position effect, possibly explaining the lack of crossed-hands analgesia.

However, the study of Valentini et al. [16] proposed that vision is critical in eliciting crossed-

hands analgesia thus questioning previous findings of Gallace et al. [15]. Since in the present

study the participants could not see their hands (a table top blocked the view of their arms),

the lack of visual information might explain why no crossed-hands analgesia was induced.

Indeed, Valentini et al. [16] suggested that only the interaction between the crossed arms and

an unobstructed view of the stimulated hand would be effective in reducing pain. As a result of

these crucial differences, we might not have observed simple crossed-hands analgesia, but

instead, observed the interaction between two different factors: the spatially guided allocation

of attention with an internal (skin-based) frame of reference, and the externally, spatially

guided allocation of attention.

The Cue × Hand Position interaction was seen for the non-painful stimuli, but not the pain-

ful ones, and therefore this finding is only partially in line with the third hypothesis. Observed

differences in manipulation effects between the painful and non-painful conditions may be

associated with the threatening character of painful stimuli, which inherently attract [63] and

captures attention [64,65]. Thus, we assume that due to their saliency, painful stimuli are easy

to localise even if the hands are kept in a crossed position. However, this lack of interaction

effect in the painful condition cannot exclude the relevance of the external location, since the

ERP results did reveal an interaction effect, discussed later.

In line with the third hypothesis, for non-painful stimuli, participants rated stimuli pre-

ceded by congruent cues as more intense in comparison to incongruent ones only in the

uncrossed hands condition (Fig 3A). Thus, although no crossed-hands analgesia was observed,

crossing the hands diminished the overshadowing cueing effects. It remains unclear if this

effect relies on the same underlying mechanism as crossed-hands analgesia. However, a

declined tactile localisation accuracy might explain why we did not observe an effect of cueing

in the crossed hand condition [5,9,11,12,66]. The perception of non-painful stimuli (skin-

based spatial code) appears to be automatically transferred to the external reference frame,

which is known as tactile remapping [7,13,67,68]. Thus, skin-based codes and transformed

external spatial codes are used in order to estimate the location of a non-painful stimulus

[4,14,69]. In crossed hands condition, the processing of conflicting information from two dif-

ferent frames of reference is disturbed, which probably results in an abolishment of the cueing

effect.

The effect of spatial attention allocation was also present for both the P3 peak amplitudes

and P3 latencies of painful and non-painful stimuli. In line with the fourth hypothesis, the P3

components had higher amplitudes and prolonged latencies for incongruently cued trials as

compared to congruently cued trials. For the P3 amplitude elicited by painful stimuli however,
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the magnitude of the cueing effect was reduced in the crossed hands condition as compared to

the uncrossed hands condition, discussed later.

Our ERPs results suggest that the brain does respond differently to attended and unat-

tended stimuli, reflecting an increased demand on attentional resources in the brain to locate a

stimulus that is incongruently cued compared to a stimulus that is congruently cued [70].

Incongruent cues require re-allocation of attention, whereas attention is already focused at the

correct position in the case of congruent cueing. The results are in line with the re-orienting

response that has been reported in previous studies [33–35,38] and with the fact that noxious

stimuli, such as pain, can attract our attention automatically, especially when they are unpre-

dictable, intense, and/or novel [6,63]. Our ERPs results are also in line with previous findings

showing that nociceptive and tactile stimuli capture participants’ attention, even when they are

presented outside the focus of spatial attention [24,27,41–43].

Contrary to our fifth hypothesis, the ERP P3 peak amplitude elicited by both painful and

non-painful stimuli was not decreased by crossing the hands. The lack of main effect of Hand

Position in the present study is probably associated with the described differences between our

study and that of Gallace et al. [15]. However, with respect to the painful stimuli we did find a

main effect of crossing the hands in the P3 latency. Crossing the hands leads to more pro-

longed latencies, which suggests a delayed processing [39] of these stimuli due to a mismatch

between internal and external references frames. Thus, we propose that spatial attention allo-

cation has a cost in terms of processing resources–the brain has to realign skin-based coordi-

nates to external spatial coordinates [9,15].

Contrary to our sixth hypothesis we did not observe that stimuli preceded by incongruent

cues elicited higher P3 amplitude in uncrossed conditions compared to crossed conditions.

However, the Cue × Hand Position interaction results obtained for the P3 peak amplitude

following painful stimuli allowed us to indicate that crossing the hands reduces the magnitude

of the cueing effect. The Cue × Hand Position interaction suggests that spatial attention is not

guided by an internal (skin-based) reference frame alone (for tactile stimuli see [19,20]). In

order to understand our results we may also exploit the knowledge from tactile [5,9,11,12,66,

67] and pain [11] information processing studies in which the temporal order judgment (TOJ)

task was used. In those studies an increase in localization errors was observed in the crossed

hands condition (a crossed-hands deficit). Thus the reduction of the magnitude of the cueing

effect in the crossed hands condition may reflect a conflict between internal and external left–

right coordinates that decreases the ability to localize stimuli. The processing of the stimuli

location is not disturbed when the hands are uncrossed, since in this situation the internal and

external reference frames provide congruent information.

For P3 peak amplitude elicited by non-painful stimuli we have observed a main effect of

Cue and have not observed a main effect of crossing the hands nor an interaction effect of Cue

and Hand Position. This result indicates that a comparable magnitude of the cueing effect was

observed in both hand conditions. In a study of Heed and Röder [20], where also tactile stimuli

were used, a difference in the 190–300 msec window of the ERPs between attended and unat-

tended stimuli was observed for the crossed but not the uncrossed condition. However, the

manipulation of attention, sustained in their study and transient in our experiment, was what

may have led to differences between the results of the mentioned study and ours. Moreover,

the ERP in the Heed and Röder [20] study, to which we referred, is not the P3, so a direct com-

parison cannot be made.

In the present study we investigated the P3 component recorded from five vertex electrodes.

The results suggest that our P3 component elicited by electric stimuli seems most likely the

equivalent of the P3a component due to the fact that the amplitudes of the P3 were greater at

the Cz than at the Pz electrode. Analogously, to our results, in the study of Van der Lubbe et al.
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[44], where transient attention using a Posner task was studied, the amplitude of the P260

component was also maximal at Cz and was larger for unattended compared to attended sti-

muli. The authors assumed that the P260 is an equivalent of the P3a component. Moreover,

the P260 component was assumed to be the nociceptive correlate of the P3a component (for

discussion see [40–42]), Another study confirms this, showing that this component was

enhanced by rarely presented deviant laser stimuli [27]. Moreover, in the present study we also

observed that the cueing effect was more pronounced at fronto-central sides.

Some limitations of the current study should be discussed. The behavioural and ERP results

show different effects of the experimental manipulations. In the crossed hands condition for

non-painful stimuli, the NRS scores show no cueing effect, whereas for the painful condition

the P3 amplitudes show a decrease in magnitude of this cueing effect. This discrepancy of

behavioural and EEG data is common as was shown in previous studies [71,72]. One of the

explanations for such a pattern of results is that behavioural data are less sensitive because they

are the end product of all preceding cumulative cognitive operations and thus more vulnerable

to noise and variability. Interestingly, in an additional analysis, we only found a correlation for

the least demanding cognitive task, i.e. a correlation between the NRS and P3 amplitude for

congruent cued painful stimuli in the uncrossed hands position (S2 Fig). One drawback is that

the electrical painful and non-painful stimuli measurements were based on participants’ rat-

ings on the NRS (subjective measurements), the veracity of which may be questioned [44].

However, objective measurements obtained from the ERP components provide a useful

method for investigating the physiological effects of modulated pain perception [28,73–75].

Another limitation is that in our study we collected painful ratings and recorded EEG activity

at the same time, so it is possible that our results reflect the effect of cognitive enhancement of

pain-related brain activity. An alternative approach would be to allow participants to assess

pain at the end of each block, long after the stimuli were given, but this would likely produce

unreliable NRS scores due to the long delay between the painful stimulus and its rating. Fur-

thermore, such a design might measure participants’ beliefs about pain–this could introduce

differences in stimulus intensities in the congruent and incongruent cue conditions [76].

Valentini et al. [16] used another approach where two separate experiment sessions were used

for behavioural and psychophysiological measurements. In one session participants were

asked to evaluate their pain sensation according to the experimental conditions and in the fol-

lowing sessions only ERPs were collected during the very same conditions. Such a design

would have prevented pain-related brain activity’s being affected by cognitive enhancement.

The next limitation is that in the present study the painful and non-painful stimuli were evalu-

ated for the non-dominant (left) hand and during the experiment such individually deter-

mined stimuli were also used for the dominant one. The threshold of pain perception may

vary considerably for the dominant and non-dominant hand; however, reports concerning

this topic are conflicting [77,78]. Finally, it should be emphasised that in conducting research

on pain and attention, one needs to be aware that any interruptive effects of pain could be

attributed to affective processing (e.g. fear or anxiety) taking place during the anticipation of

pain. There is evidence that fear of pain is associated with stronger pain-related brain activity

[79]. As a result, the enhanced P3 amplitudes may merely reflect an increased fear of pain.

In conclusion, both the behavioural and ERP data indicated that the manipulation of tran-

sient spatial attention was effective and that hand position may modulate this cueing effect.

Our results may have an implication for the development of therapies for chronic pain, which

could focus on the use of attentional training as a pain management strategy. Such attentional

training may facilitate the ability to focus attention away from the painful body part and this

may lead to pain reduction.
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Supporting information

S1 Fig. Graphical representation of the hypotheses for both painful and non-painful sti-

muli. Panels on the left (A-C) depict the hypotheses with respect to the NRS ratings. Panels on

the right (D-F) depict the hypotheses with respect to the ERP P3 component. Note: Dark grey

colours represent expected increments (a.u.) whereas light grey colours represent expected

decrements of scores. However, the grey colours do not quantify the effect and have only illus-

trative meaning. The horizontal and vertical rectangles (Match and Mismatch) represent rela-

tion between both frames of reference.

(TIF)

S2 Fig. Correlation of individual NRS scores with P3 peak amplitude.

(TIF)
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2. Zaehle T, Jordan K, Wüstenberg T, Baudewig J, Dechent P, Mast FW. The neural basis of the egocen-

tric and allocentric spatial frame of reference. Brain Res. 2007; 1137: 92–103. https://doi.org/10.1016/j.

brainres.2006.12.044 PMID: 17258693
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