
http://go.warwick.ac.uk/lib-publications 

 
 

 
 
 
 
 
 
 
Original citation: 
Pollicott, Mark, Wang, Hao and Weiss, Howard (Howie). (2012) Extracting the time-
dependent transmission rate from infection data via solution of an inverse ODE problem. 
Journal of Biological Dynamics, Vol.6 (No.2). pp. 509-523.  
Permanent WRAP url: 
http://wrap.warwick.ac.uk/52247/  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes the work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
Publisher’s statement: 
 http://dx.doi.org/10.1080/17513758.2011.645510 
 www.tandfonline.com 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9562759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/52247/
http://dx.doi.org/10.1080/17513758.2011.645510
http://www.tandfonline.com/
mailto:wrap@warwick.ac.uk


This article was downloaded by: [137.205.202.213]
On: 03 December 2012, At: 03:45
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Biological Dynamics
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tjbd20

Extracting the time-dependent
transmission rate from infection data
via solution of an inverse ODE problem
Mark Pollicott a , Hao Wang b & Howard (Howie) Weiss c
a Mathematics Institute, University of Warwick, Coventry, CV4 7AL,
UK
b Department of Mathematical and Statistical Sciences, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G1
c School of Mathematics, Georgia Institute of Technology, Atlanta,
GA, 30332, USA
Version of record first published: 04 Jan 2012.

To cite this article: Mark Pollicott, Hao Wang & Howard (Howie) Weiss (2012): Extracting the time-
dependent transmission rate from infection data via solution of an inverse ODE problem, Journal of
Biological Dynamics, 6:2, 509-523

To link to this article:  http://dx.doi.org/10.1080/17513758.2011.645510

PLEASE SCROLL DOWN FOR ARTICLE

For full terms and conditions of use, see: http://www.tandfonline.com/page/terms-and-
conditions
esp. Part II. Intellectual property and access and license types, § 11. (c) Open Access
Content

The use of Taylor & Francis Open articles and Taylor & Francis Open Select
articles for commercial purposes is strictly prohibited.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tjbd20
http://dx.doi.org/10.1080/17513758.2011.645510
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Journal of Biological Dynamics
Vol. 6, No. 2, March 2012, 509–523

Extracting the time-dependent transmission rate from infection
data via solution of an inverse ODE problem

Mark Pollicotta, Hao Wangb* and Howard (Howie) Weissc

aMathematics Institute, University of Warwick, Coventry, CV4 7AL, UK; bDepartment of Mathematical
and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1; cSchool of

Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

(Received 15 June 2011; final version received 26 November 2011)

The transmission rate of many acute infectious diseases varies significantly in time, but the underlying
mechanisms are usually uncertain. They may include seasonal changes in the environment, contact rate,
immune system response, etc. The transmission rate has been thought difficult to measure directly. We
present a new algorithm to compute the time-dependent transmission rate directly from prevalence data,
which makes no assumptions about the number of susceptible or vital rates. The algorithm follows our
complete and explicit solution of a mathematical inverse problem for SIR-type transmission models. We
prove that almost any infection profile can be perfectly fitted by an SIR model with variable transmission
rate. This clearly shows a serious danger of overfitting such transmission models. We illustrate the algorithm
with historic UK measles data and our observations support the common belief that measles transmission
was predominantly driven by school contacts.

Keywords: epidemiology; time-dependent transmission rate; extraction algorithm; inverse problem;
measles; modulus of Fourier transform, Fourier analysis; periodicity; overfitting

1. Introduction

The transmission rate of an infectious disease is the per capita rate of infection given contact.
It is the epidemiological analogue of a rate constant in chemical reactions. In Section 3.4.9 of
Anderson and May [1], the authors state that ‘. . . the direct measurement of the transmission rate
is essentially impossible for most infections. But if we wish to predict the changes wrought by
public health programmes, we need to know the transmission rate . . .’ . The transmission rate of
many acute infectious diseases varies significantly in time and frequently exhibits significant sea-
sonal dependence [3,6,9,16,28,33]: influenza, pneumococcus, and rotavirus cases peak in winter;
respiratory syncytial virus and measles cases peak in spring; and polio cases peak in summer.

Most investigators define the transmission rate β(t) of an infectious disease via the discrete
transmission model:

S(k + 1) = S(k) − I(k + 1), (1)
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510 M. Pollicott et al.

I(k + 1) = β(k)S(k)I(k), (2)

where S(k), I(k) are the fractions of susceptible and infected individuals during week k [2,11].
Equation (2) is equivalent to β(k) = I(k + 1)/[I(k)S(k)], which provides a formula for the trans-
mission rate. The application of this ‘algorithm’ requires knowledge of S(0), which is sometimes
difficult to estimate, especially for outbreaks where a sizable proportion of the population is
immune to infection. An example is the elderly population during the 2009 H1N1 pandemic. We
developed our algorithm, in part, to avoid having to estimate S(0). See [14] for other issues with
using Equations (1) and (2), as well as various extensions and simplifications of our algorithm.

Our new algorithm is based on the solution of a mathematical inverse problem for SIR-type
transmission models using ordinary differential equations. We first consider the simplest SIR
model [22] and allow the transmission rate to be a time-dependent function, i.e. there is a positive
function β(t) such that

S′(t) = −β(t)S(t)I(t), (3)

I ′(t) = β(t)S(t)I(t) − νI(t), (4)

R′(t) = νI(t), (5)

where S(t), I(t), and R(t) are the fractions of susceptible, infected, and removed individuals at
time t. We pose the mathematical question:

Given ‘smooth prevalence data’ f (t) on time interval [0, T ] and removal rate ν > 0, can one
always find a non-negative transmission rate function β(t) such that the I(t) output of the SIR
model always coincides with f (t) with the given ν?

Mathematicians call this an inverse problem. We prove that this is always possible subject to
a mild restriction on the data and ν, and we provide an explicit formula for the solution. The
construction also illustrates the danger of overfitting a transmission model where one can choose
the time-dependent transmission rate.

However, in practice, prevalence data are always discrete, not continuous. We show that one
can compute β(t) by first smoothly interpolating the data with a spline or trigonometric function
and then applying the formula to smooth data. The output of the SIR model with this β(t) will
coincide exactly with the data.

The usual transmission rate estimation method based on (1) and (2) can be viewed as a dis-
cretization of (3) and (4). However, unlike the discrete extraction method, our approach yields an
explicit formula for the transmission rate, and also extends to a large spectrum of transmission
models (see Section 4.1).

One of the extensions in Section 4.1 is to the SEIR epidemic model with historical (time-
dependent) vital rates, and we illustrate this extended algorithm using monthly UK measles
notification data during 1948–1966. Our extracted transmission rate exhibits two dominant spec-
tral peaks: at frequencies 1 and 3 per year, respectively. We show that the latter peak reflects the
‘cycle’ of Christmas, Easter, and Summer school vacations. These observations support the com-
mon belief that measles transmission is predominantly driven by school contacts [13,21]. However,
we also find indications of a cycle with a 2-year period. Although our method requires prevalence
data, for measles the notification data suffices to generate correct dominant frequencies of β(t).

2. Results

We first derive the algorithm for extracting the time-dependent transmission rate from prevalence
data. We then apply the algorithm to two simulated data sets representing two characteristic ‘types’
of infectious diseases. Finally, we illustrate the algorithm, using UK measles data from 1948 to
1966.
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2.1. Solution of inverse problem

The new algorithm follows from the complete solution of an inverse problem for the SIR system
of ODEs. The generality of the result seems striking, while the proof is almost trivial.

Theorem 2.1 Given a smooth positive function f (t), ν > 0, β0 > 0, and T > 0, there exists
K > 0 such that if β0 < K there is a solution β(t) with β(0) = β0 such that I(t) = f (t) for
0 ≤ t ≤ T if and only if f ′(t)/f (t) > −ν for 0 ≤ t ≤ T.

The growth condition imposes no restrictions on how f (t) increases, but requires that f (t)
cannot decrease too quickly, in the sense that its logarithmic derivative is always bounded below
by −ν. It is easy to see that f ′(t)/f (t) > −ν is a necessary condition, since Equation (4) implies
that f ′(t) + νf (t) = β(t)S(t)f (t), which must be positive for 0 ≤ t ≤ T .

The proof of the theorem consists of showing that this condition is also sufficient. We rewrite
Equation (4) as

S(t) = f ′(t) + νf (t)

β(t)f (t)
, (6)

then compute S′(t), and then equate with Equation (3) to obtain

d

dt

(
f ′(t) + νf (t)

β(t)f (t)

)
= −β(t)

(
f ′(t) + νf (t)

β(t)f (t)

)
f (t). (7)

Calculating the derivative and simplifying the resulting expression yields the following Bernoulli
differential equation for β(t)

β ′(t) − p(t)β(t) − f (t)β2(t) = 0, where p(t) = f ′′(t)f (t) − f ′(t)2

f (t)(f ′(t) + νf (t))
. (8)

The change of coordinates x(t) = 1/β(t) transforms this nonlinear ODE into the linear ODE

x′(t) + p(t)x(t) + f (t) = 0. (9)

The method of integrating factors provides the explicit solution

1

β(t)
= x(t) = x(0)e−P(t) − e−P(t)

∫ t

0
eP(s)f (s) ds, where P(t) =

∫ t

0
p(τ ) dτ . (10)

A problem that could arise with this procedure is for the denominator of p(t) to be zero.
A singular solution is prevented by requiring that the denominator be always positive, i.e.
f ′(t) + νf (t) > 0. Having done this, to ensure that β(t) is positive, β(0) must satisfy

∫ T

0
eP(s)f (s) ds <

1

β(0)
. (11)

Mathematically, there are infinitely many choices of β(0) and thus infinitely many transmission
functions β(t). In this sense, the inverse problem is under-determined.

2.2. Extraction algorithm

We now turn the proof of the theorem into an algorithm to extract the transmission rate β(t) from
a prevalence data set. The algorithm has four steps and requires two conditions.

D
ow

nl
oa

de
d 

by
 [

13
7.

20
5.

20
2.

21
3]

 a
t 0

3:
45

 0
3 

D
ec

em
be

r 
20

12
 



512 M. Pollicott et al.

Step 1. Smoothly interpolate the infection data with a spline or trigonometric function to
generate a smooth f (t). Check condition 1: f ′(t)/f (t) > −ν, where ν is the removal rate.

Step 2. Compute the function p(t) = (f ′′(t)f (t) − f ′(t)2
)/(f (t)(f ′(t) + νf (t))). Condition 1

prevents a zero denominator in p(t).
Step 3. Choose β(0) and compute the integral P(t) = ∫ t

0 p(τ ) dτ . Check condition 2:

β(0) < 1/
∫ T

0 eP(s)f (s) ds, where T is the time length of the infection data. Alternatively, choose
β(0) sufficiently small to satisfy condition 2.

Step 4. Apply the formula β(t) = 1/[e−P(t)/β(0) − e−P(t)
∫ t

0 eP(s)f (s) ds] to compute β(t) on
the given interval [0, T ].

Condition 1 is equivalent to d(ln f (t))/dt > −ν, i.e. the time series of infection data
cannot decay too fast at any time. The expression d(ln f (t))/dt = f ′(t)/f (t) = β(t)S(t) − ν =
ν(Re(t) − 1), where Re(t) is the effective reproduction rate at time t. The violation of Condition
1 would result in Re(t0) ≤ 0 for some t0 > 0. This is a mild condition that most data sets should
satisfy. If a data set does not satisfy this condition, we propose a scaling trick in Section 3 to be
able to apply the algorithm.

In Section 4.1, we present extensions of the basic extraction algorithm to several popular
extensions of the SIR model, including the SEIR model with variable vital rates. Our algorithm
can be extended to virtually any such compartment model.

2.3. Extracting the transmission rate from simulated data

We first illustrate the extraction algorithm using two simulated data sets. The functions f (t) and
g(t) are the fractions of the infected population for two characteristic ‘types’of infectious diseases.

The first data set simulates an infectious disease with periodic outbreaks, as observed in measles
(before mass vaccination) and cholera [24,29]. The periodic function f (t) = 10−5[1.4 + cos(1.5t)]
represents the continuous infection data, and Figure 1(a) contains plots of both f (t) (solid) and
its associated transmission rate function β(t) (dashed).

The second data set simulates an infectious disease with periodic outbreaks that decays in
time, as observed in influenza [31]. The periodic function g(t) = 10−5[1.1 + sin(t)] exp(−0.1t)
represents the continuous infection data, and Figure 2(a) contains plots of both g(t) (solid) and
its associated transmission rate function β(t) (dashed).

We extract discrete data from functions f (t) and g(t) by sampling them at equi-spaced intervals
(see the small black squares in Figures 1(a) and 2(a)). To each discrete time series, we apply two
well-known interpolation algorithms (trigonometric approximation and spline approximation)
[23,32]. Figures 1(b) and 2(b) contain plots of β(t) obtained from the two smooth interpolations
together with the extraction algorithm. Both interpolation schemes yield excellent approximations
of β(t) in both examples.

Many simulations show that the extraction algorithm is robust, maintaining the pattern of β(t),
with respect to white noise up to 10% of the data mean, as well as varying the number of sample
points.

2.4. Extracting the transmission rate from UK measles incidence data

Previous studies [10,20] employed the SEIR model with vital rates to explore the epidemic and
endemic behaviours of measles infections, using the notification data in [30]. To compare our
new extraction technique with previous measles studies, we extend our extraction algorithm to
the SEIR model with variable vital rates (see Section 4.1.5) and use the same data set. To examine
the robustness of our new results, we post-condition the data to account for underreporting and
reapply the extended extraction algorithm.
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Figure 1. (a) We extract 21 equally spaced data points from the periodic function f (t) = 10−5[1.4 + cos(1.5t)]; the
dashed curve is β(t) extracted from f (t), using Equation (10). (b) These transmission functions are estimated, using spline
and trigonometric interpolations on the 21 data points.

We use the measles parameter values from Anderson and May [1,30]: ν = 52/year =
52/12/month (where 1/ν is the removal period), a = 52/year = 52/12/month (where 1/a is
the latent period), and δ = 1/70/year = 1/70/12/month (death rate, equivalent to the life span
of 70 years).

Public databases, such as the International Infectious Disease Data Archive [18] and Bolker’s
measles data archive [17], contain the weekly numbers of measles notifications from 1948 to 1966
and the quarterly reported historical UK births from 1948 to 1956. During 1948–1956 the births
show large annual variations (see Figure 3(c)) with a strong 1/year frequency component (see
Figure 3(d)). Since some years, these variations approach 20%, we include actual births in our
model. Since neither database contains the UK birth rates from 1957 to 1966, this requires us to
restrict our study to the period 1948–1956.

Previous measles modellers have used notification data (the number of reported new infections
during a given period) as a surrogate for prevalence data (the total number of infections during
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Figure 2. (a) We extract 21 equally spaced data points from the oscillatory decaying function
g(t) = 10−5[1.1 + sin(t)] exp(−0.1t); the dashed curve is β(t) extracted from g(t), using Equation (10). (b)
These transmission functions are estimated, using spline and trigonometric interpolations on the 21 data points.

the period) [10,35]. To be able to compare our results with those of previous authors, we first
apply our extraction algorithm to the same notification data. We then apply the standard method to
convert the notification data to prevalence data and apply our algorithm to the estimated prevalence
data. The resulting β(t) from these two data sets have same dominant frequencies (see Figures 4
and 5). Hence, for measles the notification data suffices to generate correct dominant frequencies
of β(t).

Since the birth data are provided only quarterly and the notifications weekly, we smoothly
interpolate the birth data and aggregate the notification data into one month intervals. To aggregate
weekly infection data into monthly data, we simply sum the weekly data as previous studies
[10,35]. For a week across 2 months, this weekly infection number is separated to be two parts.
For instance, if 1 week has 3 days in May and 4 days in June, then we multiply the number of
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Figure 3. (a) Aggregated monthly measles data from England and Wales in 1948–1956. (b) Fourier transform of filtered
and smoothly interpolated aggregated monthly data showing the dominant frequency components (normalized modulus).
Note: We filter and remove the artificial peak at zero frequency in the Fourier transform. (c) UK birth rates during
1948–1956. (d) Fourier transform of smoothly interpolated UK birth data showing the dominant frequency component
(normalized modulus).

notifications during this week by 3/7 and incorporate it into the May data, and we multiply the
number of notifications during this week by 4/7 and incorporate it into the June data.

In Figure 4(a), (c) ,(e), and (g), we plot the transmission rates β(t) extracted from our algorithm
for four different January initial values chosen to represent a wide range of β(0). The graphs of
the extracted β(t) in panels (e) and (g) are stationary, exhibit a slowly increasing drift in panel (c),
and exhibit a faster increasing drift in panel (a). Note that in all cases, the annual minima occur
in July–August during the summer school vacation period and that the annual maxima occur in
January or September during the first month after the winter and summer school vacations.

In Figure 4(b), (d), (f), and (h), we plot the moduli of the Fourier transform of all extracted β(t)
and observe that there are two competing dominant spectral peaks. These two dominant peaks
have 1 and 1/3-year periods. The three per year (i.e. 1/3-year period) peak of β(t) seems to be
due to the three major school terms, which are separated by the Christmas, Easter, and Summer
breaks (see Figure 6). For stationary β(t) (see panels (e), (g)), the one per year spectral peak is
dominant (see panels (f), (h)), and the one half per year (2-year period) spectral peak is comparable
to the three per year spectral peak (see panel (h)). We conclude that for a huge range of β(0), the
transmission rate always possesses both strong 1 and 1/3-year cycles.

To test the robustness of our spectral peaks, we incorporate the standard correction factor
of 92.3% to account for the underreporting bias in the UK measles data (with estimated mean
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Figure 4. The transmission rate function β(t) extracted from our extended algorithm with historic birth rates. (a) The
extracted β(t) with β(0) = 270: fast increasing peaks. (b) Fourier transform of filtered β(t) showing the dominant
frequency component, 3 per year. (c) The extracted β(t) with β(0) = 230: slowly increasing peaks. (d) Fourier transform
of filtered β(t) showing two comparable dominant frequencies components, 1 and 3 per year. (e) The extracted β(t) with
β(0) = 140: stationary peaks. (f) Fourier transform of filtered β(t) showing the dominant frequency component, 1 per
year. (g) The extracted β(t) with β(0) = 80: stationary peaks. (h) Fourier transform of filtered β(t) showing the dominant
frequency component, 1 per year; 1/2 per year peak is large and comparable to the 3 per year peak.
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B(0)=120 with 92.3% data correction factor
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B(0)=60 with 92.3% data correction factor
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B(0)=30 with 92.3% data correction factor
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Figure 5. We test our estimations of β(t) with data correction. The moduli of Fourier transform of β(t) with the 92.3%
correction factor have identical spectral peaks as those without data correction in Figure 4. (a) The extracted β(t) with
β(0) = 120. (c) The extracted β(t) with β(0) = 100. (e) The extracted β(t) with β(0) = 60. (g) The extracted β(t) with
β(0) = 30. Panels (b), (d), (f), and (h) plot moduli of Fourier transform of corresponding β(t) in (a), (c), (e), and (g),
respectively.
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Figure 6. The transmission rate β(t) is generated from the Haar function with major school holidays via aggregation.
The modulus of Fourier transform of β(t) generated from the widely used periodic Haar function shows the dominant
three times per year frequency.

reporting rate 52%, note that 92.3% is computed from 1/0.52 − 1) [4,8,34]. Since both the removal
stage in the SEIR model and the infection notification period are 1 week, and the 92.3% correction
factor essentially doubles the number of cases, this corrected number of cases will account for the
non-notified cases during the removal stage. Hence, the corrected weekly notification data should
provide a good approximation for total weekly infections. This precise methodology was used in
[4,5].

In Figure 5, we plot the extracted β(t) with the 92.3% correction factor and for the large range
of β(0). All the extracted β(t) have identical dominant frequencies as those in Figure 4. Thus our
observation of the two spectral peaks with frequencies 1/year and 3/year seems strongly robust.
Again, we observe that the scale of the infection data regulates the scale of β(t), but does not
affect dominant frequencies of β(t).

Most previous measles models represent the time-varying transmission rate, using a school
term-time forcing function (such as the sinusoidal or the Haar function), and fitted param-
eters using the method of least squares. None seem to provide variances for their estimates
[5]. Little empirical evidence currently supports their assumed functions that ignore other sea-
sonal factors such as environmental changes and immune system changes [12,27]. However, our
observations support this common belief that measles transmission is predominantly driven by
school contacts.

3. Discussion

We present a new algorithm to compute the time-dependent transmission rate from prevalence
data, which makes no assumptions about the number of susceptible or vital rates. We do have
to estimate β(0), which can be a formidable challenge. By manipulating our derivation, Hadeler
recently derived another inversion formula for β(t) that requires knowledge of S(0) instead of
β(0) [14]. Hadeler’s paper [14] also includes a formula that can be applied to notification data,
however, our formula is only applicable to prevalence data.

Our algorithm can be viewed as a continuous version of the well-known discrete method for
estimating the time-varying transmission rate. The inverse method in this paper can be applied to
derive the extraction algorithms for a large spectrum of epidemiological models (see Section 4.1).
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In this sense, our new method provides a more general method than the discrete method since it
can account for factors such as the transmission mode and the immunity memory period, which
can have a significant effect on transmission rate.

We illustrate the extraction algorithm for the SEIR model with variable vital rates, using UK
measles data from 1948 to 1956. The Fourier transform of our extracted transmission rate function
shows dominant spectral peaks at frequencies 1 and 3 per year. The 3 per year frequency seems
to arise from the three major school breaks. Our observations support the common belief that
measles transmission is predominantly driven by school contacts, but we also find indications of
a 2-year cycle.

Our algorithm has some limitations to its applicability. First, the proportion of infected individ-
uals, f (t), cannot decrease too fast over the full time interval of interest. In general, one can add a
sufficiently large constant to f (t) to ensure this, but this will change the range of applicable β(0),
and applicability needs to be checked case by case. Second, one must assume that the proportion
(or number) of notifications is always strictly positive. In practice, this restriction can be overcome
by replacing zero values in the time series with a very small positive value. Third, for a chosen
β(0), the algorithm may only apply to a finite length of infection data. Finally, one either needs to
know the value of the transmission rate at some fixed time, or verify that the claimed properties
of β(t) hold for all β(0) attaining a large range of values.

We believe that the algorithm should apply to the vast majority of infection data sets (Mummert
[25], Mummert et al. [26] apply the algorithm or an extended version to influenza data), and as a
consequence, one can nearly always construct a time-dependent transmission rate β(t) such that
the SIR model will perfectly fit data. This illustrates a potential danger of overfitting an epidemic
model with time-dependent transmission rate.

Recently, likelihood-based methods for estimating the time-varying transmission function
have been developed in [7,15], using stochastic transmission models. Our algorithm can also
be extended to incorporate stochastic effects by using stochastic differential equations.

4. Materials and methods

4.1. Extensions of the basic model

Analogous results and inversion formulae hold for all standard variations of the standard SIR
model and their combinations. The proofs are similar to the proof of Theorem 2.1. Here, we only
present the full algorithm for the SEIR model with vital rates, since we apply this algorithm to
UK measles data.

4.1.1. SIR model with vital rates

S′(t) = δ − β(t)S(t)I(t) − δS(t), (12)

I ′(t) = β(t)S(t)I(t) − νI(t) − δI(t), (13)

R′(t) = νI(t) − δR(t). (14)

The necessary and sufficient condition for extracting β(t) given ν and δ is f ′(t)/f (t) > −(ν + δ).

4.1.2. SIR model with waning immunity

S′(t) = mR(t) − β(t)S(t)I(t), (15)
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I ′(t) = β(t)S(t)I(t) − νI(t), (16)

R′(t) = νI(t) − mR(t), (17)

where 1/m is the memory period of immunity. The necessary and sufficient condition for extracting
β(t) given ν is f ′(t)/f (t) > −ν.

4.1.3. SIR model with time-dependent indirect transmission rate [19]

S′(t) = −ω(t)S(t), (18)

I ′(t) = ω(t)S(t) − νI(t), (19)

R′(t) = νI(t), (20)

where ω(t) is the time-dependent indirect transmission rate. The necessary and sufficient condition
for extracting β(t) given ν is f ′(t)/f (t) > −ν.

4.1.4. SEIR model

S′(t) = −β(t)S(t)I(t), (21)

E′(t) = β(t)S(t)I(t) − αE(t), (22)

I ′(t) = αE(t) − νI(t), (23)

R′(t) = νI(t), (24)

where 1/α is the latent period for the disease. By simple calculations, we can show that the
necessary and sufficient condition for extracting β(t) from infection data is f ′(t)/f (t) > −ν.

4.1.5. SEIR model with vital rates

S′(t) = δ − β(t)S(t)I(t) − δS(t), (25)

E′(t) = β(t)S(t)I(t) − aE(t) − δE(t), (26)

I ′(t) = aE(t) − νI(t) − δI(t), (27)

R′(t) = νI(t) − δR(t). (28)

The necessary and sufficient conditions for extracting β(t) from infection data are

f ′(t) + (ν + δ)f (t) > 0 and f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t) > 0. (29)

In this case, β(t) satisfies the Bernoulli equation

β ′ + p(t)β + q(t)β2 = 0, (30)
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where

p(t) =
−af ′′′(t)f (t) − a(ν + 2δ + a)f ′′(t)f (t) − a(δ + a)(ν + δ)f ′(t)f (t) + af ′′(t)f ′(t)

+ a(ν + 2δ + a)f ′(t)2

af (t)[f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t)]

+
a(δ + a)(ν + δ)f ′(t)f (t) − δaf ′′(t)f (t) − δa(ν + 2δ + a)f ′(t)f (t)

− δa(δ + a)(ν + δ)f 2(t)

af (t)[f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t)] ,

and

q(t) = δa2f 2(t) − af ′′(t)f 2(t) − a(ν + 2δ + a)f ′(t)f 2(t) − a(δ + a)(ν + δ)f 3(t)

af (t)[f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t)] .

The modified extraction algorithm has five steps together with three conditions.
Step 1. Smoothly interpolate the infection data to generate a smooth function f (t) that has

at least a continuous second derivative. Check condition 1: f ′(t) + (ν + δ)f (t) > 0; and check
condition 2: f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t) > 0.

Step 2. Compute the function

p(t) =
−af ′′′(t)f (t) − a(ν + 2δ + a)f ′′(t)f (t) − a(δ + a)(ν + δ)f ′(t)f (t) + af ′′(t)f ′(t)

+ a(ν + 2δ + a)f ′(t)2

af (t)[f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t)]

+
a(δ + a)(ν + δ)f ′(t)f (t) − δaf ′′(t)f (t) − δa(ν + 2δ + a)f ′(t)f (t)

− δa(δ + a)(ν + δ)f 2(t)

af (t)[f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t)] .

Step 3. Choose β(0) and compute the integral P(t) = ∫ t
0 p(τ ) dτ . Check condition 3:

1

β(0)
+

∫ T

0
e−P(s)q(s) ds > 0.

Step 4. Compute the function

q(t) = δa2f 2(t) − af ′′(t)f 2(t) − a(ν + 2δ + a)f ′(t)f 2(t) − a(δ + a)(ν + δ)f 3(t)

af (t)[f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t)] .

Step 5. Apply the formula β(t) = 1/[eP(t)/β(0) + eP(t)
∫ t

0 e−P(s)q(s) ds] to compute β(t) on the
given interval [0, T ].

With variable birth rate η(t) and constant death rate δ, then the SEIR model becomes

S′(t) = η(t) − β(t)S(t)I(t) − δS(t), (31)

E′(t) = β(t)S(t)I(t) − aE(t) − δE(t), (32)

I ′(t) = aE(t) − νI(t) − δI(t), (33)

R′(t) = νI(t) − δR(t). (34)

In this case, the formula in Step 4 should be

q(t) = η(t)a2f 2(t) − af ′′(t)f 2(t) − a(ν + 2δ + a)f ′(t)f 2(t) − a(δ + a)(ν + δ)f 3(t)

af (t)[f ′′(t) + (ν + 2δ + a)f ′(t) + (δ + a)(ν + δ)f (t)] .

All other steps in the algorithm remain the same.
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