
Working Paper LSEOR 09.116  ISSN 2041-4668 (Online) 
 
 
 
 
 

Optimizing Randomized Patrols 
 
 
 
 

Steve Alperna, Alec Mortonb, Katerina Papadakib 

 

 

 

 

 

a. Department of Mathematics, London School of Economics and Political Science, London. 

b. Operational Research Group, Department of Management, London School of Economics and 

Political Science, London. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by LSE Research Online

https://core.ac.uk/display/95692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 

First published in Great Britain in 2009 
by the Operational Research Group, Department of Management 

London School of Economics and Political Science 
  
 
 

Copyright © The London School of Economics and Political Science, 2009 
  
 
 
 
 
 
 
 
The contributors have asserted their moral rights. 
 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior permission in 
writing of the publisher, nor be circulated in any form of binding or cover other than that 
in which it is published. 
 
 
 
 
 
 
 
 
Typeset, printed and bound by: 

The London School of Economics and Political Science 
Houghton Street 
London WC2A 2AE 

 
 
 
 
 
 
 
 
 
 
Working Paper LSEOR 09.116  ISSN 2041-4668 (Online) 



Optimizing Randomized Patrols

Steve Alpern�y, Alec Mortony, Katerina Papadakiy

November 5, 2009

Abstract

A key operational problem for those charged with the security of vulnerable facilities

(such as airports or art galleries) is the scheduling and deployment of patrols. Motivated by

the problem of optimizing randomized, and thus unpredictable, patrols, we present a class of

patrolling games on graphs. The facility can be thought of as a graph Q of interconnected

nodes (e.g. rooms, terminals) and the Attacker can choose to attack any node of Q within

a given time T: He requires m consecutive periods there, uninterrupted by the Patroller, to

commit his nefarious act (and win). The Patroller can follow any path on the graph. Thus

the patrolling game is a win-lose game, where the Value is the probability that the Patroller

successfully intercepts an attack, given best play on both sides. We determine analytically

optimal (minimax) patrolling strategies for various classes of graphs, and discuss how our

results could support decisions about hardening facilities or changing the topology of the

terrain to be patrolled.

Subject classi�cations: Games, noncooperative; Military, search/ surveillance; Deci-

sion Analysis, risk

Area of review: Military and Homeland Security

�Department of Mathematics, London School of Economics and Political Science, London.
yOperational Research Group, Department of Management, London School of Economics and Political Science,

London.
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1 Introduction

A key operational problem for those charged with the security of vulnerable facilities is the

scheduling and deployment of patrols. This problem is encountered by, for example:

� security guards patrolling a museum or art gallery

� antiterrorist o¢cers patrolling an airport or shopping mall

� police forces patrolling a city containing a number of potential targets for theft such as

jewelry stores

� soldiers patrolling an occupied city or territory

� air marshals patrolling an airline network

� inspectors patrolling a container yard or cargo warehouse

Such problems have been studied in diverse literatures. For example, a well-known problem

in computational geometry deals with the position of security guards in art galleries (Urrutia,

2000) and a classical Operations Research literature exists on the scheduling of police patrols

(see e.g. Larson (1972) and references therein). The importance of randomized patrols has

been recognized in law enforcement for some time, but not the nature of the randomization

(e.g. Sherman and Eck (2002, p. 297)). Much of the optimization literature on this subject

(e.g. Chelst, 1978) concentrates on the important problem of how to deploy randomized patrols

to maximize the probability of intercepting a crime in progress, when the crime frequency of

di¤erent locations is taken as given (often a realistic assumption, at least in the short term).

Such models however are not game theoretic and do not capture the idea of a patrolling schedule

as a strategy selected in the face of an intelligent and malign adversary, for example an art thief or

terrorist, which is a distinctive feature of the class of models we study in this paper. Although

there do exist di¤erential game formulations of the relationship between police and criminal
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(Isaacs, 1999, Feichtinger, 1983) these tend to focus on a dynamic (and often strategic) process

of mutual adjustment rather than confronting the problem confronted by the scheduler who sits

down to determine the path which the patrol will take.

Game theoretic analyses have recently featured prominently in OR studies of homeland

security and counterterrorism (e.g. Brown et al, 2006, Bier and Azaiez, 2009, Lindelauf et

al., 2009). An attractive and unique feature of game theoretic formulations in the context of

patrolling is that they provide insight into how a Patroller should randomize her patrols. There

is a clear common-sense rationale for randomization: a predictable Patroller is an ine¤ective one.

Yet a naive "maximum entropy" heuristic (Fox et al, 2005) may be not fare much better: faced

with n targets it may not make sense to spend 1=n of the available patrolling time with each of

them. This dilemma has attracted considerable attention recently amongst practitioners and

the research community has responded to this challenge: in particular, the work of Paruchuri

and colleagues (2007) provides a number of heuristic models which illustrate how equilibrium

randomized strategies can be approximated when the problem is formulated as a Stackelberg

(leader-follower) game, and such models have found use in real security situations (Gordon,

2007; Newsweek, 2007).

Our work on this problem is inspired by the theory of search games, on which an extensive

mathematical literature developed over the last few decades. This theory captures situations

in which a Searcher aims minimize the time taken to �nd a stationary or mobile Hider who

does not want to be found (Alpern and Gal, 2003). There are also related literatures on

Inspection games (Avenhaus, von Stengel and Zamir, 2002), in which an Inspector who seeks

to catch an Inspectee red-handed, and In�ltration games (Auger, 1991; Garnaev, Garnaeva

Goutal, 1996; Garnaev, 2000 and Alpern, 1992) in which a Guard seeks to prevent an In�ltrator

from penetrating some sensitive facility. Similar attack/ defence games have been studied

in military operations research (Washburn, 2003), dating as far back as Morse and Kimball

(1950). Many such games are of independent mathematical interest and have been studied in
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a purely mathematical settings (e.g. Baston, Bostock and Ferguson, 1989). Various results are

available for how the Searcher/ Inspector/ Guard/ Defender should proceed, depending on the

assumptions about the structure of the mathematical space which she inhabits. A particularly

productive line of research in the search game literature has been to explore the case where the

search space can be thought of as a graph, as we do here.

In this paper we formulate a game which we call the Patrolling Game. Unlike the work of

Paruchuri and colleagues, our problem is a zero-sum game, and provides for a defender who is

mobile, being able to travel between locations in the course of his shift (a "Patroller"). Unlike

search games, our "Attacker" (the equivalent of the search game "Hider") may commence his

attack at any time and has to be detected within a given time-window in order to forestall the

performance of some misdeed. Our game is win-lose - a game of type rather than degree in the

terminology of Isaacs (1999). Our problem is su¢ciently idealized that it is possible to obtain

insightful analytic results, but su¢ciently realistic that it is recognizable as a practical problem

faced by practitioners in various domains.

In this paper we present some analytic results for this game, and demonstrate that it yields

patrolling (and attacking) strategies which are natural and intuitive. Moreover, we show how

the game can be used to guide decisions about investment in hardening vulnerable sites or in

adding additional passageways to enable the Patroller to shorten the time required to go between

di¤erent sites that might be attacked. We are in this paper unable to present general analytic

results for all games of this type, and it seems unlikely that such solutions exist. Indeed, even

computing optimal strategies may be quite challenging, because of the combinatorial explosion

in the Patroller�s strategy space; in a companion paper (Alpern, Morton and Papadaki in prepa-

ration a), we present some algorithms for e¢ciently computing the value of this game for more

complex (and realistic) examples.

This paper is organized as follows. We present in Section 2 a rigorous formulation of

patrolling games, together with some elementary observations on properties of the Value. As
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the number of pure strategies for the players can be very large, we give in Section 3 three

methods for reducing the number that we have to consider: symmetrization, dominance and

decomposition. Section 4 discusses certain classes of strategies that the players can use on any

graph, and which are optimal on certain classes of graphs. Section 5 solves patrolling games

on certain classes of graphs: Hamiltonian, bipartite and line graphs. Section 6 considers how

the game can be used to guide decisions in investment about hardening nodes or adding edges.

Section 7 presents extensions of the model and concludes.

2 The Patrolling Game

In this section we give a formal description of the Patrolling Game G = G (Q;T;m) ; where Q is

the graph whose nodes are under attack, T is the total number of time units the game is played

over, and m (� T ) is the number of (consecutive) periods required to successfully carry out an

attack on a node. Roughly speaking, the Attacker picks a node i to attack and chooses some

time interval I = f� ; � + 1; : : : ; � +m� 1g of length m in which to attack it. The Patroller

follows a walk w (t) on Q; that is, he chooses nodes w (0) ; : : : ; w (T � 1) with consecutive nodes

the same or adjacent in Q: The Patroller wins if his walk is at the node i in some period t in

which it is being attacked, that is, if w (t) = i for some t 2 I: Otherwise the Attacker wins. We

also demonstrate some simple monotonicity results and some bounds on the value, which will

be useful later on.

2.1 Formulation

More formally, the Patrolling Game G = G (Q;T;m) is a win-lose (and hence zero-sum) game

between a maximizing Patroller (female) and a minimizing Attacker (male). It comes in two

forms, the one-o¤ game Go = Go (Q;T;m) and the periodic game Gp = Gp (Q;T;m) : The

one-o¤ game is played out over a given time interval T = f0; 1; 2; : : : ; T � 1g of length T on a

graph Q with n nodes N and edges E . We will tend to assume that Q is connected unless stated
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otherwise. A pure strategy for the Attacker is a pair [i; I] ; where i 2 N is called the attack

node and I � T is an m-interval called the attack interval. A pure strategy for the Patroller

is a walk w : T !Q called a patrol. If i 2 w (I) we say that the patrol intercepts the attack,

in which case the Patroller wins and the payo¤ is P = 1; otherwise we have P = 0: Thus the

payo¤ is given by

P (w; [i; I]) =

8

>

>

<

>

>

:

1 (Patroller wins); if i 2 w (I) (Patroller intercepts attack);

0, (Attacker wins); if i =2 w (I) (attack is successful);

The Value V o of this game Go is thus the probability that the attack is successfully intercepted.

Except in trivial cases, optimal strategies must be mixed.

The periodic game Gp is similar except that the patrols (Patroller pure strategies) are now

walks of period T (satisfying w (t+ T ) = w (t) for all T ): Attack intervals are now m-intervals

in the time circle T � = T mod (T ) ; so for example if T is 24 and m is 5; the attack could be

carried out overnight, during the interval f22; 23; 0; 1; 2g (10 o�clock to 2 in the morning). We

can also view the patrols as walks w : T � ! N . The periodic game is simpler to analyze because

the attack can be assumed to take place equiprobably in any time interval, which simpli�es the

analysis (see Subsection 3.1). When the values of the games di¤er, we will use the superscripts

V p and V o to distinguish between the Values, using V when the result applies to both cases.

V (V p, V o) can be considered as parameterized by Q, T , and m just as G is, but most of the

time writing V (Q;T;m) is distracting and confusing and we will tend to suppress some or all of

these arguments. We denote by d(i; i0) the distance function on the node set N , the minimum

number of edges between i and i0 2 N :

This formulation makes a number of assumptions which are not in fact as restrictive as they

might appear. The �rst is the assumption an attack will take place. An immediate response

to this is that even though attacks occur very rarely, one should patrol on the assumption that

an attack will happen - otherwise what is the point of patrolling at all? A more sophisticated
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response is that the parties are really engaged in a non-zero sum deterrence game and the

Patroller only has to reduce the probability of attack to a level where the expected value of

the attack is less than the value to the Attacker of engaging in an attack elsewhere (another

airport, another art museum). As it turns it, however, the game studied in this paper can be

seen as being embedded in a larger non-zero sum deterrence game in the manner of Avenhaus,

von Stengel and Zamir (2002). In this case the key to the analysis of the larger non-zero

sum game is precisely the analysis of the game discussed in the current paper. The second

and third assumptions are that the node values are equal (all paintings are worth the same

amount of money; the damage in�icted by an attack at some airport terminal will be the same

as at any other airport terminal), and that the distances between nodes are equal, respectively.

Obviously this may well not hold in an application setting. However, it is not hard to modify

the modelling framework to include these features and although the resulting games are not

analytically tractable, they can be analyzed computationally with the mechanisms discussed in

the companion paper Alpern, Morton and Papadaki (in preparation a).

2.2 General Properties of the Value V

We now make some observations about the Value V , which apply to both versions of the game.

We start with a monotonicity result (Lemma 1), the last part of which involves the well known

notion of identifying nodes of a graph. Formally this can be de�ned by a projection map

� : N ! N 0; where N 0 is the node set of the new graph Q0; and ��1 (j0) represents a set of

nodes of Q that have been identi�ed. For example, we can easily obtain the line graph with n

nodes Ln by vertically identifying nodes of the cycle with 2 (n� 1) nodes C2(n�1) (see Figure 1

for the case n = 5).
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Figure 1. L5 as a projection of C8:

Lemma 1

1. V (Q;T;m) is nondecreasing in m:

2. V (Q;T;m) cannot decrease if an additional edge is added between two nonadjacent nodes

of the graphQ. That is, V is nondecreasing in E (with the ordering on the latter understood

in the sense of set inclusion).

3. V p (Q;T;m) � V o (Q;T;m)

4. If Q0 is obtained from Q by node identi�cation, V (Q0) � V (Q) :

Proof. The �rst part follows from the observation that a patrol that intercepts an attack [i; I]

also intercepts [i; I 0] if I 0 � I: The next two are based on the fact that in a zero sum game

a player cannot do worse if he gets additional strategies. The last is based on the following

observation: If a patrol w intercepts an attack on a node i of Q then the patrol � (w) intercepts

the associated attack on the node � (i) of Q0: So the Patroller can ensure that the expected

payo¤ is at least V (Q) by choosing patrols w for Q according to some optimal mixed strategy,

and then playing the projected patrol � (w) :

The next result gives easy general bound on the Value.

Lemma 2 1
n � V � m

n , for V equal to V p or V o and any parameters Q, T and m. More

generally, V � !=n; where ! is the maximum number of nodes that any patrol can cover (!

depends on whether the one-o¤ or periodic version is being played).

Proof. The Patroller can obtain the left inequality by randomly picking a node and waiting

there. The Attacker can obtain the right inequality by attacking a random node during some

�xed time interval I. Of these n pure strategies, the Patroller can intercept at most jw (I) j �

jIj = m of them, giving the bound m=n; or more generally the bound !=n; since jw (I) j � ! by

de�nition.
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It is worth observing that ! is bounded above by the node size of the largest component of

Q (if it is not connected), with !=n equalling 1=n for the completely disconnected graph. Also

note that for the one-o¤ game with m = 1; where Q is the complete graph Kn; this is a special

case of Ruckle�s "Simple Search Game" (Ruckle, 1983). Since we thus have (from Part 2 of

Lemma 1) V = 1=n whenever m = 1; we will assume for the remainder of the paper that m � 2.

3 Strategy Reduction Techniques

Even for small graphs, the number of pure strategies available to the players can be quite

large. So for practical purposes, as well as in proofs, it is useful to have methods for reducing

the number of strategies that must be considered. This section discusses three such methods:

symmetrization, dominance and decomposition.

3.1 Symmetrization

Symmetry considerations can simplify both the placement and timing of attacks and patrols.

First we consider the placement of attacks in terms of the spatial symmetry of Q: As an example,

note that the nodes 2 and 3 are symmetrically placed in the Kite Graph KT of Figure 2. So it

follows from well known arguments (discussed below) that there is an optimal mixed Attacker

strategy with the property that, for any attack interval I, these two nodes are attacked with

equal probability.

4

3

2

51

Figure 2. Kite Graph KT
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This idea can be formalized by considering the automorphisms of Q; that is, the adjacency-

preserving bijections of Q: (For the kite graph there are only the identity automorphism and the

re�ection about the vertical axis.) Calling nodes equivalent if some automorphism � of Q takes

one into the other, we need consider only attacks equiprobably distributed over the equivalence

class of nodes. Similarly, two patrols w1 and w2 are equivalent if w2 (t) = �w1 (t) for some

automorphism �, and we can restrict our attention to the equiprobable mixture of such patrols.

A similar line of reasoning applies to time. In the periodic game all attack intervals are

equivalent under some rotation of the time circle, so we need only consider the attack node. In

the one-o¤ game, attack intervals I1 and I2 are equivalent if  (I1) = I2 where  is the re�ection

automorphism of the time interval T = f0; : : : ; T � 1g de�ned by  (t) = T � t:

The fact that we need only consider symmetrical strategies, that is, mixed strategies which

give equal probability to equivalent strategies, is demonstrated in Alpern and Asic (1985), and

Zoroa and Zoroa (1993). Given a game G we call the modi�cation of G where we restrict

attention to attacker and patroller strategies which are equiprobable mixtures over the equiv-

alence classes de�ned by the space and time automorphisms, the symmetrization of G; this

symmetrized game has the same value as the original G, but has fewer strategies and so is easier

to study.

3.2 Dominance

Since the Patrolling Game is a win-lose game, we can use the following weak notion of dominance.

We say a pure strategy s1 dominates a pure strategy s2 of the same player if it wins against every

opponent strategy that s2 wins against, and against at least one more. The Value is unchanged

if we successively eliminate dominated strategies.

As an example of how successive elimination of dominated strategies can be used, consider

again the kite graph KT of Figure 2. The node 4 is what we call a penultimate node, that is, a

non-leaf node that is adjacent to a leaf node (node 5 in KT ): Our next result shows that there
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is an optimal strategy on KT which does not involve any attacks on a penultimate node.

Lemma 3 Assume Q is connected and T � 3: For m � 2, patrols that stay on any node

for three consecutive periods are dominated. For m � 3; attacks on penultimate nodes are

dominated, and consequently the Attacker has an optimal strategy concentrated on nodes which

are not penultimate.

Proof. The proof is by iterated dominance. Suppose the patrol w1 is at the same node i for

the three consecutive periods I = ft� 1; t; t+ 1g. De�ne w2 to be the same as w1 except that

w2 (t) = i
0; where i0 is adjacent to i: For m � 2; the patrol w2 intercepts every attack that w1

intercepts, as well as the attack on i0 during I; and hence dominates w1: So we can now assume

that the Patroller does not use patrols which stay at a node for three consecutive periods.

Next suppose that i0 is a penultimate node adjacent to a leaf node i: We now show that any

attack on node i0 during an m�interval I is dominated by an attack on i during I: If w wins

against the attack [i; I] ; then w (t) = i; for some t 2 I: Let the other two periods in I be called

t0 and t00: So by our earlier argument we know that either w (t0) or w (t00) is i0: If m � 3; I must

contain both t0 and t00; and so i0 2 w (I) ; and w wins against [i0; I] : Hence attacking at node i0

is a dominated strategy.

3.3 The importance of timing: the line graph L6 with T = 5 and m = 3

To illustrate the ideas of symmetry and dominance, we now analyze the line graph L6 with nodes

i = 1; : : : ; 6; for the case T = 5 and m = 3: The product of L6 (drawn vertically) and the time

space T = f1; : : : ; 5g (drawn horizontally) is shown three times in Figure 3. An attack with

probability p at node i and time interval ft� 1; t; t+ 1g is represented by a p at the middle of the

attack interval (i; t). Since there are three possible attack intervals (f1; 2; 3g ; f2; 3; 4g ; f3; 4; 5g)

there are 6� 3 = 18 possible attacks.

We �rst consider the one-o¤ game Go (L6; 5; 3) ; and in a restricted form where the Attacker

must use a time invariant strategy. This is illustrated in the left drawing of Figure 3, where
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there are no attacks at penultimate nodes (f2; 4g) (using Lemma 3). Since nodes 1 and 6; and

nodes 3 and 4 are equivalent under symmetry, we can assume they are attacked with equal

probability. So the most general Attacker mixed strategy is shown, where 6x + 6y = 1: The

patrol w1 = (3; 2; 1; 2; 3) intercepts all attacks at node 1 and two attacks at node 3, so wins

with probability 3x+2y; similarly w2 = (1; 2; 3; 4; any) intercepts one attack at node 1 and �ve

attacks at nodes 3 and 4, and wins with probability x+5y: These two patrols together dominate

all others. So the Attacker minimaxes when 3x+ 2y = x+ 5y: This occurs when x = 1=10 and

y = 1=15; with minimax value V � = 13=30 = :43333 : : : . (An easy calculation then shows that

the Patroller should adopt w1 and w2 with probabilities 4=5 and 1=5:)

i\t

1

2

3

4

5

6

1        2          3         4         5

xxx

y

x x x

y

y

yy

y

1/8

1/8

1/8

1/8 1/81/8

1/8 1/8

Figure 3. Optimal attacking and patrolling strategies for Go(L6) with T = 5 and m = 3

In the (unrestricted) game Go (L6; 5; 3) it is harder to derive the equilibrium strategy pair,

but it is fairly easy to demonstrate that the Value is V o = 3=8 = 0:375 ; which shows that no time

invariant mixed Attacker strategy can be optimal. To see that V o � 3=8, consider the Attack

strategy shown in the middle drawing, and observe that no patrol can intercept more than three

of the eight equiprobable attacks. An optimal Patroller mixed strategy is to adopt the four

strategies (2; 1; 2; 3; 4) ; (2; 3; 4; 5; 6) and their re�ections (5; 6; 5; 4; 3) ; (5; 4; 3; 2; 1) (drawn in thin

blue slanted lines) with probability 1=8 each; and adopt the two equivalent strategies (3; 2; 1; 2; 3)

and (4; 5; 6; 5; 4) (drawn in thick red lines) with probability 1=4 each. The assertion V o � 3=8

follows from the observation that every one of the eighteen possible attacks is intercepted (hit,

to the right of, to the left of) by at least three of the patrols, counting the thick red ones as
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two. It is also interesting to observe that all ten attacks which are not used at all in the middle

drawing are intercepted by more than three of these patrols. Thus, the Value of the one-o¤ game

Go (L6; 5; 3) is 3=8; but it requires the use of time dependent Attacker strategies: the middle

node is only to be attacked in the middle time interval f3; 4; 5g :

Next we analyze the periodic version, the game Gp (L6; 5; 3) : This is similar to the restricted

version of the one-o¤ game discussed above, except that the middle of the attack can be at any

time, so comparing with the left drawing of Figure 3, the x�s and y�s would extend throughout

the rows, and so we have 10x + 10y = 1. The (periodic) patrol w3 = (3; 4; 3; 4; 3) intercepts

all ten attacks at middle nodes 3 and 4; and wins with probability 10y: The (periodic) patrol

w4 = (1; 2; 3; 2; 1) intercepts four of the attacks at node 1 (all except the one during times

2,3,4) and three of the attacks at node 3; so wins with probability 4x+3y: These two (together

with their symmetric translations) dominate all other patrols. So the Attacker minimaxes when

10y = 4x + 3y: This has solution x = 7=110 and y = 4=110; with minimax V p = 4=11: For the

Patroller, w3 (and its equivalents) should be used with probability 1=11; w4 with probability

10=11:

To summarize, for line graph L6, with T = 5 and m = 3; we have

V p � 0:363 64 < V o = :375 < V � � :43333 :

Thus the Attacker does better in the one-o¤ game, and thus the bound stated in Lemma 1 Part

3 need not be tight. Further, in this instance, the Attacker has to adopt a time dependent

strategy in order to bene�t fully.

3.4 Decomposition

Sometimes we can think of a graph Q as being made up of simpler graphs Q1 and Q2: We call

this a decomposition of Q. The nodes of the original graph Q are the union of the nodes Q1
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and Q2: All nodes which are adjacent in Q are also adjacent in any Qi which contains both

of them. See Figure 4 for an illustration. Q can of course be decomposed into multiple Qi

through repeated decomposition. If the nodes of Q1 and Q2 are disjoint and Q has no edges

between nodes in distinct Qi; then we say it is a disjoint decomposition.

Q Q1

Q2

Figure 4. Decomposition of a network

Lemma 4 Let V = V (Q;T;m) and Vk = V (Qk; T;m) : If the graphs Qk; k = 1; : : : ;K; form

a decomposition of Q; then

V �
1

PK
k=1 1=Vk

;

with equality in the case of a disjoint decomposition.

Proof. Suppose the Patroller restricts himself to a family of mixed strategies Sk; where Sk is

an optimal mixed strategy for the game G (Qk; T;m) : Suppose he picks Sk with a probability

qk such that qkVk = c is constant. In this case we have

1 =

K
X

k=1

qk = c

K
X

k=1

1=Vk; or c = 1=

K
X

k=1

1=Vk:

For any attack pair [i; I] ; the node i belongs to the node set of some graphQk: So with probability

qk the Patroller will be optimally patrolling Qk and in this case will intercept the Attacker with

probability at least Vk: Hence the Patroller wins with probability at least qkVk = c: Hence the

value of the game on graph Q is at least c; as claimed. If the Patroller is only allowed to search

nodes from a single graph Qk; the best he can do is win with probability c, so it follows that if

the graphs Qk have disjoint node sets and are disconnected, then V = c:
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3.5 Example: the kite graph

To demonstrate the use of all of our strategy reduction techniques, we analyze the periodic game

for the kite graph illustrated in Figure 5 with T = m = 3. The dominance argument of Lemma

3 showed that the Attacker would never attack node 4, as it is always better for him to attack

the adjacent leaf node 5. Moreover, in the periodic case for T = 3, there is no feasible Patroller

strategy which visits both node 5 and any one of 1,2, or 3. Therefore, we can remove node 4

and be con�dent that the periodic game on the resulting graph KT 0 has the same Value as the

game on KT:

Q1

Q2

3

2

5

1

Figure 5. Decomposition of Kite graph KT into KT 0

Lemma 4 shows that for Q1 and Q2 as in Figure 5, we have

V p
�

KT 0
�

=
1

1=V p (Q1) + 1=V p (Q2)
(1)

Obviously V p (Q2) = 1, and it can be easily shown that V
p (L3) = 1=2 for T = m = 3. Hence

by (1) we have

V p (KT ) = V p
�

KT 0
�

=
1

1 + 2
=
1

3
:

This is an another example where the Patroller does strictly better in the one-o¤ game,

in which V o = 3=5: To see this �rst note that by Lemma 2 the Attacker can ensure that

V o � m=n = 3=5 by attacking equiprobably at the �ve nodes. Then observe that by using the

four patrols (2; 1; 3) ; (2; 4; 5) ; (3; 4; 5) ; (1; 4; 5) with respective probabilities 2=5; 1=5; 1=5; 1=5 the

15



Patroller ensures any attack at any node will be intercepted with probability 3=5 and thus that

V o � 3=5: Note that if edge (1; 4) is removed, the Value V o goes down to 1/2; the Attacker

chooses nodes 1 and 5 equiprobably and the Patroller chooses the �rst three of the above patrols

with probabilities 1=2; 1=4; 1=4:

4 Generic Strategies and Their E¤ectiveness

In general, the type of strategies available to the Patroller depends crucially on the path and

circuit structure of the underlying graph Q: However, for purposes of analysis, it is possible to

identify certain generic strategy types which are available on all graphs; or on all graphs in a

class. For the Attacker, we de�ne here the uniform, independent and diametrical strategies. For

the Patroller, we de�ne the covering strategy.

4.1 The uniform Attacker strategy

In zero sum games often the most random strategy is optimal. For the Attacker, this is the

uniform strategy, in which the attack [i; I] has i and I chosen equiprobably and independently

over their domains. That is, a random node is attacked at a random time. In the periodic game

this strategy is the equiprobable mixture of the nT possible attacks. For the purposes of the

next result, we make use of a standard de�nition:

De�nition 5 A graph is bipartite if it has no odd cycles.

The reader will note that (for example) all trees are bipartite.

We have already shown that V � m
n . For bipartite graphs we are able to tighten this bound.

Lemma 6 If T is odd and Q is bipartite, the bound of Lemma 2 can be tightened to V p �

(T�1)m+1
nT . This bound is guaranteed by the Attacker adopting the uniform strategy in the

periodic game.
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Proof. In the uniform strategy, all nT possible attacks are adopted with probability 1=(nT ): If

T is odd, and there are no odd cycles (because Q is bipartite), then for any w, w (t) = w (t+ 1)

for some t in the periodic game: In these two periods (that is, t and t + 1), at most m + 1 of

the attacks can be intercepted, and as before at most m in each of the other T � 2 periods. So

at most (T � 2)m + (m+ 1) = (T � 1)m + 1 attacks can be intercepted altogether, giving the

desired inequality.

4.2 The diametrical strategy

The diameter �d of a graph Q is given by �d = maxi;i02N d (i; i
0) : A pair of nodes at distance �d is

called diametrical, and the Attacker�s diametrical strategy is to attack these nodes equiprobably

during a random time interval I: It is easy to show the following. If �d is very large with respect

to m and T then it is clear the best the Patroller can do against the diametrical strategy is

to wait at one of the nodes and win half the time. On the other hand if m and T are large,

the best the Patroller can do in the one-o¤ game is go back and forth repeatedly on a geodesic

between the diametrical points and win with probability m=
�

2 �d
�

: Since he cannot do better in

the periodic game, we have the following.

Theorem 7 V � max
�

m=
�

2 �d
�

; 1=2
�

: The diametrical strategy guarantees this payo¤.

4.3 Independent and covering strategies

The graph theoretic notion of independence and covering numbers has already been shown to

be useful in related games of in�ltration (Alpern, 1992). We give here modi�ed versions of these

concepts.

De�nition 8 A patrol w is called intercepting if it intercepts every attack on a node that it

contains. That is, if a node i lies on a patrol w; then it appears in any subpath of w of length

m: A set of intercepting patrols is called a covering set if every node of Q is contained in at
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least one of the patrols. The covering number J is the minimum cardinality of any covering

set.

De�nition 9 If, for any two nodes i and j, any patrol which intercepts an attack at node i

in attack interval I, cannot also intercept an attack at j in attack interval I, then i and j

will be said to be independent. In the one-o¤ game Go; this is equivalent to requiring any

two nodes to satisfy d (i; i0) � m; in the periodic game Gp, they must satisfy d (i; i0) � m or

T � 2 d (i; i0) (because the Patroller has to return to his starting point by the end of the period).

The independence number I is the cardinality of a maximal independent set. Obviously

I � J :

Observe that both I and J depend on the parameters Q;T;m and on the version of the

game that is played, Go or Gp: For example, when T = 3 and m = 3; the node subset f1; 3g of

L3 is independent for the periodic game but not for the one-o¤ game.

For the Attacker, the independent strategy is to �x an attack interval and then choose the

attack node equiprobably from some maximal independent set. For the Patroller, the covering

strategy is to choose equiprobably from a minimal set of covering patrols.

Note that for T = 2; patrols can be identi�ed with edges of Q, so these de�nitions reduce to

the usual notion of an independent set not having adjacent nodes and a covering set consisting

of edges.

Lemma 10 1
J � V �

1
I (with V = 1=I when I = J ).

Proof. The Attacker�s independent strategy gives the upper bound and the Patroller�s covering

strategy gives the lower bound.

The cases where I = J deal with many patrolling games. For example, we can use this

technique to give another solution to the kite graph KT of Figure 2 for the periodic game with

T = m = 3: Here the nodes 2,3, and 5 form an independent set (because 2d (i; i0) = 4 � 3 = T )

and intercepting patrols on the top left, top right and bottom edges (period 3 patrols of the
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form (a; a; b; a; a; b : : : )) form a covering set. Thus Lemma 10 gives V = 1=I = 1=3; as we

demonstrated earlier by another method.

5 Patrolling on Special Classes of Graphs

We have no single form of analysis that is su¢ciently robust to give the Value of an arbitrary

patrolling game; in general the Value would have to be obtained computationally. However

for certain classes of graphs we can determine the Value in terms of the parameters m and n

(the number of nodes), at least for certain values of T: These classes are Hamiltonian graphs,

bipartite graphs and line graphs.

5.1 Hamiltonian graphs

A Hamiltonian graph is a graph containing at least one cycle which visits each node exactly

once (i.e. a Hamiltonian cycle). A special case of the Hamiltonian graphs is the simple cycle

with n nodes Cn. (Another special case is the complete graph Kn:) The existence of a natural

cycle in the underlying graph is a common feature of the problem faced in application settings,

as often the area to be patrolled will be physically compact (consider, e.g. patrolling a campus).

Note that if m � n the Patroller can win by following the Hamiltonian cycle, so we assume that

m < n: We de�ne a random Hamiltonian patrol to be one which �xes some Hamiltonian cycle,

starts at a random node i, and follows the cycle in a �xed direction, repeating as required. Such

a patrol is always feasible in the one-o¤ game Go and is feasible in the periodic game Gp if T is

a multiple of n: Using this mixed strategy, the Patroller can get the best possible interception

probability V; namely the upper bound m=n of Proposition 2.

Theorem 11 If Q is Hamiltonian then

1. V o = m
n ;

2. V p � m
n with equality if T is a multiple of n; and V

p ! m=n as T !1:
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Proof. First observe that in either case we have V � m=n by Lemma 2. In the one-o¤ game,

suppose the Patroller adopts a random Hamiltonian patrol. Then for any attack interval I;

w (I) is a random m-arc of the Hamiltonian cycle, and as such contains the attack node i with

probability m=n; as claimed. If T is a multiple of n; this strategy is also feasible in the periodic

game. To obtain the limiting result, note that if � = T modn 6= 0; the periodic Patroller

can modify the random Hamiltonian patrol by waiting at a random node during a random �-

interval. This will not hurt him unless the attack interval I overlaps the waiting interval, which

has probability (� +m� 1) =T; so

�

1�
� +m� 1

T

�

m

n
� V p � V o =

m

n
; and so V p !

m

n
: (2)

Since the above result applies to the cycle graph, we can use it to solve the game on some

graphs which can be obtained from the cycle graph by identi�cation of nodes. We now solve

the periodic Patrolling Game for the eight node graph shown below on the left of Figure 6 in

the case T = 10 and m = 4: First note that since the diameter is �d = 5 we have from Theorem

7 that the diametrical Attack strategy ensures that V � m=
�

2 �d
�

= 4=10: By viewing the graph

as a projection of C10 (with Value m=10 = 4=10 from Theorem 11) we conclude from Lemma 1

Part 4 that V � 4=10; so V = 4=10:

Figure 6. A graph shown as projection of C10
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5.2 Bipartite graphs

If Q is a bipartite graph (as de�ned earlier as having no odd cycles) we can partition its node

set into halfsets A = f�1; : : : ; �ag and B = f�1; : : : ; �bg ; with a � b; such that its only edges

are between nodes in A and nodes in B: If all such node pairs are edges then we say Q is the

complete bipartite graph Ka;b:

If m > 2b then the Patroller can win by using a patrol with period 2b which covers all the

nodes, that is, the covering number J is 1. So we assume m � 2b:

Theorem 12 If Q is bipartite with with halfsets of sizes a � b, then

1. V o � m= (2b) ; with equality if Q is complete bipartite (Ka;b);

2. V p � m= (2b) ; with equality if Q is complete bipartite (Ka;b) and T is a multiple of 2b: If

Q = Ka;b then V
p ! m= (2b) as T !1:

Proof. We �rst show that V o � m= (2b) ; which then gives the weaker inequality V p � m= (2b) :

Consider the Attacker mixed strategy of �xing an attack interval I and picking the node i

equiprobably among the b elements of B: For any patrol w; the probability that a random i in B

belongs to w (I) equals jw (I) \ Bj=b � (m=2) =b = m= (2b) : If m is odd, the Attacker strategy

must be modi�ed to pick I and the shifted interval I + 1 equiprobably. In this case for any w

we have j (w (I) \B) j+ jw (I + 1) \ Bj � m and the probability that the attack is intercepted

by any w is given by

1

2

j (w (I)) j

b
+
1

2

j (w (I + 1) \B) j

b
�
m

2b
:

The equality part follows for a = b from Theorem 11, as Kb;b is Hamiltonian. As in Theorem 11,

we have separate results for the one-o¤ and periodic cases, and speci�cally we are only able to

show that our result applies for particular or limiting values of T in the periodic case. If a < b

then we can obtain Ka;b from Kb;b by identifying together a subset of b� a nodes of one of the

halfsets of Kb;b and then applying Lemma 1 (part 4) to assert that V
o (Ka;b) � V

o (Kb;b) = m=2b
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in general and with a similar limiting result for the periodic case:

In all these cases, informally speaking, an optimal strategy for the Attacker is to �x an attack

interval and choose the attack node equiprobably from the larger halfset; an optimal strategy for

the Patroller is to randomize over a collection of strategies which visit the larger half set every

second time period. In the case of m = 2, Patroller chooses an edge joining the halfsets; the

Attacker�s and Patroller�s strategies can be seen as a random choice from an independence and

covering set respectively; in this case the Theorem can be understood as a version of König�s

Theorem (Harary, 1971, Theorem 10.2) in our context, since König�s Theorem states that the

independence and covering numbers of a bipartite graph are identical.

To illustrate the proof, consider the special case of the star graph Sn = K1;n�1 consisting of

a central node connected to n� 1 extreme nodes. This models the situation where the Patroller

has responsibility for the safekeeping of a building which has multiple wings, accessible through

a common lobby area. We can view Sn as obtained from the even cycle graph C2(n�1) by

identifying (say) all even numbered nodes, as in Figure 7.

Figure 7. S5 obtained from C8 by node identi�cation.

This mode of reasoning leads us to discover additional equilibrium pairs for the Hamiltonian

case. Consider the cycle graph Cn for even n and T a multiple of n: We saw earlier that the

uniform strategy was optimal for the Attacker. But since Cn = Kn=2;n=2 is bipartite Theorem

12 now gives the additional optimal strategy of attacking equiprobably on the odd (or even)

nodes. In fact there is one more optimal Attacker strategy: since the diameter is �d = n=2; the

diametrical strategy also gives m=
�

2 �d
�

= m=n by Theorem 7.
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5.3 Line graphs

Line graphs Ln seem to be particularly complex to analyze and will be the main subject of a

forthcoming article by the authors (Alpern, Morton and Papadaki, in preparation b), but we

give here some special cases which illustrate the techniques we have developed earlier. We note

that they are important in the patrolling context for their relation to the problem of patrolling

a channel: preventing an agent from crossing a partially defended line between two regions.

Theorem 13 If Q is a line and n � m+ 1, then

1. V o = m
2(n�1) ;

2. V p � m
2(n�1) with equality if T a multiple of 2(n� 1); V

p ! m
2(n�1) as T !1:

Proof. Since �d = n� 1, it follows from Theorem 7 that V p � V o � m
2(n�1) . That this bound is

tight follows from a use of Lemma 1 Part 4 and Theorem 11: we can arrive at Ln from C2(n�1)

through node identi�cation in the manner of Figure 1. Thus, V (Ln) � V (C2(n�1)) =
m

2(n�1) .

In most of the examples in this paper the optimal strategies have been highly random, in

that the players used equiprobable mixtures of similar pure strategies. We did this mainly to

keep things simple, but the reader should not be misled into thinking this is always the case.

For example, consider the game Gp (L5; 4; 3). We claim that the value of this game is 3
7 .

Lemma 4 tells us that V p (L5; 4; 3) �
1

1
V p(L2;4;3)

+ 1
V p(L3;4;3)

: Since V p (L2; 4; 3) = 1 and (from

Theorem 13) V p (L3; 4; 3) =
3
4 , we have that V

p (L5; 4; 3) �
3
7 . Now consider the game from

the Attacker�s point of view. There are four possible attack intervals I, and �ve possible attack

nodes i. Suppose the Attacker randomizes equiprobably over the intervals and over the nodes

with probabilities 37 each for nodes 1 and 5, and
1
7 for node 3. The Patroller could remain at

node 1 or node 5 and intercept an attack with probability 3
7 or randomly move between either

1 and 3 or 3 between and 5. She then has a 3
4 chance of intercepting an attack which will take

place with probability 3
7 and a

3
4 chance of intercepting an attack with will take place with
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probability 1
7 ; for an overall probability of interception of

3
4

�

3
7 +

1
7

�

= 3
7 . All other patrols yield

a lower expected payo¤ and so V p (L5; 4; 3) �
3
7 .

Next consider Gp (L7; 5; 2) :We claim that the value of this game is
1
4 . We have I = 4 and so

from Theorem 10 we have V p � 1=4: To ensure winning with this probability, the Patroller must

use "biased oscillations" on edges (i; i0) of the form (i; i; i0; i; i0), which we denote as i � i0, with

a random time rotation. Clearly i  � i0 intercepts any attack on i and intercepts any attack

on i0 with probability 4=5 (that is unless the attack coincides with a repeated i): The optimal

probabilities of the biased oscillations on consecutive nodes are shown below.

1
4=16
 2

1=16
! 3

3=16
 4

3=16
! 5

1=16
 6

4=16
! 7

Attacks on any node are intercepted with probability at least 1=4; with equality except

for the central node 4 (which should never be attacked). For example an attack on node 2 is

intercepted with probability 4=5 if either 1  � 2 or 3  � 2 is adopted by the Patroller, that is

with probability (4=16 + 5=16) = 5=16: So it is intercepted with probability (4=5) (5=16) = 1=4:

6 Hardening Nodes or Adding Edges

Up to now we have taken the network Q as given. But the agency that controls the Patroller

(the "Defender") may be able to pay to either �harden� a site so that it is immune to attack or

to build a passageway to help the Patroller move more quickly between sites. In our formulation

this corresponds either to reducing the Attacker�s strategy space by removing an attack node,

or adding an edge to the graph. In this section we give some very simple examples in the easy

case where all sites (nodes) are equally expensive to harden and new passageways (edges) are

equally expensive to build (more complex examples will be dealt with in our forthcoming paper

on the computational aspects of this problem).

6.1 Hardening nodes
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We can modify the Patrolling Game so that a certain set of nodes of Q cannot be attacked. For

simplicity, we assume that only one node i can be hardened: We focus on the graph A shown

in Figure 8, and consider Gp(A; 3; 3). The analysis has been made easy by taking an example

where all the problems satisfy I = J ; so that the Value is given by the relevant value of 1=I,

which in the case of A is 13 : Our arguments regarding independent and covering sets can still be

used, by requiring independent sets to avoid i and requiring a collection of intercepting patrols

to include all but i: When removing i from the nodes to be attacked (the node i is circled),

we can also remove any edges such that the resulting distances between the other nodes do not

increase. Since there are no 3�cycles, the intercepting patrols can all be identi�ed with edges,

so the calculation of I and J is particularly easy.

A: I=J=3, V=1/3            B: I=J=3, V=1/3 C: I=J=2,  V=1/2

D: I=J=3, V=1/2                     E: I=J=3, V=1/3

Figure 8. The graph A and four ways of hardening a node

From the analysis presented in Figure 9 it can be seen that hardening any but the top/bottom

nodes or the leaf node is a waste of money, as there is no improvement in the interception

probability V; but that hardening any of these nodes gives a 1=6 = 1=2 � 1=3 probability

improvement.
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6.2 Adding edges

We observed earlier (Lemma 1) that adding edges can not hurt the Patroller, and used this to

analyze certain networks. Here we take a di¤erent point of view and ask whether it pays for the

Player that controls the Patroller to spend money to add an edge between two nodes in order

to increase the e¢cacy of the Patroller. We consider again the network A and Gp(A; 3; 3) and

ask how the interception probability increases, if at all, by adding edges between nonadjacent

nodes of A: The independent sets are indicated in all cases by disks at nodes in Figure 9. The

covering sets are either identi�ed with edges or 3�cycles, which are thickened.

We observe that adding edges as in B or E achieves no increase at all in the interception

probability (the Value V ), but as in C or D increases it to 1=2 from 1=3: The intuition is that

these edges create 3�cycles, which are more e¢cient for patrols than oscillations on edges with

a repeated node.

A: I=J=3, V=1/3            B: I=J=3, V=1/3 C: I=J=2,  V=1/2

D: I=J=2, V=1/2                E: I=J=3, V=1/3

Figure 9. The graph A and four ways of adding an edge

7 Conclusion

In this paper we have described a simple, intuitive model which can serve as the basis for

obtaining optimal randomized patrols. The assumptions of the present paper can be relaxed in

the following extended models:
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� The nodes can have di¤erent values (e.g. paintings of varying artistic merit in an art

gallery). The simplest way to model this is to keep the same strategies but view the

Patroller as wanting to minimize the value of a successfully attacked node. So this version

comes with a cost vector c; where c (i) denotes the cost of a successful attack on node i:

� Some nodes may be unequally hard, or even impossible, to attack. We thus replace the

parameter m by a vector M; where M (i) denotes the number of periods required to

successfully attack node i: In a related way, edges may have lengths attached to them.

(Two nodes with an intervening node which cannot be attacked are in some sense two time

units apart.)

� There may be multiple patrollers and/ or attackers. Some of the results of the current

paper transfer over easily to this situation - for example one can simply "multiply up" the

numerator of Lemma 10 to handle the situation where there are several patrollers - but in

general this seems to be rather more complex.

� Perhaps the Patroller must start at a known node i = 0 in the one-o¤ game. Of course,

in this case the diameter of Q cannot be large with respect to m, otherwise the Attacker

will always win. A natural conjecture is that the Attacker would attack earlier in order to

take advantage of his greater knowledge of where the Patroller will be, but is this always

so?

� It may be natural to consider a continuous time formulation of this problem. An attack

takes place at any point of the network (not necessarily a node) on a continuous time

interval of �xed length. The Patroller uses a unit speed path and wins if he is at the

attacked point at some time during the attack interval. This would model, for example,

the defense of a pipeline system.

� The Patroller may be alerted (perhaps noisily and with some error) to the presence of

an Attacker; and the Attacker may be alerted by a confederate who can identify when a
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Patroller leaves a particular node (for example, if the Patroller is in a marked police car).

Many of these problems are not analytically tractable, and some of them will be discussed in

our forthcoming paper on computational aspects of these games (Alpern, Morton and Papadaki

in preparation a).
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