

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

A Comparative Analysis of Dynamic
Software Update Methods in regard to
Safety-critical Systems
Bachelor of Science Thesis in Software Engineering and Management

Dennis Karlberg
Max Enelund
Niklas le Comte

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Göteborgs universitets publikationer - e-publicering och e-arkiv

https://core.ac.uk/display/95665705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

A Comparative Analysis of Dynamic Software Update Methods in regard to Safety-critical Systems

Dennis Karlberg
Max Enelund
Niklas le Comte

© Dennis Karlberg, June 2017.
© Max Enelund, June 2017.
© Niklas le Comte, June 2017.

Supervisor: Hang Yin
Examiner: Jan-Philipp Steghöfer

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

A Comparative Analysis of Dynamic Software
Update Methods in regard to Safety-critical Systems

Dennis Karlberg⇤, Max Enelund†, Niklas le Comte‡
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

⇤ guskarlbde@student.gu.se † gusenelma@student.gu.se ‡ guslecni@student.gu.se

Abstract—Software is an ever evolving product that is updated
to extend the functionality and to reduce bugs within a system.
Many systems are required to maintain a high availability to
provide their services. Dynamic software update is a mechanism
which allows the software to be updated during run-time. As a
result, applying this technique to systems increases their overall
availability. Systems that could benefit from this technique e.g.
air-control systems, banking systems and other safety-critical
systems, require minimal downtime.

In this study, we compared two dynamic software update meth-
ods in regards to safety and efficiency in performing an update.
The two methods were code relinking and reference indirection.
This was done through model checking using the model checking
tool UPPAAL as well as model simulation using the UPPAAL
SMC extension. We started with a literature review to understand
the fundamentals of the mechanism, before creating our models
and conducting the experiment. The experiment simulated 2000
executions of each model.

The experiment showed that using the method of code re-

linking is both faster and more consistent in terms of update-
time. Reference indirection, due to its need to update a shared
indirection table, requires a safer overall system-state in order
to successfully perform an update, thereby increasing both the
update-time itself, as well as the inconsistency of it.

Although inferior in the experiment, reference indirection is
still a suitable method for safety critical-systems. As long as the
system does not need to push an update within a certain amount
of time, the two methods are more or less equally fitted to work
in a safety-critical environment.

The mechanism that causes the slowness and inconsistency off
reference indirection is the method’s need to require a safer state
before performing an update, which could positively benefit the
safety of the system. This study is the first study to compare code

relinking and reference indirection via model checking.
Index Terms—Dynamic software update, Safety-critical, Code

relinking, Reference indirection, Experiment, model checking

I. INTRODUCTION

Today - software systems are developed through numbers of
iterations where new functionality, bug fixes etc. are performed
to evolve the software. The traditional way of delivering
updates to software systems is usually done in the fashion of
freezing the execution, saving the current state, loading in the
new version, fetching the saved state and finally unfreezing
the execution. Therefore the availability of the software is
decreased while applying an update [1]. The recent trend of
continuous integration/deployment [2], [3], shows that there
are more and more frequent software updates than previously.

Safety-critical systems are systems that require high avail-
ability and reliability e.g., air-control systems, autonomous
vehicles [4]. For an update to be executed the system has to
be off-line, and therefore be unavailable.

Throughout the years dynamic software update (DSU) has
been a widely studied field. The purpose of it is to increase
availability in terms of not having to shutdown the software
as it is being updated; instead the update is applied during
run-time [1], [5], [6], [7], [8]. Systems like banking-systems,
traffic control systems are systems that would benefit from
this technology. The goal of DSU functionality is to have
flexibility, robustness, ease of use and low overhead which
according to Hicks et al. [9] are the four evaluation criteria for
DSU. According to Chen et al. [10] DSU is not applicable for
systems with a large amount of existing binaries, furthermore
they require specific compilers to compile the updated code.
Multi-threaded software needs an update mechanism that is
safe and timely [11]. In order for it to be safe, conditions
have to be fulfilled in order for the update to be performed
i.e. safe-points that have to be reached for all the nodes [1].

Some current solutions applied to high availability systems
use hot standbys [9] i.e. redundant machines, to be able to
update their systems, but this increases both the cost and
complexity of the systems. With the help of DSU mechanisms
there is no need for the redundant hardware to perform updates
and still have an available system. The DSU mechanism could
help safety-critical systems that need to have high availability
with the ability to perform updates during run-time.

In this study we will refer to the DSU technique of code
relinking, an active DSU method. We will also refer to the
reference indirection DSU technique, a passive DSU method.
These two terms are used by Hicks et al. [12] when describing
the concepts of these two mechanisms. Both of these will be
covered more in Section V-B.

The structure of the thesis is as follows: We start in Section
II to present what model checking is and the tool UPPAAL
with it’s extension SMC. We continue in Section III by
presenting the purpose of this study and why it is important,
we also declare our research questions. This is followed by
discussing our methodology which includes our experiment
variables and instruments, hypothesis and preparation in Sec-
tion IV. In Section V we discuss the fundamentals of a DSU
mechanism and describe two existing methods, how an update

1

is performed and how they differ in regards to safety. After
we learn the fundamentals, we continue to our model design
in Section VI where we explain our developed models in
the model checking tool UPPAAL [13]. Before we show the
result of the experiment in Section VIII we explain how the
experiment was executed in Section VII. After this we will
discuss the findings in the study in Section IX. We conclude
the thesis with related work in Section X and with a conclusion
and discuss future work in Section XI.

II. BACKGROUND

A. Model Checking
Model checking is a technique used to analyze models

through automated deduction. The model is built of a finite-
state machine and the model checker analyzes different speci-
fications/properties and determines if they are satisfied by the
current model [14]. The correctness of the model can therefore
be tested. The model checker evaluates all possible paths
it can take from every state within the finite-state machine.
Therefore, the more states within the model the longer time it
takes to evaluate [14].

B. UPPAAL
UPPAAL is a model checking software which is a integrated

tool environment for modeling, validation and verification of
real-time systems modeled as networks of timed automata. It
supports data types such as bounded integers, arrays, boolean,
etc. [13].

UPPAAL has a functionality called verifier which allows
to specify property queries that will be model checked. It
is possible to evaluate reachability, safety and liveness by
UPPAAL’s query language [15]. The queries available in the
verifier [16] are:

Operator Meaning

E<> p will eventually hold in some path

A[] p will hold in all paths

E[] p will always hold in some path

A<> p will eventually hold for all paths

p –> q when p holds eventually q will hold

A[] not deadlock the model is deadlock-free

Where p and q stands for state formulas in UPPAAL [16].
By using the operators && (and) and || (or) it is possible to
create more complex queries. Combining these it is possible
to create queries that is model checked against the created
model.

C. UPPAAL SMC
The UPPAAL extension SMC (statistical model checker)

can run several random consecutive simulations of the de-
signed model in order to calculate the probability of an
occurrence [17]. SMC does not explore all paths or states in
the finite-state machine; instead it runs a specified number of
simulations, which is both faster and requires less memory

than the regular property queries in UPPAAL. This makes the
SMC more suited for bigger and complex solutions and to
validate approximate functionality [18].

III. PURPOSE OF THE STUDY

The purpose of this research study is to compare two
different DSU methods in respect to properties from safety-
critical systems, to determine how well suited these methods
are for such a system. An experiment was to be conducted
using the model checking software UPPAAL [13] and the
SMC extension [19], where the DSU methods were tested.

RQ1. Which types of DSU methods currently exist?
RQ1.1. What kind of attributes do current DSU meth-
ods have?
RQ1.2. How do active DSU methods differ from
passive DSU methods?

RQ2. How do active DSU methods differ from a passive
DSU methods in terms of safety?

RQ2.1. Which safety benefits and respective draw-
backs do active DSU methods contribute to safety-
critical systems?
RQ2.2. Which safety benefits and respective draw-
backs do passive DSU methods contribute to safety-
critical systems?

IV. METHODOLOGY

We use two methods of data collection, a qualitative lit-
erature review where we identify attributes and requirements
of a DSU mechanism and an experiment done through model
checking and model simulation of two DSU methods. The
methods are modeled based on their presented algorithms and
behaviour.

A. Experiment
In Section VI we describe how the two DSU methods are

modelled in UPPAAL and what property queries the system
was tested on. Below we describe which variables we use, our
hypothesis and the experimental preparation.

1) Variables and Instruments:
Independent variable: The experiment has one indepen-
dent variable with two levels: code relinking (active) and
reference indirection (passive).
Dependent variable: (1) availability which will be
measured by downtime. (2) consistency which will be
measured by update time and downtime in terms of its
consistency i.e. if the downtime/update time always stays
more or less the same.
Parameter: The experiment has one parameter which is
the model checking software UPPAAL.

2) Hypothesis: The null hypothesis for the experiment is
that the performance in terms of safety is the same for the
active- and passive methods. The alternative hypothesis is that
the active method has a better performance than the passive
method in terms of safety.
H0: Active == Passive
H1: Active > Passive

2

3) Experimental Preparation: Before we started to develop
our models in UPPAAL we analyzed the findings in the
literature review in Section V and viewed existing models
and documentation of UPPAAL provided by the developers, to
learn how to create models with it. Furthermore, meetings with
our supervisor that had prior knowledge of UPPAAL helped us
understand it better and showed functionality of the software.

For the model checking, we created property queries that
would be model checked to determine the correctness, safety
and liveness of the automata and adjust it to satisfy these.
As for the model simulation, we analyzed the data generated
by UPPAAL when exporting the CSV-file from the tool. The
structure of the CSV files did not suit our needs and therefore
had to be restructured to ease the process of making statistical
tests. Because of the massive lines of text in the CSV-file from
the 2000 simulations that we planned to do, this task would
be too time consuming to do manually. A Python script was
written to manage this task instead.1

RStudio [20] was used for the statistical parts of the thesis.
The normality of the sample will first be analyzed to choose
the proper statistical test. Shapiro-Wilk-Test [21] will be used
for this. The sample will also be analyzed by generating both
Box-plots and Q-Q plots which show outliers and if the data
is normally distributed.

V. DYNAMIC SOFTWARE UPDATE

A. General

DSU is a software mechanism with the purpose of reducing
the downtime of long-lived systems that always have to be
available. Instead of the traditional way of updating: (1)
shutdown the system (2) apply the update and (3) restart
it, the update is applied during run-time. A solution that
exists for systems that do not support DSU, is through the
use of redundant hardware [22], [11], [23], also called hot
standbys [9]. To perform an update with redundant hardware
the system switches to the hot standby while the update is
applied in the traditional way onto the main hardware. This
solution increases the cost and complexity of the system due
to maintenance and the redundant hardware. The use of a DSU
mechanism would solve this issue and still provide nearly the
same availability. To perform a dynamic update, multiple steps
need to be performed. (1) Producing a replacement module,
(2) loading a new replacement module into memory and (3)
transferring execution to the new replacement module when
appropriate. The correctness of the system should not be
impacted by the update [23].

As mentioned in Section I Hicks et al. [9], [12] define four
goals that should be part of a DSU mechanism:

Flexibility: The whole system should be able to perform
an update without any downtime.
Robustness: Errors and other faults caused by an update
should be minimal.

1https://github.com/salkin91/SEMThesis17/tree/master/code

Ease of use: The update process should be simple
to prevent any unnecessary errors and/or faults while
applying the update.
Low overhead: The DSU mechanism should have a
minimal effect on the performance of the system.

It is hard to satisfy all of these four goals, but Hicks et
al. [12] implemented a DSU system that achieved all of
these. In Meides and Munoz-Esconis [1] additional goals and
requirements of a DSU mechanism are identified:

1) Transparency: Transparency for an update mechanism
means that the update mechanism should be hidden, not to
limit the system during use, development or run-time. Three
levels of transparency can be identified [1]. First the (1) user
transparency, the end user should not be aware that an update
is being performed, which is the ideal scenario. The update
mechanism should not affect or limit the way the user is using
the system. Then there is the (2) programmer transparency,
where the developer is not limited by the update mechanism
in design decisions or development praxis, as well as not
being required to have any knowledge of the mechanism. (3)
Application transparency, the update mechanism does not limit
how the system is designed or implemented. The performance
of the system is not affected by the update mechanism, and
does not impact the behaviour of the system.

2) Generality: Every part of the system should be able to
be updated during run-time, but the update mechanism should
not impact the modularity of the system. In order for this to
increase performance and add new functionality. According to
Ajmani et al. [24], the modularity allows the system not to
depend on legacy code which makes the system more robust.

3) Consistency and Integrity: As Miedes and Munoz-
Esconi [1, pp.3] put it “the update of a component leaves it and
the whole application in a consistent or correct state”. Accord-
ing to Banno et al. [25] there are two types of consistencies
when applying a dynamic update. The consistency of data
relates to when a component A1 is replaced with component
A2, it is required that there exists a state transfer from
component A1 to A2 for the new component to be initialized
correctly. Otherwise component A2 will not be compatible
with the rest of the system. The second type is consistency of
control flow, when the update has been performed, component
A2 will continue running from where A1 stopped. This to
ensure that a request is not lost or served twice. Gregersen
and Jørgensen [26] argue that the system should have the same
behaviour when updated by a dynamic update mechanism as
it would have if it was updated statically.

4) State Preservation: Before an update the state of the
component has to be stored, to preserve the state for the
new component [1]. This is closely related to consistency and
integrity. To be able to achieve consistency, the state has to
be preserved and transferred to the new component. Sridhar et
al. [27] present a five-step way of handling the state transfer
from an old component to a new one.

Initiation: The module replacement has to be initialized.
Module Integrity: The state of the changing module has
to be stored.

3

Module Rebinding: The new module has to be loaded
and linked into the run-time environment, and create the
new object which will replace the old one.
State Migration: The state of the old module has to be
transferred into the new object to get an equivalent object
as the old one.
Instance Rebinding: The old modules have to be linked
to the new object.

Fig. 1. Example of implementation of a state transfer module

Hicks and Nettles [12] provide an example of how the
implementation of a state transfer can be done. In Fig. 1
there are two different versions of the file errorCounter, with a
function that returns a string and counts the number of times
the function has been executed. The value of the variable count
has to be transferred from version n to version n + 1 to keep the
system consistent. This is done via a separate module where
the state transfers are specified. They can be more complex
than the provided example.

5) Version Coexistence: This requirement ensures that dif-
ferent versions of a component coexist and run concurrently
[1], [24]. This allows a client running an old version to still
have it working correctly with an updated server, which runs
both the old and new version. When the client has been
updated it gets serviced by the new version on the server. If a
system using inter process communication (IPC) would only
update one of the nodes, unexpected behaviour could occur
[6]. Version coexistence is suited for medium to large-scale
systems where it is impossible to update every node at once.

The programming language Erlang has support for this type
of mechanism, called hot loading [1]. It can replace single
modules and run two versions of the module concurrently.
Processes using the old version will continue to work while
new processes use the new version.

6) Quiescence: Quiescence is a term used to describe a
system that can perform an update in a safe manner. The
module being updated won’t be used by another component
during the update [1]. This can be achieved through two
different approaches: (1) a whitelist of program locations (also
called update points) where the program enters a safe state.
When every thread entered one of these safe points the update
is applied. (2) A blacklist of functions that must be inactive
for an update to be applied [11].

Some argue that by only having one safe point per thread it
would delay the application to reach full quiescence. Instead
by having more safe points in each thread it would reduce
the delay. But according to Heyden et al. [28] there is a major
drawback in having many safe points for each thread: it will be
harder for the developer to reason about the correctness of each
potential update point and this might threaten the correctness
of the application. According to Neamtiu and Hicks [11] by
only using a few (1-2) safe points in each thread quiescence
could be achieved in less than ten milliseconds.

Banno et al. [25] argue that the use of safe points is not
enough to ensure a safe and correct update and they give
an example when such a mechanism is invalid. If a module
consists of two functions, A() and B(), and function A() is
always executed before B(), then if the update moves some
operation from A() to B() and the update is applied in between
these functions, the moved operation will be executed twice,
thus resulting in an invalid state. To complement the safe
points some change constraints should be valid before an
update can be applied, to ensure a safe and correct update.

7) Rollbackness: The mechanism of a rollback makes it
possible to revert an update back to a given version of the
system. This mechanism is important if a new version of the
system consists of faults and other flaws, then the ability to go
back to a previous version is necessary to still have a stable
system [1].

The requirements mentioned above suit different kinds of
systems. Depending on if the system is single-threaded, multi-
threaded or distributed different requirements are needed to be
able to ensure that a DSU mechanism is safe and correct.
For example if a system is distributed and communication
between nodes is necessary for the system to operate correctly
then a requirement like quiescence or version coexistence are
suited, to not have miscommunication between nodes or other
failures. While this might not be as important for single-
threaded systems.

B. Active- and Passive mechanisms
Having established the core principles of DSU, we still need

to investigate how the mechanism work practically. Hicks et
al. [12] discuss the idea of dynamically implementing patches
into a running system. They mention two fundamental ways of
implementing a dynamic patch: State transfer-based updating
and dynamic linking.

State transfer-based updating is based on the idea of recom-
piling a new version of the system, notifying the old version
that a new version is ready and transferring the state of the
old version to the new. However, there are clear drawbacks
mentioned by Hicks et al. [12], most important of which -
from a safety and distributed system perspective - being the
inability to make old-code and new-code coexist, as well as
updates always affecting the entirety of the system.

The other approach - and the focus of our study - Hicks et al.
[12] calls dynamic linking. Instead of executing a new version
of the program, patches are applied directly into the current
execution and the state is transferred locally i.e. on a functional

4

level, as opposed to the system wide state transferred using
the state transfer-based updating approach. Dynamic linking
can be done in two fashions, active and passive.

Once the update or patch has been linked into the program,
all existing function calls and so forth must be directed to
use the new definitions and stubs from the update. This is
done either by code relinking (Active) or reference indirection
(Passive) [12].

Code relinking works as follows: after applying a patch or
update to the code, the entire program is re-linked. Thus all
references to the old functions or definitions will be redirected
to the new ones. This is considered to be active as the dynamic
linker needs to analyze the entire program and "re-link" all the
older code to point to the newer code. An example of such a
change is shown in Fig. 2.

Fig. 2. Example of the active DSU mechanism

In contrast, a way to achieve the same results is via reference
indirection. Using this method means one would need to
compile the affected modules so that the global indirection
table is updated accordingly. The work flow of using this
method would be to load the patch and then alter the effected
entries in the table to point to the new version. This method
is considered to be passive as the existing code is compiled
in order to notice new changes. The result of this is that
the dynamic linker only needs to update the table instead of
keeping track of the entire existing code. An example of such
a change is shown in Fig. 3.

Both methods will achieve the same results, but each has
drawbacks of its own. Using reference indirection means that
all function calls etc. need to go through an extra layer, the
indirection table, in order to access definitions and functions.
This increases the overhead of the program while also increas-
ing the complexity of the program, making this method more
difficult to implement. In contrast to this, code relinking is
simpler to implement but it may also increase update time
since all the callers of functions need to be re-linked [12]. For

Fig. 3. Example of the passive DSU mechanism

a larger safety-critical project this could render this method
unsuitable.

C. Differences in regards to Safety

When talking about safety in the scope of DSU it is
important to understand that patching or updating a system
using these methods is not without risk. A system can run cor-
rectly after being patched but could still have been incorrectly
updated depending on what state the program was in during the
patch. This is usually countered by constraining, e.g. through
a timing restriction when a patch may be applied [29]. Timing
restriction however is not completely suitable for DSU meth-
ods as it could theoretically preclude an update to a degree that
is unacceptable. Hayden et al. [28] identified three common
approaches to counteract this problem, Activeness safety (AS),
Con-freeness safety (CFS) and manual identification.

Activeness safety is according to Hayden et al. the most
popular approach and also the approach we used in our model-
testing, in unison with timing restrictions. Activeness safety
prevents updates from being applied to functions that are
currently active.

As code relinking and reference indirection are both sug-
gested methods of DSU, as a result, we assume these ap-
proaches are viable and suitable in this scenario, which is
tested in the experiment. Knowing this we anticipate no
significant differences in either benefits or drawbacks between
active- and passive-methods in terms of safety as the result of
the experiment.

VI. MODEL DESIGN

Both of our systems, active and passive, work through a
chance based approach. All actions in the system, whether that
action is sending an update notification (c.f. Section VI-B) or a
component becoming active (c.f. Sections VI-C, VI-D), are all
based on chance. To ensure consistency in the data we achieve
from the simulations both systems are built using the same val-
ues and base structure, a manager, N number of components,

5

Fig. 4. Structure of the base system used in both methods.

a DSU mechanism and an InterruptHandler. Figure. 4) shows
a graphical representation of the structure and the hierarchy
of the system. The two systems only differ where needed to
simulate their active and passive mechanisms. Both systems
are also built with the safety first principle. If a component
is ever actively needed by the system, the component drops
any potential updates and resumes normal behaviour. This is
simulated through the use of an InterruptHandler.2

A. InterruptHandler
We designed the InterruptHandler as a way to simulate the

urgency of a safety-critical system. The InterruptHandler has a
5% chance of broadcasting a message to all components that
will abort any potential update in progress. 5% was chosen
because the two different methods should have equal chance
of being aborted and that it would not occur to often. This
message is handled differently in the passive and active model,
but the essential purpose of the automata is to simulate that the
immediate need of any component can interrupt the update.

Fig. 5. InterruptHandler automata from UPPAAL.

B. Manager
The purpose of the Manager automata is to notify all

components of incoming updates. If an update has not already
been executed, the Manager sends an update request to all
components. After sending the request, it enters the Updatin-
gAll state where it waits until it has received confirmation from

2The UPPAAL xml file can be found at:
https://github.com/salkin91/SEMThesis17/tree/master/model

all components that they have been updated. If the update is
aborted at any point, the manager resumes the Idle state and
will retry the update process. When all components are done
updating and the Manager has received all confirmations, the
Manager transitions to the Done state, which is the end point
of the simulation.

Fig. 6. Manager automata from UPPAAL.

C. Active - Code Relinking

This model consists of four different automata, Manager,
ActiveDSU, ActiveComponent and InterruptHandler. The up-
date is requested via the Manager automata which relays
request to all components within the system. Within the
component automata we decided on having a boolean flag to
keep track of any pending update. This boolean is changed
with the event sent out by the Manager to indicate that there
is an update waiting to be applied.

Fig. 7. A cutout of the ActiveComponent automata from UPPAAL that
simulates the components update mechanism.

Whenever the boolean is flagging, there is a pending update
and the component can enter a specific state considered a safe
state to receive an update. Upon entering this state an event
is fired towards the ActiveDSU automata which enqueues the
component and then applies the update. The ActiveDSU keeps
track of all components throughout this process and once all
components have indicated successful update an event is fired
towards the Manager automata and the update is considered
to be completed.

6

Fig. 8. ActiveDSU automata from UPPAAL.

At any time the InterruptHandler automata can interrupt the
update. If a component is currently in the safe state it will
receive an event that it is immediately needed for the safe
continuation of the program. The component will then flag
itself in need of an update and continue with the normal path
of the program with no delay. Once it is complete and is idle
once again, it enters the safe state and notifies the ActiveDSU
that it is ready for the update to be performed.

Fig. 9. A cutout of the ActiveComponent automata from UPPAAL that
simulates the components abort mechanism as well as its working behaviour.

D. Passive - Reference Indirection
The passive model consist of the same base automata as

the active model; Manager, PassiveDSU, PassiveComponent
as well as the InterruptHandler. There are two primary dif-
ferences between Code Relinking (active) and Reference Indi-
rection (passive), the first one being its runtime behaviour. A
system built for reference indirection needs to pass through an
indirection table for each and every function call as previously
discussed in V-B.

Fig. 10. A cutout of the PassiveComponent automata from UPPAAL that
simulates the component being active.

The other fundamental difference between the two methods
is how the system ensures Quiescence (c.f. Section V-A) i.e.
how the system ensures that an update is safe to perform.
Although both active and passive use the same blacklist

approach, the nature of the way it is handled differentiates
between the two methods. While code relinking uses the
blacklist only to ensure that the component is not needed while
the update is in progress. The reference indirection mechanism
uses the blacklist approach to ensure that no component
affected by the update currently uses the indirection table, the
mechanism of which will be explained further below.

Fig. 11. A cutout of the PassiveComponent automata from UPPAAL that
simulates the components update mechanism.

The passive model, similarly to the active model, keeps track
of pending updates through the use of a boolean. Depending
on the state the Component automata is in when the Manager
automata signals the update, the Component either proceeds
directly into the update process, or the flag is set and the
Component knows that an update is pending. Whenever a
component is in the Idle state and an update is either incoming
or pending, it proceeds with the update process. However, as
previously mentioned; to ensure Quiescence, the component
must wait for all other components to be inactive before
proceeding with the update. Hence, the component enters a
Waiting state. While in the waiting state, at any time, the
update may be interrupted by the InterruptHandler.

Fig. 12. A cutout of the PassiveComponent automata from UPPAAL that
simulates the components abort mechanism.

If a component’s update process is aborted by the Inter-
ruptHandler, all components resume normal behaviour until

7

the Manager automata eventually re-initializes the update
process.

Fig. 13. PassiveDSU automata from UPPAAL.

As a component enters the waiting state, a message is
sent to the PassiveDSU automata, notifying it that an update
is in progress. At this point the PassiveDSU enters a state
called AwaitingComponents, the purpose of which is to listen
for incoming ready-messages from other components. When
all components are ready, the update is executed by the
PassiveDSU. To simulate the updating of the indirection table,
a global variable is updated, as opposed to the active model
where local variables (local references) inside the components
are updated.

After an update is complete, a message is sent from the
PassiveDSU to all components. The components exit the
update process and resume normal behaviour.

E. Model Check Properties

To confirm that the developed automata contained properties
which a DSU mechanism need and that the model fulfill
liveness and is deadlock-free, the automata had to be model-
checked with defined property queries. The queries can be
divided by three categories: liveness, safety and consistency. In
Table I the queries to determine liveness can be viewed. Table
II shows the queries that guarantees safety in the model and
they behave as expected. The queries that checks consistency
can be seen in Table III, when combining Query No. 1 and 2 it
checks the consistency of the active model and by combining
Query No. 3 and 4 checks the consistency of the passive
model.

VII. EXPERIMENT EXECUTION

Before the execution of the experiment the modelled sys-
tems were model checked for the defined property queries
in Table I II and III. Both modelled DSU methods passed
these tests, therefore we can assume they are satisfying
liveness, safety and consistency. For the execution of the
model simulation experiment we used the SMC extension of
UPPAAL to simulate 2000 executions of both methods. The
tool extracted the time of when the models reached different
states within every execution, which will be used as a criterion
to find out the superior method. We made two different
executions for each of the two methods where we increased
the number of components within the model, starting with two
and ended with four to measure any significant increase in time
depending on the number of components.

The data received from the experiment had to be managed
first by the written Python script3. When imported into RStu-
dio the data had to be handled once again due to redundant
and extra values inside each of the simulations which was not
relevant to include in the sample. These values were 0.0 which
was the start of the simulation and 1000 which was the top
value the simulation would go to.

VIII. RESULT

A. Literature Study Results
1) Attributes of a DSU method: There are many character-

istics that a DSU method can have. Depending on the system
the DSU method is applied to, different design decisions have
to be made. The most general attributes such a mechanism
should include are: generality - every part of the system can
be updated, consistency - the behavior of the system is not
affected by the update, and low overhead - the performance of
the system is not negatively affected by the update. Error and
faults caused by an update should be minimal, therefore even
more attributes need to be considered. Quiescence and extra
defined constrains can be used to make sure that the update
is performed in a safe state. Version coexistence can be used
to run two versions of the system at the same time, thus a
client running the old version will be serviced by the server
running the old version, while clients with the new version
get serviced by the new server version. Rollbackness can be
used to roll back to the old version of the system if the new
version contains faults or if the update could not be finished.

This summarizes what kinds of attributes a DSU method
need to consider, providing us with an answer to RQ1.1.

2) Difference between Active and Passive DSU methods:
Essentially there are two fundamental differences between
an active and passive DSU method: the way Quiescence is
handled and the way references are updated. An active method
handles the reference updating locally, inside the functions
themselves. As a result, the references in one component can
be changed whenever the component allows it (i.e. when it
is inactive and not needed by the system), without affecting
any other components. This makes for a simpler system to
implement, but a more complex update process due to the fact
that every caller of functions needs to be re-linked locally.

A passive method on the other hand, is designed to notice
new changes, as opposed to the active method where the
dynamic linker (the mechanism that handles the re-linking)
has to actively analyze where re-linking is needed. In the
method of reference indirection this is done through the use
of an indirection table. Whenever an update is pushed, the
indirection table is updated with new references accordingly.
Using this method increases the implementation complexity
of the system as well as the overhead due to the need
to pass through the indirection table each function call. It
does however simplify the update process by gathering all
references into a table and simply updating that table, not all
references locally.

3 https://github.com/salkin91/SEMThesis17/tree/master/code

8

Query No. Query Meaning

1 E<>Manager.Done Eventually in some executions there exists a path that will reach Manager.Done

2 E<.Done && indirection_table == 1 Eventually in some executions there exists a path that will reach Manager.Done and the indirection_table will be 1

3 E<>Manager.Done && (ActiveComponent(0).update_value == 1 && ActiveComponent(1).update_value == 1) Eventually in some executions there exists a path that will reach Manager.Done and both ActiveComponents will have update_value 1

4 PassiveComponent(0).InitiateAbort –>PassiveComponent(0).FunctionCall If PassiveComponent is in InitiateAbort state it will eventually go to the FunctionCall state

5 ActiveComponent(0).AbortUpdate –>ActiveComponent(0).FunctionCall If ActiveComponent is in AbortUpdate state it will eventually go to the FunctionCall state

6 E<>ActiveComponent(0).comp.update_pending == true Eventually in some execution ActiveComponent will have comp.update_pending true

7 E<>PassiveComponent(0).comp.update_pending == true Eventually in some execution PassiveComponent will have comp.update_pending true

TABLE I
LIVENESS QUERIES

Query No. Query Meaning

1 A[] not (PassiveComponent(0).FunctionCall && PassiveComponent(1).Updated) In all executions in all paths PassiveComponent0 can’t be in the state FunctionCall if PassiveComponent1 is in state Update

2 A[] not (ActiveComponent(0).UpdatePerformed && ActiveComponent(1).UpdatePerformed) In all executions in all paths both the ActiveComponents can’t be in UpdatePerformed state at the same time

3 A[] not (Manager.Done && indirection_table == 0) In all executions in all paths Manager can’t be in state Done if the indirection_table is 0

4 A[] not (PassiveDSU.PerformUpdate && (PassiveComponent(0).FunctionCall || PassiveComponent(1).FunctionCall)) In all executions in all paths PassiveDSU can’t be in state PerformUpdate if both the PassiveComponents are in the state FunctionCall

5 A[] not (Manager.Done && (ActiveComponent(0).update_value == 1 && ActiveComponent(1).update_value == 0)) In all executions in all paths Manager can’t be in state Done if only one ActiveComponents has been updated

6 A[] not (Manager.Done && (ActiveComponent(0).update_value == 0 && ActiveComponent(1).update_value == 0)) In all executions in all paths Manager can’t be in state Done if none of the ActiveComponents has not been updated

TABLE II
SAFETY QUERIES

Query No Query Meaning

1 E<>not Manager.Done && (ActiveComponent(0).FunctionComplete && ActiveComponent(0).update_value == 0) Eventually in some execution ActiveComponent will be in state FunctionComplete when the system has not been updated

2 E<>Manager.Done && (ActiveComponent(0).FunctionComplete && ActiveComponent(0).update_value == 1) Eventually in some execution ActiveComponent will be in state FunctionComplete when the system has been updated

3 E<>Manager.Done && PassiveComponent(0).FunctionComplete && indirection_table == 1 Eventually in some execution PassiveComponent will be in state FunctionComplete when the system has been updated

4 E<>not Manager.Done && PassiveComponent(0).FunctionComplete && indirection_table == 0 Eventually in some execution PassiveComponent will be in state FunctionComplete when the system has not been updated

TABLE III
CONSISTENCY QUERIES

This summarizes the differences between active and passive
methods, providing us with an answer to RQ1.2.

B. Model Checking Result

The result of the model checking showed that every defined
property query in Table I, II and III was satisfied. Therefore, in
terms of liveness we can argue that the model will not get stuck
and will eventually get to the Manager.Done state. Knowing
this, we can assume that all simulations conducted in the
experiment will eventually reach the end point. Furthermore,
we can establish that in every execution, the system will
eventually finish an update. As for the safety of the model,
the queries in Table II show that the modeled system acts
as expected in terms on when it can be updated and that
the system can not reach the Manager.Done state without
performing the update on all components. The consistency
queries showed that the model had the same behaviour before
and after the update. With consistency being an integral part
of any DSU system, not least when applied to a safety-
critical system, establishing that the behaviour of the system is
identical before and after an update. The consistency queries
ensure that the system behaviour is normal both prior and
after an update has occurred. Consistency will be further
investigated in the experiment, more specifically consistency
in terms of update-time.

Additionally, we check the system for any possible deadlock
using the query A[] not deadlock. Establishing a deadlock-free
model ensures that the system will never get stuck in a state
where it is unable to continue the execution. An occurrence of
a deadlock during a simulation would render the data unusable.

C. Experiment Results
The data from the experiment was tested in several steps.

The data will first be analyzed to investigate if it is normally
distributed. The statistical test will then be chosen from the
analysis result. The result from the simulations with two
components will after that be compared with the simulations
with four components respectively. We will use the confidence
level of 0.99 for all the statistical tests.

1) Analyzing the sample: When analyzing the box plot in
Fig. 14 the data there have many outliers in the chart. These
can not be removed from the sample because we do not fully
know the reason behind them, but what we can suspect is that
they show the absolute worst case scenario in the update time.
A possible reason for the outliers could be that the update was
aborted several times before finishing it due to the randomized
safety mechanism within the models.

2) Testing Normality: In order for the data to provide us
with with useful information, the null hypothesis that the data
is normally distributed should first be rejected. This is done
through the use of a normality test, in this case, the Shapiro
Wilk’s [21] test for normality was used. The result of executing
the Shapiro Wilk’s test on the data provided us with the
following;

Active: W = 0.89114, p-value < 2.2e-16
Passive: W = 0.85599, p-value < 2.2e-16

According to the p-value achieved from running the normal-
ity test - with a confidence level set at 0.99 - the null hypothesis
that the data is normally distributed can be rejected on both
the active and passive data.

However, due to the fact that the p-value was as low as it
was, we decided to construct a Q-Q plot[30] to visualize the

9

Fig. 14. Box-plot of sample with two components

distribution of the data.

Fig. 15. Q-Q plot of the active two component data.

Fig. 16. Q-Q plot of the passive two component data.

By observing Fig. 15 and Fig. 16, we can conclude that the
majority of the data is normally distributed, but as a result of
our large sample size, the significant number of outliers makes
the data deviate from normality giving us a skewed normality
line.

3) Statistical Test: Due to the data not being normally
distributed and that we had one independent variable with two

levels, for the large sample size we choose the Paired T-test as
our statistical test, which is robust enough to handle the large
sample size. With the null hypothesis Active == Passive we
want to investigate if we can reject it. The Paired T-test gave
the following values:

t = -4.987, df = 3757.4, p-value = 6.41e-07
The t-value stands for value of the t-statistic. The df value
provides the degrees of freedom for the t-statistics and p-value
is the probability value of the t-statistics [31]. In this case,
due to the p-value being very low, lower than our significance
level of 0.01 (provided by our 0.99 confidence level), we can
reject the null hypothesis. The alternative hypothesis Active
> Passive however, can not be rejected. Therefore, we can
conclude that the Active method is performing better in terms
of efficiency for the test with two components.

4) Difference between two and four components.: The data
from the four components in Fig. 17 seems similar to the data
derived from the two components in Fig. 14, but the data from
the four components have more outliers than what is shown
in Fig. 14. Similar to the box plots for both two and four

Fig. 17. Box-plot of sample with four components.

components in Fig. 14 and Fig. 17 there is a relation between
the Q-Q plots from the two component data in Fig. 15 and Fig.
16 with the four component data in Fig. 18 and Fig. 19. They
follow the same shape as the previous two and we assume the
result of the statistical test will be similar to the one with the
two components.

The statistical test used for the test with four components
was conducted the same as the one with the two components
above. The result of it was:

t = -13.333, df = 3067.5, p-value < 2.2e-16
As above we use the confidence level of 0.99 and therefore
we can reject the null hypothesis.

The difference in the means between the data with two
components and four components is shown in Fig. 20. What
can be concluded is that the update time is increasing with the
number of components in the system.

We can after conducting our experiment conclude that in
regards to safety, there are no significant differences between
the two methods subjected to test. Both the active and the

10

Fig. 18. Q-Q plot of the passive four components data.

Fig. 19. Q-Q plot of the passive four components data.

passive methods are based on the same presumption of imple-
menting one or several safety constraints such as activeness
safety, con-freeness safety or manual identification. Failing
to do so could result in safety issues such as incomplete
updates, incorrectly applied patches or unexpected behaviours.
Knowing this and with the results from our experiment, being
unable to measure safety variances using UPPAAL, we can
reason towards RQ2 and its sub-questions that there are no
significant differences between active and passive methods of
DSU. The results however, show that the active method is
more efficient time-wise (shown in Fig. 15 and Fig. 16), so if
the safety restriction is time-based this could have an impact
on the choice of which method to implement.

What could be observed by the results in the difference
between the statistical test with two and four components was
that the active method was significantly better in both tests.
By examining Fig. 20 which shows the means of the different
tests, it is shown that the overhead increases by the number
of components inside the system for both methods. While
the mean slightly increases for the active method the passive
method’s mean increases even more, due to a higher number
of outliers in the passive method. Our passive model was
developed so that an update could only be applied when every
component did not use the indirection table, which means that

Fig. 20. Chart of sample mean values

the more components inside the model, the longer time it
took for it to finish. As for the active method which does not
have the extra indirection and can update as soon as it has no
caller, the active component does not have to wait for a fully
quiescence system. If we were to add even more components
to the experiment both of the method’s means would increase
but there would be a higher rate for the passive method.

IX. DISCUSSION

A. Threats to Validity

Below, the validity threats of the study are analyzed and
discussed. The most critical validity threats to the study
identified are threats to internal, construct and external validity.
All of these will be covered below as well as the conclusion
validity and how they are mitigated.

In terms of construct validity, it has to be considered
whether or not the models designed are accurate and an
effective replication of the algorithms they are based on.
Regarding the effectiveness and optimization of the models,
it can be argued that the models are not as optimized as
they could be. Due to the limitation of merely modelling
the methods and not developing them in a real system, it
is hard to argue that the models are as optimized as they
could be. However, the process of modeling the algorithms
was iterative and improvements in terms of optimization and
effectiveness were made throughout the modelling process. It
can also be argued that the models are simple enough that
thorough optimization would not affect the simulation enough
to make a significant difference in the results. Additionally,
both methods were modeled simultaneously with the same
amount of prior knowledge of both methods, resulting in two
equally effective models.

Whether or not the models are as accurate as they could be,
should also be considered. To mitigate this risk, the models
were model checked through various liveness, safety and
consistency queries. The queries were based on the expected
behaviour of each method. These queries were all satisfied.

11

To ensure further accuracy and effectiveness of the methods,
actual implementation of the methods in an active software
system would be beneficial. Even then, it is hard to rule out
that there is not a possibility for further optimization.

To mitigate the conclusion validity the normality of the
sample from the experiment was checked with the Shapiro-
Wilk test [21] in order to choose the correct statistical test. The
sample size consisted of 2000 simulated executions from each
model. Such a large sample size gave us a good representation
of the results from our experiment.

The largest risk considered for the internal validity of
the study was our inexperience of conducting research, not
having done any prior research at a university level, therefore
the execution might not be flawless. As mentioned above,
the our knowledge in UPPAAL will also affect the design
of the modeled systems and how to properly illustrate the
desired systems. The risk of us being biased has also to
be considered, especially when two different methods are
compared, if we prefer one of the two. This risk has been
mitigated by modeling the two methods as equal as possible
with the only difference being their unique mechanisms.

Concerning the external validity the possibility not to gener-
alize was the largest threat. The experiment was built of model
checking performed on the two DSU methods, but to fully get
an answer of which method of the two was the superior one,
more research has to be conducted where implementations of
the two methods are compared. The result of this experiment
can give a valuable impression on which the superior method
is, but without actual implementation of the two methods we
can not be certain which of the two works better in a real-life
scenario.

B. Lessons learnt from UPPAAL modeling

As mentioned in the section above, our knowledge of
UPPAAL was limited to one university assignment where we
built a small system and verified a number of properties. We
did not fully know what could be extracted from the tool at the
start of the thesis. We created three different UPPAAL models
during the thesis work.

We started to build something small and simplistic, trying to
understand the fundamentals of the tool once again. The tool
consists of two different ways of communicating: sending a
message to a specific automata or send a broadcast to every
automata listening for the message. While building the first
automata we did not yet know how to measure time within
the tool, but when finished, we learned about clocks. Clocks
could be used to measure time within the tool and they
had their own time unit inside of UPPAAL which did not
correspond to seconds or milliseconds. Trying to integrate the
clocks into the model was complicated due to our model’s
design. At this point we built two different new models to
have the clocks integrated from the start4. We discovered that
the clocks did not give a satisfactory result. First: they only
returned one value; second: the result from using the clocks

4https://github.com/salkin91/SEMThesis17/tree/master/model/other_models

was only the sum of the clocks constraints set by us. We did
not fully understand the clocks and we were not pleased with
the result, as it did not provide any useful measurement for
the experiment.

Then we started to investigate the SMC extension of UP-
PAAL. Example models provided by the extension showed
a way to simulate x number of executions of the automata.
The time when every simulation entered a specific state in
the model could be extracted from the tool. This was what
we wanted to have. We went back to the first automata we
created to integrate it with the SMC extension. There was
limited information available about how the extension worked,
therefore we used trial and error. There were several minor
changes that had to be made for it to work properly. When
fully working we made the final touches to the automata before
conducting the experiment.

Due to limited resources of how to use UPPAAL many
hours went into learning the fundamentals and how to use
different functionalities within the tool.

C. Model Checking Result
The model checking of the modeled systems showed that

all defined property queries were satisfied. Therefore we can
argue that the behaviour of the automata was as expected.
The modeled systems will not get stuck and will eventually
enter the Manager.Done state after the update has been ap-
plied. In order to determine if the modeled systems had the
consistency attribute of a DSU mechanism we created two
paths which could be taken to FunctionComplete state in both
the ActiveComponent and PassiveComponent, while one path
could be taken before the update and the other one after the
update. These properties (Query Nr. 1-4 in Table III) were
satisfied in the model check and therefore we can assume that
it is correctly modeled. To determine if the update was applied
correctly in both methods the queries in Table II was model
checked.

Some attributes a DSU mechanism should have could not be
modelled such as generality and low overhead. To model such
a dynamic model to ensure generality would be too complex
and hard to determine if every part of the system is update-
able. Low overhead can only be measured by the difference
of the performance of the application when running and when
an update is applied, which is not possible to model.

D. Model Simulation
The experiment was conducted through the use of UPPAAL

SMC simulation queries. As mentioned in Section II-C, SMC
is used to explore probabilities in a modeled system based on
a number of simulations. Using the SMC simulation query we
were able to run N number of simulations and measure the
time at which the execution passes through any state in the
model.

There are risks that threaten the validity of the data achieved
from these simulations. As discussed in Section IX-A the
accuracy and efficiency of the model could vary between the
two models. The mitigation of these risks was discussed in

12

Section IX-A. Additionally, the process speed of the machine
executing the simulations might vary. To mitigate this to the
extent possible, the simulations of the models were executed
on the same machine consecutively.

Furthermore, the overall validity of the data received from
the SMC simulations could be questionable due to the fact that
it does not work like a traditional model checking query. As
opposed to a traditional model checking query, the SMC tool
of UPPAAL does not check every state of every execution, but
rather a certain number of simulations of the system. Based
on this, knowing for certain that the system is completely
faultless, is not possible. However, to improve data validity a
large sample of 2000 simulations were executed, whereby no
noticeable faults occurred. Additionally, the modeling process
was iterative and the simulation query was executed on other
versions of the system, some being faulty. When executing
the query on a faulty system, the data was noticeably skewed.
Furthermore, as mentioned in Section II-C similar approaches
using the SMC tool were taken in two recent studies, where
they used the tool to derive quantitative data.

E. Experiment Results
In regards to downtime; at the time we started our research,

measuring safety in terms of availability seemed obvious.
Updating a system during run-time, provides that the system
can still be functional while the update is in progress. Dis-
covering more about the mechanisms of DSU we realized that
downtime is not really a factor to consider, due to the fact
that the downtime of any system using a DSU mechanism is
incredibly low, borderline non-existent. The two methods we
chose to investigate in our experiment - code relinking and
reference indirection - are both different variants of dynamic
linking, meaning that their purpose is to re-link the system
with new references, to a new version of the system that is
already loaded and ready to go. The act of this re-linking does
not provide the system of any substantial downtime that would
affect it negatively in terms of safety.

Due to the fact that downtime turned out to be an irrelevant
value to measure in terms of safety, we did not measure
the downtime consistency. What we could measure was the
consistency of the update-time.

Looking at the data achieved through the experiment we
can see that the number and significance of the outliers is
greater in the passive method than the active. In practicality
this means that the worst case as well as the overall consistency
of the passive method is worse than the active. Consistency in
terms of downtime essentially boils down to reliability. When
applying an update, an expected time as to when the update is
finished is beneficial, not least in terms of safety. The active
method - according to our data - will yield a faster, more
consistent and reliable update-time.

Although inferior based on the experiment data, the passive
method is still a viable method in a safety-critical system
environment. The cause of the slower and less consistent
update-time is the method’s need to have a safer overall system
state before applying an update. Ensuring a safer system

state will increase the overall update-time and decrease the
update-time consistency, due to the urgency of a safety-critical
system. It could however also decrease the risk of possible
errors or faults due to the applied update. Updating only one
indirection table as opposed to the references directly in the
functions, does seem a lot less error prone. Especially due
to the fact that the safe point at which an update can be
applied - using the active method - only ensures the component
itself is inactive and not needed, as opposed to the the passive
method where all components affected by the update are part
of the blacklist. Bare in mind that this is only speculation and
was unfortunately something we could not test through model
checking. It is merely based on the information and knowledge
retrieved from the literature study and modelling of the two
methods.

X. RELATED WORK

DSU systems have been a widely studied field for many
years. Most of the papers produced describe how a DSU
system can be implemented, what requirements/characteristics
such a system should have. Many studies implement their own
DSU system or extend an existing one where the system’s
performance is usually measured. There exists studies that
evaluate timing restrictions for a DSU system, but evaluating
and model checking a comparison between reference indirec-
tion and code relinking has not yet been done which makes
this study unique. Below, papers which are related to our study
will be presented.

Heyden et al. [29] made the first empirical evaluation of
three popular timing restrictions. These three were: (1) active-
ness safety, the update can not be applied to active functions.
(2) con-freeness safety, allows type-safe modifications to active
functions and (3) manual identification, there exists update
points where an update can be applied. These three techniques
were tested on three systems: OpenSSH, vsftpd and nglRCd.
What they found was that the manual identification prevented
all of the failures while the other two prevented most of them.
They also found that activeness safety and con-freeness safety
allowed more update points than manual identification but
the delay of the manual identification was minimal, which
is supported by [28], [11].

Chen et al. [6] implement a DSU prototype system called
MUC (Multi-version for Updating of Cloud) which supports
multi-version execution. This prototype is verified by applying
it to the cloud applications Redis and Icecast. They found
that the applications which used MUC had performance loss
while an update was performed but it is a sacrifice to get a
reliable and continuous service. Another implementation of a
DSU system is Ginseng [22] which is a DSU system for C
single-threaded systems which has been used to update long-
lived software with the result of low overhead and its extension
STUMP [11] (Safe and Timely Updates to Multi-threaded Pro-
grams), supports dynamic updates for multi-threaded systems.
The extension is using safe points to perform safely updates.
Javelus [32] is a DSU system for Java programs that have
a lazy approach in which it only updates objects on-demand

13

instead of extensive tracing of the heap. It also uses safe points
for a safely updates. POLUS [33] supports updates of multi-
threaded systems and it also supports roll-backs to reverse an
update. It is using coexistence of the old version and the new
version of the system where an update can be applied at any
time. To maintain the coherence of the two versions a state
synchronization function is called.

There are many different requirements and goals in which a
DSU system can consist of to create a DSU functionality that
is both safe, consistent and with low overhead. Almost every
reference in this paper refers to at least one of them, either by
the framework or implementation that is created. Meides and
Munoz-Esconis [1] highlight most of the theory behind DSU
mechanisms covered in the literature.

XI. CONCLUSION AND FUTURE WORK

A. Conclusion

In this study, we compared two different methods of dy-
namic software update: code relinking and reference indirec-
tion in regards to safety and their efficiency in performing an
update. The two methods were compared via model checking
with the model checking tool UPPAAL. We discovered that it
was hard to measure code relinking and reference indirection
in terms of safety due to the fact that they are two different
approaches to dynamic linking. We expected that downtime
would be one of the primary factors in discovering whether a
method is more or less safe. However, what became apparent
when studying the subject was that downtime is barely a factor
to consider due to the fact that there barely is any.

What could be measured in the model checking tool UP-
PAAL was the efficiency of these two methods where code
relinking was significantly faster than reference indirection in
terms of finishing the update. To fully understand how these
two methods could be applied to a safety-critical system more
research has to be conducted. This study is the first study to
compare these two methods via model checking.

B. Future Work

To get a better understanding of the difference in efficiency
of these two DSU methods they have to be implemented and
tested on real-life systems. The model checking is not enough
to determine how well they would perform against one another.
There is also the opportunity to apply them to safety-critical
systems and observe how well they perform on such a system
to get an even better result than we could discover in this
thesis. For this mechanism to be used on such systems in the
future it has first to be tested on them and we believe that this
technique could be very beneficial, both in cost and easy to
use where e.g. a car could be updated while driving instead
of going to the mechanic to make an offline update.

ACKNOWLEDGEMENT

We would like to thank our supervisor Hang Yin for all his
support and help throughout this thesis work. His knowledge
and guiding has helped us a lot.

Additionally we would like to thank Jonas Kahler for
proofreading and providing us with useful feedback for further
improvement of the thesis.

REFERENCES

[1] E. Miedes and F. D. Munoz-Escoi, “Dynamic software update,” Instituto
Universitario Mixto Tecnológico de Informática, Universitat Politècnica
de València, Technical Report ITI-SIDI-2012/004, 2012.

[2] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 235–245.

[3] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery
and deployment: A systematic review on approaches, tools, challenges
and practices,” IEEE Access, 2017.

[4] J. Bowen and V. Stavridou, “Safety-critical systems, formal methods and
standards,” Software Engineering Journal, vol. 8, no. 4, pp. 189–209,
1993.

[5] V. P. La Manna, J. Greenyer, C. Ghezzi, and C. Brenner, “Formaliz-
ing correctness criteria of dynamic updates derived from specification
changes,” in Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2013 ICSE Workshop on. IEEE, 2013, pp. 63–72.

[6] F. Chen, W. Qiang, H. Jin, D. Zou, and D. Wang, “Multi-version
execution for the dynamic updating of cloud applications,” in Computer
Software and Applications Conference (COMPSAC), 2015 IEEE 39th
Annual, vol. 2. IEEE, 2015, pp. 185–190.

[7] M. Zhang, K. Ogata, and K. Futatsugi, “An algebraic approach to
formal analysis of dynamic software updating mechanisms,” in Software
Engineering Conference (APSEC), 2012 19th Asia-Pacific, vol. 1. IEEE,
2012, pp. 664–673.

[8] M. Felser, R. Kapitza, J. Kleinöder, and W. Schröder-Preikschat, “Dy-
namic software update of resource-constrained distributed embedded
systems,” Embedded System Design: Topics, Techniques and Trends, pp.
387–400, 2007.

[9] M. Hicks, J. T. Moore, and S. Nettles, Dynamic software updating.
ACM, 2001, vol. 36, no. 5.

[10] G. Chen, H. Jin, D. Zou, Z. Liang, B. B. Zhou, and H. Wang, “A
framework for practical dynamic software updating,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 4, pp. 941–950, 2016.

[11] I. Neamtiu and M. Hicks, “Safe and timely updates to multi-threaded
programs,” in ACM Sigplan Notices, vol. 44, no. 6. ACM, 2009, pp.
13–24.

[12] M. Hicks and S. Nettles, “Dynamic software updating,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 27,
no. 6, pp. 1049–1096, 2005.

[13] UPPAAL. [Online]. Available: http://www.uppaal.org/
[14] G. Gelman, K. M. Feigh, and J. Rushby, “Example of a complementary

use of model checking and human performance simulation,” IEEE
Transactions on Human-Machine Systems, vol. 44, no. 5, pp. 576–590,
2014.

[15] G. Behrmann, A. David, and K. Larsen, “A tutorial on Uppaal,” Formal
methods for the design of real-time systems, pp. 33–35, 2004.

[16] UPPAAL 4.0: Small tutorial*. [Online]. Available: https://www.it.uu.se/
research/group/darts/uppaal/small_tutorial.pdf

[17] M. Novak, T. Dragicevic, F. Blaabjerg, and U. M. Nyman, “Analytical
performance verification of fcs-mpc applied to power electronic convert-
ers: A model checking approach,” in Control and Modeling for Power
Electronics (COMPEL), 2017 IEEE 18th Workshop on. IEEE, 2017,
pp. 1–6.

[18] Y. Bao, M. Chen, Q. Zhu, T. Wei, F. Mallet, and T. Zhou, “Quantitative
performance evaluation of uncertainty-aware hybrid aadl designs using
statistical model checking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2017.

[19] Uppaal statistical model-checker. [Online]. Available: http://people.cs.
aau.dk/~adavid/smc/

[20] Rstudio. [Online]. Available: https://www.rstudio.com/
[21] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality

(complete samples),” Biometrika, vol. 52, No. 3/4, pp. 591 – 611, Dec.
1965.

[22] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, Practical dynamic
software updating for C. ACM, 2006, vol. 41, no. 6.

[23] J. Montgomery, “A model for updating real-time applications,” Real-
Time Systems, vol. 27, no. 2, pp. 169–189, 2004.

14

http://www.uppaal.org/
https://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
https://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
http://people.cs.aau.dk/~adavid/smc/
http://people.cs.aau.dk/~adavid/smc/
https://www.rstudio.com/

[24] S. Ajmani, B. Liskov, and L. Shrira, “Modular software upgrades for
distributed systems,” ECOOP 2006–Object-Oriented Programming, pp.
452–476, 2006.

[25] F. Banno, D. Marletta, G. Pappalardo, and E. Tramontana, “Handling
consistent dynamic updates on distributed systems,” in Computers and
Communications (ISCC), 2010 IEEE Symposium on. IEEE, 2010, pp.
471–476.

[26] A. R. Gregersen and B. N. Jørgensen, “Dynamic update of java ap-
plications—balancing change flexibility vs programming transparency,”
Journal of Software: Evolution and Process, vol. 21, no. 2, pp. 81–112,
2009.

[27] N. Sridhar, S. M. Pike, and B. W. Weide, “Dynamic module replacement
in distributed protocols,” in Distributed Computing Systems, 2003.
Proceedings. 23rd International Conference on. IEEE, 2003, pp. 620–
627.

[28] C. M. Hayden, K. Saur, M. Hicks, and J. S. Foster, “A study of dynamic
software update quiescence for multithreaded programs,” in Hot Topics
in Software Upgrades (HotSWUp), 2012 Fourth Workshop on. IEEE,
2012, pp. 6–10.

[29] C. M. Hayden, E. K. Smith, E. A. Hardisty, M. Hicks, and J. S. Foster,
“Evaluating dynamic software update safety using systematic testing,”
IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1340–
1354, 2012.

[30] Understanding Q-Q plots. [Online]. Available: http://data.library.
virginia.edu/understanding-q-q-plots/

[31] Student’s t-test. [Online]. Available: https://stat.ethz.ch/R-manual/
R-devel/library/stats/html/t.test.html

[32] T. Gu, C. Cao, C. Xu, X. Ma, L. Zhang, and J. Lu, “Javelus: A
low disruptive approach to dynamic software updates,” in Software
Engineering Conference (APSEC), 2012 19th Asia-Pacific, vol. 1. IEEE,
2012, pp. 527–536.

[33] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “Polus: A powerful live
updating system,” in Proceedings of the 29th international conference
on Software Engineering. IEEE Computer Society, 2007, pp. 271–281.

15

http://data.library.virginia.edu/understanding-q-q-plots/
http://data.library.virginia.edu/understanding-q-q-plots/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/t.test.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/t.test.html

	Introduction
	Background
	Model Checking
	UPPAAL
	UPPAAL SMC

	Purpose Of The Study
	Methodology
	Experiment
	Variables and Instruments
	Hypothesis
	Experimental Preparation

	Dynamic Software Update
	General
	Transparency
	Generality
	Consistency and Integrity
	State Preservation
	Version Coexistence
	Quiescence
	Rollbackness

	Active- and Passive mechanisms
	Differences in regards to Safety

	Model Design
	InterruptHandler
	Manager
	Active - Code Relinking
	Passive - Reference Indirection
	Model Check Properties

	Experiment Execution
	Result
	Literature Study Results
	Attributes of a DSU method
	Difference between Active and Passive DSU methods

	Model Checking Result
	Experiment Results
	Analyzing the sample
	Testing Normality
	Statistical Test
	Difference between two and four components.

	Discussion
	Threats to Validity
	Lessons learnt from UPPAAL modeling
	Model Checking Result
	Model Simulation
	Experiment Results

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work

	References

