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Abstract

It is shown that if a planar graph admits no non-constant bounded harmonic function
then the trajectories of two independent simple random walks intersect almost surely.
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1 Introduction

Let G = (V,E) be a connected (multi)graph. The graph G has the intersection prop-
erty if for any x, y ∈ V , the trajectories of two independent simple random walks (SRW)
started respectively from x and y intersect almost surely. Recall that G is Liouville if it
admits no non-constant bounded harmonic function. The goal of this note is to prove
the following:

Theorem 1.1. If G is planar and Liouville then G has the intersection property.

Let us make a few comments on this result. We first recall the well-known sequence
of implications as well as the Zd, d > 1 lattices that satisfy them:

recurrence ⇒ intersection ⇒ Liouville
Zd, d = 1, 2 Zd, d = 1, 2, 3, 4 Zd, d > 1.

In the case of bounded degree planar graphs the Liouville property is equivalent
to recurrence of the simple random walk, see [3] (as in the case of non-compact planar
Riemannian surfaces). If we drop the bounded degree assumption, it is easy to construct
transient planar graphs which are Liouville: For example, start with a half line N =

{0, 1, 2, ...} and place 2n parallel edges between n and n + 1 for n > 0. Yet this graph
clearly has the intersection property.

Our result thus becomes interesting in the case of Liouville planar graphs of un-
bounded degree. Such graphs arise for example as distributional limits of finite random
planar graphs, a topic that has attracted a lot of research recently [1, 2, 6, 7].
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The Liouville and the intersection properties are equivalent for planar graphs

2 Proof

The strategy of the proof is the following. We consider three independent simple
random walk trajectories, and argue that if each two of them intersect only finitely
many times, then they divide our planar graph into three regions (Fig.1). This allows us
to talk about the probability for random walk to eventually stay in one of these regions,
which we use to construct a non-constant bounded harmonic function, contradicting
our Liouvilleness assumption.

Proof. Fix G = (V,E) a connected planar multi-graph and suppose that G has the Liou-
ville property. First note that if G is recurrent then it has the intersection property and
we thus suppose henceforth that G is transient.
Denote by Px the law of a simple random walk (Xn)n>0 started from x in G. We write
X = {X0, X1, X2, ...} for the trajectory of (Xn). If γ = {γ0, γ1, ...} is a set of vertices in G
define for any x ∈ V

hγ(x) := Px
(
#(X ∩ γ) =∞

)
.

It is clear that hγ(.) is harmonic (bounded) and is thus constant since G is Liouville. We
write hγ for the common value hγ(y), y ∈ V . In fact, one has hγ ∈ {0, 1}. Indeed, if
Fn = σ(X0, X1, ..., Xn) is the sigma-field generated by the SRW we have

1#(X∩γ)=∞ = lim
n→∞

Ex[1#(X∩γ)=∞ | Fn] = lim
n→∞

hγ(Xn) a.s.

Hence hγ(Xn) tends to 0 or 1 a.s. and the claim follows. Let us now randomize the path γ
and consider the random variable hX where X is the trajectory of a SRW under Px. The
last argument shows that hX ∈ {0, 1}. We now claim that hX is almost surely constant.
Indeed, if X and Y are two independent simple random walk trajectories started from
x ∈ V (G) we have hX = hX(x) = 1#(X∩Y)=∞ a.s. (and similarly interchanging the roles
of X and Y) thus

Ex[hXhY] = Px
(
#(X ∩Y) =∞ and #(Y ∩X) =∞

)
= Px

(
#(X ∩Y) =∞

)
= Ex[hX].

Hence Ex[hX]2 = Ex[hX] ∈ {0, 1}. Either hX = 1 = hX(y) for all y ∈ V a.s. in which case
Theorem 1.1 is proved, or almost surely for all y ∈ V we have hX = 0 = hX(y). In words,
a.s. for any x, y ∈ V , two simple random walk paths started from x and y intersect only
finitely many times. Let us suppose by contradiction that we are in the latter case.

We now make use of the planarity and consider a proper embedding1 of G in R2.
Let us consider three independent simple random walk trajectories X(1),X(2) and X(3)

started from some x ∈ V . Since almost surely these paths intersect each-other finitely
often a.s., they distinguish, using the planarity, three regions in (the embedding of) G
called R1,R2 and R3 as depicted in the figure below. Formally, the region R1 is defined
as the set of all vertices y ∈ V \⋃3

k=1 X
(k) such that for all n large enough, if γ is a path

linking y to X
(1)
n in G then γ must intersect X(2) ∪ X(3). The regions R2 and R3 are

defined similarly.
Now for any y ∈ V , conditionally on X(1),X(2) and X(3) we consider a simple random

walk trajectory Y under Py. By our assumption the path Y intersects any of the X(i)’s

1Notice that since G is Liouville, it has precisely one transient end α and it is possible to embed G in R2

so that no ray in α has an accumulation point in R2, which always exists [8].

ECP 17 (2012), paper 42.
Page 2/5

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1913
http://ecp.ejpecp.org/


The Liouville and the intersection properties are equivalent for planar graphs

R1

R2

R3

X(1)

X(3)

X(2)

Figure 1: The three (random) regions R1,R2 and R3.

finitely many times a.s. so that Y is eventually trapped in one of the three regions
R1,R2 or R3. We then define

H(y) := Py(Y is eventually trapped in R1).

Note that H(.) is a random function and that for every ω it is (bounded) harmonic over
G and thus constant by the Liouville property of G. On the one hand an obvious sym-
metry argument shows that E[H(x)] = 1/3. On the other hand since H is almost surely

constant we have H(x) = H(X(1)
n ) for all n > 0. Almost surely, for all n large enough, if

a simple random walk started from X
(1)
n is eventually trapped in R1 then it has to cross

one of the paths X(2) or X(3). We thus have

E[H(x)] = lim sup
n→∞

E[H(X(1)
n )]

= lim sup
n→∞

E
[
P
X

(1)
n

(Y is trapped in R1)
]

6 lim sup
n→∞

E
[
P
X

(1)
n

(Y intersects X(2) ∪X(3))
]
.

But since X(1) has only a finite intersection with X(2) ∪ X(3) a.s. we deduce that the
probability inside the expectation of the right-hand side of the last display goes to 0 as
n→∞. Hence E[H(x)] = 0 and this is a contradiction. One deduces that hX = 1 almost
surely as desired.

3 Concluding Remarks

Relaxing planarity. As we noted above, Z5 is Liouville and yet two independent sim-
ple random walk paths do not intersect with positive probability. For which families of
graphs, other then planar, intersection is equivalent to Liouville? E.g., a natural exten-
sion of the collection of all planar graphs is the collection of all graphs with an excluded
minor. Fix a finite graph H. It is reasonable to guess that the statement of Theorem
1.1 still holds if we replace the planarity assumption by the hypothesis that G does not
have H as a minor. Indeed, many theorems on planar graphs generalize to excluded
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minor graphs (see, e.g., [10]). It is even more interesting to show that bounded de-
gree transient excluded minor graphs admit non-constant bounded harmonic functions
thus extending [3]. Another generalization of planarity is sphere-packability, see [4].
We ask whether a Liouville sphere-packable graph in R3 should admit the intersection
property?

Quasi-isometry. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs endowed respec-
tivelly with their graph distances d1 and d2. These graphs are called quasi-isometric if
there exists φ : V1 → V2 and two constants A,B > 0 such that for every x, y ∈ V1

A−1d1(x, y)−B 6 d2(φ(x), φ(y)) 6 Ad1(x, y) +B,

and if for every z ∈ V2 there exists x ∈ V1 with d2(z, φ(x)) 6 B.
For bounded degree planar graphs, the Liouville property is quasi-isometry invariant
since transience is. An example in [3] shows that Liouville property and almost sure
intersection of simple random walks are not quasi-isometry invariants: there exist two
graphs G1 and G2 that are quasi-isometric such that G1 has the intersection property
(hence Liouville) whereas G2 is non Liouville and two independent simple random walk
trajectories started from two different points inG2 have a probability strictly in between
0 and 1 of having an infinite intersection. However it is possible to modify and iterate
the construction of [3] in such a way that the last probability is actually 0.

Finite Dirichlet energy. A concept related to Liouvilleness is the (Dirichlet) energy
of a harmonic function f , defined by

∑
x∼y |f(x) − f(y)|2 where the sum ranges over

all neighbors x, y of the graph. For example, it is known that if a graph admits a non-
constant harmonic function of finite energy then it is not Liouville [9], but the converse
is in general not true. Russ Lyons asked (private communication) whether the converse
becomes true for planar graphs, i.e. whether there is a planar graph which admits non-
constant bounded harmonic functions but yet none of finite energy. We construct such
a graph here. Start with the integers Z = {0, 1, 2, ...}, and place 2|n| parallel edges
between n and n + 1 for every n. Then, join each n to −n by a new edge of resistance
n, or equivalently, with a path of length n of unit resistance edges. This graph is, easily,
still non-Liouville, and the reader will be able to check that it does however admit no
non-constant harmonic functions of finite energy, see for example [5, Lemma 3.1.].
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