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Bayesian Group Belief

Franz Dietrich1

May 2008

Abstract. If a group is modelled as a single Bayesian agent, what should its beliefs

be? I propose an axiomatic model that connects group beliefs to beliefs of group

members, who are themselves modelled as Bayesian agents and, crucially, may have

different information. They may also have different prior beliefs and different do-

mains (σ-algebras) on which they hold beliefs, to account for differences in awareness

and conceptualisation. As is shown, group beliefs can incorporate all information

spread across individuals without individuals having to communicate their informa-

tion (which may be complex, hard-to-describe, or not describable in principle due to

language restrictions); individuals should instead communicate their prior and pos-

terior beliefs. The group beliefs derived here take a simple multiplicative form if

people’s information is independent (and a more complex form if information over-

laps arbitrarily), which contrast with familiar linear or geometric opinion pooling and

the (Pareto) requirement of respecting unanimous beliefs. JEL classification: D70,

D71

Keywords: Opinion pooling, axiomatic social choice theory, subjective probability

1 Introduction

Suppose a group is interested in whether a given hypothesis H is true. If every in-

dividual assigns a probability of 70% to H, what probability should the group as

a whole assign to H? Is it exactly 70%, or perhaps more since different persons

have independently confirmed H? The answer, I will show, crucially depends on

the informational states of the individuals. If they have identical information, the

collective has good reasons to adopt people’s unanimous 70% belief, following the

popular (probabilistic) Pareto principle (e.g. Mongin (1995, 1998)). Under informa-

tional asymmetry, by contrast, a possibly much higher or lower collective probability

may be appropriate, and the Pareto principle becomes problematic, or so I argue.

The above question is an instance of the classic opinion pooling/aggregation prob-

lem, with applications for instance in expert panels. In general, individual probabilit-

ies need of course not coincide, and also more than one hypothesis may be of interest.

1Affiliations : London School of Economics & Maastricht University. This paper is based on my

old unpublished working paper ‘Opinion Pooling under Asymmetric Information,’ Public Economics

0407002, EconWPA, 2004. Interesting related results were meanwhile obtained independently by

Marcus Pivato in his working paper ‘The Discursive Dilemma and Probabilistic Judgement Aggreg-

ation,’ MPRA Paper 8412, University Library of Munich, Germany, 2008.
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The goal is to merge a profile of n individual probability measures (on a σ-algebra

of events) into a single collective probability measure. The literature has proposed

different normative conditions on the aggregation rule, and has derived the class of

rules satisfying these conditions. The two most prominent types of rules are linear

and geometric rules. Denoting by π1, ..., πn, π the restrictions of the individual resp.

collective probability measures to the setH of atoms of the σ-algebra (where I assume

that H forms a countable partition or the underlying state space, so that it suffices

to consider the probabilities of the atoms), a linear rule defines π as being a weighted

arithmetic average
∑n
i=1wiπi, and a geometric rule defines π as being proportional to

a weighted geometric average Πni=1π
wi
i , where w1, ..., wn ∈ [0, 1] are fixed weights with

sum 1. By contrast, our Bayesian axioms will lead to what I call multiplicative rules,

which define π as proportional to gΠni=1πi, the product of all (unweighted) individual

functions πi with some fixed function g. Linear rules have been characterised (under

additional technical assumptions) by the independence or setwise function property

(McConway (1981), Wagner (1982, 1985), Dietrich and List (2007); see also Lehrer

and Wagner (1981)), the marginalisation property (McConway (1981)), and (in a

single-profile context) by the probabilistic analogue of the Pareto principle (Mongin,

(1995, 1998)); and geometric rules famously satisfy external Bayesianity as defined in

Section 6 (e.g. McConway (1978), Genest (1984), Genest, McConway and Schervish

(1986)). Still an excellent reference for fundamental results on opinion pooling is

Genest and Zidek’s (1986) literature review.

I claim that the classic approach is problematic if, as in this paper, the goal of

opinion pooling is taken to be information aggregation, i.e. if collective beliefs aim

at incorporating all the information spread asymmetrically over the individuals. The

classic approach is more suitable if the goal is not information aggregation: the goal

might be not epistemic at all (e.g. fair representation), or it might be epistemic yet

with the disagreements between individuals caused not by differences in information

but by differences in interpretation of the same shared body of information.

One might at first suspect that classic pooling functions can account for informa-

tional asymmetries by putting more weight on the beliefs of well-informed individuals.

More concretely, it is often suggested that in a linear and geometric rule (as defined

above) the weights wi of well-informed individuals should be higher. However, as

Genest and Zidek (1986) put it, “expert weights do allow for some discrimination

[...], but in vague, somewhat ill defined ways’ (p. 120), and “no definite indications

can be given concerning the choice or interpretation of the weights’ (p. 118).

To concretely illustrate the difficulty that classic pooling functions have in aggreg-

ating information, consider again the introductory example. Suppose each individual

i’s subjective probability πi(H) = .7 is in fact the result of Bayesian conditionalisation

on some private information Ei, where the Eis are independent across individuals.

What should the collective belief π(H) be? If the individuals all had the same prior

probability of H, say p0, all depends on how p0 compares to .7: if p0 < .7 then
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π(H) should intuitively exceed .7 because π(H) should incorporate all the observa-

tions E1, ..., En, each one of which alone already suffices to push the probability of

H up from p0 to .7. By a similar argument, if H has a common prior above .7 then

intuitively π(H) < .7, and if H has a common prior of exactly .7 then intuitively

π(H) = .7. If people hold different prior beliefs of H, then intuitively π(H) should

be higher or lower than .7 according to whether ‘most’ individuals’ prior of H is

lower resp. higher than .7. These considerations highlight that knowing just the

individuals’ current (i.e. posterior) opinions π1, ..., πn does not suffice to determine

a collective opinion π that efficiently aggregates private information. So our model

will have to deviate from standard opinion pooling in that π will not be a function of

π1, ..., πn alone. On what else must collective opinions depend? The example lets us

suspect that individual prior beliefs matter.

The paper confirms this intuition generally, by presenting an axiomatic framework

that unlike the classic approach explicitly models the information states of the indi-

viduals. The imposed axioms lead (in the common prior case) to a unique formula

for the collective probability function; no weights or other parameters are needed to

incorporate all individual information into the collective beliefs. For the reason ex-

plained above, the collective beliefs depend not just on people’s actual (i.e. posterior)

beliefs but also their prior beliefs. This increased individual input is necessary and

sufficient to efficiently aggregate information, which might come as a surprise. In

short, knowing the (complex) content of people’s private information is not needed:

knowing people’s prior-posterior pairs suffices.

As an alternative to our approach, the supra-Bayesian approach might also be

able to aggregate information efficiently; however, despite conceptual elegance, the

approach suffers from some problems, among which practicable infeasibility.2

In modelling both individuals and the collective as Bayesian rationals, our findings

are also relevant to the theory of Bayesian aggregation, which aims to merge individual

beliefs/values/preferences satisfying Bayesian rationality conditions (in the sense of

Savage (1954) or Jeffrey (1983)) into equally rational collective ones; for the ex ante

approach, e.g. Seidenfeld et al. (1989), Broome (1990), Schervish et al. (1991) and

Mongin (1995, 1998); for the ex post approach, e.g. Hylland and Zeckhauser (1979),

Levi (1990), Hild (1998) and Risse (2001); for an excellent overview, see Risse (2003).

Section 2 presents the axiomatic model and derives the resulting aggregation rule.

Section 3 gives a numerical example. Section 4 identifies our pooling formula as

a form of multiplicative opinion pooling. Sections 5 and 6 address the case of no

2 In the supra-Bayesian approach (introduced by Morris’ (1974) seminal work and extended in a

large literature), collective beliefs are obtained as posterior probabilities (held by the real or vir-

tual ‘supra-Bayesian’) conditional on the observed individual beliefs (treated as random events or

evidence). This presupposes knowing (i) prior probabilities, and (ii) the likelihoods with which the

individuals make probability assignments. It is not clear where these prior probabilities and likeli-

hoods can come from; reaching a compromise or consensus on them might involve a more complex

opinion pooling problem than the original one.
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common prior. Section 7 analyses the independent-information assumption made so

far. Section 8 generalises the aggregation rule to arbitrary information overlaps.

2 An axiomatic model

Consider a group of persons i = 1, ..., n (n ≥ 2) who need collective beliefs on certain

hypotheses, represented as subsets H of a non-empty set Ω of possible worlds, i.e.

worlds that are possible under the shared information. Throughout I call information

(knowledge, an observation etc.) ‘shared’ if it is held by all group members. Let H be

the set of hypotheses H ⊆ Ω of interest, where H forms a finite or countably infinite

partition of Ω and ∅ /∈ H. So, the hypotheses are mutually exclusive and exhaustive.

A simple but frequent case is a binary problem H = {H,Ω\H}, where H might be

the hypothesis that the defendant in a court trial is guilty. In a non-binary case, H

might contain different hypotheses on the defendant’s extent of guilt.

I call an opinion (on H) any function f : H → (0, 1] with
∑
H∈H f(H) = 1

(whereas probability measures are, as usual, defined on σ-algebras of events3); let Π

be the set of all these functions f .

Let each individual i hold an opinion πi ∈ Π, and let the collective also hold

an opinion π ∈ Π. So far, this is entirely classical. Classical opinion pooling would

proceed by placing conditions on how π depends on π1, ..., πn, resulting in a unique

relationship (e.g. π = 1
nπ1 + ... +

1
nπn) or a class of possible relationships (e.g. all

linear relationships).

Before stating the axiomatic approach in full generality (that is, before allowing

individuals to hold different prior beliefs defined on different domains of events), I

sketch the approach in a simple case. Suppose for the moment that any individual

i’s opinion πi : H→ [0, 1] is given by

πi(H) = P (H|Ei) for all H ∈ H,

where P is a common prbability measure defined on the maximal domain P(Ω) (so

that people hold prior beliefs about everything, the same ones!), and Ei ⊆ Ω is

individual i’s private information with P (Ei) > 0, where E1, ..., En are independent

conditional on any hypothesis H ∈ H. We would like the group opinion π : H→ [0, 1]

to include all information spread over the group, i.e., to be given by

π(H) = P (H|E1 ∩ ... ∩En) for all H ∈ H (1)

(where one easily checks that (1) is well-defined, i.e., that P (E1 ∩ ...∩En) > 0). One

approach would be to ask all individuals i to ‘tell’ their private experience Ei, so that

3By countability of H and σ-additivity of probability measures, any opinion onH uniquely extends

to a probability measure on the σ-algebra σ(H) generated byH, and so we lose nothing by considering

functions on H rather than on σ(H). By definition, opinions f ∈ Π never assign zero probability to

any hypothesis; this is mainly for technical convenience.
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the group could simply gather all experiences and calculate the conditional probabil-

ities (1). But this procedure may be unrealistic, as personal experience may be very

complex and hard-to-communicate in normal language and limited time. (Another

problem which the current preliminary setting assumes away is that person i’s ex-

perience Ei may be an event of which the other persons have no prior beliefs, or

even no awareness or conceptualisation; asymmetries in awareness or conceptualisa-

tion might indeed explain why different people make different experiences.) Assuming

that private evidence cannot (or is not) communicated, can the beliefs in (1) be calcu-

lated at all? The following derivation gives a positive answer. Consider a hypothesis

H ∈ H and the belief π(H) as defined by (1). Applying Bayes’ rule and then our

independence assumption,

π(H) =
P (H)P (E1 ∩ ... ∩En|H)∑

H′∈H P (H
′)P (E1 ∩ ... ∩En|H ′)

=
P (H)P (E1|H) · · ·P (En|H)∑

H′∈H P (H
′)P (E1|H ′) · · ·P (En|H ′)

.

In the numerator and the denominator, each factor of type P (Ei|H) can be rewritten

according to

P (Ei|H) =
P (H|Ei)P (Ei)

P (H)
=
πi(H)P (Ei)

P (H)
.

Substituting this expression, we obtain

π(H) =
P (H)π1(H)P (E1)P (H) · · · πn(H)P (En)P (H)

∑
H′∈H P (H

′)π1(H
′)P (E1)

P (H′) · · · πn(H
′)P (En)

P (H′)

=
π1(H) · · ·πn(H)/P (H)

n−1

∑
H′∈H π1(H

′) · · ·πn(H ′)/P (H ′)n−1
.

Interestingly, any private information Ei has dropped out altogether, so that the

collective opinion π can be calculated solely on the basis the revealed individual

opinions π1, ..., πn (and the fixed prior). Put differently, each individual information

Ei has been incorporated without disclosing it. In short, denoting by p the prior

opinion P |H (i.e., the restriction of P to the hypotheses of interest), we have shown

that

π ∝ π1 · · ·πn/p
n−1.

Here and throughout, I call functions f, g : H → R proportional, written f ∝ g, if

there exists a constant k �= 0 such that f(H) = kg(H) for all H ∈ H.

After this preliminary analysis, let us start again from the beginning, this time

in full generality. Recall that we consider individual opinions π1, ..., πn ∈ H and a

collective opinion π ∈ H. The further elements introduced in the preliminary analysis

(namely, P,E1, ..., En) are now re-introduced in their general and official form. For

each person i let there be:
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• an event Ei ⊆ Ω, i’s personal information;

• a set of events Ai (⊇ H ∪ {Ei}), a σ-algebra on Ω, representing the domain

within which i holds beliefs (whereas on events outside Ai the individual may

lack a belief, or even lack awareness or conceptualisation);

• a (‘prior’) probability measure Pi : Ai → [0, 1] representing i’s beliefs based on

the shared information (hence prior to observing Ei), where Pi(Ei) > 0 and

Pi(H) > 0 for all H ∈ H.4

These model resources allow us to state a standard rationality condition:

Individual Bayesian Rationality (IBR) πi(H) = Pi(H|Ei) for each person i and

hypothesis H ∈ H.5

Note in particular that a person i’s belief domain Ai may fail to contain another

person j’s observation Ej , and this for (at least) two reasons. First, the fact that j

but not i observed Ej may be due precisely to j having subjectively conceptualised

Ej but i not having done so; juror j in a trial may be the only juror to observe the

suspicious smile on the defendant’s face because the other jurors i do not even know

what a suspicious smile would be like. Second, j’s information Ei may be so detailed

and complex that prior to j observing it belonged not even to j’s own belief domain,

let alone to i’s; that is, it was only while observing Ej that person j extended his

prior beliefs to a larger domain Aj containing Ej .

Following the paradigm of social choice theory, I treat the collective as a separ-

ate virtual agent with its own beliefs. While this agent is typically a construction

(i.e. there needn’t exist any real individual holding these beliefs), the social choice

paradigm requires it to be as rational as any real individual.6 ‘Rationality’ refers to

different things in different contexts (e.g. to transitivity of preferences in Arrowian

Arrowian preference aggregation, to von-Neumann-Morgenstern rationality in Harsa-

nyi’s Theorem on group preferences over lotteries, to logical consistency in judgment

aggregation, and so on). In the present context, it naturally refers to Bayesian ra-

tionality. To formulate this, I suppose that there are

• a σ-algebra A (⊇ H∪{E1, ..., En}) on Ω, representing the domain within which

the collective holds beliefs:
4The term "prior" need not have a temporal meaning: the observation of Ei need not come after

that of shared information.
5The conditional probability Pi(H|Ei) is well-defined because Ei,H ∈ Ai and Pi(Ei) > 0. Our

assumptions also take care that all other conditional probabilities used in this paper are well-defined.
6The collective agent should be rational notably because it forms the basis for collective actions

and decisions.
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• a (prior) probability measure P : A → [0, 1] meant to represent the collective

beliefs based on people’s shared information (i.e. not on their personal inform-

ation), where P (E1 ∩ ... ∩En) > 0 and P (H) > 0 for all H ∈ H.

A and P are the collective counterparts of Ai and Pi. The collective counterpart

of (IBR) is:

Collective Bayesian Rationality (CBR) π(H) = P (H|E1 ∩ ... ∩ En) for each

hypothesis H ∈ H.

Condition (CBR) requires the collective opinion π to incorporate all information

spread over people: the shared information (contained in the prior P ) and all personal

information (contained in E1, ..., En).

While we have ensured, via (CBR), that collective beliefs ‘use’ all evidence scattered

across individuals, we have done nothing so far to constrain the collective prior prob-

ability measure P (which underlies π). Indeed, P may so far be totally disconnected

from the individual prior probability measures P1, ..., Pn (which underlie π1, ..., πn).

The next condition does something to connect P to P1, ..., Pn. More precisely, it

fixes the likelihoods of the individual evidences E1, ..., En (that is, their probabilities

conditional on any hypotheses H) by tying these likelihoods to the individuals’ own

likelihood assignments:

Acceptance of Likelihoods (AL) For all persons i and hypotheses H ∈ H,

P (Ei|H) = Pi(Ei|H).

This principle requires the collective to take over i’s own interpretation of i’s in-

formation Ei as given by i’s likelihood assignments Pi(Ei|H), H ∈ H. To motivate

this condition, let me first explain the context in a little more detail. In statistics,

the information that data contain on given hypotheses (as opposed to prior beliefs

on these hypotheses) is usually taken to be summarised in the data’s likelihood func-

tion, which maps any hypothesis to the data’s probability given this hypothesis. For

instance, the information on humidity contained in a temperature measurement of

20 degrees Celcius is given by the mapping that assigns to each potential humidity

level the probability that temperature is 20 degrees Celcius given this humidity level.

In our case, the information contained in individual i’s evidence Ei is summarised

in Ei’s likelihood function, mapping any hypothesis H to Ei’s probability given H.

But how large exactly is Ei’s probability given H? For instance, how probable is

it that the defendant in a trial has a particular facial expression (Ei) given the hy-

pothesis that he is guilty (H)? The answer may be far from trivial, as one might

come up with various different interpretations of the same observation. Condition

(AL) requires that the answer that the collective gives matches the answer that the

individual who observed the evidence gives; that is, P (Ei|H) = Pi(Ei|H). What is

the motivation behind identifying P (Ei|H) with Pi(Ei|H)? Why not also take other
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persons’ interpretations of Ei into account by defining P (Ei|H) as some comprom-

ise of P1(Ei|H), ..., Pn(Ei|H)? First, for reasons explained above, the persons j �= i

may not even hold beliefs on the unobserved event Ei (i.e., Ei �∈ Aj), in which case

Pj(Ei|H) is simply undefined. Second, assuming that the persons j �= i do hold such

beliefs (i.e., Ei ∈ Aj), a ‘likelihood compromise’ could only be formed after each

person j reveals Pj(Ei|H); which in turn supposes that first i communicates his in-

formational basis Ei in all detail to the rest of the group. This is not only at odds

with the present approach, but may also be infeasible: given the possible complexity

of Ei and the limitations of language, time, i’s ability to describe Ei, j’s (j �= i) ability

to understand Ei, and so on, j could probably learn at most some approximation Ẽi
of Ei, and so j could at most provide j’s likelihood of Ẽi, which only approximates

j’s likelihood of the true Ei (Pj(Ẽi) ≈ Pj(Ei)).

The next assumption is not a normative condition but rather an assumption on

the environment: individuals receive independent information. This assumption will

be analysed (and relaxed) in later sections. For now, I only mention that it is strong

but very common; it is for instance analogous to independent-private-information

assumptions often made for Bayesian games, to the independence assumption in the

literature on the Condorcet Jury Theorem, to the Parental Markov Condition in the

theory of Bayesian networks (interpreting the true hypothesis in H as the parent of

each information Ei in a Bayesian network; see Pearl 2000), and to Fitelson’s (2001)

confirmational independence assumption.

Independent Information (Ind) For each hypothesis H ∈ H, the personal ob-

servations E1, ..., En are independent conditional on H, i.e. P (E1 ∩ ... ∩ En|H) =

P (E1|H) · · ·P (En|H).

I denote by p1, ..., pn, p the restrictions of the (individual and collective) prior

beliefs P1, ..., Pn, P to the set H of relevant hypotheses; formally p1 := P1|H, ..., pn :=

Pn|H, p := P |H. So p1, ..., pn, p are the prior counterparts of the posterior opinions

π1, ..., πn, π. The pair pi, πi represents i’s prior and posterior opinions on the relevant

hypotheses.

Theorem 1 If (IBR), (CBR), (AL) and (Ind) hold, the collective opinion π is given

by

π ∝
π1
p1
· · ·
πn
pn
p.
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Proof. Suppose (IBR), (CBR), (AL) and (Ind) hold. We have:

π(.) = P (.|E1 ∩ ... ∩En) by (CBR)

=
P (E1 ∩ ... ∩En|.)p(.)

P (E1 ∩ ... ∩En)
by Bayes’ rule

∝ P (E1 ∩ ... ∩En|.)p(.)

= P (E1|.) · · ·P (En|.)p(.) by (Ind)

= P1(E1|.) · · ·Pn(En|.)p(.) by (AL)

=
P1(.|E1)P1(E1)

p1(.)
· · ·
Pn(.|En)Pn(En)

pn(.)
p(.) by Bayes’ rule

∝
P1(.|E1)

p1(.)
· · ·
Pn(.|En)

pn(.)
p(.)

=
π1(.)

p1(.)
· · ·
πn(.)

pn(.)
p(.) by (IBR). �

Two remarks are due.

1. As promised, the collective opinion π is calculated without people having to

communicate their arbitrarily complex informational bases Ei or their likelihoods

P (Ei|H), H ∈ H. In practice, all persons i submit their prior-posterior pairs pi, πi,

and then the collective opinion π is calculated. (The choice of the collective prior

p is addressed in Sections 5 and 6.) Compared to standard opinion pooling, we

additionally require submission of prior opinions p1, ..., pn, a complication that enables

the incorporation of the individual information E1, ..., En into the collective opinion.

2. Assume a unanimous posterior agreement π1 = ... = πn (as in the intro-

duction’s example). Then only in special cases does π equal π1 = ... = πn, which

shows that the unanimity/Pareto principle often required in standard opinion pool-

ing is problematic under informational asymmetries. One such special case is that

π1 = ... = πn = p1 = ... = pn = p, so that none of the personal observations

E1, ..., En confirms or disconfirms any hypothesis, i.e., in essence, there is no inform-

ational asymmetry.

An important case of Theorem 1 is that where people have managed to agree

on how to interpret their shared information, i.e. where they hold a common prior

opinion:

Common Prior (CP) p1 = ... = pn = p (i.e. the prior probability measures

P1, ..., Pn, P agree on the setH of relevant hypotheses, though perhaps not elsewhere).

Corollary 1 If (IBR), (CBR), (AL), (Ind) and (CP) hold, the collective opinion π

is given by

π ∝ π1 · · ·πn/p
n−1
1 .
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Let me make two remarks on this corollary.

1. The corollary’s formula differs in an important respect from Theorem 1’s

formula: the parameter p has been eliminated, and so the collective opinion π is fully

determined by the individual prior and posterior opinions. By contrast, if (CP) fails,

i.e. if the group didn’t manage to agree on how to interpret the shared information,

Theorem 1’s formula does not fully solve the aggregation problem, as we need a way

to determine the collective prior p (see Sections 5 and 6).

2. Condition (CP) can in fact be seen as the conjunction of two conditions. The

first (descriptive) condition is that p1 = ... = pn, i.e. all persons i submit the same

prior opinion. The second (normative) condition is that the unanimity (or Pareto)

principle holds for the prior opinions, i.e. if all submit the same prior opinion, this

becomes the collective prior opinion. Applying a unanimity condition to prior opinions

is far less problematic than doing so for the posterior opinions π1, ..., πn, π, because

prior opinions contain no informational asymmetry.

3 A numerical example for a simple case

Consider the simple case of a binary problem H = {H,Ω\H} (H and Ω\H might

mean that the defendant in a court trial is guilty resp. innocent, and persons might

be jurors). Suppose Common Prior (CP), i.e. p1 = ... = pn = p. By Theorem 1 (that

is, by its corollary), the collective posterior of H is given by

πH =
πH1 · · ·π

H
n /(p

H)n−1

πH1 · · ·π
H
n /(p

H)n−1 + (1− πH1 ) · · · (1− π
H
n )/(1− p

H)n−1
, (2)

where pH := p(H), πH := π(H) and πHi := πi(H).
7 For the case of group size

n = 2, Table 1 contains the values of πH for all possible combinations of values

of pH , πH1 , π
H
2 in the grid {.1, .25, .5, .75, .9}. Note how drastically πH depends on

the prior pH . By shifting pH below (above) the πHi s, π
H quickly approaches 1 (0);

intuitively, if E1, ..., En all point into the same direction, their conjunction points

even more into that direction. But if the prior pH is somewhere in the middle of the

πHi s, π
H may be moderate; intuitively, if E1, ..., En point into different directions,

their conjunction need not strongly point into any direction. Rewriting (2) as

πH =
1

1 + (1/πH1 − 1) · · · (1/π
H
n − 1)/(1/p

H − 1)n−1
, (3)

shows that group belief πH is a strictly increasing function of individual beliefs

πH1 , ..., π
H
n for fixed prior pH , but a strictly decreasing function of pH for fixed

πH1 , ..., π
H
n (where πH → 1(0) as pH → 0(1)). How can one make sense of the group

posterior πH depending negatively on the prior pH? Can more prior support for H

really reduce H’s posterior probability? The answer is that increasing the prior pH

7The entries are rounded results if 3 decimal digits are reported, and exact results else.
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pH :

.1 .25 .5 .75 .9

.1, .1 .1 .036 .012 .004 .001

.25, .1 .25 .1 .036 .012 .004

.25, .25 .5 .25 .1 .036 .012

.5, .1 .5 .25 .1 .036 .012

.5, .25 .75 .5 .25 .1 .036

.5, .5 .9 .75 .5 .25 .1

.75, .1 .75 .5 .25 .1 .036

πH1 , π
H
2 : .75, .25 .9 .75 .5 .25 .1

.75, .50 .964 .9 .75 .5 .25

.75, .75 .988 .964 .9 .75 .5

.9, .1 .9 .75 .5 .25 .1

.9, .25 .964 .9 .75 .5 .25

.9, .5 .988 .964 .9 .75 .5

.9, .75 .996 .988 .964 .9 .75

.9, .9 .999 .996 .988 .964 .9

Table 1: Collective probability πH = π(H) in dependence of the common prior

pH = p(H) and the individual posteriors πHi = πi(H), for a group of size n = 2.

while keeping the individual posteriors πH1 , ..., π
H
n fixed implicitly reduces the support

that each of the n individual observations E1, ..., En give to H; and this ought indeed

to reduce the collective posterior πH of H, because πH accounts not just for one Ei
(whose reduced support for H exactly compensates the increased prior support) but

for the entire conjunction E1∩ ...∩En (whose reduced support for H overcompensates

the increased prior support).

4 Multiplicative opinion pooling

If we treat the priors p1, ..., pn, p as fixed parameters, the pooling formula of Theorem

1 depends just on π1, ..., πn, hence defines a classic pooling function F : Πn → Π.

Specifically, this pooling function is given by π ∝ g · π1 · · ·πn where g is a fixed

function on H defined as g := p/(p1 · · · pn) (and in particular as p1−n under Common

Prior (CP)). So, our axioms lead to what one might call a multiplicative opinion pool.

Formally, a (classic) opinion pool F : Πn → Π is multiplicative if it is given by

F (π1, ..., πn) ∝ g · π1 · · ·πn for all π1, ..., πn ∈ Π,

11



for some fixed function g : H → (0,∞).8 The simplest multiplicative rule is that in

which g takes the value 1 everywhere, so that

F (π1, ..., πn) ∝ π1 · · ·πn for all π1, ..., πn ∈ Π.

Note how multiplicative opinion pools differ from the more common linear and geo-

metric opinion pools; these arise from different axiomatic systems that do not make

information explicit.

In fact, our axioms not only imply that pooling be multiplicative: they charac-

terise multiplicative pooling if H is finite because every multiplicative rule can be

obtained from suitable priors p1, ..., pn, p ∈ Π.9

Our axioms always lead to multiplicative pooling, but it is of course not enough in

practice to use any multiplicative rule: it matters which one is used, as the resulting

collective beliefs are highly sensitive to the parameter g resp. to p1, ..., pn, p. More

precisely, the choice of multiplicative rule determines how the shared information is

represented in collective beliefs, as shared information is what the prior functions

p1, ..., pn, p reflect. The next section addresses this issue.

5 Choosing the collective prior p when there is no com-

mon prior

If the interpretation of the shared information is controversial and hence (CP) fails,

the group needs to determine the collective prior p in Theorem 1’s formula. At least

three strategies are imaginable. First, one might define p as a uniform or maximum-

entropy prior if available. Second, someone, not necessarily a group member, may

be appointed to choose p, either by drawing on his own prior beliefs, or by taking

inspiration from the submitted priors p1, ..., pn, or by using statistical estimation

techniques if available. These two solutions have obvious limitations, including some

ad-hoc-ness and a lack of democracy. A third alternative is to replace p by F (p1, ..., pn)

and thus define the collective opinion by

π ∝
π1
p1
· · ·
πn
pn
F (p1, ..., pn), (4)

where F : Πn → Π is a standard opinion pool. Note that F is used here not to

aggregate people’s actual (posterior) opinions π1, ..., πn but to aggregate their prior

opinions p1, ..., pn, namely into a ‘compromise prior’. At first sight, one may wonder

what is gained by formula (4) compared to the standard approach of defining π =

F (π1, ..., πn) without having to care about priors p1, ..., pn. Does formula (4) not just

8As F (π1, ..., πn) sums to 1, the factor or proportionality is
(∑

H∈H
g(H) · π1(H) · · · πn(H)

)−1
.

9For any multiplicative rule F : Πn → Π, say generated by the function g, if for instance p1 =

... = pn = p ∝ g−1/(n−1) then g ∝ p/(p1 · · · pn), and hence the multiplicative rule generated by g

coincides with that arising in Theorem 1.
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shift the classic aggregation problem — pooling π1, ..., πn into π — towards an equally

complex aggregation problem about priors — pooling p1, ..., pn into p? In an important

respect, pooling p1, ..., pn is simpler than pooling π1, ..., πn: unlike π1, ..., πn, the prior

opinions p1, ..., pn involve no informational asymmetry since each pi is based on the

same (shared) information.10 Hence any disagreement between p1, ..., pn is due solely

to different interpretations of that same body of information. This may facilitate

the choice of F . For instance, aggregation may be guided by the unanimity/Pareto

principle (which is problematic under informational asymmetry, as we have seen).

Further, aggregation may place equal weights on each or the priors p1, ..., pn (whereas

pooling π1, ..., πn may involve the difficult and vague exercise of assigning more weight

to better informed people). The literature’s two most prominent types of opinion

pools F : Πn → Π are

linear opinion pools: F (p1, ..., pn) = w1p1 + ...+wnpn,

geometric opinion pools: F (p1, ..., pn) ∝ p
w1
1 · · · pwnn ,

with weights w1, ..., wi ∈ [0, 1] that add up to 1 (where in the geometric pool the

factor of proportionality is chosen such that
∑
H∈H F (p1, ..., pn)(H) = 1). If F is a

linear resp. geometric opinion pool, our pooling formula (4) becomes

π =
π1
p1
· · ·
πn
pn
(w1p1 + ...+wnpn) (5)

resp. π ∝
π1
p1
· · ·
πn
pn
pw11 · · · pwnn =

π1

p1−w11

· · ·
πn

p1−wnn

. (6)

How should the weights w1, ..., wn be chosen in practice? In general, unequal weights

may be justified either by different information states or by different competence,

i.e. ability to interpret information. The former reason does not apply here, since

p1, ..., pn are by definition based on the same (shared) information. If, in addition,

differences of competence are either inexistent, or unknown, or not to be taken into

account for reasons of procedural fairness, then equal weights w1 = ... = wn = 1/n

are justified, so that our pooling formula becomes

π =
1

n

π1
p1
· · ·
πn
pn
(p1 + ...+ pn) (7)

resp. π ∝
π1

p
1−1/n
1

· · ·
πn

p
1−1/n
n

, (8)

which is parameter-free, hence uniquely solves the aggregation problem.

6 External and internal Bayesianity

I now give an argument in defence of defining F in (4) as a geometric (or more

generally, externally Bayesian) opinion pool, hence in defence of our pooling formulae

10One might even argue that, while pooling p1, ..., pn into p is possible without using extra in-

formation (due to the informational symmetry), pooling π1, ..., πn into π is impossible without extra

information (such as p1, ..., pn).

13



(6) and (8). Note first that in (4) π is a function of the vector (p1, π1..., pn, πn) ∈

(Π×Π)n = Π2n, containing every person’s prior and posterior.

Definition 1 A generalised opinion pool (‘GOP’) or generalised probability aggreg-

ation rule is a function G : Π2n → Π.

Unlike a standard opinion pool F : Πn → Π, a GOP G also takes as inputs the pis,

i.e. people’s interpretations of the shared information. As shown above, our axioms

imply that a GOP G should take the form (4), i.e. the form

G(p1, π1, ..., pn, πn) ∝
π1
p1
· · ·
πn
pn
F (p1, ..., pn) (9)

where F : Πn → Π is a standard opinion pool that merges the priors p1, ..., pn.

From a Bayesian perspective, two natural conditions may be imposed on a GOP,

to be called external and internal Bayesianity. The former is an analogue of the

equally-named classic condition for standard opinion pools F : it should not matter

whether information arrives before or after pooling, i.e. pooling should commute

with Bayesian updating. Formally, for every opinion p ∈ Π and (likelihood) function

l : H→ (0, 1] the (updated) opinion pl ∈ Π is defined by

pl(H) :=
l(H)p(H)∑

H′∈H l(H
′)p(H ′)

, in short pl ∝ lp. (10)

Here, l is interpreted as a likelihood function P (E|.) for some observation E, so that

pl is a posterior probability. A standard opinion pool F : Πn → Π is called externally

Bayesian if

F (pl1, ..., p
l
n) = F (p1, ..., pn)

l

for every profile (p1, ..., pn) ∈ Π
n and (likelihood) function l : H → (0, 1] (Madansky

(1964)). In particular, geometric opinion pools are externally Bayesian. An analogous

concept can be defined for GOPs:

Definition 2 A GOP G : Π2n → Π is called externally Bayesian if

G(pl1, π
l
1, ..., p

l
n, π

l
n) = G(p1, π1, ..., pn, πn)

l

for every profile (p1, π1, ..., pn, πn) ∈ Π2n and (likelihood) function l : H→ (0, 1].

On the left hand side of this equation not only all posteriors are updated (πli),

but also all priors (pli), because the incoming information is observed by everybody,

hence part of the shared information, hence contained in the priors.

While external Bayesianity requires that it be irrelevant whether pooling happens

before or after updating, a different question is whether it matters who in the group

has observed a given information. Internal Bayesianity requires that it be irrelevant

whether every or just a single person obtains a given information:

14



Definition 3 A GOP G : Π2n → Π is called internally Bayesian if, for each person

i,

G(p1, π1, ..., pi−1, πi−1, pi, π
l
i, pi+1, πi+1, ..., pn, πn) = G(p

l
1, π

l
1, ..., p

l
n, π

l
n)

for every profile (p1, π1, ..., pn, πn) ∈ Π2n and (likelihood) function l : H→ (0, 1].

On the left hand side of this equation, i’s prior is not updated (pi, not pli), be-

cause the incoming information, being observed just by person i, is not part of the

shared information, hence not reflected in any prior. Internal Bayesianity is based on

the idea that the collective probabilities should incorporate all information available

somewhere in the group, whether it is held by a single or every person. External and

internal Bayesianity together imply that, for each person i,

G(p1, π1, ..., pi−1, πi−1, pi, π
l
i, pi+1, πi+1, ..., pn, πn) = G(p1, π1, ..., pn, πn)

l

for every profile (p1, π1, ..., pn, πn) ∈ Π2n and (likelihood) function l : H→ (0, 1].

It turns out that, if a GOP G takes the form (9), then external and internal

Bayesianity are in fact equivalent, and equivalent to external Bayesianity of F :

Theorem 2 If a generalised opinion pool G : Π2n → Π has the form (9) where

F : Πn → Π is any opinion pool, the following conditions are equivalent:

(i) G is externally Bayesian;

(ii) G is internally Bayesian;

(iii) F is externally Bayesian.

So, if one desires G to be externally or internally Bayesian, one is bound to use an

externally Bayesian opinion pool F in our pooling formula (9), for instance a geometric

opinion pool F , which leads to pooling formula (6), hence to (8) in the equal-weight

case. There also exist more complex (non-geometric) externally Bayesian opinion

pools F, characterised in full generality by Genest, McConway, and Schervish (1986,

Theorem 2.5), but geometric ones become the only solutions if |H| ≥ 3 and F has

some additional properties (see Genest, McConway, and Schervish (1986), Corollary

4.5).

Proof. I show that (i) is equivalent with each of (ii) and (iii). By (9),

G(pl1, π
l
1, ..., p

l
n, π

l
n) ∝

πl1
pl1
· · ·

πln
pln
F (pl1, ..., p

l
n),

and hence by (10)

G(pl1, π
l
1, ..., p

l
n, π

l
n) ∝

lπ1
lp1

· · ·
lπn
lpn

F (pl1, ..., p
l
n) =

π1
p1
· · ·
πn
pn
F (pl1, ..., p

l
n). (11)

On the other hand, again by (9) and (10),

G(p1, π1, ..., pn, πn)
l ∝ l

π1
p1
· · ·
πn
pn
F (p1, ..., pn) ∝

π1
p1
· · ·
πn
pn
F (p1, ..., pn)

l. (12)
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Relations (11) and (12) together immediately imply that G is externally Bayesian if

and only if F is externally Bayesian. Further, again by (9) and (10),

G(p1, π1, ..., pi−1, πi−1, pi, π
l
i, pi+1, πi+1, ..., pn, πn) ∝ l

π1
p1
· · ·
πn
pn
F (p1, ..., pn)

∝
π1
p1
· · ·
πn
pn
F (p1, ..., pn)

l.

This together with (11) implies that G is internally Bayesian if and only it F is

externally Bayesian. �

7 When is information independent, when not?

Let us go back to Theorem 1’s assumption of Independent Information (Ind). This

assumption is often a useful idealisation, even in situations where it fails. But what

exactly are these real situations where (Ind) fails? An important source for failure is

what I call subgroup information, that is, information held by more than one but less

than all persons. I will prove that, under certain conditions, (Ind) holds if and only

if there is no subgroup information.

By a person i’s observation set I mean, informally, the (possibly quite enormous)

collection of i’s relevant observations/items of information. (Formally, one may define

i’s observation set as a set Oi of non-empty observations O ⊆ Ω.11) In the case of

a jury faced with hypotheses about the defendant’s guilt, i’s observation set might

include the observations ‘an insecure smile on the defendant’s face’, ‘the defendant’s

fingerprint near the crime scene’, ‘two contradictory statements by witness x’, etc.

observations of
person 1 only

observations of
person 2 only

shared
observations

observations of

person 1 only
observations of

person 2 only

shared
observations

observations of
person 3 only

! !

Figure 1: Observation sets in a group of n = 2 perons (no subgroup information),

and a group of n = 3 persons (with subgroup information marked by "!")

Figure 1 shows observation sets, not sets of possible worlds A ⊆ Ω. These two

concepts are in fact opposed to each other: the larger the observation set, the smal-

11An observation made by every person is represented by the sure event O = Ω, because Ω is

interpreted as containing the worlds that are possible under shared information. Formally, O ∈

O1 ∩ ... ∩On implies O = Ω.
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ler the corresponding set of worlds (in which the observations hold); the union of

observation sets compares to the intersection of the sets of worlds.12

Here is the problem. Consider any observation contained in the observation sets

of more than one but less than all persons i — something impossible in groups of size

n = 2 but possible in larger groups, as illustrated by the ‘!’ fields in Figure 1. This

observation is not part of the shared information, but of the personal information Ei of

many individuals i. Such subgroup information typically creates positive correlations

between the Eis in question. As a stylised example, consider a jury of n = 3 jurors

faced with the hypothesis of guilt of the defendant (H). All jurors have read the charge

(shared information), and moreover juror 1 has listened to the first witness report and

observed the defendant’s nervousness (E1), juror 2 has listened to the second witness

report and observed the defendant’s smiles (E2), and juror 3 has listened to both

witness reports and had a private chat with the defendant (E3). Note the subgroup

information of jurors 1 and 3, and that of jurors 2 and 3, which typically causes E3
to be positively correlated with E1 and with E2. By contrast, individuals 1 and 2

together have no subgroup information. This situation is depicted in Figure 1 on the

right.

To formally clarify the relationship between subgroup information and independ-

ence violation, some preparation is needed.

Definition 4 A subgroup is a non-empty subset M of the group N := {1, ..., n}. A

subgroup is proper if it contains more than one but less than all persons.

To formalise the notion of subgroup information, suppose that to each subgroupM

there is a non-empty event EM ⊆ Ω,M ’s exclusively shared information, representing

all information held by each of and only the persons in M , where by assumption:

• Ei = ∩{i}⊆M⊆NE
M for all persons i (as i has observed those EM with i ∈M);13

• EN = Ω (as any world ω ∈ Ω is assumed possible under the shared information);

• each EM belongs to A, the domain of the probability measure P (which holds

in particular if A contains all subsets of Ω).

For instance, the ‘!’ fields in Figure 1 represent E{1,2}, E{1,3} and E{2,3}.14

12Formally, to an observation set O corresponds the set of worlds ∩O∈OO ⊆ Ω, interpreted as Ω if

O = ∅. Thus i’s information Ei equals ∩O∈Oi\(O1∪...∪On)O, the intersection of all of i’s observations

except from any shared one; by footnote 11, this actually equals ∩O∈OiO.
13Why not rather assume that Ei = ∩{i}⊆M�NE

M , as Ei should not contain information held by

everybody? In fact, both assumption are equivalent since by EN = Ω an additional intersection with

EN has no effect.
14EM is interpretable as the intersection ∩O∈(∩i∈MOi)\(∪i/∈MOi)O of all observations O contained

in each of the observation sets Oi, i ∈M, but in none of the observation sets Oi, i /∈M, where this

intersection is Ω if (∩i∈MOi)\(∪i/∈MOi) = ∅.
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What we have to exclude is that a proper subgroup M exclusively shares inform-

ation; in other words, EM must be the no-information event Ω:

No Subgroup Information (NoSI) All proper subgroups M have EM = Ω (i.e.

do not exclusively share any information).

This condition is empty if there are just n = 2 individuals, it requires E{1,2} =

E{1,3} = E{2,3} = Ω if n = 3, and it requires the ‘!’ fields in Figure 1 to be empty.

Finally, consider the following independence assumption:

(Ind∗) The events EM , ∅ �=M ⊆ N, are (P -)independent conditional on eachH ∈ H.

(Ind∗) is a more generally acceptable condition than (Ind) in that the EMs, unlike

the Eis, are based on non-overlapping observation sets. Indeed, a subgroup M ’s

exclusively shared information EM , by the very meaning of ‘exclusively’, represents

different observations than any other subgroup’s exclusively shared information.15

For simplicity, suppose finally that

P (A) > 0 for every non-empty event A ∈ A. (13)

Theorem 3 Assume (Ind∗) and (13). Then:

(a) Independent Information (Ind) is equivalent to No Subgroup Information (NoSI);

(b) specifically, if EM �= Ω for proper subgroup M , then conditional on some H ∈ H

the personal observations Ei, i ∈ M, are pairwise positively correlated (i.e.

P (Ei ∩Ej |H) > P (Ei|H)P (Ej |H) for any two distinct i, j ∈M).

Proof. I prove part (a); the proof includes a proof of part (b).

(i) First, assume (NoSI). Then we have, for all persons i,

Ei = ∩{i}⊆M⊆NE
M = E{i} ∩

[
∩{i}⊆M⊆N&|M |≥2E

M
]
= E{i} ∩Ω = E{i}. (14)

Conditional on any H ∈ H, by (Ind∗) the events EM , ∅ �=M ⊆ N, are independent,

hence so are E{1}, ..., E{n}, and hence so are E1, ..., En by (14).

(ii) Now assume (NoSI) is violated, and let M∗ be a proper subgroup with

EM
∗
�= Ω. I show that the events Ei, i ∈ M∗, are pairwise positively correlated

conditional on at least one H ∈ H, which proves part (b) and also completes the

proof of part (a) since E1, ..., En are then not independent conditional on H. Let

i, j ∈ M∗ be distinct. By EM
∗
�= Ω and (13) I have P (EM

∗
) < 1. So there ex-

ists an H ∈ H with P (EM
∗
|H) < 1. Since Ei = ∩{i}⊆M⊆NE

M , we have by (Ind∗)

15 (Ind∗) holds if the observations in O1 ∪ ... ∪On are mutually (conditionally) independent.
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P (Ei|H) = Π{i}⊆M⊆NP (E
M |H). The analogous argument for j yields P (Ej|H) =

Π{j}⊆M⊆NP (E
M |H). So

P (Ei|H)P (Ej|H) =
[
Π{i}⊆M⊆NP (E

M |H)
]
×
[
Π{j}⊆M⊆NP (E

M |H)
]
. (15)

Further, we have

Ei ∩Ej = [∩{i}⊆M⊆NE
M ] ∩ [∩{j}⊆M⊆NE

M ] = [∩{i}⊆M⊆NE
M ] ∩ [∩{j}⊆M⊆N\{i}E

M ].

So, by (Ind∗),

P (Ei ∩Ej) = [Π{i}⊆M⊆NP (E
M)]× [Π{j}⊆M⊆N\{i}P (E

M)]. (16)

The relations (15) and (16) together entail P (Ei ∩Ej) > P (Ei|H)P (Ej |H), because

expression (15) equals expression (16) multiplied with the factor Π{i,j}⊆M⊆NP (E
M),

which is smaller than 1 since it contains the term P (EM
∗
|H) < 1. �

8 Opinion pooling in the presence of subgroup informa-

tion

One may always try to ‘remove’ subgroup information through active information

sharing prior to aggregation: all proper subgroups with exclusively shared information

communicate this information to the rest of the group. In Figure 1, the observations in

each ‘!’ field are communicated to the third person, and in the above jury example the

subgroups {1, 3} and {2, 3} communicate the exact content of the first resp. second

witness report to the third juror. Having thus removed any subgroup information,

(NoSI) and hence (in view of Theorem 3) Independent Information (Ind) hold, so

that opinion pooling can proceed along the lines of Sections 2-5.

But suppose now that such information sharing is not feasible, e.g. due to the

complexity of subgroup information. Then (NoSI) fails, and hence (Ind) fails, so

that we need to modify our pooling formula. It is at first not obvious whether and

how one can generalise Theorem 1 to arbitrary information overlaps, i.e. whether

and how collective opinions can incorporate all information spread around the group.

The generalisation is possible, as will be seen. Roughly speaking, we have to replace

Theorem 1’s axioms of Individual Bayesian Rationality (IBR) and Independent In-

formation (Ind) by corresponding axioms based on subgroups rather than individuals.

Theorem 1’s two other axioms, Acceptance of Likelihoods (AL) and Common Prior

(CP), will not anymore appear explicitly, but are build implicitly into the model, as

explained in a moment. The adapted axioms will again lead to a unique collective

opinion π, calculated in a somewhat more complicated way than in Theorem 1.

First, let me state the model ingredients. On the informational side, Theorem

1’s model contained individual information E1, ..., En; the present model moreover

contains each subgroup M ’s exclusively shared information EM , as introduced in
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the last section. Recall that in Theorem 1’s model (in its common prior version)

people provide individual opinions π1, ..., πn and a common prior opinion p based

on the group’s shared information; so, technically, the model contained the opinions

π1, ..., πn, p reflecting the shared information of the improper subgroups {1}, ..., {n}, N ,

respectively. Our new model adds to this the opinions reflecting the shared informa-

tion of proper subgroupsM ⊆ N . More precisely, it suffices here to consider subgroups

with exclusively share information: letM be a set of subgroupsM ⊆ N containing at

least the (proper or improper) subgroups M with exclusively shared information, i.e.

with EM �= Ω; and let N ∈M without loss of generality.16 Each subgroup M inM

submits an opinion pM ∈ Π, representing M ’s probability assignments based on M ’s

shared information (shared information need not be exclusively shared, i.e. may be

known to other persons too; see Definition 5 below). Theorem 1’s model (in the com-

mon prior version) is the special case thatM = {{1}, ..., {n}, N} (= {M :M is an im-

proper subgroup}) with p{1} = π1, ..., p{n} = πn, pN = p. In the last section’s jury ex-

ample with n = 3 individuals, we may putM = {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}

because {1, 2} has no exclusively shared information.

In practice, every non-singleton subgroup M ∈ M will have to ‘sit together’,

find out about its shared information, and come up with a resulting opinion pM . As

mentioned, this amounts to a common prior assumption: the present model allows

difference in opinion to come only from difference in information. But, rather than

making this assumption explicit by a condition analogous to the earlier Common

Prior (CP), the assumption is implicit by not indexing pM by individuals i, and by

using P instead of Pi throughout, thereby implicitly assuming that Pi(A) = P (A) for

all A ∈ Ai ∩A.17

The technique to calculate the (collective) opinion π ∈ Π from the subgroup

opinions pM , M ∈ M, will be recursive. Let me first illustrate it using the last

section’s jury example. Here, n = 3 and M = {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.

So, functions p{1}, p{2}, p{3}, p{1,3}, p{2,3} and p{1,2,3} are submitted. The recursion

works as follows, where I use a slightly simplified version of the later notation and

skip all formal justifications:

• First, merge p{1,3} and p{2,3} into a function p{1,3},{2,3} that combines {1, 3}’s

shared information and {1, 3}’s shared information. One may apply Theorem

1’s formula: p{1,3},{2,3} ∝ p{1,3}p{2,3}/p{1,2,3}.

• Next, merge p{1} and p{2} into a function p{1},{2} that combines {1}’s and {2}’s

information. One may apply Theorem 1’s formula: p{1},{2} ∝ p{1}p{2}/p{1,2},

16One may always define M as containing all subgroups, but in practice this maximal choice

adds unnecessary steps to the recusive pooling procedure introduced below. The minimal choice is

M = {M : ∅ �=M � N and EM �= Ω} ∪ {N}.
17By using P rather than P1, ..., Pn I implicitly make a common prior assumption that is global,

i.e. is not like (CP) restricted to the set H of relevant hypotheses. I thereby implicitly also assume

(AL).
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where p{1,2} is defined as p{1,2,3} because the subgroup {1, 2} has no exclusively

shared information.

• Finally, merge p{1},{2} and p{3} into the function π = p{1},{2},{3} that combines

{1}’s, {2}’s and {3}’s information. Again, one may apply Theorem 1’s formula:

π = p{1},{2},{3} ∝ p{1},{2}p{3}/p{1,3},{2,3}.

Now I come to the formal treatment. Recall that i’s information Ei equals

∩{i}⊆M⊆NE
M , i.e. i knows precisely the conjunction of what the subgroups con-

taining i exclusively share. This generalises as follows to:

Definition 5 A subgroupM ’s shared information is defined as EM := ∩M⊆M ′⊆NE
M ′

(the conjunction of all information exclusively shared by some supergroup of M).

EM represents what is known to at least all members of M — as opposed to M ’s

exclusively shared information EM , known exactly all members of M . Taking the

case of a singleton subgroup M = {i}, the event E{i} coincides with Ei. Also, note

that

P (EM) > 0 and P (EM) > 0 for each subgroup M

because P (EM), P (EM) ≥ P (∩∅
=M ′⊆NE
M ′
) = P (E1 ∩ ... ∩ En) > 0. The following

condition translates Individual Bayesian Rationality (IBR) to subgroups in M:

Subgroup Bayesian Rationality (SBR) pM(H) = P (H|EM) for every subgroup

M ∈M and hypothesis H ∈ H.

As in Theorem 1, we would like the collective opinion to satisfy Collective Bayesian

Rationality (CBR); that is, we require that

π(H) = P (H|E1 ∩ ... ∩En) for each hypothesis H ∈ H,

a condition that may be rewritten in several equivalent ways since (by Definition 5)

E1 ∩ ... ∩En = E{1} ∩ ... ∩E{n} = ∩∅
=M⊆NE
M = ∩∅
=M⊆NEM .

As a technical tool to construct collective opinion π satisfying (CBR), I need to

introduce opinions of abstract individuals.

Definition 6 An abstract individual is a non-empty set A of subgroups M ; its order

is order(A) := min{|M | :M ∈ A}, the size of a smallest subgroup in A.

The opinions p{1,3},{2,3}, p{1},{2}, ... defined in the example above are in fact the

opinions of the abstract individuals {{1, 3}, {2, 3}}, {{1}, {2}}, ... More generally, I

interpret an abstract individual A as a hypothetical agent who knows the shared

information of any subgroupM ∈ A (and no more). For instance, A = {{1, 3}, {2, 3}}
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knows {1, 3}’s shared information and {2, 3}’s shared information. A’s information

is thus given by ∩M∈AEM . I will calculate for each abstract individual A a function

pA ∈ Π reflecting precisely A’s information ∩M∈AEM , i.e. such that

pA(H) = P (H| ∩M∈A EM) for each H ∈ H. (17)

Specifically, I calculate pA by backward recursion over order(A): pA is calculated first

for order(A) = n, then for order(A) = n− 1, ..., then for order(A) = 1. This finally

yields π, since by (CBR) and (17) π = P (.|E{1} ∩ ... ∩ E{n}) = pA where A is the

abstract individual {{1}, {2}, ..., {n}} of order 1. In the recursive construction, the

main steps are to calculate from opinions pA and pA∗ of abstract individuals A and

A∗ the opinion pA∪A∗ of the abstract individual A ∪A
∗ whose information combines

the information of A and A∗. To derive pA∪A∗ from pA and pA∗ , I generalise the

formula of Theorem 1 to (two) abstract individuals. To do so, the notion of shared

information is crucial. What information do A and A∗ share? They share precisely

the information held by the abstract individual

A ∨A∗ := {M ∪M∗ :M ∈ A and M∗ ∈ A∗}.

The reason is: the information A and A∗ share is precisely the information that A

knows and A∗ knows, i.e. that some subgroup in A shares and some subgroup in A∗

shares, i.e. that some union M ∪M∗ with M ∈ A and M∗ ∈ A∗ shares. So, when

combining opinions pA and pA∗ , A∨A
∗’s opinion pA∨A∗ plays the role of the common

prior p in Theorem 1. More precisely, the crucial result on how to combine opinions

of abstract individuals states as follows (and is proved later):

Lemma 1 Assume (Ind∗). Consider abstract individuals B and C, form the abstract

individuals B ∨ C and B ∪ C, and let pB, pC , pB∨C , pB∪C be four opinions in Π. If

pB, pC , pB∨C are all given by (17), then the function pBpC/pB∨C is proportional to

an opinion in Π (equivalently, has a finite sum
∑

H∈H
pB(H)pC(H)/pB∨C(H)), and

if moreover pB∪C is this opinion (i.e. pB∪C ∝ pBpC/pB∨C) then pB∪C is given by

(17).

The formula in Lemma 1 guides us in assigning beliefs to abstract individuals.

The assignment is recursive, with another nested recursion in ‘Case 2’:

Definition 7 Define the opinions pA ∈ Π of abstract individual A by the following

backward recursion on order(A):

• Let order(A) = n. Then A = {N}. Define pA := pN .

• Let order(A) = k < n and assume pA′ is already defined for order(A′) > k.

Case 1: |A| = 1. Then A = {M}. If M ∈ M, define pA = pM . If M /∈ M,

consider the abstract individual A′ := {M∪{i} : i /∈M} containing all subgroups
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with exactly one person added to M (interpretation: A and A′ have the same

information by M /∈ M) and define pA := pA′ (where pA′ is already defined by

order(A′) = k + 1).

Case 2: |A| > 1. Define pA by another recursion on |{M ∈ A : |M | = k}|, the

number of subgroups in A of size k:

◦ Let |{M ∈ A : |M | = k}| = 1. Then A = {M} ∪ A∗, where |M | = k

and order(A∗) > k. Define pA by pA ∝ p{M}pA∗/p{M}∨A∗ (where p{M}
is already defined in case 1, and pA∗ and p{M}∨A∗ are already defined by

order(A∗) > k and order({M} ∨A∗) > k).

◦ Let |{M ∈ A : |M | = k}| = l > 1 and assume pA∗ is already defined for

|{M ∈ A∗ : |M | = k}| < l (and order(A∗) = k). Then A = {M} ∪ A∗

with |M | = k and |{M∗ ∈ A∗ : |M∗| = k}| = l − 1. Define pA by pA ∝

p{M}pA∗/p{M}∨A∗ (where p{M} is already defined in case 1, pA∗ is already

defined by |{M∗ ∈ A∗ : |M∗| = k}| = l− 1, and p{M}∨A∗ is already defined

by order({M} ∨A∗) > k).

The existence and uniqueness of the above-defined opinions pA follows from the

recursion theorem.18 On the last recursion step we reach the opinions pA of abstract

individuals of order 1, hence in particular the opinion of A = {{1}, ..., {n}}, and this

is the desired opinion that incorporates the group’s full information:

Theorem 4 If (SBR), (CBR) and (Ind∗) hold, the collective opinion π is given by

π = p{{1},...,{n}}, the opinion of the abstract individual {{1}, ..., {n}}.

I first prove Lemma 1 and then Theorem 4.

Proof of Lemma 1. Assume (Ind∗). Let B,C be abstract individuals, and pB, pC ,

pB∨C , pB∪C ∈ Π. Suppose pB, pC , pB∨C satisfy (17). For all abstract individuals A,

put

A := {M ⊆ N :M ′ ⊆M for some M ′ ∈ A},

the set of supergroups of subgroups in A. By (17), pB∨C = P (.| ∩M∈B∨C EM), where

by Definition 5

∩M∈B∨CEM = ∩M∈B∨C ∩M⊆M ′⊆N E
M ′
= ∩M∈B∨CE

M .

18A technical detail is left implicit in Definition 7: in each bullet point of Case 2, I have defined pA as

the member of Π that is proportional to the function a certain function f (= p{M}pA∗/p{M}∨A∗), but

this is only meaningful if there exists a g ∈ Π with g ∝ f (i.e. if f has a finite sum
∑

H∈H
f(H) <∞

so that f can be normalised to a function in Π). Existence does indeed holds under Theorem 4’s

axioms (see the proof of Theorem 4, which draws on Lemma 1), but strictly speaking this fact should

not be anticipated in the recursive definition. This is why Definition 7 strictly speaking needs the

following extension. Fix an arbitrary belief σ ∈ Π, and add to Cases 1 and 2 the clause that pA
is defined as σ if the previous prescription does not apply (i.e. if there is non-existence, as just

discussed). The added clause can then be shown to never apply (under Theorem 4’s axioms).
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So,

pB∨C = P (.|E) with E := ∩M∈B∨CE
M . (18)

Analogously, by (17), pB = P (.| ∩M∈B EM), where by Definition 5

∩M∈BEM = ∩M∈B ∩M⊆M ′⊆N E
M ′
= ∩M∈BE

M = EB ∩E

with EB := ∩M∈B\B∨CE
M . So pB = P (.|EB ∩E), and hence by Bayes’ rule

pB ∝ P (.|E)P (EB|. ∩E). (19)

By an analogous argument for C, we have

pC ∝ P (.|E)P (EC |. ∩E), (20)

where EC := ∩M∈C\B∨CE
M . By (18), (19) and (20) we have

pBpC/pB∨C ∝ [P (.|E)P (EB|. ∩E)] [P (.|E)P (EC |. ∩E)] /P (.|E)

= P (.|E)P (EB|. ∩E)P (EC |. ∩E). (21)

(Ind∗) implies that, for each H ∈ H, the events EB, EC , E are independent given H,

and hence EB, EC are independent given H ∩E. So

P (EB|. ∩E)P (EC |. ∩E) = P (EB ∩EC |. ∩E).

Substituting this into (21) and then applying Bayes’ rule, we obtain

pBpC/pB∨C ∝ P (.|E)P (EB ∩EC |. ∩E) ∝ P (.|EB ∩EC ∩E) ∈ Π.

Now suppose pB∪C = P (.|EB ∩EC ∩E). We may rewrite EB ∩EC ∩E as

∩M∈B∪CE
M = ∩M∈B∪C ∩M⊆M ′⊆N E

M = ∩M∈B∪CEM ,

and hence pB∪C equals P (.| ∩M∈B∪C EM), i.e. satisfies (17). �

Proof of Theorem 4. Assume (SBR) and (Ind∗). By backward induction on the

order of A I show that each abstract individual A has opinion pA satisfying (17). This

in particular implies that {{1}, ..., {n}} has opinion

p{{1},...,{n}}(H) = P (H|E1 ∩ ... ∩En) for each H ∈ H,

so that under (CBR) we have π = p{{1},...,{n}}, as desired.

Denote by A the set of abstract individuals A. The recursion proceeds as follows.

• If order(A) = n, then A = {N}, and by definition pA = pN . So by (SBR)

pA = P (.|EN ) = P (.| ∩M∈A EM), as desired.
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• Now let order(A) = k < n, and assume (17) holds for all A′ ∈ A with

order(A′) > k. I have to show that pA = P (.| ∩M∈A EM).

Case 1: |A| = 1. Then A = {M} with |M | = k. If M ∈ M, then by definition

pA = pM , so by (SBR) pA = P (.|EM) = P (.| ∩M ′∈A EM ′), as desired. Now

assume M /∈ M. Then by definition pA = pA′ with A
′ := {M ∪ {i} : i /∈ M}.

Since order(A′) = k+1, the induction hypothesis yields pA′ = P (.|∩M ′∈A′EM ′),

hence pA = P (.| ∩M ′∈A′ EM ′). So I have to show that ∩M ′∈A′EM ′ = EM . By

Definition 5,

EM = ∩M⊆M ′⊆NE
M ′
= EM ∩

{
∩M ′∈A′

[
∩M ′⊆M ′′⊆NE

M ′′
]}
.

In this, EM = Ω (by M /∈ M) and ∩M ′⊆M ′′⊆NE
M ′′

= EM ′ (by Definition 5).

So EM = ∩M ′∈A′EM ′ , as desired.

Case 2: |A| > 1. I show pA = P (.| ∩M∈A EM) by induction on the number

|{M ∈ A : |M | = k}| of subgroups in A of size k.

◦ Let |{M ∈ A : |M | = k}| = 1. Then A = {M} ∪ A∗ with |M | = k and

order(A∗) > k. Then pA was defined as the function in Π proportional to

p{M}pA∗/p{M}∨A∗ ; let me show that (i) such a function does indeed exists

(see footnote 18 on potential inexistence) and (ii) satisfies (17), as desired.

Now, p{M} satisfies (17) by Case 1, and pA∗ and p{M}∨A∗ satisfy (17) by

order(A∗) > k and order({M}∨A∗) > k (and the k-induction hypothesis).

So, by Lemma 1, the function p{M}pA∗/p{M}∨A∗ is proportional to a func-

tion in Π, so that pA is well-defined. Also by Lemma 1, this function pA
satisfies (17), as desired.

◦ Let |{M ∈ A : |M | = k}| = l > 1, and assume A∗ satisfies (17) whenever

|{M ∈ A∗ : |M | = k}| < l (and order(A∗) = k). By definition, pA ∝

p{M}pA∗/p{M}∨A∗ , where A = {M} ∪ A
∗ with |M | = k and |{M∗ ∈ A∗ :

|M∗| = k}| = l− 1. Again, we have to show that pA is well-defined (i.e. Π

indeed contains a function proportional to p{M}pA∗/p{M}∨A∗) and satisfies

(17). p{M} satisfies (17) by Case 1, pA∗ satisfies (17) by |{M∗ ∈ A∗ :

|M∗| = k}| = l− 1 (and the l-induction hypothesis), and p{M}∨A∗ satisfies

(17) by order({M} ∨ A∗) > k (and the k-induction hypothesis). So, by

Lemma 1, pA is well-defined and satisfies (17). �

9 Conclusion

The above model interprets opinion pooling as information pooling: collective opin-

ions should build in the group’s entire information, be it shared or personal. According

to the pooling formulae I obtained, collective opinions should account for informa-

tional asymmetries not by taking a standard weighted (linear or geometric) average
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of the individual opinions with higher weight assigned to better informed individuals

but by incorporating people’s prior opinions in addition to their actual (i.e. posterior)

opinions. In practice, people have either to agree on a common prior opinion p, i.e.

on how to interpret the shared information, or they have to submit their possibly

diverging prior opinions p1, ..., pn. Based on simple axioms, Theorem 1 shows how to

aggregate the (prior and posterior) opinions into a collective opinion. The formula

defines a multiplicative opinion pool: the collective opinion π is proportional to the

product of the individual opinions π1, ..., πn and a function g (that depends on prior

opinions).

More precisely, Theorem 1 suggests that, based on individual opinions π1, ..., πn,

the collective opinion π should be defined by π ∝ π1 · · ·πn/p
n−1 if people agree on

a common prior p, and by π ∝ π1
p1
· · · πnpnF (p1, ..., pn) if people have arbitrary priors

p1, ..., pn, where F is a standard opinion pool. I have suggested that F should be

anonymous (i.e. symmetric in its arguments) because the prior opinions it pools

are based on the same (shared) information, giving no individual an informational

superiority. More specifically, I have suggested to define F as unweighted geometric

pooling, because this generates appealing properties shown in Theorem 2. This choice

of F gives collective opinion the form

π ∝
π1

p
1−1/n
1

· · ·
πn

p
1−1/n
n

.

A crucial axiom underlying this formula is that personal information is independent.

By Theorem 3, independence is threatened by the possibility of subgroup information,

i.e. of information held by more than one but less than all individuals. Theorem

4 therefore generalises the aggregation rule to arbitrary information distributions

(allowing for subgroup information). The generalisation is unique, but assumes that

each subgroup with subgroup information agrees on how to interpret this information,

a kind of common prior assumption. Dropping this assumption would have gone

beyond the scope of this paper, but it might be an interesting route for future research.
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