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1. Introduction

1.1. Metaplectic groups

Let k be an algebraic number field, A the adèle ring of k, and G a connected

reductive group over k. Let µ be a finite abelian group. By a metaplectic cover of

G by µ, we shall meana a topological central extension

1→ µ→ G̃(A)→ G(A)→ 1,

such that the subgroup G(k) of rational points lifts to a subgroup Ĝ(k) of G̃(A).

We shall recall some results on the construction and properties of metaplectic covers

in section 2.1 below.

This paper is concerned with p-adic interpolation of automorphic representations

of a metaplectic group G̃(A) (specifically, those representations which show up in the

a The notation G̃(A) is standard but a little misleading, since this group is a topological group,

but is not the group of adelic points of any linear group.
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cohomology groups of its arithmetic quotients.) More precisely we prove metaplectic

versions of the results of [8], [7] and [10], which were originally proved there for

automorphic representations of G(A).

We shall write G∞ for the Lie group G(k ⊗Q R) and G◦∞ for the connected

component of the identity in G∞. We have a topological central extension of real

Lie groups

1→ µ→ G̃◦∞ → G◦∞ → 1, (1.1)

where G̃◦∞ is the pre-image of G◦∞ in G̃(A). We shall divide metaplectic covers into

two kinds:

• Type 1: The extension (1.1) splits as a direct sum;

• Type 2: The extension (1.1) does not split.

In this article we shall be concerned with metaplectic groups of type 1. As we point

out in Proposition 2.2 below, there are many groups G for which all metaplectic

covers of G are of type 1, so this restriction is not too onerous. Our methods will

not apply to type 2 covers, since such covers do not possess genuine metaplectic

forms of cohomological type. However we note that various authors have dealt with

the p-adic interpolation of metaplectic forms of type 2 in certain cases, using very

different methods (see for example [14,21,22]).

1.2. Cohomology of arithmetic quotients

Assume now that we have a type 1 metaplectic cover of G. We fix once and for all

a lift Ĝ(k) of G(k) to G̃(A). We also fix a maximal compact subgroup K◦∞ of G◦∞.

For a compact open subgroup Kf of G(Af ), we write Y (Kf ) for the corresponding

arithmetic quotient of G, i.e.

Y (Kf ) = G(k)\G(A)/K◦∞Kf .

We shall describe Y (Kf ) in a different way, which is more useful to us. Suppose that

Kf is chosen small enough so that it lifts to a subgroup K̂f of G̃(A). The existence

of such a Kf follows from topological considerations, and we shall fix such a lift K̂f .

As G̃ is of type 1, the group K◦∞ lifts uniquely to a maximal compact subgroup

K̂◦∞ of G̃◦∞. Since K̂◦∞ is connected, it follows that K̂f commutes with K̂◦∞, and so

we have the following alternative description of Y (Kf ):

Y (Kf ) = G̃(k)\G̃(A)/K̂◦∞K̂f ,

where G̃(k) is the pre-image of G(k) in G̃(A).

This allows us to define a local system on Y (Kf ) for any representation of

G̃(k) ∼= G(k)⊕ µ. In particular, if W is a representation of G(k) (over some coef-

ficient field E) and ε : µ → E× is a character, we may consider the representation

W ⊗ ε of G̃(k). The corresponding local system VW⊗ε is given by

VW⊗ε = G̃(k)\
(

(G̃(A)/K̂◦∞K̂f )× (W ⊗ ε)
)
.
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The cohomology groups of these local systems have an action of the Hecke

algebra of G̃(Af ) with respect to K̂f . This article will be concerned with the inter-

polation of the systems of Hecke eigenvalues appearing in these cohomology groups.

More precisely, we shall fix a prime p of k above the rational prime p, and take W

to be an algebraic representation of the group G = Rest
kp
Qp

(G×k kp), where Rest
kp
Qp

denotes restriction of scalars. We regard such a representation W as a representa-

tion of G(k) via the inclusion G(k) ↪→ G(kp) ∼= G(Qp). Our goal is to show that the

Hecke eigenvalues appearing in these spaces move in p-adic families as the weight

of W varies.

We will find it more convenient to work with the corresponding smooth repre-

sentations. Let us write G for the group G(Qp). For a prime q of k we shall often

write Gq for the group G(kq). Thus there is a canonical identification G = Gp. For

a subgroup U ⊂ G(A), we shall write Ũ for the preimage of U in G̃(A). If U is a

subgroup of Kf , then we shall write Û for the lift of U to K̂f , so that Û = Ũ ∩ K̂f .

We shall assume that Kf = KpK
p, where Kp is a compact open subgroup of Gp and

Kp is a compact open subgroup of G(Ap
f ). The group Kp will be called the “tame

level” and will remain fixed throughout the paper. We thus have a corresponding

decomposition K̂f = K̂pK̂
p.

We define for a fixed tame level:

H•cl,ε(K̂
p,W ) := lim−→

U⊂Kp

H•(Y (UKp),VW⊗ε).

(Of course, this group does not depend on Kp, but we require U ⊂ Kp in order

that the sheaf VW⊗ε is defined on Y (UKp).) Let Hp be the Hecke algebra of G̃(Ap
f )

with respect to K̂p, and with coefficients in E. The vector spaces H•cl,ε(K̂
p,W ) have

commuting actions of G̃ = G̃p and Hp. As a G̃-module, H•cl,ε(K̂
p,W ) is smooth and

admissible. We may recover the finite level cohomology H•(Y (KpKp),VW⊗ε) as the

subspace of K̂p-invariants in H•cl,ε(K̂
p,W ).

1.3. Classical points and Eigenvarieties

We may replace µ by µ/ ker ε without changing the classical cohomology groups.

We shall therefore assume from now on that the map ε : µ → E× is injective. We

shall also assume that the coefficient field E is a complete and discretely valued

subfield of Cp, and that G is split over E.

Our results are most complete (and easiest to state) when G is quasi-split over

Qp. Let us assume for now that this is the case, and choose a Borel subgroup

B = T N of G defined over Qp, with unipotent radical N and Levi factor T . The

group N of Qp-valued points of N has a unique lift N̂ to G̃ (this is well known,

and we include a proof in Lemma 5.1 below). For a smooth representation V of G̃,

the smooth Jacquet module V
N̂

is defined to be the space of N̂-coinvariants. This

Jacquet module is a smooth representation of the group T̃, which is the pre-image in

G̃ of the group T of Qp-valued points of T . Applying this smooth Jacquet functor to
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H•cl,ε(K̂
p,W ), we obtain a representation H•cl,ε(K̂

p,W )
N̂

of T̃×Hp, which is smooth

and admissible as a representation of T̃. If W is irreducible, then the contragredient

representation W ′ is also irreducible, and hence by the highest weight theorem

(cf. [7, Theorem 1.1.1]) (W ′)N is a 1-dimensional algebraic representation of T .

Tensoring with this representation, we obtain a locally algebraic representation

reps(W ) = reps(K̂p, ε,W ) of T̃ ×Hp defined as follows:

reps(W ) = (W ′)N ⊗E Hs
cl,ε(K̂

p,W )
N̂
.

By a classical point of cohomological dimension s, we shall mean an absolutely

irreducible (and hence finite dimensional) subquotient of reps(W ) for some W .

Under a certain hypothesis (see definition 1.1 below) we shall construct a single

rigid analytic space, called the eigenvariety, containing all the classical points (for

all choices of W simultaneously).

Each classical point is of the form π = πp ⊗ πp, where πp is an irreducible

locally algebraic representation of T̃ and πp is an irreducible representation of Hp.

Let Z be the centre of T̃. Recall that by the Stone-von Neumann Theorem for

smooth representations of metaplectic tori [29, Theorem 3.1], the representation πp
is determined by its restriction to Z (here we have used the assumption that ε is

injective). We may therefore regard πp as a point of the rigid analytic space Ẑ of

locally analytic characters of Z.

There is a decomposition Hp = Hsph ⊗ Hramified, where Hsph is commutative

and Hramified is finitely generated over E. This gives us a further decomposition

πp = πsph ⊗ πramified, where πsph is in Spec(Hsph). Thus a classical point gives rise

to a point (πp, π
sph) of Ẑ×Spec(Hsph). We shall show that there is a rigid analytic

subspace Eigs ⊂ Ẑ×Spec(Hsph) containing all the classical points of cohomological

dimension s, such that the projection Eigs → Ẑ is finite, with discrete fibres. In

particular, the dimension of Eigs is at most the dimension of T .

We shall see that there is a representation Js = Js(K̂p, ε) of T̃ ×Hp, together

with injective homomorphisms reps(W )→ Js for eachW , so that the representation

Js interpolates all of the classical points. As a representation of T̃, Js is locally

analytic, and we shall prove that Js is essentially admissible in the sense of [6] (see

definition 3.8 below). For such a representation, there is a corresponding coherent

sheaf E on Ẑ, such that the fibre at χ ∈ Ẑ is isomorphic (as an Hp-module) to

the contragredient of the χ-eigenspace in Js. The eigenvariety is defined to be the

relative spectrum Eigs = Spec(A), where A is the image of Hsph in the sheaf of

endomorphisms of E . Localizing E over A, we obtain a canonical sheaf M on Eigs.

The sheaf M allows us to recover the action of Hramified on Js.

Note that each classical point on the eigenvariety has a Ẑ-coordinate which

is locally algebraic. It would be useful to know whether the converse is true, i.e.

given a point of the eigenvariety whose Ẑ-coordinate is locally algebraic, can we

conclude that the point is a classical point? We prove that if χ ∈ Ẑ is locally

(W ′)N -algebraic and has non-critical slope (see definition 5.18 below), then the

map of χ-eigenspaces reps(W )[χ] → Js[χ] is bijective. Hence every point on the
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eigenvariety with Ẑ-coordinate χ is classical.

The representation Js together with the maps reps(W )→ Js are defined in two

steps: completed cohomology and the locally analytic Jacquet functor. We shall

briefly discuss these constructions in the next two paragraphs of this introduction.

1.4. Completed cohomology

Recall that we have fixed a prime p of k above p. Let OE be the valuation ring of

E.

We define the completed cohomology spaces H̄s = H̄s(K̂p, E) as follows:b The

choice of K̂f determines a µ-covering space Ỹ (K̂f ) of Y (Kf ), defined by

Ỹ (K̂f ) = Ĝ(k)\G̃(A)/K̂◦∞K̂f .

We set

H̄s(K̂p, E) =

(
lim←−
n

lim−→
Kp

Hs(Ỹ (K̂pK̂p),OE/pn)

)
⊗OE

E.

The completed cohomology spaces are naturally Banach spaces over E, with com-

muting actions of G̃ = G̃p and the Hecke algebra Hp. We show in section 4.1 that

H̄s is an admissible continuous representation of G̃ in the sense of [24] (see definition

3.4 below). We shall write H̄s
ε (K̂p, E) for the ε′-eigenspace for the action of µ on

H̄s(K̂p, E). Here ε′ denotes the contragredient of ε.

Let g be the Lie algebra of G over Qp. There is a natural action of g on the

subspace H̄s
ε,la of Qp-locally analytic vectors in H̄s

ε . We show (see Corollary 4.8)

that there is a spectral sequence relating this action to the classical cohomology

spaces for any algebraic representation W :

Extrg(W ′, H̄s
ε,la)⇒ Hr+s

cl,ε (K̂p,W ).

Here W ′ denotes the contragredient of W . In particular, we have an edge map

Hs
cl,ε(K̂

p,W )→ Homg(W ′, H̄s
ε,la). (1.2)

This map is a homomorphism of smooth G̃ ×Hp-representations. Written another

way, this gives a homomorphism of locally analytic representations:

W ′ ⊗Hs
cl,ε(K̂

p,W )→ H̄s
ε,la. (1.3)

Definition 1.1. We say the tuple (G̃, p, ε, K̂p, s) satisfies Emerton’s edge map

criterion if for every W the map (1.2) is an isomorphism, or equivalently if the

image of (1.3) is the set of all W ′-locally algebraic vectors in H̄s
ε .

bThe definition of these spaces generalizes the spaces denoted by H̃s(...) in [8]. We denote them

here with a horizontal line rather than a tilde in order to avoid conflict with our use of the tilde
sign to denote preimages in G̃(A) of subgroups of G(A).
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Our results concerning eigenvarieties described above depend on the edge map

criterion. It is therefore rather important to know that this criterion holds in a

number of cases. It is clear that the criterion is satisfied for s = 0. We prove the

following result for s = 1 and s = 2, generalizing the results of [10] to the metaplectic

case.

Theorem 1.2. Suppose G is semi-simple and simply connected and has positive

real rank (i.e. G∞ is not compact). Then the edge map (1.2) is an isomorphism in

dimension s = 1. If in addition G has finite congruence kernel and ε is non-trivial

then the edge map is an isomorphism in dimension s = 2.

1.5. The locally analytic Jacquet module

We then turn to finding an analogue in this situation of the locally analytic Jacquet

module construction of [7]. Let P be a parabolic subgroup of G defined over Qp, with

unipotent radical N and Levi factor M. In line with our earlier notation, we shall

write P, N and M for the groups of Qp-valued points of P,N andM respectively. For

each such P, we define a left-exact functor JP from locally analytic representations

of P̃ to those of M̃.

Any smooth or locally algebraic representation may be regarded as a locally

analytic representation, and so we may apply JP to such representations. We shall

prove the following, which determines JP on locally algebraic representations:

Theorem 1.3. If X is a smooth admissible representation of G̃ and W is an alge-

braic representation of G, then

JP(X ⊗W ) = X
N̂
⊗WN ,

where N̂ is the unique lift to G̃ of N.

In particular, the locally analytic Jacquet functor coincides with the smooth

Jacquet functor on smooth representations.

Suppose again that G is quasi-split over Qp and let B be a Borel subgroup with

Levi subgroup T . The representation Js discussed above is defined as follows:

Js = JB

(
H̄s
ε (K̂p, E)la

)
.

Applying the Jacquet functor JB to the map (1.3) we get the required map

reps(W ) → Js. Assuming the edge map criterion, we know that (1.3) is injective

with closed image. Hence by left exactness, we conclude that the map reps(W )→ Js

is injective.

Roughly speaking, the eigenvariety Eigs defined above is the set of characters

of Ẑ ×Hsph appearing in Js, where Hsph is the spherical part of the Hecke algebra

of K̂p. If the edge map criterion holds, then since Js contains reps(W ) for every

W , this space contains all characters arising from automorphic representations of

G̃(A) which are cohomological in degree s, which have a K̂p-fixed vector, and
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whose local factor at p is principal series. We also give a “classicality criterion”,

i.e. a sufficient condition for a point (χ, λ) of Eig(Js) to appear in the classical

cohomology reps(W ).

The completed cohomology H̄s
ε is a continuous admissible representation of G̃.

From this, it follows that its subspace H̄s
ε,la of locally analytic vectors is a strongly

admissible locally analytic representation of G̃ in the sense of [6]. In order to show

that Js is essentially admissible, we prove the following.

Theorem 1.4. If V is an essentially admissible locally analytic representation of

G̃, then JP(V ) is an essentially admissible locally analytic representation of M̃.

1.6. Representations of metaplectic tori

A novel aspect of the metaplectic case, compared to the theory for algebraic groups,

is that the representations Js constructed in the above fashion are representations of

a non-abelian group (a metaplectic extension of a torus). Essentially admissible lo-

cally analytic representations of abelian locally analytic groups are well-understood,

and may be interpreted as coherent sheaves on a rigid-analytic space, which is the

method used in [8] in order to construct eigenvarieties.

In the method described above, we have restricted our representation Js of T̃ to

the centre Z of T̃ in order to construct the eigenvariety. This construction has certain

drawbacks. The first problem is to do with the ramified part of the Hecke algebra.

Let us suppose that we have an absolutely irreducible T̃ × Hp-subrepresentation

πp ⊗ πsph ⊗ πramified of Js, and let χ : Z → E× be the central character of πp.

We have a corresponding point (χ, πsph) in the eigenvariety. One would ideally like

recover the representation πramified in the dual space of the fibre of the sheaf M at

the point (χ, πsph). However, with the construction described above the contribution

to the fibre is (πramified)∗d, where d is the dimension of πp. In a sense, this means

that the sheaf M is d times as big as we would like.

The second drawback is that the field of definition of a point of the eigenvariety

is not exactly the same as the field of definition of the corresponding absolutely

irreducible representation. More precisely, suppose that χ : Z → E× is a locally

analytic character, and let πp be the corresponding absolutely irreducible locally

analytic representation of T̃. It can quite easily happen that πp is not defined over

E, but only over some finite extension. The field of definition of a point on the

eigenvariety will only see the field of definition of χ, since we have restricted to Z

in our construction. To some extent this problem is unavoidable, since πp will often

have no unique minimal field of definition.

In section 6, we show that both of these problems may be resolved assuming a

certain “tameness” condition on the group T̃. Assuming the tameness condition, we

show that there is an equivalence of categories between the essentially admissible

locally analytic representations of T̃ extending ε, and the essentially admissible

locally analytic representations of Z extending ε. In particular, this implies that

that character χ and the corresponding representation πp have the same field of



April 20, 2012 9:58 WSPC/INSTRUCTION FILE MetEmerton

8 Richard Hill and David Loeffler

definition. Applying this equivalence of categories to Js instead of simply restriction

of representations, we obtain a slightly different coherent sheaf E on Ẑ. This gives

rise to a slightly different sheaf M on the eigenvariety, and this new sheaf has the

correct multiplicities of representations of Hramified. Finally, we show that if G is

semi-simple, simply connected and split over kp and if p does not divide the order

of µ, then T̃ satisfies the tameness condition.

1.7. Relation to the work of Emerton

In this paper we rely heavily on the work of Emerton. The results and definitions

of this paper are analogues of those obtained by Emerton in the case of algebraic

groups (as opposed to metaplectic groups). The locally analytic Jacquet functor for

representations of reductive algebraic groups was introduced in [7], and completed

cohomology was introduced in [8], where it was used to construct eigenvarieties for

algebraic groups. In many parts of this paper – particularly in section 5 – the proofs

of our results very closely follow those of Emerton, and rather than reproducing the

intricate proofs in full, we have simply indicated how the original arguments need

to be modified in order to apply to the metaplectic case.

2. Classical cohomology of metaplectic groups

In this section, we shall recall some standard results on metaplectic groups, and

recall the construction of admissible smooth representations arising from the coho-

mology of arithmetic quotients of these groups.

2.1. Metaplectic groups

As before, we let G be a connected reductive group over an algebraic number field

k. It is shown in [5] that if k contains a primitive m-th root of unity, then there

is a canonical non-trivial metaplectic extension of G by the group µm of all m-

th roots of unity in k, and also a canonical lift Ĝ(k). If G is absolutely simple

and algebraically simply connected then there is a universal metaplectic extension,

whose kernel is the group of all roots of unity in k. The universal metaplectic cover

coincides with Deligne’s cover. However for our purposes, it is sufficient to choose

a metaplectic cover, together with a lift Ĝ(k).

Let K◦∞ ⊂ G◦∞ be a maximal compact subgroup. We have a topological central

extension of compact Lie groups:

1→ µ→ K̃◦∞ → K◦∞ → 1. (2.1)

Recall that G◦∞ has an Iwasawa decomposition as the product of K◦∞ and a

uniquely divisible, topologically contractible group H. This group H therefore has

a unique lift to a subgroup Ĥ of G̃◦∞, so we have a corresponding Iwasawa decompo-

sition G̃◦∞ = K̃◦∞Ĥ. Thus the inclusions K◦∞ ↪→ G◦∞ and K̃∞ ↪→ G̃◦∞ are homotopy
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equivalences. It follows that the extension (1.1) splits if and only if (2.1) splits.

Example 2.1. Let G = SLn/Q. There is a unique non-trivial metaplectic double

cover S̃Ln(A). We may take K∞ = SO(n), and then K̃∞ = Spin(n). The extension

is of type 2, since Spin(n) is connected.

The following proposition gives an ample supply of type 1 metaplectic covers.

Proposition 2.2. Let G be semi-simple and algebraically simply connected, and

suppose that for every real place v of k, the group Gv is compact. Then every meta-

plectic extension of G is of type 1. In particular this holds if k is totally complex.

Proof. We will show that under these hypotheses, Gv is topologically simply con-

nected for each infinite place v.

If v is a complex place of k then Gv is a complex algebraically simply connected

group. By the Iwasawa decomposition, Gv is homotopy equivalent to a maximal

compact subgroup. On the other hand, if kv is real and Gv is compact, then Gv
is itself a maximal compact subgroup of the complexification G(C). So it suffices

to show that if G is an algebraically simply connected semi-simple Lie group over

C, then any maximal compact subgroup of G(C) is topologically simply connected.

This follows readily from Theorem 1.1 of [1].

The group G∞ is therefore a product of simply connected spaces, so is simply

connected. It follows that the extension splits over G∞.

Remark 2.3. It is a widely held misconception that when k is totally complex every

metaplectic extension is of type 1. By the above proposition, this holds when G is

semi-simple and simply connected, but it is false in general. Indeed it is even false

for double covers of GL1 (the extension constructed in [11] is a counterexample).

2.2. Arithmetic quotients

We assume for the remainder of this paper that G̃ is of type 1.

Recall that for a compact open subgroup Kf of G(Af ) we have defined an

arithmetic quotient Y (Kf ). Assuming that Kf has a lift K̂f to G̃(A), we have

defined a µ-covering space Ỹ (K̂f ) of Y (Kf ). The topological spaces Y (Kf ) and

Ỹ (K̂f ) are homotopic to finite simplicial complexes (see [2]). If Kf is sufficiently

small, then these are topological manifolds.

As described in the introduction, for any finite-dimensional algebraic represen-

tation W of G, over some field E containing Qp, and any character ε : µ→ E×, we

have a locally constant sheaf of E-vector spaces on Y (Kf ),

VW⊗ε = G̃(k)\
(

(G̃(A)/K̂◦∞K̂f )× (W ⊗ ε)
)
.

Since W is finite-dimensional and Y (Kf ) is homotopic to a finite simplicial complex,

the cohomology groups H•(Y (Kf ),VW⊗ε) are finite-dimensional E-vector spaces.
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The formation of VW⊗ε is compatible with pullback via the natural maps

Y (K ′f ) → Y (Kf ), for K ′f ⊆ Kf . Moreover, for g ∈ G̃(Af ), right translation de-

fines an isomorphism [g] : Y (Kf ) → Y (g−1Kfg), and an isomorphism of local

systems [g]∗VW⊗ε ∼= VW⊗ε; when g ∈ µ, we have Y (g−1Kfg) = Y (Kf ), and the

map is simply multiplication by ε(g). These compatibilities imply that if Kp is a

tame level, then the spaces

H•cl,ε(K̂
p,W ) := lim−→

U⊂Kp

H•(Y (UKp),VW⊗ε).

are smooth representations of G̃p, on which µ acts via the character ε (the require-

ment that U ⊂ Kp ensures that the sheaf VW⊗ε is defined on Y (UKp), although

the direct limit does not depend on Kp). Since the K̂p-invariants of the representa-

tion H•cl,ε(K̂
p,W ) can be identified with H•(Y (KpK

p),VW⊗ε), the representations

H•cl,ε(K̂
p,W ) are admissible smooth representations of G̃p.

Note that we also have a local system on Ỹ (K̂f ) defined by

VW = Ĝ(k)\
(

(G̃(A)/K̂◦∞K̂f )×W
)
.

If we write pr : Ỹ (K̂f ) → Y (Kf ) for the projection map, then we have an isomor-

phism of local systems:

pr∗ (VW ) =
⊕

η:µ→E×
VW⊗η,

and hence by Shapiro’s lemma (or the spectral sequence of the map pr),

H•(Ỹ (K̂f ),VW ) =
⊕

η:µ→E×
H•(Y (Kf ),VW⊗η).

2.3. Connection with the Kubota symbol

We give an alternative description of the cohomology groups in the special case that

G is absolutely simple, simply connected, and has positive real rank. In this situation

there is a universal metaplectic cover G̃(A) by the group µm of all roots of unity

in k. The groups G∞ and K∞ are connected, and their quotient X = G∞/K∞
is a symmetric space. The compact open subgroup Kf determines an arithmetic

subgroup

Γ = G(k) ∩ (Kf ×G∞) .

Furthermore the arithmetic quotient Y (Kf ) is connected, and may be identified

with a quotient of X as follows:

Y (Kf ) = Γ\X.

Recall that we have lifts τ1 : G(k)→ Ĝ(k), and τ2 : Kf ×G∞ → K̂f × Ĝ∞. These

lifts are both defined on the arithmetic subgroup Γ, but they are not equal on that

subgroup. The Kubota symbol is defined to be the ratio of these two lifts:

κ(γ) = τ1(γ)τ2(γ)−1, γ ∈ Γ.
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We recall that the Kubota symbol is a surjective homomorphism Γ→ µm. Its kernel

is a non-congruence subgroup of Γ. Indeed in many cases κ gives an isomorphism

between the congruence kernel and µm (see for example Theorem 2.9 of [20]).

Suppose again that W is an algebraic representation of G over E. By restriction,

we obtain an action of Γ on W , and we may twist this action by the character ε ◦κ
to get a new action. We can form the local system on Y (Kf ):

V ′W⊗ε = Γ\
(
X × (W ⊗ (ε ◦ κ))

)
.

One can check that V ′W⊗ε is an isomorphic local system to VW⊗ε. In particular, we

may express our cohomology groups in terms of group cohomology:

H•(Y (Kf ),VW⊗ε) = H•group(Γ,W ⊗ (ε ◦ κ)).

2.4. Non-vanishing of metaplectic cohomology

We next show in some simple cases that the spaces H•cl,ε(K̂
p,W ) are non-zero.

Proposition 2.4. Suppose that G∞ is compact. Then for any Kf sufficiently small

and any W , the vector space H0
cl,ε(K̂f ,W ) is non-zero.

Proof. Since G∞ is compact, the double quotient

G̃(k)\G(A)/K̂◦∞K̂f

is a finite set. Moreover, if µ1, . . . , µr is a set of coset representatives, the groups

Γj = G̃(k) ∩ µjK̂◦∞K̂fµ
−1
j

are finite. Then, for any W , the space H0(Y (Kf ),VW⊗ε) can be identified with the

space of maps from the finite set µ1, . . . , µr to W ⊗ ε for which f(µj) ∈ (W ⊗ ε)Γj .

By shrinking Kf if necessary, we may assume that K̂f is torsion-free, and hence all

the groups Γj are trivial. Therefore H0(Y (Kf ),VW⊗ε) is non-zero.

Proposition 2.5. Let k be an imaginary quadratic field containing an m-th root

of unity; let G = SL2/k and let G̃ be the canonical metaplectic extension of G by

µm. Then for Kf sufficiently small there is a non-trivial character ε : µm → C×
such that the space H2(Y (Kf ),C⊗ ε) is non-zero.

Proof. In the case of SL2, the Kubota symbol has been determined on Γ = Γ(m2).

It is given by (see Proposition 1 in §3 of [15])

κ

(
a b

c d

)
=

{(
c
d

)
k,m

if c 6= 0,

1 otherwise.
(2.2)

Here the notation
(
c
d

)
k,m

means the m-th power residue symbol in the field k. Let

Γ0 = ker(κ). Then we have a decomposition

H2(Γ0,C) =
⊕

η:µm→C×
H2(Γ, η ◦ κ).
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We shall suppose that each of the spaces H2(Γ, η ◦ κ) is zero apart from the space

where η is trivial, and so we are assuming H2(Γ0,C) = H2(Γ,C).

We shall write Y for the arithmetic quotient Γ\X and Ỹ for the µm-cover Γ0\X.

We shall also write ∂Y and ∂Ỹ for the boundaries of the Borel–Serre compactifica-

tions of Y and Ỹ respectively. We have a commutative diagram, in which the rows

are exact:

H2(Y,C) → H2(∂Y,C) → H3
c (Y,C) → 0

↓ ↓ ↓

H2(Ỹ ,C)→ H2(∂Ỹ ,C)→ H3
c (Ỹ ,C)→ 0

We are assuming that the first vertical arrow is an isomorphism. Since Y and Ỹ are

both connected topological 3-manifolds, it follows that H3
c (Y,C) and H3

c (Ỹ ,C) are

both one-dimensional, and the third vertical map is also an isomorphism. A diagram

chase shows that the middle vertical map is surjective. However, the middle vertical

arrow is known to be injective, since the composition

H2(∂Y,C)
pr∗→ H2(∂Ỹ ,C)

pr∗→ H2(∂Y,C)

is known to be scalar multiplication by the degree of the cover ∂Ỹ → ∂Y . We have

therefore shown that the map H2(∂Ỹ ,C) → H2(∂Y,C) is bijective. By examining

the map ∂Ỹ → ∂Y , will show that this is not the case.

Recall that the connected components of ∂Y correspond to Γ-conjugacy classes

of Borel subgroups B = TN defined over k. For each such Borel subgroup we let

ΓB = Γ ∩ B(k). As Γ is torsion-free, we have ΓB ⊂ N(k), and the corresponding

boundary component is defined by ∂Y (B) = ΓB\N(C). Since ΓB is a lattice in

N(C) ∼= C, we see that each boundary component is a 2-torus. Hence the dimen-

sion of H2(∂Y,C) is exactly the number of Γ-conjugacy classes of Borel subgroups.

Each Γ-conjugacy class of Borel subgroups is a finite union of Γ0-conjugacy classes.

However, since we are assuming that H2(∂Y,C) = H2(∂Ỹ ,C), we conclude that

the Γ-conjugacy class of each Borel subgroup is equal to its Γ0-conjugacy class.

Recall that a Borel subgroup B is called essential if the restriction of κ to ΓB is

trivial, or equivalently if ΓB ⊂ Γ0. Not every Borel subgroup is essential; however

the standard Borel subgroup of upper triangular matrices is clearly essential by

(2.2). Suppose B is any essential Borel subgroup. Since we are assuming that the

Γ- and Γ0-conjugacy classes of B are equal, it follows that the inclusion Γ0 → Γ

gives us a bijection

Γ0/ΓB
∼= Γ/ΓB.

From this we conclude that Γ = Γ0, which gives us the desired contradiction.

Remark 2.6. The argument in the proof of Proposition 2.5 only shows that

H2(Y (Kf ),C⊗ ε) contains some non-trivial Eisenstein cohomology classes. In fact,

one can show that there are also metaplectic cusp forms of cohomological type on
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S̃L2. This follows by examining the Shimura correspondence for the group G̃L2/k

(see [9]). In particular, it is shown that if π̃ is an automorphic representation of

G̃L2, then there is a corresponding automorphic representation π of GL2. If π is

cuspidal, then so is π̃. The image of the map π̃ 7→ π is also calculated. In particular

if π has level 1, then it has a preimage π̃. Finally, one can check that if π is of

cohomological type, then a certain twist of π̃ will be of cohomological type.

3. Background on p-adic representation theory

3.1. Continuous cohomology

Throughout this section, we let G be a locally compact, totally disconnected group.

By a continuous G-module, we shall mean an abelian topological group V , together

with an action of G by endomorphisms of V , such that the map G×V → V is con-

tinuous. Suppose V and W are continuous G-modules. We shall write H•cts(G, V )

and Ext•G(V,W ) for the continuous cohomology groups (see for example [4]). We

shall sometimes consider continuous G-modules V , which are locally convex topo-

logical vector spaces over a field E. In this case, the field E will always be a complete

discretely valued subfield of Cp.
We begin by recalling a rather technical aspect of continuous cohomology from

[4]. Let V be a continuous representation of G and let Cn(G, V ) be the abelian

group of continuous maps Gn+1 → V . We regard Cn(G, V ) as a topological group

with the compact-open topology. We have an exact sequence of G-modules

0→ V → C0(G, V )→ C1(G, V )→ · · · . (3.1)

Recall that H•cts(G, V ) is the cohomology of the cochain complex Cn(G, V )G.

Definition 3.1. (see §1 of [4]) The group

Zn(G, V ) = ker(Cn(G, V )→ Cn+1(G, V ))

is given the subspace topology; the group

Bn(G, V ) = Im(Cn−1(G, V )→ Cn(G, V ))

is given the quotient topology as Cn−1(G, V )/Zn−1(G, V ). Since (3.1) is exact, the

groups Bn(G, V ) and Zn(G, V ) are identical for n > 0, and the identity map gives

a continuous bijective homomorphism Bn(G, V ) → Zn(G, V ). We say that the co-

homology H•cts(G, V ) is strongly Hausdorff if the maps Bn(G, V ) → Zn(G, V ) are

open, i.e. if the two topologies are the same.

Lemma 3.2. Suppose G is a union of countably many compact subsets and V is a

Fréchet space over E with a continuous action of G. Then the cohomology groups

H•cts(G, V ) are strongly Hausdorff.

Proof. The spaces Cn(G, V ) are Fréchet spaces. Hence the closed subspaces

Zn(G, V ) are also Fréchet spaces, and the quotient spaces Bn+1 = Cn/Zn are
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Fréchet spaces. The map Bn(G, V ) → Zn(G, V ) is a continuous linear bijection of

Fréchet spaces. By the open mapping theorem [23, Proposition 8.6], this map is an

isomorphism of topological vector spaces.

Theorem 3.3 (Standard facts about continuous cohomology). Let G be a

locally compact, totally disconnected topological group and H a closed subgroup of

G. Let E be a field as described above.

(1) The vector space C(G, E) of continuous functions from G to E is continuously

injective as a module over H. In particular Hr
cts(H, C(G, E)) is zero for r > 0.

(2) Suppose H is normal in G and V is a continuous G-module. If the groups

H•cts(H, V ) are strongly Hausdorff then there is a natural continuous ac-

tion of G/H on H•cts(H, V ), and there is a spectral sequence Er,s2 =

Hr
cts(G/H, H

s
cts(H, V )) which converges to Hr+s

cts (G, V ).

(3) Suppose G is a profinite group. Then for each r > 0 there is a short exact

sequence

0→ lim←−
(1)

t

Hr−1
cts (G,Z/pt)→ Hr

cts(G,Zp)→ lim←−
t

Hr
cts(G,Z/pt)→ 0.

The notation lim←−
(1) means the first derived functor of the projective limit func-

tor (see for example [28, section 3.5]).

Proof. Part (1) is a special case of Proposition 4(a) of [4]. Part (2) is proposition

5 of [4]. Part (3) is a special case of Theorem 2.3.4 of [19].

3.2. Some functional analysis

We shall consider continuous representations of a topological group on locally convex

topological vector spaces over a coefficient field E containing Qp. We again suppose

that E is a complete discretely valued subfield of Cp, so in particular E is spherically

complete [23, Lemma 1.6].

For two topological vector spaces V,W , we shall write L(V,W ) for the vector

space of continuous linear maps from V to W . We shall always regard L(V,W ) as

a topological vector space with the strong topology, and sometimes write Lb(V,W )

to emphasize this. The notation V ′ will mean the strong dual of V .

Recall that a Fréchet space V may be written as the projective limit of a sequence

V1 ← V2 ← · · · ,

where each Vi is a Banach space and each transition map is surjective. If each

transition map is nuclear, then V is called a nuclear Fréchet space. A topological

vector space V over E is said to be of compact type if it is the locally convex

inductive limit of a sequence

V1 → V2 → V3 → · · · ,
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where each Vi is a Banach space over E, and each transition map is compact and

injective. Compact type spaces are Hausdorff, complete, bornological, reflexive (and

hence barrelled). The strong dual of a compact type space is a nuclear Fréchet space

and vice versa. More precisely, the functor which takes a compact type space to its

strong dual is an antiequivalence of categories, between the category of compact

type spaces and the category of nuclear Fréchet spaces.

Suppose V and W are Fréchet spaces. There is a canonical topology on V ⊗W ,

in which the continuous bilinear maps V ×W → X correspond to the continuous

linear maps V ⊗W → X. This topology is not, in general, Hausdorff. We shall write

V ⊗̂W for the Hausdorff completion of V ⊗W with respect to this topology.

3.3. Continuous admissible representations

In this section, we shall suppose that we have a connected reductive group G defined

over Qp, and we write G for the group of Qp-valued points. We shall suppose also

that we have a topological central extension

1→ µ→ G̃
pr→ G→ 1,

where µ is a finite abelian group.

Let K be a compact open subgroup of G̃ and let C(K) be the vector space of

continuous functions f : K→ E. The supremum norm on functions makes C(K) into

a Banach space over E. We shall write D(K) for its strong dual. The space D(K)

is naturally a Banach algebra over E, with multiplication given by convolution of

distributions. This algebra is known to be Noetherian [6, Theorem 6.2.8]. If V is

a continuous representation of G̃, and V is also a Banach space, then there is a

natural action of D(K) on the dual space V ′ (see [6, Proposition 5.1.7]).

Definition 3.4 ([6, Proposition-Definition 6.2.3]). Let V be a continuous rep-

resentation of G̃ on a Banach space. We call this representation admissible continu-

ous if the dual space V ′ is finitely generated as a D(K)-module. This condition does

not depend on the choice of compact open subgroup K.

If the coefficient field E is a finite extension of Qp, then the above definition is

equivalent to the definition of an admissible continuous representation given in [24,

§3].

3.4. Locally analytic representations

We shall write g for the Lie algebra of G over Qp. By a Lie sublattice h in g, we

shall mean a finitely generated Zp-submodule, which spans g over Qp, and which

is closed under the Lie bracket operation. Such a sublattice defines a norm on g,

with respect to which h is the unit ball. Hence there is an affinoid H, such that

h = H(Qp). If h is sufficiently small, then the Baker–Campbell–Hausdorff formula

converges on H, and gives H the structure of a rigid analytic group. Furthermore the

exponential map converges on H, and gives a bijection exp : H(Qp) → H for some
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compact open subgroup H of G. A subgroup H which arises in this way is called a

good analytic open subgroup of G. Recall that there is a compact open subgroup K

of G, which lifts to a subgroup K̂ of G̃. We shall fix such a subgroup, together with

its lift.

Definition 3.5. By a good analytic open subgroup of G̃, we shall mean a compact

open subgroup H of K̂, such that the image of H in G is a good analytic open

subgroup of G.

Given a good analytic open subgroup H of G̃ and a Banach space V , we write

Can(H, V ) for the vector space of V -valued functions in H, which are given by a

power series which converges on the whole of H. We regard Can(H, V ) as a Banach

space in which the topology is given by the supremum norm on H. More generally,

if V is a Hausdorff locally compact topological vector space, then we define

Can(H, V ) = lim−→
W→V

Can(H,W ),

where W → V runs through Banach spaces which map continuously and injectively

into V .

Suppose that V is also a continuous representation of G̃. We call a vector v ∈ V
H-analytic if the orbit map H → V given by h 7→ hv is represented by an element

of Can(H, V ). We shall write VH−an for the subspace of H-analytic vectors in V .

The topology on VH−an is defined to be that given by the supremum norm on

Can(H, V ).

A vector v ∈ V is said to be locally analytic if it is H-analytic for a suitable

good analytic open subgroup H. The subspace of locally analytic vectors in V will

be written Vla. We have an isomorphism of vector spaces:

Vla = lim−→
H

VH−an.

We shall regard Vla as a topological vector space with the direct limit topology. If

H1 is a proper subgroup of H2 then the map VH2−an → VH1−an is compact, and

so Vla is a compact type space.

There is a natural continuous map Vla → V . We call V a locally analytic repre-

sentation if this map is an isomorphism of topological vector spaces.

3.5. Fréchet–Stein algebras

Let A be a locally convex topological E-algebra. A Fréchet–Stein structure [26] on

A is an isomorphism of locally convex topological E-algebras,

A = lim←−
n

An,

such that

(1) each An is a left-Noetherian Banach algebra;
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(2) each map An+1 → An is a continuous homomorphism, and is right-flat.

An algebra A with such a structure is called a Fréchet–Stein algebra. Suppose

A = lim←−nAn is a Fréchet–Stein algebra and M is an A-module. We say that M is

coadmissible if there is an isomorphism of A-modules

M = lim←−
n

Mn,

such that

(1) each Mn is a finitely generated locally convex topological An-module;

(2) each map Mn+1 → Mn of An+1-modules induces an isomorphism Mn+1 ⊗A
An →Mn of An-modules.

If M = lim←−nMn is coadmissible, then it automatically follows that Mn = M ⊗A
An. The category of coadmissible modules over a Fréchet–Stein algebra has many

of the same good properties as the category of finitely–generated modules over a

Noetherian Banach algebra (which is a special case); in particular, it is an abelian

category.

3.6. Locally analytic distributions

Let K be a compact open subgroup of G̃. Fix a good analytic open subgroup H1 of

K. Recall that this means there is a corresponding Lie sublattice h1 of g, such that

H1 and h1 may be identified with each other by the exponential map. A function

K→ E is said to be H1-analytic if its restriction to every H1-coset can be written

as a power series convergent on the whole of h1. The H1-analytic functions on K

form a Banach space with respect to the supremum norm on the functions. We shall

call this space CH1−an(K).

If H2 ⊂ H1 is a proper subgroup, and is also a good analytic open subgroup,

then every H1-analytic function is H2-analytic, and so we have an inclusion

CH1−an(K) ↪→ CH2−an(K).

A function on K is said to be locally analytic if there exists a good analytic open

subgroup H1, such that the function is H1-analytic. We shall write Cla(K) for the

space of such functions. We clearly have

Cla(K) = lim−→
n

CHn−an(K),

where Hn is a basis of neighbourhoods of the identity in G̃ consisting of good analytic

open subgroups. By construction, Cla(K) has compact type. We shall write Dla(K)

for its strong dual, which is therefore a nuclear Fréchet space. Furthermore, there

is a convolution multiplication on Dla(K) induced by the group law on K. We can

write Dla(K) as a projective limit of Banach algebras:

Dla(K) = lim←−
n

DHn−an(K), DHn−an(K) = CHn−an(K)′.
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This gives Dla(K) the structure of a Fréchet–Stein algebra [26, Theorem 5.1].

3.7. Admissible locally analytic representations

We now recall the definition of an admissible locally analytic representation, intro-

duced in [26]. If V is a locally analytic representation of G̃, and K is a compact open

subgroup of G̃, then the action of K on V ′ extends to a continuous Dla(K)-module

structure (see [25, Proposition 3.2] or [6, Proposition 5.1.9(ii)]). We say V is ad-

missible locally analytic if V ′ is coadmissible for one, or equivalently every, open

compact K. On the other hand, V is said to be strongly admissible if V ′ is finitely

generated over Dla(K). Since every finitely generated module is coadmissible, it fol-

lows that every strongly admissible locally analytic representation is an admissible

locally analytic representation.

Theorem 3.6. Let V be an admissible continuous representation of G̃. Then the

subspace Vla of locally analytic vectors in V has the structure of a locally analytic

representation of G̃. Furthermore, Vla is strongly admissible.

Proof. This is shown in [26, Theorem 7.1] under the mild additional hypothesis

that E is a finite extension of Qp, and for general complete discretely valued E in

[6, 6.2.4] (which is stated for locally analytic groups).

If V and W are locally analytic representations of G̃, then they have an action

of the Lie algebra g of G over Qp, and we shall write H•Lie(g, V ) and Ext•g(V,W ) for

the Lie algebra cohomology. There is a smooth action of G̃ on Ext•g(V,W ).

Theorem 3.7 (Emerton). Let V be an admissible continuous representation of

K and let W be a finite dimensional algebraic representation of K. Then there are

canonical isomorphisms

Ext•K(W,V ) ∼= Ext•g(W,Vla)K, H•cts(K, V ) ∼= H•Lie(g, Vla)K.

In particular we have

Ext•g(W,Vla) ∼= lim−→
U

Ext•U(W,V ), H•Lie(g, Vla) ∼= lim−→
U

H•cts(U, V ),

where the limits are taken over subgroups U of finite index in K.

Proof. The formulae of the left column follow from those of the right column

applied to V ⊗W ′, so it suffices to prove the latter. These follow from [8, Prop.

1.1.12(ii) and Theorem 1.1.13].

3.8. Essentially admissible locally analytic representations

The definition of essentially admissible locally analytic representations, introduced

in §6.4 of [6] is slightly more involved. The group G̃ is locally Qp-analytic, and its
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centre Z = ZG̃ is topologically finitely generated. Following the construction loc.cit.,

we may construct a rigid space Ẑ over E, together with a “universal character”

Z ↪→ Can(Ẑ). This space parametrizes the locally Qp-analytic characters of Z, in

the sense that if E′/E is any finite extension, there is a canonical bijection between

the E′-points of Ẑ and the E′-valued characters of Z, where a point x ∈ Ẑ(E′)

corresponds to the composition of the universal character with the evaluation map

at x.

If V is a locally analytic representation of G̃, then the dual space V ′ has an

action of Dla(K). Suppose also that the ZG̃-action on V extends to a separately

continuous action

Can(Ẑ)× V → V.

Then by [6, Proposition 6.4.7], V ′ is also a topological Can(Ẑ)-module. The actions

of Can(Ẑ) and Dla(K) on V ′ commute, and so V ′ has an action of Can(Ẑ) ⊗̂Dla(K),

which is a Fréchet–Stein algebra.

Definition 3.8. Let V be a locally analytic representation of G̃. We say that V is

essentially admissible if it satisfies the following two conditions:

(1) the Z-action on V extends to a separately continuousc action of Can(Ẑ),

(2) for one, and hence for every compact open subgroup K of G̃, the dual space V ′

is co-admissible as a module over the Fréchet–Stein algebra Can(Ẑ) ⊗̂ Dla(K).

Theorem 3.9. Every admissible locally analytic representation of G̃ is an essen-

tially admissible locally analytic representation.

Proof. This is [6, Proposition 6.4.10], and is stated there for arbitrary locally an-

alytic groups.

Suppose that the centre Z has finite index in G̃, and let V be an essentially ad-

missible locally analytic representation of G̃. Then V is by restriction an essentially

admissible representation of Z. For any affinoid U ⊂ Ẑ, the module V ′⊗Can(Ẑ)C
an(U)

is finitely generated over Can(U), and so we may regard V ′ as a coherent sheaf on

Ẑ. The functor which takes V to V ′ is an anti-equivalence of categories between

the category of essentially admissible locally analytic representations of Z and the

category of coherent sheaves on Ẑ (see the discussion following Proposition 6.4.10

in [6]).

4. Completed cohomology of metaplectic groups

In this section, we adapt some definitions and results of Emerton [8] to the meta-

plectic case. Suppose again that we have a connected reductive group G defined

over a number field k, and that we have a type 1 metaplectic cover of G by µ.

ca map f : A×B → C of topological spaces is said to be separately continuous if for every a ∈ A

the map b 7→ f(a, b) is continuous and for every b ∈ B the map a 7→ f(a, b) is continuous.



April 20, 2012 9:58 WSPC/INSTRUCTION FILE MetEmerton

20 Richard Hill and David Loeffler

Given a representation W of K̃p, we may define a corresponding local system

on Y (KpKp) as follows:

Vp(W ) =
(

(Ĝ(k)\G̃(A)/K̂pK̂◦∞)×W
)
/K̃p.

Suppose as before that our coefficient field E is an extension of Qp. Again, let W

be an algebraic representation of G over E and let ε : µ → E× be an injective

character. We then have an action of Gp on W . This gives rise to an action of

K̃p = K̂p ⊕ µ, in which K̂p acts through its isomorphism with Kp and µ acts by

scalar multiplication by ε. We shall call this representation W ⊗ ε. We therefore

have a local system Vp(W ⊗ ε) on Y (KpKp).

As in Lemma 2.2.4 of Emerton [8], we note that Vp(W ⊗ ε) is canonically iso-

morphic to the local system VW⊗ε defined in the introduction. In particular, these

two local systems have the same cohomology groups. It is important to see these

cohomology groups from both points of view: when regarding them as the cohomol-

ogy of VW⊗ε, it is clear that these groups are defined over any field of definition

of W . In particular, it follows that the eigenvalues of the Hecke operators on these

spaces are algebraic. When regarding them as cohomology groups of Vp(W ⊗ ε), we

shall see that we are able to p-adically interpolate the systems of eigenvalues.

4.1. The representations H̄s

Let C(K̃p) be the vector space of continuous functions f : K̃p → E. The vector

space C(K̃p) is a continuous representation of K̃p × K̃p, where the first K̃p acts on

function by left-translation and the second by right-translation. Using one of these

K̃p actions, we can define a local system V(K̃p) of K̃p-modules on Y (K̂pK̂p) by

V(K̃p) =
(

(Ĝ(k)\G̃(A)/K̂◦∞K̂
p)× C(K̃p)

)
/K̃p,

and we shall be interested in the cohomology groups of this local system:

H̄•(K̂p, E) = H•(Y (K̂pK̂p),V(K̃p)).

The vector spaces H̄•(K̂p, E) have an action of K̃p, together with a commuting

actions of Hp. To avoid sign errors, we state now that we have used the right-

translation action of K̃p to form the local system V(K̃p); the action of K̃p on

H̄•(K̂p, E) is given by the left-translation action.

Note that the vector space C(K̃p) decomposes as a direct sum of µ-isotypic

subspaces:

C(K̃p) =
⊕

η:µ→E×
C(K̃p)η,

where C(K̃p)η consists of continuous functions f : K̃p → E, such that f(ζx) =

η(ζ) · f(x) for all ζ ∈ µ. As a consequence, we have a similar decomposition

H̄•(K̂p, E) =
⊕

η:µ→E×
H̄•η (K̂p, E).
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Note that as the left and right translation actions of µ differ by a sign, we have the

following:

Lemma 4.1. The subspace H̄•η (K̂p, E) of H̄•(K̂p, E) is the η′-eigenspace for the

action of µ.

Lemma 4.2. As representations of K̃p, the spaces H̄•(K̂p, E) are admissible con-

tinuous representations.

Proof. Recall that Y (KpKp) is homotopic to a finite simplicial complex Y . Let

Y (d) be the set of simplices of Y of dimension d. Then H̄•(K̃p, E) is the cohomology

of the chain complex

0→ C(K̃p)Y (0) → C(K̃p)Y (1) → C(K̃p)Y (2) → · · · . (4.1)

Hence each cohomology group is a subquotient of finitely many copies of C(K̃p).

Theorem 4.3. There is a canonical isomorphism:

H̄•(K̂p, E) ∼=

(
lim←−
n

lim−→
Kp

H•(Ỹ (K̂pK̂p),OE/pn)

)
⊗OE

E.

Proof. This is a special case of [12, Theorems 2.5 and 2.10].

Corollary 4.4. The action of K̃p on H̄•(K̂p, E) extends to a canonical action of

G̃p.

Proof. This is immediate from the previous theorem, since G̃p already acts on the

space

lim−→
Kp

H•(Ỹ (K̂pK̂p),OE/pn).

Corollary 4.5. The group H̄•(K̂p, E) is independent (up to a canonical isomor-

phism) on the choice of Kp.

Proof. This is immediate from Theorem 4.3.

4.2. Some spectral sequences

Theorem 4.6. Let W be any continuous representation of K̃p over E, and let W ′

be the contragredient representation on the continuous dual space. There is a spectral

sequence

Extr
K̃p

(W, H̄s(K̂p, E))⇒ Hr+s(Y (KpKp),Vp(W ′)).

Proof. This is a special case of Theorem 3.5 of [12]. We note that for algebraic W ,

Emerton’s original proof in [8] extends to the metaplectic case without modification.
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In what follows we let G = Rest
kp
Qp

(G×kkp). Thus G is a reductive group over Qp
and we may canonically identify G(Qp) with G(kp). Suppose that W is an algebraic

representation of G over E. For a character ε : µ → E×, we let W ⊗ ε be the

representation of K̃p in which K̂p acts through Kp and µ acts by ε.

Corollary 4.7. There is a spectral sequence

Extr
K̂p

(W ′, H̄s
ε (K̂p, E))⇒ Hr+s(Y (KpKp),VW⊗ε).

Proof. We shall apply the previous theorem to the representation (W ⊗ ε)′. To

simplify notation, we shall write H̄s in place of H̄s(K̂p, E). By the theorem, we

have a spectral sequence whose Er,s2 term is Extr
K̃p

(W ′ ⊗ ε′, H̄s). The corollary is

proved by the following calculation:

Extr
K̃p

(W ′ ⊗ ε′, H̄s) = Extr
K̂p

(W ′,Homµ(ε′, H̄s))

= Extr
K̂p

(W ′, H̄s
ε ).

In the first line above we have used the Hochschild–Serre spectral sequence, which

degenerates because µ is finite and E has characteristic zero. The second line is

immediate from Lemma 4.1.

Corollary 4.8. There is a spectral sequence

Extrg(W ′, H̄s
ε (K̂p, E)la)⇒ Hr+s

cl,ε (K̂p,W ).

Proof. This follows by taking the direct limit of the formula of the previous corol-

lary, over levels K̂p, and applying Theorem 3.7.

Definition 4.9. We shall say that the triple (G̃, K̂p, ε) satisfies the edge map

criterion in dimension n if for every finite dimensional algebraic representation W

of G, the edge map in the spectral sequence above gives an isomorphism

Homg(W ′, H̄n
ε (K̂p, E)la) ∼= Hn

cl,ε(K̂
p,W ).

4.3. Calculation of certain spaces H̄n
ε

In this section we let G be absolutely simple, simply connected, and of positive real

rank. We recall if k contains a primitive m-th root of unity, then there is a canonical

metaplectic extension of G by µm, and this extension is the universal metaplectic

extension if µm is the group of all roots of unity in k. We shall assume that G̃ is

one of these canonical extensions.

Recall that such a group G satisfies strong approximation, and so we may iden-

tify the arithmetic quotient Y (KpKp) with Γ\X, where X is the symmetric space

G∞/K∞, and Γ is the congruence subgroup of level KpKp. The local system V(Kp)
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may by identified with Γ\(X ×C(K̃p)), where the action of Γ on C(K̃p) is by right-

translation. As a consequence, we have

H̄•(K̂p, E) = H•group(Γ, C(K̃p)).

Here we are regarding Γ as a subgroup of K̃p through the maps

Γ ∼= {g ∈ Ĝ(k) : pr(g) ∈ Γ} ↪→ K̃f = K̃p × K̂p → K̃p.

Theorem 4.10. Let G̃ be as described above. If ε is non-trivial then H̄0
ε (K̂p, E) =

0. If ε is trivial then H̄0
ε (K̂p, E) ∼= E.

Proof. By strong approximation, the arithmetic quotient Y (KpKp) is connected,

and so H̄0(K̂p) is the space of elements of C(K̃p), which are right-K̃p-invariant.

This is simply the space of constant functions. The action of µ by left translations

is trivial on the constant functions. This proves the result.

By the strong approximation theorem, the closure of Γ in G(Af ) is Kf . We

shall write Kf for the profinite completion of Γ. There is a canonical surjective

homomorphism Kf → Kf . The congruence kernel Cong(G) is defined to be the

kernel of this map. We therefore have a short exact sequence of profinite groups:

1→ Cong(G)→ Kf → Kf → 1.

The congruence kernel measures the extent to which Γ has non-congruence sub-

groups of finite index. The Kubota symbol gives a map Cong(G)→ µm, and we let

Cong(G)0 be the kernel of this map. It is conjectured (and in many cases proved)

that when µm is the group of all roots of unity in k, the Kubota symbol is an

isomorphism whenever G has real rank at least 2. When G has real rank 1, it is

conjectured that Cong(G) is infinite.

Theorem 4.11. Let G̃ be as described above. There is a canonical isomorphism

H̄1(K̂p, E) = Homcts,K̂p(Cong0, E).

Proof. Recall that Kf is a compact open subgroup of G(Af ), which lifts to a

subgroup K̂f of G̃(Af ). We shall choose such a Kf of the form KpKp. As above,

we write K̃f for the preimage of Kf in G̃(Af ) and K̄f for the profinite completion

of Γ(Kf ). This map K̄f → Kf factors through K̃f , and the kernel of the map

K̄f → K̃f is the subgroup Cong0 of the congruence kernel. We therefore have an

extension of groups:

1→ Cong0 → K̄f → K̃f → 1.

Let C(K̄f ) be the vector space of continuous functions from K̄f to E. We shall regard

C(K̄f ) as a Γ× Cong0-module. By Theorem 3.3 there are two spectral sequences:

Hr(Γ, Hs
cts(Cong0, C(K̄f )))⇒ Hr+s

cts (Γ× Cong0, C(K̄f )),

Hr
cts(Cong0, H

s(Γ, C(K̄f )))⇒ Hr+s
cts (Γ× Cong0, C(K̄f )).
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(Here we are regarding Γ × Cong0 as a topological group, in which the profinite

group Cong0 is an open subgroup.) Again by Theorem 3.3, the first of these spectral

sequences degenerates, as we have

Hs
cts(Cong0, C(K̄p)) =

{
C(K̃p) if s = 0,

0 s > 0.

From this, it follows that

Hr
cts(Γ× Cong0, C(K̄f )) = Hr(Γ, C(K̃f ))

From the second spectral sequence, we have an inflation-restriction sequence:

0→ H1
cts(Cong0, E)→ H1(Γ, C(K̃f ))→ H1(Γ, C(K̄f ))Cong0 .

By Theorems 5 and 6 of [12], we have

H•(Γ, C(K̄f )) = E ⊗Zp lim←−
t

lim−→
Υ

H•(Υ,Z/pt),

where Υ runs through the subgroups of finite index in Γ. In particular, we have

H1(Γ, C(K̄f )) = 0, and so

H1
cts(Cong0, E) ∼= H1(Γ, C(K̃f )). (4.2)

Next, we consider C(K̃f ) as a Γ× K̂p-module. As before, we have

Hs
cts(K̂

p, C(K̃f )) =

{
C(K̃p) s = 0,

0 s > 0.

This implies

H•(Γ× K̂p, C(K̃f )) = H•(Γ, C(K̃p)) = H̄•(K̂p, E).

Hence there is a spectral sequence

Hr
cts(K̂

p, Hs(Γ, C(K̃f )))⇒ H̄r+s(K̂p, E).

The sequence of low degree terms gives:

H1
cts(K

p, E)→ H̄1(K̂p, E)→ H1(Γ, C(K̃f ))K̂
p

→ H2
cts(K

p, E).

The theorem will be proved by (4.2) when we have shown that the middle map

in the sequence above is an isomorphism. We shall show that the first and last

terms above are zero. As E is a field of characteristic zero, it follows that for any

normal subgroup U of finite index in Kp, we have H•cts(K
p, E) = H•cts(U,E)Kp .

It is therefore sufficient to prove that H1
cts(U,E) and H2

cts(U,E) are trivial for a

suitable subgroup U of finite index in Kp. Let S be finite set of finite places of

k, distinct from p, such that for every prime q outside S ∪ {p} ∪ ∞, the subgroup

Kq = Kp ∩ G(kq) is a hyperspecial maximal compact subgroup, and is perfect.

For primes q in S, we choose a subgroup Kq contained in Kp ∩ G(kq). We shall

take U to be the subgroup
∏

q6=pKq. This can be written as U = US ⊕ US , where

US =
∏

p6=q/∈S Kq and US =
∏

q∈S Kq. Since G is semisimple, it follows that for
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every prime q, the commutator subgroup [Kq,Kq] has finite index in Kq, and hence

Hom(Kq, E) = 0. We therefore have H1
cts(U,E) = 0.

To calculate H2
cts(U

S , E), recall the short exact sequence of Theorem 3.3:

0→ lim←−
(1)

t

H1(US ,Z/pt)→ H2
cts(U

S ,Zp)→ lim←−
t

H2(US ,Z/pt)→ 0.

By the same argument as above, the groups H1(US ,Z/pt) are zero, and so the first

term in this short exact sequence is zero. We have from [27, §2.2, Cor. 1]

H•(US ,Z/pt) = lim−→
T finite

H•(KT ,Z/pt),

where T runs over the finite sets of places of k which do not intersect S ∪ {p} ∪∞
and KT =

∏
q∈T Kq. In particular, since KT is a perfect group it has a universal

topological central extension, whose kernel we shall denote π1(KT ). It follows that

H2(US ,Z/pt) = lim−→
T finite

Hom(π1(KT ),Z/pt) = Hom
(
Π,Z/pt

)
,

where

Π =
∏

q/∈S∪{p}∪∞

π1(Kq).

The group Π is a product of finite groups, and so we have

lim←−
t

Hom
(
Π,Z/pt

)
= 0.

This shows that H2
cts(U

S ,Zp) = 0, and in particular H2
cts(U

S , E) = 0.

Next let q be a prime in S which does not lie above p. In this case there is an

E-valued Haar measure on Kq, so it follows that Hr(Kq, E) = 0 for all r > 0 and

in particular when r = 2.

Finally, suppose q is a prime in S which lies above p. In this case there is an

isomorphism [16, Theorem 2.4.10 of Chapter V]

H•cts(Kq, E) = (H•Lie(g,Qp)⊗ E)
Kq ,

where the Lie algebra g of Kq is regarded as a Lie algebra over Qp. By Whitehead’s

Second Lemma [28] we have H2
Lie(g,Qp) = 0, and so in this case we also have

H2
cts(Kq, E) = 0.

As a consequence, we deduce that H2
cts(U,E) = 0, which finishes the proof of

the theorem.

In particular, if the congruence kernel is finite then H̄1 = 0. As a result, we

have:

Theorem 4.12. For any metaplectic group the edge map criterion holds in dimen-

sion 0. If G is semi-simple, simply connected and has positive real rank, and ε is

non-trivial then the edge map criterion holds in dimension 1. If in addition G has

finite congruence kernel, then the edge map criterion holds in dimension 2.
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Proof. In dimension 0 the edge map is clearly an isomorphism, since it is in the

bottom left corner of the spectral sequence. If G is semi-simple, simply connected

and has positive real rank, and ε is non-trivial then we’ve seen that H̄0
ε = 0, and

so the edge map is an isomorphism in dimension 1. When the congruence kernel is

finite, the subgroup Cong0 is obviously also finite, and so by Theorem 4.11 we also

have H̄1
ε = 0. Hence the edge map is an isomorphism in dimension 2.

5. The p-adic metaplectic Jacquet functor

The results of this section are of a local nature, so we shall alter our notation. We

now suppose that we have a connected reductive group G defined over Qp, and we

write G for the group of Qp-valued points. We shall suppose also that we have a

topological central extension

1→ µ→ G̃
pr→ G→ 1,

where µ is a finite abelian group. There is a compact open subgroup K of G which

lifts to a subgroup K̂ of G̃.

Let P be a parabolic subgroup of G defined over Qp with unipotent radical N ,

and choose a Levi component M. We shall also write P, M and N for the groups

P(Qp),M(Qp) and N (Qp) respectively. We write P̃, M̃ and Ñ for the preimages of

P, M and N in G̃.

Lemma 5.1. Let N, M and P be as above.

(a) There is a unique subgroup N̂ of Ñ, such that N̂ projects bijectively onto N.

(b) The subgroup N̂ is open (and hence closed) in Ñ and normal in P̃. Furthermore

we have P̃ = M̃n N̂.

(c) Let τ : N → N̂ be the unique splitting of pr : Ñ → N. For any m̃ ∈ M̃ and any

n ∈ N, we have

m̃−1τ(n)m̃ = τ(m−1nm),

where m = pr(m̃).

Proof. For the moment we shall regard Qp as a discrete additive group. As such,

Qp is uniquely divisible, and so we have H•group(Qp, µ) = µ. By this we mean that

H0
group(Qp, µ) = µ and Hn

group(Qp, µ) = 0 for n > 0. Suppose we have a central

extension of discrete groups

1→ Qp → N1 → N2 → 1.

It follows by the Hochschild–Serre spectral sequence that H•group(N1, µ) =

H•group(N2, µ). The group N may be constructed, starting from the trivial group, by

a sequence of central extensions by Qp. Therefore H•group(N, µ) = µ, and in partic-

ular H2
group(N, µ) = 0. This shows that the extension splits on N, and hence shows

the existence of N̂.
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For uniqueness, suppose that τ1, τ2 : N → Ñ are two splittings. It follows that

n 7→ τ1(n)τ2(n)−1 is a homomorphism from N to µ. Since N is divisible, this homo-

morphism must be trivial, so τ1 = τ2.

To see that N̂ is open and closed in Ñ, we note that the same calculation as above

proves for the continuous cohomology of N that H•cts(N, µ) = µ. In particular, the

section τ : N→ N̂ is continuous (and hence a homeomorphism). As a consequence,

we see that N̂ is complete, and therefore closed in Ñ. Since N̂ has finite index in Ñ,

it also follows that N̂ is open in Ñ.

As N is normal in P, it follows that Ñ is normal in P̃. The uniqueness property

of N̂ shows that N̂ is normal in P̃.

Part (c) also follows from the uniqueness of N̂.

Now let N0 be a compact open subgroup of N, and let N̂0 = τ(N0). Following

§3.3 of [7] we define two semigroups:

M+ = {m ∈M : mN0m
−1 ⊂ N0},

and

M̃+ = {m̃ ∈ M̃ : m̃N̂0m̃
−1 ⊂ N̂0}.

Lemma 5.2. With the notation described above, M̃+ is the preimage of M+ in M̃.

Proof. This is immediate from the fact that N̂ is a normal subgroup of P̃.

Let ZM and ZM̃ be the centres of M and M̃ respectively.

Lemma 5.3. The image of ZM̃ in G is a subgroup of ZM of finite index.

Proof. Let z̃ ∈ pr−1(ZM) and m̃ ∈ M̃. Furthermore let z = pr(z̃) and m = pr(m̃).

Since ZM is central in M, we have [z,m] = 1, and therefore [z̃, m̃] ∈ µ. Since our

extension is central, it follows that the commutator [z̃, m̃] depends only on z and

m. Furthermore, one easily checks that the map ZM ×M→ µ given by

(z,m) 7→ [z̃, m̃]

is bimultiplicative. In particular, if z is an |µ|-th power, then [z̃, m̃] = 1 for all

m̃. This shows that the projection of ZM̃ contains Z
|µ|
M . Since ZM is topologically

finitely generated, it follows that Z
|µ|
M has finite index in ZM. This proves the lemma.

Remark 5.4. The projection of ZM̃ is typically not equal to ZM. For example,

suppose G = GL2(Qp). Assume Qp contains an m-th root of unity. Then Kubota

has defined an m-fold cover G̃ of G. We obviously have ZG = Q×p . On the other

hand, the image in ZG̃ of ZG is

{x ∈ Q×p : ∀y ∈ Q×p , (x, y)p,m = (y, x)p,m}.

This is the set of x such that x2 is an m-th power in Q×p .
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Lemma 5.5. The group M̃ is generated as a semigroup by M̃+ and ZM̃.

Proof. Choose any m̃ ∈ M̃ and let m = pr(m̃). Since pr(ZM̃) has finite index

in ZM, Lemma 3.3.1 of [7] shows that there is an element z ∈ pr(ZM̃), such that

zmN0m
−1z−1 ⊂ N0. Hence zm ∈ M+. If z̃ is any preimage of z in ZM̃, then by

Lemma 5.2 we have z̃m̃ ∈ M̃+.

5.1. Definition of the Jacquet functor

We shall consider representations of the group G̃ over a coefficient field E containing

Qp. Let (V, π) be a locally analytic representation of P̃. In this section we shall define

the Jacquet functor JP(V ).

Fix a compact open subgroup P0 of P and let P̃0 be the preimage of P0 in G̃.

Let N̂0 and M̃0 be the intersections of P̃0 with M̃ and N̂ respectively. Recall that

corresponding to the group N̂0, we have defined a semigroup M̃+ ⊂ M̃. Furthermore

we let

Z̃+ = M̃+ ∩ ZM̃.

Recall that the subspace V N̂0 has a natural action of M̃+. This action is defined as

follows. For m ∈ M̃+ and v ∈ V N̂0 , the vector π(m)v will be in V mN̂0m
−1

, and we

define (
π
N̂0

(m)
)

(v) =

∫
N̂0

π(nm)v dn,

where the Haar measure on N̂0 is normalized to have total measure 1. For elements

m ∈ M̃0 we have π
N̂0

(m)v = π(m)v, and so the action π
N̂0

of M̃+ on V N̂0 is locally

analytic.

Let ẐM̃ be the rigid analytic space of locally analytic characters of ZM̃, and

write Can(ẐM̃, E) for the ring of E-valued analytic functions on ẐM̃.

Definition 5.6. If V is a locally analytic representation of M̃+ then we define the

finite slope part of V by

Vfs = Lb,Z̃+(Can(ẐM̃, E), V ).

There is a natural map ZM̃ → Can(ẐM̃, E), which makes Vfs into a ZM̃-module.

Furthermore, the action of M̃+ on V gives rise to an action of M̃+ on Vfs. The

actions of ZM̃ and M̃+ coincide on their intersection Z+

M̃
, and so generate an action

of the group M̃ = M̃+ZM̃ on Vfs.

Definition 5.7. If V is a locally analytic representation of P̃, then we define the

Jacquet functor of V by

JP(V ) =
(
V N̂0

)
fs
.
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5.2. The Jacquet functor preserves essential admissibility

Theorem 5.8. If V is an essentially admissible locally analytic representation of

G̃ then JP(V ) is an essentially admissible locally analytic representation of M̃.

Theorem 5.8 was proved by Emerton in the algebraic case. The proof is rather

long, and most of it carries through word for word to the metaplectic case. The

only difference is a technical lemma on the structure of the group G. We quote this

lemma below, and we prove its generalization to the metaplectic case.

Before stating these lemmata, we must recall the definition of a rigid analytic

Iwahori decomposition, and generalize this concept to the metaplectic case. Let P
and P̄ be opposite parabolic subgroups of G defined over Qp, in the sense that

M = P ∩ P̄ is a Levi component of both P and P̄. We shall write N and N̄ for the

unipotent radicals of P and P̄ respectively. We shall write n, n̄ and m for the Lie

algebras of N , N̄ and M over Qp, and N, N̄ and M for their groups of Qp-valued

points. Suppose H is a good analytic open subgroup of G, which arises from the Lie

sublattice h of g, with underlying rigid analytic group H. Furthermore define

M0 = M ∩H, N0 = N ∩H, N̄0 = N̄ ∩H.

Finally, we let M0, N0 and N̄0 denote the rigid analytic closures of M0, N0 and N̄0

in H. The subgroup H is said to admit a rigid analytic Iwahori decomposition if the

following conditions are satisfied:

(1) The groups M0, N0 and N̄0 are good analytic open subgroups of M, N and N̄

corresponding to the Lie sublattices m∩h, n∩h and n̄∩h, and with underlying

rigid analytic groups M0, N0 and N̄0.

(2) The rigid analytic map

N̄0 ×M0 × N0 → H

given by multiplication in H is an isomorphism of rigid analytic spaces.

We next give a corresponding definition for subgroups of G̃. Note that we have a

compact open subgroup K of G, which lifts to a subgroup K̂ of G̃, and we also have

a unique lifts N̂ and ˆ̄N of N and N̄ to G̃. These lifts do not necessarily coincide on

K∩N and K∩ N̄. However, by reducing the size of K is necessary, we may assume

that

K̂ ∩ N̂
pr∼= K ∩N, K̂ ∩ ˆ̄N

pr∼= K ∩ N̄.

Definition 5.9. Suppose K̂ and K are chosen to satisfy these conditions above. We

say that a good analytic subgroup H of G̃ has a rigid analytic Iwahori decomposition

with respect to P and P̄ if (i) H is contained in K̂ and (ii) the image of H in G has

a rigid analytic Iwahori decomposition with respect to P and P̄.
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Recall the following technical result of Emerton:

Proposition 5.10. [7, Prop. 4.1.6] We may find a decreasing sequence {Hn}n≥0

of good analytic open subgroups of G, cofinal in the directed set of all analytic open

subgroups of G, and satisfying the following conditions:

(i) For each n ≥ 0, the inclusion Hn+1 ⊂ Hn extends to a relatively compact rigid

analytic map Hn+1 ⊂ Hn .

(ii) For each n ≥ 0, the subgroup Hn of H0 is normal.

Let P∅ be a minimal parabolic subgroup of G defined over Qp. The remaining prop-

erties refer to any pair P and P̄ of opposite parabolic subgroups of G, chosen so that

P contains P∅ and P̄ contains P̄∅.

(iii) Each Hn admits a rigid analytic Iwahori decomposition with respect to P and

P̄.

(iv) If z ∈ ZM is such that z−1N̄0z ⊂ N̄0, then z−1N̄nz ⊂ N̄n for each n ≥ 0.

(v) If z ∈ ZM is such that zN0z
−1 ⊂ N0, then zNnz

−1 ⊂ Nn for each n ≥ 0.

(vi) We may find z ∈ ZM such that z−1N̄0z ⊂ N̄0 and zN0z
−1 ⊂ N0, and such

that, for each n ≥ 0, the embedding of part (iv) factors through the inclusion

N̄n+1 ⊂ N̄n.

In order to prove Theorem 5.8, it is sufficient to prove the following result anal-

ogous to Proposition 5.10. The rest of the proof of the theorem is word for word

the same as in [7].

Proposition 5.11. We may find a decreasing sequence {Hn}n≥0 of good analytic

open subgroups of G̃, cofinal in the directed set of all analytic open subgroups of G̃,

and satisfying the following conditions:

(i) For each n ≥ 0, the inclusion Hn+1 ⊂ Hn extends to a relatively compact rigid

analytic map Hn+1 ⊂ Hn .

(ii) For each n ≥ 0, the subgroup Hn of H0 is normal.

Let P∅ be a minimal parabolic subgroup of G defined over Qp. The remaining prop-

erties refer to any pair P and P̄ of opposite parabolic subgroups of G, chosen so that

P contains P∅ and P̄ contains P̄∅.

(iii) Each Hn admits a rigid analytic Iwahori decomposition with respect to P and

P̄.

(iv) If z̃ ∈ ZM̃ is such that z̃−1 ˆ̄N0z̃ ⊂ ˆ̄N0, then z̃−1 ˆ̄Nnz̃ ⊂ ˆ̄Nn for each n ≥ 0.

(v) If z̃ ∈ ZM̃ is such that z̃N̂0z̃
−1 ⊂ N̂0, then z̃N̂nz̃

−1 ⊂ Nn for each n ≥ 0.

(vi) We may find z̃ ∈ ZM̃ such that z̃−1 ˆ̄N0z̃ ⊂ ˆ̄N0 and z̃N̂0z̃
−1 ⊂ N̂0, and such

that, for each n ≥ 0, the embedding of part (iv) factors through the inclusion
ˆ̄Nn+1 ⊂ ˆ̄Nn.
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Proof. Recall that we have a compact open subgroup K of G, which lifts to a

subgroup K̂ of G̃. Furthermore, K and K̂ are chosen small enough so that for each

standard parabolic subgroup P = MN , the lift K → K̂ coincides with the lift

N → N̂ (resp. N̄ → ˆ̄N) on K ∩ N (resp. K ∩ N̄). Emerton’s proof of Proposition

5.10 actually shows a little bit more than is stated. He in fact shows that we may

in addition take H0 to be arbitrarily small. We may therefore take a sequence of

subgroups Hn satisfying Proposition 5.10 with H0 contained in K. We then define

a new sequence of subgroups Ĥn in G̃, where each Ĥn is the lift of Hn to K̂.

We claim that the sequence Ĥn satisfies Proposition 5.11. Properties (i), (ii) and

(iii) for Ĥn are clear, since they only depend on the original groups Hn. We next

consider property (iv). For an element z̃ ∈ ZM̃, we shall write z for the image of

z in ZM. Lemma 5.1 (c) shows that the equation z̃−1N̂nz̃ ⊂ N̂n is equivalent to

z−1Nnz ⊂ Nn. Hence property (iv) of Proposition 5.11 is a consequence of property

(iv) of Proposition 5.10. Similarly, property (v) of Proposition 5.11 follows from

the corresponding property in Proposition 5.10. Suppose that z ∈ ZM is chosen to

satisfy property (vi) of Proposition 5.10. It follows that every power zr (r > 0) also

has this property. Furthermore by Lemma 5.3, there is a suitable power zr which

is also in pr(ZM̃). We replace z by such a power and let z̃ be a pre-image in ZM̃ of

z. Again using Lemma 5.1 (c), we deduce that z̃ has property (vi) of Proposition

5.11.

Exactly as in [13], we may strengthen Theorem 5.8 as follows. Let F be the

derived subgroup of M (a semisimple algebraic group over Qp), and F = F(Qp).
Then if F0 is an open compact subgroup of F which lifts to a subgroup F̂0 of F̃,

and W a finite-dimensional continuous representation of F̂0, we may consider the

representation

(JP(V )⊗W )
F̂0

of ZM̃. This representation is essentially admissible, by proposition 3.3 of [13]. Since

ZM̃ is commutative, this space corresponds to a coherent sheaf on the character

space ẐM̃. Let Σ be the support of this sheaf. Differentiation of characters gives a

map of rigid analytic spaces ẐM̃ → ž, where z is the Lie algebra of ZM over E and

ž its dual space, regarded as a rigid analytic space.

Theorem 5.12. If V is admissible, then the map Σ→ ž has discrete fibres.

We briefly indicate how this is proved. If P = B is a Borel subgroup, so F is

trivial, then this is a metaplectic analogue of [7, Proposition 4.2.23], and the proof

also carries over identically using the family of subgroups Hn constructed above. In

the general case, one need only add the requirement that the subgroups Mn have

rigid-analytic decompositions as products of subgroups of F and ZM; then the proof

proceeds exactly as in [13, §4.3].
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5.3. The Jacquet functor of an admissible smooth representation

In this section, we consider a smooth admissible representation V of G̃. The clas-

sical theory of the Jacquet functor for smooth representations of algebraic groups

applies equally to metaplectic covers such as G̃ (see [18, §6]). Recall that for such

a representation, the classical Jacquet functor is defined to be the module of N̂-

coinvariants V
N̂

. This is the largest quotient of V on which N̂ acts trivially, and

is a smooth representation of M̃. We may however regard V as a locally analytic

representation, so we also have the locally analytic Jacquet functor JP(V ) defined

above. In this section we show that JP(V ) is canonically isomorphic to V
N̂

.

For a smooth representation V of G̃, we shall always regard the vector space V as

a topological vector space with the finest locally convex topology. In this topology,

every vector subspace V ′ ⊆ V is closed, and the subspace topology on V ′ is again

the finest locally convex topology. This has the following consequence: if U is a

Fréchet space, and f : U → V is a continuous linear map, then f must have finite

rank. This is because the space Coim(f) = U/ ker(f), with its quotient topology, is

a Fréchet space; but it maps continuously and bijectively to Im(f), which has the

finest locally convex topology. Hence this map is a topological isomorphism, and

we see that the finest locally convex topology on Im(f) is Fréchet, which can only

happen if Im(f) is finite-dimensional.

Theorem 5.13. Let V be an admissible smooth representation of G̃. Then there is

a canonical isomorphism

JP(V ) ∼= V
N̂
,

where V
N̂

is the space of N̂-coinvariants of V .

Proof. The proof of this theorem is exactly the same as in the algebraic case, which

is dealt with in [7]. We shall merely recall the main steps. Composing the inclusion

V N̂0 → V with the projection V → V
N̂

we get a canonical map Φ : V N̂0 → V
N̂

, and

this map is M̃+-equivariant. Using the smoothness of V , we can show that Φ is also

surjective: indeed for any v ∈ V we may define

v′ = π
N̂0

(v) =
1

|N̂0|

∫
N̂0

π(n)v dn.

Here |N̂0| denotes the Haar measure of N̂0. Clearly v′ is in V N̂0 , and has the same

image in V
N̂

as v. The kernel of Φ consists of those vectors v ∈ V N̂0 for which there

is a sufficiently large compact open subgroup N̂1 ⊂ N̂, for which π
N̂1

(v) = 0.

We call a vector v ∈ V N̂0 null if there is a z ∈ Z+

M̃
, such that π

N̂0
(z)(v) = 0. One

easily checks that the kernel of Φ consists of the null vectors in V N̂0 . To complete

the proof, it suffices to show that V N̂0 = (V N̂0)null ⊕ (V N̂0)fs.

Using the fact that V is an admissible smooth representation, one can show that

each v ∈ V N̂0 is contained in a finite dimensional Z+

M̃
-invariant subspace W . We
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therefore have V N̂0 = lim−→W with W ranging over such subspaces. Since Can(ẐM̃)

is a Fréchet space, the remark preceding the theorem shows that (V N̂0)fs = lim−→Wfs.

Furthermore it is clear that (V N̂0)null = lim−→Wnull. It follows by elementary linear

algebra, that W = Wfs ⊕Wnull for any finite dimensional representation W of Z+

M̃
,

and so the result follows.

More generally, we have the following result applying to locally algebraic repre-

sentations of G̃:

Theorem 5.14. Let V be an admissible smooth representation of G̃ and let W be

a finite dimensional irreducible algebraic representation of G, which we shall regard

as a representation of G̃, trivial on µ. Then there is a canonical isomorphism

JP(V ⊗W ) ∼= V
N̂
⊗WN.

Proof. The proof of this result in the algebraic case (Proposition 4.3.6 of [7]) works

in the metaplectic case. We shall recall some details here.

Let n be the Lie algebra of N̂. The action of n on V is trivial, and so we have

(V ⊗W )n = V ⊗W n. On the other hand, since the action of N̂ on W is algebraic

(and N̂ is connected) we have W n = W N̂0 . In particular, the action of N̂0 on W n is

trivial, so we have (V ⊗W n)N̂0 = V N̂0⊗W N̂. This implies (V ⊗W )N̂0 = V N̂0⊗WN.

The action of M̃+ on W N̂ is the restriction of the usual action of M. Hence by

proposition 3.2.9 of [7] (which is stated in sufficient generality for our needs), it

follows that JP(V ⊗W ) = (V N̂0)fs ⊗WN. The result now follows from Theorem

5.13.

Corollary 5.15. Suppose that G is quasi-split over Qp and let B =MN be a Borel

subgroup defined over Qp. Assume also that G splits over E. Let V be an admissible

smooth representation of G̃ and let Wψ be the finite dimensional irreducible algebraic

representation of G with highest weight ψ with respect to B. Then there is a canonical

isomorphism of representations of M̃:

JB(V ⊗Wψ) ∼= V
N̂
⊗ ψ.

Proof. This is just a special case of the previous result.

5.4. Small slope vectors

In this section, we’ll assume for simplicity that G is split over the coefficient field E,

so every irreducible algebraic representation of G over E is absolutely irreducible.

We shall write ZM for the centre of M; the group ZM is a torus, and we write S
for the maximal subtorus of ZM which splits over Qp. Let ord denote the valuation

on Qp mapping p to 1.
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Let χ : ZM̃ → E× be a continuous (hence locally Qp-analytic) character. The

homomorphism ZM̃ → Q given by t 7→ ord(χ(t)) clearly factors through the pro-

jection to ZM. Since the image of ZM̃ has finite index in ZM (and Q is uniquely

divisible) this extends uniquely to a linear functional on Q⊗Z (ZM/(ZM)0), where

(ZM)0 is the maximal compact subgroup of ZM.

As in [7, §1.4], we may identify Q ⊗Z (ZM/(ZM)0) with Q ⊗Z Y•, where Y• is

the cocharacter group of S. The linear functional constructed above thus defines an

element of Q⊗Z Y
•, where Y • is the character group of the maximal split subtorus;

and as in op.cit. we may define slope(χ) ∈ Q⊗Z Y
• to be this element.

Let us write ∆(G,S) for the set of positive restricted roots of S in G (that is,

the set of characters of S appearing in the adjoint action on Lie(N )). We write R

for the sublattice of Y • generated by ∆(G,S), which is not necessarily of full rank,

and (Q⊗Z R)≥0 for the Q≥0-cone in Q⊗Z Y
• generated by ∆(G,S). Finally, we let

ρ denote the weighted half-sum of ∆(G,S), i.e. half the sum of the characters of S
appearing in the adjoint action on N weighted by their multiplicities.

The usefulness of these definitions arises from the following two lemmas, gener-

alizing Lemmas 4.4.1 and 4.4.2 of [7] to the metaplectic case. Recall that we defined

Z+

M̃
= ZM̃ ∩ M̃+.

Lemma 5.16. We have |χ(a)| ≤ 1 for all a ∈ Z+

M̃
if and only if slope(χ) ∈

(Q⊗Z R)≥0.

Proof. It suffices to note that the projection of ZM̃ has finite index in ZM; thus

the projection of Z+

M̃
is cofinal with Z+

M, and hence the proof given in [7] extends

to the metaplectic case also.

Using this in place of Lemma 4.4.1 of [7], we deduce the following analogue of

Lemma 4.4.2 of op.cit.:

Lemma 5.17. If a locally analytic representation V of P̃ admits a norm which is

P̃-invariant, and χ ∈ ẐM̃ is such that

(V N̂0)[Z+

M̃
= χ] 6= 0,

then ρ+ slope(χ) ∈ (Q⊗Z R)≥0.

We now recall what is meant by an element of Q ⊗Z Y
• being of non-critical

slope. We write ∆(G, ZM) for the set of positive restricted roots of ZM (that is, the

set of characters α of ZM appearing in the adjoint action on LieN ).

By hypothesis, G is split over E, so we may choose a Borel subgroup B of G
defined over E. We can and do assume that the unipotent radical N ′ of B contains

NE , and we choose a Levi factor T of B such that ZM ⊆ T ⊆M. We define ∆(G, T )

as the set of characters of T appearing in the adjoint action on n′ = LieN ′. As shown

in [7, §1.4], for any simple positive restricted root α ∈ ∆(G, ZM), there is a unique

simple positive root α̃ ∈ ∆(G, T ) with α̃|ZM = α. To α̃ is attached an element sα̃ of
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the Weyl group W (G, T ). We define ρ to be the weighted half-sum of ∆(G,S), i.e.

half the sum of the characters of S appearing in the adjoint action on N weighted

by their multiplicities; and ρ̃ the half-sum of ∆(G, T ), so ρ̃|S = ρ.

Let W be an irreducible algebraic representation of G over E. Then WN is an

irreducible algebraic representation of M, and in particular ZM acts on WN via

a character ψ. Let ψ̃ be the highest weight of WN with respect to M∩ B; then

ψ̃|ZM = ψ. It is shown in op.cit. that the element

sα̃(ψ̃ + ρ̃)|S ∈ Y •

is independent of the choice of Borel subgroup B. Let χ be a character of ZM̃ which

is locally ψ-algebraic (that is, we may write χ = θψ, where θ is locally constant).

Definition 5.18 ([7, Definition 4.4.3]). We say χ = θψ is of critical slope with

respect to the representation WN if, for some simple positive root α ∈ ∆(G, ZM),

the element

sα̃(ψ̃ + ρ̃)|S + ρ+ slope(θ) ∈ (Q⊗Z Y
•)

lies in (Q⊗Z R)≥0. Otherwise, we say χ is of non-critical slope.

Exactly as in [7, §4.4], we deduce the following result:

Theorem 5.19. Let V be a locally analytic representation of G̃, and suppose that

V admits a G̃-invariant norm. Let W be an irreducible algebraic representation of

G, and let ψ : ZM → Gm be the central character of WN . Then for any character

χ : ZM̃ → E× which is locally ψ-algebraic and of non-critical slope with respect to

WN , the map

JP(VW−loc.alg.)[ZM̃ = χ]→ JP(V )WN−loc.alg.[ZM̃ = χ] (5.1)

is an isomorphism.

This result is proved for algebraic groups in [7, section 4.4], and the same proof

works for representations of metaplectic groups, using the key lemma 5.17.

Proof. Injectivity of (5.1) follows from the fact that JP is left-exact. We must

prove surjectivity. Note that by [7, Prop 3.2.12] we have isomorphisms

JP(V )[Z+

M̃
= χ] ∼= (V N̂0)[Z+

M̃
= χ], JP(VW−loc.alg.)[Z

+

M̃
= χ] ∼= (V N̂0

W−loc.alg.)[Z
+

M̃
= χ].

We must therefore show that every vector in (V N̂0)WN−loc.alg.[Z
+

M̃
= χ] is locally

W -algebraic.

Suppose that v is in (V N̂0)WN−loc.alg.[Z
+

M̃
= χ] and is not locally W -algebraic.

Since v generates a direct sum of copies of WN under the action of Lie(P), we may

assume that v is annihilated by n′ = Lie(N ′); that is, v is a highest weight vector

for g with respect to n′, of weight ψ̃.

Hence the U(g)-submodule (Ug) · v ⊆ V is a quotient of a Verma module with

highest weight ψ. Since by assumption v is not locally algebraic, this quotient must
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be infinite-dimensional. It follows from the Bernstein-Gelfand-Gelfand resolution of

W in terms of Verma modules that there must exist a positive simple root α such

that Xm+1
−α v 6= 0, where X−α is in the −α root space in g; m = 〈ψ, α∨〉; and α∨ is

the corresponding coroot. The calculation [7, Prop. 4.4.4] shows that Xm+1
−α v is in

V N̂0 [Z+

M̃
= γ], where γ = α−m−1χ. Applying Lemma 5.17 to γ shows that if V has a

P̃-invariant norm, and (V N̂0)[Z+

M̃
= γ] 6= 0, then ρ+slope(γ) must lie in (Q⊗R•)≥0.

From this, we deduce that χ has critical slope, so we have a contradiction.

5.5. Emerton’s eigenvariety machine

In this paragraph, our discussion becomes global again. We therefore begin with a

connected reductive group G defined over an algebraic number field k and a fixed

prime p of k over p. We define

G = Rest
kp
Qp

(G×k kp) .

Thus G is an algebraic group over Qp and we let G be the group of Qp-valued points

of G. There is an isomorphism of groups G = Gp. As before, we assume that we have

a metaplectic extension G̃ of G by µ, and we define G̃ to be the central extension

of G obtained by identifying G with Gp.

The local theory of the preceding paragraphs was, for a few technical reasons,

described only over Qp. We shall apply this theory to the group G̃.

We make the assumption that G is quasi-split over Qp; note that this holds if

and only if G is quasi-split over kp, which is well known to be true for all but finitely

many primes p. Let B be a Borel subgroup of G, and T a Levi factor of B. Following

our general notational conventions, we let B and T denote the Qp-points of these,

and B̃ and T̃ their preimages in G̃ = G̃p.

As in the introduction, we choose a tame level Kp which lifts to a subgroup K̂p

of G̃(Ap
f ). We write Hp for the Hecke algebra of G̃(Ap

f ) with respect to K̂p and we

write Hsph for the spherical part of Hp.

Let V be an essentially admissible locally analytic G̃-representation, equipped

with a commuting action of Hp. By functoriality, there is an action of Hp on JB(V ),

which is an essentially admissible representation of T̃. Let Z = ZT̃ be the centre

of T̃. Then JB(V ) restricts to give an essentially admissible representation of Z,

and so there is a corresponding coherent rigid analytic sheaf E on Ẑ. There is an

action of Hsph on the sheaf E, and we let A be the image of Hsph in the sheaf of

endomorphisms of E. We then define the Eigenvariety of V to be the following a

rigid analytic space

Eig(V ) = Spec(A) ⊂ Ẑ × Spec(Hsph).

A point (χ, λ) ∈ Ẑ × Spec(Hsph) is in Eig(V ) if and only if the (Z = χ,Hsph = λ)-

eigenspace in JB(V ) is non-zero. By construction, the sheaf E is the push-forward

to Ẑ of a sheaf on Eig(V ), which we also denote by E. This sheaf E is a sheaf of
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right Hp-modules, and the fibre of E over a point (χ, λ) is isomorphic as a right

Hp-module to the dual of the (Z = χ,Hsph = λ)-eigenspace in V .

Theorem 5.20.

(i) The map Eig(V )→ Ẑ is finite.

(ii) If V is admissible as a representation of G̃, then the map Eig(V ) → ť has

discrete fibres; in particular the dimension of Eig(V ) is at most the dimension

of T over Qp.

Proof. Part (i) is true by construction, since Eig(V ) is defined as the relative spec-

trum of a coherent sheaf of algebras on Ẑ. Part (ii) follows from the corresponding

statement for the support of the coherent sheaf E on Ẑ, which is Theorem 5.12

above.

Let us now take V = H̄n
ε (K̂p, E)Qp−la. This is admissible, so the preceding

theorem applies to Eig(V ). We suppose for the remainder of this section that the

edge map criterion (Definition 1.1) holds for (G̃, p, K̂p, ε, n). Then for all algebraic

representations W of G we have an isomorphism of smooth G̃×H(Kp)-modules:

Hn
cl,ε(K̂p,W

′) = Homg (W,V ) .

We shall show that the eigenvariety Eig(V ) interpolates the finite slope representa-

tions in Hn
cl,ε(K̂

p,W ′).

Suppose π is an absolutely irreducible representation of G̃×Hp, which appears as

a subquotient of Hn
cl,ε(K

p,W ′) for some irreducible algebraic representation W of G,

and suppose that πp embeds in indG̃

ZN̂
(θ) for some smooth character θ of the centre

Z of T̃. The Hecke algebra Hsph acts on π by a character λ ∈ Spec(Hsph)(Qp). Let

ψ be the highest weight character of W with respect to B, regarded as a character

of Zp. Then the point (θψ, λ) ∈ Ẑ × Spec(Hsph) is called a classical point.

Theorem 5.21. Every classical point is in Eig(V ).

Proof. We first note that JB is exact on the subcategory of admissible smooth

representations of G̃. This is because (i) it is constructed as a composition of two

left-exact functors, and is therefore left-exact, and (ii) by theorem 5.13, the Jacquet

functor coincides on smooth representations with the coinvariants, which is right-

exact.

By exactness, there is a sub-quotient of JB(Hn(K̂p,W ′)) on which Z × Hsph

acts by (θ, λ). The vector space JB(Hn(K̂p,W ′)) ⊗E Qp is an admissible smooth

representation of Z, and is therefore a direct limit of finite dimensional Z ×Hsph-

modules. Therefore the (θ, λ)-eigenspace in JB(Hn(K̂p,W ′))⊗E Qp is non-zero. By

Corollary 5.15 we deduce that the (θψ, λ)-eigenspace in JB(Hn(K̂p,W ′)⊗W ) is non-

zero. By the edge map criterion, the representation Hn(K̂p,W ′)⊗W is isomorphic

to the closed subspace of W -locally algebraic vectors in V . By left-exactness, we
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deduce that the (θψ, λ)-eigenspace in JB(V ) is non-zero. This implies that (θψ, λ)

is in Eig(V ).

Theorem 5.22. Let (θψ, λ) be a point of Eig(V ), where θ is locally constant and

ψ is the highest weight of some algebraic representation W of G. If χ = θψ has

non-critical slope, then (θψ, λ) is a classical point.

Proof. This is immediate from Theorem 5.19, since V = H̄n
ε (K̂p, E)Qp−la admits

a G̃-invariant norm given by the gauge of the lattice H̄n
ε (K̂p,OE) ⊂ H̄n

ε (K̂p, E).

6. A p-adic analytic Stone–von Neumann theorem

If the machinery of the previous section is applied in the case where the parabolic

subgroup P is a Borel subgroup, the Jacquet module is a representation of the

preimage in G̃ of a maximal torus in G. This is a topological central extension of a

commutative group, but need not itself be commutative. We therefore turn to the

question of classifying locally analytic representations of metaplectic tori.

In this section, we shall let T be any topologically finitely generated abelian

Qp-analytic group. We define the rank of T to be the rank of the finitely-generated

abelian group T/T0, for any compact open subgroup T0 ⊆ T. Let T̃ be a topological

central extension of T by µ, so there is an exact sequence of topological groups

1→ µ→ T̃ → T → 1.

Let us fix a character ε : µ→ E×, where E is (as above) a discretely valued closed

subfield of Cp. We shall restrict our attention to representations of T̃ on which µ acts

via ε. Without loss of generality, we suppose that ε is injective, and in particular µ

is cyclic.

Let Z be the centre of T̃. This contains µ, and therefore is the preimage of a

subgroup Z ⊆ T. The group T̃/Z ∼= T/Z is a finite abelian group, of exponent

dividing the order of µ. This quotient group is equipped with a non-degenerate,

alternating bilinear form ∧2
(
T̃/Z

)
→ µ

given by t ∧ u 7→ [t, u]; in particular, the index [T : Z] is a square. If A is a

subgroup of T containing Z, then the preimage Ã is abelian if and only if A/Z

is an isotropic subspace of T/Z. We shall abuse notation and call such subgroups

isotropic subgroups of T.

For a locally p-adic analytic group G whose centre is topologically finitely gen-

erated (such as all of the groups considered above), we let Repess(G) denote the

category of essentially admissible locally analytic representations of G. Note that

if G is commutative, then Repess(G) is the opposite category of the category of co-

herent sheaves on the rigid-analytic space Ĝ. For G a subgroup of T̃ containing µ,

we let Repess(G)ε denote the subcategory of representations on which µ acts via
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the character ε. If G is commutative, then this category is anti-equivalent to the

coherent sheaves on a subspace Ĝε ⊆ Ĝ, which is a union of components of Ĝ.

6.1. Irreducible representations

We begin with a weak form of the Stone–von Neumann theorem, classifying the

irreducible objects of Repess(T̃)ε. Let us choose a maximal isotropic subgroup A ⊆ T,

as above.

Lemma 6.1. Let χ be a continuous (hence locally Qp-analytic) character of Z

restricting to ε, Iχ the set of E-valued characters of Ã extending χ, and ψ ∈ Iχ.

Then the map T̃/Ã → Iχ mapping t to the character a 7→ ψ(t−1at) is a bijection.

(In other words, Iχ is a torsor for T̃/Ã).

(Note that any ψ ∈ Iχ is defined over a finite, and hence complete and discretely

valued, extension of E. Moreover, since Z is open in T̃, any such ψ is locally Qp-
analytic.)

Proof. Let ψt be the character defined by ψt(a) = ψ(t−1at). We shall first show

that the map t 7→ ψt is injective on T̃/Ã. Suppose ψt = ψu for t, u ∈ T̃. We need to

show that t−1u ∈ Ã. By definition we have for all a ∈ Ã:

ψ(t−1at) = ψ(u−1au).

Hence the element t−1atu−1a−1u is in the kernel of ψ. Since T is abelian, the

image of this element in T is the identity, so t−1atu−1a−1u is also in µm. Since

the restriction of ψ to µm is ε, which is assumed to be injective, we deduce that

t−1at = u−1au. In other words ut−1 commutes with every element a ∈ Ã. As Ã is

a maximal abelian subgroup, we must therefore have ut−1 ∈ Ã.

To prove surjectivity, we’ll show that T̃/Ã and Iχ have the same number of

elements. The number of elements in Iχ is |Ã/Z|, which is the same as |A/Z|. Since

A/Z is a maximal isotropic subspace of T/Z with respect to the skew-symmetric

form above, T/A is identified with the Pontryagin dual of A/Z and hence |T/A| =
|A/Z|.

Proposition 6.2. Let T̃ be a topological central extension by µ of a topologically

finitely generated abelian locally Qp-analytic group T, and let Z be the centre of T̃.

Fix an injective character ε of µ.

Then for every locally Qp-analytic E-valued character χ of Z extending ε, there

is a unique irreducible finite-dimensional locally Qp-analytic representation Vχ of T̃

on an E-vector space having central character χ.

Proof. Let Aχ be the algebra

E[T̃]/〈z − χ(z) : z ∈ Z〉.



April 20, 2012 9:58 WSPC/INSTRUCTION FILE MetEmerton

40 Richard Hill and David Loeffler

This is a finite-dimensional E-algebra of dimension d2, where d = |T/A| = |A/Z|,
and it is clear that any representation of T̃ on which Z acts via χ is a module over

Aχ. Note that since Z is open and has finite index in T̃, such a representation is

essentially admissible if and only if it is finite-dimensional over E, or equivalently

finitely-generated over Aχ; thus the essentially admissible representations of T̃ with

central character χ are precisely the finitely-generated Aχ-modules.

We claim that Aχ is a central simple E-algebra. It suffices to check this after

any finite base extension, so let us choose a finite extension E′/E sufficiently large

that all characters ψ ∈ Iχ are defined over E′.

We consider Aχ as a representation of Ã × Ã via right and left translation.

Since all ψ ∈ Iχ have values in E′, we may decompose A′χ = Aχ ⊗E E′ as a direct

sum of isotypical components A
(ψ1,ψ2)
χ for the action of Ã × Ã, indexed by pairs

(ψ1, ψ2) ∈ Iχ × Iχ, and any Ã× Ã-stable subspace of A′χ is equal to the direct sum

of its intersections with these isotypical subspaces.

So let S be any two-sided ideal in A′χ. It follows that S is Ã× Ã-invariant, and

the action of Ã × Ã on S is obviously diagonalizable. Hence if S is non-zero, then

it must have nontrivial intersection with A
(ψ1,ψ2)
χ for some pair (ψ1, ψ2). However,

since S is a two-sided ideal, and conjugation by T̃ permutes Iχ transitively, we

deduce that it must have nontrivial intersection with all of the subspaces A
(ψ1,ψ2)
χ .

Hence its dimension is at least d2, which is the dimension of A′χ; thus S = A′χ. So

we have shown that A′χ is simple, from which it follows that Aχ is simple.

Since Aχ is a central simple algebra, up to isomorphism there is a unique simple

left Aχ-module, so the result follows.

Remark 6.3. Let Vχ be the representation described in the previous proposition.

Note that the dimension of Vχ is equal to de, where e is the order of Aχ in the

Brauer group of E. In particular, Vχ is absolutely irreducible if and only if Aχ is

isomorphic to a matrix algebra, so e = 1.

Proposition 6.4. Let W be any essentially admissible locally Qp-analytic repre-

sentation of T̃ on which µ acts via ε, and let Vχ be the representation constructed

above. Then for any character χ : Z → E×, we have

HomZ(χ,W ) 6= 0⇔ HomT̃(Vχ,W ) 6= 0.

Proof. By replacing W with the closed T̃-stable subspace WZ=χ, it suffices to

show that if Z acts on W via χ, then there is a nonzero homomorphism of T̃-

representations Vχ →W . But since W is essentially admissible as a representation of

Z, it must be finite-dimensional, and thus finitely-generated as an A-module where

A is the central simple algebra constructed above. Since every finitely-generated

module over a central simple algebra is a direct sum of copies of the unique simple

module, it follows that HomA(Vχ,W ) = HomT̃(Vχ,W ) is nonzero.

We now extend the definition of Vχ slightly. The continuous characters χ : Z →
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E× extending ε are precisely the absolutely irreducible objects of the category

Repess(Z)ε. If F/E is a finite extension and χ : Z → F× is a continuous character,

we regard χ as an object of Repess(Z)ε via restriction of scalars. If the values of

χ generate F over E, this representation is irreducible (but not absolutely so, of

course, unless F = E). This gives us a bijection between each of the following sets:

• irreducible objects of Repess(Z)ε,

• points of the rigid space Ẑε (in the sense of rigid geometry, i.e. maximal ideals

of its structure sheaf),

• Gal(E/E)-orbits of characters χ : Z → E
×

extending ε.

For each Galois orbit of characters χ, applying Proposition 6.2 with the coeffi-

cient field E replaced by the finite extension F/E generated by the values of χ, we

see that there is a unique irreducible F -linear representation Vχ of T̃ with central

character χ; and since the values of χ generate F over E, this is still irreducible

when regarded as an E-linear representation via restriction of scalars. We define Vχ
to be this representation, which clearly depends only on the Gal(E/E)-orbit of χ.

As a representation of Z, Vχ is isomorphic to a direct sum of copies of the object of

Repess(Z)ε constructed from χ above; we shall abuse notation slightly by writing

“Vχ has central character χ” even when χ is not defined over E.

Corollary 6.5.

(a) The map χ 7→ Vχ is a bijection between the set of irreducible objects of the

categories Repess(Z)ε and Repess(T̃)ε, which is uniquely characterized by the

fact that Vχ has central character χ.

(b) For any W ∈ Repess(T̃)ε, there is a closed rigid-analytic subvariety X of the

character space Ẑε such that the irreducible subrepresentations of W are pre-

cisely the Vχ for χ ∈ X.

(c) The irreducible representation Vχ is absolutely irreducible if and only if χ is

defined over E and the central simple algebra Aχ of Proposition 6.2 is trivial

in the Brauer group of E.

Proof. For part (a), the fact that the map exists and is injective is clear; so it

suffices to check that it is surjective. Let W be an irreducible object in Repess(T̃)ε.

Applying Proposition 6.4 to RestT̃Z(W ), we see that there is some χ such that

HomT̃(Vχ,W ) 6= 0. Since W is irreducible, we must have W ∼= Vχ.

For part (b), we simply take X to be the support of the sheaf on Ẑ corresponding

to the locally analytic representation RestT̃Z(W ) of Z. By construction, the points

of X are precisely the χ such that HomZ(χ,W ) 6= 0, and Proposition 6.4 shows

that these are precisely the irreducible T̃-subrepresentations of W .

Part (c) is immediate from the construction of Vχ and the remark on its dimen-

sion above.
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6.2. Tame isotropic subgroups

We now show that the results of the previous subsection can be strengthened, under

a mild additional hypothesis on T̃.

Definition 6.6. Let A ⊃ Z be a maximal isotropic subgroup. We say A is tame if

ZAtors = A, where Ators is the torsion subgroup of A.

We have used the word “tame” to indicate the analogy to the tame symbol, as

the following example illustrates.

Example 6.7. Let kp be a finite extension of Qp containing a primitive m-th root

of unity. Let T = k×p and let µm be the group of all m-th roots of unity in kp. Then

we may define an extension T̃ of T by µm by setting

T̃ = {(x, ζ) : x ∈ k×p , y ∈ µm}

with the group law

(x, ζ)(y, ξ) = (xy, ζξ(x, y)m),

where (x, y)m is the m-th power Hilbert symbol in kp.

One finds that

Z = {x ∈ k×p : x2 ∈ k×mp }.

Let us define n = m if m is odd, and n = m/2 if m is even. Then, since we clearly

have µ2n ⊆ k×p and hence −1 ∈ k×np , we see that Z = k×np .

If n is not a multiple of p, then we have [T : Z] = [k×p : k×np ] = n2. If we take

A = πZO×n, where O is the ring of integers of kp and π is a uniformizer, then A/Z

is isotropic (as any lift of π to T̃ clearly commutes with itself). As [A : Z] = n, A is

maximal.

Since we have assumed p does not divide n, we have 1+πO ⊆ O×n; hence every

element of A/Z ∼= O×/O×n has a representative that is a Teichmuller lift of an

element of the residue field, and thus in particular lies in Ators. Hence A is tame.

On the other hand, the (possibly more natural) choice A′ = πnZO× is a maximal

isotropic subgroup which is not tame.

If on the other hand p is a factor of n, then there is no tame maximal isotropic

subgroup.

Returning to the general situation, it is clear that if p - m and the rank of T is

0 or 1, there must exist a tame maximal isotropic subgroup. On the other hand, if

T is the discrete group Z2 and T̃ is the unique non-split extension of T by ±1, then

there are precisely three maximal isotropic subgroups of T̃ and none of these are

tame.

Let R denote the finite étale cover
̂̃
A→ Ẑ given by restriction of characters.

Proposition 6.8. If A is tame, then R maps every component of
̂̃
A isomorphically

to a component of Ẑ.
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Proof. Recall that if H is an abelian locally analytic group, the geometrically

connected components of Ĥ correspond bijectively with the characters of Htors.

By [6, Proposition 6.4.1], we can (non-uniquely) decompose Ã and Z as products

Ã = Ãtors × Ã∞ and Z = Ztors × Z∞. Moreover, it is clear that we may do this in

such a way that Z∞ ⊆ Ã∞. The assumption that A is tame, so that Ã = ZÃtors,

implies that in fact Z∞ = Ã∞.

Since the contravariant functor (̂−) takes direct products of groups to fibre

products of rigid spaces, the map
̂̃
A → Ẑ is obtained by taking the fibre product

of the map of finite rigid spaces ̂̃
Ators → Ẑtors with the connected rigid space Ẑ∞,

from which the result is clear.

Corollary 6.9. For all sufficiently large E, there exists a map S : Ẑ → ̂̃
A of rigid

spaces over E which is a section of R.

Proof. By the same argument as in the previous proposition, it suffices to show

that the map ̂̃
Ators → Ẑtors admits a section; this is clear, since both spaces are

finite unions of points.

Remark 6.10. It suffices to assume that ζr ∈ E, where r is the exponent of Ãtors.

If E does not contain enough roots of unity then such a section may well not exist.

Note also that the choice of the section S is highly non-canonical.

Theorem 6.11. If T̃ contains a tame maximal commutative subgroup, and E is

sufficiently large, then there is an equivalence of categories

Repess(Z)ε
∼→ Repess(T̃)ε.

Proof. Let V be an object of Repess(Z). We decompose V in the form

V =
⊕
χ

V χ

where the sum is over the characters of Ztors. We let FA(V ) be the representation

of A which is isomorphic to V as a representation of Z∞, but with Ãtors acting on

the summand Vχ by the extension of χ to a character of Ãtors determined by the

section S above.

It is clear that FA is a functor Repess(Z)ε → Repess(Ã)ε. Composing this with

the functor IndT̃

Ã
: Repess(Ã) → Repess(T̃) gives a functor F : Repess(Z)ε →

Repess(T̃)ε.

We construct an inverse functor G : Repess(T̃)→ Repess(Z) as follows. Restric-

tion to Ã gives a functor Repess(T̃)→ Repess(Ã). We may decompose Repess(Ã) as

a direct sum of subcategories corresponding to the characters of Ãtors.

The choice of section S above determines a subset I ⊂ ̂̃
Ators. The functor prI :

Repess(Ã) → Repess(Ã) given by V 7→
⊕

ψ∈I V
ψ is well-defined. We define G =

ResZ
Ã
◦prI ◦ ResÃ

T̃
, which clearly defines a functor Repess(T̃)ε → Repess(Z)ε.
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We claim that these functors are inverse to each other. Let us first consider the

composition G ◦ F : Repess(Z)ε → Repess(Z)ε. We note that there is a natural

isomorphism of functors Repess(Ã)→ Repess(Ã) between the functors ResÃ
T̃
◦IndT̃

Ã

and the functor mapping V to
⊕

t∈T̃/Ã V
t. Using lemma 6.1, we deduce that G ◦F

is naturally isomorphic to the identity functor.

On the other hand, let W be an object of Repess(T̃)ε. Since all our functors

commute with direct sums, we may as well assume that Ztors acts on W via a

character χ (extending ε). Then ψ = S(χ) is a choice of extension of χ to Ãtors. We

find that

F (G(W )) = IndT̃
Ã

(
W [Ãtors=ψ]

)
.

We must construct a natural transformation between this and the identity func-

tor. Let ψ1, . . . , ψs be the conjugates of ψ, and fix t1, . . . , ts ∈ T̃ such that

ψ(t−1
i ati) = ψi(a). Then the map f 7→

∑
tif(t−1

i ) : F (G(W ))→W gives a natural

transformation between F ◦G and the identity functor.

Remark 6.12. If T has no tame maximal isotropic subgroup, then the category

Repess(T̃)ε may genuinely fail to be isomorphic to Repess(Z)ε, even if the scalar

field E is large.

For instance, let T̃ be the extension of Z2 by ±1 mentioned above, and ε the

nontrivial character. If we set D = E[T̃]⊗E[Z] Can(Ẑε, E), then D is a Fréchet–Stein

algebra, and Repess(T̃) is precisely the opposite category of coadmissible D-modules;

but D is a non-trivial central simple algebra of rank 4 over Can(Ẑε, E), and hence

the categories of coadmissible modules over these rings are not equivalent.

Nonetheless, restriction of representations certainly gives a functor Repess(T̃)ε →
Repess(Z)ε, and one deduces that for any V ∈ Repess(T̃)ε there is a coherent sheaf

on Ẑε whose support consists precisely of the characters of Z appearing in V ; the

disadvantage is that since the restriction functor is not full, morphisms between

such sheaves do not necessarily correspond to morphisms of T̃-representations.

We may summarize the discussion as follows:

Theorem 6.13. Let T̃ be a topological central extension by µ of a topologically

finitely generated abelian locally Qp-analytic group T, and let Z be the centre of T̃.

Fix an injective character ε of µ.

(1) For every Gal(E/E)-orbit of continuous characters χ : Z → E
×

extending

ε, there is a unique irreducible locally analytic representation Vχ of T̃ having

central character χ.

(2) If W is an essentially admissible locally analytic representation of T̃ on which µ

acts via ε, then there is a closed rigid-analytic subvariety Supp(W ) of Ẑ having

the property that HomT̃(Vχ,W ) 6= 0 if and only if χ ∈ Supp(W ).

(3) If, moreover, T has a tame maximal isotropic subgroup, then the category of

locally analytic representations of T̃ on which µ acts by ε is anti-equivalent to
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the category of rigid-analytic sheaves on Ẑε, and Supp(W ) is the support of the

sheaf corresponding to W .

Theorem 6.14. Let G be semi-simple, simply connected and split over kp and let

G̃ be the canonical metaplectic extension of G by µm. Let T be a maximal split

torus in G, and let T and T̃ be as before. If p does not divide m, then there is a

tame maximal isotropic subgroup of T.

Proof. The torus T is split, so we have an isomorphism T ∼= Gnm for some n. We

shall regard elements of T as vectors t = (ti)
n
i=1 with ti ∈ k×p . By [17, Lemme II.5.4

and Lemme II.5.8] we know that the commutator has the form

[t, u] =
∏
i,j

(ti, uj)
m(i,j)
p,m ,

where m(i, j) are certain integers. One easily shows that Z is the set of elements t

satisfying for j = 1, . . . , n the following relation:

n∏
i=1

t
m(i,j)
i ∈ k×mp .

Clearly, Z contains Tm. Define a subgroup A of T by the relations

n∏
i=1

t
m(i,j)
i ∈ O× · k×mp , j = 1, . . . , n.

It follows that A = Z·(O×)n. We claim that A is a tame maximal isotropic subgroup

of T.

We first show that A is isotropic. The elements of A are, up to an element of Z,

in the subgroup (O×)n, and so it suffices to show that (O×)n is isotropic. This in

turn follows from the fact that (−,−)p,m is the tame symbol (as p does not divide

m) and so is trivial on O× ×O×.

We next show that A is maximal. Assume that u satisfies [u, t] = 1 for all t ∈ A.

This implies for each j and every element t ∈ O× the relation

n∏
i=1

(t, uj)
m(i,j)
p,m = 1.

Hence
∏n
i=1 u

m(i,j)
j is an element of O× · k×mp , and so u is in A.

Finally, we show that A is tame. To see this, it is sufficient to note that the

cosets of O×/O×m have representatives which are roots of unity (Teichmüller rep-

resentatives). Again, we have used the fact that p does not divide m, and so every

element in O× which is congruent to 1 modulo p is an m-th power.
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6.3. Implications for eigenvarieties

We now return to the situation of section 5.5. The group T̃ is an extension of the

abelian, topologically finitely generated p-adic analytic group T by µ, so we may

describe its essentially admissible representations by means of Theorem 6.13. As

before, we write Z for the centre of T̃.

Recall that we have shown that, for any essentially admissible G̃-representation

V equipped with an action of Hp, there exists a rigid-analytic subspace Eig(V ) ⊆
Ẑ × Spec(Hsph), and a coherent sheaf of right Hp-modules E on Eig(V ), such that

the fibre of E at a point (χ, λ) ∈ Ẑ is canonically isomorphic as an Hp-module to

the dual of the (Z = χ,Hsph = λ) eigenspace of V .

As before, let ε be an injective character of µ. We write Eig(V )ε for the inter-

section of Eig(V ) with Ẑε×Spec(Hsph) ⊂ Ẑ×Spec(Hsph). From Theorem 6.13, we

deduce:

Corollary 6.15.

(1) A point (χ, λ) ∈ Ẑε × Spec(Hsph) lies in Eig(V )ε if and only if

HomT̃(Vχ, V )[Hsph = λ] 6= 0.

(2) If T̃ has a tame maximal isotropic subgroup, we may construct a coherent sheaf

E′ ⊆ E on Ẑε with an action of Hp, such that the fibre of E′ at χ is canonically

isomorphic to the dual of HomT̃(Vχ, V )[Hsph = λ].

This shows that in the most favourable case, when a tame maximal isotropic

subgroup exists, it is possible to identify exactly the functor which is represented

by the eigenvariety, generalizing the fact that the Coleman–Mazur eigencurve rep-

resents the functor mapping an affinoid in weight space to the set of families of

overconvergent eigenforms of that weight (see e.g. [3, §7]). In the non-tame case,

the corresponding functor may not be representable, but the eigenvariety Eig(V )ε
can still be interpreted as a coarse moduli space for Hsph×T-subrepresentations of

V .
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775–839.

[8] M. Emerton, On the interpolation of systems of eigenvalues attached to automorphic
Hecke eigenforms, Invent. Math. 164(1) (2006) 1–84.

[9] Y. Z. Flicker, Automorphic forms on covering groups of GL(2), Invent. Math. 57
(1980) 119–182.

[10] R. Hill, Construction of eigenvarieties in small cohomological dimensions for semi-
simple, simply connected groups, Doc. Math., 12 (2007) 363–397.

[11] R. Hill, On construction of metaplectic covers of GL(n) in characteristic zero, Online
Journal of Analytic Combinatorics 5 (2010) 1–94.

[12] R. Hill, On Emerton’s p-adic Banach spaces, Int. Math. Res. Notices 2010(18) (2010)
3588–3632.

[13] R. Hill and D. Loeffler, Emerton’s Jacquet functors for non-Borel parabolic subgroups,
Doc. Math. 16 (2011) 1–31.

[14] N. Koblitz, p-adic congruences and modular forms of half integer weight, Math. Ann.
274(2) (1986) 199–220.

[15] T. Kubota, On automorphic functions and reciprocity law in a number field, Lectures
in Mathematics, Department of Mathematics Kyoto University (Kinokuniya Book
Store, 1969).

[16] M. Lazard, Groupes analytiques p-adiques, Pub. Math. IHÉS 26 (1965) 389–603.
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