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Abstract 39 

 40 

The United States’ legal strategy for addressing climate change in recent years has relied 41 

on authority from existing legislation. This has led to measures on a number of different 42 

greenhouse gases, notably carbon dioxide, methane and hydrofluorocarbons. However, 43 

one greenhouse gas has been largely forgotten: nitrous oxide. Nitrous oxide is the third 44 

most abundantly emitted greenhouse gas in the U.S. and worldwide, as well as the largest 45 

remaining threat to the stratospheric ozone layer. In addition, the nitrogen atoms in 46 

nitrous oxide are part of the highly fluid nitrogen cycle where nitrogen atoms transform 47 

readily among different chemical forms, each with a unique environmental and human 48 

health impact – a process known as the nitrogen cascade. While the science of the 49 

nitrogen cascade has been explored for over a decade, there has been little work on the 50 

legal implications of this phenomenon. And yet the nitrogen cascade expands the legal 51 

options available for controlling nitrous oxide. This paper studies these options in a U.S. 52 

context and explores the environmental and economic impacts of enacting them. We 53 

determine that the Clean Air Act, and in particular its broad authority for controlling 54 

ozone depleting substances, is the most promising legal pathway for regulating nitrous 55 

oxide across all major sources. Invoking such authority could generate significant climate 56 

and stratospheric ozone benefits over 2015-2030, equivalent to taking 12 million cars 57 

permanently off the road, and 100 million chlorofluorocarbon-laden refrigerators out of 58 

service. The economic benefits could sum to over $700 billion over 2015-2030, with 59 

every $1.00 spent on abating emissions leading to $4.10 in societal benefits. The bulk of 60 

these benefits would come from reductions in other forms of nitrogen pollution such as 61 
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ammonia and nitrate, highlighting the important and multiple co-benefits that could be 62 

achieved by abating nitrous oxide emissions. With the Paris Climate Agreement calling 63 

for limiting global temperature increases to “well below” two degrees Celsius, all 64 

mitigation opportunities across all sectors need to be considered. This paper suggests that 65 

nitrous oxide warrants more attention from policy-makers in the U.S. and around the 66 

world. 67 

 68 

Key words: Nitrous oxide; nitrogen cascade; existing legal authority; cost-benefit 69 

analysis 70 

 71 

  72 



 4 

1. Introduction 73 

 74 

On a sweltering day in June of 2013, President Obama outlined his administration’s 75 

strategy for addressing climate change in his second term. With Congress having failed to 76 

pass new climate legislation in his first term, he decided to rely solely on existing 77 

executive authority to regulate greenhouse gas (GHG) emissions. This option had been 78 

bolstered in 2007 by the US Supreme Court decision Massachusetts vs. EPA that 79 

classified GHGs as air pollutants for the purposes of regulation under the Clean Air Act. 80 

In 2013, the President began to exercise this authority. He directed the Environmental 81 

Protection Agency (EPA) “to put an end to the limitless dumping of carbon pollution 82 

from our power plants, and complete new pollution standards for both new and existing 83 

power plants” (Obama, 2013).  84 

 85 

The regulations and targets that followed put limits on carbon dioxide (CO2) emissions 86 

from coal-burning power plants, while other initiatives (such as a bilateral agreement 87 

with Canada in March 2016) aim to reduce methane (CH4) emissions from natural gas 88 

installations and pipelines. At the same time, the U.S. partnered with Canada and Mexico 89 

to propose an amendment to the 1987 Montreal Protocol that would phase down the 90 

production and consumption of hydrofluorocarbons (HFCs). While these approaches 91 

cover several of the major sources of U.S. GHG emissions, they do not cover them all. 92 

And if the international community is to meet the temperature goal outlined in the Paris 93 

Climate Agreement – to “hold the increase in global average temperature to well below 94 

2oC and to pursue efforts to limit the temperature increase to 1.5oC” (Paris Climate 95 
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Agreement, Article 2.1) – then a comprehensive mitigation strategy that includes all 96 

GHGs is required (Gernaat et al., 2015). One GHG that has received little attention under 97 

the U.S. strategy is nitrous oxide (N2O). Its unique chemistry gives policy-makers 98 

significantly more legal options for managing its emissions. This study identifies and 99 

evaluates the most promising legal options under U.S. law for directly and indirectly 100 

regulating N2O emissions using existing authority, and quantifies the environmental and 101 

economic impacts of doing so. 102 

 103 

Nitrous oxide and the nitrogen cascade 104 

In terms of CO2 equivalents (CO2e), N2O is the third most abundantly emitted GHG in 105 

the U.S. and worldwide (Myhre et al., 2013, USEPA, 2015a). It was responsible for 6% 106 

of total U.S. CO2e emissions in 2013 (USEPA, 2015a). It has an atmospheric lifetime of 107 

116 years, and atmospheric concentrations have increased from mid-19th century levels of 108 

approximately 275 parts per billion (ppb) to 328 ppb in 2015 (Butler and Montzka, 2015, 109 

Prather et al., 2015). The major source in the U.S. is agricultural soils (74%).  Other 110 

sources include stationary combustion (7%), mobile combustion (5%), manure 111 

management (5%) and nitric and adipic acid production (4%) (USEPA, 2015a – Figure 112 

1). N2O is also now the most abundantly emitted ozone depleting substance, following 113 

the phase-out of more damaging compounds such as chlorofluorocarbons (CFCs; 114 

Ravishankara et al., 2009).  Furthermore, N2O is a key component of the nitrogen (N) 115 

cycle (Ravishankara et al., 2009, Sutton, 2013). The planetary boundary for N (a level of 116 

human interference beyond which environmental damage increases dramatically, and 117 

perhaps permanently) is one of two that humanity is significantly exceeding (Steffen et 118 
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al., 2015). And the unique chemistry of the N cycle means that once an N atom is in 119 

“reactive” form (any form other than atmospheric dinitrogen, N2) it can convert readily 120 

among multiple chemical forms, each with a specific impact on the environment and 121 

human health, thereby increasing the risk of exceeding other planetary boundaries. For 122 

example, an N atom may first be applied to a field as N fertilizer, before being first 123 

volatized as ammonia (NH3) and negatively impacting air quality; it may then be 124 

deposited, oxidized and subsequently leached into a waterway as nitrate (NO3
-), 125 

contributing to eutrophication and polluting aquatic ecosystems (along with phosphorus 126 

run-off); the same N atom can be denitrified to N2O, exacerbating climate change and 127 

stratospheric ozone depletion (Birch et al., 2010). This phenomenon is commonly 128 

referred to as the N cascade (Galloway et al., 2003).  129 

 130 
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 131 

Figure 1 Anthropogenic N2O emission sources in the U.S. in 2013. The dominant source 132 
is agricultural soils management, which includes emissions from mineralization, 133 
asymbiotic fixation, fertilizer and manure use, crop residues and sewage sludge (adapted 134 
from USEPA, 2015a). 135 

 136 

While the N cascade is the subject of a large and growing scientific literature, it has yet to 137 

receive the same level of attention from legal scholars, despite being ripe for analysis. 138 

The multitude of impacts that one atom of N can create gives environmental policy-139 

makers several legal options to how to manage it: existing environmental law related to 140 

air and water pollution, biodiversity preservation, climate change and stratospheric ozone 141 

depletion could all be justifications for addressing various sections of the N cascade. And 142 

because of the tightly coupled nature of the N cycle, efforts to reduce one particular 143 
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component of the N cascade could impact N2O emissions as well. Conversely, efforts to 144 

reduce N2O emissions could deliver a suite of benefits throughout the entire N cascade 145 

(Horowitz et al., 2016). For example, the European Union’s Nitrates Directive focuses on 146 

reducing NO3
- leaching and runoff from farms. A recent study estimated that this 147 

Directive not only reduced N leaching and runoff by 16% during 2000-2008, but also 148 

reduced NH3 by 3%, N2O by 6% and NOx by 9% due to lower N inputs from fertilizer 149 

and manure (Velthof et al., 2014). Similar co-benefits could be achieved by 150 

implementing policies focused on reducing N2O emissions, a potential outcome this 151 

paper investigates. Nevertheless, there is also a risk of pollution swapping – where 152 

measures to reduce one form of N pollution exacerbate another – which we address in 153 

Section 5.3. Another aspect of N pollution that sets it apart from many other 154 

environmental issues and makes it a particularly challenging one to manage is that N is 155 

an essential resource. The dramatic increase in global population over the past century 156 

would have been impossible without the concomitant increase in our ability to intensify 157 

agricultural production, which was fueled by synthetic N fertilizer (Erisman et al., 2008). 158 

Feeding ten billion people by 2050 will be impossible without anthropogenic N inputs. 159 

Consequently, efforts to reduce N2O and N pollution more broadly have chiefly focused 160 

on improving the efficiency with which N is used, rather than placing absolute limits on 161 

its use. 162 

 163 

The first section of this paper presents the legal analysis for identifying the most 164 

promising legal pathways for limiting N2O in the U.S. It then introduces the methods 165 
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used for estimating the environmental and economic impacts of pursuing these pathways, 166 

before presenting the results and discussion. 167 

 168 

2. Legal analysis  169 

 170 

The focus of the legal analysis was to identify the most effective regulatory pathways for 171 

reducing N2O emissions in the US. We began by conducting a preliminary evaluation of 172 

existing laws to determine whether they provided a suitable framework for controlling 173 

N2O emissions. We considered three factors: 174 

 175 

(1) Scope of regulatory impact, e.g., whether the statute was a federal law that could 176 

control N2O emissions on a nation-wide scale, and whether it could be used to 177 

regulate all major sources of N2O emissions. 178 

(2) Nature of legal authority, e.g., whether the statute included a mandate that could 179 

be interpreted as requiring an agency to regulate N2O emissions, as opposed to 180 

giving an agency discretionary authority to regulate those emissions.  181 

(3) Suitability of the legal framework, e.g., whether the statute was specifically 182 

designed to address a particular N2O-related impact or another aspect of N 183 

pollution; and whether its original purpose was to regulate the types of activities 184 

that are major sources of N2O emissions.   185 

 186 
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Using this framework, we evaluated opportunities to reduce N2O emissions under three 187 

federal laws—the Clean Air Act, the Clean Water Act, and the Farm Bill—as well as 188 

state programs aimed at reducing GHG emissions and N pollution.  189 

 190 

We concluded that the Clean Air Act (CAA) provides the most suitable legal framework 191 

for controlling N2O emissions on a nation-wide scale for several reasons: it is a federal 192 

law affecting the entire nation, it contains clear mandates for U.S. Environmental 193 

Protection Agency (USEPA) to address both ozone depleting substances and other forms 194 

of air pollution (including GHG emissions), and it includes a variety of provisions that 195 

can be used to address each of the major sources of N2O emissions. For more discussion 196 

of the various legal options see (Wentz and Kanter, Forthcoming) and (Burger et al., 197 

2016). By contrast, the Clean Water Act and the Farm Bill do not include mandates to 198 

federal agencies that would require or even authorize the regulation of N2O emissions 199 

from major sources. Similarly, we concluded that existing state programs do not establish 200 

clear mandates or authorizations to regulate N2O emissions, nor could they be used to 201 

achieve nation-wide emissions reductions. 202 

 203 

The Clean Air Act provides a comprehensive framework for regulating air pollution in 204 

the United States, as well as GHG emissions and emissions that deplete the stratospheric 205 

ozone layer. As such, it is the most promising federal statute for addressing N2O 206 

emissions. The USEPA, the agency tasked with implementing the Clean Air Act, has 207 

already begun to regulate GHG emissions under this statute.  Specifically, the USEPA 208 

has promulgated final rules to control CO2 emissions from new and existing power 209 
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plants, and GHG emissions from motor vehicles. The USEPA also recently proposed a 210 

rule to reduce CH4 emissions from new and modified sources in the oil and gas industry. 211 

However, the USEPA has not yet promulgated any proposed or final rules to specifically 212 

regulate N2O emissions from any sources other than motor vehicles. Moreover, the N2O 213 

emission standards for motor vehicles are significantly higher than current average 214 

emission rates, thereby acting as a cap on future emissions rather than a limit for reducing 215 

current emissions (USEPA, 2014). 216 

 217 

The USEPA could use a variety of different Clean Air Act provisions to regulate 218 

domestic sources of N2O emissions. The best fit for addressing all major sources, 219 

including agricultural emissions, would be to use Title VI (“Protection of the 220 

Stratospheric Ozone”). Section 615 in particular authorizes the USEPA to implement 221 

regulations to control any substance, practice, process, or activity that contributes to 222 

stratospheric ozone depletion. USEPA could also apply emission standards under Section 223 

111 to regulate N2O emissions from stationary sources, and Section 202 to regulate N2O 224 

emissions from mobile sources. Finally, USEPA could determine that N2O emissions 225 

contribute to international air pollution under Section 115 and use its authority under that 226 

section to compel state regulation of N2O emission sources. Table 1 compares the 227 

different provisions under the Clean Air Act that could be used to address N2O.  228 

 229 

 230 

 231 

 232 
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Provision Relevant sector Legal Authority / Mandate 
Section 615 All USEPA shall promulgate regulations 

respecting the control of any substance, 
practice, process, or activity that may 
reasonably be anticipated to affect the 
stratosphere, especially ozone in the 
stratosphere, and such effect may 
reasonably be anticipated to endanger public 
health or welfare. 

Section 111 Stationary sources USEPA shall promulgate standards of 
performance for stationary sources to 
control emissions of air pollution that may 
reasonably be anticipated to endanger public 
health or welfare. 

Section 202 Mobile sources USEPA shall promulgate standards of 
performance for mobile sources to control 
emissions of air pollution that may 
reasonably be anticipated to endanger public 
health or welfare. 

Section 115 All USEPA shall issue a notice requiring states 
to develop emission controls as necessary to 
prevent or eliminate the endangerment 
caused to the foreign country by air 
emissions. 

Table 1 - Clean Air Act Provisions that could be used to regulate N2O emissions. N2O 233 
was among a suite of greenhouse gases defined as air pollutants for the purposes of 234 
regulation under the Clean Air Act in the 2007 Supreme Court decision Massachusetts vs. 235 
EPA. 236 

 237 

3. Environmental analysis 238 

 239 

The environmental analysis focuses on N2O emissions sources in the U.S. where 240 

abatement technologies are commercially available and there is significant emissions 241 

reduction potential: agriculture (specifically, the use of fertilizer and manure), nitric acid 242 

production, and gasoline-powered road vehicles. Together these sources constitute 45% 243 

of anthropogenic N2O emissions in the U.S. (USEPA, 2015a). This is lower than the 74% 244 
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attributed to agricultural soil management, given the limited focus on fertilizer and 245 

manure use (see Section 3.1). Several of the legal options identified in Section 2 give 246 

broad authority to the relevant federal agency in setting targets. In reality, target setting is 247 

as much a political process as it is a scientific one (emerging from stakeholder and 248 

interagency negotiations), making it difficult to assess what the targets might be. As a 249 

result, for this paper we consider emissions targets based on best available technologies 250 

and previously published mitigation scenarios to illustrate the potential environmental 251 

and economic impacts of pursuing N2O regulations in the U.S. We describe the targets in 252 

detail below. For each source, we select or construct a business-as-usual emissions 253 

scenario (where little additional effort is made to reduce N2O) and a mitigation scenario 254 

(where a concerted effort is made to reduce N2O). For the business-as-usual scenarios, we 255 

use N2O emission projections from the EPA report “Global Mitigation of Non-CO2 256 

Greenhouse Gases: 2010-2030” (USEPA, 2013a). 257 

 258 

3.1 Agricultural emissions 259 

Agricultural soil management is the single largest source of N2O emissions in the US, 260 

responsible for 74% of N2O emissions, and 4% of total US GHG emissions in 2013 261 

(USEPA, 2015a). Disaggregating agricultural N2O emissions, the USEPA attributes 54% 262 

to mineralization and asymbiotic fixation, 26% to synthetic fertilizer, 16% to manure, 3% 263 

to crop residues, and less than 1% to sewage sludge. USEPA uses the DayCENT model 264 

(Parton et al., 2001) to derive the contribution of each source for its annual GHG 265 

emissions inventory, including mineralization and asymbiotic fixation. Mineralization is 266 

the biogeochemical process that converts organic N (typically decomposing organic 267 
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matter from earlier agricultural activities) into mineral N, making N suitable for plant 268 

uptake. Asymbiotic fixation is the conversion of atmospheric nitrogen (N2) into plant-269 

usable N by soil bacteria not directly associated with plants. While these processes are 270 

affected by agricultural activities, additional research is still required to quantify how 271 

different mitigation strategies affect these fluxes. It should also be noted that most 272 

countries do not use biogeochemical models like DayCENT to estimate national 273 

emissions, and thus attribute emissions from mineralization and asymbiotic fixation 274 

emissions to other sources (like synthetic fertilizer and manure) in their GHG emissions 275 

inventories. Consequently, the focus in academic, NGO and government circles (as well 276 

as this paper) is on reducing agricultural N2O (and N pollution more broadly) from 277 

synthetic fertilizer and manure.  278 

    Synthetic fertilizer and manure have greatly increased N concentrations in agricultural 279 

soils over the past century, bolstering the major biogeochemical processes that produce 280 

N2O: nitrification (the conversion of ammonium (NH4
+) to NO3

-), and denitrification (the 281 

conversion of NO3
- to N2). N2O can also be emitted indirectly once N has been lost from 282 

agricultural soils in other forms, with portions of NH3, NOx and NO3
- losses susceptible 283 

to N2O conversion. N2O emissions from manure management are accounted for 284 

separately from emissions linked to the field application of manure, with the former 285 

constituting an additional 5% of US N2O emissions. This source includes emissions from 286 

the treatment, storage, and transportation of livestock manure. While the mitigation 287 

strategies outlined below do not directly address N2O emissions from manure 288 

management, measures to reduce N excretion rates per animal are part of the mitigation 289 
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scenario, which would reduce the overall amount of manure N that would require 290 

management. 291 

 292 

For the business-as-usual emissions scenario, we use the EPA N fertilizer and manure 293 

forecasts (USEPA, 2013b), which project an 8% increase in N fertilizer consumption and 294 

an 18% increase in manure production between 2010 and 2030 (Table 2). For our 295 

mitigation scenario, we use the Case 3 scenario from the UNEP 2013 report “Drawing 296 

Down N2O to Protect Climate and the Ozone Layer”, which assumes that an increase in 297 

fertilizer use efficiency reduces fertilizer demand by 15% and the N2O emission factor 298 

for fertilizer by 20% relative to business-as-usual. It also assumes that improvements in 299 

manure management reduce N excretion per unit animal product by 30% and the N2O 300 

emission factor for manure production by 10% relative to business-as-usual (Table 2). 301 

Implementing such a scenario would require significant uptake in the use of fertilizer best 302 

management practices, such as precision and split application (the former uses GPS 303 

technology and soil testing to identify the N requirements of a particular field more 304 

precisely; the latter refers to the application of several smaller fertilizer doses throughout 305 

the growing season that coincide with the times that crops most need N). It would also 306 

require the use of enhanced efficiency fertilizers – fertilizer technologies such as N 307 

inhibitors and slow- and controlled-release fertilizers that delay the release of N in the 308 

soil to better coincide with plant nitrogen demand – thereby reducing excess N in the soil 309 

and the potential for N2O emissions (Akiyama et al., 2010, Abalos et al., 2014). For N2O 310 

emissions from manure, measures to reduce N excretion per unit animal involve a 311 

combination of targeted improvements in animal breeding, feed quality and management, 312 
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and herd management. Reducing the N2O emission factor for manure consists largely of 313 

applying N inhibitors to grazing land and avoiding animal N deposition on wet soils 314 

(UNEP, 2013). 315 

 316 

 2015 2020 2025 2030 
BAU scenario     

N2O EF fertilizer (%) 1.5 1.5 1.5 1.5 
N2O EF manure (%) 1.7 1.7 1.7 1.7 
Fertilizer (Mt N) 11.5 11.8 12 12.2 
Manure (Mt N) 8.5 9.1 9.5 10.0 

MIT scenario     
N2O EF fertilizer (%) 1.5 1.4 1.3 1.2 
N2O EF manure (%) 1.7 1.6 1.6 1.5 
Fertilizer (Mt N) 11.5 11.2 10.8 10.4 
Manure (Mt N) 8.5 8.1 7.6 7.0 

Table 2 Projections of N2O emission factors used or derived from EPA (2013a) and Ogle 317 
et al. (2014), and projected U.S. fertilizer consumption and manure production out to 318 
2030, under a business-as-usual (BAU) emissions scenario – representing little additional 319 
effort to reduce N2O – and a mitigation (MIT) scenario, where a concerted effort is made 320 
to reduce N2O. The mitigation scenario is based on the Case 3 scenario in UNEP (2013). 321 
The emission factors include both direct N2O emissions from field application of 322 
fertilizer and manure as well as indirect emissions from N volatilization and leaching. 323 
They do not include emissions from human waste management or livestock manure 324 
management. 325 

 326 

As mentioned in the introduction, the unique chemistry of the N cycle means that efforts 327 

to reduce N2O emissions by increasing N use efficiency could also potentially reduce 328 

other forms of agricultural N losses (Kanter et al., 2013). To estimate these impacts, we 329 

use emission factors from Ogle et al. (2014), which are largely based on IPCC default 330 

values (Eggleston, 2006, Ogle, 2014). For NH3 and NOx, Ogle et al. (2014) estimates that 331 

10% of synthetic fertilizer N and 20% of manure N is volatilized as NH3 and NOx (with 332 

NH3 dominating). Of this, 1% is subsequently transformed into N2O. For N leaching, the 333 

Ogle et al. (2014) emission factor is 30% in agricultural systems without cover crops, 334 
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18% in systems with leguminous cover crops, and 9% in systems with non-leguminous 335 

cover crops (however, currently only 1% of US cropland systems use cover crops – 336 

(Wallander, 2013)) Of this, 0.75% is subsequently transformed into N2O. 337 

 338 

3.2 Non-agricultural emissions 339 

Non-agricultural sources are responsible for 20% of anthropogenic N2O emissions in the 340 

US (USEPA, 2015a). They include industrial processes, stationary combustion, as well as 341 

transportation and waste management. For the purposes of this analysis we focus on 342 

specific sub-sectors within each of these sources where technologies already exist that 343 

have been demonstrated to significantly reduce N2O emissions. 344 

 345 

For industrial processes we focus on nitric acid production, responsible for 75% of 346 

emissions from this sector. All three facilities producing the other major source of 347 

industrial N2O in the US – adipic acid production – already have N2O abatement 348 

technology installed (USEPA, 2015a). While newer technologies exist that can reduce 349 

N2O emissions from adipic acid production even further, their emission reduction 350 

potential in the U.S. would be relatively small compared to mitigation opportunities in 351 

other sectors (but may still be cost-effective). For mobile combustion we focus on 352 

gasoline-fueled road vehicles, responsible for 76% of N2O emissions from this sector in 353 

2012 (USEPA, 2015a). Other sources include diesel-fueled road and off-road vehicles, 354 

aircraft, ships and agricultural equipment, which we judged to be either too minor or 355 

having no cost-effective abatement technologies. Stationary combustion (primarily coal 356 

combustion) is another key source of non-agricultural N2O emissions. However, there are 357 
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fewer opportunities to reduce N2O emissions from this sector, because most of the coal-358 

fired power plants in the US are pulverized coal plants boilers, which emit less N2O than 359 

facilities with more modern technologies (such as fluidized bed combustion) even when 360 

those facilities install N2O abatement technologies (USEPA, 2015a). Thus, we do not 361 

consider N2O emissions from stationary combustion in our analysis, but there may be 362 

cost effective opportunities there. Together, emissions from nitric acid production and 363 

gasoline-fueled road vehicles constitute approximately 35% of the N2O emissions from 364 

non-agricultural sources, and thus about 7% of total anthropogenic N2O emissions in the 365 

U.S. 366 

 367 

The business-as-usual scenario from EPA (2013a) projects a 10% decrease in US N2O 368 

emissions from mobile combustion between 2010 and 2030, and a 28% increase in 369 

emissions from nitric and adipic acid production. By applying the EPA’s forecast 370 

methodology, we can disaggregate EPA projections of N2O emissions from nitric acid 371 

production and gasoline-fueled road vehicles (USEPA, 2013b). The mitigation scenario 372 

for nitric acid production assumes that by 2030 100% of US nitric acid production will be 373 

produced in facilities with N2O abatement technology, up from 28% today (USEPA, 374 

2015a). This implies that by 2030 average N2O emissions from nitric acid production 375 

decrease from 7kg to approximately 0.1 kg N2O per ton of nitric acid produced. 376 

Abatement technologies currently available include catalytic decomposition and non-377 

selective catalytic reduction techniques that can reduce emissions by as much as 99% 378 

(USEPA, 2013a). The mitigation scenario for mobile combustion involves applying EPA 379 

Tier 2 exhaust emission factors as sector-wide targets for 2030, which would mean 380 
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tightening the N2O emission caps from 0.01 g N2O/mile to 0.0036 g N2O/mile for 381 

gasoline passenger cars and 0.0066 g N2O/mile for gasoline light-duty trucks. For heavy-382 

duty trucks it would mean reducing the emissions cap from 0.05 g N2O/mile to 0.0134 g 383 

N2O/mile. This would require the accelerated diffusion of a range of market-ready 384 

advanced three-way catalysts that have significantly lower N2O emission rates per mile 385 

than the average of the current U.S. vehicle fleet – as assumed in UNEP (2013), but 386 

which appears to be missing from the USEPA projections (USEPA, 2013b). 387 

 388 

4. Economic analysis 389 

 390 

Though the CAA does not allow for cost consideration in the setting of National Ambient 391 

Air Quality Standards following Whiman vs. American Trucking Associations, cost 392 

considerations are required or allowed for most other performance standards and 393 

regulatory programs under the CAA. Furthermore, cost-benefit analysis can make a 394 

compelling case for action to policy-makers and the general public. There are two 395 

elements to estimating the economic impacts of following the mitigation emissions 396 

scenario vs. the business-as-usual scenario. The first is damage costs associated with each 397 

form of N pollution. The second is abatement costs associated with the practices and 398 

technologies required to implement N2O reductions. For the damage costs associated with 399 

N pollution, we adapt the approach followed in Kanter et al. (2015). We use a range of 400 

damage cost estimates, either based on attempts to monetize the economic impacts 401 

caused by the release of a kg of a particular N compound to the environment (Birch et al., 402 

2010, Compton et al., 2011, Horowitz et al., 2016) or on the amount of money society is 403 
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willing to pay to avoid these impacts (Gu et al., 2012, Van Grinsven et al., 2013). We 404 

then average these estimates to have one damage cost per N compound. Finally, the 405 

damage cost estimates used in this study are adjusted to US gross national income (GNI) 406 

per capita in order to better reflect national economic conditions (Table 3). For abatement 407 

costs, we use a range of sources (Kanter et al., 2015, Laboski, 2006, Roberts, 2014, 408 

Sutton, 2013, USEPA, 2013a). The simplest abatement cost estimate is from Sutton et al. 409 

(2013), which assumes an average abatement cost of $0.5 ($0.2-$1.5) per kg N saved (in 410 

2014 USD), based on cost estimates for NH3 abatement (UNECE, 2012). This approach 411 

does not differentiate between different types of best management practice and 412 

technology.  413 

 414 

 More rigorous approaches to estimating abatement costs include Kanter et al. (2015), 415 

which uses the IIASA GAINS model (Winiwarter, 2005) to estimate the cost of using 416 

fertilizer best management practices (a blend of precision and split application), and 417 

expert elicitation to estimate the price premium of enhanced efficiency fertilizers (i.e. the 418 

additional costs above traditional fertilizer costs). For the former, this translates to $0.66 419 

($0.49-$0.84) per kg N reduced (in 2014 USD). For the latter, the current price premium 420 

for N inhibitors (defined as a percentage of the price of traditional N fertilizer) is 421 

estimated at 16%, and is projected to be 11% (7%-17%) by 2035. The current price 422 

premium for slow- and controlled-release fertilizers is estimated at 29%, and is projected 423 

to be 21% (15%-33%) by 2035. A weighted average gives a price premium of 15% 424 

(11%-24%) by 2035. 425 

 426 
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To estimate the N2O abatement costs from manure, we use figures from EPA (2013a), 427 

Laboski et al. (2006), and Roberts et al. (2014), which calculate the cost of using N 428 

inhibitors once animal N has already been deposited on cropland and/or pasture. They 429 

assume the cost of a generic N inhibitor is $60-$70 (2014 USD) per gallon, and that 1.25-430 

1.5 gallons of N inhibitor is used per ton of N applied. To compare, we also use the EPA 431 

(2013a) estimate that using N inhibitors costs $20 per hectare. And finally, to estimate the 432 

costs of improving animal breeding, feed quality and management, we use the EPA 433 

(2013a) estimate of $2-$295 per head of beef and dairy cattle, which is subsequently 434 

adjusted to other forms of livestock by weight (Table 3). 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 
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Table 3 Damage costs (in $ per kg N) from four peer-reviewed studies for the four main 450 
N compounds, and their averages. Abatement costs (in a variety of units) for five 451 
different abatement strategies using cost estimates from five peer-reviewed studies. 452 
BMPs-fertilizer and BMPs-manure refers to best management practices applied to 453 
fertilizer and manure, respectively. EEFs-fertilizer and EEFs-manure refer to enhanced 454 
efficiency fertilizers used in fertilizer and manure, respectively. Numbers in brackets are 455 
uncertainty bounds. All values are in 2014 USD. 456 

* Uncertainty ranges not reported. 457 

 458 

Damage costs  ($ per kg N) 

N compound Birch et al. 
2010 

Compton et 
al. 2010 Gu et al. 2012 Van Grinsven et 

al. 2013 Average 

N2O - $3.7 
(2.8-4.6) $3.1* $29 

(12-48) $12 

NOx $24* $24* $26 
(19-34) 

$42 
(7-93) $29 

NH3 $18* $5.2 
(1.3-9.1) 

$16 
(3.1-30) 

$29 
(0-60) $17 

NO3
- - $67 

(66-69) - $31 
(12-57) $49 

Abatement costs 

Practice 
Sutton et al. 

2013 
 

Kanter et al. 
2015 

 

Laboski et al 
2006; 

Roberts et al. 
2014 

EPA 2013 

 

BMPs-fertilizer 
($ ha-1) 

$11.25  
(4.5-33.8) 

$14.85 
 (11-18.9) 

-   

BMPs-manure 
($ ha-1) 

"" 
 

- -   

EEFs-fertilizer 
($ ha-1) 

"" $9 
(6.6-14.4) 

$13.4  
(11.3-15.8) 

$20*  

EEFs-manure 
($ ha-1) 

"" - $13.4  
(11.3-15.8) 

$20*  

Livestock 
management 

($ head-1) 

"" - - $150  
(2-295) 

 



 23 

In terms of non-agricultural N2O emissions, for nitric acid production we use cost 459 

estimates used by USEPA (2013a), with capital costs ranging from $3.5-$6.3 per ton of 460 

nitric acid produced and annual operating and maintenance costs ranging from $0.6-$1.3 461 

per ton of nitric acid produced, depending on the abatement technology. No specific cost 462 

estimates were found for gasoline-fueled road vehicles, so we use the average abatement 463 

cost estimate for N pollution from Sutton et al. (2013) of $0.5 per kg N saved. 464 

 465 

5. Results & Discussion 466 

 467 

5.1 Environmental impacts 468 

The emissions avoided by following the mitigation emissions scenario vs. the business-469 

as-usual scenario across all the sectors considered are 0.16 Mt N2O-N yr-1 by 2030 (Table 470 

4, Figure 2). Much of the reduction in N2O emissions comes from the agricultural sector, 471 

given the magnitude of this source (Table 5). The avoided emissions translate to climate 472 

benefits of 74 Mt CO2e yr-1 (equivalent to approximately half the current methane 473 

emissions from U.S. natural gas production – EPA, 2015a) and stratospheric ozone 474 

benefits of 5 kt ODP yr-1 by 2030. The climate benefits by 2020 (24 Mt CO2e yr-1) are 475 

equivalent to 3% of the remaining reductions needed to reach the 2020 target of cutting 476 

GHG emissions by 17% below 2005 levels, and 3% of the remaining reductions needed 477 

to reach the 26%-28% reductions required by 2025. Summing the benefits over the period 478 

2015-2030 yields savings of 1.26 Mt N2O-N, equivalent to 449 Mt CO2e and 30 ODP kt. 479 

The climate benefits are equal to taking 12 million cars permanently off the road. The 480 

ozone benefits are equal to taking 100 million CFC-laden refrigerators out of service. 481 
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 482 

For other N compounds, following the mitigation scenario reduces NOx and NH3 losses 483 

by 0.4 Mt N yr-1 each, and NO3
- losses by 1.4 Mt NO3-N yr-1 by 2030. Summing the 484 

benefits over the period 2015-2030 yields savings of 3 Mt N for both NOx and NH3, and 485 

11.1 Mt NO3-N for NO3
- (Table 4). Figure 2 compares the total N2O reductions under the 486 

mitigation scenario and business as usual. 487 

 2015 2020 2025 2030 Sum (2015-2030) 
N2O (Mt N yr-1) 0 0.05 0.11 0.16 1.26 

Climate (Mt CO2e yr-1) 0 24 49 74 449 
Ozone (kt ODP yr-1) 0 1.6 3.3 5 30 

Other N compounds (Mt N yr-1) 
NOx  0 0.12 0.25 0.4 3 
NH3  0 0.12 0.25 0.4 3 
NO3

-  0 0.45 0.93 1.4 11.1 
Table 4 Difference in environmental impacts of following the mitigation vs. business-as-488 
usual emissions scenario across all the sources considered. Numbers represent the annual 489 
differences in N fluxes between the scenarios in 2015, 2020, 2025 and 2030, as well as 490 
the sum of the differences over the period 2015-2030. 491 

 492 
Source 

(Mt N2O-N yr-1) Scenario 2015 2020 2025 2030 

N fertilizer and 
manure 

BAU 0.28 0.29 0.30 0.31 
MIT 0.28 0.26 0.23 0.21 

Gasoline-
powered road 

vehicles 

BAU 0.026 0.026 0.024 0.023 

MIT 0.026 0.021 0.017 0.012 

Nitric acid 
production 

BAU 0.036 0.039 0.041 0.044 
MIT 0.036 0.026 0.014 0.003 

Total 
BAU 0.34 0.36 0.37 0.38 
MIT 0.34 0.31 0.26 0.22 

Table 5 N2O emission trajectories for both business-as-usual and mitigation scenarios 493 
from 2015 to 2030 across the sources considered in this paper: N fertilizer and manure, 494 
gasoline-powered road vehicles, and nitric acid production. The bottom row represents 495 
the sum of all three sources from both scenarios. 496 

 497 
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 498 
Figure 2 – U.S. N2O emission trends from the sources considered in this study (nitrogen 499 
fertilizer and manure use, gasoline-powered road vehicles, and nitric acid production) 500 
over 2015-2030 in a business-as-usual versus a mitigation scenario. 501 

 502 
5.2 Economic impacts 503 

The avoided economic damages from following the mitigation scenario reach over $90 504 

billion annually by 2030, with over 99% coming from the agricultural sector (Table 6). 505 

Avoided damages due to N2O emissions reductions constitute only 2% of this overall 506 

amount, with the bulk of the benefits coming from reductions in other N compounds – 507 

NO3
- in particular, given both the higher absolute reductions and damage costs per 508 

kilogram. This demonstrates the importance of considering the N2O mitigation co-509 

benefits when evaluating policy options. The avoided damages in 2020 (~$30 billion) and 510 

2025 (~$60 billion) are within the range of estimates for avoided damages from climate 511 

change if the current US climate targets are implemented ($16-$150 billion in 2020 and 512 

$24-$247 billion in 2025, depending on the social cost of carbon used) (USEPA, 2015b). 513 
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Summing over the period 2015-2030, the avoided economic damages amount to over 514 

$700 billion.  515 

 516 

The abatement costs of following the mitigation scenario reach approximately $22 billion 517 

in 2030, again with over 99% of these costs from the agricultural sector. Summing over 518 

the period 2015-2030, the abatement costs amount to just over $170 billion. 519 

Consequently overall, for every $1.00 spent on abating N2O emissions, society is 520 

projected to gain $4.10. 521 

 522 
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 523 

Table 6 The avoided damages and abatement costs (in $2014 billions) of following the 524 
mitigation scenario vs. the business-as-usual from 2015 to 2030, and summed over the 525 
same period. The avoided damages are disaggregated by N compound and source, and 526 
then combined. Similarly, the abatement costs are disaggregated by source and then 527 
combined. 528 

 529 
5.3 Discussion 530 
 531 
It should be noted that because N2O has global impacts as a GHG and ozone depleting 532 

substance, the U.S. would reap only a portion of the environmental and health benefits 533 

from reducing domestic N2O emissions while being burdened with all the abatement 534 
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costs. Nevertheless, as the results demonstrate, it is the local co-benefits of N2O reduction 535 

that dominate (i.e. avoided N leaching, as well as NOx and NH3 emissions), and these 536 

benefit almost exclusively the U.S. and its immediate neighbors. 537 

 538 
While the environmental and economic benefits of reducing N2O emissions (and N losses 539 

more generally) are apparent, there are also challenges for policy-makers in addressing 540 

this issue. One of the most considerable is the risk of pollution swapping i.e. measures 541 

reducing one form of N pollution exacerbating another. For example, efforts to reduce N 542 

leaching and run-off under the EU Nitrates Directive include the winter storage of 543 

manures, which can increase NH3 emissions. Indeed, Denmark and the Netherlands have 544 

measured substantial increases in springtime NH3 emissions as a result of their nitrate 545 

policy (Erisman et al., 1998). Another example is how catalysts developed to reduce NOx 546 

emissions from mobile combustion have led to an increase in N2O emissions in certain 547 

cases (UNEP, 2013). Therefore, unless a more integrated approach to N pollution is taken 548 

(which in agriculture, for example, requires reducing N losses at the source) we will 549 

continue to “roll the dice” when it comes to policy: some measures may serendipitously 550 

reduce several forms of pollution, while others may exacerbate one aspect of the problem 551 

while purportedly solving another. Linked to this is the fact that N pollution occurs across 552 

multiple temporal (days to decades) and spatial (field to continent) scales. Certain aspects 553 

of N pollution impact local areas over relatively short periods of time (e.g. smog events 554 

in urban areas, algal blooms in coastal regions), while others, such as N2O, impact much 555 

larger areas and timescales. Consequently, policy-makers should take these dynamics into 556 

account when deciding which regions and sectors to focus on, prioritizing areas 557 
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particularly vulnerable to N losses and impacts (e.g. high population density, porous 558 

soils, potential for groundwater contamination etc.). 559 

 560 

6. Conclusion 561 

 562 

In the absence of new legislation, measures to address climate change in the U.S. at the 563 

federal level have to rely on existing legal authority. While various rules and initiatives 564 

have been introduced to address a number of GHGs (notably CO2, CH4 and HFCs), N2O, 565 

the third most abundantly emitted GHG and the largest remaining threat to the 566 

stratospheric ozone layer, has been mostly ignored. The unique chemistry of the N 567 

cascade – where one N atom can be converted into a number of different chemical forms, 568 

each with its own environmental impact – broadens the legal possibilities for addressing 569 

this issue. Indeed, our legal analysis suggests that the Clean Air Act, and the authority to 570 

regulate ozone-depleting substances in particular, could be the most promising legal 571 

pathway for regulating N2O across all sources. We illustrate that invoking this authority 572 

and introducing measures to limit N2O emissions could deliver important environmental 573 

and economic benefits to society that go beyond the adverse stratospheric ozone and 574 

climate impacts caused by N2O. The benefits to water and air quality from reduced NH3, 575 

NOx and NO3
- losses are even more significant, demonstrating the large co-benefits that 576 

addressing particular sources of climate warming and stratospheric ozone depletion could 577 

deliver. Moreover, it is possible that addressing N pollution not only benefits the 578 

environment, but also reduces farmer costs (due to more efficient fertilizer use) and 579 

increases fertilizer industry profitability (via increased demand for enhanced efficiency 580 
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fertilizers and fertilizer services) (Kanter et al., 2015). Finally, in the wake of the Paris 581 

Climate Agreement, the current focus on only a subset of GHGs will make it even more 582 

challenging to keep global temperatures “well below” the 2oC target (Gernaat et al. 583 

2015). Consequently, all mitigation opportunities need to be considered, including 584 

measures related to N2O. Such measures, if devised and implemented accordingly, could 585 

be an excellent vehicle for reducing many of the adverse environmental and health 586 

impacts N pollution exacerbates across the U.S. and the world.  587 

  588 
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