
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/51600

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9562138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap

Predictive Dynamic Resource Allocation for Web Hosting

Environments

by

Mohammed A. AL Ghamdi

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

February 2012

THE LIBRARY
Tel: +44 24 76523523
Fax: +44 24 76524211

THE UNIVERSITY OF WARWICK, COVENTRY CV4 7AL

AUTHOR:Mohammed A. Al Ghamdi DEGREE: Ph.D.
TITLE: Predictive Dynamic Resource Allocation for Web Hosting Environments
DATE OF DEPOSIT: .

I agree that this thesis shall be available in accordance with the regulations governing
the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.

I agree that this thesis may be photocopied (single copies for study purposes only).

Theses with no restriction on photocopying will also be made available to the British Library
for microfilming. The British Library may supply copies to individuals or libraries. subject to a
statement from them that the copy is supplied for non-publishing purposes. All copies supplied
by the British Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with its author.
This copy of the thesis has been supplied on the condition that anyone who con-
sults it is understood to recognise that its copyright rests with its author and that
no quotation from the thesis and no information derived from it may be published
without the author’s written consent.”

AUTHOR’S SIGNATURE: .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis without
making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my care.

DATE SIGNATURE ADDRESS

. .

. .

. .

. .

. .

Abstract

E-Business applications are subject to significant variations in workload and this can

cause exceptionally long response times for users, the timing out of client requests

and/or the dropping of connections. One solution is to host these applications in vir-

tualised server pools, and to dynamically reassign compute servers between pools to

meet the demands on the hosted applications. Switching servers between pools is not

without cost, and this must therefore be weighed against possible system gain.

This work is concerned with dynamic resource allocation for multi-tiered, cluster-

based web hosting environments. Dynamic resource allocation is reactive, that is, when

overloading occurs in one resource pool, servers are moved from another (quieter) pool

to meet this demand. Switching servers comes with some overhead, so it is important

to weigh up the costs of the switch against possible system gains. In this thesis we

combine the reactive behaviour of two server switching policies – the Proportional

Switching Policy (PSP) and the Bottleneck Aware Switching Policy (BSP) – with the

proactive properties of several workload forecasting models.

We evaluate the behaviour of the two switching policies and compare them against

static resource allocation under a range of reallocation intervals (the time it takes to

switch a server from one resource pool to another) and observe that larger reallocation

intervals have a negative impact on revenue. We also construct model- and simulation-

i

based environments in which the combination of workload prediction and dynamic

server switching can be explored. Several different (but common) predictors – Last

Observation (LO), Simple Average (SA), Sample Moving Average (SMA) and Expo-

nential Moving Average (EMA), Low Pass Filter (LPF), and an AutoRegressive Inte-

grated Moving Average (ARIMA) – have been applied alongside the switching poli-

cies. As each of the forecasting schemes has its own bias, we also develop a number of

meta-forecasting algorithms – the Active Window Model (AWM), the Voting Model

(VM), the Selective Model (SM), the Dynamic Active Window Model (DAWM), and

a method based on Workload Pattern Analysis (WPA). The schemes are tested with

real-world workload traces from several sources to ensure consistent and improved re-

sults. We also investigate the effectiveness of these schemes on workloads containing

extreme events (e.g. flash crowds). The results show that workload forecasting can be

very effective when applied alongside dynamic resource allocation strategies.

ii

to my family

with love and gratitude

Acknowledgements

I am grateful to many people for their assistance, advice, guidance and friendship

during the course of this work. To my supervisor, Prof. Stephen Jarvis, who first guided

me to this research area, and giving me the opportunity to work in the Performance

Computing and Visualisation Group at Warwick and providing a never-ending source

of optimism, good-will and guidance. I am truly grateful for his support, advice and

encouragement.

I am grateful to Dr Ligang He for acting as my second supervisor, particularly for

his advice during the years of my degree. A special vote of thanks should go to Dr

Adam Chester for his relentless hard work, support and the many hours of discussion

during our research collaboration. It is a pleasure to acknowledge the many mem-

bers and colleagues of the Performance and Visualisation Group both past and present

including, Dr Simon Hammond (Sandia National Laboratories, USA), Dr Gihan Mu-

dalige (Oxford University, UK), Dr Matthew Leeke, Dr Nathan Griffiths, Dr Arshad

Jhumka, Malik Awan, James Davis, Henry Franks, John Pennycook, Oliver Perks, Jes-

sica Smith, Steven Wright (University of Warwick, UK) and last but by no means least,

Dr James Xue (Northampton University, UK), who have helped in countless ways over

the course, particularly for his advice during the early years of my degree.

Finally, I would like to express my heart-felt gratitude to my family for a constant

iv

source of love, concern, support and strength all these years.

v

Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor of

Philosophy. It has been composed by myself and has not been submitted in any previ-

ous application for any degree. The work described in this thesis has been undertaken

by myself except where otherwise stated. Portions of this work have been published in

the following publications:

• M. Al-Ghamdi, A.P. Chester, J.W.J. Xue, S.A. Jarvis, The Effect of Server Re-

allocation Time in Dynamic Resource Allocation, UK Performance Engineering

Workshop 2009, 6-7th July, 2009, Leeds, UK.

• M. Al-Ghamdi, A.P. Chester, S.A. Jarvis, Predictive and Dynamic Resource Al-

location for Enterprise Applications, IEEE International Conference on Scalable

Computing and Communications, 29 June - 01 July 2010, Bradford, UK.

• M. Al-Ghamdi, A.P. Chester, L. He, S.A. Jarvis, Dynamic Resource Alloca-

tion and Active Predictive Models for Enterprise Applications. In Proceedings

of the 1st International Conference on Cloud Computing and Services Science

(CLOSER 2011), 7-9th May, 2011, Noordwijkerhout, The Netherlands.

• A.P. Chester, M. Leeke, M. Al-Ghamdi, A. Jumka, S.A. Jarvis, A Modular

Failure-Aware Resource Allocation Architecture for Cloud Computing. In: UK

vi

Performance Engineering Workshop 2011, 7-8 July, 2011, Bradford, United

Kingdom.

• A.P. Chester, M. Leeke, M. Al-Ghamdi, A. Jumka, S.A. Jarvis, A Framework

for Data Center Scale Dynamic Resource Allocation Algorithms. 11th IEEE In-

ternational Conference on Scalable Computing and Communications, 30 August

- 2 September 2011, Pafos (Paphos), Cyprus.

• M. Al-Ghamdi, A.P. Chester, L. He, S.A. Jarvis, Dynamic Active Window Man-

agement: A method for improving revenue generation in Dynamic Enterprise

Systems. 11th IEEE International Conference on Scalable Computing and Com-

munications, 30 August - 2 September 2011, Pafos (Paphos), Cyprus.

• M. Al-Ghamdi, A.P. Chester, L. He, S.A. Jarvis, Dynamic Resource Allocation

for Multi-Tiered, Cluster-Based Web Hosting Environments. Lecture Notes in

Business Information Processing (LNBIP) published by Springer-Verlag, 2012.

vii

Sponsorship and Grants

This work is supported in part by the UK Engineering and Physical Science Research

Council (EPSRC) contract number EP/C538277/1, “Dynamic Operating Policies for

Commercial Hosting Environments”. This project involved collaboration with IBM,

HP Labs, the University of Newcastle and the National Business to Business Centre.

There has also been additional collaboration with Deutsche Bank in the form of

capacity planning for a large high-volume application.

viii

Abbreviations

PDRAS - Pre-defined resource allocation system

DRAS - Dynamic resource allocation system

QNM - Queuing network model

QoS - Quality of service

SLA - Service level agreement

QNM - Queuing network model

CA - Convolution algorithms

MVA - Mean value analysis

AMVA - Approximate mean value analysis

PSP - Proportional switching policy

BSP - Bottleneck-aware switching policy

AC - Admission control

LO - Last Observation

SA - Simple Algorithm

SMA - Sample Moving Average

EMA - Exponential Moving Average

LPF - Low Pass Filter

ARIMA - Autoregressive Integrated Moving Average

ix

MSE - Mean Square Error

MAPE - Mean Average Percentage Error

MAD - Mean Absolute Deviation

CFE - Cumulative sum of Forecast Error

AWM - Active Window Model

VM - Voting Model

SM - Selective Model

DAWM - Dynamic Active Window Model

WPA - Workload Pattern Analysis

x

Contents

Abstract i

Dedication iii

Acknowledgements iv

Declarations vi

Sponsorship and Grants viii

Abbreviations ix

List of Figures xix

List of Tables xxii

1 Introduction 1

1.1 Motivation and Problem Statement 2

1.2 Thesis Contributions . 3

1.3 Thesis Limitations . 5

1.4 Thesis Overview . 6

xi

CONTENTS

2 Background Research 8

2.1 Service Level Agreements (SLAs) 10

2.2 Resource Management . 10

2.2.1 Pre-defined resource allocation system (PRAS) 11

2.2.2 Dynamic resource allocation system (DRAS) 11

2.2.3 Proportional Switching Policy 13

2.2.4 Bottleneck-aware Switching Policy 13

2.3 Performance Modelling . 17

2.3.1 Queuing Network Models 18

2.4 Bottleneck and Admission Control 22

2.5 Fundamental Laws . 26

2.5.1 Utilization Law . 27

2.5.2 Forced Flow Law . 28

2.5.3 Service Demand Law . 28

2.5.4 Little’s Law . 29

2.5.5 Response Time Law . 29

2.6 Solving Multi-Class Closed Queueing Networks 31

2.6.1 Mean Value Analysis . 32

3 Impact of Server Allocation Time on Dynamic Server Switching 34

3.1 Introduction . 34

3.1.1 Chapter Contributions . 35

3.1.2 Chapter Structure . 36

3.2 Additional Related Work . 36

3.3 Modelling of Multi-tiered Internet Services and Revenue Functions . . 37

xii

CONTENTS

3.3.1 The System Model . 37

3.3.2 Modelling the Revenue Function 40

3.4 Experimental Setup and The Workload 42

3.4.1 Experimental Setup . 42

3.4.2 The Workload . 44

3.5 Experimental Results . 46

3.5.1 Experiment One . 48

3.5.2 Experiment Two . 50

3.5.3 Experiment Three . 52

3.5.4 Experiment Four . 54

3.5.5 Experiment Five . 57

3.5.6 Experimental Results Analysis 59

3.6 Summary . 60

4 Predictive and Dynamic Resource Application for Enterprise Applications 62

4.1 Introduction . 62

4.1.1 Chapter Contributions . 64

4.2 Additional Related Work . 65

4.3 Modelling of Multi-tiered Internet Services and Server Switching Poli-

cies . 65

4.4 The Workload and Predictive Algorithms 66

4.4.1 The Workload . 66

4.4.1.1 Workload Characterization 67

4.4.2 Predictive Algorithms . 68

4.4.2.1 i) Last Observation (LO) 69

xiii

CONTENTS

4.4.2.2 ii) Simple Algorithm (SA) 69

4.4.2.3 iii) Sample Moving Algorithm (SMA) 69

4.4.2.4 iv) Exponential Moving Algorithm (EMA) 70

4.4.2.5 v) Low Pass Filter (LPF) 70

4.4.2.6 vi) Autoregressive Integrated Moving Average Model

(ARIMA) . 71

4.5 Experimental Setup and Results . 71

4.5.1 Experimental Setup . 71

4.5.2 Accuracy Forecasting Results 72

4.5.3 Accuracy of the Forecasting Analysis 74

4.5.4 Combining Forecasting and Dynamic Server Switching 76

4.5.5 Experiment One . 76

4.5.6 Experiment Two . 77

4.5.7 Experiment Three . 77

4.5.8 Experiments Results Analysis 78

4.6 Summary . 88

5 The Development and Application of Meta-forecasting 89

5.1 Introduction . 89

5.1.1 Chapter Contributions . 90

5.2 Additional Related Work . 90

5.3 The Workload and Predictive Models 91

5.3.1 Active Window Model (AWM) 92

5.3.2 Voting Model (VM) . 93

5.3.3 Selective Model (SM) . 93

xiv

CONTENTS

5.4 Experimental Setup, Results, and Analysis 94

5.4.1 Experimental Setup . 94

5.4.2 Experimental Results . 95

5.4.2.1 i) Experiment One 95

5.4.2.2 ii) Experiment Two 97

5.4.2.3 iii) Experiment Three 98

5.4.3 Analysis . 100

5.5 Summary . 107

6 Dynamic Active Windows, Workload Pattern Analysis and Extreme Work-

loads 109

6.1 Introduction . 109

6.1.1 Chapter Contributions . 110

6.2 Additional Related Work . 111

6.3 Predictive Models . 112

6.3.1 Dynamic Active Window Model (DAWM) 112

6.3.1.1 i) Burstiness Technique and Monitoring Window Size 113

6.3.1.2 ii) Arrival Rate Technique 115

6.3.2 Workload Pattern Analysis (WPA) 115

6.4 Experimental Results and Analysis 116

6.4.1 Experiment One . 116

6.4.2 Experiment Two . 118

6.4.3 Experiment Three . 123

6.4.4 Analysis . 124

6.5 Summary . 130

xv

CONTENTS

7 Conclusions and Future Research 131

7.1 Further Work . 135

xvi

List of Figures

2.1 Multiple (3-tier) application architecture [10] 9

2.2 Dynamic Resource Allocation over Increased Demand 12

2.3 A model of a single-server queue [46] 19

2.4 A model of a multi-server queue [46] 20

2.5 Service demands of matrix L and the set of its projections pro j(L) in

the loadings space [8] . 23

2.6 Characteristic polytope TL of the two-class loading matrix L [8] . . . 24

2.7 Bottleneck identification using convex polytopes [54] 25

3.1 A model of a typical configuration of a cluster based multi-tiered In-

ternet service. C represents customer machines; WS, AS and DS rep-

resent web servers, application servers and database servers, respectively. 38

3.2 The First Inversely Proportional Workload 43

3.3 The Second Inversely Proportional Workload 44

3.4 A sample of the total requests in the real-world workload for both ap-

plication pools . 46

3.5 Revenue Generated by the Proportional Switching Policy (PSP) Over

Workload One at Different Reallocation Times 48

xvii

LIST OF FIGURES

3.6 Revenue Generated by the Bottleneck Aware Switching Policy (BSP)

Over Workload One at Different Reallocation Times 49

3.7 Revenue Generated by the Proportional Switching Policy (PSP) Over

Workload Two at Different Reallocation Times 51

3.8 Revenue Generated by the Bottleneck Aware Switching Policy (BSP)

Over Workload Two at Different Reallocation Times 51

3.9 Revenue Generated by the Proportional Switching Policy (PSP) Over

Workload Three at Different Reallocation Times 52

3.10 Revenue Generated by the Bottleneck Aware Switching Policy (BSP)

Over Workload Three at Different Reallocation Times 53

3.11 Revenue Generated by the Proportional Switching Policy (PSP) Over

Workload Four at Different Reallocation Times 55

3.12 Revenue Generated by the Proportional Switching Policy (BSP) Over

Workload Four at Different Reallocation Times 56

3.13 Revenue Generated by the Proportional Switching Policy (PSP) Over

Workload Five at Different Reallocation Times 57

3.14 Revenue Generated by the Proportional Switching Policy (BSP) Over

Workload Five at Different Reallocation Times 59

4.1 A sample of the total requests in the real-world workload for both ap-

plication pools . 66

5.1 Revenue samples from applying the seven predictors (NASA work-

load, PSP switching policy) . 92

5.2 Revenue using Active Window Model (AWM), Voting Model (VM),

and Selective Model (SM) over the first workload 96

xviii

LIST OF FIGURES

5.3 Revenue using Active Window Model (AWM), Voting Model (VM),

and Selective Model (SM) over the second workload 98

5.4 Revenue using Active Window Model (AWM), Voting Model (VM),

and Selective Model (SM) over the third workload 99

6.1 A sample of the total requests in the synthetic workload for both appli-

cation pools . 119

6.2 Revenue using Active Window Model (AWM), Dynamic Active Win-

dow Model (DAWM), Voting Model (VM), and Selective Model (SM)

over the fourth workload . 120

6.3 The total requests in the first real-world workload for both application

pools . 121

6.4 The total requests in the second real-world workload for both applica-

tion pools . 122

6.5 Revenue using Workload Pattern Analysis (WPA) under the four work-

loads . 123

xix

List of Tables

2.1 Notation used in the system model 13

2.2 Fundamental Performance Laws . 30

3.1 Notation used in the system model 39

3.2 The main experimental parameters. 43

4.1 Notation used in the predictors . 69

4.2 Forecasting accuracy measures . 73

4.3 Forecast accuracy, against four different criteria, for the seven forecast

algorithms over the first workload 80

4.4 Forecast accuracy, against four different criteria, for the seven forecast

algorithms over the second workload 81

4.5 Forecast accuracy, against four different criteria, for the seven forecast

algorithms over the third workload 82

4.6 Analysis of forecast accuracy for the seven forecast algorithms over

the three workloads . 83

4.7 Revenue gains for switching policy and forecasting combinations over

the first workload . 84

xx

LIST OF TABLES

4.8 Revenue gains for switching policy and forecasting combinations over

the second workload . 85

4.9 Revenue gains for switching policy and forecasting combinations over

the third workload . 86

4.10 Analysis of the forecast algorithms over the three workloads using the

two switching policies (PSP and BSP) 87

5.1 Revenue gains for switching policy and forecasting combinations over

the first workload . 101

5.2 Revenue gains for switching policy and forecasting combinations over

the second workload . 102

5.3 Revenue gains for switching policy and forecasting combinations over

the third workload . 103

5.4 Analysis of the first workload . 104

5.5 Analysis of the second workload . 105

5.6 Analysis of the third workload . 106

6.1 Analysis of applying the forecasting models (DAWM) and (AWM)

alongside PSP over the three real-world workloads 125

6.2 Analysis of applying the forecasting models (DAWM) and (AWM)

alongside BSP over the three real-world workloads 126

6.3 Revenue gains for the switching policy and forecasting combinations

over the fourth workload . 127

6.4 Analysis of applying the forecasting model alongside PSP over the

four workloads . 128

xxi

LIST OF TABLES

6.5 Analysis of applying the forecasting model alongside BSP over the

four workloads . 129

xxii

Chapter 1

Introduction

The rapid expansion of the Internet and its applications has forced both industrial and

academic researchers to focus their attention on ensuring that these applications deliver

appropriate levels of service to their customers without delay or errors. E-Business

applications for on-line banking or on-line retail are examples of such Internet appli-

cations which are attracting people in their millions to use on-line services of this kind.

Internet workload has been shown to increase significantly with this huge expan-

sion in Internet applications and their uses. Dynamic resource allocation systems

(DRAS) play a crucial role in such environments.

Hosting these application is a difficult task. Internet hosting organisations must

balance the amount of hardware that they purchase: too few servers may mean that cus-

tomers requests are dropped or responded to with significant delay; too many servers

may mean that during quieter periods, many of the servers go unused.

Pre-defined (or static) resource allocation systems (PRAS), where the available re-

sources are allocated between the different applications at the design stage, are clearly

not flexible enough to serve highly variable user demand. DRAS systems are not

however cost free and require time to detect and reconfigure to more suitable system

arrangement. Added to this, the application (e.g. web service) will not be available

1

1.1 Motivation and Problem Statement

during the reconfiguration process until the new configuration is again successfully

deployed. The up-side is that dynamic resource allocation systems can deal with huge

variations in application demands, as the available resources are always re-allocated

between different applications depending on the demand on these resources from the

different applications.

The online applications of interest in this thesis usually employ multi-tiered archi-

tectures (web tier, application tier, and data-persistence tier) and are typically hosted

on Internet hosting platforms. Each of these online applications usually have separate

service level agreements (SLA). These agreements specify the level of service that will

be delivered to the customer by the application, based on a specific target for perfor-

mance (e.g. response time for a given application) and availability (e.g. whether a

request is serviced). SLAs also define the penalties that should be paid if such tar-

gets are not met or if the level of the delivered service is not that agreed between the

application provider and the customer.

1.1 Motivation and Problem Statement

Internet hosting centres host multiple Internet applications and require multiple re-

sources to be shared between these different applications. It has been shown that

pre-allocating resources at the design stage may affect the system performance, as

resources will be wasted in the situation where the demand is low and may the re-

sources requirements exceed the capacity of the system when the demand is high. As

a result, dynamic resource allocation systems may be applied in order to improve the

total system revenue (for the provider) and to enhance the performance of the whole

system (for the customer).

Internet applications should deliver their services within a suitable time without

2

1.2 Thesis Contributions

unnecessary delay which may occur as a result of increasing the number of accesses

to that application. In other words, expanding the popularity of an Internet application

is not cost free, as more expense is necessary for upgrading and developing the appli-

cation to maintain the continuing requirements. Improving the application in order to

meet the customers’ requirements needs to be considered.

Improving service delivery can be done either by studying similar applications that

offer similar services or by monitoring the application for a specific period in order to

observe the application’s behaviour, which usually gives a clear picture as to how the

application is used and how it can be developed in the future. Thus, capacity planning

and workload forecasting play a crucial role in mitigating such issues [53].

1.2 Thesis Contributions

The principal contributions of this thesis are as follows:

• We study the impact of server switching time in distributed and dynamic en-

terprise systems. The switching time is defined as the time taken to reallocate

servers between applications. Our aim is to investigate the link between switch-

ing time and total system performance, as well as how the switching policies

themselves behave with changeable switching times. For this purpose, we in-

tegrate two well known switching policies – the Proportional Switching Policy

(PSP) and the Bottleneck-aware Switching Policy (BSP) – with variable switch-

ing times in a test system. Experiments are conducted on synthetic workloads

and we draw conclusions as to the suitability of the switching policies in different

practical settings (see Chapter 3).

• We construct a model-based environment in which the combination of work-

3

1.2 Thesis Contributions

load prediction and dynamic server switching can be explored. A multi-tiered,

cluster-based, multi-server solution is modelled, which provides bottleneck iden-

tification through the use of convex polytopes and also employes admission con-

trol. A workload model is also constructed from the characterisation of real data

from several different sources. Several schemes for workload prediction have

been introduced including: Last Observation (LO), Simple Algorithm (SA),

Sample Moving Average (SMA), Exponential Moving Average (EMA), Low

Pass Filter (LPF), and Autoregressive Integrated Moving Average (ARIMA). A

comparison between the forecast accuracy of these schemes in combination with

dynamic server switching is conducted using several metrics – Mean Square Er-

ror (MSE), Mean Average Percentage Error (MAPE), Mean Absolute Deviation

(MAD) and the Cumulative sum of Forecast Error (CFE) (see Chapter 4).

• We extend our models in order to address issues that arise when a single forecast-

ing model is used, as each of the forecasting schemes is shown to have its own

bias. As a result, three different meta-forecasting algorithms are developed – Ac-

tive Window Model (AWM), Voting Model (VM), and Selective Model (SM). In

the first model (AWM), data points are collected during an active window, and

a predictor which deliveries the best revenue for the last active window, is em-

ployed. All predictors are used in the voting model (VM) and a server switch is

enacted if the majority vote requires. The selective model (SM) applies the best

predictor from the last time period to the next time period (see Chapter 5).

• We further extend the Active Window Model (AWM) to a Dynamic Active Win-

dow Model (DAWM), where the size of the active window for collecting data

points for all predictors is not constant. The window size is calculated based on

4

1.3 Thesis Limitations

either a burstiness factor – the window size decreases when the workload be-

comes more bursty or based on the correlation between the requests arrival rate

and the mean arrival rate for incoming requests to the system. In addition to

this, we introduce a historical prediction model – the Workload Pattern Analysis

(WPA) model which exploits the periodicity of web traffic to predict workload

where the predicted number of requests in this model is related to the previous

number of requests found at the same time of day (e.g. the number of requests

at mid-night for a specific day is related to the number of requests at midnight

recorded during the previous week). All schemes are tested on real-world work-

loads and also workloads containing extreme events (see Chapter 6).

1.3 Thesis Limitations

There are number of important factors – system performance, resource reallocation

mechanisms, fault tolerance, and quality of service – that play a crucial role in ensur-

ing that the highest level of success in dynamic resource allocation systems are met.

Performance of the system is a significant issue that should be considered in such envi-

ronments as the ideal target for providing such model is to improve the overall system

performance.

How and when to reallocate resources between different applications hosted in an

Internet hosting centre is also important and should be studied in such environments.

This thesis focus on these two factors through the construction of theoretical models

and simulations, where the resources are reassigned between the hosted applications

in order to improve the total performance of the system.

There are several other areas that this thesis does not cover. Fault tolerance is one

of these many angles that need to be considered in such an environment. The failure

5

1.4 Thesis Overview

rate of resources could also be considering when developing new dynamic resource

allocation policies.

In this thesis, switching servers are considered only between the same tier (e.g.

servers from the application tier can be only moved to the application tier of another

resource pool). Therefore switching servers between different tiers (e.g. servers from

a web tier on a quieter pool are moved to the application tier of another pool) is work

to be considered in further research.

1.4 Thesis Overview

This chapter detailed the underlying goals, open questions and motivations for the

research presented in this dissertation. The remainder of this thesis is organised as

follows:

In Chapter 2, background research is presented. This includes different techniques that

are applied to improve system performance such as bottleneck and admission control.

Dynamic server switching polices are also introduced in order to frame the subsequent

research.

Chapter 3 presents the system model that is used in this thesis, where a multi-tiered,

cluster-based, multi-server solution is modelled, which contains bottleneck identifica-

tion through the use of convex polytopes and admission control. The impact of the

switching time on such an environment is detailed in this chapter. Experiments are

conducted using two inversely proportional workloads.

In Chapter 4, the forecasting of real-world Internet traces is combined together with

6

1.4 Thesis Overview

dynamic resources allocation. The predictors that are applied here include: Last Ob-

servation (LO), Simple Algorithm (SA), Sample Moving Average (SMA), Exponential

Moving Average (EMA), Low Pass Filter (LPF), and Autoregressive Integrated Mov-

ing Average (ARIMA). As each of these forecasting schemes has its own bias, three

different meta-forecasting models – Active Window Model (AWM), Voting Model

(VM), and Selective Model (SM) – are developed. This is documented in Chapter

5.

A new adaptive predictive model and a historical prediction model are developed in

Chapter 6. Experiments are conducted based on both real-world, highly-variable work-

load traces, and also synthetic workloads with extreme events.

Finally, Chapter 7 provides a summary of the research presented in the thesis and

presents future directions for this research.

7

Chapter 2

Background Research

An Internet application is defined as an application that is delivered to an Internet-based

user from a server over the Internet. An Internet application is often named based on

the services that are provided e.g. when the provided services to the user are related to

education or learning purposes, then the Internet application is commonly defined as

an e-learning application. When the service is related to financial services e.g. bank

transactions, then the system is called e-Banking or e-Business application. Internet

hosting centres are often used for the cost-effective hosting of such applications. In

this thesis we focus on e-Business applications and how to maximise their performance

(specifically revenue generation).

e-Business applications for on-line banking or on-line retail are typically hosted on

Internet hosting platforms. These platforms usually employ multi-tiered architectures

that are the norm in today’s enterprise web applications [36]. For multi-tiered web

applications, it is common to have three tiers including a client-facing web tier, an

application tier, and a back-end data-persistence tier. The first tier, known as a client-

facing web tier, is used for processing the HTTP requests coming from the client/user.

It can be also used for security purposes e.g. verifying a user name and password when

it is possible. This tier is also used for sending back the response to the client/user. The

8

application tier is responsible for receiving the request from the first tier and processing

it and then sending it either back to the first tier or to the third tier which is known as

a back-end data-persistence tier. This third tier is usually comprised of a relational

database management system (RDBMS).

This three-tier architecture (see Figure 2.1 [10]) improves the performance of web

applications by separating the roles between the different tiers. This means that modi-

fication of each tier can be conducted independently and they can be hosted indepen-

dently on different server architectures. Scalability is also enhanced using such archi-

tectures as more application servers can be added without affecting the performance

of the system. Further, maintaing the components of the systems can be performed

separately without adversely effecting the systems performance.

Figure 2.1: Multiple (3-tier) application architecture [10]

9

2.1 Service Level Agreements (SLAs)

2.1 Service Level Agreements (SLAs)

IT companies usually use a third party service provider in order to manage and control

the Internet resources that are provided to their customers. The relationship between

the customers and the service providers is based on a contract that explains the costs of

using the services and the penalties that should be paid when the service provider fails

to provide sufficient service to their customer. This contract is known as the Service

Level Agreement (SLA).

In other words, a SLA is defined as the level of service agreed between the client

and the hosting centre and may include performance and availability targets, with

penalties to be paid if such targets are not met. It is in the interests of the service

hosting centre to ensure that its SLAs are met so as to maximise its revenue, whilst at

the same time ensuring that its resources are well utilised and that extra capacity is not

provided without need.

2.2 Resource Management

e-Businesses are usually hosted through multiple applications and systems, each of

which is allocated with a sufficient amount of resources which are usually prescribed

during the design phase.

With the significant expansion of the Internet and its applications, organisations

are all too aware of increasing server’s capacity frequently [56]. Constantly upgrading

resources in this way is a naive solution, as increasing the server’s capacity requires

time and is costly, it is also the case that the server itself will be unavailable until the

upgrading process is done.

Clusters of servers may be used to provide high availability and reliability, as a

10

2.2 Resource Management

collection of servers may be connected via a LAN to serve such an environment [55].

The enterprise applications described in this thesis are distributed on high-availability,

high-performance clusters of servers.

In such environment when a single server is down the whole application will con-

tinue providing its services (since it is hosted on more than one server); maintenance

can be conducted on the faulty server in order to resolve this issue, while the remaining

servers continue to host application requests. Therefore, the operation of the applica-

tion will not be affected by the dropping of a single server; the performance of the

application may be impacted however.

2.2.1 Pre-defined resource allocation system (PRAS)

As stated above, the resources for different applications are usually allocated during the

design phase through the process of system capacity planning. Because of the volatile

nature of the Internet demand e.g. the visits to Internet applications may vary dramati-

cally over a specific period. In such an environment it is difficult to meet the huge and

sudden variation in Internet demand as the configuration (resources) is constant and

will never change during the deployment phase.

It has been shown that assigning a fixed number of servers to a resource pool is

sub-optimal: in many cases resources lay unused and during peak demand there are

insufficient resources to service all requests [10].

2.2.2 Dynamic resource allocation system (DRAS)

Allocating resources dynamically during the implementation phase of the system into

a more beneficial configuration, based on the variation of demand, is an attractive

approach that can be used in order to maximise system performance. That is, when

11

2.2 Resource Management

overloading occurs in one resource pool, servers are moved from another (quieter)

pool to meet the increased demand (see Figure 2.2).

Increase demand	

Figure 2.2: Dynamic Resource Allocation over Increased Demand

The switching process between the resource pools can be conducted using different

policies to ensure that the resources are reallocated into the most favourable configu-

ration. The most beneficial policy can be determined by comparing the total revenue

achieved from reassigning the new resources. In this thesis two main switching poli-

cies – the Proportional Switching Policy (PSP) and the Bottleneck-aware Switching

Policy (BSP) – are used, which were developed in [54].

These two policies (PSP and BSP) are reused again in this thesis, as the main aim of

thesis is to examine the effectiveness of the switching policies alongside the prediction

algorithms, as opposed to developing new switching policies. Added to this, these

two policies have been developed as a result of previously funded EPSRC e-Science

research (see [54] for more details), and it is our aim to evaluate these in a broader

context. The input parameters to both policies (PSP and BSP) are summarised in table

12

2.2 Resource Management

Table 2.1: Notation used in the system model
Symbol Description

N Number of service stations in QN
mi Number of servers at station i
R Number of job classes in QN

Kir Number of class-r job at station i
S ir Service time of job class-r at station i
vir Visiting ratio of job class-r at station i
φr Revenue of each class-r job
ts Server switching time
td Switching decision interval time

2.1.

2.2.3 Proportional Switching Policy

The proportional switching policy used here is shown in Algorithm 1 and was first

presented in [54]. This policy works by allocating servers at each tier proportionally

according to workload, subject to an improvement in revenue. The policy is based on

the workload as serves are reallocated between the two applications according to the

workload. After that, the obtained and lost revenue regarding to the new configurations

are computed for both applications; the servers are switched between the applications

if the obtained revenue is greater than the lost revenue, otherwise the configuration

remains the same.

2.2.4 Bottleneck-aware Switching Policy

There are some factors that may affect the system performance e.g. workload mix

and revenue contribution from individual classes of job in different pools. The second

algorithm which is used in this work is the bottleneck-aware switching policy (BSP),

which overcomes these factors in order to obtain improved performance results (see

13

2.2 Resource Management

Algorithm 1 Proportional switching policy
Input: N, mi, R, Kir, S ir, vir, φr , ts, td

Output: Server configuration
for each i in N do

m1
i /m

2
i = K1/K2

end for
calculate Vloss and Vgain using eq. 3.9 and eq. 3.10 (see Chapter 3).
if Vgain > Vloss then

do switching according to the calculations
S ir ← S

′

ir
else

server configuration remains the same
end if
return current configuration

Algorithm 2). This is a best-effort algorithm [54].

This policy works by check whether tiers in any pool is saturated or not. If so the

servers are switched from the saturated pools to the other. Switching the servers can

not solve the problem of the saturation if the both pools are saturated [54].

Algorithm 2 The bottleneck-aware switching policy
Input: Nr, mi, R, Kir, S ir, vir, φr , ts, td

Output: new configuration
while bottleneck saturation found in one pool do

if found at same tier in the other pool then
return

else
switch servers to the bottleneck tier
mi ← m

′

i and S ir ← S
′

ir
end if

end while
search configurations using Algorithm 3
return current configuration

The bottleneck identification phase works if a bottleneck is detected in either of the

pools. If a bottleneck is detected at the same tier in each pool, migrating servers at that

14

2.2 Resource Management

tier will not remove the bottleneck. If a bottleneck exists within a single pool, servers

are migrated to remove the bottleneck, subject to revenue improvement.

The local search algorithm (see Algorithm 3) works when there is no bottleneck

saturation in either pool. The algorithm uses a nested loop to evaluate server migrations

starting from the web tier to the application tier before finally evaluating the database

tier. The revenue gain is computed at each stage, with the highest revenue state being

chosen.

The input of the algorithm (Nr, mi, R, Kir, S ir, vir, φr , ts, td) are presented in table

2.1. The aim of the proposed algorithm is to find the best configuration that can be

obtained from using the nested loop technique. The algorithm starts by calculating the

utilisation of the web tier (U1
0 and U2

0), the application tier (U1
1 and U2

1), the data base

tier (U1
2 and U2

2) for both pools. The first while loop in the algorithm completes when

the utilisation of the web tier in the first pool is greater than the utilisation of the web

tier in the second pool. If so, the number of web servers in the second pool is greater

than 1, in order to ensure that there are enough servers switched between the pools.

After checking that the number of switched servers that reallocated between the pools

are more than 1, the number of the web server of the first pool is increased and the

number of web server of the second pool is decreased by one. At the same time the

service time for both pools are calculated for future process.

The second inner while loop is performed in order to deal with the switching of

the servers within the second tier in our multi-tier architecture. As in the first tier

(web tier), the comparison between the utilisation of the application tier in both pools

are conducted by making sure that the number of switched servers from the source is

greater than 1, in order to avoid the situation where no more servers could be reallo-

cated between the two pools. In the situation where the utilisation of the application

15

2.2 Resource Management

tier of the first pool is greater than that of the second pool, and also where the number

of application servers in the second pool is more than one, the number of servers in the

application tier in the first pool is increased by one and at the same time the number

of the application servers is decreased by one. Added to this, the new service time

is calculated for both pools for future processing. After dealing with application tier,

the algorithm moves to the web tier, as the servers are switched from pool two to pool

one where i) the utilisation of the web tier in the first pool is greater than that in the

second pool and ii) the number of servers in the second pool is more than one server.

In such a situation the new services times are computed for both pools. After that the

system revenues are computed using the Equation 3.9 and 3.10 (see Chapter 3 for more

details) and the current configuration is stored only when the gained revenue is greater

than the lost revenue.

The approach used in this thesis is quite different from that found in [17], where

an algorithmic approach is used to optimise a resource allocation problem where re-

sources are given in discrete units; it differs too from the graph-theoretic approach

for solving a resource allocation optimisation problem, which is used in [49] and then

developed to the case where there are multiple classes of resources in [50].

16

2.3 Performance Modelling

Algorithm 3 The configuration search algorithm
Input: Nr, mi, R, Kir, S ir, vir, φr , ts, td

Output: best configuration
Initialisation: compute U1

i ,U
2
i

while U1
0 > U2

0 do
if m2

0 > 1 then
m2

0 ↓, m1
0 ↑; S 2

0r ← S 2′
0r

while U1
1 > U2

1 do
if m2

1 > 1 then
m2

1 ↓, m1
1 ↑; S 2

1r ← S 2′
1r

while U1
2 > U2

2 do
if m2

2 > 1 then
m2

2 ↓, m1
2 ↑; S 2

2r ← S 2′
2r; compute Vloss using eq. 3.9 (see Chapter 3).

S 1
2r ← S 1′

2r; compute Vgain using eq. 3.10 (see Chapter 3).
if Vgain > Vloss then

store current configuration
end if
compute new U1

i ,U
2
i

end if
end while
similar steps for U1

2 < U2
2

S 1
1r ← S 1′

1r; compute new U1
i ,U

2
i

end if
end while
similar steps for U1

1 < U2
1

S 1
0r ← S 1′

0r; compute new U1
i ,U

2
i

end if
end while
similar steps for U1

0 < U2
0

return best configuration

2.3 Performance Modelling

As computer systems become more complex, rapidly evolving, and essential to the

conduct of business, so understanding the behaviour of these systems in order to pro-

vide value for money and performance in terms of throughput become more significant

[26]. Intuition and trend extrapolation, experimental evaluation of alternatives, and fi-

17

2.3 Performance Modelling

nally modelling are the ways that may used in order to understand the behaviour of

these computer systems. The first approach is rapid and also flexible, but it is not

accurate as it based on using the experience and insight that are difficult to acquire

and verify. The second approach which is experimental yields, excellent accuracy, but

is not easy to be implemented and is inflexible compared with the first method [26].

Finally, modelling is very flexible compared with theses two approaches, as it is an

abstraction of the system where more detail is not needed, and it is less laborious and

more flexible than experimentation. The modelling approach is also more methodi-

cal, which means that it is a more reliable approach than intuition. Modelling, then,

provides a framework for gathering, organising, evaluating, and understanding infor-

mation about a computer system [26].

2.3.1 Queuing Network Models

Queueing network models (QNM) are a tool that is used for system modelling, sys-

tem performance evaluation and system prediction, including production and manu-

facturing systems [24] and [26]. In such environments, system resources, users, and

transactions are represented by collections of service centres.

A system where multiple customers receive services simultaneously, using multiple

service centres and multiple queues and customers may move between the queues, is

widely known as queuing network [13]. In such a system, the customer moves from

one service centre to the tail of another queue or even to the same service for further

transactions. The customer may revisit a queue that has been already visited earlier.

There are some common features in queuing networks including; arrival time, ser-

vice time and waiting time. The arrival time is the time that the customer arrives at the

service centre. The service time and waiting time are defined as the duration during

18

2.3 Performance Modelling

which the customer was served and the time that had been spent until the customer

has been served by the service centre respectively. The services are often provided to

the customer as a first-in first-out approach, a last-in first-out approach, a piecemeal

approach, or a random order approach [13]. In the first case, the customer at the head

of the queue receives the service and any new customer is allocated to the tail of the

queue. Where the upcoming customer is served first, the queue is known as stack in

such approach. The customer’s needs in the third approach are divided between the

waiting mode and service mode as the customer job need not to be serviced immedi-

ately. In the random approach customers will be served in a random.

� Single-class Queuing Networks vs. Multi-class Queueing Networks:

Figure 2.3: A model of a single-server queue [46]

In single-server queues, customers arrive at the service centre and then wait in

the queue to be served if required. If the queue is empty the job will be processed

immediately. After being served by the service centre, the customer may leave the

service centre (see Figure 2.3 [46]). Single server queues can be found every where in

the real-world e.g. airports, banks, and public transport.

An attractive design to a queuing network is multi-class queuing network, where

more than one service centre is provided. In the situation where all service centres are

19

2.3 Performance Modelling

Figure 2.4: A model of a multi-server queue [46]

busy, the customer will be queued until a service centre is free (see Figure 2.4 [46]).

Various dispatching techniques can be employed in such situation, e.g. round-robin.

Round-robin is one of the simplest algorithms that can be applied in such envi-

ronments where a fixed service time is assigned to each process in circular (modulo)

order without priority. An example of using the Round-robin algorithm is when the

service time given to each job equals 100 milliseconds, and job1, for example, takes

250 milliseconds to complete. In such a situation, the round-robin scheduler suspends

job1 after 100 ms and assigns the next job the same period (100 milliseconds). job1

will be allocated service time only when the other jobs in the queue have themselves

been serviced. In other words, job1 will complete with the following allocations (first

allocation = 100 ms, second allocation = 100 ms, and the third allocation = 50 ms) in

order to complete the required job.

� Open Queueing Networks vs. Closed Queuing Netwrok:

There are two different approaches to the queueing network model, either an open

20

2.3 Performance Modelling

model or a closed model. The model of queuing network used is determined based

on the limit to the number of requests in the system [40]. That is, if the maximum

number of system requests are conserved the queuing network is a closed queuing

network. While in an open queuing network, there is no limit to the maximum number

of requests present in the system model.

In this thesis we use a multi-class closed queueing network to represent our system

of interest. The application is modelled using both /M/1/first-come-first-served and

/M/m/first-come-first-served in each station, and it is assumed that servers are clustered

at each of the three system tiers.

There are several techniques that can be used in order to solve multi-class closed

queuing networks. The first technique used to solve the closed queuing network models

is the convolution algorithms [6]. A convolution algorithm works by first computing a

set of normalisation constants and then computing the performance measures in terms

of these normalisation constants. It relates to this work as it is one of the major al-

gorithms for the solution of closed, product-form queueing networks [25]. However,

this thesis uses an alternative technique, Mean Value Analysis (MVA), which is now

one of the most popular techniques that can be used to solve closed products-form

queuing networks. In MVA the performance measure processes are computed directly

without computing the normalisation constant (which improves the efficiency of the

technique). The simplicity of MVA (developed firstly in [43]) and the accuracy of its

results are the main reasons for using MVA in this thesis (see [9] and [54] respectively).

Nowadays MVA is applied in a wide range of applications such as computer systems

and networks, financial systems, and medical applications. The MVA in this thesis is

solved based on based on Little’s law [30] and the Arrival Theorem [45] (see Section

3.3 for more details).

21

2.4 Bottleneck and Admission Control

2.4 Bottleneck and Admission Control

It is known that the resources that limit the overall performance of the system are the

congested ones, referred to as the bottlenecks [8]. A bottleneck in the system may

be shifted between tiers according to changes in the workload mix and the number of

jobs in the system [3]. It is clear that bottleneck identification should be one of the

first steps in any performance study; any system upgrade which does not remove the

bottleneck(s) will have no impact on the system performance at high loads [35].

A significant amount of research has been done trying to solve the problem of

bottlenecks [3] [15] [27] [8] [22]. The work in [3] [15] [27] studies bottleneck identifi-

cation for multi-class closed product-form queuing networks for an infinite population,

while [8] and [22] study a large population.

The work in [54] uses the convex polytopes approach to identify the bottleneck

in two different pools for their chosen configuration using two classes of jobs (gold

and silver). The work uses the convex polytopes approach where the set of potential

bottlenecks in a network with one thousand servers, two different server pools and fifty

customer classes, can be computed in just a few seconds.

The work in [8] presents a technique for identifying the bottlenecks of multi-class

queueing networks. This technique is based on the theory of convex polyhedra. The

technique assumes that R = 1, 2, 3, ...,R are the set of customer classes and M =

1,2,3,...,M the set of stations in the proposed system. In such a situation Lir = Vir ×S ir,

where the station, class, average loading, visits to the station, and service requirements

are represented by i, r, Lir,Vir, andS ir respectively. This can be collected in the loading

matrix L = Lir.

22

2.4 Bottleneck and Admission Control

L =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

20 80

65 60

90 30

25 65

40 45

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

L21 = 65 and L22 = 60 are the loadings imposed on station 2 by class 1 and class 2

customers, respectively. The technique also assumes that the Lir always considers pos-

itive quantities, and L is non-singular [8]. Figure 2.5 illustrates the projection pro j(L)

of matrix L, where the projection of station 3 for example can be described as follow;

pro j(L3) = (0, 30), (90, 0), (0, 0).

Figure 2.5: Service demands of matrix L and the set of its projections pro j(L) in the
loadings space [8]

The characteristic polytope of a queueing network with loading matrix L is the con-

vex polytope TL = conv(L ∪ pro j(L)) [8]. The characteristic polytope of the proposed

23

2.4 Bottleneck and Admission Control

matrix is shown in Figure 2.6.

Figure 2.6: Characteristic polytope TL of the two-class loading matrix L [8]

It has been proved in [8], that all potential bottlenecks are to be found on ϑT L (see

Figure 2.6).

Figure 2.7 shows example bottleneck identification results using convex polytopes

for a chosen server pool configuration. We see that when the percentage of gold class

jobs is less than 46.2%, the web server tier is the bottleneck; when it is between 46.2%

and 61.5%, the system enters a crossover region, where the bottleneck changes; when

the percentage of gold class jobs in pool 1 exceeds 61.5%, the application server tier

becomes the bottleneck. Thus it is clear that bottleneck identification should be one of

the first steps in any performance study; any system upgrade which does not remove

the bottleneck(s) will have no impact on the system performance at high loads, see

[35].

Most e-Business applications are subject to enormous variations in workload de-

mand [10]. The traffic to such sites becomes too high e.g. three or four times greater

24

2.4 Bottleneck and Admission Control

Figure 2.7: Bottleneck identification using convex polytopes [54]

than the average traffic and the server capacity is failed in serving the active customers

[41].

System overloading can cause exceptionally long response times for requests or

even errors, caused by the timing out of client requests and connections being dropped

by the overloaded application. At the same time, the throughput of the system would

decrease significantly [12]. A classic example of this was when the normally well-

provisioned Amazon.com site suffered a forty minute downtime due to an overload

during the popular holiday season in November 2000 (see [51]). Another example was

the failure of the CNN.com website after the terrorist attacks on the United States on

September 11, 2001 [16]. As a result of these (and other) case studies, and subsequent

research, admission control is applied in order to deal with system overloading.

The work in [41] has developed resource management schemes in order to improve

the revenue throughput of Internet application. Resource management policies for e-

commerce sites as stated in [41] should be based on the behaviour of active customers

(e.g. as are they navigate through the site, or going from browsing to searching, or

selecting items, or adding them to their shopping carts and paying). In other words,

25

2.5 Fundamental Laws

the resources should be reassigned based on the importance of the customer, that is

the customer who is about to buy from the sites should be given more priority than the

customer who is still browsing through the sites. Added to this, customers’ priorities

change dynamically based on the following aspects; i) the customer profiles, ii) the

length of the current session length, iii) the amount of money accumulated in the cus-

tomers shopping cart, and iv) the states visited in the customer behaviour model graph

(CBMG) using three priority classes – high, medium, and low – where the customers

transition between these three priority classes based on the previous proposed aspects.

A simple admission control policy has been developed by [54]. It works by drop-

ping less valuable requests when the response time exceeds a threshold, and therefore

maintaining the number of concurrent jobs in the system at an appropriate level. This

policy has been applied in this thesis in order to maintain the number of requests access

to the proposed system.

The scheme that used in this thesis is based on assigning priorities to requests and

ensuring that less important requests are rejected when the system is overloaded .

2.5 Fundamental Laws

The system in this thesis is modelled using a multi-class closed queuing network to

compute the various performance metrics. The advantage of using an analytical model

is that we can easily capture the different performance metrics, and identify potential

bottlenecks without running the actual system. The model can also react to parameter

changes when the application is running (e.g. from the monitoring tools or system

logs) and make dynamic server switching decisions to optimise pre-defined perfor-

mance metrics [54]. The different mathematical rules that are used in this thesis will

be presented in this section, including: Utilization Law, Force Flow Law, Service De-

26

2.5 Fundamental Laws

mand Law, Little’s Law, and Response Time Law.

In these definitions:

T : is the length of time the system is monitored;

B: is the length of time that the resource is busy;

C: is the total number of completed requests.

2.5.1 Utilization Law

The utilization U in a single resource i is defined as the fraction of the time that the

resource is busy (Ui = Bi/T); the throughput X of the resource i can be obtained

after calculating the total number of completed jobs C during a specific period (Xi =

C/T). The average service time S is computed by dividing the length of time that

the resource is busy (B) and the number of requests that are already completed by the

selected resource (C). After computing the previous three parameters (the throughput,

the utilization, and the service time), the first fundamental law, which is known as the

UtilizationLaw, can be computed by multiplying the throughput Xi of the resource i

and the average service time at that resource.

Ui = Xi × S i (2.1)

As an example, suppose that a network segment transmits 100 packets each second

and the transmission time of each of these packets is equal to 1.5 milliseconds. In such

a situation and by using the utilization law, the utilization of that segment is 15% and

it is computed as follows; 100 × 0.0015 = 0.15.

27

2.5 Fundamental Laws

2.5.2 Forced Flow Law

The ForceFlowLaw focuses on the average number of visits by a request to the re-

source i, which is known as Vi, and the average number of requests that have been

completed within a given period X0. Based on these two parameters the throughput Xi

of the resource i can be obtained.

Xi = Vi × X0 (2.2)

Suppose that there 3,600 transactions were executed within half an hour and each

of these transaction perform 2 I/O operations on average on the database server.

The utilization of the disk can be calculated based on the Force Flow Law and the

Utilization Law respectively. First of all the Force Flow Law is applied in order to

compute the total throughput, Xi = Vi × X0, where (X0 = 3600/1800 = 2tps) and

Vi is given (it is equal to 2). Therefore by using the Force Flow Law, the throughput

(Xi = 2 × 2 = 4tps). After that the Utilization Law can be used to calculated the

utilization of the database disk as follows; Ui = Xi×S i = 4×0.02 = 0.08 = 8%, where

each disk I/O takes on average 20 milliseconds to be executed.

2.5.3 Service Demand Law

The third fundamental law is the Service Demand Law Di, which is defined as the total

time that the request spends in service at resource i. It is can be computed by using the

system throughput Vi and the utilization Ui. The Service Demand Law is related to the

Force Flow Law and Utilization Law.

Di = Vi × S i = (Xi/X0) × (Ui/Xi) = Ui/X0 (2.3)

28

2.5 Fundamental Laws

The Service Demand Law can be applied to compute the service demand of the

data base disk that is used in the previous example, as Di = (Ui/X0) = (0.08/2) = 0.04

sec.

2.5.4 Little’s Law

Little’s Law focuses on the relationship between the average time spent in the system

R and the throughput of that system X, which produces the average number of requests

in the system N.

N = X × R (2.4)

By applying Little’s Law, the average response time R can be calculated for the

server that was monitored. For example, suppose that in 1 hour where there were

14,400 I/O operations executed during the monitoring period. As the throughput of

the server X is equal to 4 request per second (14400 / 3600 = 4), Little’s Law can be

applied in order to compute the response time of the servers where the average number

of active requests was found to be 1 request; R = N/X = 1/4 = 0.25.

2.5.5 Response Time Law

The simple relationship between the parameters – the average response time (R), the

number of requests from the sources (M), the throughput of the requests processing

(X0), and the average time elapsed between the reply from the request and the sub-

mission of the new requests by the same source (Z) – is called the Response Time

Law.

In order to compute the average number of requests being processed by the system,

Little’s Law is used (N = R × X0). The second step is to compute the total number of

29

2.5 Fundamental Laws

requests in the system (M), by adding the average number of requests being processed

(N) and the average number of requests in the (think state) M, (M = N + M). Based

on this and also Little’s Law, M = N + M = (R × X0) + (Z × X0) = (R + Z) × X0, the

Response Time Law can be obtained using the following equations;

R = (M/X0) − (Z). (2.5)

An example of using the Response Time Law is when the average think time of a

web service needs to be computed. Consider a web service receives on average 7,200

requests each hour, from 200 different customers, and the average response time was

measured as 2.5 seconds. In such situations and in order to calculate the average think

time (Z), the Response Time Law can be applied here to compute such a parameter as

follows; (Z = M/X0 − R = (200/(7200/3600)) − 2.5 = (200/2) − 2.5 = 97.5seconds).

This means that the average time since any response to a reply is received and a new

request is submitted by the customer is equal to 97.5 seconds.

Table 2.2 summarises all the fundamental performance laws relevant to this thesis.

Table 2.2: Fundamental Performance Laws
Law Equation

Utilization Law Ui = Xi × S i

Forced Flow Law Xi = Vi × X0

Service Demand Law Di = Vi × S i = Ui/X0

Little’s Law N = X × R

Response Time Law R = (M/X0) − (Z)

30

2.6 Solving Multi-Class Closed Queueing Networks

2.6 Solving Multi-Class Closed Queueing Networks

Queuing networks can be used to model typical multi-tiered enterprise systems. In

such situations, multi-class queuing networks are the ideal solution. A closed queuing

network is applied in order to represent the enterprise system, as there is a limit to

the number of simultaneous customers logged into the enterprise system at any one

time [39]. The ability to compute performance metrics, identify potential bottlenecks

and, importantly, investigate a wide variety of hypothetical scenarios, without running

the actual system are considerable benefits of applying the analytical models. As a

result, in this thesis the applications that have been modelling using these analytical

models. One should thus envisage such a model running alongside a real system,

where the model can react to parameter changes as the application is running (e.g.

from monitoring tools or system logs) and making dynamic configuration decisions to

optimise pre-defined performance metrics [54].

We use a multi-class closed queueing network to represent our system of interest,

where C, WS, AS, and DS represent the Client, Web Server, Application Server, and

Database Server respectively. The application is modelled using both -/M/1 first-come-

first-served and -/M/m- first-come-first-served in each station, and it is assumed that

servers are clustered at each tier.

As stated previous, there are several approches that can be used in order to solve

multi-class closed queuing networks including; convolution algorithms (CA) [6], and

mean value analysis (MVA) [5].

31

2.6 Solving Multi-Class Closed Queueing Networks

2.6.1 Mean Value Analysis

The traditional technique that used in order to solve the queuing networks (QN) was

developed to formulate a system of algebraic equations for the joint probability dis-

tribution of the vector-valued system state by normalizing the product terms to form

a proper probability distribution [43]. This process which is based on the normali-

sation to product terms (e.g. mean queue sizes, meaning waiting times, utilizations,

and throughputs) has been proved to be computationally limited in the case of net-

works with closed routing chains. The mean value analysis (MVA) (it was developed

by [43]) on the other hand is defined as a tool used to measure the mean performance

measures in closed queueing models is based on the relation between the mean waiting

time and the mean queue size of a system with one customer less. This mean-value

equations, augmented by Little’s equation can be easily solved numerically with no

need to compute normalization constants.

The developed algorithms (MVA) which is used in this work is simple and avoid

overflow/underflow problems which may arise with the other algorithms [43]. Added

to this the MVA is considerably faster in the case of multi-servers. The accuracy of the

MVA results [54] and its simplicity compared with convolution algorithms [9] plus the

previous reasons are the main reasons for using MVA in this thesis.

Nowadays MVA is applied in a wide range of applications such as computer sys-

tems, computer networks, financial systems, and medical applications. The MVA in

this thesis is solved based on based on Little’s law [30] and the Arrival Theorem [45].

MVA computes the model’s performance of the queuing network model based on re-

cursively using three different equations including; the residence time equation, the

throughput equation, and the queue length equation [40].

32

2.6 Solving Multi-Class Closed Queueing Networks

It is possible to solve the queuing networks using Approximation Mean Value

Analysis (AMVA), which can solve the queueing network faster than MVA. The ac-

curacy of such algorithm however has lots of concerns. Because of this, the MVA

approach has been applied in this thesis to solve the multi-class closed queuing net-

works.

The description of the system model that applied in this thesis based on the mean

value analysis (MVA) is explained in details including its equations in Chapter 3 in

section 3.3.1.

Additional background research is discussed at the beginning of each of the fol-

lowing subsequent chapters. The thesis is structured in this way to ensure that the

appropriate background research is presented in the context of of the four research

contributions that this thesis makes (see Sections 3.2, 4.2, 5.2, and 6.2)

33

Chapter 3

Impact of Server Allocation Time on
Dynamic Server Switching

3.1 Introduction

Internet hosting centres are often used for the cost-effective hosting of enterprise ap-

plications. Typically, these enterprise applications employ a multi-tier architecture,

which provides a clear separation of roles between the tiers. Commonly a multi-tier

architecture consists of three tiers; a client-facing web tier, an application tier for the

application logic and a data persistence tier that is usually comprised of a relational

database management system (RDBMS). At each tier servers may be clustered to pro-

vide high-availability and improve performance. An Internet hosting centre may host

many multi-tier applications for its clients, each of which will have a separate service

level agreement (SLA).

Workloads for internet services have been shown to be bursty with large variations

in demand [1], [4], and [57]. When pre-defined resource allocation policies are in use

they may not be able to handle large surges in traffic, leading to SLA violations and

reduced revenues. Dynamic resource allocation systems have been shown to provide

a significant increase in revenue in such environments by reallocating servers into a

34

3.1 Introduction

more profitable configuration [54].

There are several considerations in a dynamic resource allocation system including

the decision interval, which is the time taken between evaluations of the policy, and the

server reallocation time, which is the time taken to reallocate servers. In this chapter

the impact of the time taken to reallocate servers between applications (switching time)

on the system’s performance is considered alongside the different switching servers

policies.

3.1.1 Chapter Contributions

The specific contributions of this chapter can be summarised as follows:

• Evaluating the effects of switching time on dynamic resource allocation in order

to discover mechanisms for selecting system configurations which best match

the switching interval;

• Examining the impact of the combination of switching policies and switching

time on the total performance of the system used in this work;

• Studying the impact of applying the admission control technique (see chapter 2

section 2.4 for more details about the admission control technique) on the devel-

oped system and to compare its performance with that obtained from applying

no admission control.

• The results are based on five different workloads, three of them are obtained

from real-world workload traces from several sources, including from the San

Diego Supercomputer Centre, from the ClarkNet Internet access provider for

the Metro Baltimore-Washington DC area and, from the NASA Kennedy Space

35

3.2 Additional Related Work

Center web-server in Florida, and the rest of the workloads are generated from

two synthetic workloads in order to ensure consistent and improved results.

3.1.2 Chapter Structure

This chapter is structured as follows; Section 3.2 reviews the additional related work

for this chapter, Section 3.3 describes the model of the system and the revenue func-

tion used in order to compute the system performance. Sections 3.4 and 3.5 present

the description of the experimental setup and results respectively. Finally Section 3.6

summarises the chapter.

3.2 Additional Related Work

Revenue maximisation is a key goal of many dynamic resource allocation systems. In

[41] the authors use priority queues to offer differentiated services to different classes

of request to optimise company revenue. Different priorities are assigned to differed

requests based upon their contributions to the revenue.

The work in [31] focussed on maximising profits of best-effort requests when com-

bined with requests requiring a specific quality of service (QoS) in a web farm. In

[31] it is assumed that arrival rates of requests are static, whilst the arrival rates in our

work are dynamic. The authors attempt in [21] to maximise revenue by partitioning

servers into logical pools and switching servers at runtime. We consider switching in a

multi-tier (3 tiers) environment, where the work in [21] just consider the switching on

the first tier (Web Server).

Chapter 2 presents the two server switching policies used here; the proportional

switching policy (PSP) and the bottleneck-aware switching policy (BSP). This chapter

examines the impact of the server reallocation time on the revenue achieved by the

36

3.3 Modelling of Multi-tiered Internet Services and Revenue Functions

system.

A number of researchers have studied bottleneck identification (e.g. [29]) for multi-

class closed product-form queueing networks where there is no limit to growth. We

employ the work found in [8] and [54] (as part of our collaboration with HP Labs, IBM

and the UK National Business to Business Centre), where convex polytopes are used

for bottleneck identification.

Admission control is applied in order to deal with system overloading. This scheme

is based on assigning priorities to requests and ensuring that less important requests are

rejected when the system is overloaded (see chapter 2).

3.3 Modelling of Multi-tiered Internet Services and Rev-
enue Functions

3.3.1 The System Model

A multi-tiered Internet service can be modelled using a multi-class closed queuing

network [57][44]. The closed queuing network model used here is illustrated in Figure

3.1, as commonly found, a multi-tier architecture consists of three servers (tiers); a

client-facing web server (WS), which is responsible for receiving the requests from

the client (C) and sending the response back, an application server (AS) used for the

application logic, and a data-persistence tier that is usually comprised of a relational

database management system (DS).

In a multi-class closed queuing network S ir represents the service time which is

defined as the average time spent by a class-r job during a single visit to station i and

vir symbolizes the visiting ratio of class-r jobs to station i (the notation used in the

system model is summarised in Table 4.1).

Service demand Dir is defined as the sum of the service times at a resource over

37

3.3 Modelling of Multi-tiered Internet Services and Revenue Functions

Figure 3.1: A model of a typical configuration of a cluster based multi-tiered Internet
service. C represents customer machines; WS, AS and DS represent web servers,
application servers and database servers, respectively.

all visits to that resource during the execution of a transaction or request (Dir = S ir ·

vir) [29]. The total population of the network (K) is defined as the total of the total

population of customers of class r (Kr):

K =

R∑
r=1

Kr (3.1)

In modern enterprise systems, servers are often clustered together so both -/M/1-

FCFS and -/M/m-FCFS in each station should be measured as a consequence of using

a cluster of servers in each tier in our model. The response time of a class-r job at

station i can be computed as follows [5],

T ir(k) =

Dir

[
1 +

∑R
r=1 Kir (k − 1r)

]
, mi = 1

Dir

mi

[
1 +

∑R
r=1 Kir (k − 1r)

+
∑mi−2

j=0 (mi − j − 1) πi (j | k − 1r)
]
, mi > 1

(3.2)

Where,

38

3.3 Modelling of Multi-tiered Internet Services and Revenue Functions

Table 3.1: Notation used in the system model
Symbol Description

S ir Service time of job class-r at station i
vir Visiting ratio of job class-r at station i
N Number of service stations in QN
K Number of jobs in QN
R Number of job classes in QN

Kir Number of class-r job at station i
mi Number of servers at station i
φr Revenue of each class-r job
πi Marginal probability at centre i
T System response time
Dr Deadline for class-r jobs
Er Exit time for class-r jobs
Pr Probability that class-r job stays
Xr Class-r throughput before switching
X
′

r Class-r throughput after switching
Ui Utilisation at station i
ts Server switching time
td Switching decision interval time

• there are k jobs in the queuing network, for i = 1, . . . , N and r = 1, . . . , R.

• (k - 1r) = (k1, . . . , kr - 1, . . . ,KR) is the population vector with one class-r job

less in the system.

The total system response time for the system Ti(k) is the sum of response time for

each tier:

Ti(k) =

R∑
r=1

Tir(k) (3.3)

For the case of multi-server nodes (mi > 1), it is necessary to compute the marginal

probabilities. The marginal probability that there are j jobs (j = 1, . . . , (mi - 1)) at the

39

3.3 Modelling of Multi-tiered Internet Services and Revenue Functions

station i, given that the network is in state k, is given by [5],

πi (j | k) =
1
j

 R∑
r=1

vir

S ir
Xr (k) πi (j − 1 | k − 1r)

 (3.4)

The throughput of class-r jobs can be calculated using Little’s law [29] by dividing

the total population of customers of class-r Kr by the sum of the visiting ratio vir

multiplied by the sum of the mean response time of each tier,

Xr (k) =
kr∑N

i=1 virT ir (k)
(3.5)

By applying the Little’s Law again with the Force Flow Law [29], the mean queue

length Kir is obtained by multiplying the throughput Xr(k), the mean response time

Tir(k), and the visiting ratio vir.

Kir (k) = Xr (k) · T ir (k) · vir (3.6)

Where, Kir (0, 0 . . . , 0) = 0, πi (0 — 0) = 1, and πi (j — 0) = 0. Then the system

response time, throughput and mean queue length in each tier can be calculated after

K iterations.

In multi-class product form queuing networks, per-class station utilisation can be

computed using the following equation [32],

Uir(k) =
krDir∑

i Dir[1 + Ki(k − 1r)]
(3.7)

The total station utilisation Ui(k) is the sum of per-class station utilisation, (Ui(k) =∑R
r=1 Uir(k)).

3.3.2 Modelling the Revenue Function

A session is defined as a sequence of requests of different types made by a single cus-

tomer during a single visit to a site [37]. An Internet hosting centre supports many

40

3.3 Modelling of Multi-tiered Internet Services and Revenue Functions

multi-tier applications for its clients, each of which will have separate service level

agreements (SLAs) as introduced in Chapter 2. The SLA defines the level of service

agreed between the client and the hosting centre and may include performance and

availability targets, with penalties to be paid if such targets are not met. It is in the

interests of the service hosting centre to ensure that its SLAs are met so that it can

maximise its revenue, whilst ensuring that its resources are well utilised. In other

words, the maximum revenue is obtained when a client request is met within the dead-

line, while revenue obtained from requests which are not served within the deadline

decrease linearly to zero, at which point the request exits the system.

Equation 3.8 explains how the probability function of the request execution in the

system (which is donated by P(Tr)) works in our model where r, Dr, Tr, and Er rep-

resent the request and its deadline, response time, and dropped time from the system

respectively.

P(Tr) =

1, Tr < Dr
Tr − Dr

Er − Dr
, Dr ≤ Tr ≤ Er

0, Tr > Er

(3.8)

The first part of Equation 3.8 states that the full revenue will be contributed by the

request if it is processed before the deadline Dr. It is clear from the second part of the

equation that the gained revenue by the request is calculated by dividing the difference

between the request response time Tr and its deadline Dr by the difference between

request dropped time from the system Er and its deadline Dr. The request gains no

revenue when its response time Tr is greater than the time at which the request exits

the system Er.

With respect to the probability of the request execution, the lost V i
loss and gained

V i
gain revenue are calculated with the assumption that the servers are switched from

41

3.4 Experimental Setup and The Workload

pool i to pool j using the Equations 3.9 and 3.10 respectively [54].

Note that because the servers are being switched, they can not be used by both

pools i and j during the switching process and the time that the migration takes cannot

be neglected. The revenue gain from the switching process is calculated during the

switching decision interval time t
′

d as shown in Equation 3.10 where the switching

decision interval time is greater than the switching time.

V i
loss =

R∑
r=1

Xi
r(k

i)φi
rP(Tr)td −

R∑
r=1

Xi′
r (ki)φi

rP(Tr)td (3.9)

V j
gain =

R∑
r=1

X j′
r (k j)φ j

rP(Tr)(td − ts) −
R∑

r=1

X j
r (k j)φ j

rP(Tr)(td − ts) (3.10)

After calculating the achieved and lost revenue by using Equations 3.9 and 3.10,

servers may be switched between the pools. In our model servers are only switched

between the same tiers, and only when the revenue gain is greater than the revenue

lost.

3.4 Experimental Setup and The Workload

3.4.1 Experimental Setup

In the experiments in this chapter two applications are modelled as running on two log-

ical pools. Each of these is multi-tiered, with each tier comprising a cluster of servers.

The service time S ir, the visiting ratio vir and the remaining experimental parameters

are based on realistic (i.e. sampled) values, or from those supplied in supporting liter-

ature [54]. Table 3.2 summarises the main experimental parameters which are used in

this chapter.

The focus of the experimentation is to investigate how the time taken to reallocate

42

3.4 Experimental Setup and The Workload

Table 3.2: The main experimental parameters.
Pool 1 Pool 2

Silver Gold Gold Silver
Service

time
(sec)

WS 0.07 0.1 0.05 0.025
AS 0.03125 0.1125 0.01 0.06
DS 0.05 0.025 0.0375 0.025

Visiting
ratio

WS 1.0 0.6 1.0 0.8
AS 1.6 0.8 2.0 1.0
DS 1.2 0.8 1.6 1.6

Deadline (sec) 20 15 6 8
Exit point (sec) 30 20 10 12
Revenue unit 2 10 20 4

Number
of

servers

WS 4 5
AS 10 15
DS 2 3

Figure 3.2: The First Inversely Proportional Workload

servers affects the revenue derived from the system. We have fixed the decision interval

for the policies at 60 seconds, and experimented with reallocation times of 5 to 55

seconds.

43

3.4 Experimental Setup and The Workload

Figure 3.3: The Second Inversely Proportional Workload

3.4.2 The Workload

The workload is defined as the set of all inputs the system receives from its environment

during any given period of time [40]. In this study we use two classes of workload:

synthetic and real-world.

• Synthetic - It is not uncommon in studies such as these to use synthetic work-

loads. This is done because it allows system architects (such as ourselves) to

observe the resulting system behaviour as a result of one specific workload char-

acteristic (as opposed to a real-world work stream that contains many different

characteristics). Here we use two inversely proportional workloads, Figures 3.2

and 3.3, whose workloads switch over time. We use the synthetic workload to

illustrate the properties of our system with respect to this single workload charac-

teristic. Clearly, this captures only one case, and can not be assumed to represent

44

3.4 Experimental Setup and The Workload

sufficient testing, thus we also run the experiments on additional real-world test

cases. The synthetic workload is however useful for observing cause and effect,

and for tuning the sensitivity of the system before it is deployed for real.

• Real-world - Three real-world Internet traces are also used. These contain two

days, two weeks, and two months worth of HTTP requests, where the first one

is generated from two real-world Internet traces containing 76,086 requests in

total and each of which contains a days worth of HTTP requests to the EPA

WWW server located at Research Triangle Park, NC and the SDSC WWW

server located at the San Diego Supercomputer Center in California respec-

tively [27], and the second real-world Internet traces has been collected from

ClarkNet WWW server which is a full Internet access provider for the Metro

Baltimore-Washington DC area [2]. This workload contains 3,328,587 requests

issued to the server during the period of two weeks, while the third real-world

workload used in this research is obtained from the NASA Kennedy Space Cen-

ter web-server in Florida [2]. This trace contain 3,461,612 requests spanning

two months.

In typical fashion (see also [40]) we characterise this workload to form a workload

model, which can then be used as the input to our system model. We consider a typical

Web farm as in [52], which records the hypertext transfer protocol (HTTP) service

requests and aggregates them over small time intervals of length ∆ > 0 to obtain a time

series. In this work the period of 5 minutes has been chosen to represent the interval

time over one day, two weeks, and one month periods giving a total of 288 intervals in

a day (see example in [52]).

45

3.5 Experimental Results

0

100

200

300

400

500

600

700

800

0 15 30 45 60 75

N
o.

of
R

eq
ue

st
s

Time Periods (mins)

Pool1
Pool2

Figure 3.4: A sample of the total requests in the real-world workload for both applica-
tion pools

A sample of the real-world Internet traces (the traces that obtained from the NASA

Kennedy Space Center web-server in Florida) for the two provided applications is

shown in Figure 3.4.

3.5 Experimental Results

Experiments are conducted over five different workloads including; two inversely pro-

portional workloads and three Internet Traces its results are described in the following

sections.

In the presentation of results we considered adding a statistical assessment of

whether the observed results reflect a pattern of behaviour or are simply a result of

chance. That is, are the results simply observed or a result of experimental error, or are

they statistically significant. While this might seem a sensible course of analysis, we

note that previous research in this area has not adopted this approach (see [18], [19],

46

3.5 Experimental Results

[40], and [54]); we discuss here why this is the case, and therefore justify our own

reasons for not introducing tests of significance.

Consider two server pools A and B, who themselves are responsible for generating

revenue Ar and Br (the system revenue is simply Ar+Br). Let us assume (for simplicity)

that work enters the system via two work streams WS a and WS b, the first feeding server

pool A, the second feeding server pool B. If a job arrives in WS a, and there is server

capacity in A to service that request, then the job is passed to a free server in A; if there

is no server capacity in A then the job is queued. WS b operates in a similar fashion.

Server pools A and B will work to capacity, and the job queue to each will depend

on that capacity, the job arrival rate and also the job distribution. Each of these three

criteria impact the revenue generated (Ar and Br). Thus if the capacity in each server

pool is fixed, and we assume each job is of equal size, system revenue will depend on

the job arrival rate and job distribution in WS a and WS b. As observed therefore, the

revenue resulting from a system of this type will be dependent on the workload. The

reader will recognise that a detailed exploration of this example is governed by the

mathematical properties of queueing theory [47], and that while this has limitations

(e.g. infinite queue capacity, infinite customers), these models hold up in reality as the

wealth of literature on this topic demonstrates.

Switching servers between pools A and B clearly impacts Ar and Br, as the capacity

of each server pool changes. Thus the system revenue may also change as servers

are switched, but this is again dependent on the properties of WS a and WS b. Given

that WS a, WS b and the server capacity in A and B are deterministic, any results are

reproducible (both mathematically and in practice). We therefore choose to document

the percentage gain (or loss) of system revenue as different server switching schemes

are employed over different workloads (as is the case with previous literature in this

47

3.5 Experimental Results

 166

 168

 170

 172

 174

 176

 178

 0 10 20 30 40 50 60

T
ot

al
 R

ev
en

ue

Switching Time (s)

NSP
PSP no A.C.

PSP with A.C.

Figure 3.5: Revenue Generated by the Proportional Switching Policy (PSP) Over
Workload One at Different Reallocation Times

area).

3.5.1 Experiment One

The revenue generation from applying the two switching policies – PSP and BSP – over

the first inversely proportional workload are shown in Figures 3.5 and 3.6 respectively.

Figure 3.5 shows the results of the proportional switching policy over the first

workload. The policy demonstrates a decrease in revenue, as the reallocation time

increases from 5 to 20 seconds. After that there is a significant reduction in revenue,

which then increases dramatically as the reallocation time increases. The behaviour of

the policy changes throughout the experiment, with the policy migrating many servers

when the reallocation time is small and fewer as the time increases.

The proportional switching policy does not demonstrate an improvement in rev-

enue over the pre-defined allocation at all reallocation durations, with just one excep-

48

3.5 Experimental Results

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60

T
ot

al
 R

ev
en

ue

Switching Time (s)

NSP
BSP no A.C.

BSP with A.C.

Figure 3.6: Revenue Generated by the Bottleneck Aware Switching Policy (BSP) Over
Workload One at Different Reallocation Times

tion when the switching time equal to 55. The use of admission control has no effect

on the revenue generated by the policy.

The number of switches servers begins with 6 switches when the switching time

is 5 second and remain the same when the switching time changes to be 10, 15, and

20 seconds. After that the number of switches servers dropped up to just 2 switches

when the switches time are 25 and 30 seconds. It increase from two switches to be 3

switches when the switching time are 35, 40, 45, 50, and 55 seconds. This behaviour of

the switches servers happens when the PSP is applied with and without the admission

control (AC).

The bottleneck-aware switching policy (BSP) is the best performing policy over

workload one (see Figure 3.6). It provides a significant improvement in the revenue

generated by the system. The improvement decreases linearly when the switching

times are from 5 seconds to 30 seconds, where there is a drop at 35 seconds, before the

49

3.5 Experimental Results

revenue decreases linearly again. The large drop in revenue at 35 seconds is caused by

an increase in the number of server migrations from 12 at a 30 second duration to 15

at a 35 second duration.

Using the admission control (AC) policy enhances the revenue generated at all

reallocation times, however the enhancement is reduced when the reallocation time

increases beyond 30 seconds.

The number of switches servers when the BSP is applied along side AC and without

AC rises with the increase of the switching time. It increases from 8 and 12 switches

when the switching time is 5 to reach a 13 switches for both scenario with and without

AC.

3.5.2 Experiment Two

Figures 3.7 and 3.8 show the result obtained from applying the two switching policies

– PSP and BSP – over the second workload respectively.

The PSP (see Figure 3.7) performs better than a pre-defined allocation at all inter-

vals over the second workload. In this scenario the use of admission control has no

impact on the revenue obtained through the use of the PSP policy.

The results from applying the second switching policy (BSP) over the second work-

load are shown in Figure 3.8. This policy most clearly shows a linear relationship

between the reallocation time and the revenue generated. The linear relationship is

preserved with or without the use of the admission control policy. The policy demon-

strated significant improvements in revenue over a pre-defined allocated system. Ap-

plying the AC policy generates less revenue comparing the that from applying no AC.

It has been outlined how aggressive admission control negatively affects a system over

light load (see [54]).

50

3.5 Experimental Results

 175

 180

 185

 190

 195

 200

 205

 210

 215

 0 10 20 30 40 50 60

T
ot

al
 R

ev
en

ue

Switching Time (s)

NSP
PSP no A.C.

PSP with A.C.

Figure 3.7: Revenue Generated by the Proportional Switching Policy (PSP) Over
Workload Two at Different Reallocation Times

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 0 10 20 30 40 50 60

T
ot

al
 R

ev
en

ue

Switching Time (s)

NSP
BSP no A.C.

BSP with A.C.

Figure 3.8: Revenue Generated by the Bottleneck Aware Switching Policy (BSP) Over
Workload Two at Different Reallocation Times

51

3.5 Experimental Results

1200

1250

1300

1350

1400

1450

 0 10
 20

 30
 40

 50
 60

T
ot

al
 R

ev
en

ue
 (

x1
0^

3)

Switching Time (sec)

NSP
 no A.C.

 with A.C.

Figure 3.9: Revenue Generated by the Proportional Switching Policy (PSP) Over
Workload Three at Different Reallocation Times

The number of switches servers when the PSP is applied with and without AC

remains the same (just one single switches) with the increase of the switching times.

The same behaviour happens when the experiments are conducted over the seconds

workload with and without the admission control (AC) but the change is on the number

of switches (there are three different switches).

3.5.3 Experiment Three

The results from applying the PSP and BSP over the third workload are shown in

Figures 3.9 and 3.10 respectively. The workload that used in this experiment is is gen-

erated from two real-world Internet traces containing 76,086 requests in total and each

of which contains a days worth of HTTP requests to the EPA WWW server located

at Research Triangle Park, NC and the SDSC WWW server located at the San Diego

Supercomputer Center in California respectively.

52

3.5 Experimental Results

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

 0 10
 20

 30
 40

 50
 60

T
ot

al
 R

ev
en

ue
 (

x1
0^

3)

Switching Time (sec)

NSP
 no A.C.

 with A.C.

Figure 3.10: Revenue Generated by the Bottleneck Aware Switching Policy (BSP)
Over Workload Three at Different Reallocation Times

Figure 3.9 shows that the system revenue can be improved by up to 16.4% when

the switching time is 20 seconds when the PSP (either it is applied with or without

AC) is applied over the third workload. There is a significant reduction in the system

revenue when the switching time is selected to be 25 seconds, after which the revenue

starts to drop until it reaches the lowest value when the switching time is 55 seconds

(5.5% improvement with or without AC). The number of servers switches when PSP

is applied over the third workload (either with or without AC) starts with the value of

18 switches when the switching time is 5 and then decreases until it reaches 14 when

the switching time of 20 seconds is used, then drops to 13 when the switching times

are 25, 30, 35, 40, 45, and 50 seconds.

Figure 3.10 shows that the system revenue is decreased by %6.9 and 7.3%, and

8.2% when the wrong switching times are selected (25, 30, 35 seconds) when BSP is

applied without admission control. The number of server switches in this situation is

53

3.5 Experimental Results

16, 16 and 14 respectively.

In contrast, applying the admission control always guarantees a positive improve-

ment in the system revenue when it is applied alongside BSP over the third workload.

The minimum improvement that can be obtained when applying BSP with AC over

the third workload is 58.5%, when the switching time is 40 seconds (the number of

switches is 16), while the maximum improvement (136%) can be obtained when the

switching time is 5 seconds and there are just seven switches.

3.5.4 Experiment Four

Figure 3.11 and 3.12 shows the results from applying the switching policies PSP and

BSP with and without the admission control (AC) over the fourth workload which

has been collected from ClarkNet WWW server for the Metro Baltimore-Washington

DC area. It contains 3,328,587 requests issued to the server during the period of two

weeks.

The Figure 3.11 shows that the system revenue (PSP with and without the AC)

improves with the increase of the period of the switching time from 5 seconds to 55

seconds. As compared with the NSP, the system revenue improves by 13.9% and

10.5% when the switching time is 5 seconds to reach up to 30.3% and 22.1% when

the switching time is 55 second when the PSP is applied with AC and without AC

respectively. The number of server switches when the PSP is applied along side the

AC increases gradually from 155 switches when the switching time is 5 seconds, to

261 switches when the switching time is 55 seconds.

The number of server switches when the PSP is applied with no AC has the same

behaviour as when the PSP is applied with AC, with just a change in the number of

server switches (there are 252 switches when BSP is applied with no AC; when the

54

3.5 Experimental Results

1250

1300

1350

1400

1450

1500

1550

1600

1650

 0 10
 20

 30
 40

 50
 60

T
ot

al
 R

ev
en

ue
 (

x1
0^

3)

Switching Time (sec)

NSP
 no A.C.

 with A.C.

Figure 3.11: Revenue Generated by the Proportional Switching Policy (PSP) Over
Workload Four at Different Reallocation Times

switching time is equal to 5 seconds, this number increase gradually to reach 385

switches where the switching time is equal to 55 seconds).

The results from applying the switching policy (BSP) over the fourth workload

alongside the AC and without AC are shown in Figure 3.12. The figure shows that

applying BSP over the fourth workload always improves the system revenue, either

when it is applied alongside AC or with no AC by at least 246.7% and 131.5% when

the switching time are 50 second and 30 seconds respectively comparing with the sit-

uation where no switching policy is applied (NSP). The maximum improvement can

be obtained from applying the BSP over the fourth workload are 253.5% (where the

switching time is 55 seconds) and 226.7% (where the switching time is 5 seconds)

when it is applied with AC and without AC respectively.

The number of server switches where the maximum improvement is obtained are

the following; 15 switches and 18 switches with AC and without AC respectively. On

55

3.5 Experimental Results

1000

1500

2000

2500

3000

3500

4000

4500

 0 10
 20

 30
 40

 50
 60

T
ot

al
 R

ev
en

ue
 (

x1
0^

3)

Switching Time (sec)

NSP
 no A.C.

 with A.C.

Figure 3.12: Revenue Generated by the Proportional Switching Policy (BSP) Over
Workload Four at Different Reallocation Times

the other hand there are 15 switches and 44 switches when the minimum improvement

in the system’s revenue is obtained with AC and without AC respectively (where the

switching times are 55 seconds and 5 seconds).

The number of server switches when the BSP is applied alongside the AC increase

from 14 switches when the switching time is 5 seconds to be 44 switches when the

switching time is 45 seconds, and after that there is reduction in the number of switches

to be 15 switches when the switching time changes from 45 seconds to 50 seconds and

also when it is 55 seconds.

The number of server switches when the BSP is applied with no AC has the same

behaviour when the BSP is applied with AC with just two exceptions. The first con-

cerns the number of switches, as it starts with 18 switches when the switching time is

5 second and reaches 46 switches when the switching time is 50 seconds; after that 19

server switches are enacted with a switching interval of 55 seconds. The second ex-

56

3.5 Experimental Results

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

 0 10
 20

 30
 40

 50
 60

T
ot

al
 R

ev
en

ue
 (

x1
0^

3)

Switching Time (sec)

NSP
 no A.C.

 with A.C.

Figure 3.13: Revenue Generated by the Proportional Switching Policy (PSP) Over
Workload Five at Different Reallocation Times

ception happens in the behaviour of the number of switches, as there is a sudden drop

in the number of server switches when the switching time changes from 15 seconds

(from 20 switches) to 20 seconds (to just 6 switches), the number of switches returns

to 38 switches where 25 seconds is selected to represent the switching time.

3.5.5 Experiment Five

The fifth workload that the switching policies (PSP and BSP) are applied in this exper-

iment is obtained from the NASA Kennedy Space Center web-server in Florida [2], it

contains 3,461,612 requests spanning two months and the results are shown on Figures

3.13 and 3.14.

Figure 3.13 shows the results from applying the switching policy (PSP) over the

fifth workload with AC and with no AC. The figure shows that the average improve-

ments from applying PSP with AC are between 34% - 44.3% compared with NSP.

57

3.5 Experimental Results

While between 27.6% - 40.8% an improvement in the system revenue can be obtained

when the experiment is conducted using the PSP with no AC over this workload using

the proposed switching policies. The figure also shows that the system revenue from

applying the PSP with AC decrease when the switching times increased from 5 sec-

onds to 55 seconds, while it increases when the PSP with no AC when the switching

times changed from 5 seconds and 55 seconds.

The maximum improvement from applying the PSP with AC and no AC are ob-

tained when the switching times are 15 second and 40 seconds, where the number of

server switches are 246 switches and 510 switches respectively. While the number

of server switches are 607 switches and 367 switches when the least improvements

are obtained from applying the PSP with AC and without AC over the fifth workload.

In general the number of switches when PSP is applied with AC and without the AC

over the fifth workload are increased dramatically from 242 when the switching time

is 5 seconds switches to be 607 when the switching time is 55 seconds and from 367

switches when the switching time is chosen to be 5 second to 917 switches when 55 is

chosen to represent the switching time respectively.

The results from applying the BSP over the fifth workload with AC and without

AC compared with the NSP is shown in Figure 3.14. The figure shows that applying

the admission control alongside BSP does not improve the system revenue over this

workload with just one exception, when the switching time is 40 seconds. The results

show that the number of server switches for both scenarios are increased with the

increase of the switching time; from (3 switches, 5 second switching time) to (15

switches, 55 second switching time) when BSP is applied using the admission control,

and from (4 switches, 5 switching time) to (36 switches, 55 seconds switching time)

when it is applied without using the admission control.

58

3.5 Experimental Results

1000

1200

1400

1600

1800

2000

2200

2400

2600

 0 10
 20

 30
 40

 50
 60

T
ot

al
 R

ev
en

ue
 (

x1
0^

3)

Switching Time (sec)

NSP
 no A.C.

 with A.C.

Figure 3.14: Revenue Generated by the Proportional Switching Policy (BSP) Over
Workload Five at Different Reallocation Times

3.5.6 Experimental Results Analysis

Essentially we contrast an enterprise system with a dynamic server switching policy

(PSP or BSP) and a system that uses different time for allocating the several resources

between the applications pools. The experiments have been conducted over five differ-

ent workloads. There are some interesting observations from the results that obtained

from applying the switching policies over the first two synthetic workload;

• the reduction in revenue due to increased reallocation intervals generally holds

over all server switching policies, with some exceptions;

• it has been found that minimising the reallocation interval is therefore crucial;

• therefore, optimising the reallocation interval will be application specific;

• applying the admission control (AC) policy does not always improve the system

59

3.6 Summary

performance especially over a light workload.

The following results can be noted from the experiments that have been conducted

over the three real-world Internet traces;

• the reduction in the switching times does not always leads to an improvements

in the system revenue;

• in some scenarios the system revenue is improved gradually with increasing the

periods of the switching time (e.g. see Figure 3.11);

• applying the admission control does not always come with an improvement in

the revenue of the system when it is applied alongside the switching policies

over the real-world Internet traces (see Figures 3.13 and 3.14);

• the results that are obtained from the conducted results do not show any relation-

ship between the number of server switches and the system revenue;

3.6 Summary

In this chapter we have (1) modelled an internet service provider as a collection of

multi-class closed queueing networks, each of which represents a three tier web ap-

plication architecture with a cluster of servers at each tier. Our model supports the

dynamic reallocation of servers at the same tier between pools, (2) evaluated the be-

haviour of two switching policies and compared them against a pre-defined allocation

over a range of reallocation intervals and observed that larger reallocation intervals

have a negative impact on revenue, (3) found that the results over the used workload

traces demonstrate a clear inversely proportional relationship between reallocation in-

terval and revenue with some exceptions when the switching policies are applied over

60

3.6 Summary

the first two synthetic workload, while on the other hand this relationship does not

always true when the experiments are applied over the real-world Internet traces, (4)

the experiments show that there is no direct correlation between the number of server

switches and the improvement to the system revenue.

Current switching policies evaluate the system retrospectively and make no predic-

tions about the workload after making a migration. In the next chapter, the reactive

behaviour of the two switching policies – Proportional Switching Policy (PSP) and

Bottleneck-aware Switching Policy (BSP) – will be combined at the proactive prop-

erties with several forecasting algorithms in order to investigate better guide policy

decisions based on real-world Internet traces from several sources.

61

Chapter 4

Predictive and Dynamic Resource
Application for Enterprise
Applications

4.1 Introduction

Dynamic resource allocation systems have been shown to improve revenue for enter-

prise systems by reallocating servers into a more beneficial configuration; contrast this

with pre-defined systems which are periodically unable to deal with significant changes

in workload, and as a result lead to a decrease in revenue.

As the use of these applications becomes more widespread, so issues concerning

infrastructure performance and dependability become more significant. It is widely

recognised that a slow or unreliable response from an e-Business site is one of the

main reasons for a customer to seek an alternative [48].

Such issues are mitigated through capacity planning and workload forecasting [53].

However, forecasting is error prone – one need only look at recent examples from the

financial markets, climate studies or production and operations management [34] to be

aware of these concerns.

The observation of past values in order to anticipate future behaviour represents

62

4.1 Introduction

the essence of the forecasting process as seen in this chapter. Numerous predictors are

discussed and the way in which they are applied in the context of dynamic resource

allocation is analysed. Our premise is that workload forecasting may assist revenue-

generating enterprise systems which already employ methods of dynamic resource al-

location; however, as with forecasting in other domains, the predictions may in fact be

wrong, and this may result in server reallocation to the detriment of the service.

Two well-known methods are used for data collection in web analytics [33]. In the

first, called server-side data collection, the log files where all transactions and requests

to the web site are stored undergo systematic analysis; in the second, the visitor’s

Web browser is used to collect data. In this thesis we employ the first method, that is

collecting the data directly from the web server.

The workload can be characterised at four different levels: the business layer, the

session layer, the function layer, and the HTTP-request layer [38]. Here the real-

world Internet workload is characterised at the second of these levels, where the set of

requests issued from different users are clustered periodically.

Workload forecasting approaches can be divided into two different categories: quan-

titative and qualitative [40]. The qualitative approach is a subjective process based on

different information services such as expert opinion, historical analogy, and com-

mercial knowledge. The estimation of future values of different workload parameters

which relies on the existence of historical data, i.e. that seen in the quantitative ap-

proach, is the approach to forecasting used in this thesis.

The predictive forecasting is based on past values, using several different (but com-

mon) predictors: Last Observation (LO), Simple Average (SA), Sample Moving Av-

erage (SMA), Exponential Moving Average (EMA), Low Pass Filter (LPF), and Au-

toregressive Integrated Moving Average (ARIMA). In this chapter, these forecasting

63

4.1 Introduction

algorithms are combined with our two switching policies – the proportional switching

policy (PSP) and the bottleneck aware switching policy (BSP). Thus our contribution

is that the forecasting and switching work in tandem; after applying the predictor, the

system’s resources are reallocated with respect to the prediction.

4.1.1 Chapter Contributions

The specific contributions of this chapter are as follows:

• We build on the model-based environment in Chapter 3 so that the combina-

tion of workload prediction and dynamic server switching can be explored. A

multi-tiered, cluster-based, multi-server solution is again used; we also employ

bottleneck identification through the use of convex polytopes and also admission

control for dealing with the issue of overloading;

• After introducing several schemes for workload prediction in this context, in-

cluding Last Observation (LO), Simple Average (SA), Sample Moving Aver-

age (SMA), Exponential Moving Average (EMA), Low Pass Filter (LPF), and

Autoregressive Integrated Moving Average (ARIMA), the forecast accuracy of

these schemes is compared using Mean Square Error (MSE), Mean Average Per-

centage Error (MAPE), Mean Absolute Deviation (MAD) and the Cumulative

sum of Forecast Error (CFE) approaches. The proportional switching policy

(PSP) and the bottleneck aware switching policy (BSP) are then employed in the

context of these seven workload prediction algorithms. All fourteen cases are

compared with a control system where no switching policy (NSP) is applied;

• We base our results on real-world workload traces from several sources, includ-

ing from the San Diego Supercomputer Centre, from the ClarkNet Internet ac-

64

4.2 Additional Related Work

cess provider for the Metro Baltimore-Washington DC area and, from the NASA

Kennedy Space Center web-server in Florida.

4.2 Additional Related Work

This work is different from that found in the previous chapter in the following respects.

First, the experiments are conducted using the same switching policies (Proportional

Switching Policy and Bottleneck-aware Switching Policy), but with additional model-

based workload prediction. Second, the workload used is also based on real-world In-

ternet traces obtained from three different sources and containing one day, two weeks,

and two months worth of HTTP requests (see Section 4.4 for more details).

The use of five different predictive algorithms (regression method, linear regres-

sion, nonlinear methods, moving average, and exponential smoothing) are all found in

[40] to enable workload forecasting for Web services. Several of the predictors found

here (last observation, sample average, low pass filter, and ARIMA model) were used

in [23] to predict the behaviour of data-exchange in the Globus Grid middleware MDS.

To the best of our knowledge this is the first example of a model-based workload

prediction and dynamic server switching analysis in the context of real-world HTTP

requests.

As in previous capacity planning work [7][20][40], we generate a workload model

from the characterisation of real data.

4.3 Modelling of Multi-tiered Internet Services and Server
Switching Policies

The system model developed in Chapter 3 is reused in this chapter:

65

4.4 The Workload and Predictive Algorithms

• the number of applications and servers are as found in Table 3.2;

• the PSP and BSP switching also reused in this chapter,

• the technique that used the convex polytopes approach to identify bottlenecks is

applied in this chapter;

• admission control is a solution to the overloading problem, it is also used here.

4.4 The Workload and Predictive Algorithms

0

100

200

300

400

500

600

700

800

0 15 30 45 60 75

N
o.

of
R

eq
ue

st
s

Time Periods (mins)

Pool1
Pool2

Figure 4.1: A sample of the total requests in the real-world workload for both applica-
tion pools

4.4.1 The Workload

The workload is defined as the set of all inputs the system receives from its environ-

ment during any given period of time [40]. In this study the workloads (e.g. see Figure

4.1) are based on three real-world Internet traces containing two days, two weeks,

66

4.4 The Workload and Predictive Algorithms

and two months worth of HTTP requests. The first workload is generated from two

real-world Internet traces containing 76,086 requests in total and each of which con-

tains a days worth of HTTP requests to the EPA WWW server located at Research

Triangle Park, NC and the SDSC WWW server located at the San Diego Supercom-

puter Center in California respectively [27]. The second workload has been collected

from ClarkNet WWW server which is a full Internet access provider for the Metro

Baltimore-Washington DC area [2]. This workload contains 3,328,587 requests issued

to the server during the period of two weeks. The third workload used in this research

is obtained from the NASA Kennedy Space Center web-server in Florida [2]. This

trace contains 3,461,612 requests spanning two months.

These are three real-world Internet traces are chosen based on the availability of

such data and the difficulty of obtaining such new data from different sources as a

results of the sensitivity of the such data. We also choose ’open data’ as it allows (i)

our results to be reproduced by other scientists, and (ii) it allows others to build on our

own findings.

4.4.1.1 Workload Characterization

Since real workload is usually unpractical, very complex and contains thousands of

different programs, transactions and requests, it is unrealistic to consider the use of

real workload in capacity planning studies [20], [7], and [40]. Thus the process of

workload characterisation is applied to the workload in order to generate the workload

model that captures the most relevant characteristics of the real workload [40]. Then

the workload model can be used for different purposes e.g. performance tuning and

capacity planning.

Understanding the workload is essential to performing the characterisation process

67

4.4 The Workload and Predictive Algorithms

and in this situation all the three trace data, which are called log files, contain lines

with the following information; host field which contains the client IP address (e.g.

dcs.warwick.ac.uk), identification field to show the user identity, login name contains

the authorisation user ID, timestamp contains date, time and zone, request field to

show the type of the request (e.g. GET), the name of the resource (e.g. /img.gif), and

the protocol version in use (e.g. HTTP/1.0), status field which specifies the response

status from the server (e.g. 200), and file size field which indicated the number of bytes

transferred in response to a file request (e.g. 3185). The identification and login name

fields are usually hidden for security reasons.

In typical fashion (see also [40]) we characterise this workload to form a workload

model, which can then be used as the input to our system model. We consider a typical

Web farm as in [52], which records the hypertext transfer protocol (HTTP) service

requests and aggregates them over small time intervals of length ∆ > 0 to obtain a time

series. In this work the period of 5 minutes has been chosen to represent the interval

time over one day, two weeks, and one month periods giving a total of 288 intervals in

a day (see example in [52]).

4.4.2 Predictive Algorithms

There are often a wide variety of predictive algorithms available either based on clas-

sical time-series analysis or data-mining techniques. The different parameters used in

the predictors are summarised in Table 4.1

Several predictive algorithms are employed in this work based on classical time-

series analysis:

68

4.4 The Workload and Predictive Algorithms

Table 4.1: Notation used in the predictors

Symbol Description

Px The predictive value

Px−1 The previous predictive value

V The last actual value

s The sample set size

α The weighting factor

4.4.2.1 i) Last Observation (LO)

The forecasting procedure is based on the most recent observation. The last value

(Vx−1) is most likely to reflect the behaviour of future queries (Px) [23].

Px = Vx−1

4.4.2.2 ii) Simple Algorithm (SA)

The simple average algorithm is appropriate for short term forecasting [40]. The accu-

racy achieved by the technique is usually high when it is applied to nearly stationary

data [28]. In this algorithm the predictive value Px is the mean average of all the

previous observations.

Px =

∑x−1
i=0 Vi

x − 1

4.4.2.3 iii) Sample Moving Algorithm (SMA)

The predictive value Px is the mean average of the past performance values within a

sample set s. Equal weighting is given to each performance value in this predictive

algorithm.

69

4.4 The Workload and Predictive Algorithms

For this study we set the sample set s to be of size 3; other set sizes can be easily

tested within this proposed framework.

Px =

∑x
i=x−s Vx

s

4.4.2.4 iv) Exponential Moving Algorithm (EMA)

In this predictor, an older value within the sample set is given less importance than

a newer value, This is done by applying a weighting factor (which declines exponen-

tially) for each value in the set.

Px = Px−1 + α × (V − Px−1)

4.4.2.5 v) Low Pass Filter (LPF)

The low pass filter also weights recent data more heavily than older data, where the

weight on each observation decreases exponentially by the number of observations

using the following formula:

Px = (w × Px−1) + ((1 − w) × V)

Here w represents the weighting parameter and its value’s between 0 and 1. If the

value of w is equal to 0, then the low pass filter is the same as the last observation

(LO). On the other hand, the filter never changes if w = 1. In terms of increasing the

accuracy of the low pass filter prediction, the value of the weighting parameter w is set

to 0.95, see [14] for more details.

70

4.5 Experimental Setup and Results

4.4.2.6 vi) Autoregressive Integrated Moving Average Model (ARIMA)

The Autoregressive integrated moving average model (ARIMA) is, in theory, the most

general class of model for forecasting a time series which can be stationarized by trans-

formations such as differencing and logging [42], where the differenced series appear-

ing in the forecasting equation are called ”auto-regressive” terms, the forecast errors

are called ”moving average” terms, and a time series which needs to be differenced to

be made stationary is said to be an ”integrated” version of a stationary series.

Here in the autoregressive integrated moving average model (ARIMA(p, d, q)); p

indicates the order of the autoregression, d indicates the amount of differencing, and q

indicates the order of the moving average part. The experiments have been conducted

using two well-known ARIMA models. The first model is defined as AR(1) where the

forecasting process for the next value is based on the value in the last time period; when

based on the last two values in the previous two time periods, this is termed AR(2).

The work in [11] shows in details of how to predict the next-day electricity prices

in the mainland Spanish and Californian markets, respectively based on the ARIMA

methodology. However, there are various available packages that apply the methodol-

ogy (Box-Jenkins), and parameter optimisation, in order to find out the most accurate

parameters for the ARIMA model (e.g. R project and IBM SPSS Statistics).

4.5 Experimental Setup and Results

4.5.1 Experimental Setup

As in Chapter 3, two applications are modelled as running on two logical pools. Each

of these is multi-tiered, with each tier comprising a cluster of servers. The system de-

veloped in this work contains just two application pools and the servers are reallocated

71

4.5 Experimental Setup and Results

between these two pools. This system model is used for the sake of simplicity and in

particular to better understand the general characteristics of our findings; clearly more

application pools can be used, and this work is applicable to systems of greater size.

We believe that the results from this study are more generally applicable, however, this

remains the topic of further research.

The service time S ir, the visiting ratio vir and the remaining experimental parame-

ters are based on realistic (i.e. sampled) values, or from those supplied in supporting

literature [54].

Different measures to assess forecasting accuracy have been applied; this is done by

calculating the predicted values from several different predictive algorithms and com-

paring these with the real-world data. Various accuracy measures have been used in

the literature and their properties are well understood. The forecast accuracy measures

that have been used here are: Mean Square Error (MSE), Mean Average Percentage

Error (MAPE), Mean Absolute Deviation (MAD) and the Cumulative sum of Forecast

Error (CFE).

Table 4.2 describes the supporting mathematics for each of these different forecast

accuracy measures. Additional notation used in these equations – N,O, andP – repre-

sent the data sample set size, an observed value and a predicted value respectively.

4.5.2 Accuracy Forecasting Results

The resulting values from each of the forecast accuracy measures (MSE, MAPE, MAD,

and CFE) over the three real-world Internet traces, with respect to the observed perfor-

mance values, are shown in Tables 4.3, 4.4, and 4.5. In each case we are looking for a

value as close to zero as possible.

72

4.5 Experimental Setup and Results

Table 4.2: Forecasting accuracy measures

Forecast accuracy measures Equation

Mean Squared Error (MSE)
1
N

∑N−1
i=0 (Oi − Pi)2

Mean Absolute Percent Error (MAPE)
1
N

∑N−1
i=0

[
|Oi − Pi|

Oi

]
× 100

Mean Absolute Deviation (MAD)
1
N

∑N−1
i=0 (|Oi − Pi|)

Cumulative Sum of Forecast Errors (CFE)
∑N−1

i=0 (Oi − Pi)

Thus, with regard to the MSE over the first workload, we see that LPF has the

highest value and AR(1) has the lowest value, which means that the most accurate

predictor based on the MSE is AR(1) and the least accurate predictor is LPF (see Table

4.3).

SMA, EMA, and AR(2) perform well when MAPE and MAD are applied to deter-

mine the forecast accuracy, AR(1) however wins out in this case. The least accurate

predictors according to these two policies (MAPE and MAD) over the first workload is

LPF. Again LPF is also the least accurate and AR(1) the most accurate with CFE over

the first workload. It can be said that, Table 4.3 shows that the AR(1) has the lowest

values with all four predictors and LPF has the highest values. In other words, respec-

tively the AR(1) and LPF are the most accurate and least accurate predictors over the

first workload according to the four different accuracy forecasting policies.

LPF is the most accurate predictor with MSE over the second workload and the

SA is the least accurate one (see Table 4.4). LPF is the best predictor when MAPE

and MAD are used to testify the forecast accuracy of the different predictors. The least

accurate predictor is SA with MAPE and MAD; AR(2) and AR(1) are the most and

least accurate predictors respectively with CFE.

73

4.5 Experimental Setup and Results

With regard to the MSE, it can be seen from Table 4.5, that SA has the highest

value and AR(1) has the lowest value, which means that the most accurate predictor

is AR(1) and the least accurate predictor is SA. LPF and AR(1) perform well when

MAPE and MAD are applied to determine the forecast accuracy respectively, while

the least accurate predictors are SA with these two accuracy measures (MAPE and

MAD). EMA is the most accurate and LPF the least accurate predictors with CFE over

the third workload.

4.5.3 Accuracy of the Forecasting Analysis

Table 4.6 summarises the results obtained from applying the four different accuracy

forecasting metrics – MSE, MAPE, MAD, and CFE – over the three real-world work-

loads used in this work. The table shows the most and least accurate predictors in each

case. The table shows that according to the first accuracy measures used (MSE), the

AR(1), LPF, AR(1) are the best predictors when they are applied over the first, second,

and third workload that are used respectively, while LPF, AR(1), and SA are the worst

predictors over these three workloads. The mean average percentage error (MAPE)

shows that the LPF algorithm is the best predictor when it is applied over the second

and third workloads, but it does not work well when it is applied over the first work-

load in this experiment (AR(1) is the best algorithm over the first workload). Over the

second and third workload the predictor SA is the worst algorithm according to MAPE

and MAD measures.

According to the third accuracy measure that is used in this experiment, the mean

absolute deviation (MAD), AR(1) is the most accurate predictor when it is applied

over the first and third workloads, while the LPF is the best predictor over the sec-

ond workload. LPF however is the least accurate prediction algorithm over the first

74

4.5 Experimental Setup and Results

workload, and SA is the least predictor over the remaining workload that is used in

this research. While the results based on the last accuracy measure that is used in this

research (CFE) over the three workloads show that; AR(1), AR(2), EMA are highly

recommended to be used over the three workloads respectively, while LPF is the least

accurate prediction algorithm when it is applied over the first and third workload. Al-

though AR(1) is highly recommended to be used overt the first workload according to

CFE, it is however the worst predictor when it is applied over the second workload.

In conclusion it can be seen from the table that:

• However the results for the first workload are consistent based on using the four

accuracy measures (MSE, MAPE, MAD, and CFE) show that AR(1) is the most

accurate predictor and LPF is the least accurate according to our metrics.

• This said, this same pattern – (AR(1) is the best and LPF is the least accurate

predictors – does not hold for the second and third workload, where the results

are more mixed as explained early. Notably, LPF performs best in some cases.

• We conclude that no one scheme is preferable over any other, and this motivates

our work in the reminder of the chapter. In other words, the results show that the

accuracy measure can not be used as a tool to choose the most accurate predictor

over the used workloads and new techniques need to be developed to over come

the inconsistent of the results that obtained from the different accuracy measures

that used in this research (MSE, MAPE, MAD, and CFE).

Next we combine forecasting with dynamic server switching, and explore the likely

benefits of this combination.

75

4.5 Experimental Setup and Results

4.5.4 Combining Forecasting and Dynamic Server Switching

The system gain in revenue from applying several different predictive algorithms with

the two server switching server policies over the three workloads are shown in Tables

4.7, 4.8, and 4.9. In each case the results show the base-line revenue when no switching

policy is applied (NSP) and also the case when the switching policy alone (without

forecasting) is applied. These provide good indicators against which the new results

can be compared.

4.5.5 Experiment One

The first experiment is conducted using the first workload which has been generated

from two real-world Internet traces to the EPA WWW server located at Research Tri-

angle Park, NC and the SDSC WWW server located at the San Diego Supercomputer

Center, California respectively [27]. The results from the different predictive models

based on this workload are shown in Table 4.7. This table represents the gained rev-

enue from applying the seven predictive algorithms – LO, SA, SMA, EMA, LPF, AR1,

and AR2.

The two server switching policies used in this work (PSP and BSP) provide 5.63%

and 103.47% improvement in system revenue compared to the non switching policy

(NSP). The results from Table 4.7 show a 12.15% improvement in the system revenue

when the AR1 algorithm is applied with PSP, compared to that from the original PSP

without prediction. The remainder of the predictive algorithms also yielded better

results than the original revenue computed from the PSP scheme without forecasting,

with just two exceptions – when the predictors SA and SMA are used the revenue

drops by -0.12% and -0.46% respectively.

Table 4.7 also show that applying the predictive algorithms with BSP provides

76

4.5 Experimental Setup and Results

better results (revenue) than the original BSP without prediction. It provides at least

6.67% improvement in system revenue with LPF and up to 8.89% when EMA is ap-

plied alongside BSP.

4.5.6 Experiment Two

We repeat the experiments with the second workload – this contains 3,328,587 requests

issued to the ClarkNet WWW server over the period of two weeks. The resulting values

are shown in Table 4.8. As can be seen from Table 4.8, the different predictors that have

been applied to the proportional switching policy (PSP) do not always provide better

results (revenue) than the original PSP without prediction. The improvement in system

revenue dropped by 0.83%, 3.02%, and 6.41% when the predictors SMA, LO, and SA

are applied along with PSP respectively. However, the system performance can be

improved by at least 0.05% when the EMA is applied with PSP and up to 1.78% when

AR(1) is applied with the PSP. The rest of the predictors (LPF and AR(2)) bring an

improvement to the system by 0.68% and 1.27% respectively.

Table 4.8 also shows that the revenue improvement from applying the different

predictors with BSP does not always exist as it is dropped by 0.79% with LPF and

2.03% with AR(1) comparing with that from applying the BSP without prediction.

The system’s performance can be improved by 7.28% when the SMA is used with the

BSP. The range of positive revenue improvement is between 3.33% and 4.96% when

the rest of the predictors are applied with BSP.

4.5.7 Experiment Three

Finally we undertake the same experiments using the third workload, which contains

3,461,612 requests to the the NASA Kennedy Space Center web-server in Florida.

77

4.5 Experimental Setup and Results

Results are shown in Table 4.9. It is shown that the revenue of the system can be

improved by as much as 69.19% and 44.14% when BSP and PSP are applied to the

system compared with the NSP; a further 45.91% and 0.76% improvement can be

achieved when SA and AR(1) are applied to the system along with BSP and PSP

respectively (see Table 4.9).

Table 4.9 shows that, the different predictors that have been applied alongside the

proportional switching policy (PSP) do not always provide better results (revenue)

than the original PSP without prediction, as when the predictors AR(2), LPF, LO, and

SA are used, the revenue drops by -0.01%, -1.34%, -3.05%, and -5.06% respectively.

Nevertheless all the predictors including AR(1) perform better than the non switching

policy (NSP).

It can be seen also that from Table 4.9 the revenue improvement from applying

different predictors with BSP is at least 8.13% over that when the BSP is applied to the

system without prediction. The range of revenue improvement is between 8.13% and

38.77% when the LO (8.13%), EMA (12.54%), AR(1) (24.64%), SMA (33.97%), and

AR(2) (38.77%) are applied with BSP to the system. In addition to this, the revenue is

improved by 45.02% when LPF is applied with BSP, and further 0.89% improvement

when SA is applied to the system along with BSP.

4.5.8 Experiments Results Analysis

Table 4.10 shows the results obtained from applying the seven different predictors

along with the two switching policies (PSP and BSP) over the three selected workloads,

compared with that obtained from the switching policies with no prediction. It can be

seen from the table that:

• AR(1) is the most accurate predictor over the first, second, and third work-

78

4.5 Experimental Setup and Results

load, it can provide up to 12.15%, 1.78%, and 0.76% respectively when it is

applied along with PSP compared with applying PSP with no prediction. How-

ever AR(1) is the least accurate predictor when it is applied with BSP over the

second workload (-2.03%);

• It can be seen that, SA is the best predictor when it is applied with the BSP over

the third workload (SA, the third workload, BSP, 45.91%). It brings however the

least performance when it is applied with PSP over the second workload (SA,

the second workload, PSP, -6.41%);

• The system revenue can be improved by up to 45.91% (BSP, SA, NASA work-

load) compared with that obtained from applying the BSP with no prediction.

These are significant revenue gains;

• The average improvement that can be obtained from applying the best selected

predictors along with PSP and BSP over the three workload are 5% and 21%

respectively.

79

4.5 Experimental Setup and Results

Ta
bl

e
4.

3:
Fo

re
ca

st
ac

cu
ra

cy
,a

ga
in

st
fo

ur
di

ff
er

en
tc

ri
te

ri
a,

fo
rt

he
se

ve
n

fo
re

ca
st

al
go

ri
th

m
s

ov
er

th
e

fir
st

w
or

kl
oa

d

Po
lic

y
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

M
SE

5.
73

51
.6

1
0.

13
0.

27
81

.7
2

0
0.

38

M
A

PE
0.

09
0.

28
0.

01
0.

02
0.

36
0

0.
02

M
A

D
0.

14
0.

43
0.

02
0.

03
0.

54
0

0.
04

C
FE

-4
0

12
0

6
-8

.6
2

-1
51

1
-1

0.
29

80

4.5 Experimental Setup and Results

Ta
bl

e
4.

4:
Fo

re
ca

st
ac

cu
ra

cy
,a

ga
in

st
fo

ur
di

ff
er

en
tc

ri
te

ri
a,

fo
rt

he
se

ve
n

fo
re

ca
st

al
go

ri
th

m
s

ov
er

th
e

se
co

nd
w

or
kl

oa
d

Po
lic

y
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

M
SE

63
63

1.
42

34
24

17
.8

4
50

04
3.

17
48

96
2.

58
26

94
8.

79
65

05
8.

85
52

95
7.

80
M

A
PE

11
.3

5
28

.3
8

10
.1

0
9.

96
7.

40
11

.5
2

10
.3

0
M

A
D

19
5.

35
46

4.
47

17
4.

04
17

1.
43

12
6.

66
19

8.
04

17
7.

50
C

FE
51

-3
56

8
-1

07
5

49
.3

4
-3

24
6

-3
36

37
37

.5
9

81

4.5 Experimental Setup and Results

Ta
bl

e
4.

5:
Fo

re
ca

st
ac

cu
ra

cy
,a

ga
in

st
fo

ur
di

ff
er

en
tc

ri
te

ri
a,

fo
rt

he
se

ve
n

fo
re

ca
st

al
go

ri
th

m
s

ov
er

th
e

th
ir

d
w

or
kl

oa
d

Po
lic

y
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

M
SE

75
49

.9
5

28
97

7.
21

66
45

.1
3

70
68

.3
0

76
76

.3
5

64
28

.7
7

10
13

8.
46

M
A

PE
15

.6
7

32
.8

8
14

.7
0

15
.4

0
13

.6
4

14
.6

8
17

.1
7

M
A

D
64

.9
7

12
9.

87
60

.0
6

63
60

.4
0

59
.7

2
72

.7
6

C
FE

-1
94

-1
26

62
8

-5
63

4
80

.4
0

-1
79

28
8

17
4.

88
-1

55
35

9

82

4.5 Experimental Setup and Results

Ta
bl

e
4.

6:
A

na
ly

si
s

of
fo

re
ca

st
ac

cu
ra

cy
fo

rt
he

se
ve

n
fo

re
ca

st
al

go
ri

th
m

s
ov

er
th

e
th

re
e

w
or

kl
oa

ds
Po

lic
y

T
he

fir
st

w
or

kl
oa

d
T

he
se

co
nd

w
or

kl
oa

d
T

he
th

ir
d

w
or

kl
oa

d

M
SE

M
os

ta
cc

ur
at

e
pr

ed
ic

to
r

0
(A

R
(1

))
26

94
8.

79
(L

PF
)

64
28

.8
(A

R
(1

))
L

ea
st

ac
cu

ra
te

pr
ed

ic
to

r
81

.7
2

(L
PF

)
65

05
8.

85
(A

R
(1

))
28

97
7.

21
(S

A
)

M
A

PE
M

os
ta

cc
ur

at
e

pr
ed

ic
to

r
0

(A
R

(1
))

7.
40

(L
PF

)
13

.6
4

(L
PF

)
L

ea
st

ac
cu

ra
te

pr
ed

ic
to

r
0.

36
(L

PF
)

28
.3

8
(S

A
)

32
.8

8
(S

A
)

M
A

D
M

os
ta

cc
ur

at
e

pr
ed

ic
to

r
0

(A
R

(1
))

12
6.

66
(L

PF
)

59
.7

2
(A

R
(1

))
L

ea
st

ac
cu

ra
te

pr
ed

ic
to

r
0.

54
(L

PF
)

46
4.

47
(S

A
)

12
9.

87
(S

A
)

C
FE

M
os

ta
cc

ur
at

e
pr

ed
ic

to
r

1
(A

R
(1

))
37

.5
9

(A
R

(2
))

80
.4

0
(E

M
A

)
L

ea
st

ac
cu

ra
te

pr
ed

ic
to

r
-1

51
(L

PF
)

-3
36

37
(A

R
(1

))
-1

79
28

8
(L

PF
)

83

4.5 Experimental Setup and Results

Ta
bl

e
4.

7:
R

ev
en

ue
ga

in
s

fo
rs

w
itc

hi
ng

po
lic

y
an

d
fo

re
ca

st
in

g
co

m
bi

na
tio

ns
ov

er
th

e
fir

st
w

or
kl

oa
d

PS
P

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
PS

P
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

61
4.

1
64

8.
7

65
0

64
7.

9
64

5.
7

67
7.

8
65

1.
3

72
7.

5
66

0.
6

Im
p.

ov
er

PS
P

(%
)

-
0

0.
2

-0
.1

2
-0

.4
6

4.
49

0.
4

12
.1

5
1.

83

B
SP

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
B

SP
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

61
4.

1
12

49
.5

13
41

.3
13

33
.7

13
33

.9
13

60
.6

13
32

.8
13

46
.5

13
33

.4

Im
p.

ov
er

B
SP

(%
)

-
0

7.
35

6.
74

6.
75

8.
89

6.
67

7.
76

6.
71

84

4.5 Experimental Setup and Results

Ta
bl

e
4.

8:
R

ev
en

ue
ga

in
s

fo
rs

w
itc

hi
ng

po
lic

y
an

d
fo

re
ca

st
in

g
co

m
bi

na
tio

ns
ov

er
th

e
se

co
nd

w
or

kl
oa

d
PS

P
+

Pr
ed

ic
tiv

e
A

lg
or

ith
m

Po
lic

y
N

SP
PS

P
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

63
2.

6
81

0.
6

78
6.

1
75

8.
6

80
3.

9
81

1
81

6.
1

82
5

82
0.

9

Im
p.

ov
er

PS
P

(%
)

-
0

-3
.0

2
-6

.4
1

-0
.8

3
0.

05
0.

68
1.

78
1.

27

B
SP

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
B

SP
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

63
2.

6
22

00
.1

22
73

.3
23

06
.2

23
60

.3
23

09
.2

21
82

.8
21

55
.5

22
79

.3

Im
p.

ov
er

B
SP

(%
)

-
0

3.
33

4.
82

7.
28

4.
96

-0
.7

9
-2

.0
3

3.
6

85

4.5 Experimental Setup and Results

Ta
bl

e
4.

9:
R

ev
en

ue
ga

in
s

fo
rs

w
itc

hi
ng

po
lic

y
an

d
fo

re
ca

st
in

g
co

m
bi

na
tio

ns
ov

er
th

e
th

ir
d

w
or

kl
oa

d
PS

P
+

Pr
ed

ic
tiv

e
A

lg
or

ith
m

Po
lic

y
N

SP
PS

P
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

51
3.

8
74

0.
6

71
8.

0
70

3.
1

74
2.

2
74

5.
0

73
0.

7
74

6.
2

74
0.

5

Im
p.

ov
er

PS
P

(%
)

-
0

-3
.0

5
-5

.0
6

0.
22

0.
59

-1
.3

4
0.

76
-0

.0
1

B
SP

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
B

SP
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

51
3.

8
86

9.
3

94
0.

0
12

68
.4

11
64

.6
97

8.
3

12
60

.7
10

83
.5

12
06

.3

Im
p.

ov
er

B
SP

(%
)

-
0

8.
13

45
.9

1
33

.9
7

12
.5

4
45

.0
2

24
.6

4
38

.7
7

86

4.5 Experimental Setup and Results

Ta
bl

e
4.

10
:A

na
ly

si
s

of
th

e
fo

re
ca

st
al

go
ri

th
m

s
ov

er
th

e
th

re
e

w
or

kl
oa

ds
us

in
g

th
e

tw
o

sw
itc

hi
ng

po
lic

ie
s

(P
SP

an
d

B
SP

)
PS

P
B

SP
Po

lic
y

B
es

tp
re

di
ct

or
W

or
st

pr
ed

ic
to

r
B

es
tp

re
di

ct
or

W
or

st
pr

ed
ic

to
r

T
he

fir
st

w
or

kl
oa

d
12

.1
5%

(A
R

(1
))

-0
.4

6%
(S

M
A

)
8.

89
%

(E
M

A
)

6.
67

%
(L

PF
)

T
he

se
co

nd
w

or
kl

oa
d

1.
78

%
(A

R
(1

))
-6

.4
1%

(S
A

)
7.

28
%

(S
M

A
)

-2
.0

3%
(A

R
(1

))
T

he
th

ir
d

w
or

kl
oa

d
0.

76
%

(A
R

(1
))

-5
.0

6%
(S

A
)

45
.9

1%
(S

A
)

8.
13

%
(L

O
)

87

4.6 Summary

4.6 Summary

In this chapter we have used a model-based environment in which the combination of

workload prediction and dynamic server switching can be explored. A multi-tiered,

cluster-based, multi-server solution is modelled, which contains bottleneck identifi-

cation through the use of convex polytopes and also admission control. A workload

model is also constructed from the characterisation of real data. We investigate the

behaviour of server switching policies in the context of workload predictors. Sev-

eral schemes for workload prediction are explored and the forecast accuracy of these

schemes is compared. An evaluation of two well known switching policies – the pro-

portional switching policy (PSP) and the bottleneck aware switching policy (BSP) – is

conducted in the context of seven workload prediction algorithms. All fourteen cases

are compared with a control system where no switching policy is applied.

It has been found that the AR(1) predictor is the most accurate with PSP over the

three workloads, and EMA, SMA, and SA are the most accurate predictors with BSP

over the first, second, and third workloads respectively.

Interestingly the accuracy of each predictor is noticeably different from one pol-

icy to another and there is no general case where improvements in revenue can be

guaranteed.

We have demonstrated that revenue can be improved by as much as 46% if the right

combination of dynamic server-switching and workload forecasting are used.

The next chapter will focus on identifying a way of automatically selecting the

most effective dynamic server-switching and workload forecasting strategies; this will

likely depend on the configuration of the system and the nature of the workload being

applied.

88

Chapter 5

The Development and Application of
Meta-forecasting

5.1 Introduction

In Chapter 4 we introduced the notion of forecasting applied alongside dynamic server

switching. This extended the concept of reactive dynamic server switching where

changes in demand on a system would trigger the reallocation of servers to applications

with several forecasting schemes that would allow the server switching to become

proactive that is a server switch would be initiated before the demand on the system

changed.

While workload forecasting was shown to improve system revenue by up to 46%

in some cases, we demonstrated through the use of several different forecasting meth-

ods, that revenue improvement was not consistent. Worse than this, in some cases the

addition of forecasting schemes would decrease system revenue.

In this chapter we explore the notion of meta-forecasting, where several different

forecasting schemes are employed simultaneously and a collective decision is made as

a result of combining individual recommendations.

89

5.2 Additional Related Work

5.1.1 Chapter Contributions

The specific contributions of this chapter are as follows:

• The three real-world workload traces continue to be used together with our multi-

class closed queueing network model;

• The two dynamic server switching policies continue to be used (BSP and PSP),

together with the seven forecasting schemes (including Last Observation, Simple

Algorithm, Sample Moving Average, Exponential Moving Algorithm, Low Pass

Filter and Autoregressive Moving Average);

• As each of the forecasting schemes has its own bias, we develop three new meta-

forecasting algorithms (the Active Window Model, the Voting Model and the

Selective Model) to ensure consistent and improved results;

• We show through experimentation that the meta-forecasting algorithms always

improve revenue compared with just employing the dynamic server switching

policies alone. In the best case improvements are in the order of 40%, in the

worst case the improvements are negligible. Importantly, using the meta-forecast

algorithms never degrade results.

5.2 Additional Related Work

The research presented here (i) employs seven model-based workload prediction algo-

rithms and extends the infrastructure to process and respond to this data, (ii) introduces

three meta-forecasting algorithms, based on the observation that one predictor alone is

potentially sub-optimal, (iii) the real-world Internet traces are considerably larger than

those previously explored and are taken from multiple sources.

90

5.3 The Workload and Predictive Models

The work in [18] applies several predictive techniques to adaptive, web-cluster

switching algorithms. There are two main differences between their work and ours.

First, the system model is itself quite different; we model the system as two multi-tiered

applications running on two pools, where servers are moved from another (quieter)

pool to deal with overloading. [18] on the other hand use a model that consists of a set

of servers with a switch that allocates the incoming request to one of the servers in the

web cluster within a 2-tiered architecture. Secondly, the system monitoring processes

are also different; in our research we use fixed-time intervals (see Section 5.3.1); [18]

monitor their system using non-fixed intervals (Adaptive Time Slot Scheduling) based

on the system’s request arrival rate.

Server workload is usually measured in terms of the incoming request’s arrival

rate (e.g. total number of operations or size of the files requested per unit time). In

this research the interval for collecting the data from the Internet workload has been

chosen to be five minutes, giving a total of 288 intervals in a day. This is typical in

the characterisation of data from websites ranging from retail industries to finance (see

[52]).

5.3 The Workload and Predictive Models

In this study the workloads are based on Internet traces containing two days, two

weeks, and two months worth of HTTP requests. The three workloads which the

experiments are conducted over are presented in the previous chapter (see Chapter 4

for more details).

The predictive algorithms – Last Observation (LO), Simple Algorithm (SA), Sam-

ple Moving Average (SMA), Exponential Moving Algorithm (EMA), Low Pass Filter

(LPF), and Autoregressive Integrated Moving Average Model (ARIMA) – are docu-

91

5.3 The Workload and Predictive Models

mented elsewhere (see Section 4.4.2 in Chapter 4). The new meta-forecasting models

that we propose, Active Window Model (AWM), Voting Model (VM), and Selective

Model (SM) are described below.

5.3.1 Active Window Model (AWM)

Figure 5.1 demonstrates the change in revenue that results from applying each of the

seven forecasting predictors to the NASA workload under the PSP switching policy.

It is clear that while there are similar trends over time, some predictors produce better

results than others. It is also the case that the results are not consistent, that is, one

predictor does not consistently perform better than all the others.

R
ev

en
ue

Increasing Time Periods

LO
SA

SMA
EMA
LPF
AR1
AR2

Figure 5.1: Revenue samples from applying the seven predictors (NASA workload,
PSP switching policy)

In the AWM model, the data points for all predictors are collected during a fixed

period (the Active Window). The gained revenue from each predictor is compared with

the original revenue with no forecasting. The best predictor, i.e. that which results in

92

5.3 The Workload and Predictive Models

the highest revenue for the last period (along with the switching policy), is then used

for the next period. In the case where more than one predictor deliver the same results,

one is chosen at random.

In this model the active windows have varying duration: 5m, 10m, 15m, 20m, 25m,

30m, 1h, 2h, and 12h; where m and h represent minutes and hours respectively.

5.3.2 Voting Model (VM)

The voting model (VM) is based on the following scenario (for both switching poli-

cies). First, each of the different predictors are applied to the system, these predictions

are acted upon and the system is reconfigured accordingly (resulting in one system

configuration for each of the predictors/server-switching policies); the system (re-)

configuration chosen most often (i.e. with the most votes) is then applied to the system

proper. A random process is used where more than one configuration exists or where

all predictors give different results.

This system clearly requires more calculation within the model, as we are deciding

on the final state of the system as opposed to simply an up-front prediction of workload.

5.3.3 Selective Model (SM)

The selective model works by choosing those predictors that have performed best dur-

ing the past time period, and employing these for the next time period. SM(B2) calcu-

lates the mean of the best two predictors (as compared to the original system without

predictors). Several other selective models are also applied, including the selective

model with the best three or four predictors (SM(B3)) and (SM(B4)), and the selective

model with an average of all the predictors computed and then applied (SM(AVG)).

The random selection process is also applied in this developed prediction model

93

5.4 Experimental Setup, Results, and Analysis

(e.g. when the SM(B2) is performed and there are three predictors performing equally,

here just two of these three algorithms are selected randomly).

In each case, the choice of workload prediction technique is dynamic; that is, no

one prediction technique is applied throughout the system lifetime. This aim of such

an approach is to avoid bias and to ensure that the variability in the workload (which

we inevitably see between the variety of input sources) is somehow accounted for.

Figure 5.1 highlights the need for such a scheme; the Low Pass Filter predictor, for

example, can produce the second-best revenue in one time period, to be followed by

the second-worst revenue in the subsequent time period. Workload clearly impacts on

the effectiveness of the prediction and dynamic server reallocation combined.

5.4 Experimental Setup, Results, and Analysis

The setup of the developed model along with the different parameters used in this

chapter are presented in this section. The experiment results and its analysis are also

discussed here.

5.4.1 Experimental Setup

We have developed a supporting simulator to allow us to verify the behaviour of our

theoretical models. We prime the simulator with measured values from an in-house

test platform, or use values from supporting literature where these are not attainable.

We simulate two multi-tiered applications running on two logical pools (1 and 2) on

a cluster of servers. There are two different classes of job (gold and silver), which

represent the importance of these jobs. The service time S ir and the visiting ratio vir

are both based on realistic (i.e. sampled) values.

In this work, three different models have been developed to compute the request

94

5.4 Experimental Setup, Results, and Analysis

servicing capability: 1) the Active Window Model (AWM); 2) the Voting Model (VM)

and; 3) the Selective Model (SM). In each case, the results show the base-line revenue

when no switching policy is applied (NSP) and also the case when the switching pol-

icy alone (without forecasting) is applied (NP). These provide good indicators against

which the new results can be compared.

5.4.2 Experimental Results

The results from applying our new predictive models along with the dynamic server

switching policies on three real-world Internet traces are shown in Tables 5.1, 5.2, and

5.3 and Figures 5.2, 5.3, and 5.4, and are described in the following sections.

5.4.2.1 i) Experiment One

The first experiment is conducted using the first workload which has been generated

from two real-world Internet traces to the EPA WWW server located at Research Tri-

angle Park, NC and the SDSC WWW server located at the San Diego Supercomputer

Center, California respectively [27]. The results from the different predictive models

based on this workload are shown in Table 5.1 (note that this duplicates results shown

in Chapter 4, but nevertheless makes a study of the new results easier). This table rep-

resents the gained revenue from applying the seven predictive algorithms – LO, SA,

SMA, EMA, LPF, AR1, and AR2. In this case one or other of the predictors are ap-

plied consistently throughout the experiment. Figure 5.2 represents the revenue that

has been achieved using the three meta-forecasting models – AWM, VM, and SM; this

therefore represents a combination of applied predictors, depending on the details of

the scheme.

The two server switching policies used in this work (PSP and BSP) provide 5.63%

95

5.4 Experimental Setup, Results, and Analysis

 600

 700

 800

 900

1000

1100

1200

1300

1400

1500

N
SP

N
P

A
W

M
(5m

)

A
W

M
(10m

)

A
W

M
(15m

)

A
W

M
(20m

)

A
W

M
(25m

)

A
W

M
(30m

)

A
W

M
(1h)

A
W

M
(2h)

A
W

M
(12h)

V
M

SM
(B

2)

SM
(B

3)

SM
(B

4)

SM
(A

V
G

)

T
o

ta
l

R
ev

en
u

e
(x

1
0

^3
)

Algorithm

PSP
BSP

Figure 5.2: Revenue using Active Window Model (AWM), Voting Model (VM), and
Selective Model (SM) over the first workload

and 103.47% improvement in system revenue compared to the non switching policy

(NSP). The results from Table 5.1 show a 12.15% improvement in the system revenue

when the AR1 algorithm is applied with PSP, compared to that from the original PSP

without prediction. The remainder of the predictive algorithms also yielded better

results than the original revenue computed from the PSP scheme without forecasting,

with just two exceptions – when the predictors SA and SMA are used the revenue

drops by -0.12% and -0.46% respectively.

Table 5.1 also shows that applying the predictive algorithms with BSP provides at

least 6.67% improvement in system revenue with LPF and up to 8.89% when EMA is

applied alongside BSP (this was displayed in Chapter 4).

The achieved revenue from using the three different meta-forecasting models is

shown in Figure 5.2. The Active Window Model (AWM) performs the best on the

96

5.4 Experimental Setup, Results, and Analysis

given workload and the revenue can be up to 14.06% higher when it is applied with

PSP and up to 36.70% higher with BSP when it is applied every one and twelve hours

respectively. While these results look encouraging, we sound a note of caution by

highlighting the fact that the improvement drops by -0.43%, -8.27%, and -22.22%

when the AWM is applied with BSP for every 10m, 20m, and 2h respectively. This

method is clearly sensitive to workload and its employment and configuration therefore

would need to be subject to realistic trials if it is to be most effective.

The voting model (VM) is not effective with PSP (resulting in a 3.45% drop in

revenue), yet it does signify improvements with BSP (resulting in a 9.71% improve-

ment in revenue) when its performance is compared to the switching policy with no

forecasting. The Selective Model is able to bring about improvements to both switch-

ing policies, revenue is up 2.07% using a combination of SM(B4) and PSP, and is up

7.33% using a combination of SM(B2) and BSP.

5.4.2.2 ii) Experiment Two

We repeat the experiments with the second workload – this contains 3,328,587 requests

issued to the ClarkNet WWW server over the period of two weeks. The resulting

values are shown in Table 5.2 and Figure 5.3. Table 5.2 shows that the system revenue

is improved by 28.14% and 247.79% using PSP and BSP respectively compared to

NSP. The figure also shows a further 1.78% and 7.28% improvement when the AR1

and SMA predictors are applied with PSP and BSP respectively (see Chapter 4).

Figure 5.3 shows that, AWM provide further improvement (by 12.24% and 8.32%)

when it is applied every twelve hours with PSP and BSP on the given workload. VM

decreases the performance of the system by -0.58% when it is used with PSP and up

to -25.29% with BSP.

97

5.4 Experimental Setup, Results, and Analysis

 500

1000

1500

2000

2500

N
SP

N
P

A
W

M
(5m

)

A
W

M
(10m

)

A
W

M
(15m

)

A
W

M
(20m

)

A
W

M
(25m

)

A
W

M
(30m

)

A
W

M
(1h)

A
W

M
(2h)

A
W

M
(12h)

V
M

SM
(B

2)

SM
(B

3)

SM
(B

4)

SM
(A

V
G

)

T
o

ta
l

R
ev

en
u

e
(x

1
0

^4
)

Algorithm

PSP
BSP

Figure 5.3: Revenue using Active Window Model (AWM), Voting Model (VM), and
Selective Model (SM) over the second workload

The highest improvements that can be achieved using SM with the PSP and BSP

are 5.82% and 5.50% (when applied as SM(B2) and SM(B4)). There is again a lack of

consistency however as revenue drops by -1.12% (using SM(B4)) and -26.32% (using

SM(3)) with PSP and BSP respectively.

5.4.2.3 iii) Experiment Three

Finally we undertake the same experiments using the third workload, which contains

3,461,612 requests to the the NASA Kennedy Space Center web-server in Florida. Re-

sults are shown in Table 5.3 and Figure 5.4. It is shown that the revenue of the system

can be improved as much as 69.19% and 44.14% when BSP and PSP are applied to

the system compared with the NSP; a further 45.91% and 0.76% improvement can be

achieved when the SA and AR(1) are applied to the system along with BSP and PSP

respectively (see Table 5.3).

98

5.4 Experimental Setup, Results, and Analysis

 500

 600

 700

 800

 900

1000

1100

1200

1300

N
SP

N
P

A
W

M
(5m

)

A
W

M
(10m

)

A
W

M
(15m

)

A
W

M
(20m

)

A
W

M
(25m

)

A
W

M
(30m

)

A
W

M
(1h)

A
W

M
(2h)

A
W

M
(12h)

V
M

SM
(B

2)

SM
(B

3)

SM
(B

4)

SM
(A

V
G

)

T
o

ta
l

R
ev

en
u

e
(x

1
0

^5
)

Algorithm

PSP
BSP

Figure 5.4: Revenue using Active Window Model (AWM), Voting Model (VM), and
Selective Model (SM) over the third workload

The AWM performs the best compared with the other two models where the sys-

tem revenue can be improved by 4.68% and 40.69% with the PSP and BSP policies,

when AWM is applied every ten and twenty minutes respectively (the improvement is

between 0.96%-1.63% and 29.33%-39.71% using the remaining categories of AWM

with PSP and BSP respectively).

When VM and SM are applied with PSP, it does not provide a good improvement in

system revenue (-3.19%) with VM and from 0.08% to -2.98% with SM. VM however

gives a good improvement in system revenue with BSP where the improvement reaches

15.08%. SM also provide a reasonable improvement (from 8.21% with SM(B2) and

up to 36.56% with SM(B3)) in system revenue when applied alongside BSP.

99

5.4 Experimental Setup, Results, and Analysis

5.4.3 Analysis

Tables 5.4, 5.5 and 5.6 provide a useful summary of these findings. Essentially we

contrast an enterprise system with fixed resources (NSP) with several alternatives: a

system that employes a dynamic server switching policy (PSP or BSP); a system that

uses PSP or BSP, and a single forecasting scheme; and finally a system that employes

PSP or BSP, and a meta-forecasting scheme. There are some interesting observations

from this data:

• Dynamic server switching (using PSP or BSP) improves revenue in all cases.

The Bottleneck Aware Switching policy is particularly effective;

• Using a single forecasting scheme in tandem with PSP or BSP is difficult. First,

no one scheme wins out across all workload (the best single policy includes

AR(1), EMA, SMA, and SA over our three workloads). Second, if the wrong

scheme is chosen, this may indeed reduce the overall revenue generated (it does

so in more than half the cases we test);

• The meta-forecasting schemes always improve revenue when used in tandem

with PSP or BSP. In the worst case the improved revenue will be negligible

(1.63%, workload three, PSP, AWM(20m)); in the best case the revenue may be

increased by around 40% (40.69% workload three, BSP, AWM(20m));

• The Active Window Model (AWM) proves to be the best scheme in all cases;

on average this scheme gives an improvement in revenue of 15.1% over all three

real-world workloads. The size of the active window is important and must

therefore be subject to some pre-calculatation based on sample traces.

100

5.4 Experimental Setup, Results, and Analysis

Ta
bl

e
5.

1:
R

ev
en

ue
ga

in
s

fo
rs

w
itc

hi
ng

po
lic

y
an

d
fo

re
ca

st
in

g
co

m
bi

na
tio

ns
ov

er
th

e
fir

st
w

or
kl

oa
d

PS
P

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
PS

P
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

61
4.

1
64

8.
7

65
0

64
7.

9
64

5.
7

67
7.

8
65

1.
3

72
7.

5
66

0.
6

Im
p.

ov
er

PS
P

(%
)

-
0

0.
2

-0
.1

2
-0

.4
6

4.
49

0.
4

12
.1

5
1.

83

B
SP

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
B

SP
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

61
4.

1
12

49
.5

13
41

.3
13

33
.7

13
33

.9
13

60
.6

13
32

.8
13

46
.5

13
33

.4

Im
p.

ov
er

B
SP

(%
)

-
0

7.
35

6.
74

6.
75

8.
89

6.
67

7.
76

6.
71

101

5.4 Experimental Setup, Results, and Analysis

Ta
bl

e
5.

2:
R

ev
en

ue
ga

in
s

fo
rs

w
itc

hi
ng

po
lic

y
an

d
fo

re
ca

st
in

g
co

m
bi

na
tio

ns
ov

er
th

e
se

co
nd

w
or

kl
oa

d
PS

P
+

Pr
ed

ic
tiv

e
A

lg
or

ith
m

Po
lic

y
N

SP
PS

P
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

63
2.

6
81

0.
6

78
6.

1
75

8.
6

80
3.

9
81

1
81

6.
1

82
5

82
0.

9

Im
p.

ov
er

PS
P

(%
)

-
0

-3
.0

2
-6

.4
1

-0
.8

3
0.

05
0.

68
1.

78
1.

27

B
SP

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
B

SP
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

63
2.

6
22

00
.1

22
73

.3
23

06
.2

23
60

.3
23

09
.2

21
82

.8
21

55
.5

22
79

.3

Im
p.

ov
er

B
SP

(%
)

-
0

3.
33

4.
82

7.
28

4.
96

-0
.7

9
-2

.0
3

3.
6

102

5.4 Experimental Setup, Results, and Analysis

Ta
bl

e
5.

3:
R

ev
en

ue
ga

in
s

fo
rs

w
itc

hi
ng

po
lic

y
an

d
fo

re
ca

st
in

g
co

m
bi

na
tio

ns
ov

er
th

e
th

ir
d

w
or

kl
oa

d
PS

P
+

Pr
ed

ic
tiv

e
A

lg
or

ith
m

Po
lic

y
N

SP
PS

P
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

51
3.

8
74

0.
6

71
8.

0
70

3.
1

74
2.

2
74

5.
0

73
0.

7
74

6.
2

74
0.

5

Im
p.

ov
er

PS
P

(%
)

-
0

-3
.0

5
-5

.0
6

0.
22

0.
59

-1
.3

4
0.

76
-0

.0
1

B
SP

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
B

SP
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

51
3.

8
86

9.
3

94
0.

0
12

68
.4

11
64

.6
97

8.
3

12
60

.7
10

83
.5

12
06

.3

Im
p.

ov
er

B
SP

(%
)

-
0

8.
13

45
.9

1
33

.9
7

12
.5

4
45

.0
2

24
.6

4
38

.7
7

103

5.4 Experimental Setup, Results, and Analysis

Ta
bl

e
5.

4:
A

na
ly

si
s

of
th

e
fir

st
w

or
kl

oa
d

Po
lic

y
N

SP
PS

P
B

es
tS

in
gl

e
Po

lic
y

W
or

st
Si

ng
le

Po
lic

y
B

es
tm

et
a-

po
lic

y

To
ta

lR
ev

en
ue

61
4.

1
64

8.
7

(A
R

1)
72

7.
5

(S
M

A
)6

45
.7

(A
W

M
(1

h)
)7

39
.9

Im
p.

ov
er

PS
P

(%
)

-
0

12
.1

5
-0

.4
6

14
.0

6

Po
lic

y
N

SP
B

SP
B

es
tS

in
gl

e
Po

lic
y

W
or

st
Si

ng
le

Po
lic

y
B

es
tm

et
a-

po
lic

y

To
ta

lR
ev

en
ue

61
4.

1
12

49
.5

(E
M

A
)1

36
0.

6
(L

PF
)1

33
2.

8
(A

W
M

(3
0m

))
14

20
.3

Im
p.

ov
er

B
SP

(%
)

-
0

8.
89

6.
67

13
.6

7

104

5.4 Experimental Setup, Results, and Analysis

Ta
bl

e
5.

5:
A

na
ly

si
s

of
th

e
se

co
nd

w
or

kl
oa

d
Po

lic
y

N
SP

PS
P

B
es

tS
in

gl
e

Po
lic

y
W

or
st

Si
ng

le
Po

lic
y

B
es

tm
et

a-
po

lic
y

To
ta

lR
ev

en
ue

63
2.

6
81

0.
6

(A
R

1)
82

5
(S

A
)7

58
.6

(A
W

M
(1

2h
))

90
9.

8

Im
p.

ov
er

PS
P

(%
)

-
0

1.
78

-6
.4

1
12

.2
4

Po
lic

y
N

SP
B

SP
B

es
tS

in
gl

e
Po

lic
y

W
or

st
Si

ng
le

Po
lic

y
B

es
tm

et
a-

po
lic

y

To
ta

lR
ev

en
ue

63
2.

6
22

00
.1

(S
M

A
)2

36
0.

3
(A

R
1)

21
55

.5
(A

W
M

(1
2h

))
23

83
.1

Im
p.

ov
er

B
SP

(%
)

-
0

7.
28

-2
.0

3
8.

32

105

5.4 Experimental Setup, Results, and Analysis

Ta
bl

e
5.

6:
A

na
ly

si
s

of
th

e
th

ir
d

w
or

kl
oa

d
Po

lic
y

N
SP

PS
P

B
es

tS
in

gl
e

Po
lic

y
W

or
st

Si
ng

le
Po

lic
y

B
es

tm
et

a-
po

lic
y

To
ta

lR
ev

en
ue

51
3.

8
74

0.
6

(A
R

1)
74

6.
2

(S
A

)7
03

.1
(A

W
M

(2
0m

))
75

2.
7

Im
p.

ov
er

PS
P

(%
)

-
0

0.
76

-5
.0

6
1.

63

Po
lic

y
N

SP
B

SP
B

es
tS

in
gl

e
Po

lic
y

W
or

st
Si

ng
le

Po
lic

y
B

es
tm

et
a-

po
lic

y

To
ta

lR
ev

en
ue

51
3.

8
86

9.
3

(S
A

)1
26

8.
4

(L
O

)9
40

.0
(A

W
M

(2
0m

))
12

23

Im
p.

ov
er

B
SP

(%
)

-
0

45
.9

1
8.

13
40

.6
9

106

5.5 Summary

5.5 Summary

Through modelling and supporting simulation, we combine the reactive behaviour of

two well known switching policies – the Proportional Switching Policy (PSP) and the

Bottleneck Aware Switching policy (BSP) – with the proactive properties of several

workload forecasting models. Seven forecasting models are used, including Last Ob-

servation, Simple Algorithm, Sample Moving Average, Low Pass Filter and Autore-

gressive Moving Average. As each of the forecasting schemes has its own bias, we also

develop three meta-forecasting models (the Active Window Model, the Voting Model

and the Selective Model) to ensure consistent and improved results.

We base our results on real-world workload traces from several sources, including

from the San Diego Supercomputer Centre, from the ClarkNet Internet access provider

for the Metro Baltimore-Washington DC area and, from the NASA Kennedy Space

Center web-server in Florida. For each of the three real-world workloads, we contrast

an enterprise system with fixed resources (no switching policy) with several alterna-

tives: a system that employes a dynamic server switching policy (PSP or BSP); a

system that uses PSP or BSP, and a single forecasting scheme; and finally a system

that employes PSP or BSP, and a meta-forecasting scheme.

The results are significant in a number of respects: (i) Dynamic server switching

(using PSP or BSP) improves revenue in all cases, the Bottleneck Aware Switching

policy is particularly effective; (ii) Using a single forecasting scheme in tandem with

PSP or BSP is difficult as no one scheme wins out across all workloads and, if the

wrong scheme is chosen, this may lead to a reduction in the overall revenue generated

by the system; (iii) The meta-forecasting schemes always improve revenue when used

in tandem with PSP or BSP, in the worst case the improvement revenue will be negli-

107

5.5 Summary

gible, in the best case the revenue may be increased by around 40%; (iv) The Active

Window Model (AWM) proves to be the best scheme in all cases, and on average this

scheme gives an improvement in revenue of 15.1% over all three real-world workloads.

It has been found that the size of the active window plays crucial role and must

therefore be subject to some pre-calculatation based on different approaches. The next

chapter presents different techniques which can be applied in order to enhance the de-

veloped meta-forecasting models by monitoring the system and making the appropriate

decisions when needed, based on the incoming requests. Also a historical prediction

model, which exploits the periodicity of web traffic to predict workload will be applied

to examine the effect of these developed models on system revenue.

108

Chapter 6

Dynamic Active Windows, Workload
Pattern Analysis and Extreme
Workloads

6.1 Introduction

In Chapter 5 we developed three new meta-forecasting models and investigated their

effectiveness on the three real-world workloads employed in this thesis. We develop

this work further in this chapter.

The Active Window Model seen in Chapter 5 was shown to produce encouraging

results that is, improvements in system revenue were achieved. The improvements

brought about by this scheme did however vary and are related to the size of the active

window as well as the workload itself. We term this approach the use of static active

windows and explore a new dynamic active window technique here. We base this new

approach on two new metrics: (1) the burstiness factor (BF) and (2) the request arrival

rate technique (ART).

In addition to this we explore whether it is possible employ pattern analysis to help

in our forecasting of workload. Our assumption here is that internet services experience

patterns of activity, for example they may be quiet at night and experience busy periods

109

6.1 Introduction

mid-morning and afternoon, and in the early evening. We explore this idea through a

historical prediction model.

Finally, we investigate which of the techniques developed in this thesis demonstrate

robustness in periods of extreme activity. We ask whether dynamic server switching

and forecasting are effective in managing flash crowds; this is done through the creation

of synthetic workloads that mimic such activities.

6.1.1 Chapter Contributions

This chapter extends the work in the previous chapter; the following additional contri-

butions are made:

• In the previous chapter we demonstrated the benefits of meta-forecasting models

is overcoming the bias of one particular forecasting technique. In this chapter

we extend the Active Window Model.

• In Chapter 5 we demonstrated that the active window model performs better

than the other two meta-forecasting models (system revenue may improved by

as much as 40%). We also served that the size of the active window plays curial

role. Thus we develop a Dynamic Active Window Model (DAWM) to control

the data sampling interval over which server switching decisions are made. The

DAWM is based on two different techniques – the burstiness factor and the re-

quest arrival rate. This extended model shows that a further 51.5% improvement

can be achieved when the switching server policy, meta-forecasting and dynamic

active window management are employed together over a real-world workload

based on Internet traces.

• We also introduce the notion that workloads demonstrate patterns of behaviour

110

6.2 Additional Related Work

over long periods. We employ Workload Pattern Analysis in our studies and

investigate the application of prediction techniques based on this approach.

• A synthetic workload with extreme events, where the number of requests rise

suddenly for several periods and then return the normal range is introduced in

this chapter in order to study of the behaviour of the developed models in periods

of extreme activities (e.g flash crowds).

• We show that request servicing capability can be improved by as much as 92%

when the right combination of dynamic server switching and workload fore-

casting are used over real-world Internet traces and 103% over a workload with

extreme events. We base our results on real-world workload traces from several

sources and also on two different synthetic workloads generated with extreme

fluctuations in workload.

6.2 Additional Related Work

Server workload is usually measured in terms of the incoming requests arrival rate (e.g.

total number of operations or size of the files requested per unit of time). In this thesis

the interval for collecting the data from the Internet workload has been chosen to be five

minutes, giving a total of 288 intervals in a day. This is typical in the characterisation

of data from websites ranging from retail industries to finance (see [52]).

In the previous chapter, three meta-forecasting models have been developed, in-

cluding: the Active Window Model (AWM), the Voting Model (VM), and the Selec-

tive Model (SM) based on several different predictive algorithms. The active window

model (AWM) proves to be the best scheme in all cases.

The work here is different from that seen in Chapter 5 as we use an approach where

111

6.3 Predictive Models

the size of the active window changes dynamically based on the burstiness factor (BF)

(as stated in [19]) as well as the request arrival rate technique (ART).

6.3 Predictive Models

Experiments in this chapter have been conducted over the workloads with five meta-

forecasting models – the Active Window Model (AWM), the Dynamic Active Window

Model (DAWM), the Voting Model (VM), the Selective Model (SM), and the Work-

load Pattern Analysis (WPA). The three forecasting models (AWM, VM, and SM) are

documented in Chapter 5. The remaning models (DAWM and WPA) are described as

follows:

6.3.1 Dynamic Active Window Model (DAWM)

In Chapter 5 we demonstrated that the Active Window Model (AWM) performs better

than the other two meta-forecasting models (VM and SM). Added to this, the size

of the active window plays crucial role and must therefore be subject to some pre-

calculatation based on different approaches.

The main concern here is how to monitor the behaviour of the developed predic-

tors in order to improve the quality of the developed model as well as to reduce the

algorithm overhead. The requests’ arrival rate parameter is one of the different sys-

tems parameter that can be monitored [19]. The monitoring process of the requests’

arrival rate can be done in three different scenarios; i) each time a request arrives at

the front-end of the system, ii) at fixed times by using static time slot scheduling, iii)

at non-fixed times by using dynamic time slot scheduling. It is clear that the first op-

tion, where the monitoring of the system is conducted each time a new request arrives

is naive, not cost free, and requires large calculation. While the second scenario is

112

6.3 Predictive Models

conducted at pre-fixed slots of time that are already determined at the design stage.

The previous chapter (Chapter 5) is based on this scenario. The main concern of this

chapter is to develop the third scenario where the monitoring of the proposed system

is done at non-fixed times and the size of the time slots changes dynamically based on

the requests arrival rate. Thus the model (DAWM) is developed where the duration of

the active window’s size for collecting the data points for all predictors is variable as it

is very difficult to set a duration interval that fits with all possible requests arrival rates

due to its heavy tailed pattern. The active window size is calculated based on either a

burstiness factor – the window size decreases when the workload becomes more bursty

– or based on the correlation between the request’s arrival rate and the mean arrival rate

for incoming requests to the system.

6.3.1.1 i) Burstiness Technique and Monitoring Window Size

Due to the significant variance of the Internet traces, and in order to produce a sys-

tem with good performance, especially when the workload demand is high, burstiness

needs to be controlled and studied [18].

The burstiness factor – Penalisation Included (PI) – which is documented in [19], is

applied in this work. The (DAWMPI) can be computed by comparing the mean arrival

rate of HTTP transactions during all slots (µ) with the arrival rate of the current slot

(λ).

The current slot is considered to be a bursty slot If the arrival rate of the current

slot is greater than the mean arrival rate of HTTP transactions during all slots (λ > µ).

That is, the burstiness factor is defined as the relation between the cumulative number

of the whole slots that satisfy (λ > µ) which is called (s′) and the current number of

slots (s).

113

6.3 Predictive Models

In other words, the burstiness factor is then computed by dividing the number of

bursty slots (s′) by the number of slots (s) and then multiplying the result with (1 +α);

where (α) is used to capture continued increases in traffic volume. It is considered

that a maximum of j consecutive bursty slots may lead to a proportional raise in the

burstiness factor, where α = (0.1 ∗ j), f or j∈1, ..., 10. The maximum record of 10 slots

has been chosen as in [19]; this is essentially saying that if the burstiness detected in

the arrival rate is extreme, then the burstiness factor will be doubled every 10 slots.

b(s) =
s′

s
× (1 + α). (6.1)

Where the whole slots in the system is represented by (s′) and the (s) represents

the bursty slots. Note that the range of this factor is grouped between 0 to 1 to avoid

congestion [19].

After computing the burstiness factor, the duration of the next slot d(s + 1) is com-

puted based on the burstiness factor of the current slot b(s) and the previous slot b(s−1),

as follows;

d(s + 1) =

d(s) × ∆

1 + b(s) + b(s − 1)
, b(s) ≥ b(s − 1)

d(s) × ∆

1 + b(s) − b(s − 1)
, b(s) < b(s − 1)

(6.2)

By calculating the next check-point based on the burstiness factor of the previous

two slots, the length to the next check-point increases if a decreased burstiness is per-

ceived, and is brought sooner if the burstiness increases. Therefore, a sudden reduction

and enlargement of the burstiness can be forecasted [19].

114

6.3 Predictive Models

6.3.1.2 ii) Arrival Rate Technique

The second approach that used in order to monitor the proposed model is known as

the arrival rate technique (DAWMART). The (DWAMART) is developed in this research

based on the arrival rate of the current request λr, compared with the mean arrival rate

of the previous incoming requests to the system µr where;

µr =

∑r
x=1 λr

r
. (6.3)

The data points from different predictors are collected (the check point) when the

arrival rate of the current request λ is greater than the mean arrival rate of requests µ.

6.3.2 Workload Pattern Analysis (WPA)

We finally introduce a historical prediction model, which exploits the periodicity of

web traffic to predict workload. In this model the predicted number of requests is

related to the previous number of requests found at the same time of day (the number of

requests at midnight for a specific day is related to the number of requests at midnight

recorded during the previous week).

As an example of using the new developed technique consider the following; sup-

pose that the number of requests at Monday midnight was equal to 150 requests and

also it has been found that the number of requests is 200 requests at the Tuesday mid-

night. In this case and in order to compute the number of requests at Wednesday

midnight, the number of requests at Monday and Tuesday are used as follow; (No. of

requests at Wednesday midnight = (No. of requests at Monday midnight + No. of

requests at Tuesday midnight) / 2). In this case the number of requests at Wednesday

midnight can be computed by adding the values of 200 and 150 and dividing them by

115

6.4 Experimental Results and Analysis

2, (200+150) / 2 = 175.

6.4 Experimental Results and Analysis

We have developed a supporting simulator to allow us to verify the behaviour of our

theoretical models. We prime the simulator with measured values from an in-house

test platform, or using values from supporting literature where these are not attainable

– the details of the experiment setup are documented in Chapter 3.

In the first experiment, the results from applying the new meta-forecasting model

– Dynamic Active Window Model (DAWM) – compared with the previous forecast-

ing model – Active Window Model (see Section 5.4.2.1 in Chapter 5) – along with

dynamic server switching to three real-world Internet traces are provided. The results

from applying the periodic forecasting model Workload Pattern Analysis (WPA) over

the three real-world Internet traces is found in the second experiment. The third exper-

iment repeats the same analysis of the different models (AWM, DAWM, VM, SM, and

WPA) but on a synthetic workload containing extreme events.

6.4.1 Experiment One

The first experiment is conducted using the new adaptive forecasting model – Dynamic

Active Window Model (DAWM) – which is developed based on the previous meta-

forecasting model (AWM), as it has been found that AWM is more effective than the

other two meta models from Chapter 5. The DAWM is applied over the real-world

workloads seen previously.

The results from the DAWM compared with the AWM based on the three workload

and using PSP and BSP are shown in Tables 6.1 and 6.2 respectively.

Table 6.1 shows that using the DAWM either using the burstiness factor (DAWMPI)

116

6.4 Experimental Results and Analysis

or arrival rate technique (DAWMART) performing along side PSP is better (more rev-

enue) than that from the original PSP without prediction; with just one exception when

the DAWM is applied using the burstiness factor over the second workload where the

revenue dropped by -0.3%. Table 6.1 shows also that when the AWM is applied every

one hour, the improvement is improved by at least 14.06% and this is the best im-

provement can be obtained from applying the AWM over the first workload. A further

5.44% improvement is achieved when the DAWMART is used along side PSP over the

same workload.

Applying the new developed meta-forecasting (DAWM) over the second workload

does not improve the system’s performance as much as the AWM does, as the best

improvement that can be obtained from applying the DAWM is 1.6% (DAWMART ,

1.6%). While the revenue can be improved by 12.24% when the AWM12h is applied.

The performance of the system can improve by up to 63.8% from applying the

DAWMPI with PSP over the third workload, while the best improvement from applying

the AWM is obtained when it is applied every 20 minutes (1.63%).

On average, using the best AWM alongside PSP over the three workloads can im-

prove the system revenue by 9.31%, while at least 25.14% and 7.43% improvement are

achieved from applying the DAWM using the burstiness factor (DAWMPI) and arrival

rate technique (DAWMART) respectively.

Table 6.2 shows the results from applying the DAWM using both the burstiness

factor and the arrival rate technique with BSP over the three workloads, it also shows

the best and worst AWM compared with that obtained from applying the BSP with no

prediction.

It can be seen from the table that applying the DAWM always performs better

than applying the switching policy without forecasting. DAWM does not improve the

117

6.4 Experimental Results and Analysis

system performance over the first workload compared with applying BSP along side

the best active window model (AWM30m). It performs however better than using BSP

without prediction as the improvements are 9.4% and 8.8% respectively.

The results from Table 6.2 show also at least 0.5% and at most 8.3% improvement

in system revenue when the worst and best AWM is applied compared to that from

the original BSP without prediction over the second workload. On the other hand,

the revenue from applying the DAWM using the burstiness factor (DAWMPI) on the

given workload can be up by 91.5% compared with BSP without prediction. Added to

this, the system performance can be improved by 50.4% when the DAWMPI is applied

with BSP over the third workload, while the largest improvement can be obtained from

applying AWM on the given workload is 40.7% with AWM20m.

The performance from applying the DAWMART over the second and third work-

loads are 4.3% and 37.3% respectively.

The behaviour of the best AWM over the three given workloads on average is

20.9% while, the average improvement from applying the DAWMPI is around 50.43%.

The average improvement from applying the DAWMART over the three workloads is

16.8%.

6.4.2 Experiment Two

The second experiment is conducted over the workload with extreme events (see Figure

6.1) using the four meta-forecasting models (AWM, DAWM, VM, and SM).

The main reason behind using this synthetic workload that includes extreme fluctu-

ations is to study the effect of the different meta-forecasting models. As stated before,

most e-Business applications are subject to enormous variations in workload demand

[10]; in addition, the traffic to such sites can become three or four times greater than

118

6.4 Experimental Results and Analysis

0

200

400

600

800

1000

1200

0 25 50 75 100 125

N
o.

of
R

eq
ue

st
s

Time Periods (mins)

Pool1
Pool2

Figure 6.1: A sample of the total requests in the synthetic workload for both application
pools

the average traffic (for example) and the server capacity fails in serving active cus-

tomers [41]. Our workload is purely illustrative in that the time in which the traffic

spike occurs, or its extent, is chosen randomly.

The generated workload has a normal activity in one pool while there is a sudden

change in the second pool, which retains normal activity after the sudden change (see

Figure 6.1).

The results from applying the meta-forecasting models over the synthetic workload

with extreme event are shown in Table 6.3 and Figure 6.2.

These results are interesting in that the PSP does not react well to these events –

PSP decreases revenue over a system which employs no switching policy (see Table

6.3). In contrast, BSP does provide an improvement in system revenue, albeit reduced

when the additional predictive algorithms are employed.

The results of the meta-forecasting schemes (Figure 6.2) again show that PSP is

119

6.4 Experimental Results and Analysis

 400

 500

 600

 700

 800

 900

1000

N
SP

N
P

A
W

M
(5m

)

A
W

M
(10m

)

A
W

M
(15m

)

A
W

M
(20m

)

A
W

M
(25m

)

A
W

M
(30m

)

A
W

M
(1h)

A
W

M
(2h)

A
W

M
(12h)

D
A

W
M

(A
RT)

D
A

W
M

(PI)

V
M

SM
(B2)

SM
(B3)

SM
(B4)

SM
(A

V
G

)

T
ot

al
 R

ev
en

ue
 (

x1
0^

3)

Algorithms

PSP
BSP

Figure 6.2: Revenue using Active Window Model (AWM), Dynamic Active Window
Model (DAWM), Voting Model (VM), and Selective Model (SM) over the fourth work-
load

not effective. BSP is again the scheme of choice, however some interesting observa-

tions can be made. BSP together with the AWM is extremely sensitive to the extreme

events. If the active window is too small then the extreme events will effect the revenue

generating capabilities of the system (as to be expected); as the active window size in-

creases, so the scheme is more able to cope with these extreme events (the same thing

can be said to the DAWM using the burstiness factor (DAWMPI) or arrival rate tech-

nique (DAWMART)). VM and SM also provide robust results in response to extreme

events, although neither scheme improves on the application of BSP alone.

It is clear that when AWM is applied every hour (AWM1h) over the first workload,

it performs better than DAWM with the arrival rate technique (DAWMART). This is

due to the behaviour of the workload (Figure 6.3). To understand this we consider the

characteristics of the two workloads: If we look at the number of requests for each of

the application pools, we find that the workloads for the two pools cross only a small

120

6.4 Experimental Results and Analysis

number of times (in particular at the beginning of the workload) and the differentiation

between the number of requests is small. Thus applying DAWM with the arrival rate

technique (the server switching process is performed between the two pools when the

arrival rate of the workload is greater than the mean arrival rate of the workload) is

an effective approach as the decision process is performed constantly. Contrast this

with the case when AWM is applied over this workload, where the decision process

(of whether to switch or not) is applied less frequently (this is due to the behaviour

of this technique) where some of the more subtle servers switching decisions are not

applied.

0

100

200

300

400

500

600

0 50 100 150 200 250 300

N
o.

of
R

eq
ue

st
s

Time Periods

Pool1
Pool2

Figure 6.3: The total requests in the first real-world workload for both application
pools

The characteristics of the second workload are quite different (Figure 6.4). It is

clear that the workloads cross constantly and the load between the two pools oscillates.

Added to this, the differentiation of the number of requests in the two application pools

are larger than in the first workload. Therefore, we see an interesting interaction be-

121

6.4 Experimental Results and Analysis

tween the active window size and the point at which decisions are made as to whether

the server switching process should be conducted or not: When AWM is applied ev-

ery twelve hours, this occurs just before the workloads of both pools cross each other

(which is the best time to switch the severs between the pools). This means therefore

that applying AWM every twelve-hours is testing the switching of the servers at the

best time in relation to this workload, and because of this it is performing better com-

pared with the other models. Although the number of switched severs between the two

pools is large when DAWM is applied over the second workload, we must remember

that the switching server process is not cost free and this may affect the total revenue

of the proposed application.

This analysis highlights the impact of the workload on the choice of server switch-

ing technique (and the revenue gained), and highlights the need to be able to predict

workload to some degree. This topic is addressed later in the thesis.

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000

N
o.

of
R

eq
ue

st
s

Time Periods

Pool1
Pool2

Figure 6.4: The total requests in the second real-world workload for both application
pools

122

6.4 Experimental Results and Analysis

6.4.3 Experiment Three

The final experiment has been undertaken using the fourth developed model – Work-

load Pattern Analysis (WPA) – and is applied over the four workloads (three real-world

Internet traces and the synthetic workload with extreme events). Results from applying

WPA are compared with those from using no switching policy (NSP), vanilla PSP or

BSP, and PSP or BSP with the best meta-forecasting scheme (AWM, DAWM, VM,

and SM); see Figure 6.5.

 0

 500

1000

1500

2000

2500

3000

3500

4000

4500

First_Workload Second_Workload Third_Workload Fourth_Workload

T
ot

al
 R

ev
en

ue
 (

x1
0^

3)

Algorithms

NSP
PSP

Best meta-policy(PSP)

WPA(PSP)
BSP

Best meta-policy(BSP)

WPA(BSP)

Figure 6.5: Revenue using Workload Pattern Analysis (WPA) under the four workloads

The new WPA scheme also performs effectively, although is less reliable than dy-

namic server switching with meta-forecasting (columns 4 and 7). It is this fact which

we wish to highlight in the results – WPA is clearly an effective scheme, and in the case

of workload four (with extreme events) produces some surprisingly good results; how-

ever, this suggests that PSP and BSP are not well suited for handling extreme events

and there are improvements to be made in this regard. If one is seeking consistent

results, then dynamic server switching with meta-forecasting is still a good choice.

123

6.4 Experimental Results and Analysis

6.4.4 Analysis

Tables 6.4 and 6.5 provide a useful summary of these findings. Essentially we contrast

an enterprise system with fixed resources (NSP) with several alternatives: a system

that employes a dynamic server switching policy (PSP or BSP); a system that uses

PSP or BSP, and a single forecasting scheme; and finally a system that employes PSP

or BSP, and a meta-forecasting scheme including DAWM and WPA. There are some

interesting observations from this data.

• The meta-forecasting schemes always improve revenue when used in tandem

with PSP or BSP over the three real-world Internet traces. In the worst case the

improved revenue will be negligible (12.24%, workload two, PSP, AWM(12h));

in the best case the revenue may be increased by around 92% (91.5%, BSP,

DAWM(PI), workload two);

• Applying the meta-forecasting schemes over the synthetic workload with ex-

treme event also improve the system revenue by 23% (22.8%, PSP, VM) and

103% (103.3%, BSP, WPA) with PSP and BSP respectively. We believe that

dealing with extreme events is more complex and requires further investigation

to ensure consistent results;

• On average these meta-forecasting schemes give an improvement in the system

revenue of 29.59% and 64.72% over all the four workloads.

124

6.4 Experimental Results and Analysis

Ta
bl

e
6.

1:
A

na
ly

si
s

of
ap

pl
yi

ng
th

e
fo

re
ca

st
in

g
m

od
el

s
(D

A
W

M
)

an
d

(A
W

M
)

al
on

gs
id

e
PS

P
ov

er
th

e
th

re
e

re
al

-w
or

ld
w

or
kl

oa
ds

Po
lic

y
N

SP
PS

P
W

or
st

A
W

M
B

es
tA

W
M

D
A

W
M

P
I

D
A

W
M

A
R

T

T
he

Fi
rs

tW
or

kl
oa

d
(R

ev
en

ue
x

10
3)

R
ev

en
ue

61
4.

1
64

8.
7

(A
W

M
12

h)
64

8.
7

(A
W

M
1h

)7
39

.9
72

6.
1

77
5.

2

Im
p.

(%
)

-
0

0
14

.0
6

11
.9

3
19

.5
0

T
he

Se
co

nd
W

or
kl

oa
d

(R
ev

en
ue

x
10

4)

R
ev

en
ue

63
2.

6
81

0.
6

(A
W

M
5m

)8
14

.9
(A

W
M

12
h)

90
9.

8
80

7.
9

82
3.

4

Im
p.

(%
)

-
0

0.
5

12
.2

4
-0

.3
1.

6

T
he

T
hi

rd
W

or
kl

oa
d

(R
ev

en
ue

x
10

5)

R
ev

en
ue

51
3.

8
74

0.
6

(A
W

M
12

h)
74

2.
8

(A
W

M
20

m
)7

52
.7

12
13

.3
74

9.
2

Im
p.

(%
)

-
0

0.
3

1.
63

63
.8

1.
2

125

6.4 Experimental Results and Analysis

Ta
bl

e
6.

2:
A

na
ly

si
s

of
ap

pl
yi

ng
th

e
fo

re
ca

st
in

g
m

od
el

s
(D

A
W

M
)

an
d

(A
W

M
)

al
on

gs
id

e
B

SP
ov

er
th

e
th

re
e

re
al

-w
or

ld
w

or
kl

oa
ds

Po
lic

y
N

SP
B

SP
W

or
st

A
W

M
B

es
tA

W
M

D
A

W
M

P
I

D
A

W
M

A
R

T

T
he

Fi
rs

tW
or

kl
oa

d
(R

ev
en

ue
x

10
3)

R
ev

en
ue

61
4.

1
12

49
.5

(A
W

M
2h

)9
71

.9
(A

W
M

30
m

)1
42

0.
3

13
66

.8
13

60
.1

Im
p.

(%
)

-
0

-2
2.

2
13

.7
9.

4
8.

8

T
he

Se
co

nd
W

or
kl

oa
d

(R
ev

en
ue

x
10

4)

R
ev

en
ue

63
2.

6
22

00
.1

(A
W

M
10

m
)2

21
1.

3
(A

W
M

12
h)

23
83

.1
42

14
.4

22
94

.4

Im
p.

(%
)

-
0

0.
5

8.
3

91
.5

4.
3

T
he

T
hi

rd
W

or
kl

oa
d

(R
ev

en
ue

x
10

5)

R
ev

en
ue

51
3.

8
86

9.
3

(A
W

M
12

h)
11

88
.3

(A
W

M
20

m
)1

22
3.

0
13

07
.1

11
93

.3

Im
p.

(%
)

-
0

36
.7

0
40

.7
50

.4
37

.3

126

6.4 Experimental Results and Analysis

Ta
bl

e
6.

3:
R

ev
en

ue
ga

in
s

fo
rt

he
sw

itc
hi

ng
po

lic
y

an
d

fo
re

ca
st

in
g

co
m

bi
na

tio
ns

ov
er

th
e

fo
ur

th
w

or
kl

oa
d

PS
P

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
PS

P
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

(x
10

3)
62

2
41

8.
5

41
6.

2
41

6.
2

41
6.

2
41

6.
2

41
6.

2
41

6.
2

41
6.

2

Im
p.

ov
er

PS
P

(%
)

-
0

-0
.5

6
-0

.5
6

-0
.5

6
-0

.5
6

-0
.5

6
-0

.5
6

-0
.5

6

B
SP

+
Pr

ed
ic

tiv
e

A
lg

or
ith

m

Po
lic

y
N

SP
B

SP
L

O
SA

SM
A

E
M

A
L

PF
A

R
(1

)
A

R
(2

)

To
ta

lR
ev

en
ue

(x
10

3)
62

2
92

9.
1

83
9.

4
83

9.
4

83
8.

9
83

8.
9

83
9.

4
58

1.
3

58
1.

3

Im
p.

ov
er

B
SP

(%
)

-
0

-9
.6

5
-9

.6
5

-9
.7

1
-9

.7
1

-9
.6

5
-3

7.
4

-3
7.

4

127

6.4 Experimental Results and Analysis

Ta
bl

e
6.

4:
A

na
ly

si
s

of
ap

pl
yi

ng
th

e
fo

re
ca

st
in

g
m

od
el

al
on

gs
id

e
PS

P
ov

er
th

e
fo

ur
w

or
kl

oa
ds

Po
lic

y
N

SP
PS

P
B

es
tS

in
gl

e
Po

lic
y

W
or

st
Si

ng
le

Po
lic

y
B

es
tm

et
a-

po
lic

y

T
he

Fi
rs

tW
or

kl
oa

d
(R

ev
en

ue
x

10
3)

R
ev

en
ue

61
4.

1
64

8.
7

(A
R

1)
72

7.
5

(S
M

A
)6

45
.7

(D
A

W
M

(A
R

T
))

77
5.

2

Im
p.

(%
)

-
0

12
.1

5
-0

.4
6

19
.5

0

T
he

Se
co

nd
W

or
kl

oa
d

(R
ev

en
ue

x
10

4)

R
ev

en
ue

63
2.

6
81

0.
6

(A
R

1)
82

5
(S

A
)7

58
.6

(A
W

M
(1

2h
))

90
9.

8

Im
p.

(%
)

-
0

1.
78

-6
.4

1
12

.2
4

T
he

T
hi

rd
W

or
kl

oa
d

(R
ev

en
ue

x
10

5)

R
ev

en
ue

51
3.

8
74

0.
6

(A
R

1)
74

6.
2

(S
A

)7
03

.1
(D

A
W

M
(P

I)
)1

21
3.

3

Im
p.

(%
)

-
0

0.
76

-5
.0

6
63

.8
0

T
he

Fo
ur

th
W

or
kl

oa
d

(R
ev

en
ue

x
10

3)

R
ev

en
ue

62
2

41
8.

5
(A

ll
Pr

ed
ic

to
rs

)4
16

.2
(A

ll
Pr

ed
ic

to
rs

)4
16

.2
(V

M
)5

13
.9

Im
p.

(%
)

-
0

-0
.5

6
-0

.5
6

22
.8

0

128

6.4 Experimental Results and Analysis

Ta
bl

e
6.

5:
A

na
ly

si
s

of
ap

pl
yi

ng
th

e
fo

re
ca

st
in

g
m

od
el

al
on

gs
id

e
B

SP
ov

er
th

e
fo

ur
w

or
kl

oa
ds

Po
lic

y
N

SP
B

SP
B

es
tS

in
gl

e
Po

lic
y

W
or

st
Si

ng
le

Po
lic

y
B

es
tm

et
a-

po
lic

y

T
he

Fi
rs

tW
or

kl
oa

d
(R

ev
en

ue
x

10
3)

R
ev

en
ue

61
4.

1
12

49
.5

(E
M

A
)1

36
0

(L
PF

)1
33

2.
8

(A
W

M
(3

0m
))

14
20

.3

Im
p.

(%
)

-
0

8.
84

6.
67

13
.6

7

T
he

Se
co

nd
W

or
kl

oa
d

(R
ev

en
ue

x
10

4)

R
ev

en
ue

63
2.

6
22

00
.1

(S
M

A
)2

36
0.

3
(A

R
1)

21
55

.5
(D

A
W

M
(P

I)
)4

21
4.

4

Im
p.

(%
)

-
0

7.
28

-2
.0

3
91

.5

T
he

T
hi

rd
W

or
kl

oa
d

(R
ev

en
ue

x
10

5)

R
ev

en
ue

51
3.

8
86

9.
3

(S
A

)1
26

8.
4

(L
O

)9
40

.0
(D

A
W

M
(5

0.
4)

)1
30

7.
1

Im
p.

(%
)

-
0

45
.9

1
8.

13
50

.4

T
he

Fo
ur

th
W

or
kl

oa
d

(R
ev

en
ue

x
10

3)

R
ev

en
ue

62
2

92
9.

1
(L

O
,S

A
,a

nd
L

PF
)8

39
.4

(A
R

1
&

A
R

2)
58

1.
3

(W
PA

)1
88

8.
9

Im
p.

(%
)

-
0

-9
.7

1
-3

7.
4

10
3.

30

129

6.5 Summary

6.5 Summary

Through modelling and supporting simulation, we combine the reactive behaviour of

two well known switching policies – the Proportional Switching Policy (PSP) and the

Bottleneck Aware Switching policy (BSP) – with the proactive properties of several

workload forecasting models – the Active Window Model (AWM), the Dynamic Ac-

tive Window Model (DAWM), the Voting Model (VM), the Selective Model (SM),

and the Workload Pattern Analysis (WPA). Each combination is evaluated for its ef-

fectiveness against both real-world workloads and a synthetic workload with extreme

events.

The results are significant in a number of respects: (i) The data points are collected

from these predictors within non-fixed periods (Active Windows) to ensure consistent

and improved results from several predictors and the active window sizes are computed

based on two techniques, the burstiness factor (BF) and request arrival rate technique

(ART). The result from applying the burstiness factor techniques show that the rev-

enue can be improved by up to 64% and 92% when the burstiness factors technique

is applied over the real-world workload alongside PSP and BSP respectively (63.8%,

PSP, DAWM(PI), workload three) and (91.5%, BSP, DAWM(PI), workload two). (ii)

Applying dynamic server switching and prediction is less effective for workload con-

taining extreme events. We have shown that an improvement is possible (22.80% and

103.30%) when the VM and WPA are applied with PSP and BSP. This research how-

ever remains the subject of future work.

130

Chapter 7

Conclusions and Future Research

E-Business applications are subject to significant variations in workload and this can

cause exceptionally long response times for users, the timing out of client requests

and/or the dropping of connections. One solution is to host these applications in vir-

tualised server pools, and to dynamically reassign compute servers between pools to

meet the demands on the hosted applications. Switching servers between pools is not

without cost, and this must therefore be weighed against possible system gain.

This work is concerned with dynamic resource allocation for multi-tiered, cluster-

based web hosting environments. Dynamic resource allocation is reactive, that is, when

overloading occurs in one resource pool, servers are moved from another (quieter) pool

to meet this demand. Switching servers comes with some overhead, so it is important

to weigh up the costs of the switch against possible system gains. In this thesis we

combine the reactive behaviour of two server switching policies – the Proportional

Switching Policy (PSP) and the Bottleneck Aware Switching Policy (BSP) – with the

proactive properties of several workload forecasting models.

The principal contributions of this thesis are as follows:

• First, we study the impact of server switching time in distributed and dynamic

131

enterprise systems. The switching time is defined as the time taken to reallocate

servers between applications. Our aim is to investigate the link between switch-

ing time and total system performance, as well as how the switching policies

themselves behave with changeable switching times. For this purpose, we in-

tegrate two well known switching policies – the Proportional Switching Policy

(PSP) and the Bottleneck-aware Switching Policy (BSP) – with variable switch-

ing times in a test system. Experiments are conducted on synthetic workloads

and also on three real-world Internet traces containing two days, two weeks, and

two months worth of HTTP requests. It has been found that the reduction in

revenue due to increased reallocation intervals generally holds over all server

switching policies, with some exceptions when the experiments are conducted

alongside the synthetic workload. While when the real-world Internet traces is

used the results show that there are no any relationship between the number of

server switches and the system revenue.

• In our second contribution we extended the concept of reactive dynamic server

switching – where changes in demand on a system would trigger the realloca-

tion of servers to applications – with several forecasting schemes that would

allow the server switching to become proactive – that is, a server switch would

be initiated before the demand on the system changed. A multi-tiered, cluster-

based, multi-server solution is modelled, which provides bottleneck identifica-

tion through the use of convex polytopes and also employes admission control. A

workload model is also constructed from the characterisation of real data from

several different sources. Several schemes for workload prediction have been

introduced including: Last Observation (LO), Simple Algorithm (SA), Sample

132

Moving Average (SMA), Exponential Moving Average (EMA), Low Pass Filter

(LPF), and Autoregressive Integrated Moving Average (ARIMA). A comparison

between the forecast accuracy of these schemes in combination with dynamic

server switching is conducted using several metrics – Mean Square Error (MSE),

Mean Average Percentage Error (MAPE), Mean Absolute Deviation (MAD) and

the Cumulative sum of Forecast Error (CFE). It has been shown that the system

revenue can be improved by as much as 46% when the dynamic server-switching

is combined correctly with the workload forecasting. However the accuracy of

each predictor is different from one policy to another and there is no general case

where improvements in revenue can be guaranteed.

• Third, we extend our models in order to address issues that arise when a sin-

gle forecasting model is used, as each of the forecasting schemes is shown to

have its own bias. As a result, three different meta-forecasting algorithms are

developed – Active Window Model (AWM), Voting Model (VM), and Selective

Model (SM). In the first model (AWM), data points are collected during an active

window, and a predictor which delivers the best revenue for the last active win-

dow, is employed. All predictors are used in the voting model (VM) and a server

switch is enacted if the majority vote requires. The selective model (SM) applies

the best predictor from the last time period to the next time period. It has found

that the Active Window Model (AWM) is the best scheme in all cases; on aver-

age this scheme gives an improvement in revenue of 15.1% over all three used

real-world Internet traces. The size of the active window is therefore important

and must be subject to some calculation using different policies.

• Finally, we further extend the Active Window Model (AWM) to a Dynamic Ac-

133

tive Window Model (DAWM), where the size of the active window for collecting

data points for all predictors is not constant. The window size is calculated based

on either a burstiness factor the window size decreases when the workload be-

comes more bursty or based on the correlation between the requests arrival rate

and the mean arrival rate for incoming requests to the system. In addition to this,

we introduce a historical prediction model the Workload Pattern Analysis (WPA)

model which exploits the periodicity of web traffic to predict workload where the

predicted number of requests in this model is related to the previous number of

requests found at the same time of day (e.g. the number of requests at mid-night

for a specific day is related to the number of requests at midnight recorded dur-

ing the previous week). All schemes are tested on real-world workloads and also

workloads containing extreme events. The obtained results from applying the

new developed techniques show that the revenue can be improved by up to 64%

and 92% when it is applied over the real-world workload alongside PSP and BSP

respectively. Added to this, it has been found that the Workload Pattern Analysis

(WPA) model is able to bring about improvements to the switching server policy

(BSP), revenue is up 103.30% over the workload containing extreme events.

This work has been published in numerous papers, and we are grateful to the re-

viewers of this work for their helpful and constructive feedback. We recognise that

this work has several limitations, most notably that fault tolerance is not considered

and that server switching as described in this thesis means between server pools in

application tiers. Clearly this work can be extended in this regard, although we note

that techniques described here have been applied to industry-based systems.

134

7.1 Further Work

7.1 Further Work

We make several recommendations in relation to future research:

• To extend the work to server switching between tiers – that is, server switch-

ing need not be restricted to just between the application tiers in our three-tier

architecture;

• To develop this work in the context of fault tolerance. Adam Chester has touched

on this in his own research and we believe that this represents a useful starting

point to research in this area;

• This work has enormous potential in the context of power management. Despite

significant interest in this, this fell outside the domain of this thesis. It is pos-

sible that the metric system revenue could be replaced by some energy metric.

Researchers at the University of Newcastle have looked into this topic although

it remains an area which requires in depth analysis;

• Although we have employed two dynamic server switching techniques in this

work (BSP and PSP), several other alternatives are possible. We welcome further

study in this area and believe that there remains opportunity to advance this area.

• The system model that is developed in this thesis is based on switching the avail-

able servers between two different applications; schemes that investigate more

than two applications may of course be developed in order to generalise the pro-

posed results - we leave this as the subject of future work.

135

References

[1] Arlitt, M. and Jin, T. (2000). A Workload Characterization Study of the 1998

World Cup Web Site. IEEE Network, 14(3), 30–37. 34

[2] Arlitt, M. and Williamson, C. (1996). Web server workload characterization: the

search for invariants. SIGMETRICS Perform. Eval. Rev., 24(1), 126–137. 45, 57,

67

[3] Balbo, G. and Serazzi, G. (1997). Asymptotic Analysis of Multiclass Closed

Queueing Networks: Multiple Bottlenecks. Performance Evaluation, 30(3), 115–

152. 22

[4] Barford, P. and Crovella, M. (1998). Generating Representative Web Workloads

for Network and Server Performance Evaluation. SIGMETRICS Performance Eval-

uation Review, 26(1), 151–160. 34

[5] Bolch, G., Greiner, S., deMeer, H., and Trivedi, K. (2006). Queueing networks

and Markov chains: modeling and performance evaluation with computer science

applications. Wiley-Blackwell; 2nd Edition edition, New York, NY, USA. 31, 38,

40

136

REFERENCES

[6] Buzen, J. (1973). Computational algorithms for closed queueing networks with

exponential servers. Commun. ACM, 16, 527–531. 21, 31

[7] Calzarossa, M. and Serazzi, G. (1993). Workload characterization: a survey. Pro-

ceedings of the IEEE, 81(8), 1136 –1150. 65, 67

[8] Casale, G. and Serazzi, G. (2004). Bottlenecks identification in multiclass queue-

ing networks using convex polytopes. In 12th Annual Meeting of the IEEE Int’l

Symposium on Modelling, Analysis, and Simulation of Comp. and Telecommunica-

tion Systems (MASCOTS). xvii, 22, 23, 24, 37

[9] Cavendish, D., Koide, H., Oie, Y., and Gerla, M. (2010). A mean value analysis

approach to transaction performance evaluation of multi-server systems. Concurr.

Comput. : Pract. Exper., 22(10), 1267–1285. 21, 32

[10] Chester, A. P., Xue, J. W. J., He, L., and Jarvis, S. A. (2008). A system for

dynamic server allocation in application server clusters. In ISPA ’08: Proceedings

of the 2008 IEEE International Symposium on Parallel and Distributed Processing

with Applications, pages 130–139, Washington, DC, USA. IEEE Computer Society.

xvii, 9, 11, 24, 118

[11] Contreras, J., Espinola, R., Nogales, F. J., and Conejo, A. J. (2003). Arima

models to predict next-day electricity prices. Power Systems, IEEE Transactions

on, 18(3), 1014 – 1020. 71

[12] Cuomo, G. (2000). IBM WebSphere Application Server Standard and Advanced

Editions; A methodology for performance tuning. IBM. 25

137

REFERENCES

[13] Dattatreya, G. R. (2008). Performance Analysis of Queuing and Computer Net-

works (Chapman & Hall/Crc Computer & Information Science Series). Chapman

& Hall/CRC. 18, 19

[14] Dushay, N., French, J. C., and Lagoze, C. (1999). Predicting indexer performance

in a distributed digital library. In Proceedings of the Third European Conference on

Research and Advanced Technology for Digital Libraries, ECDL ’99, pages 142–

166, London, UK, UK. Springer-Verlag. 70

[15] Eager, D. and Sevcik, K. (1986). Bound hierarchies for multiple-class queuing

networks. J. ACM, 33, 179–206. 22

[16] Faraz, A. and Vijaykumar, T. (2010). Joint optimization of idle and cooling power

in data centers while maintaining response time. SIGPLAN Not., 45(3), 243–256.

25

[17] Federgruen, A. and Groenevelt, H. (1986). The greedy procedure for resource

allocation problems: Necessary and sufficient conditions for optimality. Oper. Res.,

34(6), 909–918. 16

[18] Gilly, K., Alcaraz, S., Juiz, C., and Puigjaner, R. (2004). Comparison of predic-

tive techniques in cluster-based network servers with resource allocation. Modeling,

Analysis, and Simulation of Computer Systems, International Symposium on, pages

545–552. 46, 91, 113

[19] Gilly, K., Alcaraz, S., Juiz, C., and Puigjaner, R. (2009). Analysis of burstiness

monitoring and detection in an adaptive web system. Computer Networks, pages

668–679. 46, 112, 113, 114

138

REFERENCES

[20] Haring, G. and Kotsis, G. (1995). Workload modeling for parallel processing

systems. In Proceedings of the 3rd International Workshop on Modeling, Analy-

sis, and Simulation of Computer and Telecommunication Systems, MASCOTS ’95,

pages 8–12, Washington, DC, USA. IEEE Computer Society. 65, 67

[21] He, L., Xue, J. W. J., and Jarvis, S. A. (2007). Partition-based profit optimi-

sation for multi-class requests in clusters of servers. In ICEBE ’07: Proceedings

of the IEEE International Conference on e-Business Engineering, pages 131–138,

Washington, DC, USA. IEEE Computer Society. 36

[22] Huberman, B. A. and Clearwater, S. H. (2005,

http://www.hpl.hp.com/research/idl/papers/swings/). Swing options : A mechanism

for pricing it peak demand. Proceedings of 11th International Conference on

Computing in Economics. 22

[23] Keung, H., Dyson, J. R. D., Jarvis, S. A., and Nudd, G. R. (2003). Predicting the

performance of globus monitoring and discovery service (mds-2) queries. In Pro-

ceedings of the 4th International Workshop on Grid Computing, GRID ’03, pages

176–, Washington, DC, USA. IEEE Computer Society. 65, 69

[24] Krishna, K. (1993). Book review: Introduction to Computer System Performance

Evaluation by Krishna Kant (McGraw-Hill, 1992), volume 21. ACM, New York,

NY, USA. 18

[25] Lam, S. (1983). A simple derivation of the mva and lbanc algorithms from the

convolution algorithm. IEEE Transactions on Computers, C-32(11), 1062 –1064.

21

139

REFERENCES

[26] Lazowska, E., Zahorjan, J., Graham, G., and Sevcik, K. (1984). Quantitative

system performance: computer system analysis using queueing network models.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA. 17, 18

[27] LBNL (2008). Internet Traffic Archive Hosted at Lawrence Berkeley National

Laboratory. http://ita.ee.lbl.gov/html/traces.html. 22, 45, 67, 76, 95

[28] Letmanyi, H. (1985). Guide on workload forecasting, special public. In Computer

Science and Technology, National Bureau of Standards. 69

[29] Litoiu, M. (2007). A performance analysis method for autonomic computing

systems. ACM Trans. Auton. Adapt. Syst. 37, 38, 40

[30] Little, J. ((May - Jun., 1961)). A proof for the queuing formula: L= λ w. Opera-

tions Research, 9(3), 383–387. 21, 32

[31] Liu, Z., Squillante, M., and Wolf, J. (2001). On maximizing service-level-

agreement profits. pages 213–223. 36

[32] MacKie-Mason, J. and Varian, H. (1995). Pricing congestible network resources.

IEEE Journal on Selected Area in Communications, 13(7), 1141–1149. 40

[33] Mahanti, A., Williamson, C., and Wu, L. (2009). Workload characterization

of a large systems conference web server. In Proceedings of the 2009 Seventh

Annual Communication Networks and Services Research Conference, pages 55–64,

Washington, DC, USA. IEEE Computer Society. 63

[34] Martinich, J. (1996). Production and Operations Management : An Applied

Modern Approach. John Wiley and Sons. 62

140

REFERENCES

[35] Marzolla, M. and Mirandola, R. (2007). Performance prediction of web ser-

vice workflows. The third International Conference on the Quality of Software-

Architectures (QoAS), pages 127–144. 22, 24

[36] Mathew, G. and Xiaojiang, D. (2010). Securing multi-tiered web applications.

Wireless Communications, Networking and Information Security (WCNIS), 2010

IEEE International Conference on, pages 505 –509. 8

[37] Menascé, D. (2001). Using performance models to dynamically control e-

business performance. In Proc. 11th GI/ITG Conference on Measuring, Modelling

and Evaluation of Computer and Communication Systems, pages 11–14. 40

[38] Menascé, D. (2003). Workload characterization. In IEEE Internet Computing,

pages 89–92, Piscataway, NJ, USA. IEEE Educational Activities Department, v.7

n.5, 89-92. 63

[39] Menascé, D. and Almeida, V. (May 7, 2000). Scaling for E-Business: Technolo-

gies, Models, Performance, and Capacity Planning. Prentice Hall, Upper Saddle

River, NJ. 31

[40] Menascé, D. and Almeida, V. (September 21, 2001). Capacity Planning for Web

Services: Metrics, Models, and Methods. Prentice Hall, Upper Saddle River, NJ.

21, 32, 44, 45, 47, 63, 65, 66, 67, 68, 69

[41] Menasce, D. A., Almeida, V. A., Fonseca, R., and Mendes, M. A. (2000).

Business-oriented resource management policies for e-commerce servers. Perfor-

mance Evaluation, 42(2-3), 223–239. 25, 36, 119

141

REFERENCES

[42] Nau, R. F. (Accessed on 2012). Class 9: Introduction to autoregressive integrated

moving average (arima) models. http://www.duke.edu/ rnau/411arim.htm. 71

[43] Reiser, M. and Lavenberg, S. (1980). Mean-value analysis of closed multichain

queuing networks. Journal of the Association for Computing Machinary, 27(2),

313–322. 21, 32

[44] Rolia, J., Zhu, X., Arlitt, M., and Andrzejak, A. (2002). Statistical service assur-

ances for applications in utility grid environments. Modeling, Analysis and Simu-

lation of Computer and Telecommunications Systems (MASCOTS), pages 247–256.

37

[45] Rolia, J., Zhu, X., Arlitt, M., and Andrzejak, A. (2004). Statistical service as-

surances for applications in utility grid environments. Perform. Eval., 58(2+3),

319–339. 21, 32

[46] Stallings, W. (2000). Queuing analysis.

www.box.com/shared/static/lu626umiib.pdf . xvii, 19, 20

[47] Sundarapandian, V. (December 1, 2009). Probability, Statistics and Queueing

Theory. PHI Learning. 47

[48] Surveys, G. C. W. U. (Accessed on 2012). Gvu’s www surveying team graphics

visualization and usability center college of computing georgia institute of technol-

ogy atlanta ga 30332-0280. In http://www.gvu.gatech.edu/user surveys. 62

[49] Tantawi, A. and Towsley, D. (1985). Optimal static load balancing in distributed

computer systems. J. ACM, 32(2), 445–465. 16

142

REFERENCES

[50] Tantawi, A., Towsley, G., and Wolf, J. (1988). Optimal allocation of multiple

class resources in computer systems. SIGMETRICS Perform. Eval. Rev., 16(1),

253–260. 16

[51] Urgaonkar, B., Shenoy, P., Chandra, A., and Goyal, P. (2005). Dynamic provi-

sioning of multi-tier internet applications. In ICAC ’05: Proceedings of the Second

International Conference on Automatic Computing, pages 217–228, Washington,

DC, USA. IEEE Computer Society. 25

[52] Vercauteren, T., Aggarwal, P., Xiaodong, W., and Ta-Hsin, L. (2007). Hierarchi-

cal forecasting of web server workload using sequential monte carlo training. Signal

Processing, IEEE Transactions on, pages 1286 –1297. 45, 68, 91, 111

[53] Wang, Q. (2004). Workload Characterization and Customer Interaction at E-

commerce Web Servers. Master’s Thesis, University of Saskatchewan. 3, 62

[54] Xue, J. W. J., Chester, A. P., He, L., and Jarvis, S. A. (2008). Dynamic resource

allocation in enterprise systems. In ICPADS ’08: Proceedings of the 2008 14th

IEEE International Conference on Parallel and Distributed Systems, pages 203–

212, Washington, DC, USA. IEEE Computer Society. xvii, 12, 13, 14, 21, 22, 25,

26, 31, 32, 35, 37, 42, 47, 50, 72

[55] Yang, C. and Luo, M. (2000). Realizing fault resilience in web-server cluster. In

Proceedings of the 2000 ACM/IEEE conference on Supercomputing, Supercomput-

ing ’00, Washington, DC, USA. IEEE Computer Society. 11

[56] Yang, C. S. and Luo, M. (1998). Design and implementation of an administration

system for distributed web server. In Proceedings of the 12th Conference on Systems

Administration, pages 131–140, Berkeley, CA, USA. USENIX Association. 10

143

REFERENCES

[57] Zhou, J. and Yang, T. (2006). Selective early request termination for busy internet

services. Proceedings of the 15th international conference on World Wide Web,

pages 605–614. 34, 37

144

	WRAP_THESIS_coversheet.pdf
	Thesis.pdf
	Abstract
	Dedication
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Contributions
	1.3 Thesis Limitations
	1.4 Thesis Overview

	2 Background Research
	2.1 Service Level Agreements (SLAs)
	2.2 Resource Management
	2.2.1 Pre-defined resource allocation system (PRAS)
	2.2.2 Dynamic resource allocation system (DRAS)
	2.2.3 Proportional Switching Policy
	2.2.4 Bottleneck-aware Switching Policy

	2.3 Performance Modelling
	2.3.1 Queuing Network Models

	2.4 Bottleneck and Admission Control
	2.5 Fundamental Laws
	2.5.1 Utilization Law
	2.5.2 Forced Flow Law
	2.5.3 Service Demand Law
	2.5.4 Little's Law
	2.5.5 Response Time Law

	2.6 Solving Multi-Class Closed Queueing Networks
	2.6.1 Mean Value Analysis

	3 Impact of Server Allocation Time on Dynamic Server Switching
	3.1 Introduction
	3.1.1 Chapter Contributions
	3.1.2 Chapter Structure

	3.2 Additional Related Work
	3.3 Modelling of Multi-tiered Internet Services and Revenue Functions
	3.3.1 The System Model
	3.3.2 Modelling the Revenue Function

	3.4 Experimental Setup and The Workload
	3.4.1 Experimental Setup
	3.4.2 The Workload

	3.5 Experimental Results
	3.5.1 Experiment One
	3.5.2 Experiment Two
	3.5.3 Experiment Three
	3.5.4 Experiment Four
	3.5.5 Experiment Five
	3.5.6 Experimental Results Analysis

	3.6 Summary

	4 Predictive and Dynamic Resource Application for Enterprise Applications
	4.1 Introduction
	4.1.1 Chapter Contributions

	4.2 Additional Related Work
	4.3 Modelling of Multi-tiered Internet Services and Server Switching Policies
	4.4 The Workload and Predictive Algorithms
	4.4.1 The Workload
	4.4.1.1 Workload Characterization

	4.4.2 Predictive Algorithms
	4.4.2.1 i) Last Observation (LO)
	4.4.2.2 ii) Simple Algorithm (SA)
	4.4.2.3 iii) Sample Moving Algorithm (SMA)
	4.4.2.4 iv) Exponential Moving Algorithm (EMA)
	4.4.2.5 v) Low Pass Filter (LPF)
	4.4.2.6 vi) Autoregressive Integrated Moving Average Model (ARIMA)

	4.5 Experimental Setup and Results
	4.5.1 Experimental Setup
	4.5.2 Accuracy Forecasting Results
	4.5.3 Accuracy of the Forecasting Analysis
	4.5.4 Combining Forecasting and Dynamic Server Switching
	4.5.5 Experiment One
	4.5.6 Experiment Two
	4.5.7 Experiment Three
	4.5.8 Experiments Results Analysis

	4.6 Summary

	5 The Development and Application of Meta-forecasting
	5.1 Introduction
	5.1.1 Chapter Contributions

	5.2 Additional Related Work
	5.3 The Workload and Predictive Models
	5.3.1 Active Window Model (AWM)
	5.3.2 Voting Model (VM)
	5.3.3 Selective Model (SM)

	5.4 Experimental Setup, Results, and Analysis
	5.4.1 Experimental Setup
	5.4.2 Experimental Results
	5.4.2.1 i) Experiment One
	5.4.2.2 ii) Experiment Two
	5.4.2.3 iii) Experiment Three

	5.4.3 Analysis

	5.5 Summary

	6 Dynamic Active Windows, Workload Pattern Analysis and Extreme Workloads
	6.1 Introduction
	6.1.1 Chapter Contributions

	6.2 Additional Related Work
	6.3 Predictive Models
	6.3.1 Dynamic Active Window Model (DAWM)
	6.3.1.1 i) Burstiness Technique and Monitoring Window Size
	6.3.1.2 ii) Arrival Rate Technique

	6.3.2 Workload Pattern Analysis (WPA)

	6.4 Experimental Results and Analysis
	6.4.1 Experiment One
	6.4.2 Experiment Two
	6.4.3 Experiment Three
	6.4.4 Analysis

	6.5 Summary

	7 Conclusions and Future Research
	7.1 Further Work

