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Abstract 

In this report we introduce the paradigm of learning from the past which is realized in a 
controlled prognostic context. It is a data-driven exploratory approach to assessing the 
limits to credibility of any expectations about the system’s future behavior which are 
based on a time series of a historical observations of the analyzed system. This horizon 
of the credible expectations is derived as the length of explainable outreach of the data, 
that is, the spatio-temporal extent which, in lieu of the knowledge contained in the 
historical observations, we are justified in believing contains the system’s future 
observations. Explainable outreach is of practical interest to stakeholders since it allows 
them to assess the credibility of scenarios produced by models of the analyzed system. It 
also indicates the scale of measures required to overcome the system’s inertia. In this 
report we propose a method of learning in a controlled prognostic context which is based 
on a polynomial regression technique. A polynomial regression model is used to 
understand the system’s dynamics, revealed by the sample of historical observations, 
while the explainable outreach is constructed around the extrapolated regression function. 
The proposed learning method was tested on various sets of synthetic data in order to 
identify its strengths and weaknesses, and formulate guidelines for its practical 
application. We also demonstrate how it can be used in context of earth system sciences 
by using it to derive the explainable outreach of historical anthropogenic CO2 emissions 
and atmospheric CO2 concentrations. We conclude that the most robust method of 
building the explainable outreach is based on linear regression. However, the explainable 
outreach of the analyzed datasets (representing credible expectations based on 
extrapolation of the linear trend) is rather short. 
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Towards Handling Uncertainty in Prognostic Scenarios:  
Advanced Learning from the Past 
Piotr Żebrowski1, Matthias Jonas1, Jolanta Jarnicka2  

1 IIASA, Advanced Systems Analysis Program 
2 Systems Research Institute of the Polish Academy of Sciences 

1. Introduction 

1.1. Scientific context of the project 
The problem of uncertainty and horizons of credibility1 of predictions of future behavior 
of Earth’s climate system has attracted a growing interest as a consequence of the 
increasing demand for incorporating information about future climate into planning and 
decision making (e.g., IPCC 2007: FAQ 1.2, FAQ 8.1; NSF 2012; IPCC 2013: Box 11.1; 
Otto et al. 2015). Numerous scientific institutions, including IIASA, use a variety of 
complex integrated assessment models to generate a great number of prognostic scenarios 
in order to identify policy options and effectiveness of different measures for mitigating 
climate change. Modelers make huge efforts to ensure the credibility of their scenarios 
and gauge their uncertainty; for example, by carrying out sensitivity tests or inter-model 
comparisons under standardized conditions. In particular, multi-model-scenario exercises 
are becoming increasingly popular (e.g., Meinshausen et al. 2009). Nevertheless, such 
efforts are not entirely convincing, and judging the credibility of climate model 
projections remains a notorious and unresolved issue (cf. Otto et al. 2015).   

In contrast to these model-related issues we propose an alternative, data-driven 
perspective looking at the limits to how our current understanding of the Earth system 
can be used to predict its future behavior. We seek to assess these limits by answering the 
following questions: 

(1) Given the data reflecting a system and their diagnostic uncertainty can we deduce 
the explainable outreach2 of these data, which expresses our understanding of 
the prevailing patterns of the system’s behavior and their typical duration?                                                      

and 

                                                 
1 Credibility of predictions is understood as our expectations (predictions) of its performance (Otto et al. 
2015) 
2 The region – both in terms of time horizon and the range of plausible future values – within which we 
may have justifiable belief based on the past system’s behaviour, that it will contain future trajectory of the 
process’ evolution. 
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(2) Can the explainable outreach be used for assessing the limits of credibility of 
predictions? 

In order to answer these questions, we develop and apply a new (to our knowledge) 
exploratory method, which we call learning in a controlled prognostic context3 (or 
prognostic learning (PL) for simplicity). Its main idea is to learn about the nature of 
the analyzed system from its past: we use a part of the historical observations of the 
system to understand its basic dynamic and formulate our expectations about its future 
evolution (expressed as the explainable outreach) and then test these expectations against 
the remaining part of the sample. This way of testing the limits of our understanding of 
the system based on partial and uncertain knowledge (carried by a finite set of (possibly 
imprecise4) observations) may inform us about the likely time horizon within which our 
expectations about its future evolution may be considered plausible, in lieu of the 
available historical data. Therefore, the proposed method belongs to the realm of data 
analysis, NOT modeling.  The difference between learning in a controlled prognostic 
context and modeling is explained by Figure 1.)  

 
Figure 1. Model prediction vs. learning in a prognostic context. Left panel: Model prediction. A model 
is calibrated against historical data (diagnostic mode) before making a prediction, for example by 
extrapolating the historical trend into the future or generating a scenario pathway (prognostic mode). 
Modelers typically do not (or cannot) indicate until when a model prediction is in accordance with the 
systems past (i.e. is credible). Right panel: Learning in a prognostic context. Given the historical data the 
system’s dynamics can be understood and the data’s explainable outreach be constructed. The explainable 
outreach specifies both spatial and temporal extent beyond which we no longer can explain our system in 
accordance with its past. The purpose of deriving explainable outreach directly from the data is to indicate 
limits of predictability of the model which we built to reflect the underlying system.  

1.2. Motivation: problems with judging the credibility of predictions 
Credibility of predictions is one of the central problems of statistical modeling. A variety 
of well-established statistical methods—such as regression models and machine learning 
techniques (Hastie et al. 2009, Murphy 2012) or time series analysis techniques 
(Brockwell & Davis 2002)—aim at predicting responses of the analyzed system in as yet 
unobserved states5. Predictions are typically expressed in terms of a regression function 

                                                 
3 Description of the method together with explanation of its name is provided in Chapter 2. 
4 We assume that the data are accurate (i.e., no systematic bias of the system’s observations). 
5 That is, in conditions not covered by the available data (out-of-sample predictions). 
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or, more generally, as conditional expected value of the system’s response given the value 
of the explanatory state variable. Quality of predictions, usually understood as expected 
prediction error, can be controlled6, provided that the state in which we wish to make a 
prediction lies within the range of the data sample on which the analysis is based. 
However, analogous error control is formally unavailable for predictions of the system’s 
responses in states lying beyond the range of the data sample (i.e., in conditions which 
may be significantly different to those of the historical observations). 

Similar problems also haunt the modeling community. Their common and apparently 
unavoidable practice is to extrapolate the current understanding of the system (e.g., 
discovered trends or relationships) beyond the range of historical data sample in order to 
predict its future behavior, possibly in yet unobserved states. For example, this approach 
was employed in a study by Meinshausen et al. 2009 aiming to predict the level of global 
warming in the future, when greenhouse gas concentrations in the atmosphere will be at 
higher levels than any time in (recent) history. However, making such predictions by 
extrapolating the observed trends beyond the range of the sample is problematic. Unless 
one assumes that the observed process is in some sense stationary (which may be too 
strong an assumption, e.g., in presence of varying exogenous forcing) one loses control 
over the quality of predictions, whose errors may rapidly increase the further away from 
the sample of historical observations one moves. Typically, modelers try to assess 
credibility of predictions by either (1) providing uncertainty ranges for the predictions7; 
(2) using sensitivity analyses8; or (3) exploring the range of possible futures using 
selected scenario pathways (in particular in the case of computationally expensive 
models). Unfortunately, these methods are not entirely convincing due to a certain degree 
of arbitrariness in their application (e.g., assumed distributions of parameters underlying 
Monte Carlo methods or the choice of storylines for scenario pathways). More 
importantly, they do no indicate the time horizon within which model predictions 
remain in accordance with the system’s past9.    
The paradigm of learning in a controlled prognostic context offers at least a partial 
solution to these problems. It is a data analysis method designed to control the growing 
uncertainty of our expectations about the system’s evolution in the immediate future. 
Moreover, this approach may provide a model-independent indicator of the time range 
within which the projections of a model may be judged credible in lieu of past system 
behavior.     

                                                 
6 The upper bands for probability of large prediction errors are available and depend on the complexity of 
the statistical model and the length of the data sample. 
7 Assuming suitable probability distributions for values of exogenous parameters of the model they may be 
derived analytically or by means of Monte Carlo simulations. 
8 In this case possible correlations between exogenous parameters of the model are typically ignored. 
Changes in model responses are usually analysed by varying values of one of the parameters while 
keeping the rest constant. 
9 By “remaining in accordance with the system’s past” we mean that predicted future trajectory of the 
system’s evolution exhibits behavior similar to this observed in the past, such as the level of “system’s 
inertia” or the type of dynamics. Note that this is weaker notion than stationarity of the process.     
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1.3. Objectives and scope of the report 
The objectives of this report are the following: (1) to introduce the generic paradigm of 
the learning in a controlled prognostic context allowing us to assess the explainable 
outreach, that is, the region—specified in terms of time horizon and the range of 
plausible future values (uncertainty)—which we can be justified in believing (based on 
historical observations) will contain future trajectory of the system’s evolution; (2) to 
propose a way (based on regression techniques) of implementing the prognostic learning 
(PL) paradigm; and (3) to demonstrate its usefulness in analysis of the real data samples 
relevant to understanding the Earth’s climate system (e.g., anthropogenic CO2 emissions 
and atmospheric CO2 concentrations). 

The paradigm of learning in the controlled prognostic context is applicable to: (1) 
univariate regression—problems in which one is interested in the form of dependence of 
one quantity characterizing a system (the response variable) on another quantity (the 
independent variable) which represents the state of the system or its forcing; and (2) 
analysis of time series—in which case time is treated as the independent variable. 

In this report we restrict ourselves to analysis of time series data only. The reason for that 
is two-fold. Firstly, in the context of time series “predicting beyond the range of sample” 
means “forecasting or predicting the future” which facilitates understanding of the idea 
of explainable outreach. Secondly, a time series perspective is relevant both in the context 
of prognostic modeling and in the context of understanding the relevant Earth systems 
processes (such as the abovementioned CO2 emissions or CO2 concentrations). Hence, 
from now on (unless stated otherwise), all considered data samples will be assumed to 
consist of pairs (𝑡𝑡, 𝑥𝑥𝑡𝑡), where 𝑥𝑥𝑡𝑡 denotes the value of the observable describing the system 
of interest which was recorded at time 𝑡𝑡. We will call this observable a system’s state 
variable10. 

1.4. Structure of the report 
In Chapter 2 we introduce the concept of learning in a controlled prognostic context. 
There we give a definition of the explainable outreach of the data, which is a central 
notion of the proposed methodology. Next, we formulate a generic procedure for learning 
in a controlled prognostic context and discuss how it should be applied and how to 
interpret its results. We conclude Chapter 2 by comparing the proposed approach to 
standard time series analysis. 

In Chapter 3 we propose a way of implementing the generic procedure of learning in a 
controlled prognostic context. Namely, we show how it can be operationalized by using 
polynomial regression. We discuss how to define the shape of the explainable outreach 
and how to determine its length. We summarize Chapter 3 with a formulation of the 
regression-based procedure of prognostic learning. 

The next two chapters are devoted to analysis of the performance of the proposed method. 
In Chapter 4 we present insights from the experiments on various synthetic datasets. The 
purpose of these experiments is to identify the strengths and weaknesses of the proposed 
method and to formulate guidelines for its application in real-life data analysis. In Chapter 
5 we test these insights by applying the method to determine the explainable outreach of 
                                                 
10 or simply state variable 
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the time series representing anthropogenic CO2 emissions and atmospheric CO2 
concentrations. 

We conclude this report with a summary and outlook for future research followed by an 
appendix in which we present yet another way of implementing the prognostic learning 
method—this time based on non-parametric regression techniques. We also demonstrate 
the potential of this variant of prognostic learning method by applying it to the 
abovementioned real-life time series. 

 

2. Learning in a controlled prognostic context 
In this chapter we present the notion of learning in a controlled prognostic context 
(prognostic learning, PL). Broadly speaking, the purpose of this method is to indicate 
both the typical length of time intervals over which the trends observed in the historical 
data sample persist, and the level of uncertainty in estimating and extrapolating these 
trends. 

PL can be classified as a method of exploratory data analysis. Its aim is not to find a 
formal statistical model which can be used for testing a hypothesis about the historical 
data sample and making predictions for the future. Instead, the PL method offers a semi-
formal first-order description of the system’s dynamics and its “inertia”11 exhibited by 
the system over the period in which the data sample was collected. This “inertia” is a 
critical factor in determining the limits to credibility of predictions about the system’s 
behavior12.   

As such, the PL method informs us solely about the system’s behavior in the past. 
However, in this report we demonstrate that it is also useful in context of expressing 
expectations about its immediate future. The rationale for this approach is provided by 
the observation that patterns in the system’s behavior in the relatively recent past are also 
likely to occur in the nearby future. Therefore, the findings of the PL method, which, in 
essence, concerns only the past of the system, can also be informative about its near 
future. Note that the requirement for this line of thinking to be valid is just that the nature 
of the system itself or its external forcing do not change too rapidly over time. This is 
considerably weaker requirement than stationarity of the system usually assumed by the 
formal statistical modeling methods13. 

It is also important to note that the PL method is data-driven (i.e., is based only on the 
sample of historical observations) which implies also that it adopts a conservative view 

                                                 
11 Understood as a system’s memory—a typical period within which the system does not undergo a 
significant change of its dynamics (e.g., average time horizon within which system exhibits linear dynamics 
with constant slope).  
12 For example, if a system has undergone sudden and unexpected changes of its dynamics in the past it has 
a low “inertia”. In this case any long term prediction of the future system’s behaviour is not very credible. 
13 Some sort of stationarity is required by statistical models applied for making predictions of the future 
system’s behaviour. That way they avoid the question of the credibility of such predictions—their 
uncertainty may be growing in time but, due to stationarity, the dynamics of the system does not change in 
any limited time horizon. In contrast, the PL method aims to identify the time horizon within which the 
system’s behaviour is sufficiently well described—thus assumptions are significantly weaker. Cf. Table 2 
for further discussion.    



 6 

of the system. Namely, it cannot anticipate systemic surprises and behaviors which had 
not occurred in the period over which the sample of historical observations was collected. 

2.1.  Generic notion of the explainable outreach of the data 
The core idea of the PL approach is to deduce directly from the data their explainable 
outreach (EO), that is, the spatial and temporal extent beyond which using knowledge 
about its past can no longer explain the system’s behavior. The EO is characterized by 
four key attributes: (i) the time it begins; (ii) the diagnostic uncertainty of the state 
variable describing the system in this initial moment (defining the initial opening of EO); 
(iii) the increase of prognostic uncertainty in time; and (iv) the temporal extent 
(quantifying the time in the future beyond which the system’s behavior can no longer be 
shown to be in accordance with its past behavior).  

Explainable outreach can be seen as a region in cartesian product space of time and the 
domain to which the values of the observations belong (e.g., real numbers). The shape of 
this region is determined by our understanding of the system (for example, the form of 
trend function used to describe system’s dynamics). Its spatial boundaries are given by 
uncertainties related to the projection of our understanding of the system into the future 
(e.g., prediction bands14 centered on an extrapolated trend), while its temporal extent is 
characterized by the time this projection starts and the time horizon within which the 
uncertainty region covers the trajectory of the system. 

Obviously, different hypotheses about the type of trend the system follows will result in 
different EOs. Some of them may be very long and wide (if the system’s behavior is 
described robustly but very imprecisely) or short and narrow (if our understanding of the 
system is quite precise but only locally correct). A long and narrow EO is most preferable.  

Comparison of different EOs derived for the same sample may be facilitated by a score 
assigning a numeric value to the combination of EO attributes (i) – (iv). For example, one 
could use the following 

Score of EO =  
Length of temporal extent of EO

Width of EO at its end
 

This score increases as the length of EO increases or its width decreases. An EO with a 
higher score is preferable. 

2.2. Prognostic learning procedure 
Note that an EO as defined above expresses our expectations about the consequent 
system’s behavior from a certain fixed moment in time. Because of data variability and 
possible imprecision in our understanding of the system, an EO starting at another time 
may have a different shape and length. Therefore, to gain some understanding of a 

                                                 
14 For each moment in time, prediction bands give the range which is expected to contain, with predefined 
probability (called confidence level), an observation taken at that time. In contrast, confidence bands give 
a range which we expect to cover the true value of an observation. In this report we prefer to use prediction 
bands since we want to test our understanding of the system with individual data points. 
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system’s behavior it is insufficient to look at just one EO. One should rather derive this 
understanding from a sequence of consecutive EOs resulting from a learning procedure.  

Below we provide a generic procedure of learning in a controlled prognostic context given 
the learning sample X0, … , XT of observations of the analyzed system collected over the 
period [0, T]:  

1. Choose a suitable set of hypotheses (e.g., a family of regression functions) about 
the rules governing system behavior and the minimal number 𝑘𝑘 of data points 
required to select the one which represents the system best.  

2. Choose the initial length 𝜏𝜏 =  𝑘𝑘 of the subsample X0, … , Xτ , which we call the 
learning block (LB). 

3. Choose the hypothesis which reflects the system’s behavior best in the LB 
X0, … , Xτ  (e.g., estimate parameters of the regression function) and quantify its 
uncertainty (e.g., with use of prediction bands). 

4. Find the EO starting point 𝜏𝜏. To determine the shape of the EO calculate the 
uncertainty region 𝑅𝑅 ⊂  [τ,∞)  × ℝ spanned by the prediction of future system 
behavior based on the hypothesis chosen in in point 3 and its uncertainty. To 
determine the length of the EO project the remainder of the data Xτ+1, … , XT, 
which we call the testing block (TB), onto region 𝑅𝑅 and find the largest 𝐻𝐻 such 
that15 

∀ 𝜏𝜏 <  𝑡𝑡 ≤  𝜏𝜏 + 𝐻𝐻  (𝑡𝑡,𝑋𝑋𝑡𝑡)  ∈ 𝑅𝑅 

If 𝐻𝐻 < 𝑇𝑇 − 𝜏𝜏 then the length of the EO starting point 𝜏𝜏 is set to 𝐻𝐻; otherwise it is 
set to ∞. 

5. If 𝜏𝜏 < 𝑇𝑇 then set 𝜏𝜏 = 𝜏𝜏 + 1 and go to step 3; otherwise end the procedure. 
The above procedure explains the meaning of the name “learning in a controlled 
prognostic context”: we learn about the patterns of the past system behavior (step 3) and 
then test this knowledge by applying it in a prognostic mode in the controlled context of 
the remainder of the data sample (step 4). 

Assessment of the temporal extent of the EO, 𝐻𝐻, from step 4 of the learning procedure 
requires a discussion. It is either finite (no longer than the historical sample itself) or set 
to infinity. In the first case, the finite time horizon of the EO indicates limits within which 
we can predict a system’s evolution sufficiently well after time 𝜏𝜏 by means of the method 
selected in step 1 to understand the system’s dynamics in the LB. In other words, it 
indicates the limits to credibility of predictions of the system’s behavior after time 𝜏𝜏, 
based on our understanding of the system’s dynamics given the knowledge carried by the 
LB X0, … , Xτ. On the other hand, an infinite time horizon indicates that we are unable to 
falsify this understanding of the system’s behavior with the TB Xτ+1, … , XT (i.e., we have 
no grounds to reject our hypothesis about the system’s nature). There are two possible 
reasons for such a situation: either our understanding of the system is exceptionally good 

                                                 
15 If the hypothesis about the system’s behaviour is formulated in terms of a regression model, the 
requirement that all points between time 𝜏𝜏 and 𝜏𝜏 + 𝐻𝐻 belong to 𝑅𝑅 may be relaxed—only a sufficient portion 
of these points need fall into 𝑅𝑅. 
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or the TB is too short to provide evidence against it16. This indicates an important 
constraint of the PL approach (indeed, of any data-driven method), namely that data 
resources (the length of sample of historical observations) set limits to the level of detail17 
with which we wish to describe analyzed system. 

2.3. Applying the prognostic learning procedure and interpretation of 
its results 

Learning in a controlled prognostic context is essentially a model-independent paradigm 
of exploratory data analysis. By this we mean that it does not presuppose any particular 
model which reflects our a priori knowledge18 or belief about the analyzed system, and 
which may be calibrated on the sample of historical observations and then used for 
making predictions. On the contrary, the PL approach is purely data-driven: we explore 
a sufficiently broad family of alternative methods of describing the system’s behavior 
(e.g., different types of regressions) by running a PL procedure (cf. section 2.2) for each 
of them and then selecting the one which yields the best EOs. 

After completing this task, we obtain a sequence of EOs indexed by their starting 
points 𝜏𝜏 = 𝑘𝑘,𝑘𝑘 + 1, … ,𝑇𝑇. Technically, this will tell us how credible our predictions based 
on partial knowledge about the system19 were over the time interval [0,𝑇𝑇]. In particular, 
it provides no confirmed (tested) information about the EO starting at time 𝑇𝑇, which 
expresses our expectations about the immediate future of the system. This cannot be done 
formally without additional and restrictive assumptions (e.g., stationarity of the system), 
however, such an exercise still may be informative. If the behavior of the EOs over the 
period [0,𝑇𝑇] was regular enough (i.e., EOs have comparable scores, implying similar 
lengths and widths) and the last 𝜏𝜏 for which EO has finite length is sufficiently close to 𝑇𝑇 
we may attempt to extrapolate the characteristics of (tested) EOs to formulate 
expectations about likely shape and temporal extent of the (untested) EO starting at time 
𝑇𝑇. 
In principle, the results of the PL method give us insight into system’s “inertia”. Such 
information may be useful for decision makers trying to influence future behavior of the 
system (e.g., mitigate global warming by implementing certain policies). First, it indicates 
likely directions of future system evolution under “business as usual” conditions20 which 
is useful reference point for policy making. Second, it indicates the time horizon within 
which we may have some confidence in quality of predictions based on our understanding 

                                                 
16 Falsifying a good hypothesis may require a very long testing sample. In the extreme (but very unlikely) 
case, when we perfectly understand our system (i.e., know the process generating data—both in the past 
and in future) we wouldn’t be able to falsify it with use of any test sample of finite length. 
17 Understood as the complexity of the hypothesis about the system’s dynamics. 
18 Additional knowledge (e.g., about a particular type of dynamics the system follows) obtained beforehand 
from some other source than the learning sample X0, … , XT . 
19 That is, knowledge carried by learning blocks X0, … , Xτ, 𝜏𝜏 <  𝑇𝑇. 
20 That is, in a situation where the current dynamics of the process and external forcing / policies / measures 
will not change. 
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of the system. Third, it indicates the strength of the measures needed to overcome the 
system’s inertia and to shift its future evolution towards the desirable path21. 

PL methodology may also be applied to assess scenarios produced by a particular model 
of the system of interest. If a scenario falls out of the EO before its end, it means that the 
model predicts a change in the system’s dynamics (with respect to its past behavior). If 
so, then modeler should explain the reason for that, for example, what significant changes 
the system is expected to undergo under that scenario. If the future trajectory under the 
“business as usual” scenario falls outside the EO it may indicate an inadequacy of the 
model to describe the system of interest. 

Figure 2. Two modes of applying the learning in a controlled prognostic context paradigm. In 
exploratory data analysis mode the selection of the best method to represent system’s behavior and construct 
EO is purely data driven without use of any a priori knowledge. EO indicates the inertia of the system and 
the uncertainty and time horizon of our understanding of the system. In model assessment mode a model-
specific form of a trend function is fed into the PL procedure in order to assess model’s ability to accurately 
describe the system and to quantify limits to its predictions (this mode is not considered in this report).  
We also speculate that a modification of the PL method may be applied to assess a 
particular model and its projections even more directly. If it is possible to express the 
model prediction as a function of time (of a certain form, and dependent on initial 
conditions and values of exogenous parameters) and calculate a region spanned by the 
projection and its uncertainty, one can use this function directly in the prognostic learning 
procedure (see section 2.2). Resulting EOs could then indicate the time horizon within 
which the model is sufficiently adequate to describe the system’s evolution. However, 
this generic approach would require a model-specific implementation of the PL procedure 
to be designed. This modification of PL approach has not yet been tested and will not be 
covered in this report. 

                                                 
21 If the system’s trajectory under a scenario corresponding to introduction of a certain policy stays within 
the EO it indicates that the effectiveness of such a policy remains uncertain within the time horizon of this 
EO.  
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2.4. Prognostic learning versus forecasting with use of time series 
analysis 

The PL approach discussed in this report examines time series data. It is, however, quite 
different from the commonly used time series analysis (TSA) methodology. PL trades 
only approximate understanding of the behavior of the data itself for ability to indicate 
the limits to this understanding and generality of the method. TSA, on the other hand, 
strives for complete understanding of the data generating process and applies this 
knowledge for making predictions. This approach however does not allow for specifying 
the limits for predictions22. 

Typically, TSA is based on decomposition of the time series into a deterministic 
component (functional trend, seasonal component, oscillations) and a stochastic part. The 
deterministic part can be estimated from the data with use of a broad range of various 
techniques (such as regressions, curve fitting, smoothing methods, wavelet analysis, etc.) 
The overarching goal is to estimate the deterministic part so that it fits the data as closely 
as possible; its extrapolation properties are a lower priority concern. The nature of the 
stochastic part is inferred from the behavior of residuals (i.e., the part remaining after 
removing the estimated deterministic component from the data). This is usually done by 
fitting a suitable time series model (such as ARIMA or GARCH). 

Obviously, the estimate of the deterministic component of the time series significantly 
influences the behavior of residuals and thus the statistical model of the stochastic part. 
As the latter may be quite complex and difficult to estimate (e.g., due to scarcity of the 
data resources with respect to the number of parameters in the model), the problem of 
estimation of the deterministic component is somewhat subordinate to the analysis of 
residuals. The estimate of the deterministic part is expected to produce residuals for which 
the statistical model is as simple as possible. The literature of the subject puts much more 
emphasis on the statistical models of the residuals, typically assuming that the 
deterministic component of analyzed time series has already been removed with use of 
some suitable technique (e.g., Brockwell & Davis 2002). 

Once the time series is described in terms of deterministic function of time and statistical 
model of residuals one may use this knowledge for making forecasts. In order to do so, 
the deterministic trend is extrapolated and the behavior of the stochastic part (i.e., the 
residuals) is either determined theoretically (e.g., prediction bands obtained under 
stationarity assumptions) or simulated (using the statistical model of residuals). However, 
such forecasts should be considered with caution. Technical problems may arise due to 
an incorrect structure of the model of stochastic part and/or bad extrapolation properties 
of the function describing the deterministic component (such as instability due to 
uncertainty in estimated values of function parameters). Some techniques of describing 
the deterministic part, such as smoothing splines, even rule out the possibility of 
extrapolation. Moreover, when making forecasts the description of the analyzed time 
series (i.e. the deterministic function plus statistical model of residuals) are treated as the 
true process generating data which will never change. As a result, indicator of a time 
horizon within which the predictions are credible cannot be derived from TSA 
methodology. 

                                                 
22 In fact, TSA approach does not even recognise it as a problem. If our understanding of the system is 
complete then we are able to predict its behaviour in any time horizon. 
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We conclude this section with Table 1 summarizing differences between PL method and 
TSA.  

 

 

 

Table 1. Prognostic learning versus time series analysis. 
 

Learning in a controlled 
prognostic context 

Time series analysis 

Deterministic 
component Stochastic component 

Approach 

Data-driven exploratory 
analysis. Emphasis on 
striking a balance between 
approximate understanding 
of the system and ability to 
indicate the limits to this 
understanding. 

Inferring the data-generating process. Emphasis on 
the statistical model of the stochastic component, 
while the estimate of the deterministic component is 
to yield desired statistical properties of the residuals. 

Assumptions 

No systemic surprises 
(behaviors unobserved in 
the past will not happen in 
the future).  

Particular form of trend 
function. 

Particular form of the 
dependence structure / 
model of residuals. 
Usually also normality 
and weak stationarity of 
residuals is required. 

Principle 

Optimization of the EO. 
Selecting the type of trend 
generating the longest and 
narrowest EO.  

Fitting a function 
minimizing in-sample 
error. 

Estimation from the 
data values of the 
model parameters that 
minimize expected 
forecast error.   

Measure of 
performance 

Score of the explainable 
outreach 

Typically sum of 
squared errors or mean 
squared error 

Typically expected 
mean squared error 

Predictions 

Data-driven model 
describes the system only 
approximately correctly 
and uncertainty of 
predictions inevitably 
grows in time. The method 
does not strive for perfect 
predictions. It aims to 
understand their limits. 

Within the range of the 
observed sample the 
fitted function is 
interpreted as expected 
value of observations. 
Extrapolation of the 
fitted function beyond 
the range of sample may 
be interpreted in the 
same way but there is no 
possibility for 
controlling the error of 
predictions with use of 
such extrapolation. 

Future behavior of the 
stochastic component 
(typically expressed in 
form of prediction or 
confidence bands) is 
derived from the 
statistical model of 
residuals either 
theoretically (usually 
under assumption of 
stationarity) or by means 
of simulations utilizing 
model structure. 

Time horizon 
within which 
forecasts are 
supposed to be 
reliable 

Expected length of the EO 
based on the assessment of 
the results of the prognostic 
learning procedure. 

Unknown. Fitted model of the time series (i.e., 
estimated deterministic component and statistical 
model of the stochastic part) is treated as the true 
data generating process and as such universally 
correct. 



 12 

Sources of 
uncertainty 

(1) Diagnostic uncertainty 
(measurements errors) 
reflected by initial opening 
of the EO; and (2) 
prognostic uncertainty 
which grows into the future 
reflected by the shape of the 
EO  

(1) Uncertainty in the 
form of the function 
describing deterministic 
component; and (2) 
uncertainty in the 
parameter estimates. 

(1) Uncertainty in 
estimate of deterministic 
component defining 
residuals; (2) uncertainty 
of structure of model of 
residuals; and (3) 
uncertainty of estimates 
of model parameters. 

3. Regression – based construction of the explainable outreach  
In this chapter we propose a practical method of implementing the generic paradigm of 
learning in a controlled prognostic context presented in Chapter 2. Making this generic 
notion operational requires us to address the following problems: 

1. Understanding the behavior of the data from the LB and quantifying the diagnostic 
uncertainty in order to specify the direction and initial width of the EO.  

2. Defining the shape of the EO (i.e., its spatial boundaries). 

3. Determining the length of the EO by testing it against the data from the TB.  

Below, we propose a solution to these questions which is based on the regression 
techniques. 

Ad 1. The trend in the data is identified by means of a regression function fitted to the 
points from the LB. For each moment 𝑡𝑡 belonging to the LB, the value of regression 
function at that moment is interpreted as the expected value of the observation taken at 
time 𝑡𝑡. The extrapolation of the regression function defines the main axis around which 
the EO is constructed. The diagnostic uncertainty is expressed as the standard deviation 
of residuals (i.e., differences between the regression function and the actual observations) 
and defines the initial width of the EO.  

Ad 2. The shape of the EO (i.e., its upper and lower band) is given by extrapolation of 
the prediction bands calculated for the regression model fitted to the LB. 

Ad 3. Given the shape of the EO, its length is determined by projecting the remainder of 
the learning sample (i.e., the TB) onto it. The moment the EO ends is defined as the 
earliest moment for which the position of the testing points with respect to the EO starts 
to be very unlikely if the regression model fitted over the LB is correct and true also 
beyond its range. 

The details of the proposed solution depend on the specific regression technique to be 
applied. In the remainder of this section we give these details for the PL procedure based 
on polynomial regression. In Appendix B we present an alternative PL procedure based 
on a local linear regression method.  

3.1. Analysis of historical patterns in learning phase with use of 
polynomial regression 

Polynomial regression is a widely used parametric technique of data analysis. Its 
popularity comes from the fact that it is a relatively simple and straightforward 
generalization of the classic linear regression method, as well as from the flexibility of 
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the family of polynomial regression functions23. It is also a popular technique for 
estimating the deterministic part of a time series (Brockwell & Davies 2002). 

In order to approximate the historical trend in the LB we use a model of polynomial 
regression of order 𝑝𝑝 

𝑥𝑥(𝑡𝑡) = 𝛼𝛼0 + 𝛼𝛼1𝑡𝑡 + 𝛼𝛼2𝑡𝑡2 + ⋯+  𝛼𝛼𝑝𝑝𝑡𝑡𝑝𝑝 +  𝜀𝜀𝑡𝑡 

where 𝑥𝑥(𝑡𝑡)  =  𝑋𝑋𝑡𝑡 is a value of the observation taken at time 𝑡𝑡 and the noise term 𝜀𝜀𝑡𝑡 is 
normally distributed with zero mean and standard deviation 𝜎𝜎. Moreover, we assume that 
𝜀𝜀𝑡𝑡, 𝑡𝑡 =  0, 1, 2, …, are independent and identically distributed.  

Let the LB contain 𝑛𝑛 observations taken in times 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. We estimate the parameters of 
the regression function 

𝑥𝑥�(𝑡𝑡) = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 +  𝑎𝑎2𝑡𝑡2 + ⋯+  𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝 

with use of the ordinary least squares (OLS) method (Wolberg 2006: chapt. 2). The 
uncertainty of the fitted regression function at time 𝑡𝑡 is then given by formula 

𝑠𝑠𝑥𝑥(𝑡𝑡) =  �
∑ (𝑥𝑥�(𝑡𝑡𝑖𝑖) − 𝑥𝑥(𝑡𝑡𝑖𝑖))2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − (𝑝𝑝 + 1)

 ��𝑡𝑡𝑗𝑗+𝑘𝑘−2[𝐶𝐶−1]𝑗𝑗,𝑘𝑘

𝑝𝑝+1

𝑘𝑘=1

𝑝𝑝+1

𝑗𝑗=1

 

where [𝐶𝐶−1]𝑗𝑗,𝑘𝑘 is the entry at the cross-section of the j-th row and k-th column in the 
inverse of matrix 

𝐶𝐶 =  ��𝑡𝑡𝑖𝑖𝑗𝑗+𝑘𝑘−2
𝑛𝑛

𝑖𝑖=1

�
𝑗𝑗=1,…,𝑝𝑝+1
𝑘𝑘=1,…,𝑝𝑝+1

 

The diagnostic uncertainty over the LB is assumed to be constant and is estimated as a 
standard deviation of the model residuals 

𝑠𝑠𝑟𝑟 = � 
∑ (𝑥𝑥�(𝑡𝑡𝑖𝑖) − 𝑥𝑥(𝑡𝑡𝑖𝑖))2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − (𝑝𝑝 + 1)

 

Upper and lower prediction bands at the confidence level (1 − 𝛼𝛼) for the observations 
taken at time t are then given by the formulas 

𝑓𝑓𝑢𝑢𝑝𝑝(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡) +  t𝑛𝑛−(𝑝𝑝+1),1− 𝛼𝛼/2�𝑠𝑠𝑥𝑥(𝑡𝑡)2 +  𝑠𝑠𝑟𝑟2  

and 

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡) −  t𝑛𝑛−(𝑝𝑝+1),1− 𝛼𝛼/2�𝑠𝑠𝑥𝑥(𝑡𝑡)2 +  𝑠𝑠𝑟𝑟2 

respectively, where  t𝑛𝑛−(𝑝𝑝+1),1− 𝛼𝛼/2 is (1 − 𝛼𝛼/2) quantile of the t-Student distribution 
with 𝑛𝑛 – (𝑝𝑝 +  1) degrees of freedom. Note that parameter 𝛼𝛼 regulates the width of the 
prediction bands (the lower the 𝛼𝛼 the wider the prediction bands). Observe also that 

                                                 
23 Indeed, any continuous trend in the data can be locally approximated with arbitrary precision by a 
polynomial of sufficiently high order. 
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distance between prediction bands, that is, 𝑓𝑓𝑢𝑢𝑝𝑝(𝑡𝑡) −  𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡), increase with 𝑝𝑝-th power of 
𝑡𝑡. 

3.2. Construction of the explainable outreach  
The EO starts at time 𝜏𝜏 =  𝑡𝑡𝑛𝑛, that is, the moment in which the last observation of the LB 
was taken. The EO is built around the extrapolated polynomial trend that was fitted to the 
data in the LB, that is around 𝑥𝑥�(𝑡𝑡), 𝑡𝑡 ≥ 𝜏𝜏. Its initial width is defined as 𝑓𝑓𝑢𝑢𝑝𝑝(𝜏𝜏) −  𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏) 
and is determined by the diagnostic uncertainty 𝑠𝑠𝑟𝑟. The shape of the EO (i.e., its upper 
and lower band) are given by functions 𝑓𝑓𝑢𝑢𝑝𝑝(𝑡𝑡) and 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) for 𝑡𝑡 > 𝜏𝜏, that is, the prediction 
bands for the regression model extrapolated beyond the LB. 

Note that in order to define the initial width and the shape of the EO, only the information 
about the system’s behavior in the LB is needed. However, to determine its temporal 
extent (time horizon) additional knowledge carried by the remainder of the learning 
sample (TB) is required. This remaining subsample is used to determine until when our 
expectations about the future system’s evolution after time 𝜏𝜏 represented by the EO (based 
only on the knowledge contained by the LB) are in accordance with the actual evolution 
of the system after that time.  

To explain how we determine the moment at which the EO ceases to be in accordance 
with the actual system’s evolution, let us assume that we know the evolution of the 
analyzed process only up to the moment 𝜏𝜏 and the m remaining points in the TB (𝑡𝑡1,𝑋𝑋1), 
…, (𝑡𝑡𝑚𝑚,𝑋𝑋𝑚𝑚), 𝑡𝑡1 = 𝜏𝜏, 𝑡𝑡𝑚𝑚 = 𝑇𝑇, are unknown. In addition, let us define an auxiliary 
sequence of random variables 

𝐸𝐸𝑘𝑘 =  �
0 if 𝑋𝑋𝑘𝑘  ∉  �𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑘𝑘),𝑓𝑓𝑢𝑢𝑝𝑝(𝑡𝑡𝑘𝑘)�
1 if 𝑋𝑋𝑘𝑘  ∈  �𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑘𝑘),𝑓𝑓𝑢𝑢𝑝𝑝(𝑡𝑡𝑘𝑘)�

 

where (𝑡𝑡1,𝑋𝑋1), …, (𝑡𝑡𝑚𝑚,𝑋𝑋𝑚𝑚) are the yet unknown points from the TB.  
Now observe that if the regression model fitted to the LB correctly describes the evolution 
of the analyzed process then the points from the TB should also follow this model. If that 
is so, then by definition of the prediction bands at the confidence level (1 − 𝛼𝛼) the 
probability that the future observation taken at time 𝑡𝑡 ≥ 𝜏𝜏 will fall into interval 
[𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡),𝑓𝑓𝑢𝑢𝑝𝑝(𝑡𝑡)] is equal to (1 − 𝛼𝛼). Thus 𝐸𝐸𝑘𝑘 = 1 with probability (1 − 𝛼𝛼) and 𝐸𝐸𝑘𝑘 = 0 
with probability 𝛼𝛼. In other words, all 𝐸𝐸𝑘𝑘,𝑘𝑘 = 1, … ,𝑚𝑚 follows the Bernoulli distribution 
with parameter (1 − 𝛼𝛼)24. Moreover, if the regression model fitted to the LB is also 
correct for the observations in TB, then these observations are independent. Therefore, 
all 𝐸𝐸𝑘𝑘,𝑘𝑘 = 1, … ,𝑚𝑚 are not only identically distributed but also mutually independent. As 
a consequence, for each 𝑘𝑘 = 1, … ,𝑚𝑚, a random variable  

𝑆𝑆𝑘𝑘 =  �𝐸𝐸𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

                                                 
24 Random variable 𝑋𝑋 follows the Bernoulli distribution with parameter 𝑝𝑝 if 𝑃𝑃(𝑋𝑋 = 1) = 𝑝𝑝 = 1 − 𝑃𝑃(𝑋𝑋 =
0). Random variable 𝑋𝑋 is the outcome of a so called Bernoulli trial, i.e. a random experiment with only two 
possible results: success (coded as 1) which occurs with probability 𝑝𝑝 or failure (coded as 0) which happens 
with probability (1 − 𝑝𝑝).  
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has a binomial distribution 𝐵𝐵(𝑘𝑘, (1 −  𝛼𝛼))25. 𝑆𝑆𝑘𝑘 may be interpreted as the number of 
points among the first 𝑘𝑘 points of the TB which falls into the prediction bands. 
In order to determine the length of the EO we confront our expectations about the 
distribution of future observations (based on fitted regression model) with the actual 
observations from the TB, denoted by (𝑡𝑡1, 𝑥𝑥1), …, (𝑡𝑡𝑚𝑚, 𝑥𝑥𝑚𝑚). Let 𝑒𝑒1, … , 𝑒𝑒𝑚𝑚 be the actual 
values of the random variables 𝐸𝐸1, … ,𝐸𝐸𝑚𝑚 and let for each 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚  

𝑠𝑠𝑘𝑘 =  �𝑒𝑒𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

be the actual number of points among the first 𝑘𝑘 points of the TB which fall into the 
prediction bands. Recall that if our regression model is true, 𝑠𝑠𝑘𝑘 should follow the binomial 
distribution 𝐵𝐵(𝑘𝑘, (1 −  𝛼𝛼)). This key observation allows us to find the temporal extent of 
the EO. We set the end of the EO to be the first moment, 𝑡𝑡𝑘𝑘, for which an actual value of 
𝑠𝑠𝑘𝑘 is an unlikely outcome given our understanding of the past of the process (represented 
by the fitted regression model). The observed value 𝑠𝑠𝑘𝑘 is considered unlikely if the joint 
probability of all outcomes for which from the first 𝑘𝑘 points of the TB at most 𝑠𝑠𝑘𝑘 of them 
fall into the prediction bands is less than some suitably selected low threshold 𝑝𝑝0. For the 
sake of consistency, we use 𝑝𝑝0 =  𝛼𝛼.  
To summarize the above argument we present the algorithm for finding the length of the 
EO: 

1. Select threshold 𝑝𝑝0 (e.g., equal to 𝛼𝛼) and set 𝑘𝑘 = 1. 

2. Calculate 𝑠𝑠𝑘𝑘 (i.e., the number of points among the first 𝑘𝑘 points of the TB which 
fall into the prediction bands). 

3. Let 𝐹𝐹𝑘𝑘,(1− 𝛼𝛼) be the cumulative distribution function of the binomial distribution             
𝐵𝐵(𝑘𝑘, (1 −  𝛼𝛼)). If 𝐹𝐹𝑘𝑘,(1− 𝛼𝛼)(𝑠𝑠𝑘𝑘) <  𝑝𝑝0 then we set the end of the EO to the moment 
𝑡𝑡𝑘𝑘−1, its length 𝐻𝐻 to 𝑘𝑘 − 1 and we stop the algorithm.  

4. If 𝑘𝑘 = 𝑚𝑚 (i.e., TB is exhausted) then we cannot determine the end point of the 
EO. We stop the algorithm and set EO length 𝐻𝐻 to ∞. 

5. Set 𝑘𝑘 =  𝑘𝑘 + 1 and go to point 2. 

3.3. Procedure of prognostic learning based on regression method 
Below we provide the procedure for PL based on the regression techniques presented 
above. It is a method-specific version of the generic PL procedure formulated in Section 
2.2. 

1. Choose the regression technique (e.g., polynomial regression of certain order) 
which will be used to understand the data behavior in the LB. 

2. Choose the initial length 𝑘𝑘 of the LB X0, … , X𝜏𝜏, 𝜏𝜏 = 𝑘𝑘. (Note that 𝑘𝑘 should be 
large enough with respect to the complexity of selected type of regression function 

                                                 
25 Binomial distribution 𝐵𝐵(𝑛𝑛, 𝑝𝑝) is a distribution of a number of successes in the 𝑛𝑛 independent Bernoulli 
trials with probability of success 𝑝𝑝. 



 16 

in order to ensure good estimates of the trend function parameters and to prevent 
overfitting26.) 

3. Fit the regression model to the LB X𝜏𝜏−𝑘𝑘, … , X𝜏𝜏. 

4. Construct the EO starting at time 𝜏𝜏 following the guidelines presented in Section 
3.2 and determine its length 𝐻𝐻. 

5. If 𝜏𝜏 < 𝑇𝑇 set 𝜏𝜏 = 𝜏𝜏 + 1 and go to step 3. If not, end the procedure. 

Note that in step 3 we ignore a part of the LB X0, … , X𝜏𝜏 discarding all but last 𝑘𝑘 points. In 
effect, at each stage of the learning procedure we fit a regression model to the data points 
falling into a window of fixed length 𝑘𝑘, which we move along the learning sample in the 
course of the learning procedure. We call this version of PL method “rolling window”. 
Using a window of fixed length is advantageous in two ways. First, it allows for easier 
comparison of EOs at different stages of the PL procedure, since the width of each EO is 
determined not only by the uncertainty of the regression model but also by the number of 
points used for fitting the model. If this number is fixed, the width of the EO depends 
only on appropriateness of regression model to grasp the data behavior in corresponding 
LBs. Second, using only 𝑘𝑘 last points from each LB makes the method more responsive 
to the local behaviour of the data, acknowledging that the recent data points are more 
relevant to the direction of the EO than the points from the beginning of the learning 
sample. Throughout this report the “rolling window” learning procedure will be used27. 

We conclude this chapter by emphasizing that the formulas for the estimates of diagnostic 
and prognostic uncertainty as well as for the prediction bands defining the shape of the 
EO given in Section 3.1 are applicable exclusively to polynomial regression. However, 
the method of constructing the EO described in Section 3.2, and prognostic learning 
procedure given in Section 3.3, are readily applicable to any type of regression method 
for which the prediction bands can be calculated and extrapolated beyond the range of the 
LB. (Note, however, that the assumption of independence of residuals of the fitted 
regression model must be satisfied). For example, these sections are immediately 
applicable to the prognostic learning procedure based on non-parametric regression (as 
demonstrated in the appendix).  

4. Assessment of prognostic learning performance in the 
controlled conditions: Monte Carlo experiments 

Before we apply the PL procedure based on polynomial regression (described in the 
previous chapter) to real-life data we first test its performance under controlled 

                                                 
26 That is, a situation in which the flexible trend function is not sufficiently constrained by the short sample 
of data points and too closely mimics the random layout of the data points. Overfitting has strong negative 
impact on the quality of model predictions.  
27 Another version of the PL method which makes use of the whole learning block at each stage and is as 
easy to implement as the “rolling window” procedure (in step 3 of the procedure one only needs to fit a 
model to all points X0, … , X𝜏𝜏 instead of the last 𝑘𝑘 ones). We call this version “expanding”. It is useful when 
we want to check whether the selected regression model is able to correctly describe the system’s dynamics 
over the whole period covered by the learning sample. This method is also used in the appendix where we 
employ nonparametric regression techniques to describe the behaviour of the data in the learning block. As 
these methods use only local information (i.e., regression curve is determined only by the nearby points, 
not the whole sample) the effect of increasing length of LBs on the EO (especially in its width) is negligible.  
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conditions, that is, we conduct Monte Carlo experiments by repetitively running the PL 
method on synthetic datasets.  

Having full knowledge about the true trend in the synthetic data and control over the 
strength of noise disturbing that trend allows us to clearly identify the strengths and 
weaknesses of the PL method and the reasons for them. This enables us to draw useful 
conclusions and to formulate guidelines for applying the PL method in analysis of the 
real-life data.  

By choosing to work with synthetic data we overcome a problem of data scarcity, which 
often occurs when working with real-life data. A real data sample is often too short to 
support the application of a PL method of higher order28, whereas a synthetic data sample 
may be of any desired length. In addition, we can always afford to have an extra sample 
used exclusively for testing our expectations about the length of the EO. Moreover, we 
can generate multiple independent data samples following the same fixed deterministic 
trend and compare the performance of the PL method applied to each of them. This allows 
us to study the stability of the method. In addition, we can repeatedly compare the 
predicted and actual lengths of the EO starting at the end of the learning sample in order 
to test the extent to which we can use the insight given by the PL method about the 
dynamics of the observed system to inform us about its immediate future. 

In the present chapter we describe the method which we use to generate synthetic data 
samples used for testing the PL method in controlled conditions, the purpose and setup of 
performed numerical experiments, and their results. We conclude this chapter with some 
general observations and guidelines of applying the prognostic learning procedure based 
on the polynomial regression. 

4.1. Method of generating the synthetic data 
The synthetic data samples are generated in the following way:  

1. We choose the length of the sample 𝑁𝑁. For simplicity we assume that 𝑡𝑡𝑘𝑘 = 𝑘𝑘, 1 ≤
𝑘𝑘 ≤ 𝑁𝑁, where 𝑡𝑡𝑘𝑘 denote the times for which synthetic observations are generated. 

2. We choose a suitable trend function 𝑓𝑓 which synthetic data will follow. 

3. We choose the strength of the noise with which we disturb the true trend 𝑓𝑓. This 
strength is defined by the standard deviation 𝜎𝜎 of the noise, which we express as 
a percentage of the width of range of the trend function values29, for example, 𝜎𝜎 =
0.01 × � max

1≤𝑘𝑘≤𝑁𝑁
𝑓𝑓(𝑡𝑡𝑘𝑘) −  min

1≤𝑘𝑘≤𝑁𝑁
𝑓𝑓(𝑡𝑡𝑘𝑘)�. 

4. We generate a synthetic sample (𝑡𝑡𝑘𝑘, 𝑥𝑥𝑘𝑘), 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁, by setting 𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑡𝑡𝑘𝑘) +  𝜀𝜀𝑘𝑘, 
where 𝜀𝜀1, … , 𝜀𝜀𝑁𝑁 is a sequence of independent random variables following normal 
distribution of zero mean and standard deviation 𝜎𝜎. 

                                                 
28 Learning block required for good estimation of parameters of higher order polynomial trend may be of 
comparable length as the whole learning sample leaving too few points for meaningful testing of the 
explainable outreach  
29 Expressing the strength of noise in relation to the range of the true trend function instead of in absolute 
terms allows us for easy comparison of different types of synthetic data samples.   
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In Section 4.3 we present results of running the PL method on five different synthetic 
datasets. Two of them follow polynomial trends which belong to the family of regression 
functions used in the employed regression method. These are: the linear trend and the 4th 
order polynomial trend. They were selected in order to test the performance of the PL 
method on trends of low (linear) and high (4th order polynomial) complexity in nearly 
ideal conditions30, where polynomial regression may give an unbiased31 model fit.  

The remaining three synthetic datasets do not follow trends of the polynomial type, thus 
allowing us to test the performance of the PL method in situations where the employed 
regression technique is not able to reproduce the true trend in the data (i.e., it provides 
only a biased estimate of the true trend). Moreover, they are intended to mimic the types 
of behavior often encountered in the real-life data. The considered synthetic samples 
follow: an exponential trend (an increasing trend whose rate of increase accelerates), a 
logarithmic trend (increasing but with decreasing slope) and a sinusoidal trend with long 
period of oscillations, comparable with the length of the sample (to mimic a situation 
when apparent local trends in the historical data are in fact results of slow, long-term 
oscillations).   

Before we present the actual results of applying the PL method on the abovementioned 
synthetic data samples, in the following section we describe the setup and details of 
performed experiments. 

4.2. Description of experiments on synthetic data 
The numerical experiments we perform for each of the abovementioned types of synthetic 
data involve multiple Monte Carlo runs of the “rolling window” variant of the polynomial 
regression based PL procedure. Each of the experiments corresponds to a fixed 
combination of value of order of the method (i.e., the degree of polynomial used in the 
regression model), level of noise, and length of the LB.  

Objectives of these experiments are two-fold. First, we want to identify situations (i.e., 
patterns in the local behavior of the data forming the LB and the strength of the noise) in 
which the proposed method of prognostic learning presents its strengths or performs 
poorly. Second, we investigate the influence of the order of the PL method, the strength 
of the noise, and the length of the LB on the performance of the PL method.  

In addition to realizing these objectives, we explore the reliability of predictions of future 
EO lengths both in-sample (i.e., using the actual EO lengths32 in stages up to the present 
one in order to predict the EO length in the next stage of the PL procedure) as well as out-
of-sample (i.e., using EO lengths calculated for all stages of the PL procedure in order to 
predict the length of the EO starting at the end of the learning sample on which the PL 
                                                 
30 In principle, in noiseless conditions it would be possible to determine both past and future behaviour of 
the data given only relatively few points in the LB. 
31 We say that estimator is unbiased if its expected value is equal to the estimated quantity. In case of 
regression methods, we say that fitted trend 𝑓𝑓 is unbiased estimate of true trend 𝑓𝑓 if E �𝑓𝑓(𝑡𝑡)� = 𝑓𝑓(𝑡𝑡) for 
all 𝑡𝑡 within the range (period) of the sample. A fitted regression model is necessarily biased if the true trend 
does not belong to the family of considered regression functions. 
32 Actual EO length is the length of the EO determined with use of data from the testing block. In contrast, 
predicted EO length is just our (untested) expectation about the length based on the knowledge of actual 
lengths of EOs from previous stages of the learning procedure. 
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procedure was run). In both cases predictions are made by fitting the linear function (with 
use of the OLS method) to all available (finite) values of past EO lengths and then 
extrapolating it to the future point of interest33.  

Note that in-sample predictions may be compared against the actual EO lengths calculated 
during the learning procedure. Predictions of EO out-of-sample lengths can be tested in 
similar way, however, this requires an additional testing sample back-to-back with the 
learning sample used in the PL procedure. Obtaining such sample is not a problem for the 
synthetic data—one can easily generate it.   

For a single learning sample and corresponding additional testing sample one can only 
get one pair of predicted and actual lengths of EO starting at the end of the learning 
sample. However, both values may be to a large extent random, and having only one such 
pair is not very informative. Much more information carries their joint distribution. 
Working with synthetic data allows us to easily obtain an empirical estimate of this joint 
distribution by means of repetitive Monte Carlo simulations.    

Below we describe the procedure that each of the experiments follow: 

1. Select the functional trend which the synthetic data sample will follow. Choose 
the length 𝑁𝑁 of the learning sample and the strength of the noise. 

2. Select the order of the PL method and the length of the LB (window) 𝑘𝑘 to be used. 

3. Select the number of repetitions of the experiment 𝑀𝑀.  

4. Set the current iteration (Monte Carlo run) number 𝑖𝑖 to 1. 

5. Generate the synthetic data sample of length 2𝑁𝑁 (cf. Section 4.1). Use the first 𝑁𝑁 
points as a learning sample for PL procedure and the remaining data as the 
additional testing sample to be used exclusively for determining the actual length 
of the EO starting at the end of the learning sample.    

6. Run the “rolling window” prognostic learning procedure on the learning sample 
generated in step 5. At each stage of the procedure check the fulfillment of 
assumptions of the polynomial regression model fitted to the LB and record the 
score of the EO, its actual length and the predicted EO length for this stage, given 
the EO lengths for previous stages (cf. Figure 3, left panel). 

7. After the PL procedure is complete use the calculated EO lengths (in-sample) to 
predict the length of the EO starting at the end of learning sample (out-of-sample). 

8. In order to test the predicted length of the EO starting at the end of learning sample 
(cf. step 7) calculate the actual length of the EO starting at the end of this sample. 
To do so, take the LB consisting of the last 𝑘𝑘 points of the learning sample, fit a 
regression model to it and extrapolate the prediction bands to determine the shape 
of the EO. To find its length use the data from the additional testing sample (cf. 
Figure 3, right panel). 

9. If  𝑖𝑖 < 𝑀𝑀 then set 𝑖𝑖 = 𝑖𝑖 + 1 and go to step 5. Otherwise end the experiment. 

                                                 
33 This is just one, straightforward but possibly crude way of making such predictions. Application of some 
more subtle methods (e.g., time series model) may improve reliability of such predictions. This will be 
tested in future research. 
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Figure 3. Schematic picture of the Monte Carlo experiment. Left panel: One stage of the prognostic 
learning procedure with “rolling window” of length k. Regression model is fitted to the data forming a LB 
[𝑖𝑖, 𝑖𝑖 + 1, … , 𝑖𝑖 + 𝑘𝑘]. Prediction bands for this model define the shape of EO starting at 𝑖𝑖 + 𝑘𝑘. Actual length 
of the EO is determined with use of the data from the TB. Right panel: Determining the actual length of 
the EO starting at the end of the learning sample (prediction for the immediate future). The direction and 
shape of the EO is given by the last 𝑘𝑘 points from the learning sample (last LB). Since there are no points 
left in the testing sample to form a TB, the actual length of the out-of-sample EO is determined with use of 
the additional testing sample.  

With use of the insights gathered by performing the abovementioned experiments we 
formulate guidelines for selecting the order of the method and length of the LB yielding 
optimal performance of the PL method. By this we mean:  

(1) Satisfactory level of fulfillment of the assumptions of the regression model fitted 
to each LB.  

(2) EOs calculated at different stages of PL method that are as long and narrow as 
possible (i.e., with high score - cf. Section 2.1). Stable behavior of EO lengths at 
different stages of the PL procedure is desirable. 

(3) Ideally, good reliability of the predictions of EO lengths (both in-sample and out-
of-sample). 

4.3. Results 
In this section we present the results of five sets of Monte Carlo experiments on five 
different types of synthetic data. This allows us to assess usefulness of the proposed 
methods of prognostic learning under controlled conditions. In each set of experiments 
we investigate the influence of: (1) the order of the method, (2) the length of the LB and 
(3) the level of noise on the performance of prognostic learning, by varying these 
parameters. Below we present results only for Monte Carlo runs of the PL methods on 
synthetic data with a low level of noise34. For each considered order of method the optimal 
length of the LB is presented. General conclusions about the marginal influence of each 

                                                 
34 Results of Monte Carlo runs on data with a higher level of noise are used to formulate general conclusions 
about the influence of the strength of noise on the PL method.  
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of the three abovementioned factors on the performance of PL method are presented in 
Section 4.4.      

4.3.1. Data following a linear trend  
We begin our analysis of performance of the PL method by testing it in the simplest 
possible setting, that is, on the synthetic noisy data following a linear trend. This type of 
trend in the data is easily detected and robustly estimated using the OLS technique, even 
for relatively short samples. Hence, even the simplest linear regression model fitted to the 
data in (any) LB not only accurately represents the in-sample data behavior but also 
correctly grasps the dynamic governing the whole sample. Figure 4 depicts an exemplary 
synthetic sample following the linear trend which is used in the set of Monte Carlo 
experiments, the parameters of which are outlined in Table 2. 

As one might have expected, the 1st order PL method is able to accurately approximate 
the true trend in the data, even with use of short LBs of 30 points—see Figure 5. However, 
ability to correctly estimate the true trend means that for majority of stages of the learning 
procedure EOs have infinite (undefined) lengths (cf. Figure 6: infinite EO lengths do not 
appear on the plot, finite lengths occur sporadically). This is due to the fact that an exact 
description of the true trend in the whole sample (given only information contained in the 
LB) is, in this case, equivalent to obtaining a precise model of the data generating process, 
which also holds true beyond the LB. As a consequence, we cannot falsify our 
understanding of the process based on the data form LB with use of the TB (i.e., part of 
the learning sample which follows the LB), and thus EO is infinite. Since most of the EOs 
in-sample are of infinite length we are also unable to formulate expectations about the 
limits to extrapolating our understanding of the process beyond the learning sample (i.e., 
the length of EO starting at the end of learning sample). 

 
Table 2. Experiments setup. 

True trend formula 𝑓𝑓(𝑡𝑡) = 0.1 × 𝑡𝑡 

Length of the synthetic data 
sample 

200 points 

Length of the learning sample 100 points 

Order of PL method 1, 2 

Length of the LBs 30, 40 

Strength of the noise35 0.05 

Number of Monte Carlo runs 
for each parameter combination 

40 

 

                                                 
35 Expressed as a fraction of the range of the true trend (cf. Section 4.1) 
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Figure 4. Exemplary data (black dots) following a linear trend 
𝑓𝑓(𝑡𝑡) = 0.1 × 𝑡𝑡 (blue line). Standard deviation of noise 𝜎𝜎 = 0.05 × (max 𝑓𝑓 − min 𝑓𝑓). 

 
Figure 5. Six exemplary stages of the 1st order PL procedure with LB length of 30 points.  

learning sample testing sample 
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Figure 6. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 1st order PL 
procedure with LB length of 30 points. Correlation between actual and predicted EO lengths is -0.175. The 
red square marks the predicted length of the EO starting at the end of testing sample. The prediction is 
based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black dots). Note 
that all of the EO lengths (both actual and predicted) are not longer than the length of the LB. 

 

In the case of noisy data following a linear trend, the use of higher order PL methods 
(using trend functions more complex than the true linear trend) is not advisable. We 
demonstrate this with the example of 2nd order PL procedure. As one can see on Figure 
7, prediction bands for the 2nd order polynomial regression diverge much faster than the 
analogous prediction bands for linear regression. As a result, the EOs obtained in the 
process of 2nd order PL procedure mostly have infinite lengths. Moreover, the more 
flexible 2nd order polynomial model is more visibly susceptible to the influence of noise 
in the data, and thus producing less certain and robust, often ill-directed projections. 
Therefore, any EO of finite length obtained with use of the 2nd order method is unreliable 
as it is most likely ill-directed and overly wide.     
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Figure 7. Six exemplary stages of the 2nd order PL procedure with LB length of 40 points. 

 

4.3.2. Data following a 4th order polynomial trend  
In the next set of experiments we analyze the performance of prognostic learning method 
applied to the noisy data following the trend of higher complexity. Method of polynomial 
regression is in principle able to provide an unbiased estimate of such trend. In Table 3 
we gather the parameters of these experiments. Figure 8 shows an exemplary synthetic 
data sample used in these experiments. 

Table 3. Experiments setup. 4th order polynomial trend. 
True trend formula 𝑓𝑓(𝑡𝑡) =  (0.001 × (𝑡𝑡 − 50))4 −  (0.09 × (𝑡𝑡 − 50))3

+ (0.5 × (𝑡𝑡 − 50))2 − 𝑡𝑡 − 50 

Length of the synthetic data 
sample 

400 points 

Length of the learning sample 200 points 

Order of PL method 1, 2, 3, 4 

Length of the LBs 20, 30, 40, 50, 60 

Strength of the noise 0.01, 0.05, 0.1 

Number of Monte Carlo runs for 
each parameter combination 

40 
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Figure 8. Exemplary data (black dots) following 4th order polynomial trend (blue line) given by the formula  
𝑓𝑓(𝑡𝑡) =  (0.001 × (𝑡𝑡 − 50))4 − �0.09 × (𝑡𝑡 − 50)�3 + (0.5 × (𝑡𝑡 − 50))2 − 𝑡𝑡 − 50. Standard deviation of 
the noise 𝜎𝜎 = 0.05 × (max 𝑓𝑓 − min 𝑓𝑓) .  
Table 4 presents the results obtained for the synthetic data with a low level of noise36 (i.e. 
0.01 of width of the trend function range). For each order of the PL method the optimal 
LB length is used.  

Table 4. Choices of the LB lengths for different orders of the PL method yielding 
the best results of experiments on data following a 4th order polynomial trend.  

Method 
order 

LB 
len
gth 

Noise 
level 

Regression 
assumptions 

EO 
Scores 

EO 
lengths 

Correlation
: actual vs. 
predicted 
EO lengths 
(in sample) 

Actual 
EO 
lengths 
(out-of-
sample
) 

Predicte
d EO 
lengths 
(out-of-
sample) 

Correlation
: actual vs. 
predicted 
EO lengths 
(out-of-
sample) 

1 40 0.01 Ok 0.01 -0.08 Slightly 
increasing 

Average: 
15 

(1 – 30) 

0.54 Mode 
25 

[6 – 37] 

Mode 18 

[12 – 33] 

0.2 

(finite EO 
length in 40 
out of 40 
runs) 

2 50 0.01 Ok 0.03 – 
0.08 

Oscillating 
decreasing 
130 to 0 

0.63 Flat 

Mode 
below 
50 

[0-180] 

Left skew 

Mode 0 

[0 – 40] 

0.09  

(finite EO 
length in 38 
out of 40 
runs) 

3 40 0.01 acceptable 
(possible 
autocorrelati
on of 
residuals) 

Up to 
0.03, 
mostly 
undefined 

Oscillating 
[2 – 10] 
few 
outliers up 
to 18 

-0.05 [3 – 14] [0 – 10] 0.09 

(finite EO 
length in 7 
out of 40 
runs)  

 

                                                 
36 For stronger noises the performance of the PL method deteriorates, which to certain extent may be 
compensated by increasing the length of the learning block. 

learning sample testing sample 
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4 50 0.01 Ok Up to 
0.02, 
mostly 
undefined 

Oscillating 
[1 – 15] 
outlier at 
48 

-0.09 [1–19], 
mostly 
below 6 

[0 – 19], 
mostly 
below 5 

-0.39  

(finite EO 
length in 10 
out of 40 
runs) 

 

Surprisingly, the best performance is achieved for the variant of PL method which 
employs a 1st order regression over short LBs (just 40 points). Figure 9 illustrates six 
exemplary stages of such PL procedure. This optimal combination of the order of method 
and the length of LB yields relatively stable behavior of the EO lengths with oscillations 
that are not too strong around a slightly increasing trend (cf. Figure 10). The ranges of the 
actual and predicted lengths of the EO starting at the end of learning sample are in good 
agreement, although the correlation between these lengths is weak (see Figure 11). Notice 
also that all EO lengths are not longer than the LB.   

Figure 9. Six exemplary stages of the 1st order PL procedure with LB length of 40 points. In regions where 
the curvature of the true trend is significant, the linear model does not fit well to the data in the LB and the 
actual lengths of the EO are low. In regions where the true trend has approximately constant slope the PL 
method performs well. 
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Figure 10. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 1st order PL 
procedure with LB length of 40 points. Correlation between actual and predicted EO lengths is 0.537. The 
red square marks the predicted length of the EO starting at the end of testing sample. Prediction is based on 
all finite actual EO lengths calculated in the learning procedure (i.e,. all of the black dots). Note that all of 
the EO lengths (both actual and predicted) are no longer than the length of the LB. 

 
Figure 11. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of the 
learning sample. Each of 40 points on the scatter plot represents the result of one Monte Carlo run resulting 
in finite actual EO length. The total number of Monte Carlo runs is 40. Histograms approximate marginal 
distributions of actual EO lengths (green) and predicted EO lengths (blue). Their correlation is 0.195.      
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Equally surprising is a relatively poor performance of the 4th order PL method. Fourth 
order polynomial trends fitted to learning blocks of length 50 describe the behavior of the 
data better than linear trends. However, extrapolations using 4th order polynomial 
regression functions to predict the future behavior of the data are highly uncertain. This 
is caused by their high flexibility, which within the LB is forced to minimize distance 
from the data points, but beyond it, when it is unconstrained, it may strongly deviate from 
the actual trend. This high uncertainty is represented by the fast divergence of the 
prediction bands. As a result, for most of the stages of the PL procedure we cannot 
determine the length of the EO because the extremely wide prediction bands cover all 
points in the TB (cf. Figures 12 and 13). This phenomenon also has a strong impact on 
both predicted and actual lengths of the EO starting at the end of the learning sample. 
Although ranges of the actual and predicted lengths are in very good agreement, there are 
only a few cases in which these lengths are finite, undermining the meaningfulness of the 
results of Monte Carlo experiments (cf. Figure 14).  

 

Figure 12. Six exemplary stages of the 4th order PL procedure with LB length of 50 points. Note that often 
extrapolated trend deviates substantially from the actual data in the testing sample. High uncertainty of 
these predictions is exhibited by quickly diverging prediction bands.  
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Figure 13. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 4th order 
PL procedure with LB length of 50 points. Correlation between actual and predicted EO lengths is -0.086. 
The red square marks the predicted length of the EO starting at the end of testing sample. Prediction is 
based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black dots). Note 
that all of the EO lengths (both actual and predicted) are not longer than the length of the LB. 

 
Figure 14. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of the 
learning sample. Each of 10 points on the scatter plot represents the result of one Monte Carlo run resulting 
in a finite actual EO length. The total number of Monte Carlo runs is 40. The histograms approximate 
marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their correlation is -
0.387. 
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4.3.3. Data following exponential trend 
In this set of experiments we analyze the performance of the PL method applied to the 
noisy data following a commonly occurring type of trend not belonging to the family of 
polynomials. Although it is not possible to model the data following exponential trend 
with any polynomial in the long run, it is possible to achieve a satisfactory local 
approximation with the use of a polynomial function of sufficiently high order. Hence, a 
PL method describing the local37 behavior of the data with a polynomial regression model 
is also expected to be applicable in this case. In Table 5 we gather the parameters of 
Monte Carlo experiments on synthetic exponential data. Figure 15 shows an exemplary 
synthetic data sample used in these experiments. 

Table 5. Experiments setup. Exponential trend. 
True trend formula 𝑓𝑓(𝑡𝑡) = exp(0.01 × (𝑡𝑡 + 100)) 

Length of the synthetic data 
sample 

400 points 

Length of the learning sample 200 points 

Order of PL method 1, 2, 3, 

Length of the LBs 20, 30, 40, 50 

Strength of the noise38  0.001, 0.005, 0.01 

Number of Monte Carlo runs for 
each parameter combination 

50 

 

 
Figure 15. Exemplary data (black dots) following exponential trend (blue line) given by formula 
𝑓𝑓(𝑡𝑡) = exp(0.01 × (𝑡𝑡 + 100)). Standard deviation of noise 𝜎𝜎 = 0.01 × (max 𝑓𝑓 − min 𝑓𝑓) .  

                                                 
37 i.e.  only within relatively short learning block 
38 Expressed as the fraction of trend function range width – cf. Section 4.1. 

learning sample testing sample 
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Table 6 gathers the results obtained for the synthetic data with low level of noise39 (i.e., 
0.001 of width of the trend function range). For each order of the PL method the optimal 
LB length is used.  

Table 6. Choices of the LB lengths for different orders of the PL method yielding 
the best results of experiments for synthetic data following an exponential trend.  

Method 
order 

LB 
len
gth 

Noise 
level 

Regression 
assumptio
ns 

EO Scores EO lengths Correlation: 
actual vs. 
predicted 
EO lengths 
(in sample) 

Actual 
EO 
lengths 
(out-of-
sample) 

Predicte
d EO 
lengths 
(out-of-
sample) 

Correlatio
n: actual 
vs. 
predicted 
EO lengths 
(out-of-
sample) 

1 40 0.001 Ok 
(possible 
autocorrelat
ion of 
residuals) 

Oscillating, 
gradually 
decreasing 
[42 to 2] 

Oscillating, 
decreasing 
[30 to 1] 

0.75 Flat 

[1 – 10] 

Flat 

[0 – 5] 

-0.03 

(finite EO 
length in 50 
out of 50 
runs) 

2 40 0.001 Ok Oscillating 
below 20, 
mostly 
undefined 

Oscillating, 
slight 
decrease 
[35 to 1], 
few outliers 
up to 80 

0.34 Flat 

[0 – 
200] 

Left 
skew 

[0 – 30] 

Mode 0 

0.27 (finite 
EO length 
in 50 out of 
50 runs) 

3 50 0.001 Ok Oscillating 
below 11.2, 
mostly 
undefined 

Decreasing 

[20 to 3] 

Outliers up 
to 75 

0.02 Left 
skew 

[4 – 80] 

Majorit
y below 
20 

[0 – 8] 0.26 (finite 
EO length 
in 10 out of 
50 runs) 

  

The best performance is achieved for the 1st order PL method using short LBs (of just 40 
points). Six exemplary stages of such PL procedure are visualized in Figure 16. For the 
initial stages of the PL procedure, EOs are relatively long (because of small initial changes 
in the slope of the exponential trend), but become shorter over the course of the procedure 
(as the increase in exponential trend accelerates) – cf. Figure 17. The ranges of the actual 
and predicted lengths of the EO starting at the end of the learning sample are comparable 
(see Figure 18). The range of values of predicted EO lengths is narrower than the range 
of actual EO lengths, which means that expected EO length is likely to underestimate the 
actual EO length. However, they are virtually uncorrelated.  

                                                 
39 For stronger levels of noise the performance of the PL method deteriorates, which to certain extent may 
be compensated by increasing the length of the learning block. 



 32 

Figure 16. Six exemplary stages of the 1st order PL procedure with LB length of 40 points. For the initial 
stages of the PL procedure the lengths of the EO are comparable with the length of the LB. This is due to a 
slow initial increase of the exponential trend. As this increase begins to accelerate in later stages the EO 
lengths get shorter. 
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Figure 17. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 1st order PL 
procedure with a LB length of 40 points. Correlation between the actual and predicted EO lengths is 0.746. 
The red square marks the predicted length of the EO starting at the end of testing sample. Prediction is 
based on all finite actual EO lengths calculated in the learning procedure (i.e., all the black dots). Note that 
all of the EO lengths (both actual and predicted) are not longer than the length of the LB. 

 
Figure 18. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of the 
learning sample. Each of 50 points on the scatter plot represents the result of one Monte Carlo run resulting 
in finite actual EO length. Total number of Monte Carlo runs is 50. The histograms approximate the 
marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their correlation is -
0.032.      
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Higher order polynomials are much better at approximating the exponential trend, yet the 
performance of higher order PL methods is worse than for the one based on linear 
regression. We discuss this using the example of the 2nd order polynomial method. Fitted 
quadratic trends extrapolated beyond the corresponding LBs always increase slower than 
true exponential trend (yet quicker than linear trends). However, prediction bands are 
usually wide enough to cover all the data points in the TB. As a result, for most of the 
stages of the PL procedure we cannot determine the length of the EO (cf. Figures 19 and 
20). The distribution of the predicted lengths of EO starting at the end of learning sample 
is strongly skewed to the left and has much narrower support than the relatively flat 
distribution of the actual EO lengths at the end of the learning sample (see Figure 21). 
Thus, the predicted EO length is likely to heavily underestimate the actual length of the 
EO, while the correlation of these two is weak.  

 
Figure 19. Six exemplary stages of the 2nd order PL procedure with a LB length of 50 points.  



 35 

 
Figure 20. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2nd order 
PL procedure with a LB length of 50 points. Correlation between the actual and predicted EO lengths is 
0.335. The red square marks the predicted length of the EO starting at the end of testing sample. The 
prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e,. all of the black 
dots). Note that majority of the EO lengths (both actual and predicted) are not longer than the length of the 
LB. 
 

 
Figure 21. Estimate of a joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. The total number of Monte Carlo runs is 50. The histograms 
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approximate marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their 
correlation is 0.286.     

4.3.4. Data following logarithmic trend 
Now we examine the performance of the PL method on the synthetic data following an 
increasing but decelerating trend—exemplified by a logarithmic trend. This trend, often 
encountered in real-life data, cannot be approximated well by any polynomial in the long 
run, however, a satisfactory local (i.e., for a relatively short subsample) agreement may 
be achieved. This is the rationale for applying the PL method to such type of data. In 
Table 7 we gather the parameters of the Monte Carlo experiments on synthetic 
logarithmic data. Figure 22 shows an exemplary synthetic data sample used in these 
experiments. 

Table 7. Experiments setup. Logarithmic trend. 
True trend formula 𝑓𝑓(𝑡𝑡) = log(0.05 × (𝑡𝑡 + 50)) 

Length of the synthetic data 
sample 

400 points 

Length of the learning sample 200 points 

Order of PL method 1, 2, 3, 

Length of the LBs 20, 30, 40, 50 

Strength of the noise40  0.01, 0.025, 0.05 

Number of Monte Carlo runs for 
each parameter combination 

50 

 

 
Figure 22. Exemplary data (black dots) following a logarithmic trend (blue line) given by the formula  
𝑓𝑓(𝑡𝑡) = log(0.05 × (𝑡𝑡 + 50)). Standard deviation of noise 𝜎𝜎 = 0.01 × (max 𝑓𝑓 − min𝑓𝑓). 

                                                 
40 Expressed as the fraction of trend function range width – cf. Section 4.1. 

learning sample testing sample 
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Table 8 summarizes the results obtained for the synthetic data with a low level of noise41 
(i.e., 0.01 of the width of the trend function range). For each order of the PL method the 
optimal LB length is used.  

Table 8. Choices of the LB lengths for different orders of the PL method yielding 
the best results of experiments on synthetic data following a logarithmic trend. 

Method 
order 

LB 
len
gth 

Noise 
level 

Regression 
assumptions 

EO Scores EO lengths Correlation
: actual vs. 
predicted 
EO lengths 
(in sample) 

Actual 
EO 
lengths 
(out-
of-
sample
) 

Predicte
d EO 
lengths 
(out-of-
sample) 

Correlation
: actual vs. 
predicted 
EO lengths 
(out-of-
sample) 

1 50 0.01 Ok Oscillating
, below 
405, often 
undefined 

Oscillating, 
max 
increasing 
to 40 

0.62 [0 – 
110] 

Mode 
40 

[15 – 50] 

Mode 30 

0.14 

(finite EO 
length in 50 
out of 50 
runs) 

2 50 0.01 Ok Oscillating 
[20 – 160], 
mostly 
undefined 

Oscillating, 
decreasing 
[120 to 1] 

0.63 [3 – 26] Left skew 

[0 – 23] 

Mode 0 

0.66 

(finite EO 
length in 7 
out of 50 
runs) 

3 50 0.01 Ok 
(occasionally 
autocorrelatio
n of residuals) 

Oscillating 
[10 – 67], 
mostly 
undefined 

Oscillating 
below 15, 
diminishin
g outliers 
(max 30) 

0.5 [3 – 26] [1 – 11]  -0.26 

(finite EO 
length in 7 
out of 50 
runs) 

   
As in previous sets of experiments, the best performance is achieved with the 1st order PL 
method—this time using slightly longer LBs of 50 points. Six exemplary stages of this 
PL procedure are shown on Figure 23. EOs calculated for the initial stages of the PL 
procedure are short because of the sharply decelerating trend at the beginning of learning 
sample. The slower rate of decrease of slope of the logarithmic trend in the further part 
of the learning sample results in longer EOs for later stages (cf. Figure 24). Note also that 
the range of all (finite) lengths of EOs in-sample is narrower than the LB. This is also the 
case for predicted lengths of the EO starting at the end of learning sample (see Figure 25). 
However, the actual lengths of EOs starting at the end of learning sample are significantly 
longer, while the correlation between the actual and predicted lengths is weak.  

                                                 
41 For greater levels of noise the performance of the PL method deteriorates, which to certain extent may 
be compensated by increasing the length of the learning block. 
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Figure 23. Six exemplary stages of the 1st order PL procedure with a LB length of 50 points. For the initial 
stages of the PL procedure the lengths of the EO are short because of an initially sharp decrease in the slope 
of the logarithmic trend. As this decrease begins to decelerate in later stages the EOs get longer. 
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Figure 24. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 1st order PL 
procedure with LB length of 50 points. Correlation between actual and predicted EO lengths is 0.619. The 
red square marks the predicted length of the EO starting at the end of testing sample. The prediction is 
based on all finite actual EO lengths calculated in the learning procedure (i.e,. all of the black dots). Note 
that all of the EO lengths (both actual and predicted) are not longer than the length of the LB. 

 
Figure 25. Estimate of the joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of the 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. The total number of Monte Carlo runs is 50. The histograms 
approximate marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their 
correlation is 0.144. 
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PL methods based on higher order polynomial regressions perform worse than the 1st 
order method when applied to data following a logarithmic trend (or a similar shape). We 
discuss this using the example of 2nd order polynomial method. The deviations from the 
testing data of fitted quadratic trends extrapolated beyond the corresponding LBs increase 
faster than the analogous deviations of the extrapolated linear trends. In addition, there is 
often strong misdirection of extrapolated higher order trends, and their prediction bands 
diverge much faster than those of linear models—see Figure 26. As a result, for the 
majority of the PL procedure the EOs have an infinite (undefined) length (cf. Figure 27). 
In addition, the actual length of the EO starting at the end of the learning sample is infinite 
for the most of the Monte Carlo runs—making any analysis of the joint behavior of 
predicted and actual lengths of the EO out-of-sample virtually impossible (cf. Figure 28).  

 

 
Figure 26. Six exemplary stages of the 2nd order PL procedure with a LB length of 50 points.  



 41 

 
Figure 27. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2nd order PL 
procedure with LB length of 50 points. Correlation between actual and predicted EO lengths is 0.628. The 
red square marks the predicted length of the EO starting at the end of testing sample. The prediction is 
based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black dots).  

 
Figure 28. Estimate of the joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of seven points on the scatter plot represents the result of one Monte Carlo run 
resulting in a finite actual EO length. The total number of Monte Carlo runs is 50. The histograms 
approximate marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their 
correlation is 0.664.    
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4.3.5. Data following periodic trend 
In the last set of experiments we investigate the usefulness of the PL method for analysis 
of data following a sinusoidal trend over a period comparable to the length of learning 
sample. Within short time intervals (i.e., comparable in length to the LB) such data may 
appear to follow a clear non-periodic trend, which may be locally approximated by a 
polynomial. By applying the PL method based on polynomial regression we want to 
understand the limits of such local approximations. Table 9 outlines the setup of the 
Monte Carlo experiments on synthetic data following a periodic trend. Figure 29 exhibits 
an exemplary synthetic data sample used in these experiments. 

Table 9. Experiments setup. Exponential trend. 
True trend formula 𝑓𝑓(𝑡𝑡) = sin(0.018 × (𝑡𝑡 − 100)) 

Length of the synthetic data 
sample 

400 points 

Length of the learning sample 200 points 

Order of PL method 1, 2, 3, 

Length of the LBs 20, 30, 40, 50 

Strength of the noise42  0.01, 0.05, 0.1 

Number of Monte Carlo runs for 
each parameter combination 

50 

 
Figure 29. Exemplary data (black dots) following sinusoidal trend with long period (blue line) given by 
formula 𝑓𝑓(𝑡𝑡) = sin(0.018 × (𝑡𝑡 − 100)). Standard deviation of noise 𝜎𝜎 = 0.01 × (max 𝑓𝑓 − min 𝑓𝑓) .  

                                                 
42 Expressed as the fraction of trend function range width – cf. Section 4.1. 

learning sample testing sample 
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Table 10 summarizes the results of experiments performed using synthetic data with a 
low level of noise43 (i.e., 0.01 of width of the trend function range). For each order of the 
PL method the optimal LB length is used.  

Table 10. Results of experiments for optimal choices of LB lengths in case of 
synthetic data following a periodic trend. 

Method 
order 

LB 
len
gth 

Noise 
level 

Regression 
assumptions 

EO 
Scores 

EO 
lengths 

Correlation
: actual vs. 
predicted 
EO lengths 
(in sample) 

Actual 
EO 
lengths 
(out-
of-
sample
) 

Predicte
d EO 
lengths 
(out-of-
sample) 

Correlation
: actual vs. 
predicted 
EO lengths 
(out-of-
sample) 

1 30 0.01 Ok Slowly 
oscillating
, 
increasing 
to 395, 
then 
gradually 
decreasin
g to 10 

Oscillating
, 
increasing 
[1 – 70] 
then 
decreasing 
to 1. Most 
of the time 
below 20 

0.43 Flat 

[1 – 11] 

[7 – 14] 

Mode 11 

-0.04 

(finite EO 
length in 50 
out of 50 
runs) 

2 50 0.01 Ok Oscillatin
g below 
200, 
slightly 
increasing 

Oscillating 
below 40, 
slightly 
decreasing
, outliers 
up to 60 

0.3 [0 – 
150] 

Mode 
100 

[0 – 24] 0.14 

(finite EO 
length in 50 
out of 50 
runs) 

3 50 0.01 Ok 
(occasionally 
autocorrelatio
n of residuals) 

Oscillatin
g [10 – 
68], 
mostly 
undefined 

Oscillating 
below 20, 
gradually 
decreasing 
outliers up 
to 40 

0.53 [3 – 25] [1 – 11] -0.1 

(finite EO 
length in 8 
out of 50 
runs) 

 

As for the previous sets of experiments, the best performance is achieved for the 1st order 
PL method using short LBs (of just 30 points). Figure 30 shows six exemplary stages of 
the PL procedure. For stages of the PL method whose LBs are close to the bending points 
of the true trend, the EO lengths are relatively short with respect to the length of the LB. 
However, EOs are much longer when corresponding LBs coincide with regions in which 
the true trend is nearly linear—see Figure 31. The predicted EO lengths out-of-sample 
may be slightly over-optimistic—the range of estimated lengths is shifted to the right in 
comparison to the range of actual lengths of the EO starting at the end of the learning 
sample (cf. Figure 32). Moreover, the predicted and actual EO lengths are virtually 
uncorrelated. Note, however, that they are shorter than the length of LBs used in the PL 
procedure.  

                                                 
43 For greater levels of noise the performance of the PL method deteriorates, which to certain extent may 
be compensated by increasing the length of the learning block. 
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Figure 30. Six exemplary stages of the 1st order PL procedure with a LB length of 30 points. EOs are 
relatively short in cases when corresponding LBs are close to the bending points of the true trend and long 
otherwise. 
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Figure 31. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 1st order 
PL procedure with a LB length of 30 points. Correlation between the actual and predicted EO lengths is 
0.434. The red square marks the predicted length of the EO starting at the end of testing sample. The 
prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black 
dots).  

 
Figure 32. Estimate of a joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of the 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in a finite actual EO length. The total number of Monte Carlo runs is 50. The histograms 
approximate marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their 
correlation is -0.037.     
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Higher order polynomials are better suited to describe the local behavior of the data in 
the LBs than the linear functions, especially when the LB is in the vicinity of the bending 
points of the true trend (see Figure 33). In comparison to the 1st order method this results 
in longer EOs for the stages of the PL procedure when the LB coincides with the intervals 
in which curvature of the true trend is significant—cf. Figure 34. Nevertheless, the EO 
scores are worse than for the 1st order PL method. This is due to the fact that the prediction 
bands (defining the shape—and thus score—of the EO) for higher order polynomial 
regressions diverge faster than for linear regression. Moreover, the flexibility of higher 
order polynomial trends is not particularly advantageous when predicting the length of 
the EO starting at the end of the learning sample—the predicted EO lengths grossly 
underestimate the actual EO lengths while their correlation is weak (see Figure 35).  

 
Figure 33. Six exemplary stages of the 2nd order PL procedure with a LB length of 50 points.  
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Figure 34. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2nd order 
PL procedure with a LB length of 50 points. Correlation between the actual and predicted EO lengths is 
0.309. The red square marks the predicted length of the EO starting at the end of testing sample. Prediction 
is based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black dots). Note 
that majority of the EO lengths (both actual and predicted) are not longer than the length of the LB. 

 
Figure 35. Estimate of the joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of the 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in a finite actual EO length. The total number of Monte Carlo runs is 50. The histograms 
approximate marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their 
correlation is 0.140.      



 48 

4.4. Conclusions  
In this section we present some general conclusions on the performance of the PL method 
based on polynomial regression that can be drawn the results of the experiments on 
synthetic datasets described in the previous two sections. 

We begin with analysis of the impact of complexity of the class of regression functions 
(i.e. order of polynomials) used in the PL method. This factor appears to be the most 
important for the performance of the prognostic learning. With increasing complexity: 

• Fulfillment of regression method assumptions does not change significantly, 
however, assumption violations may be slightly more frequent. 

• EO scores decrease, in principle. This is due to the fact that the speed of 
divergence of the prediction bands—and thus the width of the EO—is of the same 
order as the polynomial trend used in the underlying regression model. In addition, 
the number of stages of the PL procedure for which EO scores are undefined (i.e., 
cases for which EOs have infinite length) usually increase.  

• Actual in-sample EO lengths—if finite— generally decrease. Clear tendencies, 
such as the often-observed decrease of the EO lengths for consecutive stages of 
the 1st order PL procedure, gradually change to oscillations around a relatively 
stable level. 

• Correlation between actual and predicted in-sample EO lengths typically gets 
weaker. This correlation is relatively strong in the presence of a clear monotonic 
trend in the lengths of consecutive EOs obtained in course of the learning 
procedure. This is most often the case for the 1st order method. As these tendencies 
in EO lengths change to oscillations typical for higher order methods, this 
correlation gets weaker. 

• Actual out-of-sample EO lengths (which are determined by use of the additional 
testing sample back to back with the learning sample) typically decrease. This 
effect is especially clear for the upper limits (maximums) of the observed ranges 
of finite EO lengths. Moreover, for higher order methods, EOs of infinite 
(undefined) lengths are predominant.  

• Predicted out-of-sample EO lengths decrease, in principle. Moreover, regardless 
of the order of method, the range of predicted EO lengths usually lies within (or 
at least significantly overlaps with) the range of the actual EO lengths. Thus, at 
least on average, predicted EO lengths out of the sample underestimate the actual 
ones. However, the correlation between actual and predicted EO lengths is 
typically weak, often negative and in principle not very reliable for higher order 
methods (as a result of EOs being predominantly infinite).  

Increasing the level of noise in the data has, in principle, a negative impact on the 
performance of PL. The most apparent effect is the deterioration of EO scores as a result 
of the fact that higher level of noise stipulates wider EOs. 

The optimal length of the LB is closely related to the order of the method used. It should 
not be too short or overly long (we discuss the choice of optimal LB length later in this 
section). Therefore, it is difficult to discriminate the marginal impact of increasing the 
length of the LB—what is too short for one method may be too long for another. The 
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clearest effect one sees is for the EO scores. They may slightly improve, as a longer LB 
allows for better estimation of the parameters of the regression function (lower variance 
of estimates of regression function parameters). 

Based on the experiments on synthetic data described in the previous section, we 
formulate the following observations about the 1st order method of PL: 

• Any true trend and any data behavior can be locally approximated by a line. This 
local approximation is relatively robust to the level of noise. As a consequence, 
ill-directed EOs (if they appear) are the result of the inability of the linear model 
fitted to the LB to follow the quickly changing true trend, rather than result of 
noisy conditions.  

• Bias44–variance trade-offs: The 1st order method is biased—it looks only for linear 
trends in the data and cannot describe strongly non-linear trends well. This bias 
may be negligible when the true trend is slowly varying, but can be significant in 
the presence of a curved true trend in the data. This bias is, however, balanced by 
the relatively low variance of predictions made using the linear regression model, 
that is, slowly (at least slower than for higher order methods) diverging prediction 
bands determining the width (and thus the score) of the EO.  

• This has two significant practical consequences: 
o If the true trend is linear then the 1st order method is optimal (prognostic 

uncertainty is the lowest possible). 

o If the true trend is non-linear then predictions made by extrapolating the 
linear trend fitted to the LB will eventually be wrong, thus the EO will 
almost always have a finite length, usually not greater than the 
optimal length of the LB. In this case the length of the EO informs us 
about the safe lower band for the time horizon within which treating 
the dynamics of the data as linear is a good approximation. 

• The optimal length of the LB (and thus of the learning sample) is lowest for the 
1st order PL method. This is important for the applicability of the PL method, since 
in practice data scarcity is a common problem.   

 

Conclusions for the higher order PL methods are slightly different: 

• Bias–variance trade-offs: any continuous true trend in the data over a specified 
interval may be well approximated with a polynomial of sufficiently high order. 
This ability of higher order polynomials to closely follow the data sample reduces 
the bias of the method. However, in noisy conditions the uncertainty in the 
estimates of the parameters of the polynomial regression model fitted to the data 
in a LB almost always results in high variance of predictions beyond the range of 
the LB (represented by quickly diverging prediction bands).  

                                                 
44 Here the term “bias” refers to the method. It means that E �𝑓𝑓(𝑡𝑡)� ≠ E(𝑋𝑋𝑡𝑡) for some 𝑡𝑡 within the range 
(period) of the sample, where 𝑓𝑓 denotes the estimate of the true trend. It is not a systematic (measurement) 
error of analysed data. 
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• This has two significant practical consequences: 
o The sharp increase in the uncertainty of predictions made by extrapolation 

of the fitted polynomial trend beyond the range of the LB makes the 
usefulness of such predictions questionable.  

o More importantly, because of the flexibility of higher order polynomial 
trends and the quickly diverging prediction bands in most cases (stages of 
the PL procedure) EO length is infinite. Indeed, it is finite only in cases 
when the extrapolated polynomial trend around which the EO is 
constructed was so ill-directed that this was not offset by quickly diverging 
prediction bands. Thus, results of higher order PL methods should be 
treated somewhat differently and with more suspicion than the results of 
the 1st order method. 

• The required length of the LB is considerably higher than for the 1st order method. 
A longer LB is needed to prevent overfitting—situation in which the fit of the 
flexible polynomial trend may be strongly impacted by random noise. This further 
reduces the usefulness of the higher order PL methods in analysis of relatively 
short real-life datasets. 

 

We conclude this chapter with a few rules of thumb for applying the PL method: 
1. The 1st order method should be preferred over the higher order methods.  

2. The greater the noise the longer the LB required and the more difficult it is to use 
the higher order methods. 

3. The higher the order of method the longer the LB required. In any case there 
should be at least 10 points in the LB per each parameter of the regression model 
to be estimated. 

4. Given the data and the order of the PL method one should follow the following 
guidelines when selecting the optimal length of the LB: 

a. Choose the LB length for which the EO score is the highest (or slightly 
longer). 

b. Choose the LB length for which the EO length exhibits stable behavior in 
course of the PL procedure (oscillating with few small outliers) or when 
trends in the behavior of the EO lengths change (e.g., from clear decrease 
of EO length in course of the PL method to oscillations around a certain 
level or when a tendency of oscillations becomes apparent). 

c. Choose the LB length for which correlation between actual and predicted 
EO lengths in-sample is relatively strong and positive. 

Ideally these criteria should be fulfilled simultaneously. Choice of the optimal LB length 
usually coincides with a good behavior of the predicted length of the EO starting at the 
end of the learning sample (i.e., a good overlap of the ranges of the actual and predicted 
EO lengths and a relatively strong correlation between them). 
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5. Real-life case studies 
In the present chapter we test the applicability of the PL method in determining the limits 
of our understanding of the dynamics of the real-life data (i.e., their EO). In finding the 
optimal parameters of the PL method we draw on the insights of the previous chapter. 

As examples we chose two datasets reflecting the dynamics of two processes of 
fundamental importance for our understanding of the impact of humans on the climate: 
namely the anthropogenic CO2 emissions and the increase of CO2 concentration in the 
atmosphere. Knowledge about the dynamics of these processes is also necessary to run 
integrated assessment models (IAMs, such as IMAGE45). Hence, estimation of the 
temporal limits of our understanding of these dynamics may also shed some light on the 
time horizons beyond which projections of the abovementioned IAMs may be unreliable.  

The datasets we use contain the annual global CO2 emissions from the technosphere46 
(i.e., from fossil fuel burning and cement production) and the annual average 
concentration of CO2 in the atmosphere measured at the Mauna Loa station47. As CO2 
concentrations are influenced by anthropogenic CO2 emissions the analyzed datasets 
cover the same period: 1959 – 2011. 

5.1. Global CO2 emissions from technosphere 
In case of anthropogenic CO2 emissions, the best performance is achieved for the 1st order 
PL method with LBs of length of 25 points (which is roughly half the size of the learning 
sample). This is consistent with our observations from the experiments on synthetic 
data—for them the 1st order PL method was also the best choice. The optimal length of 
the LB was chosen according to the guidelines provided at the end of the previous chapter. 
Exemplary stages of the optimal PL procedure are presented on Figure 36. As one can 
see, the data follow a roughly linear trend48, although three segments of slightly different 
slopes can be seen. These segments are of similar lengths to the LBs used in the learning 
procedure. Hence, two types of configurations of the LB with respect to the 
abovementioned segments are possible—and each of these constellations has a negative 
impact on the length of the EO. If the LB strongly overlaps with one of these segments, 
then the linear model describes the data in the learning data well. However, the EO 
representing the expected future behavior of emissions is then compared against the data 
in the TB which follows a different regime (i.e., an increase of a different slope) to the 
data in the LB. As a consequence, the EO is relatively short. The other possibility is that 
the moment of regime change lies well within the LB. This renders the linear model less 
suitable to represent the data behavior within the LB and thus in the increase of 
autocorrelation of model residuals. Such a strong violation of the PL method assumptions 
results in a shorter EO. Analysis of both actual and predicted lengths of the EOs for 
different stages of the 1st order learning procedure—cf. Figure 36—confirms these 

                                                 
45 For brief synopsis of the IMAGE model see e.g., 
http://unfccc.int/adaptation/nairobi_work_programme/knowledge_resources_and_publications/items/539
6.php 
46 Source: CDIAC http://cdiac.ornl.gov/trends/emis/overview_2011.html 
47 Source: NOAA http://www.esrl.noaa.gov/gmd/ccgg/trends/full.html 
48 Taking a broader perspective the overall trend in CO2 emissions over the last 200 years is approximately 
exponential, but the steep growth over the last six decades alone is roughly linear. 

http://unfccc.int/adaptation/nairobi_work_programme/knowledge_resources_and_publications/items/5396.php
http://unfccc.int/adaptation/nairobi_work_programme/knowledge_resources_and_publications/items/5396.php
http://cdiac.ornl.gov/trends/emis/overview_2011.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/full.html
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observations. It shows that, in principle, one should not expect the EO to be much longer 
than about five points49, while very short EOs for some of the stages of the learning 
procedure indicate that the analyzed process occasionally undergoes sudden regime 
changes.  

  

 
Figure 36. Six exemplary stages of the 1st order PL procedure with a LB length of 25 points. 

 

 

                                                 
49 Note that the EOs are shorter than the used learning blocks. This is in agreement with what we have 
observed for the synthetic datasets (c.f. Chapter 4).  
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Figure 37. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 1st order 
PL procedure with a LB length of 25 points. Correlation between the actual and predicted EO lengths is 
0.777. The red square marks the predicted length of the EO starting at the end of testing sample. Prediction 
is based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black dots). Note 
that all of the EO lengths (both actual and predicted) are shorter than the length of the LB. 

 

Higher order PL procedures do not yield better results. As they require longer LBs, at 
each stage of the PL procedure the LB contains the moment of regime (slope of local 
trend) change. Although polynomial trends are more flexible than the linear trend, they 
too are unable grasp slight but sudden regime changes—as demonstrated on the example 
of the 2nd order PL method (cf. Figure 38). As a result, the EOs constructed with use of 
the 2nd order method are only wider (since prediction bands for higher order polynomial 
regression diverge more rapidly than for linear case) but not longer—see Figure 39. 
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Figure 38. Six exemplary stages of the 2nd order PL procedure with a LB length of 30 points. 
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Figure 39. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2nd order PL 
procedure with a LB length of 25 points. Correlation between the actual and predicted EO lengths is 0.713. 
The red square marks the predicted length of the EO starting at the end of testing sample. The prediction is 
based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black dots). Note 
that all of the EO lengths (both actual and predicted) are not longer than the length of the LB. 

5.2. Concentration of CO2 in the atmosphere 
Time evolution of the CO2 concentrations over time is smooth (in comparison to that of 
anthropogenic CO2 emissions) and follows a clear, exponential–like deterministic trend. 
The analyzed sample resembles the synthetic data with a low level of noise following an 
exponential trend which we analyzed in Chapter 4. Similarly to that case, the 1st order PL 
method proves to be the best choice among the PL methods based on polynomial 
regressions. The optimal length of the LB in this case is 20 points. As one can see in 
Figure 40, the EOs constructed using this method are narrow (because of the low variance 
of the residuals for the linear models fitted to the LBs) but relatively short. Indeed, for 
most of the PL procedure stages the EOs are not longer than three points (cf. Figure 41). 
This is caused by the curvature of the trend in the data.   
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Figure 40. Six exemplary stages of the 1st order PL procedure with a LB length of 20 points. 
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Figure 41. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 1st order PL 
procedure with a LB length of 20 points. Correlation between the actual and predicted EO lengths is 0.461. 
The red square marks the predicted length of the EO starting at the end of testing sample. The prediction is 
based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black dots). Note 
that all of the EO lengths (both actual and predicted) are not longer than the length of the LB. 

 

Quadratic trends are more suitable to approximate data following a curved trend (cf. 
Figure 42). However, in case of atmospheric CO2 concentrations, applying the 2nd order 
method does not result in a longer EO. Indeed, although EOs constructed around a 
quadratic trend have a curved shape and are narrower than those for the 1st order method, 
they are still unable to follow the true trend in the long run (see Figure 43).  

Applying the 3rd (or higher) order PL method to the data is not feasible, as the minimal 
length of LB for those methods is comparable to the size of the whole learning sample. 
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Figure 42. Six exemplary stages of the 2nd order PL procedure with a LB length of 30 points. 
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Figure 43. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2nd order PL 
procedure with a LB length of 50 points. Correlation between the actual and predicted EO lengths is 0.302. 
The red square marks the predicted length of the EO starting at the end of testing sample. The prediction is 
based on all finite actual EO lengths calculated in the learning procedure (i.e., all of the black dots). Note 
that all of the EO lengths (both actual and predicted) are shorter than the length of the LB. 

5.3. Conclusions 
The temporal dynamics of both considered processes (i.e., anthropogenic CO2 emissions 
and CO2 concentrations in the atmosphere) are essentially nonlinear. The typical time 
horizons within which linear predictions of the behavior of upcoming data are credible is 
indicated by the lengths of the EOs obtained by applying the 1st order PL method. These 
limits for credible linear predictions are rather short.  

For anthropogenic CO2 emissions it is at most 15 points (years), but linear predictions for 
the immediate future are expected to be credible over a much shorter time horizon. This 
is due to the fact that the linear regression model employed in the learning procedure is 
not able to describe or anticipate regime changes (i.e., sudden changes of slope). 

The more regular behavior of the atmospheric CO2 concentrations results in slightly 
better, yet still short, horizons for credible linear approximation of process dynamics —
the typical length of the EOs for the 1st order PL method is 2 to 6 points (years). 

Approximations of the local dynamics of the considered processes by polynomial 
regression functions of higher orders are better in comparison to linear ones. However, 
predictions made by extrapolations of such trends are more uncertain, and thus it is often 
impossible to assess their credibility by means of EO. 

Finally, it is important to emphasize that the limits of credibility assessed by means of the 
1st order PL method should be treated as the lower bound for the period within which our 
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understanding of the system’s past may be used for making reliable predictions. In 
principle, there may be a more suitable method than polynomial regression to explain data 
behavior. A PL procedure based on such a method would most likely yield better (i.e., 
longer but still relatively narrow) EOs, thus improving the lower bounds for the horizons 
of credibility. 

 

6. Outlook 
The research presented in this report is a feasibility study based on the notions of 
prognostic learning and explainable outreach of the data. As such, it pursues the two 
objectives: (1) to frame the idea of the PL and place it in a broad context of Earth system 
sciences; and (2) to develop and implement a PL procedure allowing us to test the PL 
concept in practice. 

For the first objective we have restricted ourselves to analyzing data forming a time series 
and describing the temporal evolution of the analyzed system. Our focus was on detecting 
the system’s dynamics (i.e., the deterministic part of the analyzed time series) represented 
by the prevailing trend and on understanding the relationship between the uncertainty of 
the estimates of this trend and the credibility of our projections based on this trend about 
the future system’s behavior.  

Understanding the temporal dynamics of the system and indicating the extent of credible 
predictions based on this understanding is just a first step in development of the paradigm 
of learning in a controlled prognostic context. However, the proposed PL method 
concentrates on grasping the temporal dynamics revealed by a single time series (using 
the time as the only explanatory variable) while hiding the explicit dependence of the 
system on external forcing. For example, anthropogenic CO2 emissions exhibit roughly 
linear temporal dynamics over the last five decades (cf. Section 5), but they also strongly 
depend on the trends and disturbances of the global economy (such as the energy crises 
in the 1970s, the economic collapse of the soviet bloc in the 1990s or increased 
consumption in developing countries in recent years). We envisage a modification of the 
PL method by introducing additional explanatory variable(s) representing the external 
forcing of the system (in the context of anthropogenic CO2 emissions this could be, for 
example, GDP) or dependence on some additional factors (e.g., carbon intensity of 
production processes). We speculate that explicit use of additional explanatory variables 
in the PL method will result in longer horizon of credible predictions (i.e., longer EOs).    

Another challenge related to objective (1) is to demonstrate the ability of the PL method 
to support a modeling exercise by realizing the “model performance assessment” track 
(cf. Figure 2) for a suitably selected climate or integrated assessment model. 

Pursuing objective (2) we have proposed a way of implementing the prognostic learning 
concept which is based on the ordinary least squares (OLS) polynomial regression 
technique. This regression method was selected for its simplicity and relatively good 
performance. However, the results presented in Sections 4.3 and 5 indicate the need for 
development of analogous versions of the PL method based on regressions using other 
parametric trends (e.g., exponential or power functions).  

Moreover, we expect that the performance of the PL method based on higher order 
polynomials may be improved by application of the regularization techniques (Hastie 
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2009, Murphy 2012). In principle, regularization penalizes the trend functions which are 
overly “wiggly”. It would allow us to strike a balance between the flexibility of the high 
order polynomials and the robustness of the predictions based on their extrapolations. We 
speculate that this would result in EOs that are longer and not too much wider than those 
obtained for the 1st order PL method.  

Another way of improving the regression-based PL is to replace the OLS polynomial 
regressions with some more robust methods of fitting the trend, such as ridge regression 
or support vector regression (Hastie 2009, Murphy 2012) or nonparametric regressions 
(Wasserman 2006). Some preliminary results obtained by using the PL method based on 
selected nonparametric regression techniques are presented in the appendix. This research 
direction is particularly interesting for the following reasons: (1) nonparametric methods 
do not confine us to any specific class of regression functions; (2) nonparametric methods 
offer a promising link between the memory of the system (described by means of 
bandwidth parameter, which determines how many previous data points influences the 
present one) and the EO (defined as extrapolated prediction bands) and (3) flexibility of 
the nonparametric regression curve results in longer (yet equally robust) EOs than the 
ones obtained with OLS linear regression.  

Note that the PL method presented in Chapter 3 relies heavily on assumption of 
independence of the points in the learning sample50. However, by making such 
assumption (which we do deliberately for the sake of simplicity) we ignore the fact that 
the patterns of behavior of the stochastic part (such as autocorrelation structure of 
residuals) may also be of a significant importance. Simply assuming that the stochastic 
part is just uncorrelated noise may result in underperformance of the EO51. In future 
research we plan to address this problem by modifying the construction of the EO to 
account for the autocorrelation structure of the data.  

PL techniques discussed in this report identify the dynamics of the system of interest by 
means of a regression function. Yet, trend functions are not the only way of expressing 
patterns of data behavior. Therefore, alternative52 approaches to learning in a controlled 
prognostic are conceivable. For example, the techniques of granular computing such as 
quantization or clusterization (Pedrycz 2013) may be employed to understand the patterns 
of data behavior. These techniques are based on assigning each of the data points to one 
member of a discrete collection of classes (called also information granules) in order to 
reduce the level of detail which may blur the more fundamental features of the data (which 
are represented by these classes). The patterns in data behavior may then be expressed as 
transition rules from one information granule to the other, or more broadly by transition 
probabilities, that is, the likelihood that an observation taken at certain time belongs to a 
certain information granule given the class into which the previous observation falls. This 
approach is currently being explored (Puchkova et al).  

                                                 
50 It is required by both the OLS method of fitting a regression function to the data and by the way we 
determine the length of the EO (cf. Section 3.2). 
51 Recall that we decide to end the EO in the first moment for which layout of observations in period 
between the end of the learning block and this moment is unlikely under assumption that the extrapolated 
regression function fitted to the learning block is also a good approximate of the true trend in the testing 
block and the observations in the testing block are independent. However, if the observations were 
correlated then encountered layout of points might be not so unlikely and the actual EO length should be 
greater.     
52 i.e. alternative to the regression-based method presented in this report. 
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7. Summary 
In this report we introduce the paradigm of learning in a controlled prognostic context. It 
is a data-driven, exploratory approach to assessing the limits to credibility of any 
expectations about the future system’s behavior which are based on a time series of 
historical observations of the analyzed system. The aim of the proposed method is to 
indicate the typical length of time over which the trends in the historical data sample 
persist, as well as the level of uncertainty in identifying these trends.  

The key idea of learning in a controlled prognostic context is to deduce directly from the 
data their EO, that is, the spatio-temporal extent for which, in lieu of the knowledge 
contained in the historical observations, we may have a justified belief contains the 
system’s future evolution. The length of such EO indicates the time horizon within which 
predictions based on our current understanding of the system are credible. The initial 
width of the EO reflects the diagnostic uncertainty inherent to our imperfect 
understanding of the system, while the shape of the EO informs us about the strength of 
measures required to overcome the system’s inertia.  

We propose a method of constructing the explainable outreach based on the polynomial 
regression technique. The data sample is split into two parts: the LB and the TB. The 
dynamics of the system in the period covered by the LB is identified by means of a 
polynomial regression model and the EO expressing our expectations about the system’s 
evolution beyond the LB is constructed by extrapolating the prediction bands of the fitted 
regression model. These prediction bands represent both our expectations about the future 
system’s dynamic and its uncertainty. The EO is then tested against the remainder of the 
data (i.e., the TB) in order to indicate the time horizon within which predictions based on 
the fitted regression model are believed to be credible.  

We also propose a PL procedure which supports (with the use of an EO score) selection 
of the most appropriate type of regression model to represent the system’s dynamic. In 
addition, the PL procedure also allows us to derive an indicator of the typical length of 
the time interval within which predictions made using the regression model credibly 
match the actual future observations. 

The proposed PL method was tested on various sets of synthetic data in order to identify 
its strengths and weaknesses, formulate guidelines for optimal selection of the method 
parameters (the order of the polynomial regression and the length of the LB), and check 
how useful the proposed construction of the EO is in informing us about the immediate 
future of the observed system. We also indicate how the PL method can be applied in the 
context of Earth system sciences applying it to analyze historical anthropogenic CO2 
emissions and atmospheric CO2 concentrations. We conclude that the most robust of the 
analyzed methods is the one based on linear regression. However, the EOs obtained using 
this method and expressing horizons within which linear projections are credible are 
rather short.  
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8. Acronyms 
EO  Explainable outreach  

GHG  Greenhouse gases 

LB Learning block (part of the learning sample to which regression model is 
fitted) 

OLS  Ordinary least squares method of fitting a regression function to the data 

PL Learning in a controlled prognostic context (prognostic learning for short) 

TB testing block (part of the learning sample used to test the EO in order to 
determine its length) 

TSA  Time series analysis (statistical techniques of analysis of time series) 
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Appendix: Nonparametric kernel-based regression 
Nonparametric regression is an alternative to conventional parametric methods. It can be 
used when we do not want to be limited to the predetermined form of the estimated 
regression function; when we need to relax some assumptions from the regression 
analysis while maintaining a good estimate; or simply when the nature of the data 
analysed does not allow for selection of a reasonable model.  

To a rich family of nonparametric regression methods (Wasserman 2006, Härdle 1990, 
Fan 1992, Green & Silverman 1994, Györfi et al. 2002) belong for example, local 
averaging, regression and smoothing splines (Rice & Rosenblatt 1981, Rice & Rosenblatt 
1983, Stone 1994, Eubank 1999), wavelets (Nason 1996, Johnstone & Silverman  1997, 
Wang 1996), or orthogonal series (Green & Silverman 1994). However, the kernel 
estimation is especially noteworthy. It belongs to popular smoothing techniques 
(Simonoff  1996, Silverman 1986), that allow for estimation even in the case of 
complicated relationships between explanatory and response variables.  

This appendix is dedicated to the application of the prognostic learning method to 
nonparametric kernel-based regression in real-life case studies from Chapter 5:  

(1) Global CO2 emissions from technosphere.  

(2) Concentration of the CO2 in the atmosphere. 

 

A.1 Kernel functions 
The kernel estimation (see e.g., Wasserman 2006, Green & Silverman 1994, Hart 1991), 
is an extension of local averaging and involves the use of the so-called kernel function K, 
being nonnegative, symmetric, square integrable, and satisfying the conditions 

� 𝐾𝐾(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1,    � 𝑡𝑡𝐾𝐾(𝑡𝑡)𝑑𝑑𝑡𝑡 = 0,   and 
+∞

−∞

+∞

−∞
� 𝑡𝑡2𝐾𝐾(𝑡𝑡) 𝑑𝑑𝑡𝑡 < ∞.
+∞

−∞
 

Given these characteristics the specific choice of a kernel function is not of critical 
importance. One can take any symmetric probability density function (PDF) of a 
continuous random variable with zero mean and finite variance53.  

The most popular choices of kernel functions (Figure A.1) are the Gaussian (normal) 
kernel (i.e. PDF of the standard normal distribution), and a few kernels with compact 
support, like rectangular (uniform), tricube, or the Epanechnikov kernel.  

                                                 
53 The choice of the kernel K may slightly affect the asymptotic properties of the kernel estimator. For 
results in finite samples, the difference is negligible.  
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                           Figure A.1. Four most popular kernel functions. 
 
 
A.2 Kernel-based regression methods 
 
Kernel regression has been known for many years and various kernel estimators (KE) 
have been used. The most important (see Table A.1 for overview) are:  

- Nadaraya-Watson KE (Nadaraya 1964, Watson 1964),  
- k-nearest neighbours KE and its modifications (Wasserman 2006),  
- Priestley-Chao KE (Priestley & Chao 1972),   
- Gasser-Müller KE (Gasser & Müller 1984),   
- Local polynomial regression, in  particular local linear  KE (Li & Racine 2004, 
Ruppert & Wand 1994, Fan & Gijbels 1997).   
Some of them have also been considered and analysed in the case of time series data or 
correlated errors (see e.g., Hart 1991, Opsomer  et al. 2001, Altman 1990). In Section A.4 
two kernel estimators are used: the Nadaraya-Watson KE (NWKE)—mostly because of 
its simplicity in applications, and the local linear KE (LLKE)—because of its properties 
and good results, even for small samples.  

Each of the aforementioned KEs (except the local polynomial KE) can be considered a 
linear smoother of the form 

�̂�𝑟(𝑥𝑥) = �𝑙𝑙𝑖𝑖(𝑥𝑥)𝑌𝑌𝑖𝑖                                                                                 (𝐴𝐴. 1)
𝑛𝑛

𝑖𝑖=1

 

                                      

where �𝑥𝑥1,𝑌𝑌1�, �𝑥𝑥2,𝑌𝑌2�, … , �𝑥𝑥𝑛𝑛,𝑌𝑌𝑛𝑛�, denote the bivariate data, corresponding to 
continuous random variables x and Y,  

𝑌𝑌𝚤𝚤� =  �̂�𝑟(𝑥𝑥𝑖𝑖) + ε𝑖𝑖 ,   𝑖𝑖 = 1,2, …𝑛𝑛, 
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and residuals ε𝑖𝑖, i=1,2,…n, are assumed to be independent54 and normally distributed, 
with zero mean and standard deviation 𝜎𝜎 > 0.55   

Functions 𝑙𝑙𝑖𝑖(𝑥𝑥),  i=1,2,…n, satisfy condition 

�𝑙𝑙𝑖𝑖(𝑥𝑥) = 1
𝑛𝑛

𝑖𝑖=1

 

and take various forms, depending on the estimator considered (Table A.1).  

 

Table A.1. Overview of the most popular kernel regression estimators. The methods used 
in this appendix are marked in green. 

KE 𝒍𝒍𝒊𝒊(x) in (A.1) Properties & Remarks 

Nadaraya-
Watson  
(NWKE) 

 

𝑙𝑙𝑖𝑖(𝑥𝑥) =
𝐾𝐾 �𝑥𝑥 − 𝑥𝑥𝑖𝑖

ℎ � 

∑ 𝐾𝐾 �
𝑥𝑥 − 𝑥𝑥𝑗𝑗
ℎ �𝑛𝑛

𝑗𝑗=1

 

- local constant estimator  
- can be adopted for (discrete) time series case 
- several ‘rules of thumb’ for selection of  
bandwidth h 
- biased (design bias and strong boundary 
bias) 
- requires large samples 

k-nearest 
neighbours 
(weighted) 
 (k-NNKE) 

 

𝑙𝑙𝑖𝑖(𝑥𝑥) =
𝐾𝐾 �𝑥𝑥 − 𝑥𝑥𝑖𝑖

𝑅𝑅 �
1
𝑛𝑛∑ 𝐾𝐾 �

𝑥𝑥 − 𝑥𝑥𝑗𝑗
𝑅𝑅 �𝑛𝑛

𝑗𝑗=1

 

  where R denotes the distance between 
x  and its k-nearest neighbour;  

- for rectangular kernel, it reduces to NWKE 

- 𝑘𝑘 = 2𝑛𝑛ℎ𝑓𝑓(𝑥𝑥), where f denotes the PDF of the 
explanatory variable  

-biased (both design and boundary bias) 

- various modifications and simplifications; 
various weights 

- require large samples 

Priestley-Chao 
(PCKE) 

 

𝑙𝑙𝑖𝑖(𝑥𝑥) =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

ℎ 𝐾𝐾 �
𝑥𝑥 − 𝑥𝑥𝑖𝑖
ℎ � 

- applicable to compactly supported data 
(rescaling option, with good results) 
- requires kernel function with compact 
support 
- no design bias, but strong boundary bias 
- requires large samples 

Gasser-Müller  
(GMKE) 𝑙𝑙𝑖𝑖(𝑥𝑥) =

1
ℎ � 𝐾𝐾 �

𝑥𝑥 − 𝑢𝑢
ℎ �

ν𝑖𝑖

ν𝑖𝑖−1

𝑑𝑑𝑢𝑢 

           where 𝑥𝑥𝑖𝑖 ≤ ν𝑖𝑖 ≤  𝑥𝑥𝑖𝑖+1 

- continuous version of PCKE 
- partition {ν𝑖𝑖}, i=1,..n-1 required 
- applicable to compactly supported data 
(rescaling option with good results) 
- requires kernel function with compact 
support 
- no design bias, but boundary bias 
- requires large samples 

                                                 
54 For some kernel-based methods the independence assumption can be relaxed, especially when applying 
KE to time series data (Section A.3). 
55 In general, standard deviation 𝜎𝜎 does not need to be constant. Sometimes 𝜎𝜎(𝑥𝑥) > 0, is considered 
instead.  



 68 

Local linear  
(LLKE) 

𝑙𝑙𝑖𝑖(𝑥𝑥) = 𝑏𝑏𝑖𝑖(𝑥𝑥)
∑ 𝑏𝑏𝑗𝑗(𝑥𝑥)𝑛𝑛
𝑗𝑗=1

, where 

𝑏𝑏𝑖𝑖(𝑥𝑥) = 𝐾𝐾 �𝑥𝑥−𝑥𝑥𝑖𝑖
ℎ
� (𝑆𝑆𝑛𝑛,2(𝑥𝑥)− (𝑥𝑥𝑖𝑖 − 𝑥𝑥)𝑆𝑆𝑛𝑛,1,(𝑥𝑥)) 

𝑆𝑆𝑛𝑛,𝑗𝑗 (𝑥𝑥) = �𝐾𝐾�
𝑥𝑥 − 𝑥𝑥𝑖𝑖
ℎ

�
𝑛𝑛

𝑖𝑖=1

(𝑥𝑥𝑖𝑖 − 𝑥𝑥)𝑗𝑗,    

- particular case of local polynomial regression 

- local linear smoother 

- can be adopted for (discrete) time series cases 

- no boundary nor design bias 

- requires large samples, although thanks to 
good local fit, better results for smaller 
samples 

Local 
polynomial KE 

Estimate locally (at a point x) that 
polynomial of degree p, which 
approximates  𝑟𝑟 �(𝑥𝑥) in a small 
neighbourhood of the point x, in the 
best way. 

- becomes NWKE for p=0, and LLKE for p=1 

- in general cannot be represented as a linear 
smoother given by (A.1) 

- no boundary nor design bias  

- require large samples, although thanks to 
good local fit, reasonable results for smaller 
samples; 
- for larger p requires larger samples 

 

 

 

 

A.2.1 The problem with bandwidth selection 
 

Weights 𝑙𝑙𝑖𝑖(𝑥𝑥), i=1,…,n, in formula (A.1) depend on kernel function K, and a smoothing 
parameter ℎ > 0 (also called  a bandwidth) 56, such that  

ℎ → 0  but  𝑛𝑛ℎ → ∞, as 𝑛𝑛 → ∞. 
The choice of optimal value for the smoothing parameter is crucial57 and corresponds to 
a problem of finding the “golden mean”, by minimizing the mean squared error (MSE), 
being the sum of squared bias58 and sampling variance 

𝑀𝑀𝑆𝑆𝐸𝐸��̂�𝑟(𝑥𝑥)� = 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠��̂�𝑟(𝑥𝑥)�
2

+ 𝑉𝑉𝑎𝑎𝑟𝑟��̂�𝑟(𝑥𝑥)�, 

or its asymptotic and integrated versions. 

The bandwidth parameter h controls the smoothness of estimated regression function. 
Larger h results in a smoother curve, but sometimes with a worse fit and hence a larger 
variance. Smaller h in turn means a better fit, with smaller variance, it may, however, 
cause a greater bias (see Figure A.2).  A h that is too large therefore means oversmoothing 
(possibly failing to reflect the character of the data analysed), while too small leads to 
undersmoothing.   
 

                                                 
56 There are also methods involving variable bandwidths. Here, we focus on methods with fixed bandwidth. 
57 See e.g. (Wasserman 2006), (Simonoff 1996), etc. 
58 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠 (�̂�𝑟(𝑥𝑥)) = 𝐸𝐸(�̂�𝑟(𝑥𝑥)) − �̂�𝑟(𝑥𝑥) 
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Figure A.2. Varying the smoothing parameter: examples of the NWKEs fitted to the data following 
sinusoidal trend (from Section 4.3.5) given by 𝑔𝑔(𝑥𝑥) = sin(0.018 × (𝑥𝑥 − 100)), with standard deviation 
of noise 𝜎𝜎 = 0.01 × (max𝑔𝑔 − min𝑔𝑔), where n=400, for various values of h, and using the Gaussian 
kernel. 

 

The shape of  �̂�𝑟(𝑥𝑥) changes for various values of h. The plots in the first row illustrate 
what happens when the smoothing parameter is too small. The variance in that case is 
very small, which results in a good fit, but it is at the price of an undersmoothed and 
strongly fluctuating regression curve. The sample is relatively large (n=400), so the 
‘noisy’ shape of the estimator is caoused by overfit. Increasing h gives a smoother �̂�𝑟(𝑥𝑥), 
as can be seen for h=2.5 and 20. The plot in the lower right corner of Figure A.2 illustrates 
the evident underfit (resulting in large variance)—the curve is oversmoothed and does 
not grasp the behaviour of the data.  

It is worth noting that, despite the problem with bandwidth selection, even the simple 
NWKE approximates the regression function fairly well. Despite the almost 10-fold 
difference between the values of h, the two figures at the bottom left look satisfactory. To 
assess which of them really performs better, one can look at confidence or prediction 
intervals (the latter works better in this regard, because of more emphasis on the standard 
error). 

Since the degree of smoothing corresponds to the variance of �̂�𝑟(𝑥𝑥), it also affects the 
width of prediction intervals59. Oversmoothing leads to intervals that are too wide 
(interpreted as large uncertainty of results), while undersmoothing means the intervals are 
too narrow (Figure A.3). 

                                                 
59 see Section A.2.2 
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Figure A.3. Varying the smoothing parameter and illustrating its impact on 95% prediction intervals (green 
dashed lines): examples of the NWKEs fitted (red solid lines) to the data following a sinusoidal trend (from 
Section 4.3.5) given by 𝑔𝑔(𝑥𝑥) = sin(0.018 × (𝑥𝑥 − 100)), with a standard deviation of noise 𝜎𝜎 = 0.01 ×
(max𝑔𝑔 − min𝑔𝑔), where n=400, for various values of h, and using a  Gaussian kernel. 
 

In general, h depends on the sample size n, and asymptotically ℎ ∝  𝑛𝑛−
1
5. The formulas 

for optimal h are different for different kernel methods. For instance, the optimal value 
of the smoothing parameter60 in the case of the NWKE satisfies the following formula61 

ℎ =

⎝

⎜
⎛ σ2 ∫ 𝐾𝐾2(𝑥𝑥)𝑑𝑑𝑥𝑥+∞

−∞  ∫ 𝑓𝑓(𝑥𝑥)−1𝑑𝑑𝑥𝑥+∞
−∞

𝑛𝑛 ∫ 𝑥𝑥2𝐾𝐾(𝑥𝑥)𝑑𝑑𝑥𝑥+∞
−∞  ∫ ��̂�𝑟′′(𝑥𝑥) + �̂�𝑟′(𝑥𝑥) 𝑓𝑓

′(𝑥𝑥)
𝑓𝑓(𝑥𝑥) �

2
𝑑𝑑𝑥𝑥+∞

−∞ ⎠

⎟
⎞

1
5

                     (𝐴𝐴. 2) 

while for the LLKE62  

ℎ = �
σ2 ∫ 𝐾𝐾2(𝑥𝑥)𝑑𝑑𝑥𝑥+∞

−∞  ∫ 𝑓𝑓(𝑥𝑥)−1𝑑𝑑𝑥𝑥+∞
−∞

𝑛𝑛 ∫ 𝑥𝑥2𝐾𝐾(𝑥𝑥)𝑑𝑑𝑥𝑥+∞
−∞  ∫ ��̂�𝑟′′(𝑥𝑥)�2𝑑𝑑𝑥𝑥+∞

−∞

�

1
5

.                        (𝐴𝐴. 3) 

                                                 
60 see e.g. (Wasserman 2006), (Green & Silverman 1994), etc. 
61 The term r�′(x) f

′(x)
f(x)

  in (A.2) denotes the design bias, typical for the NWKE (it is not present for the 
LLKE).  
62 see e.g. (Ruppert & Wand 1994), (Fan & Gijbels 1997), etc. 
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The values ∫ 𝐾𝐾2(𝑥𝑥)𝑑𝑑𝑥𝑥+∞
−∞  and ∫ 𝑥𝑥2𝐾𝐾(𝑥𝑥)𝑑𝑑𝑥𝑥+∞

−∞  depend on the kernel used. For the Gaussian 
kernel ∫ 𝐾𝐾2(𝑥𝑥)𝑑𝑑𝑥𝑥+∞

−∞ ≅ 0.28, while the latter one represents the variance of the standard 
normal distribution, i.e. ∫ 𝑥𝑥2𝐾𝐾(𝑥𝑥)𝑑𝑑𝑥𝑥+∞

−∞ =1. But formulas (A.2) and (A.3) also involve 
unknown regression function �̂�𝑟(𝑥𝑥), that needs to be estimated, unknown variance σ2, as 
well as 𝑓𝑓(𝑥𝑥), that is, the PDF of the explanatory variable. The methods to estimate them 
depend on problem requirements, the data to be analysed, and on the KE considered. In 
particular, for the LLKE or the GMKE, σ2 can be estimated by an (asymptotically 
unbiased) estimator of the form (Gajek & Kaluszka 1993) 

σ�2 =
1

6(𝑛𝑛 − 2)
�(𝑌𝑌𝑖𝑖+2 − 2𝑌𝑌𝑖𝑖+1 + 𝑌𝑌𝑖𝑖)2
𝑛𝑛−2

𝑖𝑖=1

                                                      

For the NWKE, the much simpler 

σ�2 =
1

2(𝑛𝑛 − 1)
�(𝑌𝑌𝑖𝑖+1 − 𝑌𝑌𝑖𝑖)2
𝑛𝑛−1

𝑖𝑖=1

 

can also be used. However, both formulas work well mostly for large samples.  

The density function of the explanatory variable can be estimated using nonparametric 
methods, like kernel density estimation (Silverman 1986), or (less often) applying 
parametric methods (e.g., MLE, provided that, we have additional information on that 
variable and its distribution). In complicated cases, semiparametric methods can also be 
used  (e.g., Jarnicka 2009). To estimate �̂�𝑟′′(𝑥𝑥) and  ∫ ��̂�𝑟′′(𝑥𝑥)�2𝑑𝑑𝑥𝑥+∞

−∞  additional information 
on the data is required, since the latter one corresponds to the curvature of the estimated 
regression curve, or approximation by the curvature of some known curve can be used. 
Similarly, the term �̂�𝑟′(𝑥𝑥) 𝑓𝑓

′(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

, which is responsible for the bias. 

For some estimators, like the NWKE, there are a few ‘rules of thumb’ for finding 
reasonable value of h, which work well in most cases, especially for large samples (but 
are less useful when applied to time series data or in the case of correlated errors).  
Moreover, the smoothing parameter can also be chosen by the cross-validation (CV) 
criterion63 

𝐶𝐶𝑉𝑉(ℎ) = �(𝑌𝑌𝑖𝑖 − �̂�𝑟(𝑥𝑥𝑖𝑖))2
𝑛𝑛

𝑖𝑖=1

θ�𝑧𝑧(𝑥𝑥𝑖𝑖)�, 

where 

𝑧𝑧(𝑥𝑥𝑖𝑖 ) =
𝐾𝐾(0)

∑ 𝐾𝐾 �
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗
ℎ �𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

 . 

The penalizing function 𝜃𝜃(⋅) takes various forms, e.g., θ(𝑧𝑧) = 1
(1−𝑧𝑧)2

,  (generalized CV),  
or θ(𝑧𝑧) = 𝑒𝑒2𝑧𝑧 (AIC – Akaike’s Information Criterion), and ensures various properties 
(e.g., stipulating small bias or low variance)64. The values of h obtained using the CV 
criteria are usually close to the MSE-optimal ones. The problem starts with a violation of 
the assumption of independence of the residuals, as correlation may decrease the 
                                                 
63 see e.g. (Wasserman 2006), etc. 
64 This refers to finite samples, as they all guarantee the same asymptotic properties. 
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bandwidth indicated by the CV criterion, so the curve obtained is undersmoothed 
(Opsomer et al. 2001, De Brabanter et at 2011). 
 

A.2.2 100%(1-α)-Prediction Intervals 
 
Choosing the right bandwidth h is of great importance for the expected estimation result. 
Since this choice compromises between maximizing the variation of the KE and its bias, 
it depends on a particular application which one of these two is more important and should 
be emphasized by h. In this report, we focus primarily on the variance which determines 
the prediction intervals (analysing it, but not trying to make it as small as possible, as this 
may affect the EO). According to the Central Limit Theorem (CLT), regression estimates 
𝑟𝑟 �(𝑥𝑥) in (A.1) have an asymptotic normal distribution 

𝑟𝑟 �(𝑥𝑥) − 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠(𝑟𝑟 �(𝑥𝑥))

�𝑉𝑉𝑎𝑎𝑟𝑟�𝑟𝑟 �(𝑥𝑥)�
 → 𝑁𝑁(0,1) 

Assuming no bias, the asymptotic 100%(1-α) - prediction interval is of the form 

𝑟𝑟 �(𝑥𝑥) ± 𝑧𝑧1−α2
�𝑉𝑉𝑎𝑎𝑟𝑟�𝑟𝑟 �(𝑥𝑥)�  + σ�(𝑥𝑥)2 

where 𝑧𝑧1−α
2
 denotes the (1 − α

2
 )th quantile of the standard normal distribution. For in-

sample points, that is, for points from the LB,  𝑟𝑟 �(𝑥𝑥) denotes the KE, and σ�2(𝑥𝑥) an 
estimate of the variance of residuals (corresponding to the standard error), while for new 
observations 𝑥𝑥∗, 𝑟𝑟 �(𝑥𝑥∗) denotes the prediction at 𝑥𝑥∗, and σ�(𝑥𝑥∗)2 prediction error. For the 
NWKE and the LLKE the variance is asymptotically equal 

 

𝑉𝑉𝑎𝑎𝑟𝑟�𝑟𝑟 �(𝑥𝑥)� ≈
σ�2(𝑥𝑥)∫ 𝐾𝐾2(𝑡𝑡)𝑑𝑑𝑡𝑡+∞

−∞

𝑛𝑛ℎ𝑓𝑓(𝑥𝑥)  , 

 
which gives the in-sample prediction bands (PB) of the form 

 

𝑟𝑟 �(𝑥𝑥𝑖𝑖) ± 𝑧𝑧1−α2
�σ�

2(𝑥𝑥𝑖𝑖)∫ 𝐾𝐾2(𝑡𝑡)𝑑𝑑𝑡𝑡+∞

−∞

𝑛𝑛ℎ𝑓𝑓(𝑥𝑥𝑖𝑖)
 + σ�(𝑥𝑥𝑖𝑖)2                            (𝐴𝐴. 4) 

 
and  

𝑟𝑟 �(𝑥𝑥∗) ± 𝑧𝑧1−α2
��

σ�2(𝑥𝑥𝑖𝑖)∫ 𝐾𝐾2(𝑡𝑡)𝑑𝑑𝑡𝑡+∞

−∞

𝑛𝑛ℎ𝑓𝑓(𝑥𝑥∗)

𝑛𝑛

𝑖𝑖=1

 + σ�(𝑥𝑥∗)2                       (𝐴𝐴. 5) 

for a new observation 𝑥𝑥∗ (Green & Silverman 1994). 
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Formula (A.4) was used to construct the prediction intervals in Figure A.3.  It is worth 
mentioning that the approximately optimal value of the smoothing parameter is h=7.72, 
while for the LLKE applied to the same data, h=8.06 (see Figure A.4 for 95% in-sample 
PBs).  Formula (A.5) will in turn be used to construct the EO in the procedure described 
in Section 3.2. 

 
Figure A.4. 95% in-sample (LB) prediction bands (dashed) for the NWKE (left) and the LLKE (right) with 
the Gaussian kernel and approximately optimal bandwidths h=7.72 and h=8.06 for NWKE and LLKE 
respectively; Thanks to a large sample (LB=400 dataset from Figure A.2 and A.3) and independent 
observations the results are almost identical. The residual standard error is equal 0.094 and 0.093 for NWKE 
and LLKE respectively.  
 

A.3 Kernel estimation of time series data 

 
In this section we focus on time series, where time points are fixed and equally spaced. 
Following the notation from Section 3.1, let the learning block (LB) contain n 
observations 𝑋𝑋1, 𝑋𝑋2, …, 𝑋𝑋𝑛𝑛, taken at the time points t1, …, tn, where 𝑡𝑡𝑖𝑖 = 𝑖𝑖, i=1,…n.    

Consider 

𝑥𝑥�(𝑡𝑡) = �̂�𝑟(𝑡𝑡) + 𝜀𝜀𝑡𝑡,                                                                                                
 

where 𝑥𝑥(𝑡𝑡) = Xt  is a value of the observation taken at time t, and the noise term 𝜀𝜀𝑡𝑡 is 
normally distributed with zero mean and standard deviation 𝜎𝜎 > 0.65  We assume that 
residuals 𝜀𝜀𝑡𝑡, t = 0, 1, 2, …, are correlated and their correlation decreases in inverse 
proportion to the distance between them66.   

                                                 
65 Assumptions on residuals, when compared to parametric regression techniques can be relaxed. Two 
scenarios are considered in the literature: (1) allowing non-normal distribution, but ensuring covariance 
stationarity and possibly weak correlation (Brabanten et al. 2011, Opsomer et al. 2001), or (2) ensuring 
normality and analyzing correlation structure, e.g. (Li & Li, 2009).  Both lead to problems with 
appropriate bandwidth selection, the second one, however, allows for asymptotically better results, in 
particular in view of predictions and the EO. 
66 This assumption corresponds to the condition 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 �𝜀𝜀𝑡𝑡𝑖𝑖, 𝜀𝜀𝑡𝑡𝑗𝑗� = ρ(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗), based on unknown 
stationary correlation function ρ(.). This allows for correlation decaying, when 𝑛𝑛 → ∞, and hence better 
results for large samples. We will not however be interested in analysing the correlation structure in 
detail, using only ‘independence-like’ approximations. 
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When analysing a time series, one has to deal with specific nature of the data, resulting 
in a need for modifications in optimal bandwidth selection methods. Moreover, the 
problem with applying the kernel methods to time series data is also connected to the 
discrete distribution of the explanatory variable t (discrete time), which has to be 
approximated by a continuous estimate.  

 

A.3.1 Bandwidth selection in the time series case 
The problem of optimal bandwidth selection, described and illustrated in Section A.2, is 
now more visible. The time points are equally spaced, and more importantly, the data 
points (and hence the residuals) are correlated, so the shape of the estimated regression 
function changes considerably as the smoothing parameter changes (see Figures A.5 
(NWKE) and A.6 (LLKE) for examples).  

 

   

 
 Figure A.5. Varying the smoothing parameter: examples of the NWKEs fitted to the data on global CO2 
emissions from technosphere (n=53) for various values of h, and the Gaussian kernel. 

 

The NWKE is fitted to the data on global CO2 emissions from technosphere. To illustrate 
the problems with finding the optimal bandwidth for time series, we take the whole 
sample, consisting of n=53 data points and consider six exemplary values of h.     

It is easy to see that the values h=4.45, 7.5, and 10 are too large, resulting in 
oversmoothing, which means that only the central part of the data is estimated, and the 
result is rather poor. On the other hand, h=0.001 is too small, showing a perfect fit, with 
no visible uncertainty. Both h=0.5 and 2.45 seem to be quite good. h=0.5 seems to better 
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describe the behaviour of the data. h=2.45, however, results in a slightly looser fit, which 
may be better from the EO perspective.   

Note that, in four of the six examples given, we have to deal with the boundary bias, 
which is characteristic for the NWKE. It can significantly affect the length of the EO, 
since it cannot be overcome by slightly stronger smoothing, and greater variance. 
Therefore the LLKE is used for the EO analysis, as it is free from boundary bias. For 
comparison, in Figure A.6, the LLKE is fitted to the same data series, using the Gaussian 
kernel, and taking the same exemplary values of h.  

 

  

   
Figure A.6. Varying the smoothing parameter: examples of the LLKEs fitted to the data on global CO2 
emissions from technosphere (n=53) for various values of h, with Gaussian kernel. 

 

It is easy to observe that the LLKE (Figure A.6) gives better results than the NWKE 
(Figure A.5). This is primarily related to the lack of boundary bias. Because the estimator 
is fitted to the data locally, even when the smoothing parameter h is too large (e.g. for 
h=4.5 or 7.5) the LLKE seems to properly identify the general shape of the estimated 
relationship.  

This is also reflected in the variation of the standard error in those cases (Figure A.7), as 
the standard error (SE) increases much faster in the case of the NWKE.  
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Figure A.7. The relationship between the smoothing parameter and the standard error for the NWKE (left) 
and the LLKE (right) considered in Figures A.5 and A.6. 
 

Optimal bandwidth parameter is dataset-specific. Repeating the same analysis as above 
for the concentration of CO2 in the atmosphere (second dataset from Chapter 5) gives 
slightly different results (Figures A.8 and A.9).  

 

 

  
Figure A.8. Varying the smoothing parameter: examples of the NWKEs fitted to the data on 
concentration of the CO2 in the atmosphere (n=53) for various values of h, with Gaussian kernel. 
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Figure A.9. Varying the smoothing parameter: examples of the LLKEs fitted to the data on concentration 
of the CO2 in the atmosphere (n=53) for various values of h, with Gaussian kernel. 

 

Although varying the smoothing parameter changes the results, the KEs used to estimate 
the regression function seem to work well. As above (Figures A.5 and A.6) the LLKE 
performs better, but the difference is not as evident as for the CO2 emissions data. The 
main reason is the scale of the standard errors.  The comparison of standard errors shows 
that the results of the NWKE are better (Figure A.10), that is,  the standard errors of the 
LLKE are smaller and the difference is significant, as presented in Figure A.7. 

 
Figure A.10. Relationship between the smoothing parameter and the standard error for the NWKE (left) 
and the LLKE (right) considered in Figures A.8 and A.9. 
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Since the smoothing parameter cannot be chosen using the CV criterion for time series 
(usually correlation causes oversmoothing (Opsomer et al. 2001)), formulas (A.2) and 
(A.3) should be used.  

To estimate unknown factors in (A.2) and (A.3), some additional assumptions are 
required.  
- As a kernel function K, we take the Gaussian kernel, so 

� 𝐾𝐾2(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞

≅ 0.28, .� 𝑥𝑥2𝐾𝐾(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
= 1.  

- The explanatory variable has a discrete uniform distribution, and can therefore be roughly 
approximated by its continuous version. In particular, the PDF of the uniform distribution over 
an interval is nonzero only over this interval. For simplicity, the factor related to that PDF is 
constant and can therefore be omitted. To estimate the PDF of the explanatory variable in PB, we 
use kernel density estimation with the bandwidth chosen by the Silverman’s rule of thumb 

ℎ = (1.06σ
𝑛𝑛

)
1
5   (Silverman 1986). 

- For simplicity, we assume that, the unknown regression function is close to a straight 
line. The factor ∫ ��̂�𝑟′′(𝑥𝑥)�2𝑑𝑑𝑥𝑥+∞

−∞  is constant and can also by omitted.  
- The variance σ�2is assumed constant, and is estimated by  

σ�2 =
1

6(𝑛𝑛 − 2)
�(𝑌𝑌𝑖𝑖+2 − 2𝑌𝑌𝑖𝑖+1 + 𝑌𝑌𝑖𝑖)2
𝑛𝑛−2

𝑖𝑖=1

                                                (𝐴𝐴. 6) 

Therefore, in Section A.4, to find the bandwidth h, we use the following rule of thumb 

ℎ = �
σ�20.28

𝑛𝑛
�

1
5

                                                         (𝐴𝐴. 7) 

This corresponds to known rules of thumb for NWKE (Green & Silverman 1994), and is 
used for both NWKE and the LLKE. In this case, formula (A.7) corresponds rather to the 
optimal bandwidth for the LLKE (no design bias factor), but assuming no bias in the 
NWKE and approximating h by the same formula, (as for the LLKE) leads to a slight 
oversmoothing (and hence that assumption becomes reasonable). 

 

A.3.2 In-sample prediction bands – the time series case 
For time series data the independence assumption is not satisfied, and, in general, some 
asymptotic properties of the KE may not be satisfied (Hart 1991). However, for some 
cases of correlation structure, especially assuming the correlation decays in inverse 
proportion to the distance between observations  (Opsomer et al. 2001), or for the AR 
correlation structure (Li & Li 2009),  asymptotic properties of the KE are close the ones 
that hold in the independent case. Moreover, generalized version of the CLT, indicates 
the asymptotic normal distribution, which allows for the use of formulas (A.4) and (A.5) 
to find the asymptotic prediction bands. 

 

The construction of the PBs is connected with the choice of the smoothing parameter. 
Adding 95% prediction bands helps in illustrating differences between the results 
obtained in Section A.3.1 for various values of h.   



 79 

 

  
Figure A.10. Varying the smoothing parameter and illustrating its impact on the variance in terms of 95% 
prediction bands (black dashed lines): examples of the NWKEs fitted to the data on global CO2 emissions 
from technosphere (n=53) for various values of h, with a Gaussian kernel. 

 

 

For h=0.001, prediction bands do not cover all the data points depicted, since the variance 
of the estimated regression function is too small and the prediction interval too narrow. 
Values h=0.5 and 2.45 provide different results—the latter appears to be slightly too 
large, increasing the variance and causing the wider prediction interval. For h=10, the 
regression estimate is obviously oversmoothed. The shape of the data is not properly 
reflected, and despite the large variance, only few data points fall within the prediction 
bands67. 

 

 

 

                                                 
67 That effect is partly connected with boundary bias of the NWKE. 
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Figure A.11 Varying the smoothing parameter and illustrating its impact on the variance in terms of  95% 
prediction bands (black dashed lines): examples of the LLKEs fitted to the data on global CO2 emissions 
from technosphere (n=53) for various values of h, with a Gaussian kernel. 

 

  

 
Figure A.12 Varying the smoothing parameter and illustrating its impact on the variance in terms of  95% 
prediction bands (black dashed lines): examples of the NWKEs fitted to the data on concentration of the 
CO2 in the atmosphere (n=53) for various values of h, with a Gaussian kernel. 
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Figure A.13 Varying the smoothing parameter and illustrating its impact on the variance in terms of  95% 
prediction bands (black dashed lines): examples of the LLKEs fitted to the data on concentration of the CO2 
in the atmosphere (n=53) for various values of h, with a Gaussian kernel. 

 

 
A.4 Real-life case studies 
The methods of PL from Chapter 3, in particular the procedure for assessing the EO, are 
applied to real-life case studies, considered in Chapter 5: (1) global CO2 emissions from 
the technosphere, and (2) concentration of CO2 in the atmosphere. 

PL is tested in terms of the EO (described in Section 3.2) for both aforementioned kernel 
regression estimators: LLKE and the much simpler NWKE.  

The most problematic aspect of using nonparametric methods is their requirement of a 
large sample size, but each of them (including kernel regression) depend on the sample 
size in a different way. Because of the asymptotic properties of kernel estimators, the 
sample should be sufficiently large, although it is difficult to specify the threshold above 
which the results will be good. The conducted analyses and simulations (Wasserman 
2006, Green & Silverman 1994) indicate that this depends on the type of data, in particular 
on their distribution. Also, correlation of data (as in the time series case) requires a larger 
number of test points (Opsomer at al. 2001, Hart 1991). It can therefore be expected that 
for LBs of 25 or slightly more training points, the results may not be satisfactory, which 
will influence the EO in some way.  
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A.4.1. Procedure for analysing the EO, in the case of the kernel regression 
To test the PL method, the following procedure is considered: 

Given the sample of 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 data points, we perform the following steps. 

Step 1. We take the LB of 𝑛𝑛1 data points. 
- The unknown variance of residuals is estimated by (A.6) 
- The smoothing parameter is found by (A.7) 
- The NWKE and the LLKE are used. 
- The model assumptions are verified. 
- The in-sample 95% prediction bands are found for both NWKE and LLKE, using 
(A.4)  
Step 2. We take the testing sample of  𝑛𝑛2 data points. 
- The out-of-sample 95% prediction bands are found for both the NWKE and LLKE, 
using (A.5)  
- The length and the score of the EO are found, using the procedure described in Section 
3.2. 
Step 3. We increase the LB by one and repeat Step 1 and Step 2. 
 

A.4.2. Global CO2 emissions from the technosphere 

The procedure described in Section A.4.1 is applied, starting with 𝑛𝑛1 = 25. The six 
exemplary stages are presented in Figures A.14 (for the LLKE) and A.15 (NWKE).   

   
Figure A.14. Six exemplary stages of the PL procedure (LB lengths: 26, 33, 36, 38, 43, 49): the LLKE 
using the Gaussian kernel. 
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Figure A.15. Six exemplary stages of the PL procedure (LB lengths: 26, 33, 36, 38, 43, 49): the NWKE 
using a Gaussian kernel 

For both estimators the 95% out-of-sample PBs (for the shortest LBs open quite fast68, 
but the PBs for the NWKE, in particular for the shortest LBs, seem to stabilize at first, 
increasing rapidly after a few out-of-sample points. This is related to the boundary bias 
of the NWKE, in particular for small samples.  

The PBs for the LLKE better reflect the estimated relationship between explanatory and 
response variables, which also results in the longer EO. The prediction intervals for the 
NWKE are wider, which is connected with the greater standard errors, and results in lower 
EO scores (Figure A.17). 

In contrast to the EO lengths presented in Figure 37—as a result of using parametric linear 
regression—no decreasing trend can be observed, for LB>30. The EO lengths decrease 
and increase, for the LLKE having peaks at LB=32 (local maximum), 34 (local 
minimum), 37 (max), and then 42 (min), 43 (max), 44 (min) and 47 (max). For LB>48, 
all the remaining data points are within the PBs, giving the infinite length.  

It is worth mentioning, that in spite of differences in the EO lengths, the results obtained 
using both estimators show similar monotonic behavior (Figure A.16). A similar effect 
can be observed for the EO scores (Figure A.17). This means that the EO depends on the 
data. Since in the case of the LLKE standard errors are smaller than for the NWKE, the 
prediction intervals for LLKE are narrower, and the data type affects the EO outcome 
more strongly. 

 

                                                 
68 This is connected with prediction errors increasing very fast. The in-sample errors behavior is 
completely different (Figures A.10 and A.11), as they seem to be constant. 
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Figure A.16. The EO length as a function of the LB, in the case of the LLKE (left) and the NWKE (right). 

  
Figure A.17. The EO score as a function of the LB, in the case of the LLKE (left) and the NWKE (right). 

 
The comparison of the results for the LLKE and NWKE is presented in Table A.2. The 
conducted analysis shows that the LLKE performs better, giving longer EOs—between 4 
and 14 data points (Figure A.16).   

Moreover, starting with an LB of 47 points, all the remaining data points fall within the 
PBs. The resulted EO lengths for the NWKE are in turn more stable, giving values 
between 2 and 6.  
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Table A.2 Prognostic learning—a comparison of the LLKE and NWKE results when applied to 
the data on CO2 emissions from the technosphere. 

Results LLKE NWKE 

 

EO 

max length finite: 14   (for LB=32)  

∞ (for LB≥47) 

finite: 6  (for LB=31, 32, 
and 33)  

 ∞ for LB≥50 

min length 4  (for LB=25, 26, 42 and 44) 2 (for LB=28, 29, 30, 41, 
44-47, and 49) 

infinite 
length 

for LB≥47 all tested data 
points fall within the PBs 

for LB≥50 all tested data 
points fall within the PBs 

score 0.0062 – 0.0163 for LB<47 
∞ for LB≥47 

0.0029 – 0.0113 for LB<50 
∞ for LB≥47 

Residuals normality 𝜀𝜀𝑡𝑡 normally distributed 
(Shapiro-Wilk test,  
p-values>0.2) 

𝜀𝜀𝑡𝑡 normally distributed 
(Shapiro-Wilk test,  
p-values>0.1) 

zero mean ok (t-test, p-values>0.2) ok (t-test, p-values>0.2) 

correlation autocorrelation at lag 1 and 2, 
(ACF, Box-Pierce test) 

autocorrelation up to lag 5 
or 6 (ACF, Box-Pierce 
test) 

 

 

 

 

 

 

 

 

A.4.2 Concentration of CO2 in the atmosphere. 
Now the procedure described in Section A.4.1 is applied to the second dataset. As 
previously, we start with 𝑛𝑛1 = 25 and then increase the LB length by one. The six 
exemplary stages of the procedure are presented in Figures A.18 (for the LLKE) and A.19 
(for the NWKE).   
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Figure A.18. Six exemplary stages of the PL procedure (LB lengths: 26, 33, 36, 38, 43, 49): the LLKE 
using a Gaussian kernel 
 

   

   
Figure A.19. Six exemplary stages of the PL procedure (LB lengths: 26, 33, 36, 38, 43, 49): the NWKE 
using a Gaussian kernel 
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Figure A.20. The EO length (left) and EO score (right) as a function of the LB, in the case of the NWKE. 

The comparison of the results for the LLKE and NWKE is presented in Table A.3. The 
conducted analysis shows that, the PL method based on LLKE fails to establish the length 
of the EO. As a result of quickly diverging PB, all testing points fall within them and the 
resulting EO lengths are infinite (i.e., undefined). 

The NWKE method on the other hand performs poorly. This is caused by the boundary 
bias resulting in horizontal EO while the testing points continue to follow an increasing 
trend.  

 
Table A.3 Prognostic learning—comparison of the LLKE and NWKE results when applied to the 
data on concentration of CO2 in the atmosphere. 

Results LLKE NWKE 

 

EO 

max length ∞   (all tested points fall 
within the PBs) 

4  (for LB=33) 

min length no finite EO length 2 (for LB=25-31,36-37, 
39-40, 43-44,  and 49) 

∞ for LB≥25 all tested data 
points fall within the PBs 

for LB≥50 all tested data 
points fall within the PBs 

score ∞  (no finite EO score) finite: 0.287 – 0.517  
or ∞ (for LB≥50) 

Residuals normality 𝜀𝜀𝑡𝑡 normally distributed 
(Shapiro-Wilk test,  
p-values>0.1) 

𝜀𝜀𝑡𝑡 normally distributed 
(Shapiro-Wilk test,  
p-values>0.09) 

zero mean ok (t-test, p-values>0.2) ok (t-test, p-values>0.2) 

correlation autocorrelation at most at 
lag 1 or none (ACF, Box-
Pierce test) 

autocorrelation at lag 1 (at 
most 2) or none (ACF, 
Box-Pierce test) 
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A.5 Conclusions 
Analysis of the performance of the PL method based on nonparametric regression applied 
to real-life datasets of anthropogenic CO2 emissions and atmospheric CO2 concentrations 
leads to the following conclusions: 

• The use of the LLKE regression performs better than the NWKE. Since it does 
not exhibit the boundary bias it has smaller prediction errors. This results in longer 
prediction errors.  

• The method based on nonparametric regression easily adapts to the data 
behaviour, reflecting fluctuations and peaks (for CO2 emissions dataset) while 
being more stable for data exhibiting regular behaviour (as for the CO2 
concentrations dataset). 

• Autocorrelation of residuals (more pronounced for the NKWE method than for 
the LLKE method) has a negative impact on the performance of the PL procedure, 
that is, it results in shorter EOs. 
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Acronyms 

ACF – autocorrelation function 

AR - autoregression 

CLT – central limit theorem 

CV – cross-validation 

GMKE – Gasser-Müller kernel estimator 

KE – kernel estimator 

k-NNKE – k-nearest neighbour kernel estimator 

LLKE –  Local linear kernel estimator 

MLE – maximum likelihood estimation 

MSE – mean squared error 

NWKE – Nadaraya-Watson kernel estimator 

PB – prediction bands 

PCKE – Priestley-Chao kernel estimator 

PDF – probability density function 

SE – standard error (i.e. residual standard error) 
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