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Abstract

An extensive qualitative and quantitative study of Rossby wave, drift wave and
zonal flow turbulence in the Charney-Hasegawa-Mima model is presented. This includes
details of two generation mechanisms of the zonal flows, evidence of the nonlocal nature
of this turbulence and of the energy exchange between the small and large scales.

The modulational instability study shows that for strong primary waves the most
unstable modes are perpendicular to the primary wave, which corresponds to the gen-
eration of a zonal flow if the primary wave is purely meridional. For weak waves, the
maximum growth occurs for off-zonal modulations that are close to being in three-wave
resonance with the primary wave. Nonlinear jet pinching is observed for all nonlinearity
levels but the subsequent dynamics differ between strong and weak primary waves. The
jets of the former further roll up into Kármán-like vortex streets and saturate, while for
the latter, the growth of the unstable mode reverses and the system oscillates between
a dominant jet and a dominant primary wave. A critical level of nonlinearity is defined
which separates the two regimes. Some of these characteristics are captured by truncated
models.

Numerical proof of the extra invariant in Rossby and drift wave turbulence is
presented. While the theoretical derivations of this invariant stem from the wave kinetic
equation which assumes weak wave amplitudes, it is shown to be relatively-well con-
served for higher nonlinearities also. Together with the energy and enstrophy, these three
invariants cascade into anisotropic sectors in the k-space as predicted by the Fjørtoft
argument. The cascades are characterised by the zonostrophy pushing the energy to the
zonal scales.

A small scale instability forcing applied to the model has demonstrated the well-
known drift wave - zonal flow feedback loop. The drift wave turbulence is generated
from this primary instability. The zonal flows are then excited by either one of the
generation mechanisms, extracting energy from the drift waves as they grow. Eventually
the turbulence is completely suppressed and the zonal flows saturate. The turbulence
spectrum is shown to diffuse in a manner which has been mathematically predicted.

The insights gained from this simple model could provide a basis for equivalent
studies in more sophisticated plasma and geophysical fluid dynamics models in an effort
to fully understand the zonal flow generation, the turbulent transport suppression and
the zonal flow saturation processes in both the plasma and geophysical contexts.
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Chapter 1

Introduction

A zonal flow is a prominent band-like structure with a dominant jet velocity profile in an

otherwise general flow domain. Some well-known examples in geophysical fluid dynamics

(GFD) include the rings or equatorial jets around Saturn and the belts and zones of the

Jovian atmosphere [12; 13; 14]. The latitudinaly-aligned bands observed on the giant

planets are zonal flows, visible due to the ammonia cloud formations. Far from being

extra-terrestrial phenomena however, zonal flows also exist near the tropopause in the

earth’s atmosphere such as the polar and subtropical jet streams [15] which eastward-

bound aircraft take advantage of and in the earth’s oceans [16] such as the Antarctic

circumpolar current.

Zonal flows are also striking features of plasma turbulence in fusion devices.

They are observed as radially localised, toroidally symmetric, strongly sheared flows in

the poloidal direction. They are created exclusively by the nonlinear energy transfer from

drift wave turbulence in the core of the plasma, sucking the energy from the drift wave

packet as they grow. In this respect, zonal flows reduce the level of drift wave turbulence.

It is generally accepted that zonal flows in a tokamak grow from drift wave

turbulence and from Rossby wave turbulence in GFD [17] and are the result of self-

organisation of a turbulent state to a coherent flow. Their generation and maintenance

is a topic of much research because they play a major part in the dynamics of both the

atmospheres and of magnetically-confined plasmas.

The understanding of Rossby wave - zonal flow turbulence is deemed crucial to
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fully comprehend the bigger picture of the overall atmosphere-ocean dynamics and those

of the planets such as Jupiter and Saturn [18]. A clear and concise understanding of

the atmosphere-ocean dynamics is highly desirable, more so now with the surge in global

interest in issues such as climate change and the rise in sea-levels which threaten to sub-

merge low-lying islands. Developments of geophysical models since the mid-twentieth

century have led to advances such as being able to predict the general path of hurri-

canes and tropical cyclones, such as that of cyclone Yasi just this year in February as

it approached the east coast of Australia, ultimately saving lives. Being able to predict

the occurance of El Niño due to improved knowledge of long oceanic waves and air-sea

interactions has meant early warnings can be given to communities along the west coast

of South America to help prevent or lessen ecological damage [19] when it arrives. Fur-

thermore, it is believed that the cyclones and anticyclones inherent of the weather in

midlatitudes are due to the baroclinic instability of the atmospheric jet stream indicating

that a greater understanding of such features would improve parametrisation of weather

forecast models.

Another global issue, the depletion of commonly-used fuel resources is one that

could be resolved by the use of fusion energy, a clean and sustainable energy source.

Although construction of the International Thermonuclear Experimental Reactor (ITER)

in France is already under way, there are still some underlying fundamental issues which

need to be resolved for successful ignition to occur. One of those issues is related to

plasma turbulence. The reduction in anomalous transport, observed when a discharge

undergoes Low-to-High (LH) transition in fusion devices, is generally believed to be due

to zonal flows [17]. These zonal flows represent transport barriers and their existence is

in fact crucial in regulating the turbulence from the small scale instabilities from which

they stem [20], further strengthening the necessity to fully understand drift wave - zonal

flow turbulence.

A similar feedback mechanism exists for Rossby waves in the atmosphere and

is sometimes referred to as the barotropic governor in that the barotropic flow controls

the level of turbulent behaviour [21]. Barriers to mixing and transport are evident in

the atmosphere at the edge of the Arctic and Antarctic winter polar vortices. The
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concentration of certain gases, which are otherwise evenly distributed over the poles,

can have large gradients at the edge of the polar vortex, which creates a barrier to

mixing towards the equator [22; 23]. Likewise, the equatorial jet in the stratosphere acts

as a barrier, reducing polewards transport of volcanic aerosols. By comparison, in the

troposphere where the equatorial jet does not reach, the volcanic aerosol is more evenly

distributed rather more concentrated in equatorial latitudes [24; 23].

With the mention of turbulence the usual thought is of hydrodynamic turbulence

as described by the Navier-Stokes (NS) equations. The typical picture of turbulence is of

large vortices which transfer their energy to subsequently smaller scales, one painted by

Richardson [25] in 1926. Progress in turbulence theory came with its statistical descrip-

tion developed by Taylor [26; 27] with the realisation that the correlation between the

velocities at two points was a significant quantity in describing turbulence. Kolmogorov’s

contribution in 1941 [28; 29] is based on fully-developed, locally isotropic and homoge-

neous turbulence and is the origin of the famous two-thirds law. Together with further

developments by Obukhov [30], this turbulence theory is characterised by cascades of

energy and enstrophy within the inertial range where neither forcing nor dissipation exist.

Turbulent motions are not restricted to vortices nor indeed to hydrodynamics.

Turbulence is the chaotic motion of a physical system which is out of equilibrium ac-

companied by an energy cascade [31]. A system of weakly nonlinear waves, described

only by its dispersion law and interaction coefficient, can also be described as being in a

turbulent state.

Based on the kinetic theory of gases, wave turbulence theory was originally used

by Peierls to describe the kinetic theory of thermal conduction in crystals [32] when it

was recognised that it was necessary to consider higher-order terms than linear in the

expansion of the energy, which would have lead to time-varying wave amplitudes and

ultimately, a statistical equilibrium between waves. Wave turbulence theory describes a

random field of weakly nonlinear dispersive waves and it is now a well-established theory

for waves in an extensive range of physical systems [31; 33] such as planetary atmospheres

and oceans [34], plasmas of fusion devices [35] and in superfluid helium [36] to name

but a few.

3



While wave turbulence deals with the spectrum of weakly nonlinear waves, there is

a general consensus that the theory must be further developed to include the co-existence

of coherent structures such as zonal flows and vortices with the weak waves [33]. The

main objective is to understand the role that the turbulence, generated by these fast

small scale waves, plays in the slower large-scale dynamics. Furthermore, the systems of

Rossby wave and drift wave - zonal flow turbulence are typical of the coexistence of two

distinctly different spatial and time scales. The drift waves are generated at the scale of

the ion Larmor radius and have very high frequency compared to that of the zonal flows.

Likewise, Rossby waves have a higher frequency than the zonal flows in the atmosphere.

Geophysical quasi-geostrophic (QG) flows and plasma drift turbulence are fre-

quently discussed together [37; 4; 17], in particular when discussing zonal flow forma-

tion, because some basic linear and nonlinear properties of these two systems can be

described by the same partial differential equation (PDE).It is known collectively as the

Charney-Hasegawa-Mima (CHM) equation [1; 2], the origin and derivation of which is

detailed in Chapter 3 and provides the basic model for the present study.

Two of the main candidates for the mechanism of zonal flow generation, applicable

to both Rossby wave and drift wave turbulence are; the modulational instability of a single

drift or Rossby wave, also referred to as a parametric instability and the inverse cascade

mechanism or resonant instability, supported by wave kinetic theory.

The modulational instability of a primary Rossby wave to a weak large scale

perturbation is well-studied [38; 8; 39] as is that of the drift wave [40; 41; 20]. It leads

to a resonant interaction between the zonal mode and the wave, with the result that

energy is transferred directly to the large zonal scales [38; 8; 40; 41; 39], bypassing the

intermediate scales. This instability is analysed in great detail in Chapter 4 where it is

shown that for high nonlinearity of a primary drift or Rossby wave, narrow zonal jets

are formed which represent transport barriers, which exist in the atmosphere and in a

magnetically-confined plasma.

The second generation mechanism, the inverse cascade [42], transports the energy

from the small scale turbulence to large scale zonal flows in a step-by-step process, similar

to the inverse cascade in two-dimensional (2D) NS turbulence [43; 44]. In contrast, the
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energy cascade in the CHMmodel could be local or nonlocal [45; 46; 47] and is anisotropic

due to the beta-effect with the result that the flow self-organises to large scale zonal flows,

rather than round vortices [48; 49; 50].

In reality, it is unlikely that the two mechanisms mentioned are exclusive and

can co-exist although it is believed that the relevant mechanism depends on the specific

parameter regime. A narrow initial spectrum of the waves with large initial amplitude

favours the modulational instability leading to fast zonal flow generation while bypassing

the turbulent cascade stages and intermediate scales. Conversely, for broad initial spectra

the cascade scenario is likely to be more relevant [41; 42; 20]. A similar competition

between the modulational instability and the inverse energy cascade mechanisms is known

to exist in the turbulence of surface gravity waves on water. In this medium, the instability

is also known as the Benjamin-Feir [51] instability and depends on the width of the initial

wave spectrum [52].

Pioneering work [46; 45] found that drift and Rossby wave turbulence conserves

not only energy and enstrophy but also a third invariant in Fourier space. Until then, it

was assumed that all wave systems conserve only the energy and enstrophy or that they

conserve an infinite number of extra invariants. This discovery was the first example of

a wave system with a finite number of additional invariants [45]. Chapter 5 presents

numerical proof of this conserved quantity, now referred to as zonostrophy as well as its

effect on the cascades of energy and enstrophy.

Richardson’s notable hypothesis on the local nature of turbulence cascades sug-

gests that energy is transferred through the scales from large vortices down to smaller

vortices in three-dimensional (3D) turbulence or from small scales to larger scales in

the case of 2D turbulence [25] such that turbulent structures interact only with other

structures of similar size, that is, it is local in physical space. With this idea in mind and

working from dimensional considerations, Kolmogorov and Obukhov derived the famous

k−5/3 energy spectrum of turbulence [28; 29; 30] in an incompressible fluid which then

led to Kraichnan’s derivation of the k−3 enstrophy spectrum for 2D turbulence [44].

Equivalent spectra can be derived from the equations of the medium for many

weak turbulence situations. Using these Kolmogorov-Zakharov (KZ) spectra, Zakharov
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deduced that the hypothesis of locality can be tested explicitly by determining whether

the collision integral of the given kinetic equation converges or diverges. Based on

such an analysis of the KZ spectra, it has been suggested that drift wave and Rossby

wave turbulence are nonlocal [9; 10; 11]. If there is no dissipation at large scales,

energy accumulates at the largest available scale, generally the size of the physical system

and further turbulence evolution is mainly determined by a nonlocal interaction between

the small scale waves and the ‘condensate’-scale structures. Assuming nonlocality, the

theory suggests that the turbulence spectrum in k-space splits into two unconnected

components with intermediate scales dying out. One component is the high-frequency

short-wavelength drift turbulence which defines the level at which the second component,

the low-frequency turbulence of the zonal flow saturates. Numerical work presented in

Chapter 6 confirm the theoretical predictions.
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Chapter 2

Theoretical background

When the electrostatic forces of the particles of a gas are overcome, the gas is said to be a

plasma. A plasma is in a fully ionised state so that the dynamics of the ions and electrons

can be treated separately. Plasma constitutes the sun, stars and solar wind as well as

interstellar and interplanetary media. Closer to Earth, lightening and the aurorae are

examples of plasma. Common man-made plasma include plasma lamps and televisions

and of course, magnetically-confined plasmas which are used for fusion research.

The field of fusion research is of great interest today as a possible sustainable

energy resource as a response to recent global warnings on the use of non-renewable

energy resources. In contrast to nuclear fission which splits high-atomic number nuclei,

nuclear fusion fuses together the nuclei of two low atomic number elements. The tokamak

is the main fusion device today [53], utilised in fusion research with the aim of efficient

production of fusion energy, the ultimate goal being commercial use of fusion energy.

Traditionally tokamaks used deuterium and hydrogen but the output power from

the fusion reactor was quite low until the early 1990s, tritium atoms were injected with

a deuterium plasma at the Joint European Torus (JET) tokamak outside Oxford in the

UK, yielding a greater power output. Although the JT-60 tokamak in Naka in Japan

is roughly the same size as JET, with a plasma volume of approximately 90m3, JET is

currently the only one capable of using tritium.

When the deuterium plasma is heated and tritium atoms injected, their nuclei
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fuse together according to the reaction

D2
1 + T3

1 = He4
2 + n1

0 , (2.1)

where the subscript is the atomic number and the superscript is the atomic weight, result-

ing with a helium nucleus and a neutron, both with extremely high kinetic energy [54; 53].

Both deuterium and tritium are hydrogen isotopes and therefore abundantly available on

earth, either naturally from sea water or via a side reaction between lithium and a neu-

tron. Furthermore, it is currently under consideration that the neutron by-product could

be recycled by reacting with lithium walls to create more tritium [55]. The plasma tem-

perature in JET can reach up to 2 × 108K and by comparison the temperature of the

nuclear core of the sun, a natural fusion reactor which generates thermal energy when

hydrogen is converted to helium, is 2× 107K [53].

The next step in fusion research is the current construction of ITER in the south of

France. Achieving plasma ignition requires a sufficiently high plasma density, temperature

and confinement time being achieved simultaneously before the plasma loses its energy.

The minimum value of the product of these three quantities provides a revised version

of the Lawson criterion [56], which must be met for sustained confinement [53]. If this

experiment is successful, fusion energy could then be commercially available towards the

middle of this century.

However, plasma instabilities tend to generate turbulence in the form of weakly

interacting waves with the result that transport of the plasma from the core to the edge is

greatly enhanced and the plasma confinement in the hot core subsequently reduced. This

anomalous transport had baffled engineers and scientists for many years as it was too

great to be explained by classical collisional or neoclassical trapped particle theory [53].

Fresh hope was given to fusion research when it was discovered experimentally [57] in

the Axially Symmetric Divertor EXperiment (ASDEX) divertor tokamak near Munich in

Germany, that this anomalous transport was not always observed in the discharges. Two

separate regimes were defined as L-type and H-type referring to low and high values

respectively of the plasma βp which measures the ratio of the plasma pressure to the

magnetic pressure. Under certain conditions, the plasma discharge would undergo an LH

transition, with enhanced plasma confinement times and reduced anomalous transport.
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It is generally accepted that this reduced transport is due to the transport barriers

that zonal flows represent, stemming from the drift wave turbulence [17; 23; 58]. One

of the major outstanding issues to be resolved in the field of fusion energy is believed to

be related to this feedback loop mechanism. As the Chief Executive Officer of United

Kingdom Atomic Energy Authority (UKAEA) and Head of EURATOM/CCFE Fusion

Association, Steve Cowley once posed the multi-billion dollar question in a lecture, "Can

turbulence be switched off?" - a question to which many hope the answer is yes.

Drift waves are so-called as they are the low frequency small oscillations which

result from the balancing of the parallel and drift dynamics in a neutral magnetically-

confined plasma [59]. The electrons with higher energy and velocity contribute most to

the dynamics parallel to the magnetic field. The magnetic force is always perpendicular

to the dynamics in a plane at right-angles. In this perpendicular plane, as they orbit,

the ions and electrons are accelerated then decelerated in the direction of the electric

field so that there is a slight velocity imbalance between opposite sides of the orbit path,

resulting in the particle drifting perpendicular to the electric field. Drift wave turbulence

arises when the drift waves are unstable to steep temperature gradients.

Rossby waves, otherwise known as planetary waves exist due to the planet’s

rotation. Following the observation of large recurring eddies in the atmosphere over

the USA, analysis of data for the earth’s northern hemisphere in 1939 by Carl Gustaf

Rossby [60; 61] determined the velocity of these large scale flow patterns in the zonal

direction which propagate westward in the atmosphere with very low frequency. They are

characterised by a very long wavelength of the order 105m, an amplitude of 101m and

modenumber of order 5 in the earth’s atmosphere and their velocity is proportional to the

gradient of the Coriolos force. However they are more difficult to observe in the oceans

since they exist in the thermocline where they are characterised by a very long wavelength

of the order 5 × 105m, amplitude 5 × 101m. These waves and their stability properties

are largely responsible for the unpredictable mid-latitude weather systems experienced on

earth due to the creation of cyclones and anticyclones.

All types of waves, including Rossby and drift waves, can be considered weakly

nonlinear if they have sufficiently small amplitudes such that for short times they evolve as
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independent linear waves. This suggests that in the small time limit the wave amplitudes

are time-independent. For longer times the wave amplitudes do vary but at a rate much

slower than the linear wave period. Wave turbulence theory therefore, passes from the

dynamic description of a wave system to a kinetic or statistical description in order to

eliminate the slow evolution of approximately constant wave amplitudes in the linear

approximation and the rapid phase dynamics which neither have a great effect on the

amplitude evolution.

By the superposition principle, any linear combination of two or more waves of dif-

ferent wavenumber is simply linear solution also and there is no energy exchange between

the modes in the linear approximation. Energy exchange only occurs in higher energy

approximations and while the nonlinear interactions can be non-resonant where the waves

will simply generate other waves of very low amplitude, the energy exchanged between

modes is maximised when the modes are in resonance. It is resonant interactions which

are therefore important and of more interest. The nature of the nonlinear interaction

depends on the medium and in the case of Rossby and drift waves described by the CHM

equation, these interactions are resonant triad interactions [34; 3] since the nonlinearity

is quadratic. Resonant interactions transfer energy between modes whose wavenumbers

and dispersion relations both sum to zero. The nonlinear dynamics of a triad of Rossby

waves is constrained by the imposition of energy and enstrophy conservation.

Lorenz was the first to analyse the stability of Rossby’s solution to a small per-

turbation, concluding that Rossby waves may in fact be unstable and are therefore not

regularly observed in the atmosphere since they give rise to other structures [38]. A cou-

ple of years later, Gill took up the stability problem and deduced that Rossby waves of all

wavenumbers can in fact be unstable [8] but that the nature of the instability depends

on a parameter related to the velocity and wavenumber of the initial primary wave.

More recent work has taken an alternative view of the instability of quasigeostrophic

Rossby waves as growth of a phase perturbation to the base wave and extended it to a

baroclinic situation [62] to account for stratification although the growth rate in this is

not as accurately predicted as the traditional linear stability analysis.

Work presented here extends the theory of Gill [8] to show that for strong primary
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waves the most unstable modes are perpendicular to the primary wave, which correspond

to generation of a zonal flow if the primary wave is purely meridional. For weak waves,

the maximum growth occurs for off-zonal inclined modulations which are close to being

in three-wave resonance with the primary wave. Numerical simulations confirm the the-

oretical predictions of the linear theory [8] as well as showing nonlinear jet pinching [63].

For strong primary waves, these narrow zonal jets further roll up into Karman-like vortex

streets while for weak primary waves, the growth of the unstable mode reverses and the

system oscillates between a dominant jet and a dominant primary wave.

The Rossby and drift wave system is a special case of wave turbulence in that the

wave kinetic equation exactly conserves an extra quadratic invariant that is not a linear

combination of the other two. Actually, the invariant also contains a cubic term whose

form depends on the nonlinear action between the waves but it was shown that for long

times, the cubic term can be neglected [64]. Recently the physical space representation of

this invariant was determined, a step towards deducing its actual physical meaning [65]

since it is always referred to in Fourier space. Furthermore, it was shown that the

zonostrophy could be more significant than the enstrophy since it is less sensitive to

dissipation than enstrophy is, thought to be due to the fact it is based on large scale

modes, as is the energy while the enstrophy integral is based mainly on small scale

modes [64; 65].

When the turbulence is dominated by waves which are involved in triad interac-

tions, it conserves the energy, potential enstrophy and zonostrophy. For the particular

case of small scale turbulence, the zonostrophy is a positive quantity so that an ar-

gument similar to the standard Fjørtoft argument, originally developed for the 2D NS

turbulence [43], is used to examine the triple cascade process of the invariants. It was

found that each of the invariants is forced by the other two to cascade into its own

anisotropic sector of scales and in particular, the energy is forced to cascade to long

zonal scales.

The original theory [66; 45] was limited to considering either very large scales,

longer than the Rossby deformation radius or the Larmor radius, or to the scales which

are already anisotropic and are close to zonal. Besides, the conservation of the extra
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invariant is based on the weakness of nonlinearity and on the randomness of phases,

conditions too of the validity of the wave kinetic equation, which even if present initially,

can break down later during the zonation process. Thus, numerical checks of robustness

of the zonostrophy conservation were required.

Soon after the original theory was presented [66; 45], the zonostrophy invariant

was generalised to the whole of the k-space in [46]. This was a significant achievement

because the extra invariant of such a kind appeared to be unique for Rossby and drift

systems and is not observed in any other known nonlinear wave model. However the gen-

eral expression for zonostrophy appeared to have a form for which the Fjørtoft argument

cannot be used since it is neither scale invariant nor sign-definite.

Some of the main features of hydrodynamic turbulence, the most-recognised form

of turbulence, are those previously mentioned, namely, Richardson’s cascade [25] and the

Kolmogorov-Obukhov spectra [28; 29; 30] and much research on turbulence, numerical

and experimental, aim to prove or disprove the universality of this spectrum. More

than two decades after Kolmogorov’s work, Zakharov derived similar spectra for wave

turbulence theory from the medium of the waves from which the hypothesis of locality

can be tested explicitly [67; 68]. He deduced that a necessary condition for turbulence

to be local is that the collision integral of the kinetic equation converges so that the

KZ spectra is a solution of the kinetic equation. These spectra can be derived for both

isotropic and anisotropic media.

Assuming nonlocality, Chapter 6 presents an extended derivation of the nonlocal

kinetic equation first presented in [10; 11] which simplifies to an anisotropic diffusion

equation showing the diffusion of the turbulence spectrum in k-space. As predicted,

numerical simulations show that this spectrum breaks into two unconnected parts.
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Chapter 3

The Charney-Hasegawa-Mima

Equation

The work presented in this thesis is based on the CHM equation so a full derivation of

both the Charney equation and the Hasegawa-Mima (HM) equation are now detailed.

3.1 Dynamic equation

3.1.1 The Charney equation

Until the late 1940s numerical calculations of the atmospheric equations of motion re-

mained unduly complicated since they required integrating over the whole range of scales.

It had been pointed out by meteorologists that the motions which contribute to the large

scale weather patterns could be classified as quasi-hydrostatic, quasi-adiabatic, quasi-

horizontal and quasi-geostrophic [1] so using this as a basis, Charney filtered out the

noise from the governing fluid equations to leave only the important long wavelength

waves that contribute to the large scale weather phenomena in the midlatitudes. The

derivation of the Charney equation [1; 3] from first principles is presented.

The x-axis is in the zonal direction, directed west to east, the y-axis is the

meridional axis, from south to north and z is in the vertical direction. Derived from

Newton’s law in a rotating framework, the equations which govern geophysical flows for
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u, the velocity in the x-direction, v, the velocity in the y-direction, w, the velocity in the

z-direction, the pressure p and density % are:

the x-momentum

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

%

∂p

∂x
+ ν

∂2u

∂z2
, (3.1)

the y-momentum

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

%

∂p

∂y
+ ν

∂2v

∂z2
, (3.2)

the z-momentum

0 = −∂p
∂z
− %g, (3.3)

the incompressibility condition

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.4)

and the continuity equation

∂%

∂t
+ u

∂%

∂x
+ v

∂%

∂y
+ w

∂%

∂z
= κ

∂2%

∂z2
. (3.5)

The forces due to the Coriolis parameter f = 2|Ωe|sinϕ, arise due to the rotating

framework of reference, where Ωe is the dynamically important normal component of

the earth’s rotation rate, parallel to the vertical axis through the centre of the earth and

ϕ is latitude. g is the gravitational force, ν and κ are constant kinematic viscosity and

diffusivity coefficient respectively.

The incompressibility condition given by equation (Eq.) 3.4 derives from the con-

servation of mass otherwise known as the continuity equation given by Eq. 3.5. For an

incompressible fluid, the density variation is negligible so that the density can be consid-

ered constant and the continuity equation is reduced to the incompressibily condition.

These nonlinear equations can be simplified under various different assumptions

and scaling arguments. The introduction of the β-plane, as sketched in figure 3.1, a plane

tangent to the earth’s surface at the latitude ϕ0, where a spatially local approximation

is taken of the Coriolis parameter is one such simplification. The β-plane is finite in size
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Figure 3.1: Sketch of a β-plane

such that ϕ− ϕ0 � 1 and then f can be Taylor expanded as

f(ϕ) ≈ 2|Ωe| (sinϕ0 + cosϕ0(ϕ− ϕ0)) + O((ϕ− ϕ0)2)

= f0 + β(y − y0) (3.6)

where f0 = 2|Ωe| sinϕ0 and β = 2|Ωe| cosϕ0 and y ≡ ϕ.

Observational data revealed that the large scale motions in the atmosphere occur

approximately in a barotropic atmosphere, i.e. on surfaces of constant density. Thus,

consider a shallow layer of inviscid fluid with constant density %0, at a height z =

h(x, y, t) above the reference level z = 0 as shown in figure 3.2. Then Eq. 3.3 which

describes hydrostatic balance, can immediately be integrated over the layer depth with

the boundary condition p(x, y, h) = p0, to give

p = −%0gh+ p0 . (3.7)

It follows that the horizontal pressure gradient is independent of z,

∂p

∂x
= %0g

∂h

∂x
∂p

∂y
= %0g

∂h

∂y
(3.8)
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Figure 3.2: Idealisation of the shallow water model

so that the horizontal accelerations must also be independent of z and it can be assumed

too that the horizontal velocities u and v are independent of z if they are so initially.

Substituting these gradients into Eqs 3.1 and 3.2 respectively, while neglecting vertical

acceleration terms since they are small in comparison to those in the horizontal, the

horizontal momentum equations then become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g∂h

∂x

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g∂h

∂y
. (3.9)

The vertical velocity at z = h is given by

w(x, y, z, t) =
dh

dt
=
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
(3.10)

Integrating the continuity Eq. 3.4 with the condition of no normal flow at the rigid

surface, z = hB

w(x, y, hB, t) = u
∂hB
∂x

+ v
∂hB
∂y
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and combining the result with Eq. 3.10 yields

dH

dt
+H

(
∂u

∂x
+
∂v

∂y

)
= 0 . (3.11)

Eqs 3.9 and 3.11 have reduced the variables in the dynamical equations to u, v

and h, thereby eliminating w from the dynamics and z from the governing equations.

These equations constitute the shallow water model in geophysical fluid dynamics.

From figure 3.2 the fluid height can also be expressed as

H = H̄(x, y) + η − hB (3.12)

where the free-surface displacement η from the undisturbed, constant height H̄, can

directly replace the dynamical variable h in Eqs 3.9 and 3.11. As Charney was interested

in the large scale motions in the atmosphere, with time scales longer than the rotation

period of the earth, he imposed scales, T , L, U and N0 on the time, length, velocity

and height respectively, which would characterise the dynamics with non-dimensional

variables of order unity. These scales can be used to non-dimensionalise the foregoing

dynamical equations as

(x, y) = L(x̂, ŷ)

t = T t̂

(u, v) = U(û, v̂)

η = N0η̂ (3.13)

Inserting Eqs 3.13 into Eqs 3.9 and 3.11, remembering that H̄ is constant gives

U

T

∂û

∂t̂
+
U2

L

[
û
∂û

∂x̂
+ v

∂û

∂ŷ

]
− fUv̂ = −gN0

L

∂η̂

∂x̂

U

T

∂v̂

∂t̂
+
U2

L

[
û
∂v̂

∂x̂
+ v

∂v̂

∂ŷ

]
+ fUû = −gN0

L

∂η̂

∂ŷ
(3.14)

N0

T

∂η̂

∂t̂
+
U

L

[
û
∂

∂x̂
(N0η̂ − hB) + v̂

∂

∂ŷ
(N0η̂ − hB)

]
+
U

L
(H̄+N0η̂−hB)

[
∂û

∂x̂
+
∂û

∂ŷ

]
= 0

In these equations, there exists the dimensionless Rossby and temporal Rossby

numbers, two very important ratios in GFD defined here respectively as

Ro =
U

fL
(3.15)

RT =
1

fT
. (3.16)
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They both measure ratio of the advection terms to the Coriolis term. If Ro � 1 and

RT � 1 then the acceleration terms in Eqs 3.14 will be small and the term on the right-

hand side (RHS) must then be large enough to balance the Coriolis terms. To ensure

this, choose

N0 =
fUL

g
(3.17)

which can be rearranged to

N0 = Ro
L2

R2
(3.18)

where

R =

√
gH̄

f
(3.19)

is known as the Rossby radius of deformation. Then Eq. 3.12 can be rewritten as

H = H̄

(
1 +Ro

L2

R2
η̂ − hB

H̄

)
(3.20)

and Eqs 3.14 can be expressed wholly in terms of non-dimensional variables and param-

eters as

RT
∂û

∂t̂
+Ro

[
û
∂û

∂x̂
+ v

∂û

∂ŷ

]
− v̂ = −∂η̂

∂x̂

RT
∂v̂

∂t̂
+Ro

[
û
∂v̂

∂x̂
+ v

∂v̂

∂ŷ

]
+ û = −∂η̂

∂ŷ
(3.21)

RTF
∂η̂

∂t̂
+RoF

(
û
∂η̂

∂x̂
+ v̂

∂η̂

∂ŷ

)
−
(
û
∂

∂x̂
+ v̂

∂

∂ŷ

)(
hB
H̄

)
(3.22)

+

[
1 +Ro F η̄ −

hB
H̄

](
∂û

∂x̂
+
∂û

∂ŷ

)
= 0 (3.23)

where

F =

(
L

R

)2

(3.24)

Since the flows of interest are for small Ro and small RT , assume Ro = RT , expand

each variable, û, v̂ and η̂ in orders of Ro i.e.

û(x, y, t, Ro) = u0(x, y, t) +Ro u1(x, y, t) +R2
o u2(x, y, t) + ..... , (3.25)
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etc. Inserting these into Eqs 3.21, equating powers of Ro and dropping the non-

dimensional hat symbol for brevity, gives in order O(1)

u0 = −∂η0

∂y

v0 =
∂η0

∂x
. (3.26)

Assuming that hB
H̄

is of the same order as the Ro, define

hB
H̄

= Ro ηB (3.27)

then the next approximation, O(Ro) gives

∂u0

∂t
+ u0

∂u0

∂x
+ v0

∂u0

∂y
− v1 = −∂η1

∂x

∂v0

∂t
+ u0

∂v0

∂x
+ v0

∂v0

∂y
+ u1 = −∂η1

∂y
(3.28)

F

[
∂η0

∂t
+ u0

∂η0

∂x
+ v0

∂η0

∂y

]
− u0

∂ηB
∂x
− v0

∂ηB
∂y

+

(
∂u1

∂x
+
∂v1

∂y

)
= 0 . (3.29)

To obtain a closed dynamical system in the O(1) fields only, cross-multiplying Eqs 3.29

gives
∂ς

∂t
+ u0

∂ς

∂x
+ v0

∂ς

∂y
= −

(
∂u1

∂x
+
∂v1

∂y

)
(3.30)

where

ς =
∂v0

∂x
− ∂u0

∂y
, (3.31)

is the total vorticity. From 3.26, it follows that

ς = ∇2η0 , (3.32)

which is equivalent to the definition of the vorticity in terms of the stream function ψ

and thus, η0 ≡ ψ(x, y, t) in the O(1) velocity field defined as

u0 = −∂ψ
∂y

v0 =
∂ψ

∂x
. (3.33)

The LHS of Eq. 3.30 can be used to eliminate the O(1) velocity and using the identities

in Eq. 3.33, the result is,

∂

∂t
(∇2ψ − Fψ) +

∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
+
∂ψ

∂x

∂ηB
∂y
− ∂ψ

∂y

∂η

∂x
= 0 (3.34)
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The variation in bottom topography ηB in the presence of constant f , plays an equivalent

role to the variation of the Coriolis parameter with latitude which from Eq. 3.6 is βy [3]

so that replacing ηB with βy in Eq. 3.34, results in the QG PV equation, otherwise

known as the Charney equation [1],

∂

∂t
(∇2ψ − Fψ) + β

∂ψ

∂x
+
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
= 0 . (3.35)

The QG model is a simplified geophysical fluid model at asymptotically high rotation rate

or at small Rossby number, a condition imposed in the derivation, for which the variables

are evaluated through their geostrophic values [3]. It assumes a hydrostatic balance

between the vertical pressure gradient and gravity and geostrophic balance between the

horizontal pressure gradient and Coriolis pressure.

3.1.2 Hasegawa-Mima equation

The HM equation [2] is the simplest single-fluid description of a strongly magnetised

plasma. Here, it is derived from first principles, beginning with the continuity of ions.

Assume an inhomogeneous plasma such that the density at any given point de-

pends on the position of that point i.e. n0 = n0(x) in an homogeneous background

magnetic field B = B0êz and subjected to a conservative electric field E = −∇φ, where

φ is the electric potential. When a plasma is produced by a gas discharge, the electrons

are accelerated more efficiently by E than the heavier ions. As a result, the kinetic energy

and thus the temperature of the electrons, Te, is much greater than that of the ions,

Ti so that a non-isothermal plasma is assumed, the so-called cold ion approximation in

which Te � Ti. Neglecting the parallel (to the magnetic field) inertia of the ions, their

continuity equation is given by

∂n

∂t
+∇⊥ · (n0v) = 0. (3.36)

The drift velocity v has components vE + vp where vE is due to the E × B

field and vp arises from the polarisation. While vE � vp, both terms remain in the

approximation since it is the polarisation drift that allows for compression of the ions.

Now employing the basic laws of inertia, with respect to a fixed frame of reference,

the rate of change of linear momentum of the ions equals the force applied to them.
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Assuming that frictional forces are negligible here, the external forces applied to the ions

of mass mi and charge ei, are that due to the magnetic field, eiv ×B, that due to the

electric field, eiE and the traction force is ∇pi where pi is the ion pressure. This gives,

nimi

(
∂vi
∂t

+ (v · ∇)vi)

)
= ∇pi − ni(eiE + eiv ×B). (3.37)

For cold ions, ∇pi = 0 so the balance of ion momentum becomes

∂vi
∂t

+ (v · ∇)vi =
ei
mi

(−∇φ+ v ×B). (3.38)

To a first approximation for v ∼ vE and assuming the rate of change of linear momentum

is zero, ∇φ = vE ×B. Rearranging this using the triple vector product identity gives an

expression for the E×B drift velocity

vE =
B×∇φ
|B|2

. (3.39)

In the second approximation for v ∼ vp, following the same procedure, an expression is

obtained for the polarisation drift velocity

vp =
1

ωciB0

[
∂

∂t
∇φ+ (vE · ∇⊥)∇⊥φ

]
(3.40)

where

ωci =
eiB0

mi
(3.41)

is the ion cyclotron frequency or gyrofrequency which defines the frequency of the circular

motion of the ion with Larmor radius

ρi =
miv⊥
eiB0

(3.42)

in the presence of a magnetic field, v⊥ being the velocity component perpendicular to

the magnetic field.

The densities of the ions and electrons have a Boltzmann distribution and are

adiabatic due to a slow variation of φ in the parallel direction,

n = n0 exp

(
eφ

Te

)
, (3.43)
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where n and n0 are the perturbed and unperturbed densities respectively. Taking loga-

rithms and expanding this distribution,

lnn = lnn0 +
eφ

Te
. (3.44)

Substituting this into Eq. 3.36, the continuity for ions now becomes

∂

∂t

eφ

Te
+ vE · ∇⊥(lnn0 +

eφ

Te
) +∇⊥ · vp = 0. (3.45)

Now introducing the drift velocities Eqs 3.39 and 3.40 into Eq. 3.45,

∂

∂t

eφ

Te
− [(∇φ× ẑ) · ∇⊥]

(
lnn0 +

eφ

Te

)
−∇⊥

(
1

ωciB0

d

dt
∇φ
)

= 0. (3.46)

Use the normalisations ωcit→ t, x,yρi → x, y and eφ
Te
→ φ where ρi = 1

ωci

√
Te
mi

is the ion

gyroradius and with the use of Eq. 3.41, rearrange to give the Hasegawa-Mima equation

∂

∂t

(
∇2φ− φ

)
− [(∇φ× ẑ) · ∇]

[
∇2φ− lnn0

]
= 0. (3.47)

This is equivalent to

∂

∂t
(∇2φ− 1

ρ2
i

φ) +∇ lnn0
∂φ

∂x
+
∂φ

∂x

∂∇2φ

∂y
− ∂φ

∂y

∂∇2φ

∂x
= 0 . (3.48)

3.1.3 Analogy between Rossby waves and drift waves

The similarities between Eqs 3.35 and 3.48 are evident, as was first pointed out by

Hasegawa and Maclennan [37; 4]. It is often referred to as the collective Charney-

Hasegawa-Mima equation even though the time and physical scales associated with each

of the waves differ by many orders of magnitude. Typical time and space parameters for

the drift wave are a wavelength of the order of the ion Larmor radius, typically 1-10mm

with a characteristic timescale period of the order 1 × 10−3 s. For the Rossby wave in

the atmosphere the wavelength is typically of the order 2 × 106m [1] with a period of

approximately 5 days. The linear wave frequency of the Rossby wave is much smaller

than the Coriolis frequency just as the drift wave frequency is much smaller than the

ion cyclotron frequency. A more detailed analogy between drift and Rossby waves is

given in table 3.1 [4] with some typical orders of magnitudes of the variables. Evidently,

there are some extreme assumptions made during the derivation of the Charney and HM
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Table 3.1: Analogy between the drift wave and the Rossby wave
Drift wave Rossby wave
Electrostatic potential φ Variable fluid depth η
Background density n0 Average depth H̄
E×B drift Geostrophic flow
Wavelength ≈ 1× 10−3m Wavelength ≈ 2× 106m
Period ≈ 1× 10−3s Period ≈ 5 days
Ion cyclotron frequency ωci ≈ 108s−1 Coriolis parameter f ≈ 10−4s−1

β = ∂
∂y lnn0 β = ∂f

∂y

Larmor radius ρi = 1
ωci

√
Te
mi
≈ 10−3m Rossby radius R =

√
gH̄
f ≈ 2× 106m

Drift velocity Rossby velocity
Dispersion relation ωk = − βkxρ2

1+ρ2i k
2 Dispersion relation ωk = − βkx

k2+F

equations. Nonetheless, they provide a very simple and useful model for both GFD and

plasma theory since the nonlinear dynamics can replicate turbulent, coherent and wave

behaviour [4]. While the true dynamics are 3D, they can be approximated as horizontal

in GFD or poloidal dynamics in plasma theory because the vertical/toroidal coordinate

becomes a dependent variable. Hereafter, the basic dynamic equation will be referred to

in the form of Eq. 3.35.

Hereafter, the following expressions are deemed equivalent for the purposes of

the CHM equation and shall be used interchangeably,

F =
1

R2
≡ 1

ρ2
i

≡ 1

ρ2
. (3.49)

3.1.4 Conservation of energy and enstrophy

Around the middle of the last century, the importance of the vorticity and its effect

on the energy cascade in 2D turbulence became apparent [69; 70; 43]. As with 2D

hydrodynamic turbulence, energy E and enstrophy Q, otherwise referred to as the mean

squared vorticity, are conserved for Rossby and drift wave turbulence.

Re-writing the nonlinear term in Eq. 3.35 as (−∇ψ × ẑ)∇ ·∇2ψ, multiplying by

ψ and integrating over the periodic domain gives∫ [
∂

∂t

[
ψ∇2ψ − fψ2

]
+ ψβ

∂ψ

∂x
− ψ

[
(∇ψ × ẑ)∇ · ∇2ψ

]]
dx dy = 0 .
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With a little manipulation and rearranging of terms, the result is

1

2

∂

∂t

∫ [
(∇ψ)2 + Fψ2

]
dx dy+

∫
∇·
[
−ψ∇∂ψ

∂t
− 1

2
βx̂ψ2 + ψ∇2ψ∇ψ × ẑ

]
dx dy = 0 .

(3.50)

The first integral represents the total energy of the system, E, the first term of which

is the kinetic energy. In k-space this equals 1
2k

2ψ̂2 = 1
2(k2

x + k2
y)ψ̂

2 which in lieu of

Eq. 3.33, is equivalent to 1
2v

2. The second term is equivalent to the potential energy

since ρg
∫ η0

0 zdz ∝ η2
0 ≡ ψ2(x, y, t). In the case of a plasma, the total energy density is

given by n2T
n0

+min0v
2
E [2] and by Eqs 3.43 and 3.39 this can also represents the total

energy of the system.

Now defining the term within the square brackets of Eq. 3.50 as

GE = −ψ∇∂ψ
∂t
− 1

2
βîψ2 + ψ∇2ψ∇ψ × ẑ , (3.51)

Eq. 3.50 can be re-written as
∂E

∂t
+∇ ·GE = 0 (3.52)

and by Gauss’ divergence theorem this is equivalent to the surface integral

∂E

∂t
= −

∫
GE · n̂ds (3.53)

where n̂ is the outward unit normal of the surface and s the arc length of the curve

which encloses that surface. On a bounded region, the no-slip condition u · n̂ = 0 is

satisfied and the β term sums to zero, from which it follows that ∂
∂t

∫
(∇ψ · n̂)ds = 0.

This suggests that
∂E

∂t
= 0 (3.54)

from which it can be deduced that the quantity

E =
1

2

∫
k
(∇ψk)2 + Fψ2

k dx dy (3.55)

is conserved.

Similarly, multiplying Eq. 3.35 by ∇2ψ gives conservation of the potential enstro-

phy, defined as∫ [
∂

∂t

[
(∇2ψ)2 − Fψ∇2ψ

]
+∇2ψβ

∂ψ

∂x
−∇2ψ

[
(∇ψ × ẑ)∇ · ∇2ψ

]]
dx dy = 0 .
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With a little manipulation and rearranging of terms, the result is

1

2

∂

∂t

∫ [
F (∇ψ)2 + (∇2ψ)2

]
dx dy

+

∫
∇ ·
[
−∇ψ∂ψ

∂t
+ β∇ψ∂ψ

∂x
+ (∇2ψ)2∇ψ × ẑ

]
dx dy = 0 (3.56)

which again can be written in the format

∂Q

∂t
= −

∫
GQ · n̂ds (3.57)

where the enstrophy Q is defined as

Q =
1

2

∫
k
F (∇ψ)2 + (∇2ψ)2 dk (3.58)

and

GQ = −∇ψ∂ψ
∂t
−∇ψ∂ψ

∂x
− (∇2ψ)2ψ∇ψ × ẑ . (3.59)

The RHS of Eq. 3.57 is zero, yielding the conservation of enstrophy as the result.

3.1.5 Fourier representation

It is often convenient to represent the wave modes, k,kn in Fourier or k-space by

introducing the Fourier transform of the streamfunction,

ψ̂k =

∫
ψ(x)e−i(k·x) dx , (3.60)

The CHM equation in physical space, Eq. 3.35 is then equivalent to

∂tψ̂k = −i ωk ψ̂k +
1

2

∑
k1,k2

T (k,k1,k2) ψ̂k1 ψ̂k2 δ(k− k1 − k2) , (3.61)

where

ωk = − βkx
k2 + F

(3.62)

is the anisotropic dispersion relation for the linear solutions, k = (kx, ky), k = |k| and

T (k,k1,k2) = −
(k1 × k2)z (k2

1 − k2
2)

k2 + F
(3.63)

is the nonlinear coupling coefficient.
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3.2 Wave kinetic equation

It has been mentioned that in the weak nonlinearity limit, the turbulence of Rossby and

drift waves can be described by the statistical description of wave turbulence in which the

wave amplitudes can be considered to play the part of probability amplitudes [35; 33].

This wave turbulence approach can be justified when the underlying assumptions of wave

turbulence theory are met, i.e. the waves are weakly nonlinear or have small amplitudes

and are dispersive, they have random initial phases and the domain is infinite. As such,

the coherence of interacting waves is much smaller than the domain size so that the

domain contains many correlation lengths. A series of steps, to convert the nonlinear

dynamic equation, Eq. 3.35 which describes the evolution the wave amplitudes and their

phases, to a kinetic description, which will describe the evolution of their probability

amplitudes are detailed below. The work presented in Chapters 5 and 6 are based on

this kinetic equation so it is important that these wave turbulence assumptions are met

when carrying out numerical work.

The wave action spectrum is defined as

nk =
E

ωk
. (3.64)

Also defined here is the waveaction variable ak which acts like a probability amplitude in

a large ensemble of wavenumbers

nk = |ak|2 (3.65)

and from Eqs 3.55 and 3.62, ak can be defined as

ak =
k2 + F√
βkx

ψ̂k . (3.66)

Taking into account the k1 ↔ k2 symmetry of the wavenumbers, Eq. 3.61 can be

re-written as

∂tak = −iωk ak +
1

2

∑
k1,k2

V k
12 δ(k− k1 − k2)ak1 ak2 dk1dk2 (3.67)

where

V k
12 ≡ V k

k1,k2
=

i

2

√
βkxk1xk2x

(
k1y

k2
1 + F

+
k2y

k2
2 + F

− ky
k2 + F

)
(3.68)
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is the nonlinear interaction coefficient [71] for the waveaction variable, which exhibits

the symmetries

V k
k1,k2

= V k
k2,k1

= −V k2
k,−k1

= −V −k−k1,−k2
(3.69)

In order to filter out the fast linear oscillations, a perturbation series of the

interaction variable, assuming a weak nonlinearity parameter, ε� 1

bk =
ak
ε

eiωkt (3.70)

is introduced into Eq. 3.67 to give

i
∂bk
∂t

= signkx
∑
k1,k2

V k
12 δ(k− k1 − k2)bk1 bk2 eiωk

12t (3.71)

where

ωk12 = ωk − ωk1 − ωk2 . (3.72)

Introducing an intermediate time, T which lies between the linear and nonlinear time

scale, the complex wave amplitude bk is expanded in a perturbation series in the small

nonlinearity parameter ε, at time t = T as,

bk(T ) = b
(0)
k + εb

(1)
k + ε2b

(2)
k + . . . . (3.73)

The aim is now to perform successive iterations in orders of ε to define b(0)
k and note

that b1 ≡ bk1 etc. for brevity

O(1) b
(0)
k = bk|t=0 (3.74)

O(ε) b
(1)
k = −i signkx

∑
1,2

V k
12 b

(0)
1 b

(0)
2 δk12∆T (ωk12) (3.75)

O(ε2) b
(2)
k = signkx

∑
1,2

V k
12 (2b

(0)
1 b

(1)
2 )δk12eiωk

12t (3.76)

where

∆T (ωk12) =

∫ T

0
eiωk

12tdt . (3.77)

Substituting for b(1)
2 from Eq. 3.75 into Eq. 3.76 gives,

b
(2)
k = −

∑
1,2,3,4

sign(kxk1x)V k
12 V

1
34 b

(0)
3 b

(0)
4 b

(0)
2 δ1

34δ
k
12

∫ T

0
∆T (ω1

34)eiωk
12t dt . (3.78)
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b
(0)
k are time-independent and correspond to solutions to the dynamic equation when

there are no interactions between modes. It is assumed that the phases of the modes

are randomly distributed in k-space when an ensemble of experiments is considered and

the change in the waveaction spectrum, nk can be determined by the change in the

probability amplitude, given by,

δnk = |bk(t)|2 − |bk(t0)|2 . (3.79)

To O(ε)2,

〈|bk|2〉 = |bk(t0)|2 + 〈|b(1)
k |

2〉+ 〈|b(0)
k b̄

(1)
k |

2〉+ 〈|b̄(0)
k b

(1)
k |

2〉+ 〈|b(0)
k b̄

(2)
k |

2〉+ 〈|b̄(0)
k b

(2)
k |

2〉 ,

(3.80)

where 〈 〉 denotes averaging over the random phases. Taking each term in turn, using

Eqs 3.74, 3.75 and 3.78 and averaging over the phases

〈|b(1)
k |

2〉 =
∑
1,2

∑
3,4

b
(0)
1 b

(0)
2 δk12∆T (ωk12)b̄

(0)
3 b̄

(0)
4 δk34∆T (ωk34)V k

12V̄
k

34

= 2
∑
1,2

|V k
12|2nk1nk2δ

k
12

∣∣∣∆T (ωk12)
∣∣∣2 (3.81)

where the last step follows from |b(0)
1 |2|b

(0)
2 |2 = nk1nk2 .

〈|b(0)
k b̄

(1)
k |

2〉 =
signkx

i

∑
1,2

V k
12b

(0)
k b̄

(0)
1 b̄

(0)
2 δk12∆T (ωk12) (3.82)

By Wick’s contraction rule [72], Eq. 3.82 and its complex conjugate, denoted by c.c.,

are both zero. The last two terms in Eq. 3.80 provide the contribution

〈|b̄(0)
k b

(2)
k |

2〉 = −
∑
1,2

∑
3,4

signkxsignk1xV
k

12 V
1

34 b
(0)
k b

(0)
3 b

(0)
4 b

(0)
2 δ1

34δ
k
12

×
∫ T

0
∆T (ω1

34)eiωk
12t dt+ c.c.

= 2
∑
1,2

|V k
12|2δk12Re

∣∣∣∆T (ωk12)
∣∣∣2

× [sign(ωkωk2)nknk1 + sign(ωkωk1)nknk2 ] . (3.83)

The term |∆T (ωk12)|2 in Eqs 3.81 and 3.83 can be approximated in the long time limit
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δT →∞ as,

|∆T (ωk12)|2 =

∣∣∣∣∫ T

0
eiωk

12tdt

∣∣∣∣2 =
|1− eiωk

12t|2

(ωk12)2

=
|e

i
2
ωk
12t − e−

i
2
ωk
12t|2

(ωk12)2

=
4 sin2 (ωk

12)
2 T

(ωk12)2

→ 2πδTδ(ωk12) (3.84)

Collecting the terms now from Eqs 3.80 to 3.84, taking the large box limit i.e. L→∞

and inserting into Eq. 3.79 results in the evolution equation for the energy spectrum nk

∂nk
∂t

= 4π

∫ ∣∣V k
12

∣∣2 δ(k− k1 − k2)δ(ωk − ωk1 − ωk2)×

[nk1nk2 − nknk1 sign(ωkωk2)− nknk2 sign(ωkωk1)] dk1dk2 (3.85)

otherwise known as the wave kinetic equation. The RHS of Eq. 3.85 is called the collision

integral and measures the rate of change of the energy spectrum. This can be written

in a more general form and because ψ̂−k =
¯̂
ψk and thus n−k = nk, only half of the

k-space needs to be considered which is taken here as kx, k1x , k2x ≥ 0

∂nk
∂t

=

∫
(R12k −Rk12 −R2k1) dk1dk2 (3.86)

where

R12k = 2π
∣∣∣V k

12

∣∣∣2 δk12δ(ω
k
12)(nk1nk2 − nknk1 − nknk2) (3.87)

This form of the wave kinetic equation is also valid if the original variable ψ is complex,

as is the case in wave systems such as the nonlinear Schrödinger equation which describes

waves in nonlinear optics and Bose-Einstein condensates.

Furthermore, it is often convenient to derive the wave kinetic equation from

a Hamiltonian description of the wave system, especially if the original variable ψ is

complex. Wave turbulence is more commonly described by the Hamiltonian formalism,

the advantage being that this approach contains all the necessary information required

to study nonlinear interactions of all wave systems without specifically referring to the

specific medium. The dispersion relation is the coefficient of the quadratic term of wave
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amplitudes in the power series of the Hamiltonian, usually equivalent to the total energy,

while the nonlinear interactions are described by the higher terms in the series. Details

of the Hamiltonian formalism are given in Appendix A.

3.3 Numerical model

Given the assumptions made in deriving the CHM equation, a simple plane domain can be

adopted for its solution. As such, a pseudospectral code with doubly-periodic boundaries

has been chosen since the spatial derivatives can be calculated exactly in Fourier space

while the nonlinear products can be calculated accurately in physical space. Details of

the numerical scheme are given in Appendix B.
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Chapter 4

Stability of Rossby Waves

Given that Eq. 3.61 admits Rossby and drift waves with the dispersion relation given by

Eq. 3.62, it is natural to ask how stable these waves are to small perturbations. This

Chapter revises the linear theory of the modulational instability of a monochromatic wave

which was first analysed by Lorenz [38] and Gill [8], highlighting the main points of this

theory. The character of the instability is studied using numerical and semi-analytical

calculations, focusing on how this changes with the strength of the primary wave.

Direct numerical simulations (DNS), a three-mode truncation (3MT) and a four-

mode truncation (4MT) systems are employed to study the nonlinear stage of the insta-

bility to determine just how useful the truncated models are in studying the nonlinear

dynamics.

4.1 Spectral truncations

Spectral truncations of Eq. 3.61 are employed to assist in the study of the stability

properties of Rossby waves by yielding an approximation to the linear growth rate of the

instability. This can be compared to the results from the DNS of the full PDE.

4.1.1 Three-mode truncation (3MT)

Given that the nonlinear interaction coefficient Eq. 3.63 is quadratic, wave interactions

occur between triads of waves. It follows that the most basic situation is to use a spectral
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truncation by restricting Eq. 3.61 to a single triad of three modes by taking a meridional

primary wave, p, a small zonal perturbation or modulation, q and one of the coupled

sidebands p− = p− q. Each of these wave vectors is assigned in turn to k in Eq. 3.61

with the other two and their negatives assuming all possibilities for k1 and k2 while

neglecting any ψk’s outside the given triad.

Let the primary wave, k = p, then assign q and p− to all possibilities for k1

and k2. Such possibilities are tabulated in table 4.1 and only those for which the RHS

column is equal to p contribute in summing the nonlinear term i.e. the first and third

rows in this case. Since ψk is the Fourier transform of a real field, ψ−k = ψ̄k.

k3 = k1 ± k2 (4.1)

and

ω(k3) = ω(k1)± ω(k2) (4.2)

Table 4.1: Three-wave interaction. All possibilities of q and p− assigned to k1 and k2

for k = p.
k1 k2 k1 + k2

q p− p
q −p− 2q− p
p− q p
p− −q p− 2q
−q p− p− 2q
−q −p− −p
−p− q k1

p− −q −p

It is convenient to introduce Ψk(t) = ψk(t)eiωk t. For the mode p, Eq. 3.61 then

becomes

∂t(Ψp(t)e−iωpt) = −iωpΨp + T (p,q,p−)ΨqΨp−ei(ωp−ωq−ωp− )t

which can be further simplified to

∂tΨp = T (p,q,p−)ΨqΨp−ei∆−t,

32



where ∆− = ωp − ωq − ωp− . Repeating this process for the other two wave vectors

yields the following system of ODEs for the wave vector amplitudes,

∂tΨp = T (p,q,p−) ΨqΨp−ei∆− t

∂tΨq = T (q,p,−p−)ΨpΨp−e−i∆− t (4.3)

∂tΨp− = T (p−,p,−q)Ψp Ψqe−i∆− t.

A similar set of equations can be derived for the other natural triad, (p,−q,p+)

where p+ = p + q:

∂tΨp = T (p,−q,p+) ΨqΨp+ei∆+ t

∂tΨq = T (q,−p,p+)ΨpΨp+ei∆+ t (4.4)

∂tΨp+ = T (p+,p,q)Ψp Ψqe−i∆+ t,

where ∆+ = ωp + ωq − ωp+ . If ∆+ = 0, the triad is exactly resonant. Then Eqs 4.4

form an exactly integrable set of equations which have been extensively studied [73; 74].

4.1.2 Four-mode truncation (4MT)

The next natural step is to retain both triads (p,q,p+) and (p,−q,p−) which combines

Eqs 4.3 and 4.4 to give

∂tΨp = T (p,q,p−) ΨqΨp−ei∆− t + T (p,−q,p+) ΨqΨp−ei∆+ t

∂tΨq = T (q,p,−p−)ΨpΨp−e−i∆− t + T (q,−p,p+)ΨpΨp+ei∆+ t

∂tΨp− = T (p−,p,−q)Ψp Ψqe−i∆− t (4.5)

∂tΨp+ = T (p+,p,q)Ψp Ψqe−i∆+ t.

The linear problem only strictly closes with the inclusion of all the satellites ±q + mp

where m is an integer [8]. However, restricting the system to these four modes is deemed

sufficient since the higher-order satellites are much-less excited.

4.2 Nonlinearity parameter M

It has been suggested that the character of the instability depends largely on the initial

amplitude of the primary wave, Ψ0 = Ψp|t=0 [8]. As such, Gill defined a parameter
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equivalent to the dimensionless amplitude

M =
Ψ0p

3

β
. (4.6)

which measures the initial relative strength of the nonlinear to linear terms at the scale

of the primary wave. M � 1 suggests that the linear β-effect is small and unimportant

and when F = 0, Eq. 3.35 reduces to the Euler equation in this the limit such that the

instability is then equivalent to the plane parallel sinusoidal shear flow or Kolmogorov

flow [75; 76]. Most papers on the modulational instability have dealt with this limit [41;

39]. Sometimes this limit is inferred implicitly [63; 41] when scale-separation is imposed

by using a modulation wavenumber q much less than the carrier wavenumber p so that

M → ∞. Onishchenko et al used a 4MT model together with a scale-separation, by

expanding in small q, again to give large M . The limit M � 1 suggests weak nonlinear

terms so that the weak turbulence is dominated by resonant wave triads. It has been

suggested that typical values for M in the atmosphere are of order O(1) [38; 8].

An instability associated with a single triad is known as the decay instability [35].

For four modes, a primary wave, a modulation and two sidebands, two coupled triads

produce independent contributions to the instability [8].

4.3 Decay instability of a Rossby wave

The decay instability defines the instability of one primary wave, p decaying into two

secondary waves [35], q and p−. Introducing the vector notation Ψ = (Ψp,Ψq,Ψp−), a

monochromatic primary wave is given by Ψ0 = (Ψ0, 0, 0) where Ψ0 is a complex constant

representing the amplitude of the initial primary wave and is an exact solution of the

Eq. 3.61. The idea is to determine how stable this solution is to small perturbations,

comprised of modes q and p−, by taking Ψ = Ψ0 + εΨ1 where the perturbation is

composed of modes Ψ1 = (0, ψ̃q, ψ̃p−) .

The first step is to linearise Eqs 4.3 for the 3MT by retaining terms up to first

order in ε, which gives,

∂tψ̃q = T (q,p,−p−)Ψ0ψ̃p−e−i∆− t (4.7)

∂tψ̃p− = T (p−,p,−q)Ψ0 ψ̃qe−i∆− t.
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Now solutions are sought of the form

ψ̃q(t) = Aqe−iΩq t

ψ̃p−(t) = Ap−e−iΩp− t,

which requires that Ωp− = −Ωq + ∆−. Writing Eqs 4.7 in matrix format, −iΩq T (q,p,−p−)Ψ0

T (p−,p,−q)Ψ0 i(−Ωq + ∆−)

 Aq

Ap−

 = 0. (4.8)

The determinant of this 2× 2 matrix must equal zero for non-trivial solutions and gives

a quadratic expression for the dispersion relation of the perturbation,

Ωq(−Ωq + ∆−)− T (q,p,−p−)T (p−,p,−q) |Ψ0|2 = 0. (4.9)

The roots of this equation are

Ω± =
1

2

(
∆− ±

√
(∆−)2 − 4T (q,p,−p−)T (p−,p,−q) |Ψ0|2

)
, (4.10)

with corresponding eigenvectors Aq

Ap−

 =

 1

T (p−,p,−q) Ψ0

i (Ωq−∆−)

 . (4.11)

If Ωq has a non-zero positive imaginary part, instability occurs with a growth rate of

γq = −Im(Ωq). In the case of a triad in exact resonance, ∆− = 0 and the roots

become,

Ω± = ± |Ψ0|
√
T (q,p,−p−)T (p−,p,−q) . (4.12)

Substituting Eq. 3.63 back in to Eq. 4.12 gives these roots in terms of the wavenumbers

Ω± = ±i
|Ψ0| |p× q|√

(q2 + F )(p2
− + F )

√
(p2 − q2)(p2

− − p2) . (4.13)

Thus an instability will occur if q2 < p2 < p2
− or q2 > p2 > p2

−.

To investigate the non-resonant instability further i.e when ∆− 6= 0, it is conve-

nient to perform some rescalings in order to simplify analysis later. Following Gill [8],

the ratio of the modulation vector to the primary vector is defined as

s =
q

p
(4.14)
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Figure 4.1: The growth rate of the decay instability (the negative imaginary part of the
roots of Eq.(4.9)) is plotted as a function of q for a fixed meridional primary wavevector,
p = (1, 0), for various values of the nonlinearity parameter M .

and the dimensionless primary wave amplitude is given by M defined in Eq. 4.6. The

other terms in Eq. 4.9 are non-dimensionalised as Ω → β
pΩ, F → p2F , p → p p̂ and

q→ sp q̂ where p̂ = (p̂x, p̂y) and q̂ = (q̂x, q̂y) are unit vectors pointing in the directions

of p and q respectively. Eq. 4.9 can then be rewritten as

Ωq(−Ωq + ∆̂−)−M2 T (s q̂, p̂,−p̂−)T (p̂−, p̂,−q̂) = 0 (4.15)

and the roots become

Ω± =
1

2

(
∆̂− ±

√
(∆̂−)2 − 4M2T (s q̂, p̂,−p̂−)T (p̂−, p̂,−sq̂)

)
. (4.16)

Therefore an instability requires that

∆̂− < 2M
√
T (s q̂, p̂,−p̂−)T (p̂−, p̂,−sq̂) , (4.17)

which shows that as M → 0, the instability concentrates on the resonant manifold

∆− = 0, as illustrated in figure 4.1. The corresponding analysis for the triad (p,−q,p+)

produces identical surfaces reflected about the vertical axis reflecting the instability con-

centrating on the second resonant manifold, ∆+ = 0. As M → 0, these two surfaces

become disjoint from each other except near the origin q = 0.
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4.4 Modulational instability of a Rossby wave

The modulational instability is so-called as it represents a small perturbation or modu-

lation, q and its sidebands interacting with a primary wave, p. The instability will be

derived here for the 4MT model in the same way as for the decay instability in Section 4.3.

The primary wave is given by Ψ0 = (Ψ0, 0, 0, 0) where Ψ0 is a complex constant repre-

senting the amplitude of the initial primary wave and is an exact solution of the Eq. 3.61.

It will be determined how stable this solution is to small perturbations, comprised of

modes q, p− and p−, by taking Ψ = Ψ0 + εΨ1 where the perturbation is composed of

modes Ψ1 = (0, ψ̃q, ψ̃p+ , ψ̃p−)

Linearising Eqs(4.5) for the 4MT model at first order in ε gives

∂tψ̃q = T (q,p,−p−) Ψ0 ψ̃p−e−i∆− t

+T (q,−p,p+) Ψ0 ψ̃p+ei∆+ t (4.18)

∂tψ̃p+
= T (p+,p,q) Ψ0 ψ̃q e−i∆+ t

∂tψ̃p− = T (p−,p,−q) Ψ0 ψ̃q ei∆− t.

Again seeking solutions of the form:

ψ̃q(t) = Aqe−iΩq t

ψ̃p+(t) = Ap+e−iΩp+ t

ψ̃p−(t) = Ap−e−iΩp− t,

requires requires Ωp+ = Ωq + ∆+ and Ωp− = −Ωq + ∆−. Writing Eqs 4.18 in matrix

format
iΩq T (q,−p,p+)Ψ0 T (q,p,−p−)Ψ0

T (p+,p,q)Ψ0 i(Ωq + ∆+) 0

T (p−,p,−q)Ψ0 0 −i(−Ωq + ∆+)



Aq

Ap+

Ap−

 = 0, (4.19)

and setting the determinant of the 3× 3 matrix to zero, gives a cubic expression for the
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dispersion relation of the modulation,

Ωq(Ωq + ∆+)(−Ωq + ∆−) (4.20)

+T (q,−p,p+)T (p+,p,q) |Ψ0|2 (−Ωq + ∆−)

−T (q,p,−p−)T (p−,p,−q) |Ψ0|2 (Ωq + ∆+) = 0,

with corresponding eigenvectors
Aq

Ap+

Ap−

 =


1

T (p+,p,q) Ψ0

−i (Ωq+∆+)

T (p−,p,−q) Ψ0

i (Ωq−∆−)

 . (4.21)

Substituting Eq. 3.63 for the interaction coefficient back in to the dispersion relation,

Eq. 4.20 and performing some algebra, gives the more usual form of the dispersion for

the CHM equation [8; 38; 63; 41; 39; 17]

(q2 + F )Ωq + βqx + (4.22)

|Ψ0|2 |p× q|2 (p2 − q2)

[
p2+ − p2

(p2+ + F )(Ωq + ω) + βp+x

−
p2− − p2

(p2− + F )(Ωq + ω) + βp−x

]
= 0,

which can be solved numerically for Ωq. Nondimensionalising as before in Section 4.3,

the result is

(s2 + F )Ω + sq̂x +M2s2(1− s2) |p̂× q̂|2 [T+ − T−] = 0, (4.23)

where

T± =
|p̂± sq̂|2 − 1

(|p̂± sq̂|+ F )(− p̂x
1+F ± Ω) + p̂x ± sq̂x

. (4.24)

The roots of this equation are controlled by five parameters, M , F , s, θp and θq with θp

and θq being the angles between the x-axis and the primary wavevector and perturbation

wavevector respectively. The structure of the instability is strongly dependent on the

value of M and for decreasing M , the instability becomes more concentrated on the

resonant manifold as shown in figure 4.2. It is evident that the modulational instability

is, in some sense, the nonlinear sum of the decay instabilities for the two triads.

38



Figure 4.2: Growth rate of the modulational instability (the negative imaginary part of
the roots of Eq.(4.23)) as a function of q for a fixed meridional primary wavevector,
p = (1, 0) and F = 0 for various values of the nonlinearity M .

4.5 Comparison of the 3MT and the 4MT models with

DNS

Traditionally, four modes have been employed in the study of the modulational instabil-

ity [8; 20], the justification being that if one of the sidebands is not initially excited, it

rapidly becomes so, driven by the instability [20]. It will be clarified here why a single

triad and the 3MT is not commonly used to derive the modulational instability.

It has been stated that the modulational instability is a sum of the decay insta-

bilities for the two resonant triads ∆+ = 0 and ∆− = 0 and that as M → 0 it collapses

to to these resonant manifolds. These two curves are mostly disjoint from each other

except at the origin. Thus the two unstable eigenvectors of the instability of the 4MT

are equivalent to the eigenvectors of the two decay instability triads. For small M , the

maximum growth rate of both the instabilities become identical while for largerM values,

that of the modulational instability is typically larger.

In the strong interaction limit, maximum instability is obtained when the primary

and secondary waves are perpendicular [8] and the traditional approach is to select a

meridional flow such that the primary wavevector, p is along the x-axis and the pertur-

bation q along the x-axis. In this situation, looking at figure 4.2, q is equally close to
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both branches of the resonant manifold suggesting that the 4MT should be used since

interactions with both manifolds are likely. There is the possibility that q is off-zonal in

that it also has a x-component. An investigation of whether the fundamental mechanism

of the modulational instability retains one or both sidebands will be carried out using the

3MT and 4MT models two weakly nonlinear (M = 0.1) scenarios:

(i) Pure meridional primary wave, p = (10, 0) with a pure zonal modulation, q = (0, 1).

(ii) Pure meridional primary wave, p = (10, 0) with an off-zonal modulation, q = (9, 6).

The actual modulational mode that gives the maximum of the instability in this case is

q = (9.43, 5.35) but due to the discreteness of the wavenumbers in the periodic box,

this exact wavenumber cannot be selected in the k-space domain and this chosen mode

is actually the only excited mode in the vicinity of the theoretical value. This sparsity

of active modes due to the discreteness of the domain can have a profound effect on

numerical simulations of weakly nonlinear regimes [77] if not carefully avoided.

Referring now to case (i) for the zonal modulation, figure 4.3 compares the

amplitude of this mode, |Ψq| obtained from DNS of Eq. 3.61 to solutions from the 3MT

in Eq. 4.3 and the those from the 4MT in Eq. 4.5 with the initial condition being based

on the unstable eigenvector of the decay instability. It is clear from figure 4.3(a) that the

DNS follow the growth rate predicted by the modulational instability rather than that

of the decay instability. Looking more closely at early times in figure 4.3(b), it becomes

apparent that while the second sideband is not initially excited, it quickly becomes so [20]

with the result that in the time of the order of one inverse of the instability growth rate.

Since no other modes are rapidly excited, the 4MT is a better model for this situation

up to at least 10 instability times.

For scenario (ii), figure 4.4 compares the amplitude of this mode, |Ψq| obtained

from DNS of Eq. 3.61 to solutions from the 3MT in Eq. 4.3 and the those from the

4MT in Eq. 4.5 with the initial condition being based on the unstable eigenvector of the

decay instability The growth rates of the decay and modulational instability are practically

identical and both of the models agree well with DNS up to seven characteristic times.

As well as the growth rate, they predict well the maximum amplitude of the zonal jet
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Figure 4.3: Amplitude of the zonal mode with wavenumber q forM = 0.1, p = (10, 0)
obtained from DNS and from solutions of 3MT and 4MT models. Case (i), pure zonal
modulation, q = (0, 1). (a) Long time evolution. (b) Zoomed view of early time
evolution.

although the subsequent decrease in amplitude is not as well described as in case (i) by

the 4MT model.

From these results it can be concluded that the three-wave interaction is indeed

the basic nonlinear process when M � 1 provided the triad is not degenerate, in the

sense that it does not contain quasi-resonant modes which are equidistant from two

different resonant manifolds, as happens when the vector q is zonal. In these cases, the

3MT system is just as good as the 4MT and it describes well the full CHM system for

over several characteristic times. On the other hand, the most relevant configuration

with q zonal is in fact, degenerate. In this case, however, the 4MT model works well

over many characteristic times whereas the 3MT fails almost immediately. Thus, to

have a wider range of applicability, the 3MT model is abandoned and the 4MT model is

employed in the study of the modulational instability.
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Figure 4.4: As for figure 4.3(a) but now for case (ii), off-zonal modulations, q = (9, 6).

4.6 Instability for a pure meridional primary wave and a

pure zonal modulation

For the situation of a purely meridional primary wave (p̂ = (1, 0)) and purely zonal

perturbation (q̂ = (0, 1)), the analysis is easier to perform and furthermore, it is of

physical interest since large scale structures in the atmosphere generally migrate in the

zonal direction. The reduced cubic dispersion relation is given by

Ω3
q +

s4
[
2M2(1− s2)(1 + F )2(s2 + F + 1)− (s2 + F )

]
(1 + F )2(s2 + 1 + F )2(s2 + F )

Ωq = 0, (4.25)

which has roots

Ωq = 0, (4.26)

Ωq =
±is2

(1 + F )(s2 + 1 + F )

[
2M2(1− s2)(1 + F )2(s2 + F + 1)− (s2 + F )

s2 + F

]1/2

.(4.27)

An instability exists if the quantity under the square root is positive. Recall that s is the

ratio q/p, of the modulus of the modulation wavevector to that of the primary wavevector.

Letting s2 = y, a quadratic for the quantity under the square root is obtained which is
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positive in the range s ∈ (−smax, smax). Solving

2M2(1− y)(1 + F )2(y + F + 1)− (y + F )

y + F
= 0, (4.28)

gives

s2
max =

1 + 2M2F (1 + F )2

2M2(1 + F )2

[
−1 +

(
1 + 4

(2M2(1 + F )3 − F )(2M2(1 + F )2)

(1 + 2M2F (1 + F )2)2

)1/2
]
.

(4.29)

4.6.1 Infinite deformation radius

When F = 0 the analysis becomes particularly simple. For any M , there is always a

range, (0, smax), of unstable long wavelength perturbations with smax given by

smax =

√
−1 +

√
1 + 16M4

4M2
. (4.30)

Within this range the growth rate given by Eq. 4.27 is

Ωq =
s
(
2M2(1− s4)− s2

)1/2
(s2 + 1)

. (4.31)

Taking the derivative of Eq. 4.31 with respect to s, the maximum of the growth rate

occurs at s0 =
√
y0 where y0 is the positive root of

y3 + 3y2 + (1 +
1

M2
)y − 1 = 0. (4.32)

The limits of s0 are s0 →
√√

2− 1 as M → ∞ and s0 = M + O(M2) as

M → 0. It would be interesting to know when the maximally unstable zonal perturbation

is a local maximum with respect to nearby off-zonal perturbations. This can be done by

looking at the sign of the determinant

∆M (q̂x, q̂y) =

∣∣∣∣∣∣
∂2Ω
∂q̂2x

∂2Ω
∂q̂x∂q̂y

∂2Ω
∂q̂x∂q̂y

∂2Ω
∂q̂2y

∣∣∣∣∣∣ (4.33)

evaluated at (q̂x, q̂y) = (0, s0). This can be done semi-analytically using Mathematica

and is plotted in the inset of figure 4.5. It is found that ∆M > 0 with ∂2Ω
∂q̂2x

< 0 (the

criterion for a local maximum) for M > Mc. ∆M < 0 with ∂2Ω
∂q̂2x

< 0, the criterion for a
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Figure 4.5: Angle, θ, between the q wave-vector of the maximally unstable perturbation
and the x-axis as a function of M . Inset plots ∆M and Ωxx as a function of M
illustrating the transition of the maximum growth rate for on-axis perturbations from a
local maximum to a saddle point at M ≈ 0.53.

saddle, forM > Mc. The critical value ofM is found numerically to beMc ≈ 0.534734.

Numerical explorations show that the local maximum found for M > Mc, is actually

global. Therefore for M > Mc, the fastest growing perturbation is indeed zonal. As

M decreases below Mc the most unstable perturbation moves to a point with a finite

value of qx. The maximally unstable perturbation for M < 0.53 tends to a point on

the resonant manifold making an angle of 5π/6 with the x-axis. The dependence of

this angle on M is shown in figure 4.5. A clear transition from an axial maximum to an

off-axis maximum is clearly visible.

4.6.2 Finite deformation radius

The limiting case of R → ∞ for one-layer QG turbulence has been extensively studied

because it makes the governing equations much simpler, even though generally in the

real atmosphere and oceans, finite values are more realistic. In the Earth’s atmosphere,

the deformation radius is approximately 2 − 3 × 106m [39; 31], about a half to a third
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Figure 4.6: Growth rate of the modulational instability (the negative imaginary part of
the roots of Eq.(4.23)) as a function of q for a fixed meridional primary wavevector,
p = (1, 0) and F = 2 for various values of the nonlinearity M .

the radius of the Earth which is approximately 6.4× 106km. The Larmor radius in JET

is approximately 6 × 10−3. However, for finite R the temporal evolution of numerical

models is drastically slowed down, making results more difficult to obtain and little is

known of the role this length-scale plays in the overall atmospheric dynamics.

Consider now the dependence of the instability on the deformation radius or

Larmor radius. Again, the structure of the instability is strongly dependent on the value

ofM as is shown in figure 4.6 displaying similar behaviour to the F = 0 case. When F is

finite, there are two regimes, depending on the value of M . For an interval of instability

to exist, the requirement is s2
max > 0. Referring to Eq. 4.29, this requires that

p(F ) = 2M2(1 + F )3 − F > 0. (4.34)

The discriminant of the corresponding cubic equation, p(F ) = 0, is ∆ = −4(−2M2 +

27M4) . In physical situations, F > 0 so that two regimes are identified.

• M >
√

2
27

In this case, ∆ < 0 so p(F ) = 0 has one negative real root, F1 and p(F ) > 0

when F > F1. Then for any positive value of F there exists a finite range of s,

s ∈ (0, smax) for which the perturbation is unstable. smax is given by Eq. 4.29.
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Figure 4.7: Instability growth rate for purely zonal perturbations for different values of
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√
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√
2/27. Note

that the growth is completely suppressed with F = 0.5 for M = 0.25.

In this regime, a finite deformation radius tends to reduce the growth rate of the

instability but cannot suppress it as shown in figure 4.7(a).

• M ≤
√

2
27

In this case, ∆ > 0 and p(F ) = 0 has three real roots, F1, F2 and F3. F1 is always

negative and F2 and F3 are always positive. p(F ) < 0 in the range (F2, F3). In this

regime, there are critical values of F , F2 and F3 such that the range s ∈ (0, smax)

of unstable perturbations only exists if F < F2 or F > F3. F2 and F3 are obtained

by finding the positive roots of Eq. 4.34 and smax is again given by Eq. 4.29. In

this regime, there is a range of intermediate deformation radii which completely

suppress the instability, for example see F = 0.5 in figure. 4.7(b).

4.7 Role of the primary wave amplitude

So far, it has been determined that with decreasing nonlinearity M → 0, the most

unstable modulation mode moves from zonal to off-zonal for a fixed meridional primary

wave. This is the case for both infinite and finite deformation radius. An instability

criteria has been defined [63; 41; 39] for a fixed modulation q which states that the
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Figure 4.8: Growth rate of the modulational instability, given by Eq. 4.23 as a function
of p for a fixed zonal modulation wavevector, q = (0,1) and F = 0 for various levels of
M . The dashed line is the cone defined by py < 1√

3
px

primary wave will be unstable if it lies within the cone.

F + p2
x − 3p2

y > 0 (4.35)

When F = 0, this cone reduces to py < 1√
3
px. Now plotting the negative imaginary part

of the roots of Eq. 4.23 as a function of p for a fixed zonal modulation q = (0, 1) and

F = 0, it is clear from figure 4.8 that the instability region does in fact lie within this

cone. As M → 0, a region of stable wavenumbers inside the cone becomes larger such

that unstable wavevectors require a larger px. Furthermore, for large M , an instability

exists for some wavenumbers outside the cone which are very close to the zonal direction.

A similar plot for F = 2 in figure 4.9 shows that the most unstable wavevectors for a

given zonal perturbation are those which lie in the x-axis, i.e. the meridional wavevectors.

4.7.1 Strong nonlinearity M � 1

The limit of large nonlinearity M � 1 is a particularly simple and well studied one

[75; 38; 8; 63; 41; 39]. the β-effect becomes unimportant and for F = 0, this case

reduces to the instability of Kolmogorov flow in the Euler equations. Again re-visiting
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Figure 4.9: Growth rate of the modulational instability, given by Eq. 4.23 as a function
of p for a fixed zonal modulation wavevector, q = (0,1) and F = 2 for various levels of

M . The dashed line is the cone defined by py <
√

F+p2x
3

the theory of Gill [8], an instability exists in this case when

cos2 φ <
1 + q2

p2

4
, (4.36)

where φ is the angle between p and q and is maximum when cosφ = 0, that is when

the modulation is perpendicular to the primary wave. It must be stressed that the results

obtained in the limit M → ∞ should be used with great caution because the most

unstable primary wave is not predicted correctly by the 4MT.

4.7.2 Weak nonlinearity M � 1

In the limit of weak nonlinearity, M � 1, the dynamics are completely wave domi-

nated [8]. The nonlinear terms allow waves to interact weakly and exchange energy.

Since the nonlinearity is quadratic, wave interactions are triadic, i.e. three-wave res-

onances are allowed by the dispersion relation, Eq. 3.62. Any triad of waves having

wavevectors k, k1 and k2 interact only if they satisfy the resonance conditions:

k = k1 + k2 (4.37)

ω(k) = ω(k1) + ω(k2). (4.38)
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From Eq. 3.62, this latter relation gives an implicit equation for the resonant manifold

of a given k = (kx, ky):

k1x

k2
1x + k2

1y + F
+

kx − k1x

(kx − k1x)2 + (ky − k1y)2 + F
− kx
k2
x + k2

y + F
= 0. (4.39)

Because the system is anisotropic, the shape of resonant manifold depends on the di-

rection of k as shown in figure 4.10. It should be noted, that these resonant manifolds

are relevant even for higher levels of nonlinearity because as can be seen in figures 4.2

and 4.6, the unstable modulations still concentrate close to the resonant curves. In fact,

figure 4.2 shows two resonant curves corresponding to the two resonant triads,

k1 = p, k2 = q, k = p + q

k1 = p−, k2 = q, k = p

Out of the four wavenumbers in the truncated system, p,q,p− and p+, three are

resonant, or nearly resonant and the remaining one is non-resonant (p− or p+). As

stated before, this holds true in non-degenerate situations, when q is not zonal. Then
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for M → 0 the amplitude of this non-resonant mode in the instability eigenvector tends

to zero, so effectively there are only three active modes, and one can use the results

obtained above for the 3MT model. In particular, Eq. 4.13 gives the instability growth

rate as

γq =
|Ψ0||p× q|

√
(p2 − q2)(p2

− − p2)√
(p2
− + F )(q2 + F )

, (4.40)

which is the expression obtained in [8] in the case F = 0, based on the 4MT model.

The primary wave is unstable to perturbations if its wavenumber length lies between

the wavenumber lengths of the waves it decays into i.e. q < p < p+. This could be

interpreted as a dual-cascade whereby in order to decay, the wave must be able to transfer

its energy to a larger wave and its enstrophy to a smaller wave. For F = 0, the typical

instability growth rate is γq ∼ U0p where U0 = pψ0 is the velocity amplitude of the

primary wave [8]. For finite F , the instability is slowed by the factor F/p2.

Another interesting feature of instability for M � 1 is evident in figure 4.8 that

for fixed zonal q the unstable region becomes narrow and collapses onto the sides of the

cone i.e. onto the lines py = ±px/
√

3. This fact can be explained by considering the

resonant curve for q � p where it behaves as qx = −2(pxpy/p
4)q3

y . For instability, this

curve has to pass as close as possible to the vertical, or zonal, axis where q is also chosen

to be. Thus, to minimise the above coefficient (pxpy/p
4), for example with respect to

py for fixed px which immediately gives py = ±px/
√

3.

For small M the maximally unstable modulation q is off-zonal, which may be

important for determining the final statistical state of the nonlinear evolution. As will

be shown in due course, this state appears to have a predominantly off-zonal component

even if the initial modulation is chosen to be zonal.

4.8 Modulational instability results

To test the linear predictions and to study the nonlinear evolution, DNS of the CHM

system, Eq. 3.35 have been performed using a standard pseudo-spectral method with

resolution up to 10242, de-aliasing and hyperviscosity parameters νn = 4.5e−30. The

4MT system, Eqs 4.5, is solved numerically and compared with DNS. Although the 4MT
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Figure 4.11: Comparison of the growth of the zonal mode q obtained by DNS versus
solving 4MT system. In each case the primary wavenumber is p = (10,0) and the
modulation wavenumber is q = (0,1). The nonlinearity levels are (A) M = 10, (B)
M = 1.0 and (C) M = 0.1. In each case time has been scaled by τ ,the inverse of the
instability growth rate.

was used as the departure point for the linear stability analysis, it is a fully nonlinear set of

equations in its own right. In addition to checking the linear instability predictions against

DNS, the extent to which the nonlinear dynamics of the 4MT captures the behaviour of

the full PDE will also be explored. In all cases, the initial condition is chosen to be along

the unstable eigenvector of the 4MT.

4.8.1 Meridional primary wave and zonal modulation

The cases simulated are for p = (10,0) and q = (0,1). A series of snapshots of the

vorticity field for the nonlinearity levels, M = 10, M = 1 and M = 0.1 are shown

in figures 4.12, 4.13 and 4.14 respectively. The evolution of the mean zonal velocity

u(y) averaged over x, obtained from DNS is shown in figure 4.15 for times close to the

formation of the jet and the evolution of the amplitude of the zonal mode, |ψq| for the

same set of nonlinearities are shown in figure 4.11. For comparison, the corresponding

values of |ψq| obtained from the 4MT.

Th initial stage of the evolution agrees very well with the predicted growth from

the linear stability analysis of the 4MT as shown in figure 4.11. In fact for the M = 0.1

case, the 4MT works very well even beyond the linear stage in that it predicts the reversal

in the growth of the modulation amplitude. The oscillating behaviour of this mode is
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evident in the vorticity snapshots of figures 4.14(a)-(d) where the modulation becomes

stronger, weakens and subsequently grows again. For M = 1, the system’s growth

does not reverse, but rather experiences a saturation at the level where the 4MT system

reaches maximum and reverses. The most surprising behaviour is observed for M = 10

where the linear exponential growth continues well beyond the point of reversal of the

four-wave system, even though the system is clearly nonlinear at these times and follows

a self-similar evolution.

4.8.2 Self-similar jet pinching

The nonlinear dynamics show zonal jets self-focusing and becoming very narrow with

respect to the initial modulation wavelength such as those in figures 4.15a and b. This

self-focusing was predicted theoretically [63] for large M and q � p where self-similar

solutions were obtained describing a collapse of the jet width. This feature cannot be

described by the 4MT because such an harmonic jet shape involves strong contributions

from higher harmonics p± nq.

Figure 4.16 shows the zonal velocity u re-scaled with self-similar variables as

u(y, t) = a(t) f(b(t)y) in the run with M = 10. The self-similar stage occurs in the

time interval corresponding to the overshoot in figure 4.11a, that is, after the 4MT has

reached its maximum but before DNS saturates at a plateau. Empirically, the self-similar

variables are found to be a(t) = u0 e
γqt and b(t) = e1.85t.

The nonlinear growth at the self-similar stage continues with the same exponen-

tial law, eγqt, as in the linear dynamics. The self-similarity must stop when the scale

separation property breaks down due to the jet narrowing, at which point a roll-up into

vortices occurs. For smaller M , the extension of the growth rate beyond the linear stage

is not observed and the amplitude of the zonal mode decreases after reaching a maxi-

mum in correspondence with the solution of the 4MT. The self-focusing is thereby much

reduced and the self-similar stage is not clearly observed.
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Figure 4.12: Vorticity snapshots showing the linear growth, saturation and transition to
turbulence of a zonal perturbation to a meridional primary wave having M = 10. The
horizontal axis is x and the vertical is y.

Figure 4.13: Vorticity snapshots showing the linear growth, saturation and transition to
turbulence of a zonal perturbation to a meridional primary wave having M = 1. The
horizontal axis is x and the vertical is y.
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Figure 4.14: Vorticity snapshots showing the growth, growth reversal, saturation and
transition to turbulence of a zonal perturbation to a meridional primary wave having
M = 0.1. The horizontal axis is x and the vertical is y.
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Figure 4.15: Mean zonal velocity profiles for (a)M = 10, (b)M = 1.0 and (c)M = 0.1.
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4.8.3 Effect of nonlinearity M

Some clear differences in the qualitative behaviour between the levels of the nonlinearity

parameter are evident. The east-west symmetry is larger for weaker waves, evident as

the top and bottom half asymmetry in the vorticity in figures 4.12- 4.14 and also in

the zonal velocity in figure 4.15. This is as expected because the β-effect, which is the

cause of this asymmetry, is less important for large M . Furthermore for this case, the

nonlinear evolution is vortex dominated and the vorticity of the initial primary wave rolls

into vortices and organises itself into Kármán-like vortex streets. This corresponds to

the jet velocity saturating at approximately t/τ = 9 in figures 4.15a and b. At the final

stages the vortex streets break up due to a vortex pairing instability which is followed by

a transition to turbulence. Such turbulence is anisotropic with a pronounced zonal jet

component and a well-formed potential vorticity staircase is evident in figure 4.12(f) [78].

In contrast for weak waves, M � 1, the nonlinear evolution starts with self-

focusing of the primary wave but this is followed by a quasi-oscillatory behaviour where

the system returns close to the initial state. The 4MT model captures this effect very

well. At later times, there is no vortex roll-up and the nonlinear dynamics are charac-
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terised by wave behaviour, as shown in figure 4.14. This oscillation between a Rossby

wave and a zonal flow has been reported from numerical studies of a barotropic fluid [79],

motivated by observations of such periodic behaviour in the troposphere of the southern

hemisphere [80] and similar behaviour has also been noted for the generalised Hasegawa-

Mima model [20] for drift turbulence. However, the periodic behaviour is not sustained

and a transition to an anisotropic turbulent state occurs. The dominant jet structures

observed in such a turbulent state, figure 4.14f, are off-zonal. This effect may be con-

nected to the off-zonal “striations” reported for ocean observations [16] although these

ocean striations only become evident in the averaged data since they are sufficiently

weak.

For M ∼ 1 or greater, the vortex streets represent the 2D fine structure of the

saturated zonal jets, i.e. at the plateau part of figures 4.11a and b. Such vortex street

configurations are more stable than the plane parallel, x-independent, flows with the same

zonal velocity profiles. This can be understood heuristically (see, for example [81], chap.

3) by considering the vortices to impart some eddy viscosity to the mean zonal velocity

profile. The stability of this mean zonal velocity profile is determined by the Rayleigh-Kuo

instability condition [82], given here as

∂yyu(y)− β > 0, (4.41)

details of which are given in Appendix C. These profiles for the various M values are

shown in figure 4.15 at selected moments in time. For M ∼ 1 in figure 4.15a and b,

these profiles are seen to cross the x-axis so that condition 4.41 is violated, implying

that the zonal flows become stronger than the limiting values imposed by this condition.

This could be interpreted as a result of a competition between the instability and the

jet sharpening process. For large M the pinching is self-accelerating (self-similar) and

it manages to significantly compress/amplify the unstable jet in the finite time needed

for the instability to develop (i.e. the inverse growth rate). On the other hand, in the

case M = 0.1 the jet strength reaches a maximum and then decreases remaining in the

stable range according to the criterion 4.41.
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Figure 4.17: The Rayleigh-Kuo profiles, given by Eq. 4.41 for (a) M = 10, (b) M = 1.0
and (c) M=0.1

4.8.4 Critical nonlinearity M∗ and breakdown of 4MT

The results presented show that there are two qualitatively different types of behaviours,

namely, vortex roll-up followed by saturation or the oscillatory dynamics, so it would be

natural to seek the critical level of nonlinearity which distinguishes between the two. If the

maximum jet strength, as predicted by the 4MT, exceeds the value of the Rayleigh-Kuo

necessary instability condition 4.41, then the vortex roll-up occurs and the jet strength

saturates for a long time (although figure 4.11 shows time as far as 20 characteristic

timescales, simulations were actually run until 100 characteristic times). At this point,

the behaviour of the system starts to depart from that of the 4MT. If however, the

maximum jet strength remains below the Rayleigh-Kuo threshold, then the system’s

growth reverses and follows the 4MT dynamics for a longer time.

This simple picture permits a qualitative physical estimate for M∗ and for the

saturated velocity of the jet. Since the x-periodicity is preserved, the spacing of the

stable vortex street, i.e. the distance between each vortex is equal to the wavelength of

the original primary wave and since the vortices are approximately round, the y-spacing

between vortices is equivalent to the x-spacing. Thus, the width of the saturated jet is

of the order of the wavelength of the initial primary wave and the jet saturation velocity
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is of the order of the velocity amplitude of the initial primary wave,

umax ∼
Mβ

p2
. (4.42)

In fact, numerical results for M = 10 and M = 1 from figures 4.15(a) and (b), give the

estimate,

umax ≈ 3
Mβ

p2
. (4.43)

Estimating ∂yyu(y) as p2umax and substituting into condition 4.41 arrives at the esti-

mate,

p2umax − β > 0,

3Mβ

p2
>

β

p2

M > M∗ ∼
1

3
. (4.44)

Figure 4.18 shows that numerical explorations revealM∗ ≈ 0.25−0.35 but this boundary

is not sharp. For M = 0.25 the dynamics are definitely wave-dominated, although some

elongated, fuzzy vortices are still apparent whereas forM = 0.35 streets of round vortices

are clearly formed with some wave-like oscillations still present.

4.8.5 Meridional primary wave and off-zonal modulation

It has been established in Section 4.6.1 that there is a critical value of M = 0.53, above

which, the most unstable modulations are zonal and below which, they are off-zonal.

This is very likely to be the reason why the final statistical state of the M = 0.1 case

shows off-zonal anisotropic flows, even though the initial modulation was purely zonal. In

addition, it is quite likely that such weakly-nonlinear systems will select the modulation

which is off-zonal already in the initial moments.

It is natural then to consider for weak nonlinearity, a purely meridional primary

wave with an off-zonal modulation which corresponds to the fastest growing mode. For

M = 0.1, a primary wave, p = (10, 0) gives this modulation for maximum growth to be

q = (9, 6). The growth rate of this case has already been presented in figure 4.4 where

after the initial linear growth stage, a periodic oscillation, albeit irregular is observed.
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Figure 4.18: Growth of zonal perturbations due to modulational instability of a meridional
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However, these irregular oscillations are clearly non-turbulent, evident in the vorticity

snapshots of figure 4.19 which shows quite a regular pattern even at t/τ = 100, by

which time the respective M = 0.1 system with zonal q is completely turbulent, see

figure 4.14. Another way to see that the dynamics are regular in this case is to look

at the 2D k-spectra shown in figure 4.20. At t/τ = 0, the only excited modes are the

primary wave p, modulation q and two satellites p± q which are marked by red crosses

in figure 4.20. At t/τ = 60 a regular "crystalline" structure is evident, corresponding to

a discrete set of nodes np + mv (with integer values of m and n) with energy within

1% of the initial primary wave energy. A transition to turbulence does eventually occur

after a very long time, and the turbulent state does exhibit off-zonal striations similar to

the respective M = 0.1 system with zonal initial modulations q.
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Figure 4.19: Vorticity snapshots for an off-zonal perturbation, q = (9, 6) to a meridional
primary wave, p = (10, 0) with M = 0.1.
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Figure 4.20: Excited modes at t = 60 with energy within 1% of the energy of the initial
perturbation in run with for, p = (10, 0), q = (9, 6), M = 0.1.
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4.8.6 Finite deformation radius

The analysis in Section 4.6.2 revealed that the instability growth is suppressed with

decreasing deformation radius (increasing F ) and this is confirmed in figure 4.21. The

predicted linear growth rate is now observed for only one to two timescales. Some

vortex streets are still evident for M = 1 but they quickly become unstable and within

approximately two timescales, the vorticity plots in figure 4.23 show turbulent behaviour.

4.8.7 Stable case

As well as considering in detail various situations where the linear theory based on the

4MT model predicts instability, the linearly stable case has also been investigated.

For small M the zonal mode in the modulationally stable case behaves as ex-

pected, following the 4MT theory without growth of the mode as shown in figure 4.24

for p = (8, 6) and q = (0, 1). For M � 1, as expected from the 4MT stability pre-

diction, the zonal mode does not grow initially, for t/τ <∼ 1. After about one timescale

however, the mode quickly breaks into growth, increasing, more or less exponentially, by

three orders of magnitude. It must be stressed again therefore, that for M � 1, the

4MT instability predictions should be used with caution.

A steepening of the zonal velocity as predicted [63] forM � 1, is another feature
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Figure 4.22: Vorticity snapshots showing the transition to turbulence of a zonal pertur-
bation to a meridional primary wave having M = 10 and F = 200. The horizontal axis
is x and the vertical is y.

Figure 4.23: Vorticity snapshots showing the transition to turbulence of a zonal pertur-
bation to a meridional primary wave having M = 1 and F = 200. The horizontal axis is
x and the vertical is y.
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Figure 4.24: Growth of the zonal perturbation q = (0, 1) obtained by DNS for p = (8, 6)
for M = 10 and M = 0.1.

of the stable case where the initial sinusoidal profile develops into a triangular Burger’s

shock-type profile, evident in figure 4.25.

4.9 Summary

The linear theory of the modulational instability [8] of Rossby and drift waves, as described

by the CHM equation, has been revisited using a 4MT model. This has been extended to

show what part the primary wave amplitude, the nonlinearity level and the deformation

or Larmor radius play in the linear and nonlinear dynamics of the system. It has been

determined that the most unstable modulation wavevector is off-zonal when the primary

wave nonlinearity parameter, M falls below the critical value M∗ = 0.53 and this point

could possibly be used to explain why the observed jets for theM = 1 case are off-zonal.

Clarification has been made on the relation between the modulational instability

and the decay instability and whether the dominant nonlinear mechanism of the modula-

tional instability is three-wave or four-wave. The decay instability, derived from the 3MT

is the basic process when the nonlinearity is low, M � 1 and the primary wavevector
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Figure 4.25: Mean zonal velocity profile for the stable configuration p = (8, 6),
q = (0, 1) and M = 10.

and the modulation wavevector belong to the same resonant triad, excluding those which

lie close to k = 0, where the two branches of the resonant curve intersect. This how-

ever excludes the purely zonal modulations for which the 3MT does not work well. On

the other hand, the 4MT models very well the dynamics for low M , including off-zonal

modulations. In addition, for M & 1, the 4MT captures well the initial linear evolution

and predicts well the critical level of nonlinearity M∗ which separates the regimes of os-

cillatory nonlinear behaviour from those where saturation is observed. For nonlinearities

above M∗, when the jet breaks up into a vortex street, the 4MT fails thereafter, since

the system is now vortex-dominated rather than wave-dominated.

For all levels of nonlinearity, the 4MT evolves through an infinite sequence of

nonlinear oscillations. This oscillatory behaviour is observed for the full system too, for

low nonlinearity levels only, where the initial growth reverses. Conversely, this behaviour

does not happen for higher nonlinearities of the full system which rolls-up and then settles

into a saturated, more-or-less stable state for a long time.

The formation of narrow zonal jets when M & 1 agree with theoretical predic-

tions [63]. These jets are more stable than the Rayleigh-Kuo criterion would suggest,
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probably because their two-dimensional structure is made-up of stable vortex streets.

Such narrow jets represent very effective transport barriers, which exist in the atmo-

sphere and in a magnetically-confined plasma.
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Chapter 5

Zonostrophy

The work presented in this chapter focuses on the particular case when the scales are

much smaller than the deformation or ion Larmor radius which is the most important

and frequently considered limit, at least in the GFD, so that an infinite deformation

radius can be assumed or F = 0. Taking the respective limit in the general zonostrophy

expression obtained in [46], an expression for the zonostrophy for such small scale turbu-

lence is obtained and shown to be positive and scale invariant. The latter observation is

necessary in order to apply the generalised Fjørtoft argument developed in [66; 45]. This

argument predicts not only zonation but also the anisotropic k-space flow paths of the

three invariants during the zonation process.

Having obtained these analytical predictions, DNS of the QG/drift turbulence

are carried out to test the conservation of the zonostrophy for different levels of initial

nonlinearity, and also to test the predictions of the generalised Fjørtoft argument, by

tracking in time the transfer path of the three invariants in k-space.
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5.1 Conservation laws

Like all physical systems, wave turbulence systems also conserve energy E and momentum

P , where the laws are defined respectively as

E =

∫
|ωk|nk dk (5.1)

P =

∫
knk dk (5.2)

such that ωk can be thought of as the density of the energy and k the density of the

momentum. The enstrophy is equivalent to the x-momentum

Q =

∫
kxnk dk (5.3)

These are usually the only two conserved quantities of the three-wave kinetic equation

although the four-wave kinetic equation also conserves the number of waves. Using

Eq. 3.86, the rate of change of energy can be written [33] as

∂E

∂t
=

∫
ωk
∂nk
∂t

dk

=

∫ ∫ ∫
(ωkR12k − ωkRk12 − ωkR2k1) dk1dk2dk

=

∫
R12k(ωk − ωk1 − ωk2)dk1dk2dk (5.4)

where a change of variables k1,k2,k 7→ k,k1,k2 and k1,k2,k 7→ k2,k,k1 have been

taken for the second and third terms in the parentheses respectively. Similarly for the

enstrophy
∂Q

∂t
=

∫
R12k(k− k1 − k2)dk1dk2dk . (5.5)

By virtue of the resonance conditions in Eqs 4.37, the terms within the parentheses of

Eqs 5.4 and 5.5 equal zero, showing that energy and enstrophy remain constant in the

system. It follows that for any quantity

Z =

∫
ζknk dk (5.6)

with density ζk is conserved if

ζ(k) = ζ(k1) + ζ(k2). (5.7)
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5.2 Conservation of zonostrophy

Such a quantity was found to exist [66; 45; 46] in the early 1990s. By introducing the

complex function

ζk = lnYk

where

Yk =
ky +

√
3 kx + iρk2

ky −
√

3 kx + iρk2
, (5.8)

to a change of variables (kx, ky) 7→ (m,n)

m =
ky
kx

n = kx +
k2
y

kx

kx =
n

1 +m2
ky =

mn

1 + n2
, (5.9)

it was shown that Eq. 5.8 satisfies the condition 5.7. Expanding Eq. 5.8 into real and

imaginary parts gives

ζk = i
(

Arg[ky +
√

3kxi + ρk2]−Arg[ky −
√

3kxi + ρk2]
)

(5.10)

−1

2
ln[ρ2k4 + (ky +

√
3kx)]2 +

1

2
ln[ρ2k4 + (ky −

√
3kx)2] (5.11)

the imaginary part giving the general form of the zonostrophy density [46] as

=[ζk] = arctan
ky +

√
3 kx

ρk2
− arctan

ky −
√

3 kx
ρk2

, (5.12)

where ρ is the Rossby radius or Larmor radius as defined in table 3.1. Originally however,

this density was found in the limiting cases of zonal flows and large scale waves [45].

The present study is concerned with small scale turbulence for which ρk � 1 so

that the general zonostrophy density can then be expanded in powers of 1
ρ . Dropping

the imaginary symbol for convenience and Taylor expanding Eq. 5.12 gives, up to ninth

order

ζk = −2
√

3
kx
ρk2

+ 2
√

3
kx
ρ3k4

−2
√

3
kx

ρ5k10
[k4
y + 6k2

xk
2
y +

9

5
k4
x]

+2
√

3
kx

ρ7k14
[
27

7
k6
x + 27k4

xk
2
y + 15k2

xk
4
y + k6

y]

−2
√

3
kx

ρ9k18
[9k8

x + 108k6
xk

2
y + 126k4

xk
4
y + 28k2

xk
6
y + k8

y] +O(ρ−10) .
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However a Taylor expansion of the frequency ωk = − β
(k2+ρ−2)

in powers of 1
ρ is

ωk =
∞∑
n=1

ω(n) =
∞∑
n=1

(−1)nβρ2kx
(ρk)2n

(5.13)

and it is immediately obvious that in the leading order ζk = 2
√

3
βρ ωk i.e. in the small

scale limit ζ is proportional to the energy and is not an independent invariant. Thus,

to find the truly independent invariant in the small scale limit this energy term must be

subtracted. To have a simpler expression which is ρ-independent in the leading order,

the result is multiplied by − 5ρ5

8
√

3
. Re-defined this way, the density of the zonostrophy is

ζ̃k = − 5ρ5

8
√

3
(ζ − 2

√
3ω/βρ) =

k3
x(

5k2
y + k2

x

k10
− 5

5
7k

4
x + 6k2

xk
2
y + 3k4

y

ρ2k14
+ 5

2k8
x + 26k6

xk
2
y + 30k4

xk
4
y + 6k2

xk
2
y

ρ4k18
),

which in the small scale limit or ρ→∞, becomes

ζ̃k = k3
x

k2
x + 5k2

y

k10
. (5.14)

For the work which follows, it is Eq. 5.14 which is used to define the zonostrophy density

for the small scale turbulence.

5.3 Triple cascade behaviour

5.3.1 Dual cascades in 2D Navier-Stokes turbulence

Fjørtoft [43] deduced the nature of the spectral evolution of the conserved quantities,

energy and enstrophy, for two-dimensional turbulence by considering the change in energy

at three nonlinearly coupled scales. He argued that when the initial energy is concentrated

at the intermediate scale, then for later times, more energy is acquired at the larger scale

than at the smaller scale i.e. the energy cascade is an inverse one from larger to small

wavenumbers. Conversely, the enstrophy cascade is a direct one to larger wavenumbers

or smaller scales. The scenario is now summarised below.

Consider 2D isotropic turbulence described by the Navier-Stokes equations, which

is generated at some intermediate forcing scale k0 and dissipated outside the inertial

69



ranges at both very large and very small scales for which k− � k0 and k+ � k0

respectively. The expressions for the conserved quantities, energy and enstrophy in the

absence of forcing and dissipation are equivalent to those for the CHM model, Eqs 3.55

and 3.58. For steady-state turbulence, the dissipation rates of the energy and enstrophy

must be equal the rate at which they are produced. According to Eqs 3.55 and 3.58, the

ratio of the k-space densities is k2 such that the enstrophy dissipation rate µ is related

to the energy dissipation rate ε, as µ ∼ k2ε.

If it is assumed that the energy is dissipated at small scales, k+ at a rate ε then

the enstrophy would have to be dissipated at the rate k2
+ε. However this is impossible

since it is only produced at a rate of k2
0ε � k2

+ε. Since the energy must be dissipated

at either k+ or k− then it can be concluded that it is dissipated at k− via an inverse

cascade through the scales. At these scales, the density of the energy dominates the

density of the enstrophy. Similarly, if it is assumed that the enstrophy is dissipated at

k−, then the energy would have to be dissipated at a rate of 1
k2−
µ. Again this rate is

greater than 1
k20
µ, the rate at which it is produced, concluding that the enstrophy must

be dissipated at smaller scales or larger wavenumbers k+, than which it is produced via a

direct cascade through the inertial range. At these scales, the enstrophy density exceeds

that of the energy.

5.3.2 Triple cascades in weak CHM turbulence

A similar argument can be adopted to determine the direction of the cascade directions

of the three conserved quantities of the CHM model by examining in turn the ratio of the

densities of each pair of the invariants. It is also required that each of the three densities

are positive since positive and negative amounts of the same quantity would lead to a

net total of zero of that quantity with the result that the Fjørtoft argument could not

be applied. Furthermore, Eqs 5.1, 5.3 and 5.6 show that the three invariants are linearly

related to the waveaction spectrum or turbulence intensity nk so that the density ratios

are functions of k rather than the turbulence intensity.

The turbulence is produced near k0 = (k0x , k0y) and dissipated in regions which

are separated in scales from the forcing scale as with the 2D Navier-Stokes turbulence.
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To divide the 2D k-space into three non-intersecting regions implies anisotropy where

each invariant will evolve to that sector where its density prevails over the others. The

boundaries of these sectors are defined where the ratio of each pair of invariants remains

constant to its initial value as detailed below.

• E-Q boundary: The energy density is kx
k2

and that of enstrophy is kx giving the

ratio k2 as with the 2D Navier-Stokes turbulence. Equating this to its initial value

gives

k2 ∼ k2
0 (5.15)

which in the 2D k-space amounts to a circle of radius k0 centered at the origin.

Using the same argument as before, energy must be dissipated at the larger scales

and enstrophy at the small scales.

• E-Z boundary: The zonostrophy density given by Eq. 5.14 can be simplified to

ζ̃ ∼ k3
x

k8
(5.16)

by noting that k2 ≤ k2
x + 5k2

y ≤ 5k2. Thus the ratio of the energy to zonostrophy

densities is
k3

kx
∼ k3

0

k0x

. (5.17)

Since it is already known that the energy accumulates at large scales then this

boundary slices that region in two. The zonostrophy density is dominant in the

region adjacent to the kx axis and the energy density in the area adjacent to the

ky axis so that the zonostrophy is effectively pushing the energy to zonal scales.

• Q-Z boundary: Equating the ratio of the enstrophy density kx to the zonostrophy

density kx3/k8 to the initial value of this ratio gives the boundary separating the

enstrophy and the zonostrophy cascades,

k4

kx
∼ k4

0

k0x
. (5.18)

These regions are shown in figure 5.1 where it can be seen that the Q-Z boundary cuts

the kx axis at

k∗x ∼
k

4
3
0

k
1
3
0x

. (5.19)
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thereby restricting the zonostrophy to not too large wavenumbers unless the initial

wavenumber is approximately a zonal scale, k0y � k0x . In particular, if k0y = k0x

then k∗x = 2
1
6k0, which means that the maximum allowed wavenumber for the zonostro-

phy cascade is practically the same as the initial scale. In other words, in this case the

zonostrophy can only cascade to the larger scales and not to small scales.
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Figure 5.1: Non-intersecting sectors for triple cascade as predicted by the generalised
Fjørtoft argument.

5.3.3 Strong turbulence

The foregoing Fjørtoft-type theory assumes zonostrophy conservation which itself has

only been proven for the wave kinetic equation. This means that it is valid for weak wave

turbulence but not necessarily for strong turbulence.

Suppose that strong turbulence is forced at large k, strong enough so that the

nonlinear term of the CHM model, Eq. 3.35 renders the linear term negligible. Since the

linear term is the only source of anisotropy in the CHM model, the system is expected to

build an isotropic inverse energy cascade identical to that of 2D Navier-Stokes turbulence.

As the inverse energy cascade progresses to larger scales, the linear dynamics or the β-

effect becomes more and more important so that the nonlinearity of the turbulence is now

reduced and behaves increasingly like weak wave turbulence. The wavenumber at which
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the inverse cascade of the strong isotropic turbulence transits into weak wave turbulence

is the well-known Rhine’s scale [49]. This transitional wavenumber can be approximated

by equating the characteristic timescales or frequencies from both regimes. In the case

of strong turbulence, the eddy turnover time of the inverse energy cascade, τNL can be

estimated from Kolmogorov K41 theory [28; 83] to within a constant by

τNL = ε−
1
3k−

2
3 . (5.20)

The linear timescale is simply the inverse of the linear dispersion relation

τL =
k2

βkx
. (5.21)

Equating τNL and τL while ignoring the anisotropy for now (since the initial cascade is

isotropic) defines the transitional wavenumber kβ as

kβ =

(
β3

ε

) 1
5

. (5.22)

Equating Eqs 5.20 and 5.21, but this time retaining the anisotropy gives

k8 = k5
βk

3
x , (5.23)

the x and y components of kβ then being defined by

kβx = kβ cos8/5 α (5.24)

kβy = kβ sinα cos3/5 α (5.25)

where α = arctan
ky
kx
. A sketch of this boundary in the 2D k-space is shown in the

parametric plot of figure 5.2 which resembles a dumb-bell or is sometimes referred to

as the ‘lazy 8’ curve. For wavenumbers outside the curve, there is strong isotropic

turbulence but for those modes smaller than kβ , anisotropic Rossby wave turbulence is

the dominant process [49; 84].

If a fully turbulent dispersion relationship ωNL = Uk is assumed, where U is the

fluid velocity, equating its inverse to the linear timescale τL retrieves the more commonly

known Rhines scale [49; 84]

kRβ =

√
β

U
. (5.26)
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Figure 5.2: Dumb-bell curve in the k-space defining the transition from strong to weak
turbulence.

An alternative argument for zonation therefore, in the case of initially strong

isotropic turbulence is based on the observation that the weak wave turbulence is less

efficient in supporting the energy cascade than the strongly nonlinear interactions. As

such, if the forcing scale is far outside the transitional curve, once the inverse energy

cascade reaches these scales, it turns and follows the curve towards the zonal scales

rather than penetrate the curve.

This condition that the linear wave period and the nonlinear eddy turnover time

are balanced scale-by-scale could be called a ‘critical balance’ analogous to the critically-

balanced cascade in the weak turbulence of shear Alfvén waves in MHD turbulence [85].

This critical balance picture would mean that the energy cascade path of zonation would

be given by Eq. 5.23 which is actually very close to Eq. 5.17, the Fjørtoft predicted

path, if k0 ∼ kβ . If this were in fact the case, then the zonostrophy would flow beneath

this path to the weakly nonlinear scales. The zonostrophy would thus be supported at

these scales and hence conserved while the energy and enstrophy are still supported at

the intermediate and strongly nonlinear scales. Furthermore, if all three invariants are

conserved anyway, then the preceding Fjørtoft argument is once again valid.

74



5.4 Numerical study

The CHM model is employed to numerically test the theoretical predictions of both

the conservation of zonostrophy and the triple cascade behaviour of the small scale

turbulence. The initial condition is a Gaussian distribution of the stream function defined

as

ψ̂(k, 0) = Ae

(
|k−k0|

2

k2∗
+iφk

)
+ image , (5.27)

where k0 is the wavenumber on which the Gaussian is initially centred, A is the constant

amplitude, k∗ is the variance and φk are random independent phases. The ‘image’ refers

to the mirror-reflected spectrum with respect to the kx axis.

Zero numerical dissipation has been modelled rather than a forced-dissipated

steady state turbulence because there appears to be no physically meaningful dissipa-

tion which acts selectively on nearly zonal and nearly meridional scales only. While the

triple cascade theory presented in the previous section is based on a forced-dissipative

turbulence, it is assumed it is also valid for freely-decaying turbulence as is the case

of the dual cascade in 2D Navier-Stokes turbulence. As such, simulations have been

carefully monitored to avoid a bottleneck accumulation of turbulence at the maximum

wavenumber.

5.4.1 Centroids

To quantify the cascades of the energy, enstrophy and zonostrophy in the time-evolving

non-dissipative turbulence the centroids or ‘centres of mass’ of the total of each invariant

are introduced and are defined respectively as,

kE(t) =
1

E

∫
k k2|ψ̂k|2 dk, (5.28)

kQ(t) =
1

Q

∫
k k4|ψ̂k|2 dk, (5.29)

kZ(t) =
1

Z

∫
k
k4
x

k6
(k2
x + 5k2

y)|ψ̂k|2 dk. (5.30)
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Table 5.1: Triple cascade parameters for the weak and strong nonlinearity cases
Weak Strong

Resolution 5122 10242

k0 (20, 20) (40, 40)
k∗ 8 16
A 10−6 5× 10−7

λ 0.09 0.7

For the non-dissipative 2D Navier-Stokes or Euler equation, it is actually possible to recast

the Fjørtoft argument for the evolving turbulence directly in terms of these centroids in

a rigorous way, see Appendix E. However the structure of the CHM is more involved and

it is not clear if a generalised Fjørtoft argument is applicable for the triple cascades in

terms of the centroids in a rigorous way. This is certainly an interesting question to be

addressed in future.

5.4.2 Nonlinearity parameter

The theory is tested for initially weak and strong nonlinearities, a summary of the relevant

parameters being presented in table 5.1. A higher resolution is afforded for the stronger

nonlinearity since it evolves faster relative to the weaker case which therefore needs to run

for longer times. The centre of the initial spectrum and its width are altered accordingly.

The degree of nonlinearity λ, can be approximated by estimated directly the linear

and nonlinear terms in Eq. 3.61 but the fact that there will be statistical cancellations in

the sum of the nonlinear term due to the the initial random phases must be taken into

account. If N is the number of initially excited modes, this is done schematically by∣∣∣∣∣∣
N∑
j=1

individual-termj

∣∣∣∣∣∣ ∼ √N |individual-term| .
If N is approximated by 2

√
πk2
∗ the nonlinearity is then defined as

λ ∼ 2
√

2πk3
0k∗A

β
, (5.31)

which gives λ ∼ 0.1 for the weakly nonlinear case and λ ∼ 0.01 for the strongly nonlinear

case. It could be assumed that the phases rapidly become correlated to a certain degree
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for the strongly nonlinear case so that the λ estimate in this case would include an extra

factor of
√
N ∼ 100 which would be an overestimate. It is believed that the previous

estimate is more likely so that for the strongly nonlinear case, the turbulence is roughly

on the ‘lazy-8’ curve of figure 5.2.

5.5 Triple cascade results

5.5.1 Weak nonlinearity

With λ ≈ 0.09, the initial turbulence is well within the lazy-8 curve. The conservation of

energy, enstrophy and zonostrophy and their associated cascades are shown in figure 5.3.

Due to the slow weakly nonlinear evolution of this system, any quantity proportional to the

turbulence intensity could appear to be conserved, so in addition to the three invariants,

a non-conserved quantity,
∫
ψk|2 dk is also plotted in figure 5.3(a) to demonstrate the

true conservation of the zonostrophy.
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Figure 5.3: Weak nonlinearity. (a) Conservation of energy E, enstrophy Q and zonostro-
phy Z. Non-conserved quantity ψ2 is also shown and (b) the cascades of each invariant
tracked by their centroids

It is clear that all three invariants, E, Q and Z are well conserved, the energy

to within 0.01%, the enstrophy to within 0.15% and the zonostrophy is conserved to

within 1%. This is the first numerical demonstration of the conservation of the zonos-

trophy invariant. It should be remembered that Z is precisely conserved by the wave
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kinetic equation, Eq. 3.85 and therefore its conservation by the dynamical CHM equation,

Eq. 3.61 is subject to the conditions of applicability of the kinetic equation, namely weak

nonlinearity and the random phases. It is not clear apriori how well these conditions are

satisfied throughout the k-space, particularly near the zonal scales.

The centroids of E, Q and Z are normalised by their initial values so that fig-

ure 5.3(b) shows the three centroid paths starting from the same point. Each invariant

cascades into its predicted sector. The enstrophy and zonostrophy cascades are well

within their respective sector while the energy follows the boundary of its sector with the

zonostrophy sector.
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Figure 5.4: Weak nonlinearity. 2D energy spectrum at (a) t = 0 (b) t = 100 and (c) t =
40000

Three successive frames of the energy spectrum in 2D k-space are shown in

figure 5.4 and of vorticity distributions in x-space at corresponding times in figure 5.5.

The initial spectrum, which represents the Gaussian spot as defined by Eq. 5.27, centered

at k0 and its mirror image in figure 5.4(a), seems to grow branches in panel (b) which

stretch toward the origin forming a closed band which subsequently starts shrinking in

size. The band is not unlike the lazy-8 curve in figure 5.2 when complemented with the

other half of the distribution at kx < 0 although the similarity is only visual rather than

quantitative. These features are probably indicative of the structure of the anisotropic
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inverse energy cascade process. In the respective vorticity x-plots in figure 5.5, the

initial dominant shortwave components are evident in panel (a), propagating at ±45◦

corresponding to the position of the initial maxima in the spectrum) which in time evolve

into a more disordered turbulent state with a predominant zonal orientation as seen in

panel (c).

Figure 5.5: Weak nonlinearity. Vorticity distribution at (a) t = 0 (b) t = 100 and (c) t =
40000

5.5.2 Strong nonlinearity

For this case, λ ≈ 1 so that the initial turbulence is near the boundary of the lazy-8

curve. The conservation of each invariant is shown in figure 5.6(a). While the energy

and enstrophy are still well conserved, the energy to within 0.2% and the enstrophy to

within 1.2% of their initial values, the zonostrophy is not conserved initially. It should

be remembered however that the zonostrophy is only expected to be conserved for the

same conditions as the wave kinetic equation, namely that the nonlinearity be weak.

However the zonostrophy growth eventually saturates, so that the zonostrophy is also

rather well conserved in the case of stronger nonlinearities. This suggests, as previously

mentioned, that for large times the scales that support the zonostrophy invariant are

weakly nonlinear, even though the energy scales probably remain moderately nonlinear,

and the enstrophy scales are definitely strongly nonlinear.

The cascade paths for E, Q and Z in terms of the respective centroids are plotted

in figure 5.6(b). Once again a similar picture to the weakly nonlinear case is observed,

namely that the enstrophy and the zonostrophy cascades lie well inside their theoretically

79



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  1000  2000  3000

E
/E

0,
 Q

/Q
0,

 Z
/Z

0

t

(a) ψ2

E
Q
Z

 0.5

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5  2  2.5  3

k y
/k

0 y

kx/k0x

(b)

E-Q

E-Z

Q-Z

E
Q
Z

Figure 5.6: Strong nonlinearity. (a) Conservation of energy E, enstrophy Q and zonostro-
phy Z. Non-conserved quantity ψ2 is also shown and (b) the cascades of each invariant
tracked by their centroids

predicted sectors while the energy cascade again follows the boundary of its sector. It

is quite possible that the energy path lies in the critically balanced scales where the

nonlinear and the linear time scales are of the same order. However the measurement of

the nonlinear time scale is quite ambiguous and it is still unclear if the critical balance

approach can be formulated in a more precise way in this case. In any case, it is obvious

that even for this strongly nonlinear case, the zonostrophy invariant is conserved for

large times and that the triple cascade picture predicted using this invariant provides a

reasonable description of the turbulence evolution and an explanation of the zonal jet

formation.

The 2D energy spectra in 2D k-space are shown in figure 5.7 and the vorticity

distributions in x-space at corresponding times in figure 5.8. The essential features of

the evolution of these distributions appear to be similar to those of the weakly nonlinear

case with the zonal jets being a little clearer at later times. This can be explained by

the fact that the strongly nonlinear system evolves faster than the weakly nonlinear one,

figure 5.8(c) is at a more advanced stage of zonation than figure 5.8(c).
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Figure 5.7: Strong nonlinearity. 2D energy spectrum at (a) t = 0 (b) t = 10 and (c) t =
3500

Figure 5.8: Strong nonlinearity. Vorticity distribution at times (a) t = 0 (b) t = 10
and (c) t = 3500

5.6 Summary

The Fjørtoft argument has been used to predict a triple cascade behaviour of the CHM

turbulence, in which the energy, the enstrophy and the zonostrophy cascade into their re-

spective non-intersecting predicted sectors in the k-space. These cascades are anisotropic

and that of the energy cascade is directed to the zonal scales thus providing a physical

explanation into the character of the formation of the zonal jets in such systems.

Numerical proof has been provided of the zonostrophy conservation and of the

triple cascade picture for both weak and strong initial nonlinearities. The zonostrophy
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invariant is well-conserved for the weakly nonlinear case. Moreover, the zonostrophy con-

servation is also observed for strong initial nonlinearity after a transient non-conservative

time interval. Presumably, this is because the zonostrophy moves in time to the scales

that are weakly nonlinear even though the energy and the enstrophy remain in the strongly

nonlinear segments of k-space.

It has been demonstrated, using the energy, enstrophy and zonostrophy centroids

for tracking the transfers of these invariants in k-space, that all three invariants cascade

as prescribed by the triple cascade Fjørtoft argument in both the weakly nonlinear and

in the strongly nonlinear cases. The energy appears to be somewhat special among the

three invariants in that it tends to cascade along the edge of the sector allowed by the

Fjørtoft argument.
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Chapter 6

Nonlocal Wave Turbulence

It is now generally accepted in both the fields of plasma physics [86] and in GFD [87],

that in the turbulence of Rossby and drift waves, the dominant interaction is with a

zonal flow rather than a neighbouring-scale interaction [17], such that studies of drift

wave turbulence now imply the study of the drift wave - zonal flow feedback mechanism.

Furthermore, observational data from lower hybrid drift waves within the F-layer of the

equatorial ionosphere show that the plasma turbulence behaves with a spectrum which

indicates that the dominant interaction is a nonlocal one [88].

Rossby waves and drift waves are produced by a primary instability, for example,

the ion temperature gradient (ITG) in plasmas or the baroclinic instability in the atmo-

spheres and oceans. Zonal flows are generated via a secondary modulational instability of

these waves and they grow by a direct interaction with the small scale waves. The grow-

ing zonal flow extracts energy from the wave turbulence, thereby eventually suppressing

the turbulence.

One of the reasons that controlled fusion has not been attained to date, is due

to the loss of plasma confinement due to turbulent transport. It was discovered however,

that under certain circumstances [57] the turbulent transport is greatly reduced, resulting

in an enhanced confinement regime. This LH transition is greatly exploited today to

yield better plasma confinement. Furthermore, the effect has been observed in numerical

simulations of resistive drift wave turbulence at the plasma edge using the modified HW

equations [89] and also for full gyrokinetic simulations [90]. However, the underlying
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principal mechanism was poorly understood and it is intended here to present a rigorous

mathematical description and numerical evidence of the mechanism leading to turbulence

suppression and zonal flow saturation.

6.1 Kolmogorov-Zakharov spectra

When Zakharov [67; 68] first derived the weak turbulence spectra, analogous to the

Kolmogorov spectra, it assumes as Kolmogorov did, a flux down through the scales of

some integral of motion. The first instance of spectral laws for anisotropic media was

introduced by Kuznetsov [91] for the ion acoustic waves in a magnetised plasma. The

anisotropic spectra of Rossby waves was later studied by Monin and Piterbarg [92] and

those of drift waves by Mikhailovski [93; 94]

These spectra are exact solutions of the wave kinetic equation, Eq. 3.85. To

obtain the KZ spectra, it must further be assumed that the media is scale invariant. i.e.

the dispersion law ωk and the nonlinear interaction coefficient V k
12 in the kinetic equation

are invariant to changes in k, formally defined as

ω(k) = const|k|a ≡ const|kx|ax |ky|ay , a = (ax, ay)

V (qk, qk1, qk2) = qbV (k, k1, k2) , b = (bx, by) . (6.1)

The two well-known integrals of motion of the CHM model yield the KZ spectra [67; 68]

nE = C1E
1
2k−mE mE = d+ b , d = (1, 1) (6.2)

nQ = C2Q
1
2k−mQ mQ = d+ b+

(1, 0)− a
2

, (6.3)

where nE and nQ are the energy and enstrophy spectra respectively, E and Q are the

energy and enstrophy flux rates respectively and C1 and C2 are constants.

For Rossby and drift waves, conditions 6.1 are true for approximate zonal flows |ky| �

|kx| and then only and if either ρk � 1 or ρk � 1 The case of interest in this study

is that of small scale turbulence so that ρk � 1. In this instance, the Rossby or drift

dispersion given by Eq. 3.62 is reduced to

ωk =
βkx
k2
y

=⇒ a = (1,−2) (6.4)
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and the nonlinear interaction coefficient defined in Eq. 3.63 is reduced to

V k
12 = const|kxk1xk2x|

1
2

(
1

k1y
+

1

k2y
− 1

ky

)
=⇒ b = (

3

2
,−1) . (6.5)

Thus the two cascades have exponent mE = (5
2 , 0) and mQ = (5

2 , 1) [92; 93; 94] with

corresponding KZ spectra

nE = C1E
1
2 |kx|−

5
2

nQ = C2Q
1
2 |kx|−

5
2 |ky|−1 . (6.6)

An initial test of the energy KZ spectra given in Eq. 6.6 reveals that it is a solution

of the kinetic equation since its collision integral converges and the energy cascade is

therefore stationary local. However, subjecting the kinetic equation to finite perturbations

leads to divergence of the collision integral at small wavevectors and is there evolutionary

nonlocal. Similarly, the collision integral diverges at both large and small wavevectors for

the enstrophy spectra [10] given in Eq. 6.6. An extensive examination of KZ spectra in

various limiting regimes reveals that the anisotropic KZ spectra of the CHM model are

nearly always nonlocal [10], suggesting that drift wave and Rossby wave turbulence are

nonlocal. A more detailed analysis of the nature of locality and stability can be found

in [95; 96; 33] where the region of locality can be defined by the region of analyticity of

the Mellin functions.

In addition, the zonostrophy invariant will lead to yet another KZ spectra for drift

wave turbulence defined by

nZ = C3Z
1
2k−mZ , mZ = d+ b+

c− a
2

(6.7)

where Z is the zonostrophy flux through the scales and

ζk = const kc ≡ const|kx|cx |ky|cy , c = (cx, cy) . (6.8)

In the considered limit, ζk = k3x
k8y

so that c = (3,−8) and therefore mZ = (7
2 ,−3) and

the equivalent spectrum is

nZ = C3Z
1
2 |kx|−

7
2 |ky|3 . (6.9)
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As a consequence of the nonlocal hypothesis, it was discovered mathemati-

cally [10] that two main effects occur:

1. The turbulence spectrum in k-space splits into two unconnected components and

as such, intermediate scales die out. One component is a low-frequency turbulence

of the zonal flow and the other is a high-frequency short-wavelength jet.

2. The zonal flow must saturate due to the existence of the high-frequency turbulence.

The CHM equation does not contain small scale instabilities of the type which

generate Rossby and drift waves, since in the derivation of the HM equation they are

filtered out by the adiabatic electrons assumption and a multi-layer model is required

in GFD for the baroclinic instability to exist. These instabilities are therefore modelled

with a linear forcing term acting like a negative viscosity applied selectively to certain

wavenumbers, to numerically investigate this turbulence feedback loop.

6.2 Nonlocal evolution of CHM turbulence

A rigorous mathematical description of the nonlocal turbulence, which was first presented

in [9; 10; 11] is reviewed.

To study the nonlocal interaction between wavenumbers k and zonal flows i.e.

waves with a zonal wavenumber, the points of most interest are those two where the

resonant manifold crosses the k1x = 0 axis, as shown in figure 4.10. One of those

points is the origin which describes the interaction with large-scale zonal flows such that

k1 = (0, 0). The other point can be determined by setting k1x = 0 in the resonance

Eq. 4.37 which gives the wavevector k1 = (0, 2ky) as the other point. The interactions

with the wavenumbers in the vicinity of these points give the main contributions to the

collision integral, i.e. the RHS of Eq. 3.61.
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6.2.1 Nonlocal interaction with large-scale zonal flows

Looking first at the interactions of k with the large-scale zonal flows near the origin.

These large scale waves travel with the x-component of the phase speed,

ck =
ωk

kx
= − β

k2 + F
. (6.10)

In the large-scale limit, k � F , ck → −β/F and the absolute value of this known as

the drift velocity or Rossby velocity. It is convenient therefore to work in a coordinate

frame moving with this velocity, in which the Doppler-shifted frequency is given as

Ωk = ωk − ckkx =
βkxk

2

F (k2 + F )
. (6.11)

In this moving reference frame, the kinetic equation becomes

∂nk
∂t

= 4π

∫ ∣∣V k
12

∣∣2 δ(k− k1 − k2)δ(Ωk − Ωk1 − Ωk2)×

[nk1nk2 − nknk1 sign(ωkωk2)− nknk2 sign(ωkωk1)] dk1dk2. (6.12)

The nk dependence in the collision integral can be simplified by assuming that there are

less small scale waves than large-scale zonal waves, i.e. nk � nk1 and that k � k1. As

k2 = k − k1, k2 can be integrated out. nknk−k1 can be neglected since it is O(n2
k)

and thus small compared to the large spectrum at scales k1 and sign(ωkωk−k1) = 1 as

k1 → 0. The term in the square brackets of Eq. 6.12 then reduces to

(nk−k1 − nk)nk1 .

Defining

F (k,k1) = 4π
∣∣∣V k

k1 k−k1

∣∣∣2 δ(Ωk − Ωk1 − Ωk−k1)(nk−k1 − nk)nk1 , (6.13)

Eq. 6.12 can be approximated as

∂nk
∂t

=

∫
k1<k

F (k,k1) dk1 . (6.14)

Using the symmetries of V k
k1 k−k1

and Ωk, it can be shown that

F (k,k1) = −F (k− k1,−k1) (6.15)
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so that Eq. 6.14 can now be written as

∂nk
∂t

=
1

2

∫
k1<k

F (k,k1) dk1 −
∫
k1<k

F (k− k1,−k1) dk1

= −1

2

∫
k1<k

F (k,k1) dk1 − F (k + k1,k1) dk1 . (6.16)

Taylor expanding F (k + k1,k1) with respect to k1,

F (k + k1,k1) = F (k,k1) + k1 · ∇kF (k,k1) + O(k2
1) , (6.17)

substituting back in to Eq. 6.16 while neglecting second-order terms gives

∂nk
∂t

= −1

2

∫
k1<k

k1 · ∇kF (k,k1) . (6.18)

Now Taylor expand F (k,k1) with respect to k1 which is amounts to expanding the

nk−k1 term. This requires that the argument of the δ-function be Taylor expanded first,

noting that Ωk1 ∝ k2
1k1x as k1 → 0 and can therefore be neglected,

δ(Ωk − Ωk−k1) = δ(Ωk − (Ωk − k1 · ∇kΩk + O(k2
1))

≈ δ(k1 · ∇kΩk). (6.19)

Performing a similar expansion for the nk−k1 term gives

F (k,k1) ≈ 4π
∣∣∣V k

k1 k−k1

∣∣∣2 δ(k1 · ∇kΩk)k1 · ∇knk , (6.20)

and substituting Eq. 6.20 back into Eq. 6.18, the kinetic equation for the small scales

can then be written as an anisotropic diffusion equation in k-space:

∂nk
∂t

=
∂

∂ki
Dij(kx, ky)

∂nk
∂kj

(6.21)

with the diffusion tensor given by

Dij(kx, ky) = 2π

∫
k1<k

∣∣∣V k
k1 k−k1

∣∣∣2 δ(k1 · ∇kΩk), k1ik1jnk1dk1 . (6.22)

Assume that the scales k1 � k, then the integral limits can be extended to infinity in

Eq. 6.22 and integration performed with respect k1x

Dij(kx, ky) = 2π

∫ ∞
−∞

∣∣∣V k
k1 k−k1

∣∣∣2 δ(k1x

∂Ωk

∂kx
+ k1y

∂Ωk

∂ky

)
k1ik1jnk1dk1

= 2π

∫ ∞
−∞

∣∣∣V k
k1 k−k1

∣∣∣2 ∣∣∣∣∂Ωk

∂kx

∣∣∣∣−1

δ

(
k1x + k1y

∂Ωk
∂ky
∂Ωk
∂kx

)
k1ik1jnk1dk1
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Introducing the parameter σk for brevity, defined as

σk =

∂Ωk
∂ky
∂Ωk
∂kx

(6.23)

and from the δ-function, if k1x = −σkk1y then, k1x can be integrated out to give

Dij(kx, ky) = 2π

∣∣∣∣∂Ωk

∂kx

∣∣∣∣−1 ∫ ∞
−∞

nk1dk1

∣∣∣V k
k1 k−k1

∣∣∣2
 k2

1x k1xk1y

k1xk1y k2
1y


= 2π

∣∣∣∣∂Ωk

∂kx

∣∣∣∣−1 ∫ ∞
−∞

nk1dk1y

∣∣∣V k
k1 k−k1

∣∣∣2
 σ2

k −σk
−σk 1

 k2
1y


k1x=−σkk1y

(6.24)

Since the determinant of the matrix in Eq. 6.24 is zero, the matrix is singular. The

eigenvalues are 0 and 1 + σ2
k with corresponding eigenvectors ( 1

σk
, 1) and (−σk, 1),

which suggests that diffusion would only occur in the direction which corresponds to the

positive eigenvalue, i.e. in the (−σk, 1) direction. A change of variables is now sought

which would permit this 1D diffusion. Defining the matrix in Eq. 6.24 as

Λ(kx, ky) =

 σ2
k −σk
−σk 1

 , (6.25)

the general form of Eq. 6.21 is then(
∂

∂kx
,
∂

∂ky

)
Λ(kx, ky)

 ∂
∂kx

∂
∂ky

n(kx, ky) . (6.26)

Under a change of variables

kx 7→ q1(kx, ky)

ky 7→ q2(kx, ky) , (6.27)

taking into account the derivatives, inverse function and transpose vector, this becomes

J

(
∂

∂q1
,
∂

∂q2

)
|det J |−1Λ(q1, q2)JT

 ∂
∂q1

∂
∂qy

 |det J |n(q1, q2) , (6.28)

where J is the Jacobian matrix for the change of variables,

J =

 ∂q1
∂kx

∂q1
∂ky

∂q2
∂kx

∂q2
∂ky

 . (6.29)
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Figure 6.1: The level sets of Ωk

Ideally, the matrix JΛJT would be diagonal in order to simplify expression 6.28. However,

because Λ is singular, JΛJT can be further reduced to a 1D diffusion equation. The

new variables can be found by denoting

J =

a b

c d


so that

JΛJT =

 (b− aσk)2 (b− aσk)(d− cσk)

(b− aσk)(d− cσk) (d− cσk)2

 =

1 0

0 0

 .

This is true if b− aσk = 1 and d− cσk = 0. The new coordinates then must satisfy the

equations

∂q1

∂ky
− σk

∂q1

∂kx
= 1

∂q2

∂ky
− σk

∂q2

∂kx
= 0 .

By close inspection, these equations are solved for

q1(kx, ky) = ky

q2(kx, ky) = Ω(kx, ky) (6.30)
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the Jacobian matrix is

J =

 0 1

∂Ωk
∂kx

∂Ωk
∂ky

 .

and the diffusion Eq. 6.21 becomes

∂nk
∂t

=
∂Ωk

∂kx

(
∂

∂ky
D̃

(
∂nk
∂ky

)
Ω

)
Ω

(6.31)

where ()Ω means Ω being held constant and the diffusion coefficient is

D̃k = 2π

∣∣∣∣∂Ωk

∂kx

∣∣∣∣−2 ∫ ∞
−∞

[∣∣∣V k
k1 k−k1

∣∣∣2 k2
1y

]
k1x=−σkk1y

nk1dk1y . (6.32)

Eq. 6.31 therefore describes diffusion in the ky direction along the curves of constant

Ω(kx, ky) which are shown in figure 6.1.

6.2.2 Nonlocal interaction with small scale zonal flows

The other scales of interest for nonlocal interactions are those in the vicinity of k1 →

(0, 2ky). A similar calculation to the previous section will be carried out, assuming that

the dominant interaction is now between the small scale Rossby/drift waves k with the

small scale zonal flows k1 ≡ q in this region. The kinetic equation, Eq. 3.85 is now given

by

∂nk
∂t

=

∫
|qx|<kx

F (k,q) dq

= −
∫
|qx|<kx

F (k− q,−q) dq (6.33)

≈ −
∫
|qx|<kx

[F (k− q∗,−q)− (q− q∗) · (∇qF (k− q∗,−q)) |q=q∗ ] dq .

In the last step, the first argument of F (k − q∗,−q) is Taylor expanded, retaining

first-order terms in q only. For brevity of notation, let

k̃ = k− q∗ = (kx,−ky) (6.34)

and recalling that

F (k̃,−q) = 4π
∣∣∣V k̃
−q,k̃+q

∣∣∣2 δ(Ωk̃ − Ω−q − Ωk̃+q)(nk̃+q − nk̃)n−q , (6.35)
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then only the δ-function and the n-terms within the parentheses need to be expanded

in the Taylor expansion of F (k̃,−q), since V −q
k̃−q,k and n−q vary rapidly near q = q∗.

Taylor expanding the argument of the δ-function at q = q∗ gives,

Ωk̃ − Ω−q − Ωk̃+q = Ωk̃ − Ω−q∗ + (q− q∗) · ∇Ω(−q)

−Ωk + (q− q∗) · ∇Ω(k̃ + q) . (6.36)

When calculated explicitly, Ωk̃ − Ωk = 0 and Ω−q∗ = 0 leaving,

qx

[
∂Ω

∂qx
(−qx,−qy) +

∂Ω

∂qx
(kx + qx,−ky + qy)

]
(qx,qy)=(0,2ky)

+(qy − 2ky)

[
∂Ω

∂qy
(−qx,−qy) +

∂Ω

∂qy
(kx + qx,−ky + qy)

]
(qx,qy)=(0,2ky)

. (6.37)

Now calculating each of the four derivatives explicitly

qx

[
− 4βky
F (4k2

y + F )
+
β(k4 + F (3k2

x − k2
y))

F (k2 + F )2
)

]
+ (qy − 2ky)

[
0 +

2βkxky
(k2 + F )2

]
.

The last term 2βkxky
(k2+F )2

≡ ∂Ωk
∂ky

so the δ-function is reduced to

δ

(
∂Ωk

∂ky
(qy − 2ky + ξkqx)

)
=

∣∣∣∣∂Ωk

∂ky

∣∣∣∣−1

δ (qy − 2ky + ξkqx) , (6.38)

where

ξk =
3F (k2

x − k2
y) + k4

x − 3k4
y + 6k2

xk
2
y

2kxky(4k2
y + F )

. (6.39)

Expanding nk̃+q − nk̃ from Eq. 6.35 gives,

nk̃+q − nk̃ = nk̃+q∗
− nk̃ + (q− q∗) · ∇qn(k̃ + q∗)|q=q∗ + O(|q− q∗|2)

≈ nk − nk̃ + qx
∂nk
∂qx

+ (qy − 2ky)
∂nk
∂qy

. (6.40)

The leading order term of Eq. 6.40 contributes to the leading order term of the kinetic

equation for the nonlocal interaction of small scale Rossby/drift turbulence with small

scale zonal flows. The integration limits can again be extended to infinity if it is assumed

that |kx| � k and combining Eqs 6.33, 6.38 and 6.40, the kinetic equation for this

nonlocal interaction is given by

∂nk
∂t

= Yk[n(kx,−ky)− n(kx, ky)] (6.41)
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where

Yk = 4π

∣∣∣∣∂Ωk

∂ky

∣∣∣∣−1 ∫ ∞
−∞

dqxdqy

∣∣∣V k̃
−q,k̃+q

∣∣∣2 δ (qy − 2ky + ξkqx)n(qx, qy)

= 4π

∣∣∣∣∂Ωk

∂ky

∣∣∣∣−1 ∫ ∞
−∞

dqxdqy

∣∣∣−V k
q,k−q

∣∣∣2 δ (qy − 2ky − ξkqx)n(−qx, qy)

= 4π

∣∣∣∣∂Ωk

∂ky

∣∣∣∣−1 ∫ ∞
−∞

[∣∣∣V k
q,k−q

∣∣∣2 nq]
qy=2ky

dqx . (6.42)

Assuming that the spectrum is symmetric about the ky axis, the integration variable has

been re-labeled qx → −qx in Eq. 6.42 and the δ-function has been used to integrate out

qy to leading order. However, Eq. 6.41 actually suggests a relaxation of the spectrum to

a symmetric equilibrium n(kx,−ky)− n(kx, ky).

In order to show some redistribution of the spectral energy density in this particular

nonlocal interaction, it is therefore necessary, to consider the contribution from the next-

order terms from Eq. 6.33,

∂nk
∂t

=

∫
|qx|<kx

[(q− q∗) · (∇qF (k− q∗,−q)) |q=q∗ ] dq . (6.43)

which effectively means retaining the next order terms from Eq. 6.40. Following the same

procedure as in Section 6.2.1, this second order contribution can again be presented as

an anisotropic diffusion equation in k-space

∂nk
∂t

=
∂

∂ki
Bij(k)

∂nk
∂kj

(6.44)

with the diffusion tensor B(k) given by,

B(k) = 4π

∣∣∣∣∂Ωk

∂ky

∣∣∣∣−1 ∫ ∞
−∞

dqxdqy

∣∣∣V k̃
−q,k̃+q

∣∣∣2 δ (qy − 2ky + ξkqx)n(qx, qy)× q2
x qx(qy − 2ky

qx(qy − 2ky) (qy − 2ky)
2

 . (6.45)

Again using the symmetries of the interaction coefficient, V k̃
−q,k̃+q

, changing the inte-

gration variable to −qx and using the δ function to leading order to integrate out ky,

this can be simplified to

B(k) = 4π

∣∣∣∣∂Ωk

∂ky

∣∣∣∣−1 ∫ ∞
−∞

dqx

[∣∣∣V k
q,k−q

∣∣∣2 n(−qx, qy) q2
x

]
qy=2ky

 1 −ξk
−ξk ξ2

k

 . (6.46)
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Since the diffusion tensor is again singular, Eq. 6.44 can be reduced to a 1D diffusion

equation by an appropriate change of variables. Introducing the variables

kx 7→ s1(kx, ky)

ky 7→ s2(kx, ky) , (6.47)

taking into account the derivatives, inverse function and transpose vector, when trans-

formed, the general form of Eq. 6.44 is given by

J

(
∂

∂s1
,
∂

∂s2

)
|det J |−1

 1 −ξk
−ξk ξ2

k

 (s1, s2)JT

 ∂
∂s1

∂
∂sy

 |det J |n(s1, s2) , (6.48)

where J , the Jacobian matrix for the change of variables is

J =

 ∂s1
∂kx

∂s1
∂ky

∂s2
∂kx

∂s2
∂ky

 =

a b

c d

 . (6.49)

The matrix in expression 6.48 can be reduced to a 1D diffusion equation if

J

 1 −ξk
−ξk ξ2

k

 JT =

 (a− bξk)2 (a− bξk)(c− dξk)

(a− bξk)(c− dξk) (c− dξk)2

 =

1 0

0 0

 .

This is true if a− bξk = 1 and c− dξk = 0. The new coordinates then must satisfy the

equations

∂s1

∂kx
− ξk

∂s1

∂ky
= 1

∂s2

∂kx
− ξk

∂s2

∂ky
= 0 ,

and have been calculated [11] to be

s1(kx, ky) = kx

s2(kx, ky) ≡ Z̃k = arctan

(
(ky +

√
3 kx)

√
F

k2

)
− arctan

(
(ky −

√
3 kx)

√
F

k2

)

−2
√

3Fkx
k2 + F

, (6.50)

which is an equivalent expression to that of zonostrophy density defined in Eq. 5.12. The
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Figure 6.2: The level sets of Z̃k

diffusion equation, Eq. 6.44 is now reduced to

∂nk
∂t

=
∂Z̃k

∂ky

∂

∂kx

∣∣∣∣∣∂Z̃k

∂ky

∣∣∣∣∣
−1

B̃k
∂nk
∂kx

(6.51)

where

B̃(k) = 4π

∣∣∣∣∂Ωk

∂ky

∣∣∣∣−1 ∫ ∞
−∞

dqx

[∣∣∣V k
q,k−q

∣∣∣2 n(−qx, qy) q2
x

]
qy=2ky

. (6.52)

Eqs 6.51 and 6.52 describe diffusion in the kx direction along curves of constant Z̃k

which are shown in figure 6.2.

6.2.3 Turbulence suppression loop

The mathematically predicted evolution of the turbulence spectrum, Eq. 6.31 provides

some insight into the features of the nonlocal turbulence. The energy of the small scale

waves with dispersion ωk is defined as,

E =

∫
|ωk|nkdk . (6.53)

As the spectrum of these small scales diffuses along the curves of constant Ωk, it loses

energy since ωk decreases along these curves. However for an unforced, dissipation-

less turbulence, the total energy of the system must be conserved, therefore this energy
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from the small scales has to go somewhere and must therefore be transferred to larger

scales. Neither is there dissipation at these large scales so the energy spectrum will

accumulate there. Furthermore, since the diffusion coefficient D̃k given by Eq. 6.32 is

directly proportional to ky, the rate of transfer of energy from the small wavepackets to

the large scales is also increased.

For a forced and dissipative turbulence regime, the evolution of the spectrum will

be determined by the forcing and dissipation terms, collectively denoted as Γk, added to

the RHS of Eq. 6.31 i.e.

∂nk
∂t

=
∂Ωk

∂kx

(
∂

∂ky
D̃

(
∂nk
∂ky

)
Ω

)
Ω

+ Γknk . (6.54)

Recall from Eq. 6.32 that the diffusion coefficient, D̃ depends on the spectrum of the

zonal flow, nk1 . If this spectrum is given then D̃ is a fixed function of ky and Ω. The

spectrum nk evolves along the curves of constant Ω and it’s magnitude is controlled by

the maximum value of Γk on that curve, growing exponentially if Γk > 0 and being

damped exponentially if Γk < 0 [9; 10]. Positive values of Γk occur near the maximum

of the forcing while negative Γk occurs far away from this maximum where dissipation

terms are dominant.

For positive Γk, the spectrum nk grows on the curve of constant Ωk but this

growth cannot be sustained indefinitely as it has already been stated that diffusion of

the spectrum along these curves results in energy transfer to large scales. Since this

results in augmented diffusion to the dissipation region, the growth of the spectrum due

to positive Γk is gradually relaxed until a balance is achieved between the growth and

the diffusion. Consequently, the large scale zonal flow saturates at a level which can be

estimated by balancing the forcing and diffusion terms of Eq. 6.54, which gives

np ∼
β Γmax

p3|V k
1 2|2

(6.55)

where for large scales px ∼ py ∼ p. Again, using the fact that np =
Ep

ωp
whereby in the

large-scale limit,

Ep ≈
F

p2
ψ2 (6.56)
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and UZF = ∂ψ
∂y ∼ pψ, another expression can be obtained for np

np ∼
F 2U2

ZF

p5β
. (6.57)

Equating Eqs 6.55 and 6.57 and deducing from Eq. 3.68 that |V k
12|2 ∼

βp3

F , then the

large scale zonal flow is estimated to saturate at the velocity

UZF ∼
√
β ΓmaxL , (6.58)

where L ∼ 2π
p .

This estimate, Eq. 6.58 is valid for weak turbulence only, UZF ∼ β, since it’s

derivation stems from the kinetic equation. For strong turbulence, the β term is negligible

and Eq. 6.58 is invalid. An alternative zonal flow saturation velocity for the strong

turbulence regime will be determined in the next section.

6.3 WKB approach to zonal flow growth

The foregoing rigorous mathematical theory is based on the wave kinetic equation and

is therefore valid only in the weak wave turbulence regime which requires that the

quasi-zonal scale turbulence be weak. However an alternative theory which is similar

to Wentzel-Kramers-Brillouin (WKB) theory and which does not require a weak turbu-

lence assumption, was introduced in [97], extended in [33] and is now presented. The

presentation of both theories provides a unified picture of both strong and weak wave

turbulence regimes.

Consider a drift-wave packet (DWP) propagating on the background zonal flow

with a velocity profile U(y) which varies randomly in y. The correlation length L cor-

responds to a typical wavelength profile in U(y). Again nonlocal drift turbulence is

assumed, so that interactions between the drift waves themselves are negligible in com-

parison to their interactions with the zonal flow.

By averaging the Fourier transformed CHM Eq. 3.61 over the characteristic times

of the small scales the evolution equation for the slow large scales, i.e. the zonal flow is

obtained. The evolution equation for the small scale drift and Rossby waves is obtained
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by multiplying Eq. 3.61 by ψ̂k and averaging over the fast times of the small scales. The

resulting spectrum evolution is given by [97](
∂

∂t
+
∂ω̄k

∂k

∂

∂x
+
∂ω̄k

∂x

∂

∂k

)
nk = 0 (6.59)

where the term within the parentheses is a time derivative along the wave rays [98]

defined as

Dt =
∂

∂t
+
∂x

∂t
· ∇+

∂k

∂t
· ∇k (6.60)

and ω̄k is the total frequency of the drift wave packet due to its own linear dispersion

plus that due to the motion of the large scale zonal flow [97]. It is defined as

ω̄k =
kx(Uk2 + β)

k2 + F
. (6.61)

It then follows from Eqs 6.59 and 6.60 that

∂ky
∂t

= −∂ω̄
∂y

=
kxk

2U ′

k2 + F
(6.62)

where ′ ≡ ∂
∂y and

∂y

∂t
=

∂ω̄

∂ky
=

2kxky(F U − β)

(k2 + F )2
. (6.63)

6.3.1 Weak zonal flow

Assuming that the zonal flow is sufficiently weak, i.e U � β, the DWP can travel through

many correlation lengths in the y-direction. The DWP will experience a random walk

in ky so that the evolution of the mean waveaction nk will be described by a diffusion

equation,

n =
∂

∂ky

(
Drw

∂nk
∂ky

)
+ γkn (6.64)

where γk describes the instability in the unstable region where γk > 0 and γk < 0 in

the dissipative region. The diffusion coefficient Drw can be estimated from a standard

random walk argument

Drw =

(
1

∂tky

)2

τ (6.65)

where τ is the correlation time estimated as

τrw =
L

∂tky
. (6.66)
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Inserting Eq. 6.63 into Eq. 6.66 and then into Eq.6.65, the random walk diffusion coef-

ficient is estimated to be

Drw =
k4U2

2(FU − β)
(6.67)

where the estimates kx ∼ ky(∼ k
√

2) and U ′ ∼ U/L have been used. Then the

characteristic time of the diffusion process is

τdif =
k2
y

D
=
F |U − β|L
k2U2

. (6.68)

Assuming that the zonal flow is excited by drift wave turbulence via an inverse cascade

until a saturated value is reached, the saturation value can be determined by balancing

the diffusion and instability terms in Eq. (6.64) which gives

D

k2
y

= γmax, (6.69)

where γmax is the maximum value of the growth rate of the underlying instability. Sub-

stituting Eq. 6.67 into Eq. 6.69, the estimated saturation velocity of the zonal flow is

Udif =

√
βγmaxL

k
. (6.70)

This estimate coincides with Eq. (6.58) obtained in the previous section if k ∼ 1.

6.3.2 Strong zonal flow

In the case of a strong zonal flow the β-effect is less important so that the DWP will

travel through O(1) correlation lengths, getting carried from the unstable region to the

dissipative region in a shorter time than it would take to cross one zonal flow oscillation

of length L. The characteristic time for these rapid distortions follows from Eq. 6.62

τrd ∼
ky
∂ky
∂t

∼ (k2 + F )L

k2U
. (6.71)

This rapid distortion will occur when τrd < τdif or equivalently

Urd >
βF

k2
. (6.72)

It follows that the rapid distortion will replace the diffusive regime if Eq. 6.70 is greater

than Eq. 6.72 giving the following condition for when rapid distortion is expected,

Lγmax >
k2β

(k2 + F )2
. (6.73)
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Figure 6.3: Zonal flow velocity U as a function of the instability growth rate γ

From Eq. 6.72, it can be said that when k .
√
F , rapid distortion occurs when U & β

so the assumption of U � β in obtaining the weak zonal flow saturation estimate is

justified. Considering the specific limit when U = β
F , there will be stagnation points

because according to Eq. 6.62, ∂y∂t = 0 at these points. Saturation of the rapid distortion

zonal flow growth, Urd can be estimated by assuming the inverse of its characteristic

time, γmax ∼ 1
τrd

which gives

Urd =

(
1 +

F

k2

)
Lγmax (6.74)

From Eq. (6.73) it is clear that transition between the diffusive and rapid distortion

regimes for zonal flow saturation occurs when the strength of the instability reaches

γc = k2β
(k2+F )2L

at a zonal flow velocity U = βF
k2

as shown in figure 6.3.

6.4 Instability forcing

This drift/Rossby wave turbulence hypothesis is now tested numerically. As previously

mentioned, the CHM equation does not contain small scale instabilities so a linear forcing

term must be added to the RHS of Eq. 3.35 in order to generate the waves. For the

instability forcing γk, the simplest form is sought which retains the key features of the
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relevant primary instabilities mentioned above, namely that they act at small scales

and primarily generate meridional waves. In various physical situations, the region of

instability which leads to drift waves turns out to be approximately the same [10; 99; 100]

and also coincides with the region determined by the linear instability analysis of the

two-layer QG PV model. Forcing can be included in the CHM model therefore by simply

adding a linear forcing term to the original equation. The forced CHM equation is now

written as

(∂t − L) (∆ψ − Fψ) + β∂xψ + (∂xψ)∂y∆ψ − (∂yψ)∂x∆ψ = 0, (6.75)

where Γk = γk − νmk2m with γk is the instability forcing term and νm a hyperviscosity

coefficient. Dissipation νm(−∆)m is a typical hyperviscosity for turbulence simulations

with m ∈ N. A dimensionless parameter is introduced

χ =
γmax

√
F

β
(6.76)

which measures the nonlinearity of the system assuming that the instability saturates

at a level determined by the amplitude of the nonlinear term in Eq. 6.75 and where

γmax = max(γk). Results are presented for an idealised forcing and a more physical

instability forcing.

6.4.1 Idealised forcing

The instability forcing is required to act at small scales and to generate the meridional

drift or Rossby waves. For simplicity, forcing at a single mode, k at the scale of the ion

gyroradius or deformation radius was chosen with γk > 0 and constant.

Eq. 6.75 has exact plane wave solutions

ψ = exp(−i(ωkt−k·x)+γkt−νmk2mt) (6.77)

with the dispersion relation ωk given by Eq. 3.62. In order to introduce mode coupling and

allow the development of turbulence with a single-mode forcing, the numerical simulations

are started from an initial condition consisting of spatial white noise of very low amplitude.

Results presented here are for γ = 1.2, m = 8, νm = 1.0× 10−29 and F = 2500

for various β. The k-space has been divided into the zonal sector for which |kx| < |ky|

101



10-8

10-6

10-4

10-2

100

102

104

 0  20  40  60  80  100

E
ne

rg
y

Time

(a)

 0  20  40  60  80  100

Time

(b)

 0  20  40  60  80  100

Time

(c)

Forcing sector
Zonal sector

Meridional sector

10-8

10-6

10-4

10-2

100

102

104

 0  20  40  60  80  100

E
ne

rg
y

Time

(d)

 0  20  40  60  80  100

Time

(e)

 0  20  40  60  80  100

Time

(f)

Forcing sector
Zonal sector

Meridional sector

Figure 6.4: The evolution of the energy contained in the forcing mode, zonal and merid-
ional sectors for (a) χ = 2.4× 10−7, (b) 2.4× 10−6 and (c) 2.4× 10−5, (d) 2.4× 10−4,
(e) 2.4× 10−2 and (f) χ→∞ respectively.

and a meridional sector for which the opposite is true, minus the forcing mode. Figure 6.4

shows the evolution of the energy contained in the forcing mode, zonal and meridional

sectors. The energy of the forced mode grows exponentially while the initial energies of

the zonal and meridional sectors remains constant at the level of the background noise.

After t = 10, when the amplitude of the forcing mode reaches a high enough level to

trigger nonlinear mode coupling, a sharp growth of the zonal and meridional energies

takes place. A short time after however, the energies in the forcing mode and in the

meridional sector are suddenly suppressed while that of the zonal energy remains at the

highest level attained. A steady state is reached whereby the energy of the forcing mode

is fully suppressed while that of the zonal energy subsequently saturates at the highest

level. The horizontal dashed line is the saturation estimate of the zonal energy, based

on Eq. 6.58. In this case, although it is of the correct order, the estimate is a little high
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but it should be noted that it is an approximate estimate not taking into account some

constant factors.

It is clear that as the level of nonlinearity is reduced, the greater the energy in

the zonal sector and also the better the suppression of the small scale turbulence.

The corresponding 2D energy spectrum is shown in figure 6.5. In panel (a), the

wave amplitude of the forcing mode at (50, 0) has reached a high enough level to become

modulationally unstable [63; 39; 5]. This triggers the nonlinear interactions, initially with

modes which lie on the resonant (blue, dotted) curve which grow from the background

noise. The maximally unstable perturbations to the LHS of the resonant curve have a

significant zonal component and are equivalent to those in figure 4.6. The observed rapid

decrease in the meridional energy corresponds to the zonal flow-induced diffusion along

the (red, solid) curves of constant Ω which is evident in figure 6.5(b). While the diffusion

is not exactly along the curves, the deviation could be attributed to the fact that the

scale-separation between the forcing and zonal modes is not as pronounced as is assumed

in the derivation of Eq. 6.31. Diffusion along the (green, dashed) curves of constant Z̃k

shows evidence of interactions with small scale zonal flows and again highlights the

importance of the zonostrophy invariant in drift and Rossby wave turbulence theory [11].

6.4.2 Baroclinic / ITG instability forcing

An expression for γk which is more physically relevant can be obtained by considering

the linear dynamics of a higher level model which does contain an intrinsic instability.

Such models are the two-layer model in GFD or in the case of plasmas the two-field

Hasegawa-Wakatani (HW) model.

It is the baroclinic instability in the stratified atmosphere which generates Rossby

waves. This instability is the main source of the large cyclones and anticyclones which

constitute the transient midlatitude weather systems [21; 19] and numerical weather pre-

diction experts are continually seeking to improve the parametrisation of these processes

in their models. Analysis of a mean zonal baroclinic flow in its simplest configuration as

a two-layer QG model [81] derives an expression for the baroclinic instability. Two layers

of equal height and with a vertical, but no horizontal, shear between them is assumed.
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Figure 6.5: The 2D energy spectrum at times (a) 11.2, (b) 11.4 and (c) 20 for χ =
6× 10−4, normalised by the maximum energy 0.05, 0.05 and 0.2 respectively.

U(y) is the constant mean flow. By analysing the baroclinic mode, an exponentially

growing modal solution is found to exist due to the vertical shear, which represents the

baroclinic instability. The growth rate of this unstable mode is defined as [21; 81]

γk = Ukx

√
F − k2

F + k2
. (6.78)

A full derivation of this instability is given in Appendix D. The expression in Eq. 6.78 is

used in the numerical simulations and is shown graphically in figure 6.6. Points to note

are that the growth rate (γk > 0) is in a region adjacent to the kx axis and it reaches a

maximum on this axis. The γk = 0 contour line passes through k = 0 and γ → −∞ as

|k| → ∞.

Analogous to this is the ITG instability which is the most important instability

for fusion turbulence. The centre of a magnetically confined plasma could reach a

temperature of 10 − 20keV with colder edge temperatures of the order 1eV . This

large thermodynamic gradient in a tokamak plasma is a perfect source of free energy for

instabilities. It arises in magnetically confined plasmas due to the particles in the hotter
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Figure 6.6: Graphical representation for Γk = γk − ν2k
4 for U = 0.01, F = 7000 and

ν2 = 2.× 10−9. The outermost contour is Γ = 0.

side of the plasma having higher kinetic energy which eventually causes perturbations

along the temperature gradient. The higher drift velocity of these particles across the

magnetic field adds to the perturbations which then can become unstable. The typical

expression for the ITG instability [101] is

γk = const
vti√
RLT

(6.79)

where vti is the ion thermal velocity, R is the tokamak major radius and LT = ∇T
T and

T is temperature. It can be derived from the electrostatic gyrokinetic equation [101].

The initial condition this time is gaussian, centered at the maximum of the forcing

mode. Results presented here are for U = 0.01, m = 2, νm = 2.0× 10−9 and F = 7000

for various β. Figure 6.7 shows the time evolution of the energy contained within each

sector where the forcing sector now encompasses the modes within the variance of the

Gaussian distribution.

As before, the energy of the forcing sector grows exponentially at the beginning.

The energies in the zonal and meridional sectors also grow from the outset. The forcing

energy continues to grow until the resonant nonlinear interactions occur and the forcing
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Figure 6.7: The evolution of the energy contained in the forcing mode, zonal and merid-
ional sectors for (a) χ = 2.5× 10−5, (b) 2.5× 10−4 and (c) 25.

is subsequently suppressed. The zonal energy is the dominant sector. Saturation of the

zonal flow energy is not observed here but a definite reduction in its growth rate is.

Panels (a), (b) and (c) of figure 6.7 show that as the nonlinearity becomes stronger, the

energies in the zonal and meridional sectors become more-or-less equal. The horizontal

dashed line in the plots represents an approximate saturated value as estimated from

Eq. 6.58. It is clearly a very good estimate of the ideal level where saturation would be

deemed to occur, according to the point where the growth rate slows down at t ≈ 40.

This estimate decreases with β.

The initial resonant interactions are again evident in the 2D energy spectrum plots

in figure 6.8(a). Subsequently in frame (b) the small scale spectrum begins to diffuse

along the open curves of constant Ωk and also diffusion along the shell-like curve of

constant Z̃k to large scales, showing the two unconnected components of the turbulence

spectrum. Finally in panel (c), the energy has been suppressed at the forcing modes

and is now concentrated around the zonal modes. The corresponding vorticity plots in

figure 6.4.2 show these zonal-type structures at late times.

For higher levels of nonlinearity measure, as expected, the vorticity plots are

characterised by vortices rather than zonal structures. The β term can be neglected

so that large scale condensation occurs in large round vortices rather than zonal flows.

Equivalent to Euler turbulence. Thus don’t see large suppression of the forcing.
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Figure 6.8: The 2D energy spectrum for χ = 2.5× 10−5 at times (a) 38.6, (b) 39.2 and
(c) 70 normalised by the maximum energy 0.25, 0.25 and 5 respectively.

Figure 6.9: Vorticity snapshots for χ = 2.5× 10−5 at times (a) 80, (b) 100 and (c) 108
normalised by the maximum vorticity 1500, 2000 and 2000 respectively. Horizontal axis
is x and the vertical y.
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Figure 6.10: The 1D averaged spectra for χ = 2.5× 10−5

Figure 6.11: Vorticity plots for χ = 2.5 × 10−4 at times (a) 65, (b) 80 and (c) 95
normalised by the maximum vorticity 500, 1000 and 1000 respectively. Horizontal axis
is x and the vertical y.
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Figure 6.12: Vorticity plots for χ = 25 at times (a) 30, (b) 60 and (c) 80 normalised
by the maximum vorticity 50, 500 and 750 respectively. Horizontal axis is x and the
vertical y.

The averaged spectra shown in figure 6.10 show a tendency to a k−5 law. This

isotropic power law was originally proposed by Rhines [49] who then dismissed it as being

physically impossible. However, there are arguments, based on data from the Voyager

spacecraft, that this spectrum exists for the zonal flows on Jupiter and Saturn [102],

albeit for the zonal component of the wavenumber only.

6.5 Summary

The feedback loop and the nonlocal turbulence hypothesis of drift and Rossby waves

with zonal flows has been investigated and numerically validated. This is one candidate

for the explanation of the LH transition previously mentioned. The instability, modelled

here as forcing at the scale of the ion Larmor or deformation radius, generates the small

scale drift or Rossby waves, whose energy initially grows exponentially. The nonlinear

evolution of the energy spectrum progresses as diffusion along 1D curves in k-space, the

diffusion coefficient increasing as it does so, resulting in an increased rate of diffusion to

the large scales. The increasing diffusion battles with the growth of the instability until

a balance is reached whereby the instability is effectively suppressed and the large scale

zonal flow saturates at a level of the order defined by Eq. 6.58.

The idealised forcing produces well the saturation mechanism albeit that the

actual level of saturation is not exactly realised. With the baroclinic or ITG forcing
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applied, the level of where the zonal flow should saturate is well-approximated although

an exact saturation is not observed without the need to apply large scale dissipation.

Whether or not these results could be of use to real tokamak experiments depends

on whether the weak turbulence regime is observed. The strong turbulence scaling in

Eq. 6.72, appropriate for U & β
F has been widely used in tokamak theory [103] for

some time now. On the other hand, the weak turbulence estimate in Eq. 6.70 is more

recent [33] and should be used when U . β
F . Zonal flows in the DIIID and JET tokamaks

have been reported with U ∼ 5 − 35 km sec−1 [104; 105], whereas β
F for both systems

could range from 5 km sec−1 in the core to 100 km sec−1 in the pedestal regions. Thus,

both the weak and the strong turbulent regimes should be realistically realisable.

110



Chapter 7

Conclusion

Several aspects of Rossby and drift wave - zonal flow turbulence have been studied

through the medium of the CHM equation. These include the modulational instability

and the inverse cascade mechanisms for zonal flow generation and the examination of the

nonlocal hypothesis of this turbulence [9; 10; 11] which also demonstrates the famous

feedback loop [17].

The MI study has confirmed that the dominant nonlinear mechanism is a three-

wave one for weak primary waves. However, the 3MT fails when the modulation wavevec-

tor is zonal for low nonlinearity since it is equally close to both branches of the resonant

curve. The 4MT is more robust in that it is sufficiently accurate for all levels of nonlin-

earity and both zonal and off-zonal perturbations. However, for strong nonlinearity, even

the 4MT fails at the point of saturation since the system is now vortex-dominated rather

than wave-dominated. Knowledge that truncated models predict such features well is

useful for parametrisation of larger models.

An investigation into the role of the primary wave amplitude has shown that

below a critical level of nonlinearity, the most unstable perturbation shifts from zonal to

off-zonal. It would be interesting to investigate this effect to determine if it relates to

recent observations of quasi-zonal striations, or latent jets [106], within the World Ocean

Database [16], and to determine exactly the nonlinearity level of that data, which is likely

to be low.

The formation of narrow zonal jets when nonlinearity M & 1 is also observed.
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For strong primary waves, these narrow zonal jets further roll up into Kármán-like vortex

streets. It would be interesting to study in more detail how the transport properties are

affected by both zonal and off-zonal jets that arise in the strongly and weakly nonlinear

cases respectively. In particular, it would be interesting to establish the difference between

the transport barriers provided by coherent vortex streets and the barriers provided by

random jets at the later stages.

While the presence of baroclinic dynamics will change the overall dynamics of the

system, it would be interesting to establish the relationship of the modulational instability

with recent work on a two-layer model [106] of ocean Rossby waves, where the authors

also suggest the need to study these unstable modes within boundaries.

A more accurate, albeit still idealised, model for plasmas is the modified HM

equation which differs from the CHM equation in that it has an extra term which subtracts

the zonal average of the field variable in order to model the effect of averaging over the

magnetic surface [107]. This modification has a profound effect on the modulational

instability [20; 107] so it would be interesting to apply the work carried out here to the

modified equation to determine the similarities and differences between the two systems.

Some insight into the characterisation of the cascades in CHM turbulence has

been provided. While it has been predicted for some time that the Rossby and drift wave

turbulence conserve a third invariant [45; 46; 47], these are the first numerical proofs that

zonostrophy is actually conserved in the weakly nonlinear regime. It is also, surprisingly,

observed for strong initial nonlinearity after a transient non-conservative time interval,

probably because the zonostrophy cascades to scales which are weakly nonlinear while

the energy and the enstrophy remain in the strongly nonlinear segments of k-space.

Qualitative results of the triple cascade of the three conserved quantities, which

follow the path of their centroids, reveal that the energy, enstrophy and the zonostrophy

cascade into the sectors as predicted by the Fjørtoft argument. They revealed that the

zonostrophy pushes the energy to the zonal scales.

Further theoretical and numerical studies would be helpful to help establish the

conditions under which the zonostrophy is conserved. In particular, the extent to which

the statistical properties of the system are important, for example random phases, in
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addition to weak nonlinearity of the zonostrophy supporting scales. It would also be

interesting to study the behaviour of zonostrophy in the other setups within the CHM

model such as the modulational instability and truncated systems of coupled resonant

triads.

Helicity, an extra inviscid invariant of 3D turbulence, plays a similar role to zonos-

trophy in QG turbulence in that it can alter the energy cascade. Perhaps the centroid-

tracking technique could be employed in a study of helicity to provide more insight into

these cascades.

Numerical calculations have shown evidence of the mechanism of the drift and

Rossby wave - zonal flow turbulence feedback loop. This loop is characterised by the zonal

flows growing from the unstable drift or Rossby waves. The zonal flows extract sufficient

energy from the wave turbulence, eventually causing suppression of that turbulence. The

zonal flows themselves reach saturation.

The saturation of the zonal flow and suppression of the turbulence is realised

particularly well for the idealised single-mode forcing. This is quite remarkable since it

occurs in a very basic model, without the need to switch-off the forcing or to use large

scale dissipation. The fact that the proposed mechanism works so transparently in a

model as simple as the CHM model is encouraging, suggesting that for more realistic

applications to plasma physics, including tokamak theory, the mechanism should be fully

realisable.

Furthermore, the calculations appear to favour the nonlocal hypothesis of drift

and Rossby wave - zonal flow turbulence as predicted in [9; 10; 11]. The mathematical

predictions for the diffusion routes of the turbulence spectrum in k-space are very close

to the numerical evolution of the spectrum. It should be straightforward to determine

whether or not the results obtained could be of use to real tokamak experiments by

ascertaining whether or not the weak turbulence regime is observed in tokamaks.

Further investigation is required into the baroclinic or ITG-type forcing with either

a modified HM model or the modified Hasegawa-Wakatani model ([89]) since neither a

sharp switch-off of the turbulence nor saturation of the zonal flow is observed in this case.

This work could provide reference points for future studies of even more realistic nonlinear
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models which intrinsically include the linear instability, namely the two-layer GFD model

or the Hasegawa-Wakatani model in plasmas, since current theoretical, experimental and

numerical research is heavily focused on understanding and parametrising these zonal

flows and their interaction with the drift wave and Rossby wave turbulence.
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Appendix A

Hamiltonian formalism of Wave

Turbulence

The diagonalised Hamiltonian wave equations in terms of canonical variables are given

by
∂ak
∂t

= −i
δH
δāk

(A.1)

where the complex wave amplitudes ak is defined in Eq. 3.66 and the overbar denotes

the complex conjugate and H denotes the Hamiltonian. This is expanded in a power

series of ak

H = H0 +H1 +H2 +H3 +H4 + . . . .

The derivative of the zeroth order term H0 = 0 and therefore does not contribute to

the equation of motion, Eq. A.1. The first order H1 term insinuates the system is in

equilibrium with minimal contribution to the Hamiltonian [31]. The quadratic term of

the Hamiltonian is therefore the first important one in the expansion and has the linear

dispersion frequency of a single mode as its coefficient

H2 =
∑
k

ωkakāk . (A.2)

The higher-order terms H3 and H4, etc describe three-wave and four-wave processes

respectively, etc. providing information regarding the wave-wave interactions in the tur-
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bulence and are defined as

H3 =
∑

kk1,k2

(V k
12ākak1ak2 + c.c.) δ(k− k1 − k2)dk dk1 dk2 (A.3)

H4 =
∑

kk1,k2,k3

(Wk1
23 ākāk1ak2ak3 + c.c.) δ(k + k1 − k2 − k3)dk dk1 dk2 dk1 ,

where V k
12 and W k1

23 denote three and four-wave interaction coefficients respectively.

For the Rossby wave and drift wave systems, the quadratic nonlinear term insin-

uates a three-wave process so that the leading term of the interaction Hamiltonian in

this case is given by H3 so that

H =
∑
k

ωkakāk +
∑

kk1,k2

(V k
12ākak1ak2 + c.c.) δ(k− k1 − k2)dk dk1 dk2 (A.4)

and ωk and V k
12 are defined in Eqs 3.62 and 3.68 respectively. The leading term of

Eq. A.4 is equivalent to Eq. A.2

In addition to these generalised symmetric equations of motion, they can also

be expressed in Poisson bracket format. In the early 1980s, both Zakharov [108] and

Weinstein [109] independently presented the Hamiltonian structure for drift and Rossby

waves with non-canonical variables. Equivalent to Liouville’s theorem in this format, the

CHM Eq. 3.35 is equivalent to [109; 108; 31]

∂W

∂t
= {W,H} (A.5)

where

W = ∇ψk − Fψk . (A.6)

and H is defined as

H =
1

2

∫
k
(∇ψk)2 + Fψ2

k dx dy (A.7)

and is equivalent to the total energy of the system (see Eq. 3.55).

The Poisson bracket for the functionals A = A(ψ), B = B(ψ) is defined by

{A,B} =

∫
qJ

(
δA

δW

δB

δW

)
dx dy , (A.8)

where J is the Jacobian, q is the potential vorticity (PV) defined by

q = ∇2ψk − Fψk + βy , (A.9)
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and δ
δW denotes the variational derivative with respect to the functional W (ψ).

Eq. A.5 is relevant also for hydrodynamic turbulence i.e in the limit β → 0, F → 0

where in this case the Hamiltonian and vorticity are reduced to H = 1
2

∫
k(∇ψk)2 and

q = ∇2ψk respectively.
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Appendix B

Numerical Model

Re-writing the dynamical Eq. 3.61 and dropping the subscript k and hat notation for

brevity, solving the CHM equation is reduced to solving a simple PDE.

ψt + iωψ +N (ψ) = 0, (B.1)

where the subscript t denotes the time derivative andN (ψ) = 1
2

∑
k1,k2

T (k,k1,k2)ψ1 ψ2

is short-hand for the nonlinear term on the RHS of Eq. 3.61.

B.1 Timestepping method

When the PDE is expressed as a sum of the Fourier modes with time-dependent co-

efficients, a set of ordinary differential equations (ODEs) for the mode amplitudes is

yielded. This system of ODEs tends to be stiff [110] due to the linear part occurring on

a much shorter timescale than the nonlinear part for which the usual methods of time

discretisation require a very small timestep.

Employing the Integrating factor (IF) method for solving ODEs, Eq. B.1 can be

re-written as
∂

∂t
(eiωtψ) = eiωtN (ψ). (B.2)

IF methods improve the stiffness by effectively removing the stiff linear part from the

equation so combining a standard third-order Runge-Kutta method [111] to solve Eq. B.2,
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Figure B.1: Modon test case - snapshots of vorticity

the timestepping method is defined as

ψ(t+dt) = ψ0e
−iωdt+

2

9
dtN (ψ0)e−iωdt+

1

3
dtN (ψ1)e−

1
2
iωdt+

4

9
dtN (ψ2)e−

3
4
iωdt (B.3)

where ψ0 is the initial stream function, ψ1 and ψ2 are intermediate values defined at

t+ 1
2dt and t+ 3

4dt respectively. Using the Euler method, these are defined as,

ψ1 = ψ0e
− 1

2
iωdt +

1

2
dtN (ψ0)e−

1
2
iωdt (B.4)

and

ψ2 = ψ0e
− 3

4
iωdt +

3

4
dtN (ψ1)e−

1
4
iωdt. (B.5)

A de-aliasing technique was applied.

B.2 Modons

Perhaps it is not so well-known that the CHM equation also admits a di-polar vortex

solution, called a modon [112; 4]1 which travels in the x-direction at a constant velocity

u.

The solution is given by

ψ(r, θ) =
u+ κ

b2

(
a
J1(br)

J1(ba)
− r

(
b2

s2
+ 1

))
sinα, r < a,

u+ κ

s2
a
K1(sr)

K1(sa)
sinα, r > a, (B.6)

1Many thanks to Bill Dorland for suggesting this as a test case for the code
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where tanα = y/x. J1 is the first-order Bessel function of the second kind and K1 is

a first-order modified Bessel function of the second kind. a is the radius of the dipolar

vortex and s and κ are constants which satisfy u = κ
s2−1

.

The continuity of ∂ψ/∂t at r = a gives the eigenvalue b

∞∑
n=1

1

(ba)2 − z2
n

=
1

2ρa

(
1

ρa
− K ′1(ρa)

K1(ρa)

)
(B.7)

where zn is the monotonically increasing sequence of zeros of J1(r). See [112; 4] for

further details.

It can be clearly seen from figure B.1 that the modon travels in the x-direction,

as expected. The velocity has been checked as calculated from the dispersion relation.
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Appendix C

Rayleigh-Kuo Instability

Criterion

Stationary flows may be unstable to a small perturbation. An analysis is presented

here for the stability criterion of a stationary flow, governed by the barotropic vorticity

equation. This work by Kuo [82] was an extension to the work of Rayleigh [113; 81]

to take into account the inclusion of β, the variation of the Coriolis parameter into the

governing equations of large scale atmospheric motion. The barotropic vorticity equation,

expressed in terms of the streamfunction ψ is

∂t∆ψ + β∂xψ + (∂xψ)∂y∆ψ − (∂yψ)∂x∆ψ = 0 , (C.1)

which is equivalent to Eq. 3.35 in the F → 0 limit. Assume there is a small-amplitude

streamfunction perturbation, ψ̃(x, y, t) on an otherwise stationary background flow,

ψ0(y) such that

ψ = ψ0 + ψ̃ (C.2)

with ψ̃ � ψ0. To linearise Eq. C.1 substitute Eq. C.2 for ψ, neglect terms nonlinear in

the perturbation since they are small and remembering that ψ0 = ψ0(y),

∂t∆ψ̃ + β∂xψ̃ + (∂xψ̃)∂y∆ψ0 − (∂yψ0)∂x∆ψ̃ = 0 . (C.3)

Since

U0 = −∂ψ0

∂y
, (C.4)
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Eq. C.3 can be rewritten as

∂t∆ψ̃ + U0∂x∆ψ̃ + β∂xψ̃ − U0yy∂xψ̃ = 0 . (C.5)

Now seek normal mode solutions of the form

ψ̃(x, y, t) = Re[Ψ(y)ei(kxx−ωt)] . (C.6)

Inserting Eq. C.6 into Eq. C.5 and factoring out ei(kxx−ωt), results in(
U0 −

ω

kx

)
(Ψyy − k2Ψ) + (β − U0yy)Ψ = 0 . (C.7)

Multiplying Eq. C.7 by Ψ̄, where the bar denotes the conjugate, integrating over y and

separating the real and imaginary parts gives,∫ ∞
−∞

(
k2|Ψ|2 − |Ψy|2

)
dy =

∫ ∞
−∞

β − U0yy

U0 − ω
kx

|Ψ|2dy . (C.8)

The LHS of Eq. C.8 is real. The RHS can have real and imaginary parts and upon

integration, equating real and imaginary parts gives

0 =

∫ ∞
−∞

(β − U0yy)Im[ω]∣∣∣U0 − ω
kx

∣∣∣2 |Ψ|2dy . (C.9)

Since Im[ω] 6= 0 for an instability to exist and all other terms in the integrand are

positive, except β−U0yy , this expression must change sign so that it would have positive

and negative contributions to result in zero. The necessary condition for an instability is

therefore, that β − U0yy crosses zero.
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Appendix D

Baroclinic Instability

The simplest model which admits vertical shear is the two-layer QG PV model. A simple

sketch in figure D.1 shows this idealised set-up which is typical of the stratification in

the troposphere of mid-latitudes [81]. The density in the upper layer is less than that

of the lower layer ρ1 < ρ2, there is no horizontal shear and for simplicity, let the layers

be of equal depth, H1 = H2 = H. The upper layer has a constant velocity U(y) in the

positive x-direction while the lower layer has velocity −U(y).

Figure D.1: Idealisation of a baroclinic two-layer fluid
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The derivation of the QG PV equation is presented in many texts [81; 19] and

is simply stated here for an inviscid two-layer model. Define the baroclinic deformation

radius, R =
√
g′H

2f0
where g′ = g ρ1−ρ2ρ0

is the reduced gravity due to the density difference

across the interface between the layers, g is the usual gravitational acceleration and f0

is the leading order term of the Coriolis parameter. In this two-layer model, the PV is

denoted as qn where n = 1, 2 for the respective layers and Eq. A.9 is generalised as

qn = ∇2ψn + βy + (−1)n
f2

0

g′Hn
(ψ1 − ψ2) (D.1)

∂qn
∂t

+ J [ψn, qn] =
∂qn
∂t

+
∂ψn
∂x

∂qn
∂y
− ∂ψn

∂y

∂qn
∂x

= Fn = 0 (D.2)

Consider a perturbation to the stationary state so that

ψn = ψ̄n + ψ̃n

qn = q̄n + q̃n (D.3)

where ψ̃n � ψ̄n and since U is constant, the mean fields are related as

ψ̄n = (−1)n+1Uy

q̄n = βy − (−1)n+1Uy

R2
(D.4)

i.e. independent of x. Linearising Eqs D.2 by neglecting terms of order two in the

perturbation and noting that (−1)n+1U = ∂ψ̄n

∂y and ṽn = ∂ψ̃n

∂x where ṽn is the y-velocity

component of the perturbation, yields

∂q̃1

∂t
+ U

∂q̃1

∂x
+ ṽ1

∂q̄1

∂y
=

∂q̃1

∂t
+ U

∂q̃1

∂x
+ ṽ1

(
β +

U

R2

)
= 0

∂q̃2

∂t
− U ∂q̃2

∂x
+ ṽ2

∂q̄2

∂y
=

∂q̃2

∂t
− U ∂q̃2

∂x
+ ṽ2

(
β − U

R2

)
= 0 , (D.5)

where the y derivatives have been calculated explicitly from Eqs D.4. Now seek normal

mode solutions of the form

ψ̃n(x, y, t) = Re[Ψn(x, y)ei(k·x−ωt)]

q̃n(x, y, t) = ∇2ψ̃n + βy + (−1)n
f2

0

g′Hn
(ψ̃1 − ψ̃2) . (D.6)
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Introducing Eqs D.6 into Eqs D.5, noting that Ψ = Ψ(x, y) and factoring out ei(k·x−ωt)

gives,

ωk2Ψ1 +
ω

2R2
(Ψ1 −Ψ2)− U

[
kxk

2Ψ1 −
kx

2R2
(Ψ1 −Ψ2)

]
+ kx(β +

U

R2
)Ψ1 = 0

ωk2Ψ2 +
ω

2R2
(Ψ1 −Ψ2) + U

[
kxk

2Ψ2 −
kx

2R2
(Ψ1 −Ψ2)

]
+ kx(β − U

R2
)Ψ2 = 0(D.7)

which can be re-arranged to(
ω

kx
k2 − U

)[
k2Ψ1 +

1

2R2
(Ψ1 −Ψ2)

]
+

(
β +

U

R2

)
Ψ1 = 0(

ω

kx
k2 + U

)[
k2Ψ2 −

1

2R2
(Ψ1 −Ψ2)

]
+

(
β − U

R2

)
Ψ2 = 0 . (D.8)

In a baroclinic fluid, it is often convenient to transfer the layer amplitudes into respective

vertical modal amplitudes [81] defined as

Φ0 =
1

2
(Ψ1 + Ψ2)

Φ1 =
1

2
(Ψ1 −Ψ2) . (D.9)

Taking the sum and difference of Eqs D.8 gives the equations for the modal amplitudes,[
ω

kx
k2 + β

]
Φ0 − Uk2Φ1 = 0[

ω

kx

(
k2 +

1

R2

)
+ β

]
Φ1 − U(k2 − 1

R2
)Φ0 = 0 (D.10)

Substituting the first equation into the other yields the general dispersion relation.[
ω

kx
k2 + β

] [
ω

kx
(k2 +

1

R2
) + β

]
− Uk2

(
k2 − 1

R2

)
= 0 (D.11)

Then solving for ω when β = 0 gives

ω = Ukx

√
1
R2 − k2

1
R2 + k2

, (D.12)

which in the longwave limit k < 1
R is an imaginary quantity corresponding to an expo-

nentially growing mode [81].
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Appendix E

Fjørtoft argument in terms of

the centroids

Consider an evolving hydrodynamic 2D turbulence in the absence of forcing and dissi-

pation. Here the Fjørtoft argument will be re-formulated in terms of the energy and

enstrophy centroids in the Fourier k-space and in the physical l-space where l = (x, y).

This formulation will be rigorous and is useful for visualising the directions of the energy

and enstrophy transfer. In contrast with the version of the Fjørtoft argument given in

Section 5.4.1, this formulation is for a non-dissipative turbulence rather than a forced

and dissipated system.

The energy and the enstrophy k-centroids are defined respectively as

kE =
1

E

∫ ∞
0

k Ek dk (E.1)

kQ =
1

Q

∫ ∞
0

k3Ek dk (E.2)

and their l-centroids as

lE =
1

E

∫ ∞
0

1

k
Ek dk (E.3)

lQ =
1

Q

∫ ∞
0

k Ek dk ≡
kEE

Q
, (E.4)

where Ek is the energy density at k and recall that Q =
∫
k2Ek.
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Assuming now that all the integrals defining E, Q, kE , kQ, lE and lQ converge,

the Cauchy-Schwartz inequality which states that∣∣∣∣∫ ∞
0

f(k)g(k) dk

∣∣∣∣ ≤ ∣∣∣∣∫ ∞
0

f2(k) dk

∣∣∣∣ 12 ∣∣∣∣∫ ∞
0

g2(k) dk

∣∣∣∣ 12 (E.5)

for any functions f(k) and g(k). Only positive functions will be dealt with here so the

absolute value brackets may be omitted.

Consider the following integrals, applying the Cauchy-Schwartz inequality E.5 to

them and use Eqs E.1 - E.4 to simplify.

∫ ∞
0

kE dk =

∫ ∞
0

(kE
1
2 )(E

1
2 ) dk ≤

(∫ ∞
0

k2E dk

) 1
2
(∫ ∞

0
E dk

) 1
2

=⇒ kEE ≤ Q
1
2E

1
2

=⇒ kE ≤
√
Q

E
and (E.6)

lQ ≤

√
E

Q
. (E.7)

∫ ∞
0

k2E dk =

∫ ∞
0

(k
3
2E

1
2 )(k

1
2E

1
2 ) dk ≤

(∫ ∞
0

k3E dk

) 1
2
(∫ ∞

0
kE dk

) 1
2

=⇒ Q ≤ (kQQ)
1
2 (kEE)

1
2

=⇒ kEkQ ≥ Q

E
(E.8)

Combining inequalities E.8 and E.6 gives

kQ ≥
√
Q

E
(E.9)

and from E.6 and E.9 it is clear that during the system’s evolution the energy centroid

kE(t) is bounded from above and the enstrophy centroid kQ(t) is bounded from below

by the same wavenumber k =
√
Q/E. Furthermore, inequality E.8 means that if kE(t)

happened to move to small k’s then kQ(t) must move to large k’s, i.e. roughly speaking

there cannot be inverse cascade of energy without a forward cascade of enstrophy. There

is no complimentary restriction which would oblige kE(t) to become small when kQ(t)
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becomes large so the k-centroid part of the Fjørtoft argument is asymmetric, and one

has to consider the l-centroids to make it symmetric.

Now splitting
∫
kE dk another way gives,∫ ∞

0
kE dk =

∫ ∞
0

(k
3
2E

1
2 )(k−

1
2E

1
2 ) dk ≤

(∫ ∞
0

k3E dk

) 1
2
(∫ ∞

0
k−1E dk

) 1
2

=⇒ kEE ≤ (kQQ)
1
2 (lEE)

1
2

=⇒ kE ≥ E

Q
. (E.10)

Combining inequalities E.10 and E.7 gives

lE ≥

√
E

Q
. (E.11)

Inequality E.10 now imposes the restriction of an inverse energy cascade if the enstrophy

undergoes a direct one.
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