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Descriptive Finding

Generalised count distributions for modelling parity

Bilal Barakat1

Abstract

BACKGROUND
Parametric count distributions customarily used in demography – the Poisson and neg-
ative binomial models – do not offer satisfactory descriptions of empirical distributions
of completed cohort parity. One reason is that they cannot model variance-to-mean ra-
tios below unity, i.e., underdispersion, which is typical of low-fertility parity distributions.
Statisticians have recently revived two generalised count distributions that can model both
over- and underdispersion, but they have not attracted demographers’ attention to date.

OBJECTIVE
The objective of this paper is to assess the utility of these alternative general count distri-
butions, namely the Conway-Maxwell-Poisson and gamma count models, for the model-
ing of distributions of completed parity.

METHODS
Simulations and maximum-likelihood estimation are used to assess their fit to empirical
data from the Human Fertility Database (HFD).

RESULTS
The results show that the generalised count distributions offer a dramatically improved fit
compared to customary Poisson and negative binomial models in the presence of under-
dispersion, without performance loss in the case of equidispersion or overdispersion.

CONCLUSIONS
This gain in accuracy suggests generalised count distributions should be used as a matter
of course in studies of fertility that examine completed parity as an outcome.

CONTRIBUTION
This note performs a transfer of the state of the art in count data modelling and regression
in the more technical statistical literature to the field of demography, allowing demogra-
phers to benefit from more accurate estimation in fertility research.

1 Österreichische Akademie der Wissenschaften, Vienna Institute of Demography, Austria. E-Mail:
bilal.barakat@oeaw.ac.at.
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1. Introduction

The number of live births a woman experiences, her parity, is an integer count. The sta-
tistical analysis of parities therefore requires the use of discrete count distributions. Fully
nonparametric approaches are an alternative in some, but by no means all, applications
and suffer serious disadvantages of their own, notably a lack of analytic parsimony. Un-
fortunately, the choice between parametric count distribution has until recently effectively
been limited to the Poisson distribution and the negative binomial distribution, including
in demographic analysis (e.g., Parrado and Morgan 2008; Nisén et al. 2014).

It is well known that the variance-to-mean ratio of a Poisson distribution, its disper-
sion, equals one by construction. Accordingly, Poisson distributions fit poorly to empir-
ical distributions whose dispersion differs considerably from unity. In applied statistics
generally, attention has largely focused on the need to account for overdispersion, that is,
dispersion considerably larger than one. This is unsurprising, given that mixtures of Pois-
son distributions are always overdispersed and heterogeneity is one of the most common
ways in which we expect reality to diverge from simple statistical models. Indeed, both
the negative binomial distribution and the ‘zero-inflated’ Poisson, where a certain share
of structural-zero outcomes are assumed, can be mathematically interpreted as special
cases of Poisson mixtures, and, like the regular Poisson distribution, they are structurally
unable to model underdispersion.

The need for alternative modeling options in the context of human birth parities
arises from the fact that in low-fertility settings underdispersion is actually the norm,
in other words: parity distributions whose mean considerably exceeds their variances.
Figure 1 demonstrates this using data from the Human Fertility Database (HFD).

Statistically speaking, underdispersion could arise as a consequence of: a) a positive
interpersonal correlation in terms of the child count, b) mechanisms that diminish the
occurrance of ‘runaway’ parity, where some women tend towards extremely high birth
counts while others are ‘stuck’ at low levels, namely a parity progression rate that is
negatively related to the parity already achieved, or c) a parity progression rate that is
positively correlated with the waiting time since the last birth.

Only during the last decade have two instances of generalised Poisson distributions
that formalise the latter two effects – and thereby allow for parametric modeling of un-
derdispersed counts – seen a modest revival in applied statistics. They do not, however,
appear to have been exploited in demographic analysis yet, despite the common under-
dispersion of parity counts. The present aim is to begin to fill this gap by providing an
introduction and first assessment of their utility to demographers.
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Figure 1: Statistical dispersion (variance-to-mean ratio) in completed cohort
parity distributions of the HFD, by country, across birth cohorts
(in parentheses)
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Note: Thick horizontal line: median across cohorts; box: inter-quartile range (IQR); whiskers: observations within
1.5 times IQR; points: outliers.
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2. Generalised count distributions

2.1 The Conway-Maxwell-Poisson distribution (COM-Poisson)

This distribution was originally proposed by Conway and Maxwell (1962) and more re-
cently revived by Shmueli et al. (2005). It generalises the standard Poisson distribution
by allowing the probabilities to decay more rapidly or more slowly as the distance from
the mean increases. As such, it formalises mechanism b) above. Formally, its probability
function takes the form:

P (Y = n) =
λn

(n!)
ν

1

Z(λ, ν)
,

for n = 0, 1, 2, . . ., where the normalising constant is Z(λ, ν) =
∑∞
i=0, λi

(i!)ν and the
parameters must satisfy the constraints λ > 0, ν ≥ 0. Parameters λ and ν may be
interpreted as representing the rate and dispersion of the distribution in the general sense
that for fixed ν the mean of the distribution increases with λ, and that for fixed λ, the
distribution becomes more spread out for decreasing ν. Unfortunately, no closed-form
expression exists to relate these parameters to the distribution’s moments directly. Our
intuitive interpretation of the parameters must therefore rest on the fact that the ratios of
successive probabilities can be expressed simply as:

P (Y = n− 1)

P (Y = n)
=
nν

λ
.

This means that λ determines the overall relationship between the probabilities at succes-
sive parities while ν determines how these relationships change with increasing parity.
For ν = 1 this reduces to the regular Poisson case, while ν < 1 and ν > 1 result in
overdispersion or underdispersion, respectively. In the HFD data analysed here, the esti-
mated values of λ or range from 1.4 to 27.8, and ν ranges from 0.8 to 3.8. This excludes
17 country-cohort dyads (out of 579) with extremely low or high variance-to-mean ratios
for which the estimates suffered from convergence problems.

2.2 The gamma count distribution

The gamma count distribution formalises mechanism c) mentioned above and assumes
that the waiting times between births follow a gamma distribution (rather than an expo-
nential distribution, as in the Poisson model). The hazard can be modelled to increase or
decrease as a function of the waiting time, corresponding to underdispersion and overdis-
persion, respectively. Accessible derivations for the gamma count model are provided by
Winkelmann (2008), including asymptotics.
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Specifically, the gamma count model takes the following form:

P (Y = n) = G(αn,βT )−G(α(n+ 1),βT ) (1)

for n = 0, 1, 2, . . ., where G(αn,βT ) is the regularised lower incomplete gamma func-
tion

G(αn,βT ) =
1

Γ(nα)

∫ βT

0

unα−1 exp−u du

and T is the scale of the overall exposure period. We have α,β ∈ R+ and G(0,βT ) ≡
1 by assumption. In our setting T = 1 may be assumed without loss of generality.
Asymptotically, α is the dispersion factor, α

β is the mean waiting time between births,

and β
α approaches mean parity. Note, however, that these asymptotic approximations can

be poor in the parameter range of interest for fertility applications and should not be relied
on. For α = 1 the model reduces to the special case of Poisson counts, and α < 1 and
α > 1 result in overdispersion or underdispersion. In the HFD data analysed here, the
estimated values of α range from 0.8 to 4.5, and β ranges from 1.4 to 10.8.

2.3 General comments

A well-known property of the standard Poisson model is that the number of events per unit
of exposure is a sufficient statistic for the mean. In practice this is frequently exploited
to allow for the aggregation of data without loss of information: For any given values of
possible covariates, only the total amount of exposure and total number of events needs
to be recorded. It is important to note that neither the COM-Poisson nor the gamma count
model allow for this operational shortcut. Because the hazard is a nonconstant function of
the waiting time or parity already attained, the way the eventless episodes are distributed
between individuals does matter.

Existing implementations of the COM-Poisson model are available in the
compoisson, CompGLM, and ComPoissonReg packages for R, for instance, as well
as for SAS (in the COUNTREG procedure) and MATLAB, but not – to the best of my knowl-
edge – for STATA. The gamma count model does not currently appear to be available off
the shelf on any platform, but its definition (Eq. 1) is straightforward to implement in
terms of the gamma function. This approach was followed here. The code underlying the
present analysis is available as an R package alongside this article and was executed by
the author under R version 3.3.2.
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2.4 Gamma count as a Swiss army knife

Fortunately, what initially appears as a potentially confusing proliferation of options for
modelling count data ultimately leads to a simplification. Figure 2 shows both the COM-
Poisson and gamma count models fitted to an overdispersed target drawn from a negative
binomial distribution and the gamma count model fitted to an underdispersed target drawn
from a COM-Poisson distribution. This illustrates two points: Firstly, it shows that the
availability of fully generalised count distributions makes the negative binomial model
practically redundant for human parity modelling, because it can be well approximated
by the COM-Poisson or gamma count models of overdispersion within the relevant range
of mean parity and dispersion. Secondly, it shows that their unique ability to model
underdispersion sets the latter two distributions apart from other count models, but not
from each other, because they can mimic each other very closely. This was tested for this
study across the entire parameter range of interest in fertility applications. As a matter
of fact, the case displayed in Figure 2 displays the maximal discrepancy found, with the
typical error being an order of magnitude smaller than the one shown here.

The effective equivalence of these two distributions is striking because no formal
mathematical (asymptotic?) equivalence appears to have been established in the liter-
ature. Indeed, Winkelmann (2008) does not mention the COM-Poisson model in his
derivation of the gamma count model. Conversely, neither do Shmueli et al. (2005), who
established the statistical properties of COM-Poisson, mention the gamma count model.
While it seems unlikely that the almost perfect match between the two distributions is
coincidental, the question of their formal mathematical relationship is not pursued further
here.

750 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 36, Article 26

Figure 2: Simulated parity distributions resulting from maximum-
likelihood fits of: COM-Poisson and gamma count models to an
overdispersed target distribution sampled from a negative
binomial distribution (top panel), and a gamma count model to an
underdispersed target sampled from a COM-Poisson distribution
(bottom panel)
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Their numerical similarity does not make the COM-Poisson and gamma count dis-
tributions entirely redundant, however. Firstly, the conceptual derivations are different,
so depending on whether the argument being made focuses on parity progression or on
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waiting times, either the COM-Poisson model or gamma count model may be more ap-
propriate. Similarly, for regression analysis the choice of model is dictated by whether
the dependent variable is mean waiting time or mean birth count directly. Thirdly, the
purpose of modelling may be decisive, because the two distributions differ in their prac-
tical properties. While the statistical properties of the COM-Poisson model have been
investigated more fully (Sellers and Shmueli 2010) and asymptotic significance tests are
available, the gamma count model has the advantage that it appears to be vastly more
efficient computationally, by one or two orders of magnitude. This is no doubt due to
the fact that the underlying gamma function benefits from being a common mathematical
function for which highly optimised algorithms are standard. The gamma count model
may therefore be preferable for simulation and inferential approaches involving frequent
(re)sampling from the distribution, namely both bootstrapping and Bayesian inference.

So while there is a role for the COM-Poisson distribution for certain applications,
a case can be made for the gamma count distribution as a general-purpose default for
modeling both over- and underdispersed distributions of human birth parities.

3. Empirical analysis

3.1 Completed cohort parity from the Human Fertility Database

The Human Fertility Database, at least with respect to time series of parity completed by
age 40, is focused on industrialised high-income countries.

Cumulative fertility rates by birth order were extracted from the HFD for all coun-
tries for which these were available at the time of writing. The countries included are
evident from Figure 2. The range of cohorts included differs by country according to
availability, with the earliest being birth cohort 1918 (USA), the 1940s being more typ-
ical for other countries, and the latest being birth cohort 1974 for most countries. The
strength of this data for present purposes is the fact that it carefully accounts for expo-
sure rates and mortality, and that it provides a consistent longitudinal perspective. The
limitations (for present purposes) are, firstly, that even for the earliest cohorts only a rel-
atively limited range of average fertility levels are represented, namely the low-fertility
end of the spectrum, and secondly, that high parities are aggregated at 5+. As the ag-
gregation occurs at the level of cumulative fertility rates (CCFR), the calculated share at
parity 4 is also affected, corresponding to the difference between CCFR4 and CCFR at
exactly 5 (rather than 5+). Three different synthetic assumptions about the true spread of
the reported CCFR5+ over parities 5–10 were tried: uniform distribution, linear decline,
and exponential decline. All presented analyses are based on the exponential model, but,
unless noted otherwise, the conclusions are qualitatively robust in the sense of not being
sensitive to the choice of imputation.
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3.2 Zero inflation

Figure 3 displays the average absolute residual by parity. The pattern of these residuals
for the Poisson model is dominated by the relatively large share of women with two
children. This means that both parity 0 and positive parities contribute to the observed
underdispersion.

While the gamma model evidently represents a significant improvement over the
Poisson (and equivalent NegBinom) fit in the underdispersed case, the question whether
its fit is already good enough in absolute terms needs to be reviewed critically depending
on the application. In particular, examples can be found across a wide range of parity pat-
terns where the empirical pattern is not modelled satisfactorily, including some or most
cohorts in Canada, Hungary, or Japan, among others (for assessing the fits to individual
country-cohort-specific parity distributions, ‘rootograms’ [Kleiber and Zeileis 2016] can
be generated within the R package accompanying this article). This suggests that the way
these empirical parity distributions differ from the Poisson idealisation is not limited to
the presence of underdispersion. Crucially, as can be seen in Figure 3, the residual devi-
ation remaining after allowing for underdispersion is systematic, in that a large residual
remains at parity 1 specifically. Nonetheless, as shown in the following, while the simple
gamma model by itself cannot match this pattern, it does pave the way for significantly
reducing the residual in a way the Poisson model does not. The key lies with parity 0,
rather than parity 1, however.

It is common in count data models for zero counts to have a special status vis-à-
vis higher counts. The two most common specifications are zero inflation and hurdle
models. Zero inflation assumes that cases of parity 0 are contributed by two sources – a
structurally-zero group and some of the observations sampled from the basic distribution
– whereas in the hurdle model, cases of parity 0 are contributed only by those not crossing
the initial hurdle. In the context of modelling birth parities, the former appears more
relevant than the latter. In terms of theories of the underlying data-generating process,
where demographic fertility models stipulate a two-stage process they tend to consider
(soft) requirements for being exposed to the risk of childbearing (fecundity, marriage in
traditional societies, the decision to have children), but even healthy married women who
desire children may of course remain childless by chance. In the following, I therefore
limit my attention to the case of zero inflation.
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Figure 3: Absolute residuals (observed – fitted) by parity of maximum-
likelihood fits of different models to empirical HFD distributions
of completed cohort parity, across countries and cohorts, in terms
of women per 1,000
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Note: Thick horizontal line: median across cohorts; box: inter-quartile range (IQR); whiskers: observations within
1.5 times IQR; points: outliers.

To gain some insight into the relationship between zero inflation on the one hand and
the regular Poisson and gamma count distributions on the other (the negative binomial and
COM-Poisson models add no information since their fits are each practically identical to
the one shown), focus on parity 0 in Figure 3. It is evident that, in general, the regular
Poisson model predicts too many zeroes rather than too few. This is unsurprising; we
know the vast majority of HFD parity distributions to be underdispersed. By observing
that a probability point mass at zero can be interpreted as a Poisson distribution with
mean and variance zero, it becomes clear that the zero-inflated Poisson model is actually
a special case of a mixture of Poisson distributions. Accordingly, it always results in
overdispersion. An underdispersed distribution is therefore unlikely to exhibit excess
zeroes relative to a regular Poisson distribution.

The presence of excess zeroes relative to the underdispersed gamma count baseline
is to be welcomed for two reasons. Substantively, we know that the true data-generating
process, namely human fertility, does in fact involve a small proportion of women whose
probability of giving birth is close to zero. By reflecting this fact, the presence of mod-
erate zero inflation relative to the Gamma count distribution makes this distribution more
plausible as a model for birth parity. Moreover, in practical terms, it allows for improving
the fit to the data by explicitly taking zero inflation into account—an option not avail-
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able to the Poisson model (or indeed, the negative binomial model), which is already
overestimating the proportion at parity 0.

3.3 Fits to empirical parity distributions

With this in mind, Figure 4 compares the fits of the regular Poisson, gamma count, and
zero-inflated gamma count models to the empirical HFD completed-cohort birth parity
distributions, in terms of mean squared error based on the original scale of women per
1,000. To simplify the presentation, the redundant negative binomial and COM-Poisson
fits are omitted again. The former is redundant because most of the observed distributions
are underdispersed, and so the negative binomial would reduce to the Poisson case. The
latter is redundant because we already established that the COM-Poisson and gamma
count distributions closely mimic each other in the relevant parameter range and therefore
perform approximately equally well in fitting the empirical data.

Figure 4: Mean squared error (MSE) of maximum-likelihood fits of different
models to empirical HFD distributions of completed cohort parity,
across countries and cohorts, in terms of women per 1,000
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Note: Thick horizontal line: median across cohorts; box: inter-quartile range (IQR); whiskers: observations within
1.5 times IQR; points: outliers.

The left set of box plots shows the fits to each country-and-cohort-specific parity dis-
tribution individually. Of course, the mere fact that the gamma count distribution fits the
data better than the Poisson distribution, and that the zero-inflated gamma count distribu-
tion fits better still, is to be expected, given that the number of independent parameters
(and degrees of freedom) increases from one to two to three as we move through these
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models. However, even the three-parameter zero-inflated gamma count distribution can-
not be said to be overfitted. Technically the fit here is to 11 data points for each distribu-
tion, namely parities 0 through 10, but even restricting attention to those with meaningful
frequencies – 0 to 5, say – still leaves the data with six degrees of freedom. So even
the most complex of the three models is still parsimonious, with the additional param-
eters all enjoying meaningful substantive interpretations and achieving a fit as close to
perfect as one can hope for in modelling natural phenomena: The mean squared error of
the zero-inflated gamma count model is less than nine in the vast majority of cases, and
typically closer to four, which means its predicted values generally differ from the ob-
served values by only two or three women per 1,000. Moreover, the right set of box plots
demonstrates that the great improvement in fit over the Poisson distribution is certainly
not due to approximating a saturated model: This specification assumes linear (over co-
horts) country-specific trends in each parameter, and therefore uses two (Poisson), four
(gamma count), or six (zero-inflated gamma count) parameters, respectively, to fit all par-
ities 0 through 10 for between 6 (Austria, Finland) and 57 (USA) cohorts at once. While
merely illustrative, this specification is close to applications in real-life research in terms
of its general structure.

4. Conclusion

Generalised count distributions, specifically the Conway-Maxwell-Poisson and gamma
count distributions, and especially their zero-inflated variants, offer a clear advantage
over the Poisson and negative-binomial models still dominant in demographic research
in the widespread presence of underdispersion in distributions of completed birth parity.
The associated disadvantage is largely one of convenience rather than statistical (and
would disappear once standard software packages implement these models); it is more
than outweighed by the substantial gain in modelling accuracy. A case can therefore be
made for using the more general distributions as a matter of course in analyses of parity.
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