

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/51368

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9561925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/51368

Formal Verification

Techniques using Quantum

Process Calculus

Timothy A. S. Davidson

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

January 2012

Supervisor: Dr. Rajagopal Nagarajan

Department of Computer Science

University of Warwick

Coventry CV4 7AL

United Kingdom

Contents

Abstract viii

1 Introduction 1

1.1 Context . 3

1.1.1 Quantum Information . 3

1.1.2 Quantum Computing . 4

1.1.3 Quantum Communication . 4

1.2 Motivation . 5

1.3 Contribution . 7

1.4 State of the Art . 8

1.4.1 Quantum Process Calculus . 8

1.4.2 Verification of Quantum Systems 11

1.4.3 Semantics for Analysis of Quantum Systems 11

1.5 Outline . 12

2 Background 13

2.1 Quantum Mechanics . 13

2.1.1 Hilbert Spaces . 13

2.1.2 Qubits . 14

2.1.3 Quantum Operators . 15

2.1.4 Measurement . 17

2.1.5 Density Matrices . 19

2.1.6 Quantum Gates and Circuits 21

2.2 Quantum Protocols . 21

2.2.1 Quantum Teleportation . 21

2.2.2 Superdense Coding . 22

2.3 Process Calculus . 23

2.3.1 Labelled Transition Systems . 24

2.3.2 Bisimulation . 26

2.3.3 Quantum Process Calculus . 28

i

CONTENTS

3 Behavioural Equivalence for CQP 30

3.1 A Labelled Transition System for CQP 31

3.1.1 Describing External Interactions 33

3.1.2 Semantics . 34

3.1.3 Type System . 35

3.2 Quantum Process Equivalence . 46

3.2.1 Probabilistic Branching Bisimulation 48

3.3 Applications . 53

3.3.1 Quantum Teleportation . 53

3.3.2 Quantum Teleportation with Deferred Measurement 56

3.3.3 Qubit-Swap Circuit . 58

3.4 Congruence Properties . 59

3.4.1 Parallel Preservation . 63

3.5 Discussion . 73

3.6 Summary . 76

4 Congruence for Quantum Processes 77

4.1 Understanding Measurement . 78

4.1.1 Measurement and Process Calculus 79

4.1.2 Mixed Configurations . 81

4.2 CQP with Mixed Configurations . 83

4.2.1 Semantics . 83

4.2.2 Type Soundness . 90

4.3 Behavioural Equivalence . 95

4.3.1 Preservation Properties . 97

4.3.2 Full Probabilistic Branching Bisimilarity 110

4.4 Applications . 115

4.4.1 Quantum Teleportation . 116

4.4.2 Superdense Coding . 118

4.5 Discussion . 121

4.5.1 Comparison with qCCS . 124

4.6 Summary . 126

5 Towards an Equational Theory 128

5.1 Analysing Teleportation . 129

5.1.1 Quantum Identities . 129

5.1.2 Deferred Measurement . 130

5.1.3 Commuting Operators . 131

5.1.4 Surplus Operators . 132

5.1.5 Permutations . 133

ii

CONTENTS

5.1.6 Qubit Declaration . 134

5.2 Soundness of the Equational Laws . 135

5.3 Expanding processes . 143

5.3.1 CQP and The Expansion Law 143

5.3.2 Expanding Teleportation . 144

5.4 Summary . 146

6 A Combined Approach to Quantum Verification 148

6.1 Modelling Quantum Protocols in QMC 150

6.1.1 Syntax . 150

6.1.2 Verification with QMC . 151

6.2 Translation . 154

6.2.1 Translation Functions . 154

6.3 Examples . 162

6.3.1 Random Bit Generator . 162

6.3.2 Quantum Teleportation . 164

6.4 Correctness of the Translation . 167

6.4.1 Translating Configurations . 167

6.4.2 Execution Relationship . 169

6.4.3 Preservation of Semantics . 171

6.5 Discussion . 178

6.6 Summary . 179

7 Conclusion 181

7.1 Summary . 181

7.2 Concluding Remarks . 182

7.3 Further Work . 184

List of Abbreviations 186

Index 187

Bibliography 189

iii

List of Figures

2.1 Quantum teleportation circuit. 21

2.2 Superdense coding circuit. 23

2.3 A labelled transition system. 26

2.4 Strong bisimilarity. 27

2.5 Weak bisimilarity. 28

2.6 Branching bisimilarity. 29

3.1 Syntax of CQP. 31

3.2 Internal syntax of CQP. 32

3.3 Transition rules for values and expressions. 35

3.4 Transition Relation Rules . 36

3.5 Rules for structural congruence. 37

3.6 Typing rules. 37

3.7 Internal typing rules. 38

3.8 Quantum teleportation modelled in CQP. 53

3.9 Quantum teleportation with deferred measurement. 56

3.10 Circuit identities for switching the control and target qubits. 58

4.1 Transition rules for values and expressions. 85

4.2 Transition rules for pure process configurations. 86

4.3 Transition rules for mixed process configurations. 87

4.4 Execution of quantum teleportation. 116

4.5 CQP model for superdense coding and its specification. 118

5.1 Controlled-NOT circuit identity. 129

5.2 Controlled-Z circuit identity. 130

5.3 Circuit identity for arbitrary operators. 130

5.4 Axioms for full probabilistic branching bisimilarity. 136

6.1 QMC Concrete Syntax . 151

iv

LIST OF FIGURES

6.2 Quantum teleportation modelled in QMC. 152

6.3 Syntax of QCTL. 153

6.4 CQP syntax with named processes. 155

6.5 Translation of programs. 156

6.6 Translation of processes. 158

6.7 Translation of expressions. 159

6.8 Translation of values and types. 160

6.9 Translation of a quantum random number generator 165

6.10 Quantum teleportation modelled in CQP. 165

6.11 Translated version of quantum teleportation. 166

6.12 The requirement for a translation T to be semantics-preserving. 171

v

Acknowledgements

First, I would like to thank my supervisor, Rajagopal Nagarajan, for the opportu-

nity to study a very interesting and frequently perplexing topic. His guidance and

encouragement has been invaluable.

I am immensely grateful to Simon Gay, who has provided support and guidance

from afar. My trips to Glasgow have always sparked renewed enthusiasm and inspi-

ration, and Simon’s input has been crucial in writing this thesis.

Thanks also go to Nick Papanikolaou and Hynek Mlnř́ık with whom I have had

the pleasure of working alongside. Our many discussions, both technical and non-

technical, have provided encouragement as well as entertainment. From them I have

learned many things which have helped move my research along, and I am very

grateful for their help.

I have enjoyed being involved with Warwick Student Cinema, and I appreciate all

the hard work of everyone at the society for making it such an exciting and rewarding

distraction from the depths of my thesis. In particular, I would like to thank Rachel,

Martin, Nick, Matt and Amanda for their support, encouragement, and the many

pub trips.

I wish to thank Brian for his many words of wisdom, and my parents for their love

and support, and because it is always reassuring to know they are thinking of me.

And finally, to Emma, who has stood by my side every step of the way, thank you

for everything.

vi

Declaration

The work described in this thesis is original work and is based on collaborations with

Rajagopal Nagarajan, Simon Gay, Hynek Mlnař́ık and Nikolaos Papanikolaou. Some

of the material presented in Chapter 3 was presented in the following poster:

• T. Davidson, S. J. Gay and R. Nagarajan. Verifying Quantum Teleportation

with Quantum Process Calculus. Fifth Conference on the Theory of Quantum

Computation, Communication and Cryptography. 2010.

The material presented in Chapter 6 has been published in

• T. Davidson, S. J. Gay, H. Mlnař́ık, R. Nagarajan and N. Papanikolaou. Model

Checking for Communicating Quantum Processes. International Journal of Un-

conventional Computing 8(1):73-98, 2012.

vii

Abstract

Quantum communication is a rapidly growing area of research and development.

While the successful construction of a large-scale quantum computer may be some

years away, there are already commercial implementations of secure communication

using quantum cryptography. The application of formal methods to classical commu-

nication and cryptographic systems has been very successful, and is now widely used

in industry by organisations such as Intel, Microsoft and NASA. There is reason to

believe that similar benefits can be expected for the verification of quantum systems.

In this thesis, we focus on the use of process calculus, specifically Communicating

Quantum Processes (CQP), for the analysis of quantum protocols. Congruence rela-

tions are an important aspect of process calculus, since they provide the foundation for

equational reasoning. Previous work on congruence relations for quantum processes

excluded the classical information arising from measurements, and was therefore un-

able to analyse many of the interesting known quantum communication protocols.

Developing a congruence relation for general quantum processes is difficult because

of the interaction between measurement, entanglement and parallel composition.

We define a labelled transition relation for CQP in order to describe external

interactions. Based on this semantics, we define a notion of observational equivalence

for CQP processes, namely probabilistic branching bisimilarity. We find that this

relation is not preserved by parallel composition, however we are able to gain a deeper

understanding of the link between probabilistic branching and measurement. Based

on this newfound understanding, we present a novel semantics for quantum processes,

combining mixed quantum states with probabilistic branching. With respect to this

new semantic model, we define full probabilistic branching bisimilarity and prove that

it is a congruence. We use this congruence relation to discuss an axiomatic approach

to the verification of quantum processes. The quantum teleportation protocol is used

as a primary example throughout, and we prove that it is congruent to a quantum

channel.

We define a translation from CQP to the Quantum Model Checker (QMC) in order

to provide automated verification techniques using CQP specifications. We prove that

this translation preserves the semantics of CQP processes, thereby enabling a multi-

faceted approach to formal verification by enhancing the manual techniques of process

calculus with the benefits of model checking.

viii

Like mathematics, computer science will be somewhat different from the

other sciences, in that it deals with artificial laws that can be proved, in-

stead of natural laws that are never known with certainty.

— Donald Knuth

ix

1
Introduction

The rapidly growing area of quantum information science has the potential to trans-

form computing in an unprecedented manner, offering new paradigms, increased com-

putational power, and absolute security guarantees. Arguably one of the most sig-

nificant promises offered by quantum phenomena is the potential for unconditionally

secure communication.

Cryptography has been used for thousands of years to allow users to keep their

communications private. The field has gained significant momentum in recent decades,

particularly as computational techniques have been applied both for cryptography and

for cryptanalysis. Despite many advances, key distribution, the process by which two

or more users agree on a shared secret (the key), remains a fundamental problem in

cryptography. Often, the ability to generate a shared secret (which could be through a

private meeting or a trusted third party) obviates the need to use cryptography since

a secure channel is already available. The development of public key cryptography

has provided a solution to the key distribution problem, enabling many of the secure

communications made in the present day. Internet communications are one obvious

and major use of public key cryptography, however the solution is not unconditionally

secure.

Public key cryptography is based on trapdoor functions [Diffie and Hellman 1976];

these so called mathematical functions have the characteristic that they can be easily

computed one way, however without extra information (called the trapdoor), the re-

verse computation is significantly harder. Prime factorisation and discrete logarithms

have both been used as the basis for trapdoor functions, leading to the well–known

RSA [Rivest et al. 1978], Rabin [Rabin 1979] and ElGamal [ElGamal 1985] public

key cryptosystems. The fact remains, that although computationally hard, given

sufficient resources these trapdoor functions can be reversed. The increase in com-

putational power over time and the increasing ability for distributed computing are

1

significant concerns for public key cryptography, particularly when it is used to store

secret information over a period of time.

Ironically, quantum computing poses a significant threat to many of the public

key cryptosystems in use today. The widespread interest in quantum computation

was fueled by Shor’s discovery in 1994 of an efficient quantum algorithm for prime

factorisation [Shor 1994]. Such an algorithm has the potential to obliterate the ef-

fect of public key cryptosystems, stopped only by the lack of technology. Practical

quantum computers are still a long way from becoming reality, due to the difficulties

of implementing registers and memory for quantum information. Laboratory setups

have to date implemented Shor’s algorithm to factor the number 15.

On the other hand, the promise of secure communication has already been deliv-

ered by quantum cryptography; key distribution networks have been tested in Vienna

[Poppe et al. 2004] and Boston [Elliott et al. 2005], and quantum cryptographic sys-

tems are commercially available from several companies (e.g. MagiQ Technologies,

ID Quantique, Toshiba, NEC). Quantum key distribution is a solution to the key

distribution problem that enables two parties to generate a shared secret key, whilst

remaining confident that a third party has no information about their key. To de-

tect the presence of an eavesdropper, Bennett and Brassard’s BB84 key distribution

protocol [Bennett and Brassard 1984] uses the property of quantum mechanics that

an observation of the quantum system irreversibly disturbs the state. Even if an

eavesdropper was able to obtain some information during the initial exchange, the

two parties can use secret key reconciliation [Brassard and Salvail 1994] and privacy

amplification [Bennett et al. 1995] to invalidate that information.

A similar key distribution protocol due to Ekert [1991] uses quantum entangle-

ment, in particular so-called Einstein-Podolsky-Rosen (EPR) [Einstein et al. 1935]

pairs of qubits, to generate a shared key. Statistical analysis based on Bell’s theorem

[Bell 1964] allows the two parties to detect the presence of an eavesdropper. Bennett

et al. [1992b] later showed that Bell’s theorem is not a requirement for key distribution

using entanglement.

Key distribution is not the only application of quantum communication, although

it is one of the most interesting and relevant. Several other interesting protocols that

fall under the remit of quantum cryptography have also been developed, including

quantum bit commitment [Kent 2003], coin-flipping [Bennett and Brassard 1984],

and quantum money [Wiesner 1983].

2

1.1. CONTEXT

1.1 Context

1.1.1 Quantum Information

The difference between classical and quantum information is determined by the physi-

cal systems with which they are associated. Around the 1920’s, the theory of quantum

mechanics was founded, out of the need to explain the properties of atomic particles

and light. At these small scales (below around 10−7m), far smaller than is visible to

the naked eye, existing theories of physics (now known as classical physics) are unable

to explain the observations.

Quantum information theory is concerned with the properties of atomic particles

and how they can be used for the representation and storage of data. At first, the ab-

normal behaviour of atomic particles seems to present a significant challenge for data

processing at these minute scales. However the potential of using such phenomena

instead of viewing them as a barrier was realised by Wiesner [1983], who proposed

the representation of data using polarised photons.

Atoms, photons and electrons are examples of quantum systems, which can be

attributed with physical properties such as position, momentum, spin, and polarisa-

tion. These properties describe the state of the system, and provide the means to

represent information. Analogous to the way in which the state of a switch (off or

on) represents a classical bit (0 or 1), we can associate a quantum value (let us write

these as |0〉 and |1〉) to orthogonal polarisations of a photon (e.g. 0◦ and 90◦).

Quantum information differs from classical information as a result of the, often

counter-intuitive, behaviour of the underlying quantum systems. The distinctive prop-

erties of quantum systems include superposition, entanglement, non-locality, proba-

bilistic measurement and non-cloneability. The superposition principle states that, if

a system can be in one of several given states, then it can also be in a simultaneous

combination of these states. This enables so-called quantum parallelism, in which

computations can be applied to many states at the same time. Entanglement is a

property of quantum systems that is used in many communication protocols. It de-

scribes the possibility that two or more quantum systems may be linked in such a way

that it is impossible to fully describe the systems individually. Non-locality describes

the property that entanglement is preserved between quantum systems even when

they are physically separated.

The state of a quantum system is discovered through measurement, however mea-

surement produces a probabilistic outcome based on the true state of the system.

Furthermore, the act of measurement causes the system to collapse into the observed

state, and is therefore considered a destructive operation. The no-cloning theorem

[Dieks 1982; Wootters and Zurek 1982] arises from the probabilistic and destruc-

tive nature of measurement, and states that an unknown quantum state cannot be

3

1.1. CONTEXT

duplicated. Although this may be considered a hindrance to computation, the non-

cloneability property plays an essential role in many cryptographic protocols.

Quantum information is particularly fragile, since any interaction with the envi-

ronment can result in the state collapsing. This phenomena is called decoherence, and

must be prevented in order to carry out computation and communication. Decoher-

ence is one of the main obstacles in building large-scale quantum computers, however

developments in quantum error correction can help to mitigate this problem.

1.1.2 Quantum Computing

The idea of using quantum physics for computation was first alluded to in 1982 by

Feynman [1982], who described the difficulties of simulating quantum mechanical

systems on classical computers. In 1985, Deutsch [1985] attempted to define a com-

putational device that is capable of simulating an arbitrary physical system. This

device, called the universal quantum computer, is meant to be the quantum equiva-

lent of the model on which classical computer science is based; the universal Turing

machine.

Although of little practical use, the Deutsch-Jozsa algorithm [Deutsch and Jozsa

1992] provided one of the first examples that quantum algorithms could offer an

exponential speedup over classical computation. Inspiration from this work lead to

the practical algorithms developed by Shor [1994] and Grover [1996].

The generation of widespread interest in quantum computing is often attributed

to Shor’s algorithms for solving prime factoring and discrete logarithm problems.

These algorithms have many practical applications, and are particularly significant

with respect to the security of public key cryptosystems. A third class of quantum

algorithms, aside from simulation and quantum Fourier transform-based algorithms

such as Shor’s, are unstructured search algorithms. Grover’s algorithm [Grover 1996]

is the first example of an algorithm in this class, enabling the efficient search of

unstructured data.

Realising these benefits of quantum computation is still several years down the

line. Physicists still have to develop the technology for the storage and accurate

manipulation of quantum systems on a large scale, without causing decoherence.

1.1.3 Quantum Communication

In contrast to quantum computation, the ability to use quantum mechanics for

communication is already a practical technology. That is not to say it is ready

for widespread applications; indeed, the development of practical communication

networks require implementations of quantum memory and entanglement swapping.

However, there are commercial devices available from companies including idQuan-

4

1.2. MOTIVATION

tique, MagiQ, Toshiba and NEC, which are designed for point-to-point secure com-

munication using fibre-optic cable.

The idea of quantum cryptography was first put forward by Wiesner in the late

1960’s, although this was not published until 1983 [Wiesner 1983]. Meanwhile, Ben-

nett and Brassard [1984] developed this idea, resulting in the BB84 Quantum Key

Distribution (QKD) protocol. This protocol uses polarised photons to encode bits

using either the rectilinear basis, or the diagonal basis which is offset by 45◦. Based

on the destructive nature of measurement, an eavesdropper will cause random errors

if she were to measure in the wrong basis, which can later be detected by the commu-

nicating parties. This was later implemented in a laboratory over a distance of less

than 1m [Bennett et al. 1992a], however a side-channel in the form of a loud buzzing

from the power supply whenever a ‘1’ was sent made the security of QKD irrelevant.

Other protocols for QKD were later developed, including the EPR protocol by

Ekert [1991] and the B92 protocol by Bennett et al. [1992b]. The EPR protocol uses

entangled qubit pairs, which could come from a third party source, and Bell’s theorem

[Bell 1964] to detect the presence of an eavesdropper. B92 provides a similar solution,

but shows that Bell’s theorem is not required.

Although QKD is the major application in quantum cryptography, there are a

number of other cryptographic protocols that have been developed. These include

bit commitment (for example, [Brassard and Crépeau 1991; Kent 2003]), coin flipping

[Bennett and Brassard 1984; Berĺın et al. 2008], and secret sharing [Markham and

Sanders 2008]. Also important are privacy amplification [Bennett et al. 1988, 1995]

and secret key reconciliation [Brassard and Salvail 1994], which can be used respec-

tively, to distill a secret key when an eavesdropper has gained some information, and

to establish a key over a noisy quantum channel.

Aside from cryptography, there are several other applications of quantum commu-

nication. The most interesting, particularly from an information theoretic point of

view, are quantum teleportation and superdense coding [Bennett et al. 1993; Brassard

et al. 1998]. Quantum teleportation is a protocol that enables a quantum state to be

transmitted using entanglement and the communication of two classical bits. On the

other hand, superdense coding reverses this situation, utilising one qubit to transmit

two classical bits of information. These protocols are particularly interesting because

it is only possible to store a single bit of information per qubit.

1.2 Motivation

Having introduced quantum information and communication, we now describe the

motivation for the development and application of formal methods to quantum com-

munication protocols.

5

1.2. MOTIVATION

A protocol defines the language, semantics and procedures that enable agents in

concurrent and distributed systems to establish, maintain and complete communica-

tion [Holzmann 1982]. A well designed protocol aims to allow efficient communication

in normal circumstances, and should also permit and respond appropriately to occa-

sional errors, such as packet loss.

A well designed protocol should also be able to recover from more serious situa-

tions such as machine failures and malicious attacks. This is particularly relevant for

safety- and security-critical protocols, where failures can have serious consequences.

Designing protocols that are robust in these situations is a difficult task, and requires

a complete exploration of all possible conditions, a feat that may be near impossible

for complex protocols.

Formal methods encompass a range of techniques, both manual and automated,

for the specification and verification of systems. These techniques are characterised by

formal languages and precisely defined semantics that offer systematic and generalised

approaches to system analysis. Such tried, tested, and well understood methods can

be applied to precisely describe protocols and ensure their design criteria are satisfied

in all eventualities.

A prominent example illustrating the use of formal methods is the analysis of

the Needham-Schroeder public key authentication protocol [Needham and Schroeder

1978] by Lowe [1996]. Using the process algebra CSP [Hoare 1985] and the automated

Failures Divergences Refinement (FDR) model checking tool [Roscoe 1994], Lowe was

able to discover a possible attack on the protocol, and subsequently verify a corrected

version. This vulnerability had gone undiscovered for 17 years.

The large number of quantum cryptographic protocols makes the application of

formal methods to quantum systems particularly important. Indeed, many practical

implementations are likely to consist of a selection of basic communication and cryp-

tographic protocols working together. The verification of such systems is facilitated

by using compositional analysis, in which the individual components can be analysed

in isolation.

Quantum cryptographic protocols are designed so that their security relies on

fundamental features of quantum theory, such as Heisenberg’s uncertainty principle

and the non-cloneability of unknown quantum states [Wootters and Zurek 1982],

and therefore cannot be compromised even by a quantum computer. Naturally it

is necessary to prove that a given protocol is actually secure in this sense. The key

result in this area is Mayers’ proof [Mayers 2001] of unconditional security of the BB84

quantum key distribution protocol. This result, and others of its kind, are extremely

significant; however, a mathematical proof of security of a protocol does not in itself

guarantee the security of an implemented system, which typically contains classical

components as well. Therefore, it is useful to further analyse such protocols using

6

1.3. CONTRIBUTION

alternative methods.

Computer scientists have developed a range of techniques and tools for the analysis

and verification of communication systems and protocols; Ryan et al. [2001] survey

their application to security. These formal methods have had a major impact and are

used industrially by organisations such as Intel, Microsoft, and NASA. It is reasonable

to expect similar benefits from applying formal methods to quantum systems.

Communicating Quantum Processes (CQP) [Gay and Nagarajan 2005, 2006] is a

process calculus based on the π-calculus [Milner et al. 1992] and includes operations

for quantum information processing. Initial work on CQP focused on developing a

flexible and sound operational semantics and type system, centering around the idea

that each quantum bit is a physical resource and therefore owned by a unique process.

In this thesis, we develop a theory of behavioural equivalence for CQP, in order to

support process-oriented specifications of quantum systems. A major result is that

full probabilistic branching bisimilarity [Trčka and Georgievska 2008], defined here for

CQP, is a congruence. Congruence has been missing from previous work on quantum

process calculus [Feng et al. 2006; Lalire 2006; Ying et al. 2007, 2009], but is important

in allowing equational reasoning about process equivalence.

1.3 Contribution

The aim in this thesis is to develop techniques for the formal analysis of quantum

protocols, through the adaptation of classical formal methods. In particular, we focus

on enhancing quantum process calculus and extensions for automated techniques.

Chapters 3 and 4 address an open problem in the field of quantum process cal-

culus; finding congruence relations for general quantum processes. This involves an

analysis of existing relations and consideration of the interplay between quantum in-

formation and observational equivalence. An important aspect is the consideration of

the physical reality of these algebraic models.

The quantum process calculus CQP is used as the vessel for this work, due to its

strong foundation. The quantum teleportation protocol plays a central role, providing

a practical application that can be used to analyse the accuracy and potential of our

model.

We convert the reduction semantics of CQP to a labelled transition semantics in

order to describe external interactions, and based on this we develop a notion of pro-

cess equivalence, namely probabilistic branching bisimilarity. This relation is applied

to quantum teleportation, and we prove that the protocol is equivalent to a direct

quantum channel, which is in agreement with similar results in other formalisms, e.g.

[Abramsky and Coecke 2004; Danos et al. 2007a]. We consider the preservation prop-

erties of this bisimilarity with respect to the process constructs of CQP, and find that

7

1.4. STATE OF THE ART

it is preserved by all constructs except parallel composition. However, for a small

class of processes that includes teleportation, equivalence is also preserved by parallel

composition.

We discuss the physical accuracy of the semantics and bisimilarity, and argue

that the implementation of probabilistic branching does not respect the observational

properties of quantum information. This also suggests that the approaches by Feng

et al. [2006]; Lalire [2006]; Ying et al. [2007, 2009] may also be flawed in a similar

manner.

In order to address this proposed flaw, we present a novel approach for the oper-

ational semantics of quantum processes, that combines probabilistic branching with

mixed quantum states. We argue that this provides an accurate model of quantum

processes with respect to the laws of quantum mechanics. Furthermore, we prove

that full probabilistic branching bisimilarity is preserved by all process constructs

with respect to this new semantics, and is therefore a congruence.

In Chapter 5 we discuss an axiomatic approach to verification using this new-

found congruence relation. A collection of equational laws which are based upon the

properties of quantum information are defined and proved. These laws are applied to

quantum teleportation, providing a comparatively simpler proof of equivalence than

the long-handed approach in Chapter 4, and thus illustrating the significance of an

equational theory.

Chapter 6 develops the framework for a multi-faceted approach to the formal

analysis of quantum protocols. We present a translation from CQP to the recently

developed quantum model checking tool, QMC [Papanikolaou 2009]. We prove that

this translation preserves the semantics of CQP processes, enabling the benefits of

both formal techniques to be realised from a single specification.

1.4 State of the Art

In recent years there has been significant development in formal languages and se-

mantic techniques for quantum systems. There are surveys by Selinger [2004b], Gay

[2006] and Rüdiger [2007], the latter of which focusses on quantum programming lan-

guages. The most relevant developments, with respect to this thesis, are in the field

of quantum process calculus, reviewed in Section 1.4.1. We also review developments

that focus on semantic analysis and verification of quantum systems.

1.4.1 Quantum Process Calculus

Quantum versions of process calculus, which are designed for describing the interac-

tions between different components of a system, have been developed to complement

8

1.4. STATE OF THE ART

other quantum languages. The quantum process calculi that have been developed to

date are called QPAlg, CQP and qCCS.

QPAlg (named for Quantum Process Algebra) [Jorrand and Lalire 2004; Lalire

and Jorrand 2004] is a language similar to the classical process calculi Calculus of

Communicating Systems (CCS) [Milner 1989] and Lotos [Bolognesi and Brinksma

1987], with extensions for modelling quantum processes. These extensions include

primitives for applying unitary operators, measurements and the ability to send and

receive qubits. The quantum state was originally represented as a state vector by

Jorrand and Lalire [2004], however the more abstract density matrix representation

was used in a later version of QPAlg [Lalire and Jorrand 2004] to allow the description

of parts of an entangled qubit register. An operational semantics is given for QPAlg

in which labelled transitions are complemented by probabilistic transitions, the lat-

ter resulting from quantum measurements. The no–cloning principle is satisfied by

conditions on the input and output rules, specifying respectively that the qubit in

question should not already be initialised or should be removed from the register.

However, it is still possible for multiple processes to use the same qubit internally,

which is in contrast to the assumption made in other quantum process calculi that

processes correspond to physical systems and qubits are physical resources.

Lalire [2005, 2006] investigates equivalences on processes, in particular defin-

ing a probabilistic branching bisimilarity based on the branching bisimilarity of van

Glabbeek and Weijland [1996] and the probabilistic equivalences of Fokkink [2007]

and Andova [1999]. The equivalence is extended from a bisimulation on process

states to an equivalence relation on processes and is shown to be preserved by all

operators except parallel composition. Two problems that prevent preservation by

parallel composition (and hence a congruence) are identified; the restriction of quan-

tum variables to individual processes and the comparison between probabilistic and

non-deterministic actions.

Communicating Quantum Processes (CQP) was developed by Gay and Nagarajan

[2005] around the same time as QPAlg. The development of CQP followed attempts

to use the classical process calculus CCS in combination with the Concurrency Work-

bench of the New Century (CWB-NC) [Cleaveland and Sims 2009] for the verification

of the BB84 quantum key distribution protocol [Nagarajan and Gay 2002]. As part

of the same research programme, the classical model checking tool PRISM has also

been used for the analysis of quantum systems [Gay et al. 2005; Papanikolaou 2004].

CQP is based on the π-calculus [Milner 1999; Milner et al. 1992] with primitives

for quantum information inspired by Selinger’s QPL [Selinger 2004a]. The operational

semantics of CQP are defined using reductions under the assumption that quantum

systems are closed to any environment; as such the transmission of qubits is internal

and no external communication is considered. Quantum measurements are modelled

9

1.4. STATE OF THE ART

with probabilistic transitions, following a similar approach to QPAlg. The most dis-

tinctive feature of CQP is the inclusion of a static type system, the purpose of which

is to classify classical and quantum data and also to enforce the no-cloning prop-

erty of quantum information. A full treatment of the type system with associated

proofs of soundness and a type checking algorithm is presented by Gay and Nagara-

jan [2006]. The language has been presented as a solid framework with the ability to

easily add new functionality as required, although no process equivalences have been

investigated.

The language qCCS, a quantum extension of the classical value-passing CCS, was

first proposed by Feng et al. [2007]. One aim of this language is to address the

short-comings of QPAlg and CQP with respect to the input and output of quantum

states, in particular where entanglement is involved. The language uses probabilistic

transitions to deal with measurement, however it doesn’t treat these as branching

transitions, instead maintaining a distribution over each outcome. No-cloning and

similar quantum properties are satisfied by conditions at the syntactic level, leading

to a syntax that is more complicated than QPAlg and CQP but does not require a

type system. Process equivalences are investigated, namely strong and weak proba-

bilistic bisimilarity, which are shown to be preserved by various operators. The most

interesting result is that their equivalences are preserved by parallel composition with

processes that do not change the quantum context.

A later version of qCCS [Ying et al. 2007, 2009] excludes classical information in

an attempt to better understand quantum processes. Quantum operations are mod-

elled using superoperators allowing for the operational semantics to be defined by a

non-probabilistic transition system. Several notions of equivalence are considered by

Ying et al. [2007, 2009], in particular strong reduction-bisimilarity and approximate

(reduction-)bisimilarity. The approximate equivalences are motivated by the potential

inaccuracies that may occur in the implementation of quantum gates. Significantly,

approximate bisimilarity and approximate reduction-bisimilarity are shown to be pre-

served by parallel composition in this purely quantum setting. However this result is

not sufficient for the analysis of most interesting quantum protocols, many of which

involve the interaction of quantum and classical information.

In recent work, Feng et al. [2011] combine principles from both [Feng et al. 2006]

and [Ying et al. 2009] resulting in an updated version of qCCS. This latest version

models general quantum processes, including the ability to model classical information

and maintaining the use of superoperators from [Ying et al. 2009]. Significantly,

a weak bisimulation is defined and subsequently proved to be a congruence. An

axiomatisation is presented which is based on the adaptation of classical CCS laws,

however completeness is not considered. The quantum teleportation and superdense

coding protocols are used to illustrate the language and congruence. The results of

10

1.4. STATE OF THE ART

Feng et al. [2011] are similar, although independent to the results in this thesis; this

is discussed further in Chapter 4.

1.4.2 Verification of Quantum Systems

There have been several, primarily mathematical, proofs of correctness and security

of various quantum protocols. Mayer’s proof of the unconditional security of quantum

key distribution is probably the most prominent of these [Mayers 2001]. There are

also negative results, for example, proofs that show unconditionally secure quantum

bit commitment is impossible [Lo and Chau 1997; Mayers 1997].

Automated model checking techniques have also been applied to a number of quan-

tum protocols. These include attempts to use existing probabilistic model checkers

such as PRISM [Kwiatkowska et al. 2001]. Gay et al. [2005] use PRISM for the anal-

ysis of quantum teleportation, superdense coding and an error correction protocol.

PRISM is also used by Elboukhari et al. [2010] for the verification of the B92 quan-

tum key distribution protocol [Bennett et al. 1992b]. Recently, the Quantum Model

Checker (QMC), a model checking tool designed specifically for quantum systems, has

been developed by Papanikolaou [2009]. This tool is restricted to stabilizer circuits,

which offer efficient simulation on classical computers at the expense of falling short

of universal quantum computation. Baltazar et al. [2008] define Quantum Computa-

tion Tree Logic (QCTL) and a corresponding model checking algorithm for reasoning

about quantum protocols.

1.4.3 Semantics for Analysis of Quantum Systems

Abramsky and Coecke [2004] have developed a category theoretic formulation of the

axioms of quantum mechanics. This representation enables the mathematical analysis

of information flow within quantum systems. For example, they have shown the

correctness of teleportation.

Perdrix [2007, 2008] introduces an approach to entanglement analysis using an

abstract interpretation framework. This focuses on the evolution of entanglement.

Prost and Zerrari [2008] consider a logic based approach to entanglement analysis for

functional languages, although only pure quantum states are considered.

Altenkirch and Grattage [2005] have developed a functional quantum program-

ming language QML. A sound and complete equational theory for the measurement-

free QML is presented by Altenkirch et al. [2007].

A measurement calculus is defined for distributed measurement based quantum

computation by Danos et al. [2007b]. In this formalism, a notion of operational

equivalence is considered and used to show that quantum teleportation is bisimilar to

a direct quantum channel [Danos et al. 2007a].

11

1.5. OUTLINE

A process calculus designed for the analysis of quantum security protocols has been

developed by Adão and Mateus [2007]. The language implements a cost model and is

based on the quantum random access machine (QRAM) computational model. They

define notions of observational equivalence and computational indistinguishability.

1.5 Outline

This thesis is organised as follows. Chapter 2 presents a review of the relevant back-

ground material and concepts. Chapter 3 describes a first attempt at defining a

process equivalence for CQP, inspired by the results of QPAlg and qCCS. We define

a labelled transition relation for CQP, in order to describe external interactions, and

use this to define probabilistic branching bisimilarity for CQP processes. We prove

that probabilistic branching bisimilarity is preserved by all constructs except paral-

lel composition. We also prove that quantum teleportation is bisimilar to a direct

quantum channel in all contexts. A discussion leads to the observation that these

semantics do not respect the laws of quantum mechanics.

Chapter 4 introduces the novel approach of combining mixed states with proba-

bilistic branching; a notion that we call mixed configurations. The operational seman-

tics of CQP is redefined using these mixed configurations, and we prove that typing is

preserved by the new transition relations. We prove that full probabilistic branching

bisimilarity is a congruence with respect to this new semantics.

Chapter 5 presents an equational theory for full probabilistic branching bisimilar-

ity. The equational laws are centered around the observational properties of quantum

information, and are illustrated through an application to quantum teleportation. We

prove the soundness of this equational theory, and we discuss the issues involved in

adapting the expansion lemma from the π-calculus for this relation.

Chapter 6 describes an approach to quantum protocol analysis that combines

process calculus and model checking. We define a translation from CQP to the quan-

tum model checking tool QMC, and prove that the semantics of CQP processes is

preserved.

We conclude in Chapter 7 with a final review, as well as outlining directions for

future work.

12

2
Background

In this chapter, we review the relevant background concepts, covering quantum me-

chanics, quantum protocols and process calculus.

2.1 Quantum Mechanics

The theory of quantum mechanics is described by a mathematical formulation that

is very different from classical mechanics. In this section, the concepts necessary to

describe quantum mechanics are introduced. For further reading, there are many

textbooks on the subject, in particular, [Nielsen and Chuang 2000] and [Gruska 1999]

are standard references. An account aimed at computer scientists is given by Rieffel

and Polak [2000].

2.1.1 Hilbert Spaces

The convention in quantum mechanics is to use Dirac’s braket notation [Dirac 1958],

in which a vector is written |ψ〉. This can be written as a column vector in the usual

way:

|ψ〉 =


α1

...

αn

 .

The notation |·〉 is called a ket , and its dual 〈·| is called a bra. 〈ψ| is the conjugate

transpose (denoted †) of |ψ〉:

〈ψ| = |ψ〉† =
[
α∗1 . . . α∗n

]
where α∗ is the complex conjugate of α.

13

2.1. QUANTUM MECHANICS

A Hilbert space H is a complete inner product space; that is, a vector space with

a zero element 0, and a unit element 1, such that all elements |ψ〉, |φ〉, |ϕ〉 ∈ H satisfy

the axioms

|ψ〉+ |φ〉 = |φ〉+ |ψ〉

(|ψ〉+ |φ〉) + |ϕ〉 = |ψ〉+ (|φ〉+ |ϕ〉)

0 + |ψ〉 = |ψ〉

α(β|ψ〉) = (αβ)|ψ〉

(α+ β)|ψ〉 = α|ψ〉+ β|ψ〉

α(|ψ〉+ |φ〉) = α|ψ〉+ α|φ〉

1|ψ〉 = |ψ〉

〈ψ|φ〉 = 〈φ|ψ〉∗

〈ψ|ψ〉 ≥ 0

(α〈ψ|+ β〈φ|)|ϕ〉 = α〈ψ|ϕ〉+ β〈φ|ϕ〉

The braket 〈·|·〉 denotes the inner product. If

|ψ〉 =


α1

...

αn

 and |φ〉 =


β1

...

βn


then the inner product is a complex number given by

〈ψ|φ〉 = α∗1β1 + · · ·+ α∗nβn .

2.1.2 Qubits

Associated with any physical system is a complex Hilbert space, called its state space.

The system is completely described by a unit vector |ψ〉 within its state space, called

the state vector. The system of primary interest to us is the qubit (or quantum bit).

A qubit is a physical system with a 2-dimensional state space H2.

The set of vectors {|0〉, |1〉} is called the standard basis of the qubit state space

H2, where

|0〉 =

[
1

0

]
|1〉 =

[
0

1

]
.

We can write the general state of a qubit as

|ψ〉 = α|0〉+ β|1〉 (2.1)

14

2.1. QUANTUM MECHANICS

where α, β ∈ C and |α|2 + |β|2 = 1. In contrast to a classical bit, whose state is either

0 or 1, the general state of a qubit is a linear combination, or superposition, of basis

states.

The state space of a multiple qubit system is given by the tensor product (⊗) of the

individual systems’ state spaces. This is in contrast to classical systems, in which the

Cartesian product is used. The state space of an n-qubit system is a 2n-dimensional

complex Hilbert space; that is, the tensor product of n copies of H2:

H2n = H2 ⊗ · · · ⊗ H2︸ ︷︷ ︸
n

The standard basis of an n-qubit system is {|00 . . . 0〉, |00 . . . 1〉, . . . , |11 . . . 1〉}. We use

the notation

|ψ〉 ⊗ |φ〉 = |ψ〉|φ〉 = |ψφ〉

to abbreviate the tensor product, thus |00 . . . 0〉 = |0〉 ⊗ · · · ⊗ |0〉. For example, a 2-

qubit system has the standard basis {|00〉, |01〉, |10〉, |11〉} and a general state is given

by the vector

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 =


α

β

γ

δ


where α, β, γ, δ ∈ C and |α|2 + |β|2 + |γ|2 + |δ|2 = 1.

A quantum state is separable if it can be decomposed into the tensor product

of two smaller systems. For example, the 2-qubit state |ψ〉 = αγ|00〉 + αδ|01〉 +

βγ|10〉+βδ|11〉 can be represented by the tensor product of two single qubit systems:

|ψ〉 = (α|0〉+ β|1〉)⊗ (γ|0〉+ δ|1〉). In vector notation this is

|ψ〉 =


αγ

αδ

βγ

βδ

 =

[
α

β

]
⊗

[
γ

δ

]
.

A consequence of using the tensor product is that not all quantum states are sepa-

rable. For example, the state |Φ+〉 = α|00〉 + β|11〉 cannot be decomposed into two

independent systems. Non-separable quantum states are called entangled .

2.1.3 Quantum Operators

A closed quantum system is one which is independent from the environment. The

evolution of a closed system can be described by unitary operations on the quantum

15

2.1. QUANTUM MECHANICS

state. A linear operator is unitary if UU† = U†U = I, where I is the identity operator.

For a system that starts in state |ψ〉, after evolution described by the operator U , the

state will be |φ〉 = U |ψ〉.
We now introduce the common quantum operators and give their matrix repre-

sentations with respect to the standard basis. The Pauli operators are single qubit

operators given by the matrix representations

I =

[
1 0

0 1

]
X =

[
0 1

1 0

]

Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]
.

In other texts, these are also referred to using the notations (σ0, σ1, σ2, σ3) and

(I, σx, σy, σz). The other single qubit operators of interest are the Hadamard , phase

and π
8 operators:

H =
1√
2

[
1 1

1 −1

]
S =

[
1 0

0 i

]
T =

[
1 0

0 eiπ/4

]
.

The effects of these operators on a general quantum state |ψ〉 = α|0〉 + β|1〉 are as

follows:

I|ψ〉 = α|0〉+ β|1〉

X|ψ〉 = α|1〉+ β|0〉

Y |ψ〉 = iα|0〉 − iβ|1〉

Z|ψ〉 = α|0〉 − β|1〉

H|ψ〉 =
1√
2

((α+ β)|0〉+ (α− β)|1〉)

S|ψ〉 = α|0〉+ iβ|1〉

T |ψ〉 = α|0〉+ eiπ/4β|1〉 .

Of these operators, the Hadamard is particularly interesting because it can create and

destroy superpositions. For example, H|0〉 = 1√
2
(|0〉+ |1〉) and HH|0〉 = |0〉. The final

operator of importance is the 2-qubit controlled-NOT operator. It has the matrix

representation

CNot =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

16

2.1. QUANTUM MECHANICS

On basis states, it is defined by the map |00〉 7→ |00〉, |01〉, 7→ |01〉, |10〉 7→ |11〉, |11〉 7→
|10〉. The first qubit is considered the control, and depending on its state, the second

qubit is ‘flipped’ accordingly.

The controlled-NOT (or CNot) operator, in conjunction with the Hadamard, is

often used to create or destroy entanglement. Given a separable 2-qubit state |ψ〉 =

|00〉, we can apply the Hadamard operator to the first qubit, followed by the CNot

operator to get:

CNot.(H⊗ I)|00〉 = CNot(
1√
2

(|00〉+ |10〉)) =
1√
2

(|00〉+ |11〉) .

Note that, by using the tensor product (H ⊗ I), we have applied the (single-qubit)

Hadamard operator to a 2-qubit state. Subscripts are often used to denote which

qubits a gate is applied to, for example, CNot4,2 denotes the CNot gate applied to

qubits 4 and 2. In these cases, the corresponding operator on the full state can be

found by taking the tensor product with the identity operator on the other qubits. A

change of basis may also be required.

2.1.4 Measurement

While a quantum system may be in the state |ψ〉, reading the state is achieved through

measurement. Unlike the state of a classical bit which we can determine with certainty,

Heisenberg’s uncertainty principle tells us that it is not possible to learn the complete

state of a quantum system. Instead quantum measurements produce a probabilistic

outcome that is dependent on the state of the system.

We are primarily interested in the class of measurements known as projective mea-

surements. Formally, projective measurements are described by a set of orthogonal

projection operators {Pm}, where PmPm′ = δm,m′Pm, that act on the state space of

the system. Projection operators are Hermitian, that is P † = P , and the index m

refers to the possible measurement outcomes. For a system in state |ψ〉, the proba-

bility that the outcome of the measurement is m is given by

p(m) = 〈ψ|Pm|ψ〉

and the state after the measurement is

Pm|ψ〉√
〈ψ|Pm|ψ〉

.

The act of measurement forces the system into a particular state, and unlike unitary

operators, is not reversible. It is therefore not possible to discover more information

about the original state through multiple measurements; in fact, projective measure-

17

2.1. QUANTUM MECHANICS

ments have the property that repeating them produces the same outcome and does

not change the state. For this reason, measurement is considered destructive.

The measurement operators of a quantum measurement satisfy the completeness

property ∑
m

P †mPm = I .

This corresponds to the condition that the probabilities sum to 1.

The type of measurements that we are are concerned with, are measurements with

respect to the standard basis. In this basis, the measurement operators for a single

qubit measurement are P0 = |0〉〈0| and P1 = |1〉〈1|, corresponding to the two possible

outcomes. The notation |ψ〉〈φ| denotes the outer product of vectors |ψ〉 and |φ〉. In

vector notation,

P0 =

[
1

0

] [
1 0

]
=

[
1 0

0 0

]
and P1 =

[
0

1

] [
0 1

]
=

[
0 0

0 1

]
.

For a general state |ψ〉 = α|0〉+ β|1〉, the probability of obtaining the outcome 0 is

p(0) = 〈ψ|P0|ψ〉 = (α∗〈0|+ β∗〈1|)α|0〉 = |α|2 .

The corresponding state is then

P0|ψ〉
|α|

= |0〉 .

Similarly, for an outcome of 1, the probability is p(1) = |β|2 and the resulting state

is |1〉.
Measurement and entanglement have a particularly interesting connection; it is

through measurement of entangled states that we can see the effects of non-locality.

Let us consider the 2-qubit system in the entangled state |Φ+〉 = 1√
2
(|00〉 + |11〉).

Measuring the first qubit corresponds to the measurement operators P0 = |0〉〈0| ⊗ I
and P1 = |1〉〈1| ⊗ I. This yields the following states and respective probabilities

|ψ0〉 = |00〉 with probability p(0) =
1

2

|ψ1〉 = |11〉 with probability p(1) =
1

2
.

Now, if the outcome from this measurement was 0 and we measure the second qubit,

we obtain, with probability 1, the outcome 0. Similarly, if the initial measurement

gave 1, then the second measurement would give the outcome 1 with probability 1.

The state |Φ+〉 is one of four maximally entangled states, collectively known as

the Bell states. They have the property that the measurement outcomes of the two

18

2.1. QUANTUM MECHANICS

qubits are perfectly correlated. The other Bell states are

|Φ−〉 =
1√
2

(|00〉 − |11〉)

|Ψ+〉 =
1√
2

(|01〉 − |10〉)

|Ψ−〉 =
1√
2

(|01〉 − |10〉) .

2.1.5 Density Matrices

Density matrices (or density operators) provide an alternative approach to the repre-

sentation of quantum states. The correspondence between state vectors and density

matrices is not one-to-one; for each state vector there is a unique density matrix, but

this mapping is not injective. Density matrices cannot represent the global phase of

a state since, although the states |ψ〉 and eiθ|ψ〉 differ by the global phase coefficient

eiθ, their respective density matrices are identical. In practice, it is not possible to

determine the global phase of a state, hence |ψ〉 and eiθ|ψ〉 are indistinguishable.

Moreover, it is not possible to distinguish any two states that have the same density

matrix representation, even if their respective state vectors are not equal.

The correspondence of density matrices with physical indistinguishability makes

this representation particularly useful when considering the observational properties

of quantum systems. Aside from this, one of the main benefits of the density ma-

trix representation is the ability to describe the state of individual subsystems of a

composite system.

The density matrix (denoted ρ) of a system in the state |ψ〉 is given by the outer

product

ρ = |ψ〉〈ψ| .

For the general state |ψ〉 = α|0〉+ β|1〉, this corresponds to the density matrix

ρ = (α|0〉+ β|1〉)(α∗〈0|+ β∗〈1|) =

[
α

β

] [
α∗ β∗

]
=

[
|α|2 αβ∗

βα∗ |β|2

]
.

State vectors represent pure states of a system. Density matrices are able to

represent ensembles of pure states {pi, |ψi〉}, in which the system is in one of the pure

states |ψi〉, with respective probability pi. The density matrix of this ensemble is

given by

ρ =
∑
i

pi|ψi〉〈ψi| .

For example, given the states |0〉, |1〉 with respective probabilities |α|2, |β|2, the density

19

2.1. QUANTUM MECHANICS

matrix of this ensemble is

ρ = |α|2|0〉〈0|+ |β|2|1〉〈1| =

[
|α|2 0

0 |β|2

]
.

Note that this is different than the superposition |ψ〉 given above, in which the state

is a combination of |0〉 and |1〉.
The action of a unitary operator U on a density matrix ρ is given by UρU† which,

for a general state |ψ〉, is equivalent to U |ψ〉〈ψ|U†. The state after a measurement

with operators {Pm} is given by

ρm =
PmρP

†
m

tr(P †mPmρ)

where “tr” is the matrix trace operation. The derivation of the equality p(m) =

tr(P †mPmρ) can be found in the standard texts, e.g. [Nielsen and Chuang 2000, p

100].

Our main reason for using density matrices is to describe subsystems of composite

systems. Given a composite system consisting of two subsystems A and B in a state

|ψ〉AB , it is not always possible to fully describe the respective states of the individual

subsystems because they might not be separable. In these cases the subsystems can

be described by their reduced density matrices.

The reduced density matrix of the subsystem A, denoted ρA, is given by

ρA = trB(ρAB)

where ρAB is the state of the composite system and trB is called the partial trace over

B. This is often referred to as ‘tracing out’ or ‘tracing over’ B. If |ψ〉 =
∑
i |ψi〉A|φi〉B

then

ρA =
∑
i,j

|ψi〉〈ψj |A〈φi|φj〉B .

For example, if a 2-qubit system is in the Bell state |Φ+〉 = 1√
2
|00〉+ 1√

2
|11〉 then

ρ =
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

2
.

The reduced density matrix of the first qubit is then

ρA =
|0〉〈0|〈0|0〉+ |0〉〈1|〈0|1〉+ |1〉〈0|〈1|0〉+ |1〉〈1|〈1|1〉

2
=
|0〉〈0|+ |1〉〈1|

2
.

This is the same density matrix as for an ensemble of states {|0〉, |1〉}, each with prob-

ability 0.5. This equality represents the equivalence of observables in these systems.

20

2.2. QUANTUM PROTOCOLS

Two systems with the same density matrix may not have the same state (or ensemble

of states), yet their measurement statistics will be identical.

2.1.6 Quantum Gates and Circuits

The quantum circuit model is a common way of representing quantum computations.

It is analogous to classical logic circuits, replacing logic gates with quantum gates and

classical wires with quantum wires.

Quantum circuits consist of parallel “quantum wires” running in a single direction,

normally left to right. Each quantum wire corresponds to a single qubit. Unitary

operators are represented by boxes U and appear on the quantum wire for the

qubit(s) that they operate on. Measurements are represented by a “meter” symbol

FE

 , and measurement outcomes emerge on classical wires (double lines).

Unlike classical circuits, fan-in and fan-out are not permitted, and all quantum

gates have the same number of input qubits as output qubits. Classical control of

quantum gates is represented by a classical wire entering a quantum gate. Quantum

controlled gates are represented by • on the control qubit, and the CNot gate marks

the target with ⊕. These are illustrated as follows.

U

•

U

•
��������

Classical control Controlled-U CNot

In the next section, we describe several quantum protocols using the circuit model.

2.2 Quantum Protocols

2.2.1 Quantum Teleportation

Quantum teleportation is a protocol which allows two users who share an entangled

pair of qubits, to exchange an unknown quantum state by communicating only two

classical bits. The protocol is illustrated in Figure 2.1 using the circuit model.

x = |ψ〉 • H FE

s •

y = |0〉 H • �������� FE

 •r

z = |0〉 �������� Xr Zs |ψ〉

Figure 2.1. Quantum teleportation circuit.

21

2.2. QUANTUM PROTOCOLS

The qubit labelled x is in some unknown state |ψ〉; this is the state to be “tele-

ported”. Following the usual convention, we call the sender Alice and the receiver Bob.

Two qubits, y and z, must be prepared in the entangled state |Φ+〉 = 1√
2
(|00〉+ |11〉).

This is the achieved by applying a Hadamard and controlled-NOT operator to the

state |00〉, represented by the following circuit:

|0〉 H •
|Φ+〉

|0〉 ��������


Then qubit y is given to Alice and qubit z is given to Bob.

When Alice is ready to send the state, she applies the controlled-NOT operator

to qubits x and y, followed by the Hadamard operator to qubit x. She then measures

both of these qubits, and it is the outcomes of these measurements (values r and s)

that she sends to Bob.

If we write |ψ〉 = α|0〉+ β|1〉 (representing an arbitrary quantum state, cf. (2.1)),

then there are four possible outcomes for the measurements, each occurring with

probability 0.25:

State r s Correction

α|000〉+ β|001〉 0 0 I

α|010〉 − β|011〉 0 1 Z

α|101〉+ β|100〉 1 0 X

α|111〉 − β|110〉 1 1 ZX

Using the values r and s, Bob can determine which quantum operators to apply in

order to “correct” the state; these are given in the above table. For example, if Bob

receives the values 1,0, then he will apply the X operator to qubit z. After Bob has

applied the appropriate corrections to his qubit, the state of z will be |ψ〉. Moreover,

the state of Alice’s qubit x will now be in the state |0〉 or |1〉, corresponding to the

value s; this confirms that the quantum state has not been cloned.

2.2.2 Superdense Coding

Superdense coding is considered the opposite of teleportation, enabling two bits of

classical information to be communicated be exchanging a single qubit. As with

teleportation, superdense coding (also referred to as dense coding) is based on the

two users sharing a pair of entangled qubits.

The superdense coding protocol is described by the circuit in Figure 2.2. The

circuit model does not naturally represent implementation details such as the differ-

ent users involved, however we have annotated the circuit in Figure 2.2 in order to

identify the users in the protocol. The ability to describe these details, particularly

22

2.3. PROCESS CALCULUS

for communication protocols, is a significant benefit offered by process calculus and

other formal specification languages.

Alice

a •
b •

EPR Source
X Z

Bob

|0〉 H • • H FE

 a

|0〉 �������� �������� FE

 b

Figure 2.2. Superdense coding circuit.

Like teleportation, the superdense coding protocol also begins with the preparation

of an entangled pair, labelled “EPR Source”. Alice takes one qubit of the pair (x)

and Bob takes the other (y). The bits to be transmitted are labelled a and b; the

double lines represent classical wires. When Alice is ready to send, she applies a

combination of the X and Z operators to qubit x depending on the values a and b.

The appropriate encoding is as follows:

a b Operator Resulting state

0 0 I 1√
2
(|00〉+ |11〉)

0 1 X 1√
2
(|10〉+ |01〉)

1 0 Z 1√
2
(|00〉 − |11〉)

1 1 ZX 1√
2
(|01〉 − |10〉)

Once Alice has performed this encoding, she sends her single qubit to Bob. Now

that Bob has both qubits, he can determine which encoding Alice used, and therefore

the corresponding values a and b. First, he applies a controlled-NOT operator to x

and y, followed by the Hadamard applied to x; this results in the state |ab〉. He then

measures both of these qubits to reveal the respective values. Because the state he

measures is not a superposition, the outcome will be certain.

2.3 Process Calculus

Process calculus (also called process algebra) is an algebraic approach for the formal

specification and verification of systems, usually involving concurrently executing and

communicating components. Amongst the original and best-known process calculi are

CCS [Milner 1982], ACP [Bergstra and Klop 1984] and CSP [Hoare 1978], from which

many others have been inspired. Process calculus was initially developed to address

23

2.3. PROCESS CALCULUS

the verification of hardware systems, however further developments have lead to its

application in software verification including object-oriented programming.

Process calculi have several features in common:

• Syntax. Models are built in a compositional manner using a small number of

primitives and operators to combine these. This often includes sequential and

parallel composition alongside operators for choice and scoping.

• Semantics. The syntax is usually accompanied by a structural operational

semantics [Plotkin 1981] that defines the single-step execution capabilities of a

system.

• Behavioural equivalence. Relations on processes are often defined as a means

for equating systems which exhibit the “same behaviour”. Notions of “refine-

ment” can also be considered using preorders.

The typical process-algebraic approach to verification is to define two models; one

which describes the design of the implemented system, and another (the specification)

that describes the intended high-level behaviour. The correctness of the system with

respect to the specification can then be established by using a notion of behavioural

equivalence. This approach to verification will be used in Section 3.3.

2.3.1 Labelled Transition Systems

The operational semantics of a process calculus is normally defined by either a reduc-

tion system or a labelled transition system (LTS). The first case uses a binary relation

on terms called a reduction, and is able to represent the evolution of a process in-

dependently of its environment. The second case not only describes the evolution

within a system, but also the interactions a system may have with the environment.

The interactions that can occur are described by the actions that a process can per-

form. Being able to represent these interactions is important when considering the

behaviour of communication systems hence we focus on the use of labelled transition

systems instead of reductions in this thesis.

In a labelled transition system, the transition relations are labelled by actions,

written
α−→ where α is an action. Actions normally include input, output and internal

action; we will use the respective notations c?[x], c![x] and τ for input on channel c,

output on channel c, and internal action. The input and output actions are considered

visible or observable actions.

The notation P
α−→ Q means that P has the capability to perform action α, and

after completing the action will reach a state where the remaining behaviour is Q.

It may also be the case that branching may occur if P
αi−→ Qi for a set of actions

24

2.3. PROCESS CALCULUS

{αi} and set of states {Qi}. The actions {αi} are the capabilities of P . Transition

relations are defined by inference rules of the form ([Plotkin 1981])

premises

conclusion
.

For example, the following rules define actions (α.P performs action α then behaves

as P), parallel execution (P ‖ Q can behave as P without losing the capabilities of

Q), and choice (P +Q behaves as P or as Q):

α.P
α−→ P

P
α−→ P ′

P ‖ Q α−→ P ′ ‖ Q

Q
α−→ Q′

P ‖ Q α−→ P ‖ Q′

P
α−→ P ′

P +Q
α−→ P ′

Q
α−→ Q′

P +Q
α−→ Q′

Rules for synchronisation or, in the case of value-passing calculi, communication en-

able parallel components to interact using complementary actions:

P
c![v]−→ P ′ Q

c?[x]−→ Q′

P ‖ Q τ−→ P ′ ‖ Q′{v/x}

Communication results from an output by one process and a corresponding input by

another. In value-passing calculi, the output values are substituted in the receiving

process (e.g. Q′{v/x} denotes the substitution of value v in place of x). Communi-

cation is considered an internal action, and is therefore labelled τ .

These transition relations describe a directed graph in which the nodes represent

the states and the edges represent the transitions. The edges emerging from a node

indicate the capabilities of that state and the paths through the graph represent the

possible executions.

Figure 2.3 illustrates the labelled transition system of a process c?[x].d![x].0 ‖ c![0].0.

This process consists of two components acting in parallel (‖) with each other; the

branches of the transition system correspond to the possible interleavings of these two

processes. The leftmost transition, labelled τ , corresponds to the synchronous input

(c?[x]) and output (c![0]) of the two processes; this is action is called a synchronisation

or communication. The other branches correspond to the external input (c?[v]) and

output (c![0]) actions respectively. Each node is labelled with a process that describes

the behaviour at the point. The leaves are labelled by the process 0, which has no

action.

25

2.3. PROCESS CALCULUS

c?[x].d![x].0 ‖ c![0].0

d![0].0 ‖ 0

0 ‖ 0

d![0]

τ

d![v].0 ‖ c![0].0

0 ‖ c![0].0

0 ‖ 0

c![0]

d![v]

d![v].0 ‖ 0

0 ‖ 0

d![v]

c![0]

c?[v]

c?[x].d![x].0 ‖ 0

d![v].0 ‖ 0

0 ‖ 0

d![v]

c?[v]

c![0]

Figure 2.3. A labelled transition system.

2.3.2 Bisimulation

The notion of bisimulation equivalence was developed by Park [1981] and is based

upon the concept of simulation due to Milner [1982]. If one process, Sim, simulates

another, Sys, then it means that Sim is able to perform any action that Sys can,

and that on completion of that action, the remaining behaviour of Sim can simulate

the remaining behaviour of Sys. Bisimulation takes this concept a step further by

requiring the simulation relation to be symmetric. If two process simulate one another

then they are not necessarily bisimilar, since the two simulation relations may not be

the symmetric forms of each other.

Strong Bisimilarity

There are many variants of bisimulation, of which strong bisimulation is the proto-

typical and most natural. Strong bisimulation requires every action to be matched

exactly, regardless of whether they are internal or external actions.

Definition 2.1 (Strong Bisimulation). A relation R is a strong bisimulation if when-

ever (P,Q) ∈ R then

• if P
α−→ P ′ then Q

α−→ Q′ and (P ′, Q′) ∈ R,

• if Q
α−→ Q′ then P

α−→ P ′ and (P ′, Q′) ∈ R.

26

2.3. PROCESS CALCULUS

This definition is often shortened by requiring the relation to be symmetric. This

results in the following equivalent definition.

Definition 2.2 (Strong Bisimulation). A symmetric relation R is a strong bisimula-

tion if whenever (P,Q) ∈ R then if P
α−→ P ′ then Q

α−→ Q′ and (P ′, Q′) ∈ R.

Strong bisimilarity is the union of all strong bisimulations. In other words, P and

Q are strong bisimilar (denoted P ∼ Q) if and only if there exists a strong bisimulation

R such that (P,Q) ∈ R.

β β

α

β

α

β

α

P Q∼

β γ

α

β

α

γ

α

R S�

Figure 2.4. Strong bisimilarity.

Figure 2.4 gives examples of processes that are strong bisimilar (P ∼ Q) and

processes that are not strong bisimilar (R � S). If R makes the transition
α−→, then

the resulting process can perform either action β or γ. On the other hand, after

making a transition
α−→, the process S is in one of two states; one of which can

perform action β, and the other which can perform action γ. Neither of these states

are capable of both β and γ.

Weak Bisimilarity

One of the most useful properties of process calculus, particularly as an approach to

verification, is the ability to abstract from the internal behaviour of a system. Strong

bisimilarity requires processes to match execution on a step-by-step basis. This is

too discriminating when comparing design and high-level specification because their

respective internal behaviours are often very different. Weak bisimilarity identifies

processes that exhibit the same external behaviour but allows internal actions to be

matched by zero or more internal (τ) actions.

We introduce the notation =⇒ to be zero or more τ transitions, and
α

=⇒ is short-

hand for =⇒ α−→.

Definition 2.3 (Weak Bisimulation). A symmetric relation R is a weak bisimulation

if (P,Q) ∈ R implies that whenever P
α−→ P ′ then there exists Q′ such that Q

α
=⇒ Q′

and (P ′, Q′) ∈ R.

27

2.3. PROCESS CALCULUS

Processes P and Q are weak bisimilar, denoted P ≈ Q, if there exists a weak

bisimulation R such that (P,Q) ∈ R.

α
β

β

τ α

β

τ

P Q≈

α β

α

τ

β

τ

R S6≈

Figure 2.5. Weak bisimilarity.

Figure 2.5 shows examples of processes that are weak bisimilar (P ≈ Q) and

processes that are not (R 6≈ S). After making an internal transition, S loses one

capability (either α or β), while R still has a choice between α and β. On the other

hand, internal transitions by P and Q result in the inability to perform action α in

both cases.

Branching Bisimilarity

Weak bisimilarity isn’t the only equivalence that treats internal actions abstractly.

Branching bisimilarity [van Glabbeek and Weijland 1996] is similar to weak bisimi-

larity, however it also matches the branching structure more accurately.

Definition 2.4 (Branching Bisimilarity). A symmetric relation R is a branching

bisimulation if (P,Q) ∈ R implies that whenever P
α−→ P ′ then there exists Q′ such

that Q
τ

=⇒ Q′
α−→ Q′′ and (P,Q′) ∈ R and (P ′, Q′′) ∈ R.

P and Q are branching bisimilar (denoted P - Q) if there exists a branching

bisimulation R such that (P,Q) ∈ R.

The relationship of branching bisimilar processes is illustrated in Figure 2.6. The

difference between this and weak bisimilarity, is the additional requirement that P -
Q′.

2.3.3 Quantum Process Calculus

In addition to Communicating Quantum Processes (CQP) which is used in this thesis,

there are two other process calculi that have been designed to model quantum sys-

tems; Quantum Process Algebra (QPAlg) [Lalire 2006; Lalire and Jorrand 2004] and

Quantum CCS (qCCS) [Feng et al. 2006; Ying et al. 2007, 2009]. Although there are

28

2.3. PROCESS CALCULUS

P

P ′

Q

Q′

Q′′

α τ∗

α

Figure 2.6. Branching bisimilarity.

significant differences between the languages and semantics, they each have common

features not found in classical process calculi:

• Quantum state. The quantum state is considered as a global resource in order

to represent entanglement.

• Quantum communication. It is possible for processes to send and receive

both quantum and classical information.

• Quantum operators. Further primitives are included to model quantum op-

erations such as unitary operators and measurements.

The transitions of quantum processes are dependent on the quantum state, and

for this reason, the transition relations are defined using configurations. For example,

a CQP configuration (σ;ω;P) consists of a quantum state σ and qubit list ω alongside

a process P . A transition takes the form (σ;ω;P)
α−→ (σ′;ω′;P ′). These transition

relations must also deal with the probabilistic outcomes arising from quantum mea-

surements; in CQP, there are probabilistic transitions which select one configuration

from a probabilistic distribution:

p1 • (σ1;ω1;P1)� · · ·� pn • (σn;ωn;Pn)
pi (σi;ωi;Pi) .

A similar method is used in QPAlg, however in qCCS, probabilistic distributions

are used throughout. The full syntax and semantics of CQP will be detailed in the

following chapters. In particular, the semantics of measurement will be discussed in

Chapters 3 and 4.

29

3
Behavioural Equivalence for

Communicating Quantum

Processes

This chapter presents a first attempt at using CQP for the verification of quantum

protocols. We investigate behavioural equivalence for quantum processes, specifically

probabilistic branching bisimilarity, in order to determine whether two systems act in

the same way. Behavioural equivalence requires the ability to model the interaction

of a process with the environment because it is these interactions that constitute the

observational properties of the process. The existing reduction semantics of CQP

describes only internal interactions, hence a core part of this chapter is dedicated to

the definition of the operational semantics in terms of a labelled transition system.

There are a number of challenges involved in designing the labelled transition

system when it comes to the representation of quantum information due to its non-

local nature, and the related work by Feng et al. [2006]; Lalire [2005, 2006]; Ying

et al. [2007, 2009] proves extremely valuable in this respect. It is important to note

that the labelled transition system is not intended as a replacement for the reduction

semantics, but provides a complementary semantics to use when modelling external

interactions is required. We focus on the quantum teleportation protocol because it

has a very simple high-level specification, yet the protocol features many aspects of

the language, including measurement, unitary transformations and communication.

With a specific protocol in mind, it is possible to critically consider the properties

that an equivalence must possess, and the range of features used in teleportation

significantly adds to the understanding we gain.

Although process equivalences already exist for QPAlg and qCCS, there are still

30

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

T ::= Int | Unit | Qbit | ̂[T̃] | Op(1) | Op(2) | · · ·
v ::= 0 | 1 | · · · | unit | H | · · ·
e ::= v | x | measure ẽ | ẽ ∗= ee | e+ e

P ::= 0 | (P ‖ P) | P + P | e?[x̃:T̃].P | e![ẽ].P | {e}.P | (qbit x)P

| (νx : [̂T])P

Figure 3.1. Syntax of CQP.

advantages to consider equivalence with CQP, including the use of the type system for

the formal analysis of congruence properties. The implementation of the type system

in CQP not only guarantees that qubits are only used by a single process, but also

provides a clear and structured way to prove other results.

As we shall find, the equivalence we define in this chapter is not a congruence,

however for a small class of quantum protocols this equivalence is preserved by all

process constructs. This class of protocols includes quantum teleporatation, thereby

allowing us to show the correctness of teleportation as a component in a larger system.

Arguably the most important contribution from this chapter is the deeper understand-

ing we gain about the observable aspects of quantum measurement. It is through the

application to practical quantum processes that we are able to advance to the results

in Chapter 4.

3.1 A Labelled Transition System for CQP

We begin this Section by introducing the syntax of CQP and the primitives for deal-

ing with quantum information. The language was designed by Gay and Nagarajan

[2005] based on the π-calculus [Milner 1999]. The π-calculus is a classical process

calculus that extends value-passing CCS, with the inclusion of channel mobility ; that

is, channels can be communicated between processes, resulting in dynamic communi-

cation links. In this thesis, in order to simplify the presentation, we will omit channel

mobility from the language.

CQP is fully motivated and described by Gay and Nagarajan [2005, 2006] along

with the type system which is central to the proper treatment of quantum information.

It is intended to be a flexible framework for studying quantum systems to which

further features can be easily added, and maintaining this flexibility is an aim of this

work. In Section 4.5 we consider some potential challenges involved in implementing

some possible extensions.

31

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

v ::= . . . | q | c
E ::= [] | measure E, ẽ | measure v,E, ẽ | . . . | measure ṽ, E

| E + e | v + E

F ::= []?[x̃].P | []![ẽ].P | v![[].ẽ].P | v![v, [], ẽ].P | · · · | v![ṽ, []].P

| {[]}.P

Figure 3.2. Internal syntax of CQP.

Syntax

The syntax of CQP is given by the grammar in Figure 3.1. We use the notation

ẽ = e1, . . . , en to denote a tuple, and write |ẽ| for the length of a tuple. The syntax

consists of types T , values v, expressions e, and processes P . Types include data types

Int and Unit, the qubit type Qbit, channel types ̂[T̃], and n-qubit unitary operators

types Op(n); other data types may easily be included. Values include literal values

of data types 0, 1, . . . and unit, and unitary operators such as the Hadamard operator

H. Expressions include values, variables (x, y etc.), measurements measure ẽ, the

application of unitary operators ẽ∗=ee, and data operators such as e+e′. In contrast

to [Gay and Nagarajan 2005, 2006], in which an informal notation σi was used in

some examples to conditionally select a Pauli operator, we introduce an exponent on

unitary operators to formally describe their conditional application; typically these

exponents will be a measurement result, i.e. 0 or 1. The type system is used to ensure

that, for example, a measurement or unitary operator is only applied to qubits.

Processes consist of the nil process 0, parallel compositions P ‖Q, inputs e?[x̃:T̃].P ,

outputs e![ẽ].P , actions {e}.P , channel restriction (νc : [̂T̃])P , and qubit declarations

(qbit x)P . We use the notation x̃:T̃ = x1:T1, . . . , xn:Tn. Inputs and channel restric-

tions are often shortened to c?[x̃].P and (νc)P where the respective types are obvious

from the context, however their presence remains implicit.

For the purpose of investigating behavioural equivalence we have elected to sim-

plify some features of the language. In particular, the language in [Gay and Nagarajan

2005] incorporated channel mobility based on its derivation from the π-calculus. Al-

though this is arguably a useful feature, in this thesis we instead use restriction in

the style of CCS to reduce the complexity of the notation and proofs. We replace

the notation for channel declaration (new c) used in [Gay and Nagarajan 2005] with

channel restriction (νc) as used in CCS.

The internal syntax, defined by the grammar in Figure 3.2, extends the general

syntax and is needed in order to define the operational semantics of CQP. Values are

extended to include qubit names q which are generated at run-time. Evaluation con-

texts for expressions E and processes F are used to define the operational semantics

32

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

following the approach of Wright and Felleisen [1994]. E is defined recursively and

leads to the left-to-right evaluation of expressions.

Given a process P we define its free variables fv(P), free qubit names fq(P) and

free channel names fc(P) as usual; the binders (of x or x̃) are y?[x̃ : T̃] and (qbit x)

and (νx : [̂T̃]).

3.1.1 Describing External Interactions

The original presentation of CQP [Gay and Nagarajan 2005, 2006] defined the op-

erational semantics using reductions, however this is not sufficient for describing the

external interactions of a process. To consider behavioural equivalence it is necessary

to define the operational semantics by a labelled transition system.

The main difference between the reduction semantics and the labelled transition

system is the inclusion of input and output transitions. Indeed, when considering

internal (τ) transitions alone then the two systems agree. The largest change is in the

paradigm shift from considering closed quantum systems to open quantum systems

(those which can interact with the environment). The use of closed systems by Gay

and Nagarajan [2005, 2006] is motivated by the inability to fully describe the state of

a quantum subsystem. This is coupled with the requirement to satisfy the no-cloning

property, which is achieved by associating physical qubits with specific processes. In

this interpretation there can be no qubits outside the system.

Although we must be able to describe interactions with the environment, includ-

ing the input and output of qubits, there is still the question of how to represent the

quantum state. One option is to consider the reduced density matrix of the system.

This would be able to represent entanglement with the environment while only main-

taining references to the qubits owned by the system. A significant drawback to such

an approach is that if an entangled qubit is output to the environment and then later

received, although the reduced density matrix can describe the system without that

qubit, it is not possible to reconstruct the full state again on reception. The only

viable solution to this is to keep qubits that have been output in the quantum state.

The approach taken by Lalire [2005, 2006] was to only allow input of unknown

qubits, whilst output maintained the qubit in the known state. This suffered the

drawback previously alluded to, and Feng et al. [2006] circumvented this problem by

implementing two input rules; one allowing input of a known qubit and a second to

allow input of an unknown qubit.

33

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

3.1.2 Semantics

Configurations

The execution of a system is not fully described by a process term, but also depends

on the quantum state. For this reason, the operational semantics is defined using

configurations, which represent both the quantum state and the process term. In

[Gay and Nagarajan 2005, 2006] a configuration was a tuple (σ; Φ;P) where σ is a

mapping from qubit names to the quantum state, Φ is a list of channel names, and P is

a process. Because we are not considering π-calculus style channel mobility, the use of

Φ is unnecessary. Instead we replace Φ with a list of qubit names ω, to give (σ;ω;P);

this is needed for accounting purposes when dealing with external interactions.

Probabilistic distributions of configurations may also arise from quantum measure-

ments; these are described by the probabilistic sum (denoted �) over configurations

p1 • (σ1;ω;P1)� · · ·� pn • (σn;ω;Pn)

in which
∑

1,...,n pn = 1. This is generally abbreviated to �1,...,n pi • (σi;ω;Pi).

For the evaluation of expressions we also introduce expression configurations (σ;ω; e);

these are similar to configurations, but include an expression in place of the pro-

cess. Expression configurations also have corresponding probabilistic distributions

�1,...,n pi • (σi;ω; ei).

Transition Relations

The evaluation of expressions is defined by the transition relations −→v (on values)

and −→e (on expressions), given in Figure 3.3. Rules R-Plus, R-Measure and

R-Trans deal with the evaluation of terms that result in values, including mea-

surement which produces a probabilistic distribution over the possible measurement

outcomes m, and unitary transformations which result in the literal unit. The most

significant aspect of R-Measure and R-Trans is the effect they have on the quantum

state. We note that the assignment of an integer m to the measurement outcomes fol-

lows the usual convention (for example, in a 2-qubit measurement the results 0, 1, 2, 3

correspond to the states |00〉, |01〉, |10〉, |11〉 respectively).

The labelled transition relation
α−→ on configurations is defined by the rules in

Figure 3.4. The internal transition rules (
τ−→) correspond to the reduction rules in

[Gay and Nagarajan 2005, 2006] with a few exceptions: L-Res replaces the channel

declaration rule L-New to represent restriction, because we are not considering chan-

nel mobility; L-Com is defined inductively using L-In and L-Out in the standard

way; L-Sum has been introduced to deal with non-deterministic choice.

The rules L-In and L-Out are additions to the semantics, representing the visible

34

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

(σ;ω;u+ v) −→v (σ;ω;w) if u and v are integer literals and w = u+ v (R-Plus)

([q0, . . . , qn−1 7→ α0|φ0〉+ · · ·+ α2n−1|φ2n−1〉];ω;measure q0, . . . , qr−1) −→v

�0≤m<2rpm • ([q0, . . . , qn−1 7→ αlm

pm
|φlm〉+ · · ·+ αum

pm
|φum

〉];ω;m)

(R-Measure)

where lm = 2n−rm,um = 2n−r(m+ 1)− 1, pm = |αlm |2 + · · ·+ |αum
|2

([q0, . . . , qn−1 7→ |φ〉];ω; q0, . . . , qr−1 ∗= Um) −→v (R-Trans)

([q0, . . . , qn−1 7→ (Um ⊗ In−r)|φ〉];ω; unit)

(σ;ω; e) −→v �ipi • (σi;ω; ei)

(σ;ω;E[e]) −→e �ipi • (σi;ω;E[ei])
(R-Context)

Figure 3.3. Transition rules for values and expressions.

input and output actions respectively. Probabilistic transitions (
pi) are a special case

of
α−→, in which pi is the probability of the transition.

Configurations are considered equivalent up to structural congruence, which is the

smallest congruence relation on processes containing α-equivalence and closed under

the rules in Figure 3.5.

3.1.3 Type System

The type system not only facilitates the combined use of quantum and classical data

using a simple syntax, but also plays a central role in satisfying the no-cloning theorem

of quantum information. The main results in this Section are type preservation for
α−→ (Theorem 3.14) and the unique ownership of qubits (Theorem 3.15). Through

these results it is guaranteed that quantum information is not duplicated. The type

system is largely unchanged from [Gay and Nagarajan 2005, 2006], however due to

the different semantics it is necessary to re-state and prove the results in the new

setting.

The typing rules defined in Figure 3.6 apply to the syntax of processes given in

Figure 3.1. Typing judgements are of two types: Γ ` P means that P is well-typed

in the environment Γ; and Γ ` e : T means that an expression e has type T in the

environment Γ. Typing environments are defined in the usual way as assignments of

types to variables.

In order to prove results about executing processes, the internal type system is

defined by the rules in Figure 3.7. The typing judgements are extended to include a

list of qubits Σ, and therefore have the forms Γ; Σ ` P and Γ; Σ ` e : T for processes

and expressions respectively. In contrast to [Gay and Nagarajan 2005, 2006], the list

of channel names is no longer included.

35

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

�ipi • (σi;ω;Pi)
pi (σi;ω;Pi) (L-Prob)

ṽ contains distinct qubit names q̃

(σ;ω, q̃; c![ṽ].P)
c![ṽ]−→ (σ;ω;P)

(L-Out)

q̃ are distinct qubit names in ṽ

(σ;ω; c?[x̃ : T̃].P)
c?[ṽ:T̃]−→ (σ;ω, q̃;P{ṽ/x̃})

(L-In)

(σ;ω, q̃;P)
c![ṽ]−→ (σ;ω;P ′) (σ;ω;Q)

c?[x̃:T̃]−→ (σ;ω, q̃;Q′)

(σ;ω, q̃;P ‖ Q)
τ−→ (σ;ω, q̃;P ′ ‖ Q′)

if |ṽ| = |x̃| (L-Com)

(σ;ω;P)
α−→ �ipi • (σi;ω;Pi)

(σ;ω;P +Q)
α−→ �ipi • (σi;ω;Pi)

(L-Sum)

(σ;ω;P)
α−→ �ipi • (σi;ω;Pi)

(σ;ω;P ‖ Q)
α−→ �ipi • (σi;ω;Pi ‖ Q)

(L-Par)

(σ;ω;P)
α−→ (σ′;ω;P ′)

(σ;ω; (νc : [̂T]).P)
α−→ (σ′;ω; (νc : [̂T]).P ′)

if α /∈ {c?[·], c![·]} (L-Res)

([q0, . . . , qn 7→ |ψ〉];ω; (qbit x)P)
τ−→ ([q0, . . . , qn, q 7→ |ψ〉|0〉];ω, q;P{q/x}) if q is fresh

(L-Qbit)

(σ;ω; {v}.P)
τ−→ (σ;ω;P) (L-Act)

(σ;ω; e) −→e �ipi • (σi;ω; ei)
(σ;ω;F [e])

τ−→ �ipi • (σi;ω;F [ei])
(L-Expr)

Figure 3.4. Transition Relation Rules

The rules T-Par and IT-Par make use of the addition operator on environments

(Definition 3.1). The purpose of this operator is to prevent the same qubit appearing

in more than one process; it is the key to the proof of Theorem 3.15.

Definition 3.1 (Addition of Environments). ([Gay and Nagarajan 2006, Definition

1]) The partial operation of adding a typed variable to an environment, Γ + x :T , is

defined by

Γ + x :T =


Γ, x :T if x /∈ dom(Γ)

Γ if T 6= Qbit and x :T ∈ Γ

undefined otherwise.

This operation is extended inductively to a partial operation Γ + ∆ on environments.

36

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

P ‖ 0 ≡ P
P ‖ Q ≡ Q ‖ P

P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R
P + 0 ≡ P
P +Q ≡ Q+ P

P + (Q+R) ≡ (P +Q) +R
(νc)0 ≡ 0

(νc)(νd)P ≡ (νd)(νc)P
(νc)(P ‖ Q) ≡ P ‖ (νc)Q, if c /∈ fv(P)

Figure 3.5. Rules for structural congruence.

Γ ` v : Int if v is an integer literal (T-IntLit)

Γ ` unit : Unit (T-Unit)

Γ ` H : Op(2) etc. (T-Op)

Γ, x :T ` x : T (T-Var)

∀i(Γ ` xi : Qbit) x1, . . . , xn distinct

Γ ` measure x1, . . . , xn : Int
(T-Msure)

Γ ` e : Int Γ ` e′ : Int

Γ ` e+ e′ : Int
(T-Plus)

Γ ` 0 (T-Nil)

Γ, x :Qbit ` P

Γ ` (qbit x)P
(T-Qbit)

Γ1 ` P Γ2 ` Q Γ1 + Γ2 defined

Γ1 + Γ2 ` P ‖ Q
(T-Par)

Γ ` P Γ ` Q

Γ ` P +Q
(T-Sum)

Γ ` x :̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn ` P

Γ ` x?[y1 :T1, . . . , yn :Tn].P
(T-In)

Γ ` x :̂[T1, . . . , Tm,Qbit, . . . ,Qbit] ∀i.(Ti 6= Qbit)
∀i.(Γ ` ei : Ti) yi distinct Γ ` P

Γ, y1 :Qbit . . . , yn :Qbit ` x![e1, . . . , em, y1, . . . , yn].P

(T-Out)

Γ, x :̂[T1, . . . , Tn] ` P

Γ ` (νx :̂[T1, . . . , Tn])P
(T-Res)

Γ ` e : T Γ ` P

Γ ` {e}.P
(T-Act)

∀i(Γ ` xi : Qbit) x1 . . . xn distinct Γ ` U : Op(n) Γ ` e : Int Γ ` P

Γ ` x1, . . . , xn ∗= Ue : Unit
(T-Trans)

Figure 3.6. Typing rules.

37

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

Γ; Σ ` v : Int if v is an integer literal (IT-IntLit)

Γ; Σ ` unit : Unit (IT-Unit)

Γ; Σ ` 0 (IT-Nil)

Γ; Σ ` H : Op(2) etc. (IT-Op)

Γ, x :T ; Σ ` x : T (IT-Var)

Γ; Σ, q ` q : Qbit (IT-IdQ)

Γ; Σ ` c : T (IT-IdC)

Γ; Σ ` e : Int Γ; Σ ` e′ : Int

Γ; Σ ` e+ e′ : Int
(IT-Plus)

Γ; Σ ` ẽ : Q̃bit

Γ; Σ ` measure ẽ : Int
(IT-Msure)

∀i.(Γ; Σ ` ei : Qbit) Γ; Σ ` U : Op(n) Γ; Σ ` e : Int
each ei is either xi or qi, all distinct

Γ; Σ ` e1, . . . , en ∗= Ue : Unit

(IT-Trans)

Γ, x :Qbit; Σ ` P

Γ; Σ ` (qbit x)P
(IT-Qbit)

Γ; Σ ` P Γ; Σ ` Q

Γ; Σ ` P +Q
(IT-Sum)

Γ1; Σ1 ` P Γ2; Σ2 ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ1 + Γ2; Σ1 ∪ Σ2 ` P ‖ Q
(IT-Par)

Γ; Σ ` e :̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn; Σ ` P

Γ; Σ ` e?[y1 :T1, . . . , yn :Tn] . P
(IT-In)

Γ; Σ ` e :̂[T̃ , Q̃bit] ∀i.(Ti 6= Qbit) ∀i.(Γ; Σ ` ei : Ti) Γ; Σ ` P
f̃ consists of distinct variables f̃x and distinct qubit names f̃q

Γ, f̃x : Q̃bit; Σ, f̃q ` e![e1, . . . , em, f1, . . . , fn] . P

(IT-Out)

Γ; Σ ` e : T Γ; Σ ` P

Γ; Σ ` {e} . P
(IT-Act)

Γ, x :̂[T1, . . . , Tn]; Σ ` P

Γ; Σ ` (νx :̂[T1, . . . , Tn])P
(IT-Res)

Figure 3.7. Internal typing rules.

38

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

Soundness of the Type System

We now bring together the labelled transition system and the type system, and work

towards proving Theorem 3.14 (type preservation) and Theorem 3.15 (unique owner-

ship of qubits). These proofs follow the same course as in [Gay and Nagarajan 2006],

with the significant difference being the inclusion of cases for L-In and L-Out in

Theorem 3.14. The complete series of Lemmas leading up to this proof is included

for completeness.

The addition of the qubit list ω to configurations has resulted in modifications to

some of the following statements. The role of ω is to control the movement of qubit

names when external interactions occur. The qubit list Σ used in typing judgements

controls the internal movement of qubit names through rules such as IT-Par. Gen-

erally, for a configuration (σ;ω;P) we would have the typing judgment Γ; Σ ` P and

Σ = ω. If P is a parallel composition P1 ‖ P2 then IT-Par gives the judgements

Γ1; Σ1 ` P1 and Γ2; Σ2 ` P2 where Σ1 ∩ Σ2 = ∅. Based on these judgements it is not

possible to determine whether, for example, P1 is able to input a qubit q. Such an

input would only be possible if q /∈ Σ = Σ1∪Σ2. It is because the typing environment

for P1 has no information about Σ2 that it is necessary to use the global list ω.

In Lemma 3.3 (Type preservation for −→v) and Lemma 3.4 (Type preservation

for −→e) we introduce the condition ∀i.(ωi = ω), to ensure that the qubit list is not

affected by the evaluation of expressions. Because the qubit list can be changed by

inputs and outputs, the condition in Theorem 3.14 is more elaborate; it requires any

changes to ω to be reflected in changes to Σ.

Lemma 3.1 (Typability of Subterms in E). If D is a typing derivation concluding

Γ; Σ ` E[e] : T then there exists U such that D has a subderivation D′ concluding

Γ; Σ ` e : U and the position of D′ in D corresponds to the position of the hole in E.

Proof. [Gay and Nagarajan 2006, Lemma 1] By induction on the structure of E.

Lemma 3.2 (Replacement in E). If

1. D is a derivation concluding Γ; Σ ` E[e] : T ,

2. D′ is a subderivation of D concluding Γ; Σ ` e : U ,

3. the position of D′ in D matches the hole in E, and

4. Γ; Σ ` e′ : U

then Γ; Σ ` E[e′] : T .

Proof. [Gay and Nagarajan 2006, Lemma 2] Replace D′ in D by a derivation of

Γ; Σ ` e′ : U .

39

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

Lemma 3.3 (Type Preservation for −→v). If Γ; Σ ` e : T and (σ;ω; e) −→v �i pi •
(σi;ωi; ei) and Σ ⊆ ω and ω ⊆ dom(σ) then ∀i.(dom(σi) = dom(σ)) and ∀i.(ωi = ω)

and ∀i.(Γ; Σ ` ei : T).

Proof. Adaptation of [Gay and Nagarajan 2006, Lemma 3]. By case analysis of the

derivation of (σ;ω; e) −→v �i pi • (σi;ω; ei).

Lemma 3.4 (Type Preservation for −→e). If Γ; Σ ` e : T and (σ;ω; e) −→e �i pi •
(σi;ωi; ei) and Σ ⊆ ω and ω ⊆ dom(σ) then ∀i.(dom(σi) = dom(σ)) and ∀i.(ωi = ω)

and ∀i.(Γ; Σ ` ei : T).

Proof. Adaptation of [Gay and Nagarajan 2006, Lemma 4]. The transition (σ;ω; e) −→e

�i pi • (σi;ωi; ei) is derived from R-Context, so for some E we have e = E[f], and

∀i.(ei = E[fi]) and (σ;ω; f) −→v �i pi •(σi;ωi; fi). From Γ; Σ ` E[f] : T , Lemma 3.1

gives Γ; Σ ` f : U for some U , Lemma 3.3 gives ∀i.(Γ; Σ ` fi : U) and ∀i.(dom(σi) =

dom(σ)) and ∀i.(ωi = ω), and Lemma 3.2 gives ∀i.(Γ; Σ ` E[fi] : T).

Lemma 3.5 (Typability of Subterms in F). If D is a derivation concluding Γ; Σ `
F [e] then there exists T such that D has a subderivation D′ concluding Γ; Σ ` e : T

and the position of D′ in D corresponds to the position of the hole in F .

Proof. [Gay and Nagarajan 2006, Lemma 5] By induction on the structure of F .

Lemma 3.6 (Replacement in F). If

1. D is a derivation concluding Γ; Σ ` F [e],

2. D′ is a subderivation of D concluding Γ; Σ ` e : T ,

3. the position of D′ in D matches the hole in F , and

4. Γ; Σ ` e′ : T

then Γ; Σ ` F [e′].

Proof. [Gay and Nagarajan 2006, Lemma 6] Replace D′ in D by a derivation of

Γ; Σ ` e′ : T .

Lemma 3.7 (Weakening for Expressions). If Γ; Σ ` e : T and Γ ⊆ Γ′ and Σ ⊆ Σ′

then Γ′; Σ′ ` e : T .

Proof. [Gay and Nagarajan 2006, Lemma 7] A straightforward induction on the

derivation of Γ; Σ ` e : T .

Lemma 3.8 (Weakening for Processes). If Γ; Σ ` P and Γ ⊆ Γ′ and Σ ⊆ Σ′ then

Γ′; Σ′ ` P .

40

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

Proof. [Gay and Nagarajan 2006, Lemma 8] By induction on the derivation of Γ; Σ `
P . Most cases are straightforward; we present the most complex case, IT-Par.

IT-Par: We have the derivation

Γ1; Σ1 ` P Γ2; Σ2 ` Q

Γ; Σ ` P ‖ Q

where Γ = Γ1 + Γ2 and Σ = Σ1 ∪ Σ2. If Γ ⊆ Γ′ then there exist Γ′1 and Γ′2 such that

Γ′ = Γ′1 + Γ′2 and Γ1 ⊆ Γ′1 and Γ2 ⊆ Γ′2 and Γ′−Γ = (Γ′1−Γ1) + (Γ′2−Γ2). Similarly,

if Σ ⊆ Σ′ there exist Σ′1 and Σ′2 such that Σ′ = Σ′1 ∪ Σ′2 and Σ1 ⊆ Σ′1 and Σ2 ⊆ Σ′2.

Applying the inductive hypothesis gives Γ′1; Σ′1 ` P and Γ′2; Σ′2 ` Q, therefore (by

IT-Par) Γ′; Σ′ ` P ‖ Q.

Lemma 3.9. If Γ; Σ ` e : T then fv(e) ⊆ dom(Γ) and fq(e) ⊆ Σ.

Proof. Adaptation of [Gay and Nagarajan 2006, Lemma 9]. By induction on the

derivation of Γ; Σ ` e : T . The base cases IT-Var and IT-IdQ are true by definition.

IT-Plus: fv(e+ e′) = fv(e)∪ fv(e′) and fq(e+ e′) = fq(e)∪ fq(e′). The inductive

hypothesis gives fv(e) ⊆ dom(Γ) and fq(e) ⊆ Σ and fv(e′) ⊆ dom(Γ) and fq(e′) ⊆ Σ.

Therefore fv(e+ e′) ⊆ dom(Γ) and fq(e+ e′) ⊆ Σ.

IT-Msure: Straightforward.

IT-Trans: Applying the inductive hypothesis gives ∀i.(fv(ei) ⊆ dom(Γ)) and

∀i.(fq(ei) ⊆ Σ) and fv(e) ⊆ dom(Γ) and fq(e) ⊆ Σ. Therefore fv(ẽ ∗= Ue) ⊆ dom(Γ)

and fq(ẽ ∗= Ue) ⊆ Σ.

Lemma 3.10. If Γ; Σ ` P then fv(P) ⊆ dom(Γ) and fq(P) ⊆ Σ.

Proof. Adaptation of [Gay and Nagarajan 2006, Lemma 10]. By induction on the

derivation of Γ; Σ ` P .

IT-Qbit: Applying the inductive hypothesis to the derivation of Γ; Σ ` (qbit x)P

gives fv(P) ⊆ dom(Γ, x :Qbit) and fq(P) ⊆ Σ. Therefore (by IT-Qbit) fv((qbit x)P) ⊆
dom(Γ, x :Qbit) and qv((qbit x)P) ⊆ Σ. x is bound in (qbit x)P , therefore fv((qbit x)P) ⊆
dom(Γ).

IT-Par: Applying the inductive hypothesis to the derivation of Γ1 + Γ2; Σ1 ∪ Σ2 `
P ‖ Q gives fv(P) ⊆ dom(Γ1) and fq(P) ⊆ Σ1 and fv(Q) ⊆ dom(Γ2) and fq(Q) ⊆ Σ2.

Then fv(P ‖ Q) = fv(P) ∪ fv(Q) ⊆ dom(Γ1) ∪ dom(Γ2) = dom(Γ) and fq(P ‖ Q) =

fq(P) ∪ fq(Q) ⊆ Σ1 ∪ Σ2 = Σ.

IT-In: We have
Γ; Σ ` e :̂[T̃] Γ, ỹ : T̃ ; Σ ` P

Γ; Σ ` e?[ỹ : T̃].P

By Lemma 3.9 fv(e) ⊆ dom(Γ) and fq(e) ⊆ Σ. By the inductive hypothesis fv(P) ⊆
dom(Γ, ỹ : T̃) and fq(P) ⊆ Σ. Each yi is bound in e?[ỹ : T̃].P , therefore fv(e?[ỹ : T̃].P) =

fv(e) ∪ fv(P) ⊆ dom(Γ) and fq(e?[ỹ : T̃].P) ⊆ Σ.

41

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

IT-Out: We have

Γ; Σ ` e :̂[T̃ , Q̃bit] ∀i.(Γ; Σ ` ei : Ti) Γ; Σ ` P
∀i.(Γ, f̃ : Q̃bit; Σ ` f : Qbit) ∀i.(Γ; Σ, q̃ ` q : Qbit)

Γ, f̃ : Q̃bit; Σ, q̃ ` e![ẽ, f̃ , q̃].P

Then by Lemma 3.9 and by the inductive hypothesis we have fv(e) ⊆ dom(Γ) and

fq(e) ⊆ Σ and ∀i.(fv(ei) ⊆ dom(Γ) and fq(ei) ⊆ Σ) and ∀i.(fv(fi) ⊆ dom(Γ, f̃ :

Q̃bit) and fq(fi) ⊆ Σ) and ∀i.(fv(qi) ⊆ dom(Γ) and fq(qi) ⊆ Σ, q̃) and fv(P) ⊆
dom(Γ) and fq(P) ⊆ Σ. Using Lemmas 3.7 and 3.8 we find fv(e![ẽ, f̃ , q̃].P) ⊆
dom(Γ, f̃ :Qbit) and fq(e![ẽ, f̃ , q̃].P) ⊆ Σ, q̃.

IT-Act: Straightforward application of Lemma 3.9 and the inductive hypothesis.

IT-Res: Applying the inductive hypothesis gives fv(P) ⊆ dom(Γ, x :̂[T̃]) and

fq(P) ⊆ Σ. x is bound in (νx : [̂T̃])P therefore fv((νx : [̂T̃])P) ⊆ dom(Γ) and

fq((νx : [̂T̃])P) ⊆ Σ.

Lemma 3.11 (Substitution in Expressions). Let ṽ be values such that, for each i:

1. if Ti 6= Qbit then Γ; ∅ ` vi : Ti

2. if Ti = Qbit then vi is qi, a qubit name, such that qi /∈ Σ.

Let q̃ be the qubit names from ṽ and assume they are distinct. Then Γ, x̃ : T̃ ; Σ ` e : T

if and only if Γ; Σ, q̃ ` e{ṽ/x̃} : T .

Proof. Adaptation of [Gay and Nagarajan 2006, Lemma 11]. By induction on the

derivation of Γ; Σ ` e : T . Reversing the argument proves the converse.

IT-Var: If Ti 6= Qbit then by definition Γ; Σ ` vi : Ti. If Ti = Qbit then

Γ; Σ, qi ` qi : Qbit.

IT-Plus: Applying the inductive hypothesis to the derivation of Γ, x̃ : T̃ ; Σ `
e+ e′ : Int gives Γ; Σ, q̃ ` e{ṽ/x̃} : Int and Γ; Σ, q̃ ` e′{ṽ/x̃} : Int. Therefore (by

IT-Plus) Γ; Σ, q̃ ` (e+ e′){ṽ/x̃} : Int.

IT-Msure: Applying the inductive hypothesis to the derivation of Γ, x̃ : T̃ ; Σ `
measure ẽ : Int gives Γ; Σ, q̃ ` ẽ{ṽ/x̃} : Qbit. Therefore (by IT-Msure) Γ; Σ, q̃ `
(measure ẽ){ṽ/x̃} : Int.

IT-Trans: Applying the inductive hypothesis to the derivation

∀i.(Γ, x̃ : T̃ ; Σ ` ei : Qbit) Γ, x̃ : T̃ ; Σ ` U : Op(n) Γ, x̃ : T̃ ; Σ ` e : Int

Γ, x̃ : T̃ ; Σ ` e1, . . . , en ∗= Ue : Unit

gives ∀i.(Γ; Σ, q̃ ` ei{ṽ/x̃} : Qbit) and Γ; Σ, q̃ ` U{ṽ/x̃} : Op(n) and Γ; Σ, q̃ ` e{ṽ/x̃} :

Int. Therefore (by IT-Trans) Γ; Σ, q̃ ` e1, . . . , en ∗= (Ue){ṽ/x̃} : Unit.

Lemma 3.12 (Substitution in Processes). Let ṽ be values such that, for each i:

42

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

1. if Ti 6= Qbit then Γ; ∅ ` vi : Ti

2. if Ti = Qbit then vi is qi, a qubit name, such that qi /∈ Σ.

Let q̃ be the qubit names from ṽ and assume they are distinct. Then Γ, x̃ : T̃ ; Σ ` P if

and only if Γ; Σ, q̃ ` P{ṽ/x̃}.

Proof. Adaptation of [Gay and Nagarajan 2006, Lemma 12]. By induction on the

derivation of Γ, x̃ : T̃ ; Σ ` P . The converse is proved by reversing the argument.

IT-Qbit: If

Γ, x :Qbit, x̃ : T̃ ; Σ ` P

Γ, x̃ : T̃ ; Σ ` (qbit x)P

then x /∈ x̃. Applying the inductive hypothesis gives Γ, x :Qbit; Σ, q̃ ` P{ṽ/x̃}. There-

fore (by IT-Qbit) Γ; Σ, q̃ ` (qbit x)P{ṽ/x̃}.
IT-Par: We have the derivation

Γ1; Σ1 ` P Γ2; Σ2 ` Q

Γ, x̃ : T̃ ; Σ ` P ‖ Q

where Γ, x̃ : T̃ = Γ1 + Γ2 and Σ = Σ1 ∪ Σ2. Each variable of type Qbit is in either Γ1

or Γ2. The free variables of P and Q are contained in Γ1 and Γ2 respectively (Lemma

3.10), hence the substitution into P ‖ Q splits into disjoint substitutions into P and Q.

Applying the inductive hypothesis gives Γ1; Σ1, q̃1 ` P{ṽ/x̃} and Γ2; Σ2, q̃2 ` Q{ṽ/x̃}.
Then (by IT-Par) Γ1 + Γ2; Σ, q̃ ` (P ‖ Q){ṽ/x̃}.

IT-In: We have
Γ; Σ ` e :̂[T̃] Γ, ỹ : T̃ ; Σ ` P

Γ; Σ ` e?[ỹ : T̃].P

Then by Lemma 3.11 Γ; Σ, q̃ ` e{ṽ/x̃} :̂[T̃]. Applying the inductive hypothesis gives

Γ, ỹ : T̃ ; Σ, q̃ ` P{ṽ/x̃}. Note that x̃ and ỹ are distinct since the variables ỹ are not

free in e?[ỹ : T̃].P . Then (by IT-In) Γ; Σ, q̃ ` (e?[ỹ : T̃].P){ṽ/x̃}.
IT-Out: In the general case we have

Γ, x̃2 : Q̃bit, x̃3 : T̃3; Σ ` e :̂[T̃ , Q̃bit]

∀i.(Γ, x̃2 : Q̃bit, x̃3 : T̃3; Σ ` ei : Ti, Ti 6= Qbit) Γ, x̃2 : Q̃bit, x̃3 : T̃3; Σ ` P
Γ, x̃1 : Q̃bit, x̃2 : Q̃bit, x̃3 : T̃3, f̃ : Q̃bit; Σ, q̃3 ` e![ẽ, x̃1, f̃ , q̃3].P

where we are substituting ṽ = q̃1q̃2ṽ3 for x̃ : T̃ = x̃1 : Q̃bit, x̃2 : Q̃bit, x̃3 : T̃3 and each

type in T̃3 is not Qbit and q̃1, q̃2 /∈ Σ, q̃3.

43

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

Then by Lemma 3.11 and the inductive hypothesis we get

Γ; Σ, q̃2 ` e{ṽ/x̃} :̂[T̃ , Q̃bit]

∀i.(Γ; Σ, q̃2 ` ei{ṽ/x̃} : Ti)

Γ; Σ, q̃2 ` P{ṽ/x̃}

Therefore (by IT-Out) Γ, f̃ : Q̃bit; Σ, q̃1, q̃2, q̃3 ` e{ṽ/x̃}![ẽ{ṽ/x̃}, q̃1, f̃ , q̃3].P{ṽ/x̃}. This

corresponds to the substitution

Γ, f̃ : Q̃bit; Σ, q̃1, q̃2, q̃3 ` (e![ẽ, x̃1, f̃ , q̃3].P){ṽ/x̃}

IT-Act: Applying Lemma 3.11 and the inductive hypothesis to the derivation

of Γ; Σ ` {e}.P gives Γ; Σ, q̃ ` e{ṽ/x̃} : T and Γ; Σ, q̃ ` P . Then (by IT-Act)

Γ; Σ, q̃ ` ({e}.P){ṽ/x̃}.
IT-Res: We have

Γ, y :̂[T̃]; Σ ` P

Γ; Σ ` (νy : [̂T̃])P

x̃ and ỹ are distinct because ỹ are bound variables. Applying the inductive hypothesis

gives Γ, y :̂[T̃]; Σ, q̃ ` P{ṽ/x̃}. Then (by IT-Res) Γ; Σ ` (νy : [̂T̃])P{ṽ/x̃}.

Lemma 3.13 (Structural Congruence Preserves Typing). If Γ; Σ ` P and P ≡ Q

then Γ; Σ ` Q.

Proof. Adaptation of [Gay and Nagarajan 2006, Lemma 13]. Straightforward induc-

tion on the derivation of P ≡ Q.

Theorem 3.14 (Type Preservation for
α−→). If Γ; Σ ` P and (σ;ω;P)

α−→ �i pi •
(σi;ω

′;Pi) and Σ ⊆ ω and ω ⊆ dom(σ) then ∀i.(dom(σ) ⊆ dom(σi)) and there exists

Σ′ such that Σ′ ⊆ ω′ and ∀i.(ω′ ⊆ dom(σi)) and ∀i.(Γ; Σ′ ` Pi) and if Σ ⊆ Σ′ then

Σ′ − Σ = ω′ − ω, or if Σ′ ⊂ Σ then Σ− Σ′ = ω − ω′.

Proof. Adaptation of [Gay and Nagarajan 2006, Theorem 1], accounting for the new

rules L-In and L-Out. By induction on the derivation of (σ;ω;P)
α−→ �i pi •

(σi;ωi;Pi).

L-Expr: For some F we have P = F [e] and ∀i.(Pi = F [ei]) and (σ;ω; e) −→e

�i pi • (σi;ωi; ei). From the derivation D of Γ; Σ ` F [e], Lemma 3.5 gives T such that

D′ is a subderivation of D concluding Γ; Σ ` e : T . Lemma 3.4 gives ∀i.(Γ; Σ ` ei : T)

and ∀i.(dom(σi) = dom(σ)) and ∀i.(ωi = ω), and Lemma 3.6 gives ∀i(Γ; Σ ` F [ei]).

L-Out: Assume ṽ = ũw̃q̃ for variables ũ, qubit variables w̃ and qubit names q̃,

then we have (σ;ω, q̃; c![ṽ].P)
c![ṽ]−→ (σ;ω;P) and

Γ; Σ ` c :̂[T̃ , Q̃bit] Γ; Σ ` P

Γ, w̃ : Q̃bit; Σ, q̃ ` c![ũ, w̃, q̃] . P

44

3.1. A LABELLED TRANSITION SYSTEM FOR CQP

Then Γ; Σ ` P and Σ ⊆ ω since Σ, q̃ ⊆ ω, q̃ and Σ, q̃ − Σ = ω, q̃ − ω = q̃ and dom(σ)

is unchanged.

L-In: We have (σ;ω; c?[x̃ : T̃ , ỹ : Q̃bit].P)
c?[ũq̃]−→ (σ;ω′;P{ṽq̃/x̃ỹ}) where we are sub-

stituting ṽ = ũq̃ for x̃ỹ using non-qubit values ũ and distinct qubit names q̃. Then

ω′ = ω, q̃ and

Γ; Σ ` c :̂[T̃ , Q̃bit] Γ, x̃ : T̃ , ỹ : Q̃bit; Σ ` P

Γ; Σ ` c?[x̃ : T̃ , ỹ : Q̃bit] . P

where ∀i.(Ti 6= Qbit). By Lemma 3.12 we have Γ; Σ, q̃ ` P{ũq̃/x̃ỹ}. Σ, q̃ ⊆ ω, q̃

and Σ, q̃ − Σ = ω, q̃ − ω = q̃ and dom(σ) is constant. We have q̃ ⊆ dom(σ) and

ω ⊆ dom(σ), therefore ω, q̃ ⊆ dom(σ).

L-Com: We have

(σ;ω;P)
c![ṽ]−→ (σ;ω, q̃;P ′) (σ;ω, q̃;Q)

c?[ṽ]−→ (σ;ω;Q′)

(σ;ω, q̃;P ‖ Q)
τ−→ (σ;ω, q̃;P ′ ‖ Q′)

where q̃ are the distinct qubit names in ṽ. The typing derivation is

Γ1; Σ1 ` P Γ2; Σ2 ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ1 + Γ2; Σ1 ∪ Σ2 ` P ‖ Q

Applying the inductive hypothesis gives Σ1 ⊆ ω and Σ2 ⊆ ω, q̃ and Σ′1, Σ′2 such that

Σ′1 ⊆ ω, q̃ and Σ′2 ⊆ q̃ and Σ′1 − Σ1 = q̃ and Σ2 − Σ′2 = q̃ and ω, q̃ ⊆ dom(σ) and

Γ1; Σ′1 ` P ′ and Γ2; Σ′2 ` Q′. Then Σ′1∪Σ′2 = Σ1∪Σ2 and Σ′1∩Σ′2 = (Σ1∪q̃)∩(Σ2−q̃) =

(Σ1 ∩ (Σ2 − q̃)) ∪ (q̃ ∩ (Σ2 − q̃)) ⊆ Σ1 ∩ Σ2 = ∅. Then by using IT-Par we obtain

Γ1 + Γ2; Σ′1 ∪ Σ′2 ` P ′ ‖ Q′.
L-Act: We have the transition (σ;ω; {v}.P)

τ−→ (σ′;ω;P). The typing derivation

concluding Γ; Σ ` {v}.P contains the required hypothesis Γ; Σ ` P . Γ, Σ and ω are

unchanged.

L-Res: The transition has the derivation

(σ;ω;P)
α−→ (σ′;ω′;P ′)

(σ;ω; (νc : [̂T̃])P)
α−→ (σ′;ω′; (νc : [̂T̃])P ′)

The typing derivation has the hypothesis Γ, x : [̂T̃]; Σ ` P . Applying the inductive

hypothesis gives Γ, x : [̂T̃]; Σ′ ` P ′ where Σ′ ⊆ ω′ and ω′ ⊆ dom(σ′) and dom(σ) ⊆
dom(σ′) and if Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω and if Σ′ ⊆ Σ then Σ − Σ′ = ω − ω′.
Therefore (by IT-Res) Γ′; Σ′ ` (νc : [̂T̃])P ′.

L-Qbit: We have (σ;ω; (qbit x)P)
τ−→ (σ′;ω, q;P{q/x}) where q is fresh and

Γ, x :Qbit; Σ ` P

Γ; Σ ` (qbit x)P

45

3.2. QUANTUM PROCESS EQUIVALENCE

Applying the inductive hypothesis and Lemma 3.12 gives the required judgement

Γ; Σ, q ` P{q/x}. We have Σ, q̃ ⊆ ω, q̃ and Σ, q̃−Σ = ω, q̃−ω and dom(σ) ⊆ dom(σ′)

and ω, q̃ ⊆ dom(σ′).

L-Sum: We have

(σ;ω;P)
α−→ �i pi • (σi;ωi;Pi)

(σ;ω;P +Q)
α−→ �i pi • (σi;ωi;Pi)

and
Γ; Σ ` P Γ; Σ ` Q

Γ; Σ ` P +Q

Applying the inductive hypothesis gives Σ′ such that ∀i.(Σ′ ⊆ ωi) and ∀i.(dom(σ) ⊆
dom(σi)) and ∀i.(ωi ⊆ σi) and ∀i.(Γ; Σ′ ` Pi) and if Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω
and if Σ′ ⊂ Σ then Σ− Σ′ = ω − ω′.

L-Par: The transition (σ;ω;P ‖ Q)
α−→ �i pi • (σi;ω

′;Pi ‖ Q) has the hypothesis

(σ;ω;P)
α−→ �i pi • (σi;ω

′;Pi). We have the type derivation

Γ1; Σ1 ` P Γ2; Σ2 ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ1 + Γ2; Σ1 ∪ Σ2 ` P ‖ Q

We are given that Σ1 ∪ Σ2 ⊆ ω, hence Σ1 ⊆ ω. Applying the inductive hypothesis

gives Σ′1 such that ∀i.(Γ1; Σ′1 ` Pi) and Σ′1 ⊆ ω′ and ∀i.(dom(σ) ⊆ dom(σi)) and

∀i.(ω ⊆ σi) and if Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω and if Σ′ ⊂ Σ then Σ− Σ′ = ω − ω′.
If Σ1 ⊆ Σ′1 then Σ′1 ∩ Σ2 = (Σ1 ∪ (ω′ − ω)) ∩ Σ2 = (Σ1 ∩ Σ2) ∪ (ω′ − ω ∩ Σ2) = ∅

because Σ2 ⊆ ω. If Σ′1 ⊂ Σ then Σ′1 ∩Σ2 ⊆ Σ1 ∩Σ2 = ∅. Therefore (by IT-Par), for

each i we obtain Γ1 + Γ2; Σ′1 ∪ Σ2 ` Pi ‖ Q.

Theorem 3.15 (Unique Ownership of Qubits). If Γ; Σ ` P ‖ Q then fq(P)∩ fq(Q) =

∅.

Proof. [Gay and Nagarajan 2006, Theorem 2] The final step in the derivation of

Γ; Σ ` P ‖ Q has the form

Γ1; Σ1 ` P Γ2; Σ2 ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ; Σ ` P ‖ Q

where Γ = Γ1 + Γ2 and Σ = Σ1 ∪ Σ2. By Lemma 3.10, fq(P) ⊆ Σ1 and fq(Q) ⊆ Σ2.

Since Σ1 ∩ Σ2 = ∅ we have fq(P) ∩ fq(Q) = ∅.

3.2 Quantum Process Equivalence

In the previous section, we established the semantics that enable us to describe exter-

nal interactions of quantum processes. We now consider the observational equivalence

46

3.2. QUANTUM PROCESS EQUIVALENCE

of processes based on this semantics. In Section 2.3.2, we introduced bisimulation as

a notion of process equivalence. We now consider the adaptation of bisimulation for

CQP processes.

Bisimulation centers around the matching of actions that a process can perform.

Internal behaviour is straightforward to match since these transitions are always la-

belled by τ . However when it comes to external actions, there is more to the label

than just input and output. For example, the action c![v, q] indicates an output on

channel name c of a value v and a qubit name q. Matching actions, channel names

and values is straightforward because there is no other associated information, unlike

the qubit name, which has an associated state. This gives us the option of either

matching the qubit name or the qubit state, and to make this choice, we must con-

sider the behaviour that we wish to capture. We briefly digress, and consider how

quantum information fits into the general picture of equivalence.

In terms of quantum information, we can consider a system in two ways: As a

function from an initial quantum state to a final state; or as a process that receives

and transmits information in the course of execution. The former approach is used

by Feng et al. [2007]; it is necessary to match the physical qubits (the qubit names)

at each output, and to match the final quantum state (when there are no further

transitions). A similar approach is followed by Ying et al. [2007, 2009] in which,

at each execution step, the state transformations are matched. The approximate

versions of their equivalences require the transformations to match within a specified

accuracy, according to the diamond distance measure on superoperators.

On the other hand, Lalire [2005, 2006] matches the quantum state of a qubit

when it appears in an output action. We must remember that, due to entanglement

it does not necessarily make sense to talk about the “state” of a particular qubit;

instead the reduced density matrix is used, which enables the comparison of non-

separable subsystem states up to observational indistinguishability. This approach

has the advantage of combining observations of action and quantum information,

which is suited to communication protocols involving many external interactions. In

contrast, the alternate approach is arguably more suited to computation in which the

final state is more important.

Let us consider how these treatments relate to communication protocols; we use

quantum teleportation as an example. In the teleportation protocol there is a single

qubit which we consider as the input to the system. During execution, two ancilla

qubits are used for the internal communication between the two parties. At the end

of execution there is one qubit of interest; that which is now in the same state as the

initial input. This “output” qubit is not the same physical qubit as the initial input,

and the two ancilla qubits end up in one of the four 2-qubit basis states, depending

on the measurement results that were obtained during execution. To capture the

47

3.2. QUANTUM PROCESS EQUIVALENCE

behaviour of teleportation, that “the quantum state is transferred from one qubit to

another”, means we should concentrate on the quantum state instead of the physical

qubits, and that we are interested in specific “output” qubits instead of the global

quantum state. By modelling the teleportation protocol in such a way that describes

a system implementation of the protocol, we can identify the input and output qubits,

thereby enabling us to ignore ancilla qubits and their states.

Teleportation is just one example of a communication protocol, but it highlights

our interest in the interactions as opposed to the end result. Therefore, we choose

to match output actions containing qubit names by equating the respective reduced

density matrices. For example, the actions c![q] and c![r] would match if the reduced

density matrices of q and r are equal.

3.2.1 Probabilistic Branching Bisimulation

The transition relation
α−→ is defined on configurations, and therefore we must first

consider an equivalence on configurations before extending this to an equivalence

on processes. We combine the notion of branching bisimulation, which is a weak

relation that preserves branching structure, with matching for probabilistic transi-

tions. The resulting probabilistic branching bisimulation is similar to the equivalence

defined by Lalire [2006], however a significant difference is in our treatment of non-

determinism. For the purposes of simplification, non-deterministic branching was

modelled as equiprobable choice by Lalire. However, a significant drawback of this

approach is that it is not preserved by parallel composition.

A common method to account for non-determinism is the use of schedulers or

adversaries, which assign probabilities to executions. Equivalence is then based on

the existence of specific schedulers or adversaries, and this approach was used by Feng

et al. [2007]. To avoid the added complexity of introducing schedulers, we follow a

similar approach to Lalire [2006], and define a function µ, which assigns a probability

to each transition. However, we maintain a distinction between non-deterministic and

probabilistic branching, and use a function that is preserved by parallel composition.

Our choice of function is based on the bisimulation by Trčka and Georgievska [2008],

which assigns probability 1 to all non-deterministic transitions. The CQP transition

system fits into the alternating class of probabilistic transition systems, because all

probabilistic configurations result in a probabilistic transition to a non-probabilistic

configuration. As a result, this probabilistic function is simpler than a corresponding

function for a non-alternating system, which would have to account for sequences of

consecutive probabilistic transitions.

Let S be the set of configurations. The relations −→ and
p
 induce a partitioning

of S into non-deterministic configurations Sn and probabilistic configurations Sp: Let

Sp = {s ∈ S | ∃p ∈ (0, 1],∃t ∈ S, s p
 t}; and let Sn = S \ Sp. By this definition a

48

3.2. QUANTUM PROCESS EQUIVALENCE

configuration with no transitions belongs to Sn.

We now define the probabilistic function µ : S × S → [0, 1] in the style of Trčka

and Georgievska [2008]:

µ(s, t) =


p, if s

p
 t

1, if s = t and s ∈ Sn
0, otherwise.

For a set D ⊂ S we define µ(s,D) =
∑
t∈D µ(s, t).

In the bisimulation, we want to compare the reduced density matrices of qubits

in output actions, therefore we extend the concepts of density matrix and reduced

density matrix to configurations.

Definition 3.2 (Density Matrix of Configurations). Let σ = [p̃q̃ 7→ |ψ〉] and s =

(σ;ω;P). Then

• ρ(σ) = |ψ〉〈ψ|,

• ρq̃(σ) = trp̃(|ψ〉〈ψ|),

• ρ(s) = ρ(σ), and

• ρq̃(s) = ρq̃(σ).

Before defining probabilistic branching bisimulation, we introduce some notation

that will be used in the remainder of this thesis. Let
τ−→

+
denote zero or one τ

transitions, let =⇒ denote zero or more τ transitions, and let
α

=⇒ be equivalent to

=⇒ α−→=⇒.

The following definition is based on the standard definition of branching bisimu-

lation [van Glabbeek and Weijland 1996] with additional conditions for probabilistic

configurations, using the function µ, and for matching quantum information. We

require the relation R to be an equivalence relation (instead of a symmetric relation

that is normally sufficient) in order to define the equivalence classes D ∈ S/R.

Definition 3.3 (Probabilistic Branching Bisimulation). Let s, t be configurations.

An equivalence relation R is a probabilistic branching bisimulation on configurations

if whenever (s, t) ∈ R the following conditions are satisfied.

I. If s ∈ Sn and s
τ−→ s′ then there exists t′, t′′ such that t =⇒ t′

τ−→
+
t′′ where

a) (s, t′) ∈ R, and

b) (s′, t′′) ∈ R.

II. If s
c![ṽ,q̃]−→ s′ then ∃t′, t′′ such that t =⇒ t′

c![ṽ,r̃]−→ t′′ where

49

3.2. QUANTUM PROCESS EQUIVALENCE

a) (s, t′) ∈ R,

b) (s′, t′′) ∈ R,

c) ρq̃(s′) = ρr̃(t′′).

III. If s
c?[ṽ,q̃]−→ s′ then ∃t′, t′′ such that t =⇒ t′

c?[ṽ,r̃]−→ t′′ where

a) (s, t′) ∈ R,

b) (s′, t′′) ∈ R,

c) |ṽ| = |ũ|, and

d) ρq̃(s′) = ρr̃(t′′).

IV. If s ∈ Sp then µ(s,D) = µ(t,D) for all classes D ∈ S/R.

Naturally this leads on to the following definition of bisimilarity.

Definition 3.4 (Probabilistic Branching Bisimilarity). Let s and t be configurations.

Then s and t are probabilistic branching bisimilar, denoted s - t if and only if there

exists a probabilistic branching bisimulation R such that (s, t) ∈ R.

Our aim is to define an equivalence for processes, hence we now define bisimilarity

for processes based on bisimilarity for configurations. In particular, equivalence for

processes should be independent of the quantum state because, unlike a configuration,

a process has no quantum state associated with it. The following definition identifies

processes that produce bisimilar executions, given any initial quantum state.

Definition 3.5 (Probabilistic Branching Bisimilarity of Processes). Let P and Q be

processes. P and Q are probabilistic branching bisimilar, denoted P - Q, if and only

if for all σ, (σ; ∅;P) - (σ; ∅;Q).

Example 3.1. Let P and Q be processes defined by

P = c?[x].{x ∗= Z}.{x ∗= X}.d![x].0 Q = c?[x].{x ∗= iY}.d![x].0

Then P - Q since the identity ZX = iY ensures the state of x upon output will be

the same in each process.

We now prove that probabilistic branching bisimilarity of processes is an equiv-

alence relation. This doesn’t follow directly from the definition, however it is an

important result if we are to use the relation for equational reasoning. A similar

proof of transitivity is given by Lalire [2006].

Lemma 3.16. If R is a probabilistic branching bisimulation and sRt, and s =⇒ s′

then there exists t′ such that t =⇒ t′ and (s′, t′) ∈ R.

50

3.2. QUANTUM PROCESS EQUIVALENCE

Proof. If s =⇒ s′ then there exists a sequence of configurations s1, . . . , sn such that

s
τ−→ s1

τ−→ · · · τ−→ sn = s′. The proof is by induction on n.

The base case is n = 1. Thus if s
τ−→ s1 then there exist configurations t′, t′′ such

that t =⇒ t′
τ−→

+
t′′ where (s, t′) ∈ R and (s1, t

′′) ∈ R. Equivalently t =⇒ t′′ as

required.

For the inductive step, assume the Lemma holds for n, i.e. if s =⇒ sn there

exists a configuration t′ such that t =⇒ t′ and (sn, t
′) ∈ R. If sn

τ−→ sn+1 then

there exist configurations t′′, t′′′ such that t′ =⇒ t′′
τ−→

+
t′′′ where (sn, t

′′) ∈ R and

(sn+1, t
′′′) ∈ R.

Lemma 3.17. Probabilistic branching bisimilarity is an equivalence relation.

Proof. We show that probabilistic branching bisimilarity is reflexive, symmetric, and

transitive. The result follows from these properties.

Reflexivity: Let RI be the identity relation ((s, t) ∈ RI if and only if s = t). It is

clear that RI is a probabilistic branching bisimulation, hence - is reflexive.

Symmetry: This follows directly from the symmetry and existence property of

the corresponding bisimulation relations. Let P and Q be two processes such that

P - Q. By the definition of - there exists a bisimulation RS such that for all

∀σ.((σ; ∅;P)RS(σ; ∅;Q)). SinceRS is symmetric we have that ∀σ.((σ; ∅;Q)RS(σ; ∅;P)),

hence Q - P .

Transitivity: This does not follow directly from the transitivity of bisimulation.

We require the composition of distinct bisimulations to be a bisimulation. Let P , Q

and R be processes such that P - Q and Q - R. We now show that P - R.

From the definition of bisimilarity we know that there exist bisimulations R1 and

R2 such that for all quantum states σ, (σ; ∅;P)R1(σ; ∅;Q) and (σ; ∅;Q)R2(σ; ∅;R).

Let RC denote the composition of relations R1 ◦ R2.

Then let RT denote the symmetric and transitive closure of RC , thus

sRTu⇒ ∃t1, . . . , tn | s = t0R1t1R2t2 · · · tn−2R1tn−1R2tn = u

We now show that RT is a probabilistic branching bisimulation by induction on n.

The base case is n = 0 therefore (s, u) ∈ RT ⇒ s = u.

For the inductive case assume that RT is a probabilistic branching bisimula-

tion such that (s, tn) ∈ RT . Therefore there exists t1, . . . , tn−1 such that s =

t0R1t1R2t2 · · · tn−2R1tn−1R2tn.

Consider a configuration tn+1 such that (tn, tn+1) ∈ R1. The same argument

applies respectively if (tn, tn+1) ∈ R2. We consider the four conditions of probabilistic

branching bisimulation in turn:

1. If s
τ−→ s′ then by RT there exist configurations t′n, t

′′
n such that tn =⇒ t′n

τ−→
+

t′′n where (s, t′n) ∈ RT and (s′, t′′n) ∈ RT . By Lemma 3.16 there exists t′n+1

51

3.2. QUANTUM PROCESS EQUIVALENCE

such that tn+1 =⇒ t′n+1 and (t′n, t
′
n+1) ∈ R1. If t′n 6= t′′n then there exist

configurations t′′n+1, t
′′′
n+1 such that t′n+1 =⇒ t′′n+1

τ−→
+
t′′′n+1 where (t′n, t

′′
n+1) ∈

R1 and (t′′n, t
′′′
n+1) ∈ R1. Therefore sRT t′nR1t

′′
n+1 and s′RT t′′nR1t

′′′
n+1. The

symmetric property is proved in an identical manner.

2. If s
c![ũ]−→ s′ then byRT there exist configurations t′n, t

′′
n such that tn =⇒ t′n

c![ṽ]−→ t′′n

where (s, t′n) ∈ RT and (s′, t′′n) ∈ RT . By Lemma 3.16 there exists t′n+1

such that tn+1 =⇒ t′n+1 and (t′n, t
′
n+1) ∈ R1. Therefore there exist configu-

rations t′′n+1, t
′′′
n+1 such that t′n+1 =⇒ t′′n+1

c![w̃]−→ t′′′n+1 where (t′n, t
′′
n+1) ∈ R1 and

(t′′n, t
′′′
n+1) ∈ R1. Therefore sRT t′nR1t

′′
n+1, s′RT t′′nR1t

′′′
n+1 and ρu = ρv = ρw.

The symmetric property is proved in an identical manner.

3. An identical argument applies to input actions.

4. For the probability function µR we must show that µ(s,D) = µ(u,D) for all

D ∈ S/RT .

First we consider the relationship between the equivalence classes of R1, R2 and

RT , denoted by {Ai}i∈I , {Bj}j∈J , and {Ck}k∈K respectively. For two states

s, t ∈ Ai for some i ∈ I we have sR1tR2t using the reflexivity of R2, thus

sRT t. As a result it must be the case that for each i and k, either Ai ⊆ Ck or

Ai ∩Ck = ∅. Similarly we find that for each j and k it is the case that Bj ⊆ Ck
or Bj ∩ Ck = ∅. Furthermore, for each state s ∈ Ck there exist i ∈ I, j ∈ J

such that s ∈ Ai and s ∈ Bj hence each equivalence class of RT is partitioned

by some subset {Ai}i∈Ik of the equivalence classes of R1, and separately by a

subset {Bj}j∈Jk of the equivalence classes of R2. We can thus say for every Ck:

Ck =
⋃
i∈Ik

Ai =
⋃
j∈Jk

Bj

Therefore, for some s then µ(s, Ck) =
∑
i∈Ik µ(s,Ai) =

∑
j∈Jk µ(s,Bj). This

follows from the definition of µ for both non-deterministic and probabilistic

states. Additionally, from the defintion of RT we know that for every s, u ∈ Ck
there is a sequence t1, . . . , tm of states in Ck such that sR1t1R2t2R1 · · ·R1tmR2u.

By induction on m: the base case (m = 0) is trivial. Assume that µ(s, Ck) =

µ(tm, Ck) and (tm, tm+1) ∈ R1. Then µ(tm+1, Ck) =
∑
i∈Ik µ(tm+1, Ai). Since

R1 is a bisimulation, for each i ∈ Ik, µ(tm+1, Ai) = µ(tm, Ai), hence it follows

that µ(tm+1, Ck) = µ(tm, Ck) = µ(s, Ck).

We have now shown that the relation RT is a bisimulation, therefore we have for all

σ, ((σ; ∅;P), (σ; ∅;R)) ∈ RT , hence P - R. This completes the proof.

52

3.3. APPLICATIONS

Teleport = (qbit y, z)({z ∗= H}.{z, y ∗= CNot}.(νe : [̂Int, Int])(Alice ‖ Bob))

Alice = c?[x :Qbit].{x, z ∗= CNot}.{x ∗= H}.e![measure z,measure x].0

Bob = e?[r : Int, s : Int].{y ∗=Xr}.{y ∗= Zs}.d![y].0

QChannel = c?[x :Qbit].d![x].0

Figure 3.8. Quantum teleportation modelled in CQP (Teleport) and its specification
process (QChannel).

3.3 Applications

In this section, we demonstrate the use of bisimilarity for verification by applying the

probabilistic branching bisimilarity to several processes. Quantum teleportation was

used as an example to motivate our approach to modelling communication protocols.

We will present a CQP model for teleportation, and formally define a specification

process (QChannel) that describes its high-level observational behaviour. Verification

of teleportation is then achieved by proving that the two processes are bisimilar. We

will also consider an alternate teleportation protocol in which the measurements are

deferred, and a qubit-swap circuit. By showing each process is bisimilar to QChannel

and because bisimilarity is an equivalence relation, we demonstrate that these pro-

cesses are all observationally equivalent to one another.

3.3.1 Quantum Teleportation

The quantum teleportation protocol was described in Section 2.2.1, including a circuit

model representation. A CQP model of teleportation is given by the process Teleport

in Figure 3.8. This model clearly specifies the individual users Alice and Bob, who

act in parallel with one another (Alice ‖ Bob). The quantum state to be teleported

is received by Alice on channel c, and at the end of the protocol, Bob sends his qubit

on channel d. These inputs and outputs represent the external interactions. The

communication between Alice and Bob uses channel e, which is restricted to the two

processes and therefore does not present a possibility for external interaction.

Also given in Figure 3.8 is the process QChannel , which is the high-level specifi-

cation process for teleportation. This process acts like a quantum channel; a qubit is

received at one end-point (channel c), and sent at the other (channel d). In particular,

no operations are performed in between, hence it is obvious that the input and output

states are identical.

Lemma 3.18. QChannel - Teleport.

Proof. To prove that QChannel - Teleport , we define an equivalence relation R
that contains ((σ; ∅; Teleport), (σ; ∅; QChannel)) for all σ, and then show that it is a

53

3.3. APPLICATIONS

bisimulation.

For P ∈ {QChannel ,Teleport} and configurations s, define the sets D1(σ), D2(σ)

and D3(σ) as follows:

• s ∈ D1(σ) if and only if s = (σ′;ω′;P ′) and (σ; ∅;P) =⇒ (σ′;ω′;P ′).

• s ∈ D2(σ) if and only if s = �i pi•(σi;ωi;Pi) and (σ; ∅;P)
c?[p]
=⇒ �i pi•(σi;ωi;Pi).

• s ∈ D3(σ) if and only if s = (σ′;ω′;P ′) and (σ; ∅;P)
c?[p]
=⇒d![q]

=⇒ (σ′;ω′;P ′).

Let R be an equivalence relation such that (s, t) ∈ R if there exists i and σ such that

s, t ∈ Di(σ).

Consider a general quantum state σ = [r̃p 7→ |ψ0〉|0〉 + |ψ1〉|1〉]. We consider the

pairs of configurations in each of the equivalence classes D1(σ), D2(σ) and D3(σ).

The configurations in D1(σ) are as follows.

D1([r̃p̃ 7→|ψ0〉|0〉+ |ψ1〉|1〉]) :

s11 : (([r̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉)]; ∅; Teleport)

s12 : (([r̃pq1q2 7→ |ψ0〉|0〉+ |ψ1〉|1〉)⊗ |00〉]; q1, q2; ({q2 ∗= H}.{q2, q1 ∗= CNot}.

(νe : [̂Int, Int])(Alice ‖ Bob)))

s13 : (([r̃pq1q2 7→ |ψ0〉|0〉+ |ψ1〉|1〉)⊗ 1√
2
(|00〉+ |01〉)]; q1, q2; {q2, q1 ∗= CNot}.

(νe : [̂Int, Int])(Alice ‖ Bob))

s14 : (([r̃pq1q2 7→ |ψ0〉|0〉+ |ψ1〉|1〉)⊗ 1√
2
(|00〉+ |11〉)]; q1, q2;Alice ‖ Bob)

s15 : (([r̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉)]; ∅; QChannel)

For s ∈ {s11, s12, s13} we have s
τ−→ s′ where s′ ∈ D1(σ). For all t ∈ D1(σ) let

t = t′ = t′′ then t =⇒ t′
τ−→

+
t′′ and t′, t′′ ∈ D1(σ).

For s ∈ {s14, s15} we have s
c?[p]−→ s′ where s′ ∈ D2(σ) and ρp =

∑
i,j∈{0,1}〈ψi|ψj〉|i〉〈j|.

For any t ∈ D1(σ) there exists t′, t′′ such that t =⇒ t′
c?[p]−→ t′′ with t′′ ∈ D2(σ) and

ρp =
∑
i,j∈{0,1}〈ψi|ψj〉|i〉〈j|.

Now we consider the configurations in the class D2(σ). These include a proba-

bilistic distribution and configurations that arise through probabilistic branching.

D2([r̃p 7→|ψ0〉|0〉+ |ψ1〉|1〉]) :

s21 : (([r̃pq1q2 7→ |ψ0〉|0〉+ |ψ1〉|1〉)⊗ 1√
2
(|00〉+ |11〉)]; q1, q2, p; {q2, p ∗= CNot}.

{q2 ∗= H}.e![measure q2,measure p].0 ‖ Bob)

s22 : ([r̃pq1q2 7→ 1√
2
|ψ0〉(|000〉+ |111〉) + 1√

2
|ψ1〉(|100〉+ |011〉)]; q1, q2, p;

{q2 ∗= H}.e![measure q2,measure p].0 ‖ Bob)

54

3.3. APPLICATIONS

s23 : ([r̃pq1q2 7→ 1
2 |ψ0〉(|000〉+ |001〉+ |110〉 − |111〉)+

+ 1
2 |ψ1〉(|100〉+ |101〉+ |010〉 − |011〉)]; q1, q2, p;

e![measure q2,measure p].0 ‖ Bob)

s24 : 1
4 • ([r̃pq1q2 7→ |ψ0〉|000〉+ |ψ1〉|010〉]; q1, q2, p; e![0, 0].0 ‖ Bob)

� 1
4 • ([r̃pq1q2 7→ |ψ0〉|110〉+ |ψ1〉|100〉]; q1, q2, p; e![0, 1].0 ‖ Bob)

� 1
4 • ([r̃pq1q2 7→ |ψ0〉|001〉 − |ψ1〉|011〉]; q1, q2, p; e![1, 0].0 ‖ Bob)

� 1
4 • ([r̃pq1q2 7→ −|ψ0〉|111〉+ |ψ1〉|101〉]; q1, q2, p; e![1, 1].0 ‖ Bob)

s25 : ([r̃pq1q2 7→ |ψ0〉|000〉+ |ψ1〉|010〉]; q1, q2, p; e![0, 0].0 ‖ Bob)

s26 : ([r̃pq1q2 7→ |ψ0〉|110〉+ |ψ1〉|100〉]; q1, q2, p; e![0, 1].0 ‖ Bob)

s27 : ([r̃pq1q2 7→ |ψ0〉|001〉 − |ψ1〉|011〉]; q1, q2, p; e![1, 0].0 ‖ Bob)

s28 : ([r̃pq1q2 7→ −|ψ0〉|111〉+ |ψ1〉|101〉]; q1, q2, p; e![1, 1].0 ‖ Bob)

s29 : ([r̃pq1q2 7→ |ψ0〉|000〉+ |ψ1〉|010〉]; q1, q2, p; 0 ‖ {q1 ∗= Z0X0}.d![q1].0)

s210 : ([r̃pq1q2 7→ |ψ0〉|110〉+ |ψ1〉|100〉]; q1, q2, p; 0 ‖ {q1 ∗= Z0X1}.d![q1].0)

s211 : ([r̃pq1q2 7→ |ψ0〉|001〉 − |ψ1〉|011〉]; q1, q2, p; 0 ‖ {q1 ∗= Z1X0}.d![q1].0)

s212 : ([r̃pq1q2 7→ −|ψ0〉|111〉+ |ψ1〉|101〉]; q1, q2, p; 0 ‖ {q1 ∗= Z1X1}.d![q1].0)

s213 : ([r̃pq1q2 7→ |ψ0〉|000〉+ |ψ1〉|010〉]; q1, q2, p; d![q1].0)

s214 : ([r̃pq1q2 7→ |ψ0〉|001〉+ |ψ1〉|011〉]; q1, q2, p; d![q1].0)

s215 : ([r̃pq1q2 7→ |ψ0〉|100〉+ |ψ1〉|110〉]; q1, q2, p; d![q1].0)

s216 : ([r̃pq1q2 7→ |ψ0〉|101〉+ |ψ1〉|111〉]; q1, q2, p; d![q1].0)

s217 : ([r̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; ∅; d![p].0)

For s ∈ {s21, s22, s23, s25, · · · , s212} we have s
τ−→ s′ where s′ ∈ D2(σ). For any

t ∈ D2(σ) let t = t′ = t′′ then t =⇒ t′
τ−→

+
t′′ and t′, t′′ ∈ D2(σ).

For s = s24 we have s
1
4 si for si ∈ {s25, · · · , s28} therefore µ(s,D2(σ)) = 1. For

all t ∈ D2(σ) \ s24 we have µ(t,D2(σ)) = 1 since t ∈ Sn and t ∈ D2(σ).

For s ∈ {s213, · · · , s216} we have s
d![q1]−→ s′ where ρq1 =

∑
i,j∈{0,1}〈ψi|ψj〉|i〉〈j|

and s′ ∈ D3(σ). For t = s217 we have t
d![p]−→ t′ where t′ ∈ D3(σ) and ρp =∑

i,j∈{0,1}〈ψi|ψj〉|i〉〈j|. For all other u ∈ D2(σ) there exists u′, u′′ such that u =⇒

u′
d![q1]−→ u′′ and u′ ∈ D2(σ) and u′′ ∈ D3(σ) and ρq1 =

∑
i,j∈{0,1}〈ψi|ψj〉|i〉〈j|.

For s ∈ D3(σ) there are no possible transitions. These configurations are as

55

3.3. APPLICATIONS

TeleportD = (qbit y, z)({z ∗= H}.{z, y ∗= CNot}.Alice)
Alice = c?[x].{x, y ∗= CNot}.{x ∗= H}.{y, z ∗= CX}.{x, z ∗= CZ}.d![z].0

Figure 3.9. Quantum teleportation with deferred measurement.

follows.

D3([r̃p 7→|ψ0〉|0〉+ |ψ1〉|1〉]) :

s31 : ([r̃pq1q2 7→ |ψ0〉|000〉+ |ψ1〉|010〉]; q1, q2; 0)

s32 : ([r̃pq1q2 7→ |ψ0〉|001〉+ |ψ1〉|011〉]; q1, q2; 0)

s33 : ([r̃pq1q2 7→ |ψ0〉|100〉+ |ψ1〉|110〉]; q1, q2; 0)

s34 : ([r̃pq1q2 7→ |ψ0〉|101〉+ |ψ1〉|111〉]; q1, q2; 0)

s35 : ([r̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; ∅; 0)

We therefore have ((σ, ∅; Teleport), (σ; ∅; QChannel)) ∈ R. We can express all

quantum states in the form of σ, hence this condition holds for all σ.

3.3.2 Quantum Teleportation with Deferred Measurement

The principle of deferred measurement states that measurements can be moved from

an intermediate stage of a quantum circuit to the end of the circuit. If the result of

the measurement is used at any stage within the circuit, then the classically controlled

operation may be replaced by a controlled quantum gate. Applying this principle to

the quantum teleportation protocol results in a similar protocol, defined in Figure

3.9.

In this modified version the protocol has no logical split between two parties – it

is not really teleportation as such. Instead there is only one user, Alice, who owns all

the qubits. Using Lemma 3.18 and the fact that bisimilarity is transitive, we are able

to show that this protocol is bisimilar to the original teleportation process Teleport .

Lemma 3.19. TeleportD - QChannel and TeleportD - Teleport.

Proof. Following a similar course as the proof of Lemma 3.18, we consider an arbitrary

quantum state σ = [q̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]. We define an equivalence relation, R, by

56

3.3. APPLICATIONS

the following parameterised equivalence classes.

D1(σ) :

([r̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; ∅; QChannel)

([r̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; ∅; TeleportD)

([r̃pq1q2 7→ (|ψ0〉|0〉+ |ψ1〉|1〉)⊗ |00〉]; q1, q2;

{q2 ∗= H}.{q2, q1 ∗= CNot}.Alice{q1q2/yz})

([r̃pq1q2 7→ (|ψ0〉|0〉+ |ψ1〉|1〉)⊗ 1√
2
(|00〉+ |01〉)]; q1, q2;

{q2, q1 ∗= CNot}.Alice{q1q2/yz})

([r̃pq1q2 7→ (|ψ0〉|0〉+ |ψ1〉|1〉)⊗ 1√
2
(|00〉+ |11〉)]; q1, q2; Alice{q1q2/yz})

D2(σ) :

([r̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; p; d![p].0)

([r̃pq1q2 7→ (|ψ0〉|0〉+ |ψ1〉|1〉)⊗ 1√
2
(|00〉+ |11〉)]; p, q1, q2;

{p, q1 ∗= CNot}.{x ∗= H}.{q1, q2 ∗= CX}.{p, q2 ∗= CZ}.d![q2].0)

([r̃pq1q2 7→ 1√
2
(|ψ0〉|000〉+ |ψ0〉|011〉+ |ψ1〉|110〉+ |ψ1〉|101〉)]; p, q1, q2;

{p ∗= H}.{q1, q2 ∗= CX}.{p, q2 ∗= CZ}.d![q2].0)

([r̃pq1q2 7→ 1
2 (|ψ0〉|000〉+ |ψ0〉|100〉+ |ψ0〉|011〉+ |ψ0〉|111〉+ |ψ1〉|010〉 − |ψ1〉|110〉

+ |ψ1〉|001〉 − |ψ1〉|101〉)]; p, q1, q2; {q1, q2 ∗= CX}.{p, q2 ∗= CZ}.d![q2].0)

([r̃pq1q2 7→ 1
2 (|ψ0〉|000〉+ |ψ0〉|100〉+ |ψ0〉|010〉+ |ψ0〉|110〉+ |ψ1〉|011〉 − |ψ1〉|111〉

+ |ψ1〉|001〉 − |ψ1〉|101〉)]; p, q1, q2; {p, q2 ∗= CZ}.d![q2].0)

([r̃pq1q2 7→ 1
2 (|00〉+ |10〉+ |01〉+ |11〉)⊗ (|ψ0〉|0〉+ |ψ1〉|1〉)]; p, q1, q2; d![q2].0)

D3(σ) :

([r̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; ∅; 0)

([r̃pq1q2 7→ 1
2 (|00〉+ |10〉+ |01〉+ |11〉)⊗ (|ψ0〉|0〉+ |ψ1〉|1〉)]; q1, q2; 0)

By reasoning similar to Lemma 3.18 the relation R is a probabilistic branching bisim-

ulation, and hence QChannel - TeleportD . Furthermore, because bisimilarity is

transitive, we have Teleport - TeleportD .

It is worth noting that the measurement operation has been omitted, instead

making use of the principle of implicit measurement. It is easily seen that including

explicit measurement of the qubits x and y would not affect this equivalence. Both

the principles of deferred and implicit measurement will be revisited in Chapter 5,

where we formulate them as axioms of equivalence.

57

3.3. APPLICATIONS

3.3.3 Qubit-Swap Circuit

The final example we consider is a state-swapping circuit.

|ψ〉 • �������� |0〉

|0〉 �������� • |ψ〉

This circuit has one input qubit in state |ψ〉 and a second qubit starting in the basis

state |0〉. By performing two CNot operations, the state of the first qubit is transferred

to the second qubit, leaving the first qubit in state |0〉. This circuit is a simplification

of the state-swapping circuit that swaps two arbitrary quantum states by using a

third CNot gate with the first qubit as the control. In this case, since the first qubit

will be in state |0〉 at this point, a third CNot operation would have no effect.

Quantum circuits can be manipulated using a number of identity relations on sub-

components. For example the control and target of a CNot operation can be switched

as shown in Figure 3.10. Note that the CNot gate is the same as a controlled-X gate.

X

•

=
H X H

•

=

H • H

Z

Figure 3.10. Circuit identities for switching the control and target qubits.

It has been shown by Mermin [2001], that by manipulating the state-swapping

circuit using circuit identities, it is possible to obtain a quantum teleportation circuit.

The swap circuit can be represented by the CQP process Swap, where the state of

the first qubit x is to be transferred to the second qubit y.

Swap = (qbit y)c?[x].{x, y ∗= CNOT}.{y, x ∗= CNOT}.d![y].0

This circuit equivalence can be expressed and proved with respect to bisimilarity

in CQP.

Lemma 3.20. Swap - Teleport.

Proof. We first prove that Swap - QChannel . Then by the transitivity of bisimilarity,

we obtain Swap - Teleport .

Consider an arbitrary quantum state σ = [q̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]. Then define an

58

3.4. CONGRUENCE PROPERTIES

equivalence relation R by the following equivalence classes.

D1(σ) :

s11 =([q̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; ∅; QChannel)

s12 =([q̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; ∅; Swap)

s13 =([q̃pr 7→ |ψ0〉|00〉+ |ψ1〉|10〉]; r; c?[x].{x, r ∗= CNOT}.{r, x ∗= CNOT}.d![r].0)

D2(σ) :

s21 =([q̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; p; d![p].0)

s22 =([q̃pr 7→ |ψ0〉|00〉+ |ψ1〉|10〉]; p, r; {p, r ∗= CNOT}.{r, p ∗= CNOT}.d![r].0)

s23 =([q̃pr 7→ |ψ0〉|00〉+ |ψ1〉|11〉]; p, r; {r, p ∗= CNOT}.d![r].0)

s24 =([q̃pr 7→ |ψ0〉|00〉+ |ψ1〉|01〉]; p, r; d![r].0)

D3(σ) :

s31 =([q̃p 7→ |ψ0〉|0〉+ |ψ1〉|1〉]; ∅; 0)

s32 =([q̃pr 7→ |ψ0〉|00〉+ |ψ1〉|01〉]; p; 0)

For each configuration in si ∈ D1(σ) there are transitions si =⇒ s′i
c?[x]−→ s′′i where

s′i ∈ D1(σ) and s′i ∈ D2(σ) and ρp =
∑
i,j∈{0,1}〈ψi|ψj〉|i〉〈j|. These transitions

can therefore match the input transitions of s11 and s13. The internal transition

s12
τ−→ s13 can be matched by zero transitions, since s13 ∈ D1(σ).

The internal transitions s22
τ−→ s23 and s23

τ−→ s24 can both be matched by zero

transitions, since s22, s23, s24 ∈ D2(σ).

For each configuration s22, s23, s24 there are transitions si =⇒ s24
d![y]−→ s32 where

s24 ∈ D2(σ) and s32 ∈ D3(σ) and ρr =
∑
i,j∈{0,1}〈ψi|ψj〉|i〉〈j|. Similarly there is a

transition s21
d![x]−→ s31 where ρp =

∑
i,j∈{0,1}〈ψi|ψj〉|i〉〈j|. These transitions are able

to match the two output transitions of s21 and s24. Thus, the possible transitions

corresponding to each of the four configurations in D2(σ) can be matched by all other

configurations in D2(σ).

Finally s31 and s32 have no possible transitions. We therefore conclude that the

equivalence relation R is a probabilistic branching bisimulation. Furthermore Swap -
QChannel , since for any σ, (σ; ∅; Swap)R(σ; ∅; QChannel). Due to the transitivity of

bisimilarity, this gives Swap - Teleport .

3.4 Congruence Properties

We have introduced probabilistic branching bisimilarity for CQP, and in the previous

section we applied it to several protocols. In this section, we consider whether this

bisimilarity is a congruence relation. A congruence relation is particularly useful,

59

3.4. CONGRUENCE PROPERTIES

because it ensures that equivalence is maintained in any context. For example, if

the two teleportation protocols considered in the previous section are congruent, then

they are considered interchangeable components in a composite system.

We begin by formally defining a context. A context is similar to a process, how-

ever it contains a hole indicating the position in which a process can be placed. A

context describes an environment and, through the substitution of a process into the

hole, results in the complete representation of that process in the given environment.

A context is defined to allow an environment access to the full power of quantum

mechanics, including the initialisation of new qubits into the state. This is significant

when considering the effects of a parallel context on bisimilar processes, since we are

not placing any limits on the capabilities of the environment.

Definition 3.6 (Context). A context is a process expression in which an occurrence

of 0 is replaced by a hole, []. Formally, a context is given by the grammar

C ::= [] | (C ‖ P) | α.C + P | α.C | (νx : [̂T])C | (qbit x)C

where α ∈ {e?[x̃ : T̃], e![ẽ], {e}}. Given a process P , C[P] denotes the process resulting

from filling the hole in C by P .

Due to the possibility of a context capturing the free names of a process, we

extend the notion of bisimilarity to full bisimilarity before considering preservation

by prefixes. In general, bisimilarity is not preserved by prefixes that capture free

names; these consist of input and qubit declaration. Full bisimilarity is an extension

of bisimilarity that requires the relation to hold for all substitutions.

Definition 3.7 (Full probabilistic branching bisimilarity). Processes P and Q are full

probabilistic branching bisimilar, denoted P -c Q, if for any substitution κ = {ũ, q̃/x̃}
and for any quantum state σ, (σ; q̃;Pκ) - (σ; q̃;Qκ).

To prove that full probabilistic branching bisimilarity is preserved by prefixes,

we define a prefix context. We will consider preservation by parallel composition in

Section 3.4.1.

Definition 3.8 (Prefix context). A prefix context is a context without parallel com-

position, specified by the grammar

C ::= [] | α.C + P | α.C | (νx : [̂T])C | (qbit x)C

where α ∈ {e?[x̃ : T̃], e![ẽ], {e}}.

The following two lemmas will be used in the proof of Lemma 3.23 (preservation

by prefix contexts).

60

3.4. CONGRUENCE PROPERTIES

Lemma 3.21 (Weakening for qubit list). If (σ;ω1;P)
α−→ �i pi • (σi;ω

′
1;Pi) and

ω1 ∩ ω2 = ω′1 ∩ ω2 = ∅ then (σ;ω1, ω2;P)
α−→ �i pi • (σi;ω

′
1, ω2;Pi).

Proof. By induction on the derivation of (σ;ω1;P)
α−→ �i pi • (σi;ω

′
1;Pi). The

interesting cases are L-Out, L-In, L-Com and L-Qbit; the rest are straightforward.

L-Out: We have (σ;ω1, q̃;P)
c![q̃]−→ (σ;ω1;P ′). Because ω1, q̃ ∩ ω2 = ∅ we obtain

(σ;ω1, q̃, ω2;P)
c![q̃]−→ (σ;ω1, ω2;P ′).

L-In: We have (σ;ω1;P)
c?[q̃]−→ (σ;ω1, q̃;P

′). Because ω1, q̃ ∩ ω2 = ∅ we obtain

(σ;ω1, ω2;P)
c?[q̃]−→ (σ;ω1, q̃, ω2;P ′).

L-Com: We have

(σ;ω1, q̃;P)
c![ṽ]−→ (σ;ω1;P ′) (σ;ω1;Q)

c?[ṽ]−→ (σ;ω1, q̃;Q
′)

(σ;ω1, q̃;P ‖ Q)
τ−→ (σ;ω1, q̃;P

′ ‖ Q′)

Applying the inductive hypothesis gives transitions (σ;ω1, q̃, ω2;P)
c![ṽ]−→ (σ;ω1, ω2;P ′)

and (σ;ω1, ω2;Q)
c?[ṽ]−→ (σ;ω1, q̃, ω2;Q′). Therefore (by L-Com) we obtain the transi-

tion (σ;ω1, q̃, ω2;P ‖ Q)
τ−→ (σ;ω1, q̃, ω2;P ′ ‖ Q′).

L-Qbit: We have (σ;ω1;P)
τ−→ (σ′;ω1, q;P

′). Because ω1, q ∩ ω2 = ∅ we obtain

(σ;ω1, ω2;P)
τ−→ (σ′;ω1, q, ω2;P ′) such that q is fresh.

Lemma 3.22 (Strengthening for qubit list). If Γ;ω1 ` P and (σ;ω1, ω2;P)
α−→

(σ′;ω′1, ω2;P ′) then (σ;ω1;P)
α−→ (σ′;ω′1;P ′)

Proof. By induction on the derivation of (σ;ω1, ω2;P)
τ−→ (σ′;ω′1, ω2;P ′). The inter-

esting cases are L-Out, L-In, L-Com and L-Qbit; the rest are straightforward.

L-Out: We have (σ;ω1, q̃, ω2;P)
c![q̃]−→ (σ;ω1, ω2;P ′) and Γ;ω1, q̃ ` P . Therefore

(σ;ω1, q̃;P)
c![q̃]−→ (σ;ω1;P ′).

L-In: We have (σ;ω1, ω2;P)
c?[q̃]−→ (σ;ω1, q̃, ω2;P ′) and Γ;ω1 ` P . Therefore

(σ;ω1;P)
c?[q̃]−→ (σ;ω1, q̃;P

′).

L-Com: We have

(σ;ω1, q̃, ω2;P)
c![ṽ]−→ (σ;ω1, ω2;P ′) (σ;ω1, ω2;Q)

c?[ṽ]−→ (σ;ω1, q̃, ω2;Q′)

(σ;ω1, q̃, ω2;P ‖ Q)
τ−→ (σ;ω1, q̃, ω2;P ′ ‖ Q′)

The typing derivation of Γ;ω1, q̃ ` P ‖ Q has hypotheses Γ1;ωp, q̃ ` P and Γ2;ωq ` Q
where ω1 = ωp∪ωq and ωp, q̃∩ωq = ∅. The inductive hypothesis gives (σ;ωp, q̃;P)

c![ṽ]−→
(σ;ωp;P

′) and (σ;ωq;Q)
c?[ṽ]−→ (σ;ωq, q̃;Q

′). From Lemma 3.21 we have (σ;ω1, q̃;P)
c![ṽ]−→

(σ;ω1;P ′) and (σ;ω1;Q)
c?[ṽ]−→ (σ;ω1, q̃;Q

′). Therefore (by L-Com) this gives the tran-

sition (σ;ω1, q̃;P ‖ Q)
τ−→ (σ;ω1, q̃;P

′ ‖ Q′).
L-Qbit: We have (σ;ω1, ω2;P)

τ−→ (σ′;ω1, ω2, q;P
′). Because q is fresh we have

q /∈ ω2. Therefore (σ;ω1;P)
τ−→ (σ′;ω1, q;P

′) such that q is fresh.

61

3.4. CONGRUENCE PROPERTIES

Lemma 3.23 (Preservation by prefix contexts). If P -c Q and then for any prefix

context C, C[P] -c C[Q], provided that Γ ` C[P] and Γ ` C[Q].

Proof. By induction on the structure of C. The inductive hypothesis gives a bisimula-

tion R, such that for all σ and κ = {ṽ, q̃/x̃} we have ((σ; q̃;C[P]κ), (σ; q̃;C[Q]κ)) ∈ R.

Input: Let C = c?[x̃1].C ′ and κ1 = {ṽ1, q̃1/x̃1} and κ2 = {ṽ2, q̃2/x̃2} and R′ =

((σ; q̃2;C[P]κ2), (σ; q̃2;C[Q]κ2))∪R. We have the transitions (σ; q̃2; (C[P])κ2)
c?[ṽ1,q̃1]−→

(σ; q̃1, q̃2;C ′′[Pκ2κ1]) and (σ; q̃2; (C[Q])κ2)
c?[ṽ1],q̃1−→ (σ; q̃1, q̃2;C ′′[Qκ2, κ1]) where C ′′ =

C ′κ2κ1. Because x̃1 are bound in C[P] and C[Q], we have that x̃1 and x̃2 are distinct.

The inductive hypothesis gives ((σ; q̃1, q̃2;C ′′[Pκ2κ1]), (σ; q̃1, q̃2;C ′′[Qκ2, κ1])) ∈ R,

therefore R′ is a probabilistic branching bisimulation.

Output: Let C = c![x̃1, x̃2].C ′ and κ1 = {ṽ1, q̃1/x̃1} and κ2 = {ṽ2, q̃2/x̃2} and

κ = κ1κ2. Then let R′ = ((σ; q̃1, q̃2;C[P]κ), (σ; q̃1, q̃2;C[Q]κ)) ∪ R. If x̃2 is not

empty, then (σ; q̃1, q̃2; (C[P])κ) and (σ; q̃1, q̃2; (C[Q])κ) have no transitions. If x̃2

is empty, then we have the transitions (σ; q̃1, q̃2; (C[P])κ)
c![ṽ1]−→ (σ; q̃2;C ′′[Pκ]) and

(σ; q̃1, q̃3; (C[Q])κ)
c![ṽ1]−→ (σ; q̃2;C ′′[Qκ]) where C ′′ = C ′κ. Using IT-Out and Lemma

3.10 gives ỹ /∈ fv(C ′[P]), fv(C ′[Q]), therefore (C ′[P])κ = (C ′[P])κ′1κ2 and (C ′[Q′])κ =

(C ′[Q])κ′1κ2 where κ′1 = {ṽ1/q̃1}. The inductive hypothesis gives (σ; q̃2; (C ′[P])κ′1κ2) -
(σ; q̃2; (C ′[Q])κ′1κ2). Therefore (σ; q̃1, q̃2;C[P]κ) - (σ; q̃1, q̃2;C[Q]κ).

Restriction: Let C = (νc̃)C ′[] and κ = {ṽ/x̃} and q̃ are the qubit names in ṽ.

Define a relation

R′ = {((σ!;ω1;C[P]κ), (σ2;ω2;C[Q]κ)) | (σ1;ω1;C ′[P]κ) - (σ2;ω2;C ′[Q]κ)} .

Then we have the derivation

(σ1;ω1; (C ′[P])κ)
α−→ (σ′1;ω′1;C ′[P ′])

(σ1;ω1; (C[P])κ)
α−→ (σ′1;ω′1;C[P ′])

Then we have

(σ2;ω2;C ′[Q]) =⇒ (σ′2;ω′2;C ′[Q′])
α−→ (σ′′2 ;ω′′2 ;C ′[Q′′])

where (σ1;ω1;C ′[P]) - (σ′2;ω′2;C ′[Q′]) and (σ′1;ω′1;C ′[P ′]) - (σ′′2 ;ω′′2 ;C ′[Q′′]). By

L-Res we have (σ2;ω2;C[Q]) =⇒ (σ′2;ω′2;C[Q′])
α−→ (σ′′2 ;ω′′2 ;C[Q′′]), and we have

((σ1;ω1;C[P]), (σ′2;ω′2;C[Q′])) ∈ R′ and ((σ′1;ω′1;C[P ′]), (σ′′2 ;ω′′2 ;C[Q′′])) ∈ R′.
Qubit declaration: Let C = (qbit x)C ′ and κ1 = {ṽ1/x̃1} then (σ; q̃; (C[P])κ1)

τ−→
(σ′; q̃, q;C ′′[Pκ1κ2]) and (σ; q̃; (C[Q])κ1)

τ−→ (σ′; q̃, q;C ′′[Qκ1κ2]) where κ2 = {q/x}
and C ′′ = C ′κ1κ2. Applying the inductive hypothesis gives (σ′; q̃, q;C ′′[Pκ1κ2]) -
(σ′; q̃, q;C ′′[Qκ1κ2]) therefore (σ; q̃; (C[P])κ1) - (σ; q̃; (C[Q])κ1).

62

3.4. CONGRUENCE PROPERTIES

3.4.1 Parallel Preservation

The existing bisimilarities that have been defined for QPAlg and qCCS are not con-

gruence relations for general quantum processes. In particular, these relations are not

preserved by parallel composition. Examples 3.2 and 3.3 demonstrate that our prob-

abilistic branching bisimilarity is also not preserved by parallel composition. While

the processes clearly result in different quantum states, their external behaviour is

identical, and therefore they are considered bisimilar.

Example 3.2. Consider processes P and Q, where

P = c?[x].{measure x}.0

Q = c?[x].{x ∗= H}.{measure x}.0

Define an equivalence relation R such that, for all σ, σ′, ((σ; ∅;T), (σ; ∅;U)) ∈ R,

((σ; q; {measure q}.0), (σ′; q; {measure q}.0)) ∈ R and ((σ; q; {measure q}.0), (σ′; {q ∗=
H}.{measure q}.0)) ∈ R. Then R is a probabilistic branching bisimulation, hence

P - Q.

On condition that we remember it is only the observable behaviour that is of

interest, there should be no problem accepting the equivalence of P and Q. The issue

with this arises when the processes are considered in a context; specifically the effect of

entanglement means that these processes are not congruent. This is illustrated by the

following example in which qubits p and q are entangled, therefore the measurement

of p affects the state of q, resulting in different possibilities in each case for ρq when

the action d![q] occurs.

Example 3.3. Let C = d![y].0 ‖ []. Consider the entangled state [pq 7→ 1√
2
(|00〉 +

|11〉)], then the configurations corresponding to C[P] and C[Q] are

s = ([|pq〉 7→ 1√
2

(|00〉+ |11〉)]; c, d; d![q].0 ‖ c?[x].{x ∗= H}.measure x.0)

t = ([|pq〉 7→ 1√
2

(|00〉+ |11〉)]; c, d; d![q].0 ‖ c?[x].measure x.0)

In the execution of s, the possible values of ρq when the action d![q] occurs are
1
2 (|0〉〈0| + |1〉〈1|), |0〉〈0|, and |1〉〈1|, while in the execution of t, the possibilities are
1
2 (|0〉〈0| + |1〉〈1|), |0〉〈0|+|0〉〈1|+|1〉〈0|+|1〉〈1|2 and |0〉〈0|−|0〉〈1|−|1〉〈0|+|1〉〈1|2 . The difference

in the last two cases is a result of the Hadamard operation that was applied prior to

measurement.

Despite the fact that bisimilarity is not preserved by parallel composition, it is still

interesting to consider the effects of parallel contexts on the teleportation protocol. To

this end, we now work towards proving Theorem 3.39, which states that equivalence

63

3.4. CONGRUENCE PROPERTIES

to QChannel is preserved by all contexts. Although this is not the congruence result

that we would hope for, it does provide significant insight into the role of measurement

and entanglement in parallel processes. In Section 3.5, we will discuss the implications

further.

We prove this theorem through a series of Lemmas. Lemmas 3.25, 3.26, and 3.27

identify the structure of the bisimulation relating QChannel and a bisimilar process

Q. In particular, for a given quantum state we can define a bisimulation with three

equivalence classes. This is a generalisation of the bisimulations that were used in

Section 3.3. These results are used later to determine the possible actions of the

respective processes in the parallel context. The second stage involves determining

the quantum state when the observable actions occur. Lemmas 3.31 and 3.33 prove

that the respective reduced density operators of the input and output qubits are

identical.

Lemma 3.24. If t is a configuration with no τ -transitions and t - s and s =⇒ s′

where s′ = �i pi • si then t - s′.

Proof. By induction on the length of the sequence of transitions s =⇒ s′. If sk
τ−→

sk+1 then applying the inductive hypothesis gives t - sk, therefore there exist con-

figurations t′, t′′ such that t =⇒ t′
τ−→

+
t′′ where sk - t′ and sk+1 - t′′. The

only configuration satisfying these conditions is t since t admits no τ -transitions,

therefore sk+1 - t. Else if sk
p
 sk+1 then sk+1 - t because t - sk implies

µ(t, [t]-) = µ(sk, [t]-) and by definition µ(t, [t]-) = 1.

Lemma 3.25. If QChannel - Q and (σ; ∅;Q) =⇒ �i pi • (σi;ωi;Qi) then

(σ; ∅; QChannel) - �i pi • (σi;ωi;Qi).

Proof. The configuration (σ; ∅; QChannel) admits no τ -transitions, therefore the re-

sult follows from Lemma 3.24.

Lemma 3.26. If QChannel - Q and (σ; ∅;Q)
c?[p]
=⇒ �i pi • (σi;ωi;Qi) then

(σ; p; d![p].0) - �i pi • (σi;ωi;Qi).

Proof. By definition there is a sequence of transitions

(σ; ∅;Q) =⇒ (σ1;ω1;Q1)
c?[p]−→ (σ2;ω2;Q2) =⇒ �i pi • (σi;ωi;Qi)

By Lemma 3.25 we have (σ; ∅; QChannel) - (σ1;ω1;Q1). It follows from the defi-

nition of bisimiliarity that (σ; p; d![p].0) - (σ2;ω2;Q2). By Lemma 3.24 we obtain

(σ; p; d![p].0) - �i pi • (σi;ωi;Qi).

Lemma 3.27. If QChannel - Q and (σ; ∅;Q)
c?[p]
=⇒d![x]

=⇒ �i pi • (σi;σi;Qi) then

(σ; ∅; 0) - �i pi • (σi;σi;Qi).

64

3.4. CONGRUENCE PROPERTIES

Proof. By definition there is a sequence of configurations

(σ; ∅;Q)
c?[p]
=⇒ (σ1;ω1;Q1)

d![q]−→ (σ2;ω2;Q2) =⇒ �i pi • (σi;ωi;Qi)

By Lemma 3.26 we have (σ1;ω1;Q1) - (σ; p; d![p].0). It follows from the definition

of bisimilarity that (σ2;ω2;Q2) - (σ; ∅; 0). By Lemma 3.24 we obtain (σ; ∅; 0) -
�i pi • (σi;ωi;Qi).

We now define the equivalence relation R, which we shall prove is a bisimulation.

For all processes Q that are bisimilar to QChannel , this relation identifies all pairs of

configurations that arise from Q ‖ R through the same external actions. The relation

is defined in terms of parameterised equivalence classes. These parameters include

the quantum state and the context. We must consider cases in which the context

creates a probabilistic distribution, hence the parameter may be a set {(pi, σi, Ri)}i,
in which

∑
i pi = 1. We also extend this relation to arbitrary contexts through the

equivalence classes D0({(pi, σi, Ci)}). In these classes, the contexts Ci are not parallel

of the form (νc̃)([] ‖ R), and hence contain configurations in which Q is guarded by

a prefix.

Definition 3.9. For all Q and R such that Q -c QChannel and Γ1; ∅ ` Q and

Γ2;ωr ` R and Γ1 + Γ2;ωr ` Q ‖ R. Then

• s ∈ D0({(pi, σi, Ci)}) if s = �i pi • (σi;ω;Ci[Q]) and Ci /∈ ∪c̃,R{(νc̃)([] ‖ R)}.

• s ∈ D1(σ,R, c̃) if s = �i pi • (σi;ω, ωr; (νc̃)(R ‖ Q′i)) and (σ; ∅;Q) =⇒ �i pi •
(σi;ω;Q′i).

• s ∈ D1({(pi, σi, Ri)}, c̃) if s = �i pi • (σ′i;ω, ωr; (νc̃)(Ri ‖ Q′)) and ∀i.(pi <
1 and (σi; ∅;Q) =⇒ (σ′i;ω;Q′)).

• s ∈ D2(σ,R, c̃) if s = �i pi • (σi;ω, ωr; (νc̃)(R ‖ Q′i)) and (σ; ∅;Q)
c?[p]
=⇒ �i pi •

(σi;ω;Qi).

• s ∈ D2({(pi, σi, Ri)}, c̃) if s = �i pi • (σ′i;ω, ωr; (νc̃)(Ri ‖ Q′)) and ∀i.(pi <
1 and (σi; ∅;Q)

c?[p]
=⇒ (σ′i;ω;Q′)).

• s ∈ D3(σ,R, c̃) if s = �i pi • (σi;ω, ωr; (νc̃)(R ‖ Q′i)) and (σ; ∅;Q)
c?[p]
=⇒d![v]

=⇒
�i pi • (σi;ω;Qi).

• s ∈ D3({(pi, σi, Ri)}, c̃) if s = �i pi • (σ′i;ω, ωr; (νc̃)(Ri ‖ Q′)) and ∀i.(pi <
1 and (σi; ∅;Q)

c?[p]
=⇒d![v]

=⇒ (σ′i;ω;Q′)).

Then (s, t) ∈ R if there exists γ such that γ is a class defined above and s, t ∈ γ.

65

3.4. CONGRUENCE PROPERTIES

Lemmas 3.30 and 3.31 consider the ability of configurations in D1(σ,R, c̃) to match

the input action c?[p] of QChannel . This first lemma proves that the quantum state

in D1(σ,R, c̃) is of the form [r̃q̃ 7→ |π〉|φ〉]. This result is then used in Lemma 3.31 to

determine the reduced density matrix ρp when the input occurs.

Lemma 3.28 (Preservation of seperable states). Let σ = [p̃, q̃ 7→
∑
j |φj〉|ψj〉]. If

Γ1; p̃ ` P and (σ;ω;P ‖ Q)
τ−→ �i pi • (σi;ω

′;Pi ‖ Q) then there exists p̃′, |φij〉 such

that Γ; p̃′ ` Pi and σi = [p̃′q̃ 7→ |φij〉|ψj〉].

Proof. By induction on the derivation of the transition. We consider the cases that

alter the quantum state; the rest are straightforward.

L-Qbit: We have ([p̃q̃ 7→
∑
j |φj〉|ψj〉];ω;P ‖Q)

τ−→ ([p̃pq̃ 7→ |φ′j〉|ψj〉];ω, p;P ′ ‖Q)

where |φ′j〉 = |φj〉|0〉. By Theorem 3.14 we have Γ1; p̃, p ` P ′.
R-Trans: We have ([p̃q̃ 7→

∑
j |φj〉|ψj〉];ω; r̃ ∗= Um) −→v (σ′;ω; unit). The

typing derivation of Γ1; p̃ ` P gives r̃ ⊆ p̃. Assume p̃ = r̃s̃ then σ′ = [r̃s̃q̃ 7→
(Um ⊗ Is̃ ⊗ Iq̃)(

∑
j |φj〉|ψj〉) = |φ′j〉|ψj〉] where |φ′j〉 = (Um ⊗ Is̃)|φj〉. By Theorem

3.14 we have Γ1; p̃ ` P ′.
R-Measure: We have ([p̃q̃ 7→

∑
j |φj〉|ψj〉];ω;measure r̃) −→v �i pi • (σi;ω; i).

The typing derivation of Γ1; p̃ ` P gives r̃ ⊆ p̃ therefore σi = [p̃q̃ 7→
∑
j |φij〉|ψj〉] and

by Theorem 3.14 we have Γ1; p̃ ` Pi.

Lemma 3.29 (Quantum state independence). If Γ1; p̃ ` P and P ‖ Q is well-typed

and ([p̃q̃ 7→ |φ〉|ψ〉];ω1, ω2;P ‖ Q)
α−→ �i pi • ([p̃′q̃ 7→ |φi〉|ψ〉];ω′1, ω2;Pi ‖ Q) and

fq(P) ⊆ ω1 and fq(Q) ⊆ ω2 then for any Q′, |ψ′〉 such that P ‖ Q′ is typed and

fq(Q′) ⊆ ω′2, ([p̃q̃′ 7→ |φ〉|ψ′〉];ω1, ω
′
2;P ‖ Q′) α−→ �i pi•([p̃′q̃′ 7→ |φi〉|ψ′〉];ω′1, ω′2;Pi ‖ Q′).

Proof. The derivation of the transition using L-Par gives ([p̃q̃ 7→ |φ〉|ψ〉];ω1, ω2;P) −→
�i pi • ([p̃′q̃ 7→ |φi〉|ψ〉];ω′1, ω2;Pi) hence for any Q′ we obtain

([p̃q̃ 7→ |φ〉|ψ〉];ω1, ω2;P ‖ Q′) −→ �i pi • ([p̃′q̃ 7→ |φi〉|ψ〉];ω′1, ω2;Pi ‖ Q′)

The next condition (∀|ψ′〉) is proved by induction on the derivation of the transi-

tion. We consider the cases that alter the quantum state; the rest are straightforward.

L-Qbit: We have the transition ([p̃q̃ 7→ |φ〉|ψ〉];ω1, ω2;P ‖ Q)
τ−→ ([p̃pq̃ 7→

|φ′〉|ψ〉];ω′1, ω2;P ′ ‖ Q) where ω′1 = ω1, p. Similarly, we also have the transition

([p̃q̃′ 7→ |φ〉|ψ′〉];ω1, ω
′
2;P ‖ Q)

τ−→ ([p̃pq̃′ 7→ |φ′〉|ψ′〉];ω′1, ω′2;P ′ ‖ Q) where ω′1 =

ω1, p.

R-Trans: We have ([p̃q̃ 7→ |φ〉|ψ〉];ω1, ω2; r̃ ∗= Um) −→v (σ′;ω1, ω2; unit) where

typing gives r̃ ⊆ p̃ therefore σ′ = [r̃s̃q̃ 7→ |φ′〉|ψ〉] and |φ′〉 = (Um ⊗ Is̃)|φ〉. Because

the identity transformation is applied to the rest of the qubits, we have ([p̃q̃′ 7→
|φ〉|ψ′〉];ω1, ω

′
2; r̃ ∗= Um) −→v (σ′′;ω1, ω

′
2; unit) where σ′′ = [r̃s̃q̃′ 7→ |φ′〉|ψ′〉] and

|φ′〉 = (Um ⊗ Is̃)|φ〉.

66

3.4. CONGRUENCE PROPERTIES

R-Measure: We have ([p̃q̃ 7→ |φ〉|ψ〉];ω1, ω2;measure r̃) −→v �i pi•(σi;ω1, ω2; i).

The typing derivation gives r̃ ⊆ p̃ therefore σi = [p̃q̃ 7→ |φi〉|ψ〉]. Similarly if ([p̃q̃′ 7→
|φ〉|ψ′〉];ω1, ω2;measure r̃) −→v �i pi • (σi;ω1, ω2; i) then σi = [p̃q̃′ 7→ |φi〉|ψ′〉].

Lemma 3.30 (Quantum state in D1). If Γ; ∅ ` Q and σ = [r̃ 7→ |φ〉] and (σ; ∅;Q) =⇒
(σ′;ω;Q′) then there exists q̃ and |ψ〉 such that σ′ = [r̃q̃ 7→ |φ〉|ψ〉] and ∀|φ′〉.([r̃′ 7→
|φ′〉]; ∅;Q) =⇒ ([r̃′q̃ 7→ |φ′〉|ψ〉];ω;Q′) and Γ; q̃ ` Q′.

Proof. By induction on the length of the sequence of transitions. We have (σn;ωn;Qn)
τ−→

(σn+1;ωn+1;Qn+1). The inductive hypothesis gives σn = [r̃q̃n 7→ |φ〉|ψn〉] and

Γ; q̃n ` Qn and ∀|φ′〉.(([r̃′ 7→ |φ′〉]; ∅;Q) =⇒ ([r̃′q̃n 7→ |φ′〉|ψn〉];ωn;Qn)). Lemma

3.28 gives σn+1 = [r̃q̃n+1 7→ |φ〉|ψn+1〉] and Γ; q̃n+1 ` Qn+1. Lemma 3.29 gives

∀|φ′〉.(([r̃′q̃n 7→ |φ′〉|ψn〉];ωn;Qn)
τ−→ ([r̃′q̃n+1 7→ |φ′〉|ψn+1〉];ωn+1;Qn+1)).

Lemma 3.31 (Input matching for D1(σ,R, c̃)). If s ∈ Γ1(σ,R, c̃) and σ = [r̃p 7→
|φ0〉|0〉+ |φ1〉|1〉] and c /∈ c̃ and p /∈ fq(R) then there exist s′, s′′ such that s =⇒ s′

c?[p]−→
s′′ and ρp =

∑
i,j∈{0,1}〈φi|φj〉|i〉〈j| and s′ ∈ D1(σ,R, c̃) and s′′ ∈ D2(σ,R, c̃).

Proof. Let s = (σ1;ω1, ωr; (νc̃)(Q1 ‖ R)) ∈ D1(σ,R, c̃). Then there exists a configura-

tion t = (σ1;ω1;Q1) such that (σ; ∅;Q) =⇒ t. Lemma 3.25 gives (σ; ∅; QChannel) - t,

therefore there exist configurations t′ = (σ′1;ω′1;Q′1) and t′′ = (σ′′1 ;ω′′1 ;Q′′1) such

that t =⇒ t′
c?[p]−→ t′′ and ρp =

∑
i,j∈{0,1}〈φi|φj〉|i〉〈j|. Using L-Par and L-Res

and Lemma 3.29 on each transition in the sequence we obtain the required se-

quence of transitions s =⇒ s′
c?[p]−→ s′′ where s′ = (σ′1;ω′1, ωr; (νc̃)(Q′1 ‖ R)) and

s′′ = (σ′′1 ;ω′′1 , ωr; (νc̃)(Q′′1 ‖ R)). By definition we have s′ ∈ D1(σ,R, c̃) and s′′ ∈
D2(σ,R, c̃).

We now prove a similar result, this time for the state of the output qubit from

D2(σ,R, c̃).

Lemma 3.32 (Quantum state in D2). If Γ; ∅ ` Q and σ = [r̃p 7→ |φ0〉|0〉+|φ1〉|1〉] and

(σ; ∅;Q)
c?[p]
=⇒ (σ′;ω′;Q′) then there exists |ψ0〉, |ψ1〉 such that σ′ = [r̃q̃ 7→ |φ0〉|ψ0〉 +

|φ1〉|ψ1〉] and Γ; q̃ ` Q′ and ∀|φ′0〉, |φ′1〉.(([r̃′ 7→ |φ′0〉|0〉 + |φ′1〉|1〉]; ∅;Q)
c?[p]
=⇒ ([r̃′q̃ 7→

|φ′0〉|ψ0〉+ |φ′1〉|ψ1〉];ω′;Q′)).

Proof. By induction on the length of the final sequence of τ -transitions. Base case:

If (σ; ∅;Q) =⇒ (σ0;ω0;Q0)
c?[p]−→ (σ1;ω, p;Q1) then Lemma 3.30 gives |ψ0〉 such that

σ0 = [r̃pq̃ 7→ (|φ0〉|0〉 + |φ1〉|0〉)|ψ0〉] and Γ; q̃ ` Q0. Let |ψ00〉 = |0〉|ψ0〉 and |ψ01〉 =

|1〉|ψ0〉 then σ1 = σ0 = [r̃pq̃ 7→ |φ0〉|ψ00〉+ |φ1〉|ψ01〉]. Theorem 3.14 gives Γ; p, q̃ ` Q1.

Inductive step: We have (σn;ωn;Qn)
τ−→ (σn+1;ωn+1;Qn+1). The inductive hy-

pothesis gives σn = [r̃q̃n 7→ |φ0〉|ψn0〉+|φ1〉|ψn1〉] and Γ; q̃n ` Qn and ∀|φ′0〉, |φ′1〉.(([r̃′ 7→
|φ′0〉|0〉+|φ′1〉|1〉]; ∅;Q) =⇒ ([r̃′q̃n 7→ |φ′0〉|ψn0〉+|φ′1〉|ψn1〉];ωn;Qn). Lemma 3.28 gives

σn+1 = [r̃q̃n+1 7→ |φ0〉|ψn+1,0〉+ |φ1〉|ψn+1,1〉] and Γ; q̃n+1 ` Qn+1. Lemma 3.29 gives

67

3.4. CONGRUENCE PROPERTIES

∀|φ′0〉, |φ′1〉.(([r̃′q̃n 7→ |φ′0〉|ψn0〉 + |φ′1〉|ψn1〉];ωn;Qn)
τ−→ ([r̃′q̃n+1 7→ |φ′0〉|ψn+1,0〉 +

|φ′1〉|ψn+1,1〉];ωn+1;Qn+1)).

Lemma 3.33 (Output from D2(σ,R, c̃)). If s ∈ D2(σ,R, c̃) and σ = [r̃p 7→ |φ0〉|0〉+
|φ1〉|1〉] and c /∈ c̃ then there exist s′, s′′ such that s =⇒ s′

d![q]−→ s′′ and s′ ∈ D2(σ,R, c̃)

and s′′ ∈ D3(σ,R, c̃) and ρq =
∑
i,j∈{0,1}〈φi|φj〉|i〉〈j|.

Proof. Let s = (σ1;ω1, ωr; (νc̃)(Q1 ‖ R)). Then there exists a configuration t =

(σ1;ω1;Q1) such that (σ; ∅;Q)
c?[p]
=⇒ t where Q - QChannel . Then Lemma 3.26

gives (σ; ∅; d![p].0) - t, therefore there exist configurations t′ = (σ′1;ω′1;Q′1) and

t′′ = (σ′′1 ;ω′′1 ;Q′′1) such that t =⇒ t′
d![q]−→ t′′ and ρq =

∑
i,j∈{0,1}〈φi|φj〉|i〉〈j|. Using

L-Par and L-Res we obtain the required sequence of transitions s =⇒ s′
d![p]−→ s′′

where s′ = (σ′s;ω
′
s, ωr; (νc̃)(Q′s ‖ R) and s′′ = (σ′′s ;ω′′s , ωr; (νc̃)(Q′′s ‖ R)). By definition

we have s′ ∈ D2(σ,R, c̃) and s′′ ∈ D3(σ,R, c̃).

Lastly, Lemma 3.34 proves that the quantum state for configurations in D3(σ,R, c̃)

is of the form [r̃q̃ 7→ |φ〉|ψ〉].

Lemma 3.34 (Quantum state in D3(σ,R, c̃)). If Γ; q̃ ` Q and σ = [r̃ 7→ |φ〉] and

(σ; ∅;Q)
c?[p]
=⇒d![x]

=⇒ (σ′;ω′;Q′) then there exists |ψ〉 such that σ′ = [r̃q̃ 7→ |φ〉|ψ〉] and

Γ; q̃ ` Q′ and ∀|φ′〉.(([r̃′ 7→ |φ′〉]; ∅;Q)
c?[p]
=⇒d![x]

=⇒ ([r̃′q̃ 7→ |φ′〉|ψ〉];ω′;Q′)).

Proof. By induction on the length of the final sequence of τ -transitions. We have

(σ; ∅;Q)
c?[p]
=⇒ (σ′;ω′;Q′)

d![q]−→ (σ1;ω1;Q1) =⇒ (σn;ωn;Qn).

Base case: Let |φ〉 = |φ0〉|0〉+ |φ1〉|1〉 then (by Lemma 3.32) there exist |ψ0〉, |ψ1〉
such that σ′ = [r̃q̃ 7→ |φ0〉|ψ0〉+ |φ1〉|ψ1〉] and Γ; q̃ ` Q′. Let |ψ0〉 = |ψ00〉|0〉+ |ψ01〉|1〉
and |ψ1〉 = |ψ10〉|0〉 + |ψ11〉|1〉 then σ1 = σ′ = [r̃xq̃′ 7→ |φ0〉(|0〉|ψ00〉 + |1〉|ψ01〉) +

|φ1〉(|0〉|ψ10〉+ |1〉|ψ11〉)]. Then

ρx =(〈φ0|φ0〉〈ψ00|ψ00〉+ 〈φ0|φ1〉〈ψ00|ψ10〉+ 〈φ1|φ0〉〈ψ10|ψ00〉+ 〈φ1|φ1〉〈ψ10|ψ10〉)|0〉〈0|

+(〈φ0|φ0〉〈ψ00|ψ01〉+ 〈φ0|φ1〉〈ψ00|ψ11〉+ 〈φ1|φ0〉〈ψ10|ψ01〉+ 〈φ1|φ1〉〈ψ10|ψ11〉)|0〉〈1|

+(〈φ0|φ0〉〈ψ01|ψ00〉+ 〈φ0|φ1〉〈ψ01|ψ10〉+ 〈φ1|φ0〉〈ψ11|ψ00〉+ 〈φ1|φ1〉〈ψ11|ψ10〉)|1〉〈0|

+(〈φ0|φ0〉〈ψ01|ψ01〉+ 〈φ0|φ1〉〈ψ01|ψ11〉+ 〈φ1|φ0〉〈ψ11|ψ01〉+ 〈φ1|φ1〉〈ψ11|ψ11〉)|1〉〈1|

Lemma 3.33 gives ρx =
∑
i,j∈{0,1}〈φi|φj〉|i〉〈j| therefore by comparison of coefficients

we obtain

〈ψ00|ψ00〉 = 〈ψ00|ψ11〉 = 〈ψ11|ψ00〉 = 〈ψ11|ψ11〉 = 1

and

〈ψ10|ψ10〉 = 〈ψ01|ψ01〉 = 0

Therefore

|ψ00〉 = |ψ11〉 and |ψ01〉 = |ψ10〉 = 0

68

3.4. CONGRUENCE PROPERTIES

So [r̃xq̃′ 7→ (|φ0〉|0〉 + |φ1〉|1〉)|ψ00〉 = |φ〉|ψ00〉]. A similar argument shows that

∀|φ′〉.(([r̃′ 7→ |φ′〉]; ∅;Q)
c?[p]
=⇒d![x]−→ ([r̃′q̃ 7→ |φ′〉|ψ00〉];ω1;Q1). It follows from Theorem

3.14 that Γ; q̃′ ` Q1.

Inductive step: We have (σn;ωn;Qn)
τ−→ (σn+1;ωn+1;Qn+1). The inductive hy-

pothesis gives σn = [r̃q̃n 7→ |φ〉|ψn〉] and Γ; q̃n ` Qn and ∀|φ′〉.(([r̃′ 7→ |φ′〉]; ∅;Q)
c?[p]
=⇒d![p]

=⇒
([r̃′q̃n 7→ |φ′〉|ψn〉];ωn;Qn). Lemma 3.28 gives σn+1 = [r̃q̃n+1 7→ |φ〉|ψn+1〉] and

Γ; q̃n+1 ` Qn+1. Lemma 3.29 gives for all |φ′〉

(([r̃′q̃n 7→ |φ′〉|ψn〉];ωn;Qn)
τ−→ ([r̃′q̃n+1 7→ |φ′〉|ψn+1〉];ωn+1;Qn+1)) .

We now work towards proving Theorem 3.39 by first proving that the equivalence

relation defined by the classes D3(σ,R, c̃) is a bisimulation. Then we build the equiv-

alence relation in stages by including configurations in the classes D2(σ,R, c̃), and so

on until we have the complete equivalence relation as defined in Definition 3.9.

Lemma 3.35. Let R be an equivalence relation defined by the equivalence classes

D3(σ,R, c̃). Then R is a bisimulation.

Proof. By case analysis of the possible transitions. Let s = (σ′;ω′, ωr; (νc̃)(R ‖ Q′)) ∈
D3(σ,R, c̃) and σ = [r̃ 7→ |φ〉] then (Lemma 3.34) there exists |ψ〉 such that σ′ = [r̃q̃ 7→
|φ〉|ψ〉] and ω′ = q̃, ωr and Γ; q̃ ` Q′.

1. Internal transition by Q′: If s
τ−→ s′ where s′ = �i pi •(σi;ω

′′, ωr; (νc̃)(R ‖ Qi))
then the derivation (by L-Res and L-Par) has the hypothesis (σ′;ω′, ωr;Q

′)
τ−→

�i pi • (σi;ω
′′, ωr;Qi). Lemma 3.22 gives (σ′;ω′;Q′)

τ−→ �i pi • (σi;ω
′′;Qi)

therefore s′ ∈ D3(σ,R, c̃). For any t ∈ D3(σ,R, c̃) let t = t′ = t′′ then

t =⇒ t′
τ−→

+
t′′ and (s, t′), (s′, t′′) ∈ R.

2. Probabilistic transition by Q′: If si = (σi;ω
′, ωr; (νc̃)(R ‖ Qi)) and s = �i pi•si

then we have (σ; ∅;Q)
c?[p]
=⇒d![x]

=⇒ �i pi • (σi;ω
′;Qi). We have �i pi • (σi;ω

′;Qi)
pi

(σi;ω
′;Qi) therefore ∀i.(si ∈ D3(σ,R, c̃)) and µ(s,D3(σ,R, c̃)) = 1. Similarly

for any t ∈ Sp ∩D3(σ,R, c̃) we have µ(t,D3(σ,R, c̃)) = 1 and furthermore, for

any u ∈ Sn ∩D3(σ,R, c̃) we have by definition µ(u,D3(σ,R, c̃)) = 1.

3. Action by R: If s′ = (σ′′;ω′, ω′r; (νc̃)(R′ ‖ Q′)) and s
α−→ s′ then (Lemma 3.28)

σ′′ = [r̃′q̃ 7→ |φ′〉|ψ〉]. Using Lemma 3.29, for any P ′, |ψ′〉 we have t = ([r̃q̃′ 7→
|φ〉|ψ′〉];ω′′, ωr; (νc̃)(R ‖ P ′)) and t′ = ([r̃′q̃′ 7→ |φ′〉|ψ′〉];ω′′, ω′r; (νc̃)(R′ ‖ P ′))
and t

α−→ t′. s, t ∈ D3(σ,R, c̃) gives ([r̃ 7→ |φ〉]; ∅;Q)
c?[p]
=⇒d![x]

=⇒ ([r̃q̃ 7→ |φ〉|ψ〉];ω′;Q′)
and ([r̃ 7→ |φ〉]; ∅;P)

c?[p]
=⇒d![x]

=⇒ ([r̃q̃ 7→ |φ〉|ψ〉];ω′;P ′) and ΓR;ωr ` R and Γ1; Σ1 `
R ‖ Q and Γ2; Σ2 ` R ‖ P . Lemma 3.29 gives ΓR;ω′r ` R′ and Theorem 3.14

gives Γ1; Σ1 ` R′ ‖ Q and Γ2; Σ′2 ` R′ ‖ P . Therefore s′, t′ ∈ D3(σ,R′, c̃).

69

3.4. CONGRUENCE PROPERTIES

4. Probabilistic transition by R: For any s ∈ D3({(pi, σi, Ri)}, c̃) then we have

µ(s,D3(σi, Ri, c̃)) = pi.

Lemma 3.36. The equivalence relation R consisting of the equivalence classes

D3(σ,R, c̃) ∪D2(σ,R, c̃) is a bisimulation.

Proof. By case analysis of the possible transitions.

1. Internal transition by Q′: For s = (σ′;ω, ωr; (νc̃)(R ‖ Q′)) we have (σ; ∅;Q)
c?[p]
=⇒

(σ′;ω;Q′). If s
τ−→ s′ where s′ = �i pi • (σi;ω

′, ωr; (νc̃)(R ‖ Qi)) then the

derivation (L-Res and L-Par) gives (σ′;ω, ωr;Q
′)

τ−→ �i pi • (σi;ω
′, ωr;Qi).

Theorem 3.14 gives Γ;ω ` Q′ and Lemma 3.22 gives (σ′;ω;Q′)
τ−→ �i pi •

(σi;ω
′;Qi). Therefore s′ ∈ D2(σ,R, c̃). For any t ∈ D2(σ,R, c̃) let t′ = t′′ = t

then t =⇒ t′
τ−→

+
t′′ and (s, t), (s′, t′′) ∈ R.

2. Output by Q′: If σ = [r̃p 7→ |φ0〉|0〉 = |φ1〉|1〉] and s
d![q]−→ s′ then Lemma 3.33

gives s′ ∈ D3(σ,R, c̃) and ρq =
∑
i,j∈{0,1}〈φi|φj〉|i〉〈j| and for any t ∈ D2(σ,R, c̃)

there exists t′ ∈ D2(σ,R, c̃) and t′′ ∈ D3(σ,R, c̃) such that t =⇒ t′
d![x]−→ and

ρx =
∑
i,j∈{0,1}〈φi|φj〉|i〉〈j|.

3. Communication betweenR andQ′: Let s = (σ1;ω1, q, ωr; (νc̃)(R ‖Q1)) and s′ =

(σ1;ω1, q, ωr; (νc̃)(R′ ‖ Q′1)) then the derivation of the transition s
τ−→ s′ has

the hypotheses (σ1;ω1, ωr;R)
d?[q]−→ (σ1;ω1, q, ωr;R

′) and (σ1;ω1, q, ωr;P)
d![q]−→

(σ1;ω1, ωr;P
′). Lemma 3.33 gives for any t ∈ D2(σ,R, c̃) there exists t′, t′′ such

that t =⇒ t′
d![q]−→ t′′ and t′ ∈ D2(σ,R, c̃) and t′′ ∈ D3(σ,R, c̃). The transition

t′
d![q]−→ t′′ has the hypothesis (σ2;ω2, q, ωr;Q2)

d![q]−→ (σ2;ω2, ωr;Q
′
2). Lemma 3.29

gives (σ2;ω2, ωr;R)
d?[q]−→ (σ2;ω2, q, ωr;R

′) therefore (by L-Com and L-Res)

(σ2;ω2, q, ωr; (νc̃)(R ‖ Q2))
τ−→ (σ2;ω2, q, ωr; (νc̃)(R′ ‖ Q′2)). Furthermore we

have (Theorem 3.14) Q ‖ R′ is typed and (by Lemma 3.22) (σ2;ω2, q;Q2)
d![q]−→

(σ2;ω2;Q′2). Therefore (σ; ∅;Q)
c?[p]
=⇒d![q]

=⇒ (σ2;ω2;Q′2) gives t′′ ∈ D3(σ,R′, c̃).

4. Probabilistic transition by Q′: If si = (σi;ω, ωr; (νc̃)(R ‖ Qi)) and s = �i pi •si
then we have (σ; ∅;Q)

c?[p]
=⇒ �i pi•(σi;ω;Qi). Now �i pi•(σi;ω;Qi)

pi (σi;ω;Qi)

therefore ∀i.(si ∈ D2(σ,R, c̃)) so µ(s,D2(σ,R, c̃)) = 1. Similarly for any t ∈
Sp ∩ D2(σ,R, c̃) we have µ(t,D2(σ,R, c̃)) = 1 and by definition, for any u ∈
Sn ∩D2(σ,R, c̃) we have µ(u,D2(σ,R, c̃)) = 1.

5. Action by R: If s = ([r̃q̃ 7→ |φ0〉|ψ0〉 + |φ1〉|ψ1〉];ω, ωr; (νc̃)(R ‖ Q′)) and s′ =

([r̃′q̃ 7→ |φ′0〉|ψ0〉+|φ′1〉|ψ1〉];ω, ω′r; (νc̃)(R′ ‖Q′)) and s
α−→ s′ then (Lemma 3.29)

for anyQ′′ and |ψ′i〉 we have t = ([r̃q̃′ 7→ |φ0〉|ψ′0〉+|φ1〉|ψ′1〉];ω′, ωr; (νc̃)(R ‖Q′′))

70

3.4. CONGRUENCE PROPERTIES

and t′ = ([r̃′q̃′ 7→ |φ′0〉|ψ′0〉 + |φ′1〉|ψ′1〉];ω′, ω′r; (νc̃)(R′ ‖ Q′′)) and t
α−→ t′. Be-

cause s, t ∈ D2(σ,R, c̃), we have ([r̃ 7→ |φ0〉|0〉 + |φ1〉|1〉]; ∅;Q)
c?[p]
=⇒ ([r̃q̃ 7→

|φ0〉|ψ0〉+|φ1〉|ψ1〉];ω;Q′) and ([r̃ 7→ |φ0〉|0〉+|φ1〉|1〉]; ∅;Q)
c?[p]
=⇒ ([r̃q̃ 7→ |φ0〉|ψ′0〉+

|φ1〉|ψ′1〉];ω;Q′′) and Γ;ωr ` R ‖ Q. Lemma 3.29 and Theorem 3.14 gives

Γ;ω′r ` R′ ‖ Q. Therefore s′, t′ ∈ D2([r̃′ 7→ |φ0〉|0〉+ |φ1〉|1〉], R′, c̃).

6. Probabilistic transition by R: If s ∈ D2({pi, σi, Ri}, c̃) then µ(s,D2(σi, Ri, c̃)) =

pi.

Lemma 3.37. The equivalence relation R consisting of the equivalence classes

D3(σ,R, c̃) ∪D2(σ,R, c̃) ∪D1(σ,R, c̃) is a bisimulation.

Proof. By case analysis of the possible transitions. We prove that given each transition

all other configurations are able to match it.

1. Internal transition by Q′: For s = (σ′;ω, ωr; (νc̃)(R ‖ Q′)) we have (σ; ∅;Q) =⇒
(σ′;ω;Q′). If s

τ−→ s′ where s′ = �i pi • (σi;ω
′, ωr; (νc̃)(R ‖ Qi)) then the

derivation gives (σ′;ω, ωr;Q) =⇒ �i pi • (σi;ω
′, ωr;Qi). By Lemma 3.22 we

have (σ′;ω;Q) =⇒ �i pi • (σi;ω
′;Qi). Therefore s′ ∈ D1(σ,R, c̃). For all

u ∈ D1(σ,R, c̃) let t′ = t′′ = t then t =⇒ t′ −→+ t′′ and (s, t′), (s′, t′′) ∈ R.

2. Input by Q′: If s
c?[p]−→ s′ then the matching transition follows from Lemma 3.31.

3. Communication between R and Q′: Let s = (σ1;ω1, ωr, p; (νc̃)R ‖ Q1) and s′ =

(σ1;ω1, ωr, p; (νc̃)R′ ‖ Q′1), then the derivation (L-Res and L-Com) of the tran-

sition s
τ−→ s′ must contain the hypotheses (σ1;ω1, ωr, p;R)

c![p]−→ (σ1;ω1, ωr;R
′)

and (σ1;ω1, ωr;Q1)
c?[p]−→ (σ1;ω, ωr, p;Q

′
1). We have Γ;ω1 ` Q1 (Lemma 3.30)

therefore by Lemma 3.22 we have (σ1;ω1;Q1)
c?[p]−→ (σ1;ω1, p;Q

′
1). For any

t ∈ D1(σ,R, c̃) we have t = (σ2;ω2, ωr, p; (νc̃)(R ‖ Q2)) and (by Lemma 3.25)

(σ1;ω1;Q1) - (σ2;ω2;Q2). Therefore we have a sequence (σ2;ω2;Q2) =⇒
(σ′2;ω′2;Q′2)

c?[p]−→ (σ′′2 ;ω′′2 ;Q′′2). Using Lemma 3.21 then L-Par and L-Res

gives t′ = (σ′2;ω′2, ωr, p; (νc̃)(R ‖ Q′2)) and t =⇒ t′. Then L-Com and L-Res

give t′′ = (σ′′2 ;ω′′2 , ωr, p; (νc̃)(R′ ‖ Q′2)) and t′
c?[p]−→ t′′. By definition we have

t′ ∈ D1(σ,R, c̃). There exists P and Q such that (σ; ∅;Q) =⇒ (σ1;ω1;Q1) and

(σ; ∅;P) =⇒ (σ2;ω2;Q2) therefore Theorem 3.14 gives Γ1; Σ1 ` R′ ‖ Q and

Γ2; Σ2 ` R′ ‖ P , hence s′, t′′ ∈ D2(σ,R′, c̃).

4. Probabilistic transition by Q′: If si = [r̃q̃ 7→ |π〉|φi〉];ω, ωr; (νc̃)R ‖ Q′i) and

s = �i pi • si then we have (σ; ∅;Q) =⇒ �i pi • (σi;ω;Qi). Now �i pi •
(σi;ω;Qi)

pi (σi;ω;Qi) therefore ∀i.(si ∈ D1(σ,R, c̃)) so µ(s,D1(σ,R, c̃)) = 1.

71

3.4. CONGRUENCE PROPERTIES

Similarly for any t ∈ Sp ∩ D1(σ,R, c̃) we have µ(t,D1(σ,R, c̃)) = 1 and by

definition, for any u ∈ Sn ∩D1(σ,R, c̃) we have µ(u,D1(σ,R, c̃)) = 1.

5. Action by R: If s = ([r̃q̃ 7→ |φ〉|ψ〉];ω, ωr; (νc̃)(R ‖ Q′)) and s
α−→ s′ and

s′ = ([r̃′q̃ 7→ |φ′〉|ψ〉];ω, ω′r; (νc̃)(R′ ‖ Q′)) then (Lemma 3.29) for any Q′′ and

|ψ′〉 we have t = ([r̃q̃′ 7→ |φ〉|ψ′〉];ω′, ωr; (νc̃)(R ‖ Q′′)) and t
α−→ t′ and t′ =

([r̃′q̃′ 7→ |φ′〉|ψ′〉];ω′, ω′r; (νc̃)(R′ ‖ Q′′)). Because s, t ∈ D1([r̃ 7→ |φ〉], R, c̃), we

have ([r̃ 7→ |φ〉]; ∅;Q) =⇒ ([r̃q̃ 7→ |φ〉|ψ〉];ω;Q′) (respectively for Q′′). Theorem

3.14 gives Γ; Σ ` R′ ‖ Q. Therefore s′, t′ ∈ D1([r̃′ 7→ |φ′〉], R′, c̃).

6. Probabilistic transition by R: For any s ∈ D1({pi, σi, Ri}, c̃), by definition, we

have µ(s,D1(σi, Ri, c̃)) = pi.

Lemma 3.38. Let s = (σ;ω;C[P]) and t = (σ;ω;C[Q]) where s, t ∈ D0(1, σ, C). If

s
α−→ s′ then either there exists Ci, κ, σi, ω

′ such that s′ = �i pi • (σi;ω
′;Ci[Pκ] and

t′ = �i pi • (σi;ω
′;Ci[Qκ]) and t

α−→ t′, or t
α−→ t′ and s′ = t′.

Proof. By induction on the derivation of s
α−→ s′.

L-Out: We have C = c![ṽ, q̃].C ′, then (σ;ω, q̃;C[P])
c![ṽ,q̃]−→ (σ;ω;C ′[P]) and

(σ;ω, q̃;C[Q])
c![ṽ,q̃]−→ (σ;ω;C ′[Q]).

L-In: We have C = c?[x̃].C ′. Then we have (σ;ω;C[P])
c?[ṽ,q̃]−→ (σ;ω, q̃;C ′′[Pκ])

and (σ;ω;C[Q])
c?[ṽ,q̃]−→ (σ;ω, q̃;C ′′[Qκ]) where C ′′ = C ′κ.

L-Com: There are three cases. Suppose C = c![ṽ].R1 ‖ c?[x̃].R2 ‖ C ′ then we have

the transitions (σ;ω;C[P])
τ−→ (σ;ω;C ′′[P]) and (σ;ω;C[Q])

τ−→ (σ;ω;C ′′[Q]) where

C ′′ = R1 ‖ R2{ṽ/x̃} ‖ C ′. Suppose C = c![ṽ].C ′ ‖ c?[x̃].R1 ‖ R2 then (σ;ω;C[P])
τ−→

(σ;ω;C ′′[P]) and (σ;ω;C[Q])
τ−→ (σ;ω;C ′′[Q]) where C ′′ = C ′ ‖ R1 ‖ R2. Suppose

C = c![ṽ, q̃].R1 ‖ c?[x̃].C ′ ‖R2 then (σ;ω;C[P])
τ−→ (σ;ω;C ′′[Pκ]) and (σ;ω;C[Q])

τ−→
(σ;ω;C ′′[Qκ]) where κ = {ṽ/x̃} and C ′′ = R1 ‖ C ′κ ‖ R2.

L-Sum: We have C = C ′+R where C ′ is not empty. If (σ;ω;R)
α−→ (σ′ω′;R′) then

(by L-Sum) we have (σ;ω;C[P])
α−→ (σ′;ω′;R′) and (σ;ω;C[Q])

α−→ (σ′;ω′;R′). The

induction hypothesis gives (σ;ω;C ′[P])
α′−→ (σ′′;ω′′;C ′′[Pκ]) and (σ;ω;C ′[Q])

α′−→
(σ′′;ω′′;C ′′[Qκ]) therefore (σ;ω;C[P])

α′−→ (σ′′;ω′′;C ′′[Pκ]) and (σ;ω;C[Q])
α′−→

(σ′′;ω′′;C ′′[Qκ]),

L-Par: We have C = C ′ ‖ R where C ′ is not empty C ′ 6= (νc)[]. Then

(σ;ω;C[P])
α−→ (σ′;ω′;C ′′[Pκ]) has the hypothesis (σ;ω;C ′[P])

α−→ (σ′;ω′;C ′′′[Pκ])

where C ′′ = C ′′′ ‖R. The inductive hypothesis gives (σ;ω;C ′[Q])
α−→ (σ′;ω′;C ′′′[Qκ])

therefore (σ;ω;C[Q])
α−→ (σ′;ω′;C ′′[Qκ]). We also have (σ;ω;C[P])

α′−→ (σ′′;ω′′;C ′′′′[P])

and (σ;ω;C[Q])
α′−→ (σ′′;ω′′;C ′′′′[Q]) where C ′′′′ = C ′ ‖ R′.

L-Res: We have C = (νc̃)C ′ where C ′ is not empty and C ′ 6= [] ‖ R. If

(σ;ω;C[P])
α−→ (σ′;ω′;C ′′[Pκ]) then we have (σ;ω;C ′[P])

α−→ (σ′;ω′;C ′′′[Pκ])

72

3.5. DISCUSSION

where C ′′ = (νc̃)C ′′′. Applying the inductive hypothesis and L-Res gives (σ;ω;C[Q])
α−→

(σ′;ω′;C ′′[Qκ]).

L-Qbit: We have C = (qbit x)C ′. If (σ;ω;C[P])
τ−→ (σ′;ω, q;C ′κ[Pκ]) where

κ = {q/x} then (σ;ω;C[Q])
τ−→ (σ′;ω, q;C ′κ[Qκ]).

L-Expr: The transition (σ;ω;C[P])
τ−→ �i pi • (σi;ω;Ci[P]) has the hypothesis

(σ;ω; e)
τ−→ �i pi • (σi;ω; ei) where C[P] = F [e]. By case analysis of the structure

of F we find that P must appear complete in F , therefore Ci[P] = F [ei] and we

can replace P by Q to get F ′ such that C[Q] = F ′[e] and Ci[Q] = F ′[ei]. Therefore

(σ;ω;C[Q])
τ−→ �i pi • (σi;ω;Ci[Q]).

Theorem 3.39. If Γ ` Q and QChannel - Q, then for any context C such that

Γ ` C[QChannel] and Γ ` C[Q], C[QChannel] - C[Q].

Proof. Let R be an equivalence relation defined by the equivalence classes D0(σ,C),

D1(σ,R, c̃), D2(σ,R, c̃), and D3(σ,R, c̃).

If s, t ∈ D1(1, σ, C) then (by Lemma 3.38) if s = (σ;ω;C[P]) and t = (σ;ω;C[Q])

then s
α−→ s′ then t

α−→ t′ and either s′ = t′ or s′ = �i pi • (σi;ω
′;Ci[P])

and t′ = �i pi • (σi;ω
′;Ci[Q]). Because fv(QChannel) = ∅ we have ∀κ.(Qκ -

(QChannel)κ = QChannel). If s′ = t′ then (s′, t′) ∈ R. For a non-probabilistic state,

if Ci = (νc̃)([] ‖ Ri) then s′, t′ ∈ D1(σi, R, c̃). For a probabilistic state, if ∀i.(Ci =

(νc̃)([] ‖ Ri)) then s′, t′ ∈ D1({pi, σi, Ri}, c̃). Otherwise s′, t′ ∈ D0({(pi, σi, Ci)}).
Therefore (s′, t′) ∈ R.

If s, t ∈ D0({(pi, σi, Ci)}) then ∀i.(µ(s,D0(1, σi, Ci)) = pi = µ(t,D0(1, σi, Ci))).

3.5 Discussion

In this section, we present an analysis of the labelled transition system and the

probabilistic bisimilarity defined in this chapter. We worked towards proving that

quantum teleportation is bisimilar to a direct quantum channel. This equivalence is

well-motivated and is one that has been considered in other formalisms, for exam-

ple by Danos et al. [2007a]; D’Hondt [2005] and Abramsky and Coecke [2004]. The

result that the equivalence of teleportation and a quantum channel is preserved by

all contexts is in agreement with a similar result using measurement calculus [Danos

et al. 2007a]. Because CQP is designed to model arbitrary implementations of com-

munication protocols, the result is arguably stronger in this setting than it is for the

measurement calculus.

Preservation by all contexts is a highly desirable property for a process equivalence,

since it is the gateway to compositional analysis. Congruence relations have been

sought by Lalire [2006], Feng et al. [2006] and Ying et al. [2007], however they have

73

3.5. DISCUSSION

not been successful for general quantum processes. Lalire [2006] gives two reasons

that parallel preservation fails; the first is due to the control of names, which the

type system in CQP controls in a distributed manner, and the second is a result

of treating non-determinism as equi-probability. This second point is mitigated by

our choice of probabilistic function µ in the definition of bisimilarity, which separates

non-determinism from probabilistic transitions.

The equivalence defined in this chapter is not preserved by all contexts, as demon-

strated by Examples 3.2 and 3.3. The component-oriented approach to modelling

systems is illustrated by the processes in Example 3.2; the input action defines the

external interface of these processes, and the absence of any output action indicates

that these processes provide no output. The equivalence of these processes demon-

strates both the observational and abstract aspects of our bisimilarity, since only the

external state is considered relevant, while the internal behaviours are clearly differ-

ent. Example 3.3 gives a process context that, according to this bisimilarity, is able

to distinguish the processes of Example 3.2. Intuitively, it should not be possible to

distinguish the resulting processes because the observation of qubit q should not be

influenced by the possible Hadamard operation on qubit p. From this, we conclude

that the bisimilarity is too fine since it distinguishes processes that should be bisim-

ilar, and hence that there is an observational property of the processes in Example

3.3 that is not taken into account.

From a theoretical point of view, we may consider whether there is a stronger

relation that is preserved by parallel composition. Such a relation would necessarily

have to distinguish the processes in Example 3.2. However, as with any physical

theory, it is important to consider whether the theory accurately describes the reality.

Whilst an arbitrary congruence may be theoretically interesting, our aim is to develop

formal methods for practical quantum communication. We therefore consider the link

between the observations described by CQP and the mathematical theory of quantum

mechanics.

To analyse this link, let us consider the teleportation process from Figure 3.8.

In particular, we are interested in quantifying the information that Bob has about

the quantum state, directly before and after Alice makes her measurements. The

quantum state before the measurement is

[r̃pq1q2 7→
1

2
|φ0〉(|000〉+ |001〉+ |110〉− |111〉) +

1

2
|φ1〉(|100〉+ |101〉+ |010〉− |011〉)] .

After the measurement there are four possibilities corresponding to the possible mea-

surement outcomes. For example,

[r̃pq1q2 7→ |φ0〉|000〉+ |φ1〉|010〉] .

74

3.5. DISCUSSION

In these states, Bob owns the qubit q1, and it is this qubit that determines the

information he has about the quantum state. Specifically, we are considering Bob’s

ability to distinguish particular states; this ability is quantified by the reduced density

matrix of q1, ρq1 . This is the value that we would use in the bisimulation conditions,

if Bob were to output his qubit.

Before the measurement we calculate the reduced density matrix of q1 as

ρq1 =
1

2
(|0〉〈0|+ |1〉〈1|) .

However, after the measurement, in one of the possible scenarios we calculate

ρq1 = 〈φ0|φ0〉|0〉〈0|+ 〈φ0|φ1〉|0〉〈1|+ 〈φ1|φ0〉|1〉〈0|+ 〈φ1|φ1〉|1〉〈1| .

This implies that Bob is able to distinguish the quantum states occurring before and

after Alice’s measurements, using only his own qubit. In fact, this second calculation

gives the same reduced density matrix as the initial qubit that Alice received, indi-

cating that the state has been teleported. Given that Bob has not yet received the

measurement results from Alice, this would imply that faster-than-light communica-

tion had occurred.

In this instance, the observation of the quantum state determined by the CQP

semantics is not in agreement with quantum mechanics. The issue here is that, in

this one of four possibilities, we have neglected to consider the other three outcomes

that could have occurred. In order to take into account Bob’s uncertainty about

which particular outcome has been realised, we include all four possibilities, which

results in the mixed state

ρq1 =
1

2
(|0〉〈0|+ |1〉〈1|) .

This is identical to the reduced density matrix before Alice made the measurements,

indicating that Bob learns nothing from Alice’s action. This mixed state, from Bob’s

perspective, is exactly what the laws of quantum mechanics predicts.

This failure to consider all possibilities is a consequence of probabilistic branch-

ing. Each time a measurement occurs, one outcome is chosen probabilistically. This

inadvertently affects all processes, as this example with Bob demonstrates. In the

next chapter we discuss modifications to the semantics that respect the information

known to individual processes.

75

3.6. SUMMARY

3.6 Summary

We have undertaken an initial investigation into process equivalences for CQP pro-

cesses. This investigation has centered around the properties of quantum teleporta-

tion. Driven by the perceived equivalence of teleportation and a quantum channel,

the aim was to find a relation that identifies these respective processes.

In Section 3.1, we described the approach to modelling processes as components

with external interactions in a similar style to Lalire [2006]. This contrasts to the

closed system approach used in the original development of CQP [Gay and Nagarajan

2005]. In Section 3.1.2, we defined the operational semantics of CQP in terms of

a labelled transition system. This complements the reduction relation of Gay and

Nagarajan [2005], and provides the necessary rules to describe external interactions.

Soundness of the type system, as proved by Gay and Nagarajan [2006], is re-stated and

proved with respect to the labelled transition system in Section 3.1.3. This includes

type preservation (Theorem 3.14) and the unique ownership of qubits (Theorem 3.15)

which play a central role in Section 3.4.

A probabilistic branching bisimulation on configurations is defined in Section 3.2.1.

We extend this to a relation on processes and prove that the result is an equivalence

relation. In Section 3.3, we apply our probabilistic branching bisimilarity to quantum

teleportation, proving that it is bisimilar to a direct quantum channel. We also prove

that an alternative teleportation implementation and a qubit swap circuit are bisimilar

to the quantum channel, and therefore to each other.

In Section 3.4, we consider preservation of bisimilarity with respect to the oper-

ators of CQP. We prove that bisimilarity is preserved by prefix and choice, but is

not preserved by parallel composition. We prove, for the class of processes that are

bisimilar to the direct quantum channel, that bisimilarity is also preserved by parallel

composition.

We analyse the validity of the bisimilarity and the semantics in Section 3.5. In

particular, we find that the description of the quantum state using density matrices,

does not agree with the laws of quantum mechanics.

76

4
Congruence for Quantum

Processes

The theory of computation has traditionally been studied almost entirely

in the abstract, as a topic in pure mathematics. This is to miss the point

of it. Computers are physical objects, and computations are physical pro-

cesses. What computers can or cannot compute is determined by the laws

of physics alone, and not by pure mathematics.

— David Deutsch

Chapter 3 presented an initial attempt at considering process equivalence within

the CQP framework. The results highlighted a particularly important point; that the

implementation and interpretation of probabilistic branching is not compatible with

the theory of quantum mechanics.

The notion of behavioural equivalence is tightly integrated with the semantics of

the language, since it is the latter which determines the capabilities of a process.

The significant difference in the semantics presented in this chapter with respect to

previous approaches is in the treatment of quantum measurements. In Chapter 3, and

the previous work of Lalire [2006], a measurement results in a probabilistic distribution

of configurations of which one is chosen by a probabilistic transition. Probabilistic

branching is not used in qCCS, where instead the probabilistic information is retained

by using distributions throughout [Feng et al. 2006; Ying et al. 2007, 2009]. The overall

effect of these two approaches is that measurement is only considered at a single level

– the global level – with respect to the processes. When considering observational

equivalence this does not allow us to treat measurement as a local, or internal, action.

77

4.1. UNDERSTANDING MEASUREMENT

The aims of this chapter are twofold; to develop an accurate semantic model of

quantum processes with external interactions, and to develop a realistic notion of

observational equivalence. In Section 4.1, we discuss the observational properties of

measurement and the role it plays in process calculus. We describe how mixed states

should be used to describe the quantum state in specific scenarios, and we extend

the notion of mixed states to configurations. In Section 4.2, we define the semantics

for this radically new approach, and prove that the new transition relations preserve

typing.

Process equivalence is considered in Section 4.3. We update the definition of prob-

abilistic branching bisimilarity that was introduced in the previous chapter, adapting

the quantum state conditions to suit the new transition rules. The preservation prop-

erties of this relation are considered in Section 4.3.1, and we prove that it is preserved

by parallel composition. We then define full probabilistic branching bisimilarity and

prove that it is a congruence.

In Section 4.4, we analyse the teleportation protocol with respect to the new

semantic model and bisimilarity, and we are able to prove that it is congruent to its

specification. We also prove the correctness of a superdense coding protocol.

4.1 Understanding Measurement

Mixed states were introduced in Section 2.1.5. In this section, we discuss mixed states

in further detail, and their application to process calculus. In particular, we identify

the relevance of mixed states to observers, while pure states should be considered for

the process. In order to represent this distinction between observer and process, we

extend the concept of mixed states to a similar notion based on configurations; we

call this new concept a mixed configuration.

Mixed states provide the ability to represent classical uncertainty in the quantum

state, such that can arise from a measurement in which the outcome is unknown.

A mixed state is a probabilistic distribution, or ensemble, of pure states. Obtain-

ing further information about the measurement outcome will alter the probability

distribution, thereby resulting in a different mixed state. Indeed, such information

may remove all classical uncertainty, in which case the result is one of the component

pure states. It is important to note that although the mixed state may change, the

component quantum states remain constant because there is no associated quantum

operation.

Example 4.1. Consider a 2-qubit system in a state |ψ〉 = α|0〉+β|1〉⊗γ|0〉+δ|1〉. The

possible measurement outcomes and respective probabilities are given in the following

table.

78

4.1. UNDERSTANDING MEASUREMENT

State Probability

|00〉 |α|2|γ|2

|01〉 |α|2|δ|2

|10〉 |β|2|γ|2

|11〉 |β|2|δ|2

If the specific outcome is unknown, then we can describe the quantum state as a

probabilistic ensemble of these pure states. This mixed state is written as the density

matrix

ρ = |α|2|γ|2|00〉〈00|+ |α|2|δ|2|01〉〈01|+ |β|2|γ|2|10〉〈10|+ |β|2|δ|2|11〉〈11| .

If we discover that the first qubit is in state |0〉, then we can safely discount two of

the possibilities, leaving only |00〉 and |01〉. This new mixed state is described by the

density matrix

ρ′ = |γ|2|00〉〈00|+ |δ|2|01〉〈01| .

Further information may indicate that the second qubit is in state |1〉, which allows

us to isolate |01〉 as the only possible state; represented as a density matrix, this is

the pure state ρ′′ = |01〉〈01|. In each of these cases, the true quantum state has not

changed, but our information has.

4.1.1 Measurement and Process Calculus

In the previous chapter, a measurement resulted in a process branching to one of the

possible outcomes. This behaviour represents the assumption that, in a particular

branch, there is no classical uncertainty. In other words, the measurement outcome

is known for certain. Because branching occurs globally, then this knowledge must

also be available to any context or observer.

One of the primary features of process calculus is the ability to treat internal

behaviour abstractly. This principle does not fit perfectly with quantum mechanics,

since quantum operations such as measurement affect the global quantum state and

may therefore exhibit side effects. In particular, the combination of entanglement and

measurement means that the effects of a quantum operation can be witnessed outside

the target system. This is seen, for example, in the teleportation protocol, in which

a measurement by Alice affects the state of Bob’s qubit.

Let us return to the example of the teleportation protocol. During the execution

of the protocol, Alice measures the two qubits in her possession. If, before this

measurement, the state of the system was

|ψ〉 =
α

2
(|000〉+ |101〉+ |010〉 − |111〉) +

β√
2

(|100〉+ |110〉+ |001〉 − |011〉

79

4.1. UNDERSTANDING MEASUREMENT

where Alice has the first two qubits, then after the measurement there are four possible

outcomes:

|ψ0〉 = α|000〉+ β|001〉

|ψ1〉 = α|010〉 − β|011〉

|ψ2〉 = β|100〉+ α|101〉

|ψ3〉 = β|110〉 − α|111〉

each occurring with probability 1
4 . At this point, Alice knows which of the four states

the system is in; we can say this because the values that she will send to Bob depend

on the specific outcome. Meanwhile, Bob cannot be sure which of the four outcomes

has occurred; he now has classical uncertainty. The reduced density matrix of Bob’s

qubit before the measurement is

ρ =
1

2
(|α|2|0〉〈0|+ |β|2|0〉〈0|+ |α|2|1〉〈1|+ |β|2|1〉〈1|) .

After the measurement, taking into account the four possibilities and their respective

probabilities, we have

ρ′ =
1

4
|α|2|0〉〈0|+ α∗β|0〉〈1|+ β∗α|1〉〈0|+ |β|2|1〉〈1|

+
1

4
|α|2|0〉〈0| − α∗β|0〉〈1| − β∗α|1〉〈0|+ |β|2|1〉〈1|

+
1

4
|α|2|0〉〈0|+ α∗β|1〉〈0|+ β∗α|0〉〈1|+ |β|2|1〉〈1|

+
1

4
|α|2|0〉〈0|+ α∗β|1〉〈0| − β∗α|0〉〈1|+ |β|2|1〉〈1|

=
1

2
(|α|2|0〉〈0|+ |β|2|0〉〈0|+ |α|2|1〉〈1|+ |β|2|1〉〈1|) .

This is the same as before the measurement, and represents the fact that Bob gains

no information about the state of his qubit just by Alice measuring her qubits. The

protocol proceeds by Alice sending the measurement results to Bob, which allows him

to make the corrective operations in order to place his qubit in the state α|0〉+ β|1〉.
It is only upon receiving the measurement results from Alice that Bob can be sure

which of the four states his qubit is in. For example, if he receives the results 1, 0

from Alice, then the reduced density matrix of his qubit will be

ρ′′ = |β|2|0〉〈0|+ βα∗|0〉〈1|+ αβ∗|1〉〈0|+ |α|2|1〉〈1| .

It is important to realise that if Bob could distinguish the state of his qubit before

receiving the results from Alice, then it would be possible to complete the protocol

80

4.1. UNDERSTANDING MEASUREMENT

without the classical communication step. This would in fact mean that information

was transmitted purely through measurement and entanglement.

In CQP, information about measurement results is stored in values; Bob’s knowl-

edge about Alice’s measurements are described by the values that he receives. Signif-

icantly, these values are only sent to Bob, and therefore any other process, including

an external observer, has no information about the measurement.

So, what happens when an external observer receives a measurement result? An

external observer is essentially a possible context. If Bob were such a context for the

process Alice, then the effect of receiving the values from Alice is to select one of

four possible paths, because there is no longer any classical uncertainty. In process

calculus, this choice corresponds to branching behaviour because all other options are

discounted from this point. We can see from this that the branching does not occur

at the point of measurement (as previously assumed), but instead at the transfer of

values. Because we are considering an external observer, this transfer of values must

correspond to an output action (as opposed to internal communication). We now

consider how this information can be represented in CQP.

4.1.2 Mixed Configurations

It is not sufficient to include a mixed state in place of the state vector representation

in a configuration, because this would not be able to represent the respective mea-

surement values within the process. The solution we propose, is to use a probabilistic

distribution over the quantum state and the measurement values; the result is what

we shall call a mixed configuration. This is similar to the configuration distributions

used in qCCS, however the significant difference is in the way we shall treat output.

The central idea behind this approach is that the result of a quantum measurement

is known only locally to a process. This is illustrated in Example 4.2, in which

a mixed configuration results from a measurement. Each component of the mixed

configuration corresponds to the individual measurement outcomes, and the behaviour

of each component will be dependent only on its respective outcome. The overall state

of the system is still considered as a mixture of the two because the measurement

outcome is not known outside the process.

Example 4.2.

([q 7→ α|0〉+ β|1〉]; q; c![measure q].P)
τ−→ ⊕i∈{0,1} gi ([q 7→ |i〉]; q;λx.c![x].P ; i)

where g0 = |α|2 and g1 = |β|2.

Here, the expression on the left of
τ−→ is a pure configuration, consisting of a

quantum state [q 7→ α|0〉+β|1〉], a list of the qubits (just q) owned by the process, and

81

4.1. UNDERSTANDING MEASUREMENT

a process expression c![measure q].P which sends on channel c the result of measuring

qubit q, then behaves as P . On the right of
τ−→ we have a mixed configuration in

which the ⊕ ranges over the possible outcomes of the measurement. The quantum

state [q 7→ |i〉] corresponds to the measurement outcome. The expression λx.c![x].P

is not a λ-calculus function, but represents the fact that the components of the mixed

configuration have the same process structure and differ only in their values. The

final term in the configuration, i, shows how the abstracted variable x should be

instantiated in each component. So the mixed configuration expression is essentially

an abbreviation of

g0([q 7→ |0〉]; q; c![0].P{0/x})⊕ g1([q 7→ |1〉]; q; c![1].P{1/x}) .

If a measurement outcome is output then it becomes apparent to an observer which

of the possible states the system is in. This is represented by probabilistic branching,

after which we consider the system to be in one branch or the other — it is no longer

a mixture of the two. In Example 4.3 the intermediate configuration is a probability

distribution over pure configurations (in contrast to a mixed configuration; note the

change from ⊕ to �) from which there are two possible probabilistic transitions.

Example 4.3.

⊕i∈{0,1} gi ([q 7→ |i〉]; q;λx.c![x].P ; i)

�i∈{0,1} gi • ([q 7→ |i〉]; q;λx.P ; i)

([q 7→ |0〉]; q;λx.P ; 0)

g0

([q 7→ |1〉]; q;λx.P ; 1)

g1

c![{0, 1}]

Measurement outcomes may be communicated between processes without creating

a probability distribution. In these cases an observer must still consider the system

in a mixed configuration. In Example 4.4 there is no difference in process Q between

the two components of the mixed configuration. However, after communication, the

different possible values for x have been propagated to Q, so we include Q in the

abstraction.

82

4.2. CQP WITH MIXED CONFIGURATIONS

Example 4.4.

⊕i∈{0,1} gi ([q 7→ |i〉]; q;λx.c![x].P ‖ c?[y].Q; i)
τ−→ ⊕i∈{0,1} gi ([q 7→ |i〉]; q;λx.(P ‖ Q{x/y}); i)

4.2 CQP with Mixed Configurations

4.2.1 Semantics

We now give more formal definitions of the operational semantics and the configura-

tions used in it, before presenting a final example. A pure configuration has the same

form as the configurations presented in Chapter 3, that is a triple ([q̃ 7→ |ψ〉];ω;P).

A mixed configuration is a weighted distribution over pure configurations.

Definition 4.1 (Mixed Configuration). A mixed configuration is a weighted distri-

bution, written

⊕i∈I gi ([q̃ 7→ |ψi〉];ω;λx̃.P ; ṽi)

with weights gi where
∑
i∈I gi = 1 and for each i ∈ I, 0 < gi ≤ 1 and |ψi〉 ∈ H2|q̃|

and |ṽi| = |x̃|.

The operator ⊕ (not to be confused with � which represents probabilistic distri-

butions) represents a distribution over the index set I with weights gi. The process

term is replaced by the expression λx̃.P ; ṽi which indicates that in each component

the variables x̃, appearing in P as placeholders, should be substituted for the values

ṽi.

Although density operators do not appear explicitly in the definition, a mixed

configuration induces a mixed state from the ensemble of pure states |ψi〉 within

each component combined with the set of weights gi. In correspondence with the

observational properties of density operators, if two mixed configurations induce the

same density operator, then their quantum states will be indistinguishable.

We will also make use of an expanded notation for mixed configurations which

describes each pure component explicitly. The expansion E(s) of a mixed configuration

s is defined as:

E(⊕i∈I gi ([q̃ 7→ |ψi〉];ω;λx̃.P ; ṽi)) =

g1([q̃ 7→ |ψ1〉];ω;P{ṽ1/x̃})⊕ · · · ⊕ gn ([q̃ 7→ |ψn〉];ω;P{ṽn/x̃}) .

Although the expanded notation may be more convenient in many cases, the notation

of Definition 4.1 is authoritative because it explicitly states the requirement for iden-

tical process terms (up to substitution of values) and qubit names in each component.

83

4.2. CQP WITH MIXED CONFIGURATIONS

For example,

g1([q 7→ |ψ1〉];ω; {measure q}.0)⊕ g2 ([q 7→ |ψ2〉]; q; {q ∗= U}.0)

does not represent a valid mixed configuration. The expansion function E induces an

equivalence on mixed configurations, that is, mixed configurations are identified upto

equality of their expansion, thus s ≡ t if and only if E(s) = E(t).

We denote the set of mixed configurations byM, and the set of pure configurations

by Cp. A pure configuration can be considered as a mixed configurations with a

single component in the same way that pure states can be considered as mixed states

with one component. “Mixed state” is often used as a blanket term when it is not

necessarily known whether there is more than one component; we will use the term

“mixed configuration” in a similar general manner, hence Cp ⊂M.

Expression configurations are used for the evaluation of expressions (in a sim-

ilar way to Chapter 3) and include both pure and mixed versions. Pure expres-

sion configurations are given by a tuple ([q̃ 7→ |ψ〉];ω; e) as in Chapter 3. Mixed

expression configurations are defined in a similar manner as mixed configurations;

⊕i∈I gi ([q̃ 7→ |ψi〉];ω;λx̃.e; ṽi) where the variables x̃ are placeholders in the expres-

sion e. We denote the set of pure expression configurations by Ce and the set of mixed

expression configurations by Me.

We retain the use of probabilistic configurations (probability distributions over

configurations) in which the components are, in general, mixed configurations. In the

abbreviated form, a probabilistic configuration is given by

�i∈I pi • ⊕j∈Ji gij ([q̃ 7→ |ψij〉];ω;λx̃.P ; ṽij)

where each mixed configuration in the distribution may be over a different indexing

set Ji. We assume
∑
i∈I pi = 1 and for each i, pi > 0. As each component is a

mixed configuration then it must satisfy the requirement that for each i we have∑
j∈Ji gij = 1.

Structural Congruence and Relabelling

We retain the rules of structural congruence from Figure 3.5 from the previous chapter,

however we introduce stricter conditions on the permutation of quantum states and

relabelling of qubit names. In particular, such operations must be limited to the

internal quantum state.

Let π be a permutation on qubit names in ω and let Π be the corresponding permu-

tation operator on the quantum state, then ([q̃ 7→ |ψ〉];ω;P) ≡ ([q̃π 7→ Π|ψ〉];ω;P).

Let f be a relabelling function where f [q] = q for all q ∈ q̃\ω, then ([q̃ 7→ |ψ〉];ω;P) ≡
([f [q̃] 7→ |ψ〉]; f [ω];P{f [q̃]/q̃}) where f acts element-wise on lists.

84

4.2. CQP WITH MIXED CONFIGURATIONS

([q̃ 7→ |ψ〉];ω;u+ v) −→v ([q̃ 7→ |ψ〉];ω;λx.x;w) where w = u+ v (R-Plus)

([q0, . . . , qn−1 7→ α0|φ0〉+ · · ·+ α2n−1|φ2n−1〉];ω;measure q0, . . . , qr−1) −→v

⊕0≤m<2r gm ([q0, . . . , qn−1 7→ αlm√
gm
|φlm〉+ · · ·+ αum√

gm
|φum

〉];ω;λx.x;m)

(R-Measure)

where lm = 2n−rm,um = 2n−r(m+ 1)− 1, gm = |αlm |2 + · · ·+ |αum |2

([q0, . . . , qn−1 7→ |φ〉];ω; q0, . . . , qr−1 ∗= Um) −→v (R-Trans)

([q0, . . . , qn−1 7→ (Um ⊗ In−r)|φ〉];ω; unit; ·)
∀i ∈ I.([q̃ 7→ |ψi〉];ω; e{ũi/ỹ}) −→v ⊕j∈Ji gij ([q̃ 7→ |ψij〉];ω;λx̃.e′{ũi/ỹ}; ṽij)

⊕i∈I hi ([q̃ 7→ |ψi〉];ω;λỹ.E[e]; ũi) −→e ⊕ i∈I
j∈Ji

higij ([q̃ 7→ |ψij〉];ω;λỹx̃.E[e′]; ũi, ṽij)

(R-Context)

Figure 4.1. Transition rules for values and expressions.

Mixed configurations are also considered congruent upto equality of their expan-

sions, thus s ≡ t if and only if E(s) = E(t) (note that the operator ⊕ is commutative).

Expression Transition Rules

The transition relations −→v⊆ (Ce×Me) for evaluating values and −→e⊆ (Me×Me)

for evaluating expressions are defined by the rules in Figure 4.1. At first glance they

are very similar to the rules in Figure 3.3, however the use of mixed expression config-

urations on the right hand side is key to the treatment of values in this new semantics.

Instead of producing an expression configuration (σ;ω;w), R-Plus introduces a vari-

able x as a placeholder for the value w. The importance of using a placeholder for a

single value (there is only a single component) becomes apparent when we consider

mixed expression configurations in R-Context because there may be a different

value resulting from each component.

The result of a measurement is no longer a probabilistic configuration, but a mixed

configuration in which each component corresponds to a specific outcome. Again, the

variable x is introduced to maintain a constant expression term across all components,

while the measurement value m is different for each component. Applying a unitary

operator always results in the value unit, hence R-Trans does not need to introduce

a new variable.

The rule R-Context has two primary purposes; it is used for the evaluation

of expressions in an expression context E as in Chapter 3, and it also used for the

evaluation of expressions in mixed configurations. The evaluation of a mixed expres-

sion configuration ⊕i∈I hi (σi;ω;λỹ.E[e]; ũi) is determined by the evaluation of each

component. For a given component, the pure expression configuration is obtained

by substitution of the respective values; (σi;ω;E[e]{ũi/ỹ}). For this configuration we

85

4.2. CQP WITH MIXED CONFIGURATIONS

([p̃q̃r̃ 7→ |ψ〉]; p̃, q̃; c![ṽ, q̃].P)
c![ṽ,q̃]−→p ([p̃q̃r̃ 7→ |ψ〉]; p̃;P) (P-Out)

([q̃ 7→ |ψ〉];ω; c?[ỹ].P)
c?[ṽ,r̃]−→p ([q̃ 7→ |ψ〉];ω, r̃;P{ṽ, r̃/ỹ}) (P-In)

([q̃ 7→ |ψ〉];ω;P)
α−→p ([q̃ 7→ |ψ〉];ω′;P ′)

([q̃ 7→ |ψ〉];ω;P ‖ Q)
α−→p ([q̃ 7→ |ψ〉];ω′;P ′ ‖ Q)

(P-Par)

([q̃ 7→ |ψ〉];ω;P)
α−→p ([q̃ 7→ |ψ〉];ω′;P ′)

([q̃ 7→ |ψ〉];ω;P +Q)
α−→p ([q̃ 7→ |ψ〉];ω′;P ′)

(P-Sum)

([q̃ 7→ |ψ〉];ω;P)
α−→p ([q̃ 7→ |ψ〉];ω;P ′)

([q̃ 7→ |ψ〉];ω; (νc)P)
α−→p ([q̃ 7→ |ψ〉];ω; (νc)P ′)

if α /∈ {c?[·], c![·]} (P-Res)

Figure 4.2. Transition rules for pure process configurations.

isolate the context and consider the evaluation of e{ũi/ỹ}. The resulting configuration

may be a mixed expression configuration with new variables x̃ introduced; specifically

we end up with a term λx̃.e′{ũi/ỹ}; ṽij where, due to the use of the substitution, e′

is constant across each i. The results for each i are combined to give the final term

λỹx̃.E[e′]; ũi, ṽij incorporating variables x̃ and ỹ.

Pure Configuration Transition Rules

The transition relation
α−→p⊆ (Cp × {?[], ![]} × Cp) is defined by the rules in Figure

4.2. This relation is an addition to the semantics and defines input and output

transitions for pure configurations. It is used in the hypotheses of L-Out and L-Com

to determine the actions of the individual components in a mixed configurations. The

inclusion of the choice (P-Sum), parallel (P-Par) and restriction (P-Res) rules are

necessary to define input and output actions for arbitrary process constructions. We

leave further discussion of this relation until the rules L-Out and L-Com have been

formally introduced.

Mixed Configuration Transition Rules

The transition relation on mixed configurations,
α−→⊆ (M × {?[], ![], τ} × M), is

defined by the rules in Figure 4.3. The most obvious difference between these rules

and the rules of Figure 3.4 is the change from pure to mixed configurations. Indeed,

for many of the rules this change is straightforward; the general form that resulted in

a probabilistic configuration (s
α−→ �i pi • si) has been replaced by the introduction

of more components (⊕i∈I gi si
α−→ ⊕i∈I,j∈Ji gihij sij).

The most interesting changes are to the rules L-In, L-Out and L-Com. Because

the values associated with an input action are determined by the environment, this

action is identical across all components in a mixed configuration. L-Par, L-Sum

86

4.2. CQP WITH MIXED CONFIGURATIONS

�j pj • (⊕i gi (σi;ω;Pi))
pi ⊕i gi (σi;ω;Pi) (L-Prob)

⊕i gi (σi;ω;λx̃.c?[ỹ].P ; ṽi)
c?[ũ,r̃]−→ ⊕i gi (σi;ω, r̃;λx̃.P{ũ/ỹ}; ṽi) where |ũ|+ |r̃| = |ỹ|

(L-In)

∀i ∈ I.([p̃q̃ 7→ |ψi〉]; p̃;P{ṽi/x̃})
c![ũi,r̃]−→p ([p̃q̃ 7→ |ψi〉]; p̃′;P ′{ṽi/x̃})

⊕i∈I gi ([p̃q̃ 7→ |ψi〉]; p̃;λx̃.P ; ṽi)
c![U,r̃]−→ �j∈J pj • (⊕i∈Ij

gi
pj

([p̃′r̃q̃ 7→ Π|ψi〉]; p̃′;λx̃.P ′; ṽi))

(L-Out)

where U = {ũi | i ∈ I} = {ũkj | j ∈ J} and ∀j ∈ J, Ij = {i|ũi = ũkj}, pj =
∑
i∈Ij

gi

and r̃ ⊆ p̃, p̃′ = p̃ \ r̃,Π corresponds to the permutation π : p̃q̃ 7→ p̃′r̃q̃ .

∀i ∈ I.(σi;ω, r̃;P{ṽi/x̃})
c![ũi,r̃]−→p (σi;ω;P ′{ṽi/x̃})

∀i ∈ I.(σi;ω;Q{ṽi/x̃})
c?[ũi,r̃]−→p (σi;ω, r̃;Q

′{ṽi/x̃})
⊕i∈I gi (σi;ω, r̃;λx̃.P ‖ Q; ṽi)

τ−→ ⊕i∈I gi (σi;ω, r̃;λx̃.P
′ ‖ Q′; ṽi)

(L-Com)

⊕i∈I gi (σi;ω;λx̃.P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ.P ′; ṽiw̃ij)

⊕i∈I gi (σi;ω;λx̃.P ‖ Q; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ.P ′ ‖ Q; ṽiw̃ij)
(L-Par)

⊕i∈I gi (σi;ω;λx̃.P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ.P ′; ṽiw̃ij)

⊕i∈I gi (σi;ω;λx̃.P +Q; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ.P ′; ṽiw̃ij)
(L-Sum)

⊕i∈I gi (σi;ω;λx̃.P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ.P ′; ṽiw̃ij)

⊕i∈I gi (σi;ω;λx̃.(νc)P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ.(νc)P ′; ṽiw̃ij)
(L-Res)

if α /∈ {c?[·], c![·]}

⊕i∈I gi ([q̃ 7→ |ψi〉];ω;λx̃.(qbit y)P ; ṽi)
τ−→ ⊕i∈I gi ([q̃, q 7→ |ψi〉|0〉];ω, q;λx̃.P{q/y}; ṽi)

where q is fresh (L-Qbit)

⊕i∈I gi (σi;ω;λx̃.{u}.Pi; ṽi)
τ−→ ⊕i∈I gi (σi;ω;λx̃.P ; ṽi) (L-Act)

⊕i∈I hi (σi;ω;λỹ.e; ũi) −→e ⊕ i∈I
j∈Ji

higij (σij ;ω;λỹx̃.e′; ũiṽij)

⊕i∈I hi (σi;ω;λỹ.F [e]; ũi)
τ−→ ⊕ i∈I

j∈Ji
higij (σij ;ω;λỹx̃.F [e′]; ũiṽij)

(L-Expr)

Figure 4.3. Transition rules for mixed process configurations.

87

4.2. CQP WITH MIXED CONFIGURATIONS

and L-Res can then be used to define inputs on other process constructions in a

mixed configuration. We note that if L-In was instead defined using −→p for each

component (∀i ∈ I) then the derivations would not necessarily be unique, for example,

P-Par could be used in place of L-Par to achieve parallel composition at the pure

configuration level as opposed to the mixed configuration level.

The rule L-Out is the point at which mixed configurations are combined with

probabilistic branching. Branching must occur when and only when there is informa-

tion to distinguish the components. This information is represented by the classical

values that are output, which may vary between the components. Some values may

be the same, thereby requiring the relevant components to remain in a mixed con-

figuration after the output. The purpose of L-Out is to distribute the components

according to the different values, and to assign an action label that represents the

combined action of all components. Each component has a pure transition
c![ũi,r̃]−→p

representing the channel and qubit names that are common to all components, and

the values ũi that are specific to that component. The combined action label c![U, r̃]

consists of these common elements and the set U of all the value tuples.

We now consider a detailed example to illustrate the new transition relations. This

example focusses on the evaluation of mixed expressions, and the implementation of

probabilistic branching for output actions.

Example 4.5. Let

s = ([q1q2 7→ (α|0〉+ β|1〉)(γ|0〉+ δ|1〉)]; q1q2; c![measure q1 + measure q2].P)

The first step of execution involves the evaluation of measure q1; the derivation is by

L-Expr, R-Context and R-Measure:

([q1q2 7→ |ψ〉]; q1q2;measure q1) −→v ⊕i∈{0,1} gi ([q1q2 7→ |ψi〉]; q1, q2;λx1.x1; i)

([q1q2 7→ |ψ〉]; q1, q2;measure q1 + measure q2; ·) −→e

⊕i∈I gi ([q1q2 7→ |ψi〉]; q1, q2;λx1.x1 + measure q2; i)

([q1q2 7→ |ψ〉]; q1, q2; c![measure q1 + measure q2].P ; ·) τ−→
⊕i∈I gi ([q1q2 7→ |ψi〉]; q1, q2;λx1.c![x1 + measure q2].P ; i)

88

4.2. CQP WITH MIXED CONFIGURATIONS

The next step involves the evaluation of measure q2 by a similar derivation:

([q1q2 7→ |ψ0〉]; q1, q2;measure q2) −→v ⊕j∈{0,1} h0j ([q1q2 7→ |ψ0j〉]; q1, q2;λx2.x2; j)

([q1q2 7→ |ψ1〉]; q1, q2;measure q2) −→v ⊕j∈{0,1} h1j ([q1q2 7→ |ψ1j〉]; q1, q2;λx2.x2; j)

⊕i∈I gi ([q1q2 7→ |ψi〉]; q1, q2;λx1.x1 + measure q2; i) −→e

⊕i∈{0,1}
j∈{0,1}

gihij ([q1q2 7→ |ψij〉]; q1, q2;λx̃.x1 + x2; i, j)

⊕i∈{0,1} gi ([q1q2 7→ |ψi〉]; q1, q2;λx1.c![x1 + measure q2].P ; i)
τ−→

⊕i∈{0,1}
j∈{0,1}

gihij ([q1q2 7→ |ψij〉]; q1, q2;λx̃.c![x1 + x2].P ; i, j)

The next step is the evaluation of the sum x1 + x2. R-Context uses the individual

substitutions into each component of the configuration in order to evaluate all possible

scenarios. The result is a variable x3 with corresponding values vij = i+ j:

([q1q2 7→ |φ00〉]; q1, q2; 0 + 0) −→v ([q1q2 7→ |φ00〉]; q1, q2;λx3.x3; 0)

([q1q2 7→ |φ01〉]; q1, q2; 0 + 1) −→v ([q1q2 7→ |φ01〉]; q1, q2;λx3.x3; 1)

([q1q2 7→ |φ10〉]; q1, q2; 1 + 0) −→v ([q1q2 7→ |φ10〉]; q1, q2;λx3.x3; 1)

([q1q2 7→ |φ11〉]; q1, q2; 1 + 1) −→v ([q1q2 7→ |φ11〉]; q1, q2;λx3.x3; 2)

⊕i∈{0,1}
j∈{0,1}

gihij ([q1q2 7→ |ψij〉]; q1, q2;λx̃.x1 + x2; i, j) −→e

⊕i∈{0,1}
j∈{0,1}

gihij ([q1q2 7→ |ψij〉]; q1, q2;λx̃.x3; i, j, vij)

⊕i∈{0,1}
j∈{0,1}

gihij ([q1q2 7→ |ψij〉]; q1, q2;λx̃.c![x1 + x2].P ; i, j)
τ−→

⊕i∈{0,1}
j∈{0,1}

gihij ([q1q2 7→ |ψij〉]; q1, q2;λx̃.c![x3].P ; i, j, vij)

The final step is the output action which is derived by L-Out and P-Out:

([q1q2 7→ |ψ00〉]; q1, q2; c![0].P)
c![0]−→p ([q1q2 7→ |ψ00〉]; q1, q2;P)

([q1q2 7→ |ψ01〉]; q1, q2; c![1].P)
c![1]−→p ([q1q2 7→ |ψ01〉]; q1, q2;P)

([q1q2 7→ |ψ10〉]; q1, q2; c![1].P)
c![1]−→p ([q1q2 7→ |ψ10〉]; q1, q2;P)

([q1q2 7→ |ψ11〉]; q1, q2; c![2].P)
c![2]−→p ([q1q2 7→ |ψ11〉]; q1, q2;P)

⊕i∈{0,1}
j∈{0,1}

gihij ([q1q2 7→ |ψij〉]; q1, q2;λx̃.c![x3].P ; i, j, vij)
c![U]−→

�m∈U pm • ⊕ i∈Im
j∈Jim

gihij ([q1q2 7→ |ψij〉]; q1, q2;λx̃.P ; i, j, vij)

where U = {0, 1, 2} and p0 = g0h00, p1 = g1h10 + g0h01, and p2 = g1h11. Because

the sum is 1 in two of the cases, this results in three branches. One of the branches

remains a mixed configuration.

89

4.2. CQP WITH MIXED CONFIGURATIONS

4.2.2 Type Soundness

In Section 3.1.3, we described the CQP type system and proved, with respect to the

labelled transition system from 3.1.2, the two theorems from [Gay and Nagarajan

2006]; type preservation and the unique ownership of qubits. In this section, we

re-address these proofs in the context of the semantics defined in Section 4.2.

We follow the same path as we work towards Theorem 4.4 (type preservation)

and Theorem 4.5 (unique ownership of qubits). For the intermediate results that are

independent of the semantics, we refer back to the presentation in Section 3.1.3. It

remains to prove type preservation for each of the relations −→v, −→e, and
α−→p.

Lemma 4.1 (Type Preservation for −→v). If Γ; Σ ` e : T and (σ;ω; e) −→v

⊕i gi (σi;ω
′;λx̃.e′; ṽi) and Σ ⊆ ω and ω ⊆ dom(σ) then ∀i.(dom(σi) = dom(σ))

and ω′ = ω and Γ, x̃:T̃ ; Σ ` e′ : T and ∀i.(Γ; ∅ ` ṽi : T̃).

Proof. By a straightforward case analysis of the derivation of the transition (σ;ω; e) −→v

⊕i gi (σi;ω
′;λx̃.e; ṽi).

Lemma 4.2 (Type Preservation for −→e). If Γ, ỹ:T̃ ; Σ ` e : T and

⊕i∈I gi (σi;ω;λỹ.e; ũi) −→e ⊕ i∈I
j∈Ji

gihij (σij ;ω
′;λỹx̃.e′; ũi, ṽij)

and Σ ⊆ ω and ω ⊆ dom(σ) then ∀i.(dom(σi) = dom(σ)) and ω′ = ω and Γ, ỹ:T, x̃:T̃ ′; Σ `
e′ : T and ∀i ∈ I, j ∈ Ji.(Γ; ∅ ` ṽij : T̃ ′).

Proof. The transition

⊕i∈I gi (σi;ω;λỹ.e; ũi) −→e ⊕ i∈I
j∈Ji

gihij (σij ;ω
′;λỹx̃.e′; ũi, ṽij)

is derived from R-Context, so for some E we have e = E[f] and e′ = E[f ′] and for

all i ∈ I,

(σi;ω; f{ũi/ỹ}) −→v ⊕j∈Ji hij (σij ;ω
′;λx̃.f ′{ũi/ỹ}; ṽij) .

From Γ, ỹ:T̃ ; Σ ` E[f] : T , Lemma 3.1 gives Γ, ỹ:T̃ ; Σ ` f : U for some U . Lemma 3.11

gives ∀i.(Γ; Σ ` f{ũi/ỹ} : U) and Lemma 4.1 gives ∀i.(Γ, x̃:T̃ ′; Σ ` f ′{ũi/ỹ} : U) and

∀i, j ∈ Ji.(Γ; ∅ ` ṽij : T̃ ′) and ω′ = ω. Then Lemma 3.11 gives Γ, ỹ:T̃ , x̃:T̃ ′; Σ ` f ′ : U .

Because x̃ are fresh, Lemma 3.7 gives Γ, ỹ:T̃ , x̃:T̃ ′; Σ ` f : U and then by Lemma 3.2

we arrive at Γ, ỹ:T̃ , x̃:T̃ ′; Σ ` E[f ′] : T .

Lemma 4.3 (Type Preservation for
α−→p). If (σ;ω;P)

α−→p (σ′;ω′;P ′) and Γ; Σ ` P
and Σ ⊆ ω and ω ⊆ dom(σ) then σ′ = σ and there exists Σ′ such that Σ′ ⊆ ω′ and

ω′ ⊆ dom(σ′) and Γ; Σ′ ` P ′ and if Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω, or if Σ′ ⊂ Σ then

Σ− Σ′ = ω − ω′.

90

4.2. CQP WITH MIXED CONFIGURATIONS

Proof. By induction on the derivation of (σ;ω;P)
α−→p (σ′;ω′;P ′).

P-In: We have

(σ;ω; c?[x̃:T̃ , ỹ:Q̃bit].P)
c?[ṽ,r̃]−→p (σ;ω′;P{ṽr̃/x̃ỹ})

where ω′ = ω, r̃. Then we have

Γ; Σ ` c :̂[T̃ , Q̃bit] Γ, x̃:T̃ , ỹ:Q̃bit; Σ ` P

Γ; Σ ` c?[x̃:T̃ , ỹ:Q̃bit].P

where ∀i.(Ti 6= Qbit). By Lemma 3.12 we have Γ; Σ, r̃ ` P{ṽr̃/x̃ỹ}. Then Σ, r̃ ⊆ ω, r̃

and Σ, r̃ − Σ = ω, r̃ − ω = r̃ and σ is constant. We must have q̃ ∈ dom(σ), therefore

ω, q̃ ⊆ dom(σ).

P-Out: We have (σ;ω; c![ṽ, r̃].P)
c![ṽ,r̃]−→p (σ;ω′;P) where ω = ω′, r̃. Then we have

Γ; Σ′ ` c :̂[T̃ , Q̃bit] Γ; Σ′ ` P

Γ; Σ ` c![ṽ, r̃].P

where Σ = Σ′, r̃. Then Γ; Σ′ ` P and Σ′ ⊆ ω′ since Σ′, r̃ ⊆ ω′, r̃ and Σ−Σ′ = ω−ω′ =

r̃ and σ is unchanged.

P-Par: We have (σ;ω;P ‖Q)
α−→p (σ;ω′P ′ ‖Q) with the hypothesis (σ;ω;P)

α−→p

(σ;ω′;P ′) and type derivation

Γ1; Σ1 ` P Γ2; Σ2 ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ1 + Γ2; Σ1 ∪ Σ2 ` P ‖ Q

We are given that Σ1 ∪ Σ2 ⊆ ω, hence Σ1 ⊆ ω. Applying the inductive hypothesis

gives Σ′1 such that Γ1; Σ′1 ` P ′ and Σ′1 ⊆ ω′ and if Σ1 ⊆ Σ′1 then Σ′1 − Σ1 = ω′ − ω
and if Σ′1 ⊂ Σ1 then Σ1 − Σ′1 = ω − ω′.

If Σ1 ⊆ Σ′1 then Σ′1 ∩ Σ2 = (Σ1 ∪ (ω′ − ω)) ∩ Σ2 = (Σ′1 ∩ Σ2) ∪ (ω′ − ω ∩ Σ2) = ∅
because Σ2 ⊆ ω. If Σ′1 ⊂ Σ1 then Σ′1 ∩Σ2 ⊆ Σ1 ∩Σ2 = ∅. Therefore (by IT-Par) we

obtain Γ1 + Γ2; Σ′1 ∪ Σ2 ` P ′ ‖ Q.

P-Sum: We have
(σ;ω;P)

α−→p (σ;ω′;P ′)

(σ;ω;P +Q)
α−→p (σ;ω′;P ′)

and the type derivation
Γ; Σ ` P Γ; Σ ` Q

Γ; Σ ` P +Q

Applying the inductive hypothesis gives Σ′ such that Σ′ ⊆ ω′ and ω′ ⊆ dom(σ) and

if Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω and if Σ′ ⊂ Σ then Σ− Σ′ = ω − ω′.

91

4.2. CQP WITH MIXED CONFIGURATIONS

P-Res: The transition has the derivation

(σ;ω;P)
α−→p (σ;ω′;P ′)

(σ;ω; (νc)P)
α−→p (σ;ω′; (νc)P ′)

and the type derivation has the hypothesis Γ, c : [̂T̃]; Σ ` P . Applying the inductive

hypothesis gives Γ, c : [̂T̃]; Σ′ ` P ′ and Σ′ ⊆ ω′ and ω′ ⊆ dom(σ′) and if Σ ⊆ Σ′

then Σ′ − Σ = ω′ − ω and if Σ′ ⊂ Σ then Σ − Σ′ = ω − ω′. Therefore (by IT-Res)

Γ, c : [̂T̃]; Σ′ ` (νc)P ′.

We are now ready to prove type preservation for
α−→.

Theorem 4.4 (Type Preservation for
α−→). If Γ, x̃:T̃ ; Σ ` P and ∀i.(Γ; ∅ ` ṽi : T̃)

and ⊕i gi (σi;ω;λx̃.P ; ṽi)
α−→ �m pm • ⊕j h′j (σjm;ω′;λỹ.P ; ṽjm) and Σ ⊆ ω and

ω ⊆ dom(σ) then ∀m, j.(dom(σ) ⊆ dom(σjm)) and there exists Σ′ such that Σ′ ⊆ ω′

and ∀m, j.(ω′ ⊆ dom(σjm)) and (Γ, ỹ:Ũ ; Σ′ ` P ′) and ∀m, j.(Γ; ∅ ` ṽjm : Ũ) and if

Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω, or if Σ′ ⊂ Σ then Σ− Σ′ = ω − ω′.

Proof. By induction on the derivation of the transition ⊕i gi (σi;ω;λx̃.P ; ṽi)
α−→

�m pm • ⊕j hj (σjm;ω′;λỹ.P ′; ṽjm).

L-Expr: For some evaluation context F we have P = F [e] and P ′ = F [e′] and

⊕i gi (σi;ω;λx̃.e; ṽi) −→e ⊕j hj (σ′j ;ω
′;λỹ.e′; ṽ′j). From the derivation D of Γ; Σ `

F [e], Lemma 3.5 gives T such that D′ is a subderivation of D concluding Γ; Σ ` e : T .

Lemma 3.4 gives Γ, ỹ:Ũ ; Σ ` e′ : T and ∀j.(Γ; ∅ ` ṽ′j : Ũ) and ∀i, j.(dom(σi) =

dom(σ′j)) and ω′ = ω, and Lemma 3.6 gives Γ; Σ ` F [e′].

L-Out: We have the derivation

∀i ∈ I.(σi;ω;P{ṽi/x̃})
c![ũi,r̃]−→p (σ′i;ω

′;P ′{ṽi/x̃})

⊕i gi (σi;ω;λx̃.P ; ṽi)
c![U,r̃]−→ �m pm • ⊕i∈Im gi (σ′i;ω

′;λx̃.P ′; ṽi)

where ω = ω′, r̃. Lemma 3.12 gives ∀i.(Γ; Σ ` P{ṽi/x̃}) and Lemma 4.3 gives ∀i.(σ′i =

σi) and Σ′ such that Σ′ ⊆ ω′ and ∀i.(ω′ ⊆ dom(σ′i)) and ∀i.(Γ; Σ′ ` P ′{ṽi/x̃}) and if

Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω or if Σ′ ⊂ Σ then Σ − Σ′ = ω − ω′. Then (by Lemma

3.12) we obtain Γ, x̃:T̃ ; Σ′ ` P ′.
L-In: We have the transition

⊕i∈I gi (σi;ω;λz̃.c?[x̃ : T̃ , ỹ : Q̃bit].P ; ṽi)
c?[ũ,r̃]−→ ⊕i∈I gi (σi;ω

′;λz̃.P{ũr̃/x̃ỹ}; ṽi)

where ω′ = ω, r̃ and we have

Γ, z̃:T̃ ; Σ ` c :̂[T̃ , Q̃bit] Γ, z̃:T̃ , x̃ : Ũ , ỹ : Q̃bit; Σ ` P

Γ, z̃:T̃ ; Σ ` c?[x̃ : T̃ , ỹ : Q̃bit] . P

92

4.2. CQP WITH MIXED CONFIGURATIONS

where ∀i.(Ti 6= Qbit). By Lemma 3.12 we have Γ, z̃:T̃ ; Σ′ ` P{ũr̃/x̃ỹ} where Σ′ = Σ, r̃.

Then Σ′ ⊆ ω′ and Σ′ − Σ = ω′ − ω = r̃ and σ is constant. r̃ must exist, therefore

ω′ ⊆ dom(σ).

L-Com: We have

∀i.(σi;ω;P{ṽi/x̃})
c![ũi,r̃]−→p (σi;ω, r̃;P

′{ṽi/x̃})

∀i.(σi;ω, r̃;Q{ṽi/x̃})
c?[ũi,r̃]−→p (σi;ω;Q′{ṽi/x̃})

⊕i gi (σi;ω, r̃;P ‖ Q)
τ−→ ⊕i gi (σi;ω, r̃;P

′ ‖ Q′)

and the typing derivation

Γ1; Σ1 ` P Γ2; Σ2 ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ1 + Γ2; Σ1 ∪ Σ2 ` P ‖ Q
.

Lemma 3.12 gives ∀i.(Γ′1; Σ1 ` P{ṽi/x̃}) and ∀i.(Γ′2; Σ2 ` Q{ṽi/x̃}) where Γ1 =

Γ′1, x̃:T̃ and Γ2 = Γ′2, x̃:T̃ . Applying the inductive hypothesis gives Σ1 ⊆ ω and

Σ2 ⊆ ω, r̃ and Σ′1, Σ′2 such that Σ′1 ⊆ ω, r̃ and Σ′2 ⊆ r̃ and Σ′1−Σ1 = r̃ and Σ2−Σ′2 = r̃

and ∀i.(ω, r̃ ⊆ dom(σ)) and Γ′1; Σ′1 ` P ′{ṽi/x̃} and Γ′2; Σ′2 ` Q′{ṽi/x̃}. Then Σ′1∪Σ′2 =

Σ1∪Σ2 and Σ′1∩Σ′2 = (Σ1∪q̃)∩(Σ2−q̃) = (Σ1∩(Σ2−q̃))∪(q̃∩(Σ2−q̃)) ⊆ Σ1∩Σ2 = ∅.
Then (by Lemma 3.12) we have Γ1; Σ′1 ` P ′ and Γ2; Σ′2 ` Q′. Then by using IT-Par

we obtain Γ1 + Γ2; Σ′1 ∪ Σ′2 ` P ′ ‖ Q′.
L-Act: We have the transition⊕i gi (σi;ω;λx̃.{v}.P ; ṽi)

τ−→ ⊕i gi (σi;ω;λx̃.P ; ṽi).

The typing derivation concluding Γ, x̃:T̃ ; Σ ` {v}.P contains the required hypothesis

Γ, x̃:T̃ ; Σ ` P . Γ, Σ and ω are unchanged.

L-Res: The transition has the derivation

⊕i gi (σi;ω;λx̃.P ; ṽi)
α−→ ⊕j hj (σ′j ;ω

′;λỹ.P ′; ṽ′j)

⊕i gi (σi;ω;λx̃.(νc : [̂Ũ])P ; ṽi)
α−→ ⊕j hj (σ′j ;ω

′;λỹ.(νc : [̂Ũ])P ′; ṽ′j)

The typing derivation has the hypothesis Γ, c : [̂Ũ], x̃:T̃ ; Σ ` P . Applying the inductive

hypothesis gives Γ, c : [̂Ũ], ỹ:T̃ ′; Σ′ ` P ′ where Σ′ ⊆ ω′ and ∀j.(ω′ ⊆ dom(σ′j)) and

∀i, j.(dom(σi) ⊆ dom(σ′j)) and if Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω and if Σ′ ⊆ Σ then

Σ− Σ′ = ω − ω′. Therefore (by IT-Res) Γ, ỹ:T̃ ′; Σ′ ` (νc : [̂Ũ])P ′.

L-Qbit: We have the transition

⊕i gi (σi;ω;λx̃.(qbit y)P ; ṽi)
τ−→ ⊕i gi (σ′i;ω, q;λx̃.P{q/y}; ṽi)

where q is fresh and the typing derivation

Γ, x̃ : T̃ , y :Qbit; Σ ` P

Γ, x̃ : T̃ ; Σ ` (qbit y)P

93

4.2. CQP WITH MIXED CONFIGURATIONS

Applying the inductive hypothesis and Lemma 3.12 gives the required judgement

Γ, x̃ : T̃ ; Σ, q ` P{q/y}. We have Σ, q̃ ⊆ ω, q̃ and Σ, q̃−Σ = ω, q̃−ω and ∀i.(dom(σi) ⊆
dom(σ′i)) and ∀i.(ω, q̃ ⊆ dom(σ′i)).

L-Sum: We have

⊕i gi (σi;ω;λx̃.P ; ṽi)
α−→ ⊕j hj (σ′j ;ω

′;λỹ.P ′; ṽ′j)

⊕i gi (σi;ω;λx̃.P +Q; ṽi)
α−→ ⊕j hj (σ′j ;ω

′;λỹ.P ′; ṽ′j)

and
Γ, x̃ : T̃ ; Σ ` P Γ, x̃ : T̃ ; Σ ` Q

Γ, x̃ : T̃ ; Σ ` P +Q

Applying the inductive hypothesis gives Σ′ such that Σ′ ⊆ ω′ and ∀i, j.(dom(σi) ⊆
dom(σ′j)) and ∀j.(ω′ ⊆ dom(σ′j)) and Γ, ỹ : T̃ ′; Σ′ ` P ′ and if Σ ⊆ Σ′ then Σ′ − Σ =

ω′ − ω and if Σ′ ⊂ Σ then Σ− Σ′ = ω − ω′.
L-Par: The transition

⊕i gi (σi;ω;λx̃.P ‖ Q; ṽi)
α−→ ⊕j hj (σ′j ;ω

′;λỹ.P ′ ‖ Q; ṽ′j)

has the hypothesis

⊕i gi (σi;ω;λx̃.P ; ṽi)
α−→ ⊕j hj (σ′j ;ω

′;λỹ.P ′; ṽ′j) .

We have the typing derivation

Γ1; Σ1 ` P Γ2; Σ2 ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ1 + Γ2; Σ1 ∪ Σ2 ` P ‖ Q

We are given that Σ1 ∪ Σ2 ⊆ ω, hence Σ1 ⊆ ω. Applying the inductive hypothesis

gives Σ′1 such that ∀i.(Γ1; Σ′1 ` Pi) and Σ′1 ⊆ ω′ and ∀i, j.(dom(σi) ⊆ dom(σ′j))

and ∀j.(ω′ ⊆ dom(σj)) and if Σ ⊆ Σ′ then Σ′ − Σ = ω′ − ω and if Σ′ ⊂ Σ then

Σ− Σ′ = ω − ω′.
If Σ1 ⊆ Σ′1 then Σ′1 ∩ Σ2 = (Σ1 ∪ (ω′ − ω)) ∩ Σ2 = (Σ1 ∩ Σ2) ∪ (ω′ − ω ∩ Σ2) = ∅

because Σ2 ⊆ ω. If Σ′1 ⊂ Σ then Σ′1 ∩ Σ2 ⊆ Σ1 ∩ Σ2 = ∅. Therefore (by IT-Par) we

obtain Γ1 + Γ2; Σ′1 ∪ Σ2 ` P ′ ‖ Q.

The following theorem is dependent only upon the typing rules and not the se-

mantics, hence the proof in Chapter 3 is still relevant.

Theorem 4.5 (Unique Ownership of Qubits). If Γ; Σ ` P ‖ Q then fq(P)∩fq(Q) = ∅.

94

4.3. BEHAVIOURAL EQUIVALENCE

4.3 Behavioural Equivalence

In the previous sections, we considered the observational effects of measurement and

we defined a new operational semantics that respects these properties. In this section,

we define a process equivalence with respect to the new semantics. The relation,

probabilistic branching bisimilarity, is an adaptation of the equivalence in Chapter 3.

We consider the preservation properties of probabilistic branching bisimilarity in

Section 4.3.1. In particular, by using mixed configurations in combination with prob-

abilistic branching, we find that this relation is preserved by parallel composition. In

Section 4.3.2, we extend the relation to define full probabilistic branching bisimilarity

and prove that this is a congruence.

We will make extensive use of the density matrix formalism, in order to describe

the quantum state of mixed configurations. Formally, we define the density matrix of

a mixed configuration by the following inductive definition.

Definition 4.2 (Density Matrix of Configurations). Let σi = [p̃ 7→ |ψi〉] and q̃ ⊆ p̃

and si = (σi;ω;λx̃.P ; ṽi) and s = ⊕i gi si. Then

1. ρ(σi) = |ψi〉〈ψi|,

2. ρq̃(σi) = trp̃\q̃(|ψi〉〈ψi|),

3. ρ(si) = ρ(σi),

4. ρq̃(si) = ρq̃(σi),

5. ρ(s) =
∑
i giρ(si), and

6. ρq̃(s) =
∑
i giρ

q̃(si).

We also introduce the notation ρE to denote the reduced density matrix of the

environment qubits. Formally, if s = ([q̃ 7→ |ψ〉]; p̃;P) then ρE(s) = ρr̃(s) where

r̃ = q̃ \ p̃. The definition of ρE is extended to mixed configurations in the same

manner as ρ.

We use the same notation to abbreviate transitions as in Chapter 3: Let
τ−→

+

denote zero or one τ transitions; =⇒ denote zero or more τ transitions; and
α

=⇒ be

equivalent to =⇒ α−→=⇒.

We have defined the rules L-Out and L-Prob to maintain compatibility with the

alternating probabilistic model. As a result, we use the same probabilistic function

as before; let µ : S × S → [0, 1] be defined by

µ(s, t) =


π, if s

π
 t

1, if s = t and s ∈ Sn
0, otherwise.

95

4.3. BEHAVIOURAL EQUIVALENCE

In Section 4.5, we discuss the possibility of using a non-alternating probabilistic model

to reduce redundancy. Trčka and Georgievska [2008] also present a generalised version

of this probabilistic function that is likely to be suitable.

We now define probabilistic branching bisimulation for mixed configurations. The

primary difference between this and Definition 3.3 is the condition for output match-

ing. In this case, we must take into account output as the source of probabilistic

distributions. In particular, we require the individual components in the resulting

probabilistic distributions to be related (condition IId) in addition to the overall con-

figurations being related (condition IIa). We also require the respective probabilities

to match (condition IIb).

Definition 4.3 (Probabilistic Branching Bisimulation). An equivalence relation R
is a probabilistic branching bisimulation on configurations if whenever (s, t) ∈ R the

following conditions are satisfied.

I. If s ∈ Sn and s
τ−→ s′ then there exists t′, t′′ such that t =⇒ t′

τ−→
+
t′′ where

a) (s, t′) ∈ R, and

b) (s′, t′′) ∈ R.

II. If s
c![V,q̃1]−→ s′ where s′ = �j∈{1...m} pj •s′j and V = {ṽ1, . . . , ṽm} then ∃t′, t′′ such

that t =⇒ t′
c![V,q̃2]−→ t′′ where

a) (s, t′) ∈ R,

b) t′′ = �j∈{1...m} pj • t′′j ,

c) for each j ∈ {1, . . . ,m}, ρE(s′j) = ρE(t′′j).

d) for each j ∈ {1, . . . ,m}, (s′j , t
′′
j) ∈ R.

III. If s
c?[ṽ]−→ s′ then ∃t′, t′′ such that t =⇒ t′

c?[ṽ]−→ t′′ where

a) (s, t′) ∈ R,

b) (s′, t′′) ∈ R,

IV. If s ∈ Sp then µ(s,D) = µ(t,D) for all classes D ∈ S/R.

In condition II we require that the distinct set of values V must match, but the

qubit names (q̃1 and q̃2) need not be identical. Instead, for each pair of probabilis-

tic components s′j , t
′′
j , the respective reduced density matrices of the output qubits,

combined with qubits r̃ from the environment, must be identical (ρE(s′j) = ρE(t′′j)).

Condition IV provides the matching on probabilistic configurations following the

approach of Trčka and Georgievska [2008]. In this relation, a probabilistic configura-

tion which necessarily evolves from an output will satisfy IV if the prior configuration

96

4.3. BEHAVIOURAL EQUIVALENCE

satisfies IId. It is necessary to include the latter condition to ensure that the proba-

bilities are paired with their respective configurations.

Naturally this leads on to the following definition of bisimilarity on configurations.

Definition 4.4 (Probabilistic Branching Bisimilarity). Let s and t be configurations.

Then s and t are probabilistic branching bisimilar, denoted s - t if and only if there

exists a probabilistic branching bisimulation R such that (s, t) ∈ R.

Following the same approach as in Chapter 3, we define equivalence of processes in

terms of equivalence of configurations, by requiring independence from the quantum

state. Again, we assume the qubit list is empty because we are considering processes

prior to execution. In Section 4.3.2, we extend this to a relation that recognises

executing processes with non-empty qubit lists.

Definition 4.5 (Probabilistic Branching Bisimilarity of Processes). Let P and Q be

processes. P and Q are probabilistic branching bisimilar, denoted P - Q, if and only

if for all σ, (σ; ∅;P) - (σ; ∅;Q).

It does not follow directly from the definition that probabilistic branching bisim-

ilarity of processes is an equivalence relation. This property is dependent on the

definition of bisimulation and not the semantics, hence the proof is similar to the

corresponding result in Chapter 3.

Lemma 4.6. Probabilistic branching bisimilarity of processes is an equivalence rela-

tion.

Proof. Follows the same reasoning as Lemma 3.17 with minor modifications to the

output case.

4.3.1 Preservation Properties

We now consider the preservation properties of bisimilarity on processes. The first

main result that we begin working towards is that bisimilarity is a non-input, non-

qubit congruence (Theorem 4.17). The key to this result is that the bisimilarity is

preserved by parallel composition (Theorem 4.14); with the exception of the recent,

independent work by Feng et al. [2011], this is the property that previous quantum

process equivalences have failed to possess.

Before continuing, we formally define contexts and congruence, and their non-

input,non-qubit variants. The reason for considering variants without input and qubit

declaration prefixes, is that substitution must also be considered when these are in-

cluded. In Section 4.3.2, we define full probabilistic branching bisimilarity, which will

also consider invariance under substitution.

97

4.3. BEHAVIOURAL EQUIVALENCE

Definition 4.6 (Context). A context C is a process with a non-degenerate occurrence

of 0 replaced by a hole, [·]. Formally,

C ::= [] | (C ‖ P) | α.C + P | α.C | (νx : [̂T])C

for α ∈ {e?[x̃ : T̃], e![ẽ], {e}, (qbit x)}.

Definition 4.7 (Congruence). An equivalence relationR on processes is a congruence

if (C[P], C[Q]) ∈ R whenever (P,Q) ∈ R and C is a context.

Definition 4.8 (Non-input, non-qubit context). A non-input, non-qubit context is a

context in which the hole does not appear under an input or qubit declaration.

Definition 4.9 (Non-input, non-qubit congruence). An equivalence relation R on

processes is a non-input, non-qubit congruence if (C[P], C[Q]) ∈ R whenever (P,Q) ∈
R and C is a non-input, non-qubit context.

This first lemma provides a general form for representing mixed configurations

related by internal transitions without introducing excessive indexing sets. As such,

it’s primary purpose is to simplify notation in the following proofs.

Lemma 4.7 (General form of internal transitions). If s = ⊕i∈Ij
j∈J

gij (σij ; q̃;λx̃.P ; ṽij)

and s =⇒ s′ then there exist sets I ′j such that s′ = ⊕i∈I′j
j∈J

g′ij (σ′ij ; q̃
′;λx̃′.P ′; ṽ′ij).

Proof. By induction on the length of the sequence of τ -transitions. The inductive

step is proved by a straightforward induction on the derivation of the transition.

The following 3 lemmas prove that the state of qubits that are not owned by a

particular process is unaffected by any transitions of that process. For example, in

the proof of Lemma 4.8 we see that measurement of a set of qubits does not affect

the reduced density matrix of other qubits.

Lemma 4.8 (External state independence for −→v). If Γ; q̃1 ` e : T and s −→v s
′

where s = ([q̃1q̃2q̃3 7→ |ψ〉]; q̃1, q̃2; e) then ρq̃2q̃3(s) = ρq̃2q̃3(s′).

Proof. By case analysis.

R-Plus: The quantum state and distribution are unchanged.

R-Trans: We have

s′ = ([q̃1q̃2q̃3 7→ |ψ′〉]; q̃1, q̃2; unit)

98

4.3. BEHAVIOURAL EQUIVALENCE

where |ψ′〉 = (Um ⊗ I)|ψ〉. We can write |ψ〉 =
∑
i |ψi〉1|φi〉23, then

|ψ′〉 =
∑
i U

m|ψi〉1I|φi〉23. Now

ρq̃2q̃3(s′) =
∑
jk

〈ψ′j |ψ′k〉1|φj〉〈φk|23

=
∑
jk

〈ψj |(Um)∗Um|ψk〉1I|φj〉〈φk|23I
∗

=
∑
jk

〈ψj |ψk〉1|φj〉〈φk|23

= ρq̃2q̃3(s) .

R-Measure: We have the transition

([q̃1q̃2q̃3 7→ |ψ〉]; q̃1, q̃2;measure p1 . . . pr−1)

−→v ⊕0≤m<2r gm ([q̃1q̃2q̃3 7→ |ψm〉]; q̃1, q̃2;λx.x;m)

where q̃1 = p0, . . . , pn−1 and r ≤ n and

|ψ〉 =

2r−1∑
m=0

|ψm〉 and |ψm〉 =

2N−r−1∑
i=0

αim√
gm
|φm〉|φ′i〉

where N = |q̃1q̃2q̃3| and {|φm〉} is an orthonormal basis for qubits p0, . . . , pr−1 and

{|φ′i〉} is an orthonormal basis for qubits pr, . . . , pn−1, q̃2, q̃3. Then

trp0...pr−1(|ψ〉) =

2r−1∑
m=0
k=0

2N−r−1∑
i=0
j=0

αimα
∗
jk〈φm|φk〉|φ′i〉〈φ′j |

=

2r−1∑
m=0

2N−r−1∑
i=0
j=0

αimα
∗
jk|φ′i〉〈φ′j |

(4.1)

since 〈φm|φk〉 = 1 if m = k and 0 otherwise. Now

trp0...pr−1(|ψm〉) =

2N−r−1∑
i=0
j=0

αimα
∗
jk

gm
〈φm|φm〉|φ′i〉〈φ′j |

=
1

gm

2N−r−1∑
i=0
j=0

αimα
∗
jk|φ′i〉〈φ′j | .

(4.2)

99

4.3. BEHAVIOURAL EQUIVALENCE

Let s′ = ⊕0≤m<2r gm s′m, then we have

ρq̃2q̃3(s′) =

2r−1∑
m=0

gmρ
q̃2q̃3(s′m)

=

2r−1∑
m=0

gmtrpr...pn−1
(trp1...pr−1

(|ψm〉))

=

2r−1∑
m=0

gmtrpr...pn−1

 1

gm

2N−r−1∑
i=0
j=0

αimα
∗
jk|φ′i〉〈φ′j |

 by (4.2)

= trpr...pn−1

2r−1∑
m=0

2N−r−1∑
i=0
j=0

αimα
∗
jk|φ′i〉〈φ′j |


= trpr...pn−1

(trp0...pr−1
(|ψ〉)) by (4.1)

= ρq̃2q̃3(s) .

Lemma 4.9 (External state independence for −→e). If Γ; q̃1 ` e : T and s −→e s
′

where s = ⊕i∈I gi ([q̃1q̃2q̃3 7→ |ψi〉]; q̃1, q̃2;λx̃.e; ṽi) then ρq̃2q̃3(s) = ρq̃2q̃3(s′).

Proof. The transition s −→e s
′ is derived by R-Context with a hypothesis

∀i ∈ I.si −→v s
′
i .

where ([q̃1q̃2q̃3 7→ |ψi〉]; q̃1, q̃2; e{ṽi/x̃}). For each i ∈ I we have ρq̃2q̃3(si) = ρq̃2q̃3(s′i)

by Lemma 4.8. From Definition 4.2 we have ρq̃2q̃3(s) =
∑
i∈I ρ

q̃2q̃3(si) and ρq̃2q̃3(s′) =∑
i∈I ρ

q̃2q̃3(s′i), therefore we arrive at the equality ρq̃2q̃3(s) = ρq̃2q̃3(s′).

Lemma 4.10 (External state independence for
τ−→). If Γ; q̃1 ` P and s

τ−→ s′ where

s = ⊕i∈I gi ([q̃1q̃2q̃3 7→ |ψi〉]; q̃1, q̃2;λx̃.P ; ṽi) then ρq̃2q̃3(s) = ρq̃2q̃3(s′).

Proof. By induction on the derivation of the transition s
τ−→ s′. Cases L-Par, L-Sum

and L-Res are straightforward applications of the inductive hypothesis. The quantum

state and distribution are unchanged for L-Com and L-Act, therefore these cases

are trivial.

L-Qbit: We have a transition ⊕i∈I gi si
τ−→ ⊕i∈I gi s′i where for each i ∈ I,

ρ(s′i) = ρ(si) ⊗ |0〉〈0|. Therefore ρq̃2q̃3(s′i) = ρq̃2q̃3(si) ⊗ 〈0|0〉 = ρq̃2q̃3(si). Then we

have ρq̃2q̃3(s′) = ρq̃2q̃3(s).

L-Expr: We have P = F [e] and P ′ = F [e′] for some process context F and the

100

4.3. BEHAVIOURAL EQUIVALENCE

hypothesis

t = ⊕i∈I gi ([q̃1q̃2q̃3 7→ |ψi〉]; q̃1, q̃2;λx̃.e; ṽi) −→e

⊕ i∈I
j∈Ji

gihij ([q̃1q̃2q̃3 7→ |ψij〉]; q̃1, q̃2;λx̃ỹ.e′; ṽi, ṽij) = t′ .

By Lemma 4.9 we have ρq̃2q̃3(t) = ρq̃2q̃3(t′). It follows from the definition that

ρq̃2q̃3(s) = ρq̃2q̃3(t) and ρq̃2q̃3(s′) = ρq̃2q̃3(t′), hence we get ρq̃2q̃3(s) = ρq̃2q̃3(s′).

The next lemma proves that the action of a context on the quantum state is

independent of the quantum subsystem owned by a process.

Lemma 4.11 (Independence of context transitions). Assume that Γ; q̃R ` R. Let s

and t be configurations where

s = ⊕i∈I gi ([q̃P q̃Rq̃E 7→ |ψi〉]; q̃P , q̃R;λx̃.R; ṽR)

t = ⊕j∈J hj ([q̃Qq̃Rq̃E 7→ |φj〉]; q̃Q, q̃R;λx̃.R; ṽR)

If ρq̃Rq̃E (s) = ρq̃Rq̃E (t) and s
τ−→ s′ where

s′ = ⊕ i∈I
k∈K

g′ik ([q̃P q̃
′
Rq̃E 7→ |ψik〉]; q̃P , q̃′R;λx̃′.R′; ṽRk

)

then there exists

t′ = ⊕ j∈J
k∈K

h′jk ([q̃Qq̃
′
Rq̃E 7→ |φjk〉]; q̃Q, q̃′R;λx̃′.R′; ṽRk

)

such that t
τ−→ t′ and ρq̃

′
Rq̃E (s′) = ρq̃

′
Rq̃E (t′).

Proof. By induction on the derivation of s
τ−→ s′. Only the case L-Expr is non-

trivial.

The next two lemmas prove some simple results which will be used in the proof

of Theorem 4.14.

Lemma 4.12. Let s = ⊕i∈I gi si and s′ = ⊕i∈I gi s′i then s
α−→ s′ if and only if

∀i ∈ I.(si
α−→ s′i) for α ∈ {·?[·], τ}.

Proof. By induction on the derivation of s
α−→ s′. This is because the process struc-

ture is constant for all i ∈ I.

Lemma 4.13. Let sj = ⊕i∈Ij gij (σij ;ω;λỹ.P ; ṽij) and sij = (σij ;ω;P{ṽij/ỹ}).

Then ∀j ∈ J, i ∈ Ij .(sij
c?[ũj ,r̃]−→p s′ij) if and only if ∀j ∈ J.(sj

c?[ũj ,r̃]−→p s′j).

101

4.3. BEHAVIOURAL EQUIVALENCE

Proof. By induction on the derivation of sj
c?[ũj ,r̃]−→p s′j . If the transition is derived

from P-In then by L-In we have ∀j ∈ J, i ∈ Ij .((σij ;ω;P)
c?[ũj ,r̃]−→ (σij ;ω

′;P ′)) and by

Lemma 4.12 we have ∀j ∈ J

⊕i∈Ij gij (σij ;ω;λỹ.P ; ṽij)
c?[ũj ,r̃]−→ ⊕i∈Ij gij (σij ;ω;λỹ.P ′; ṽij) .

The cases for P-Par, P-Sum and P-Res are similar, making use of L-Par, L-Sum

and L-Res respectively. The argument is easily reversed to obtain the opposite di-

rection.

We are now in a position to prove that bisimilarity is preserved by parallel com-

position. To prove this, we will define an equivalence relation that contains the pair

((σ; ∅;P ‖ R), (σ; ∅;Q ‖ R)), and that is closed under transitions from these config-

urations. After proving that bisimilarity of configurations is preserved by parallel

composition, we can use the result to prove that bisimilarity of processes is preserved

by parallel composition (Theorem 4.15).

Theorem 4.14 (Parallel preservation for configurations). Assume that Γ ` P , Γ ` Q,

Γ ` P ‖ R, and Γ ` Q ‖ R. If (σ; ∅;P) - (σ; ∅;Q) then (σ; ∅;P ‖ R) - (σ; ∅;Q ‖ R).

Proof. This proof is structured as follows. First, we introduce the notational conven-

tions that will be used in this proof. We define an equivalence relation R on general

configurations, in which the pair ((σ; ∅;P ‖ R), (σ; ∅;Q ‖ R)) from the statement is

a particular case. The remainder of the proof is dedicated to proving that R is a

probabilistic branching bisimulation.

Let P,Q,R be general processes and assume that Γ; q̃P ` P , Γ; q̃Q ` Q, Γ; q̃P , q̃R `
P ‖ R, and Γ; q̃Q, q̃R ` Q ‖ R. Let K be an arbitrary indexing set. For each k ∈ K,

let sk and tk be configurations given by

sk = ⊕i∈Ik gik (σik; q̃P ;λx̃P .P ; ṽPik
)

tk = ⊕j∈Jk hjk (τjk; q̃Q;λx̃Q.Q; ṽQjk
)

where σik = [q̃P q̃Rq̃E 7→ |ψik〉] and τjk = [q̃Qq̃Rq̃E 7→ |φjk〉], and where q̃E are qubits

in the environment and for each k ∈ K, ρE(sk) = ρE(tk).

We use the convention that configurations su and tu are defined in relation to

{sk} and {tk} where

su = ⊕i∈Ik
k∈K

fkgik (σik; q̃P , q̃R;λx̃P x̃R.P ‖ R; ṽPik
, ṽRk

)

tu = ⊕j∈Jk
k∈K

fkhjk (τjk; q̃Q, q̃R;λx̃Qx̃R.Q ‖ R; ṽQjk
, ṽRk

) .

and {fk} is a set of weights. Following this convention, the configurations {s′k}, {t′k},
su′ and tu′, for example, are related in the same manner.

102

4.3. BEHAVIOURAL EQUIVALENCE

We use the convention that variables x̃P (respectively x̃Q, x̃R) appear only in the

process P (respectivelyQ, R). Therefore we are able to use the fact that configurations

(σ;ω;λx̃P x̃R.P ; ṽP , ṽR) and (σ;ω;λx̃P .P ; ṽP) are structurally congruent; this is used

implicitly throughout the proof.

Now define an equivalence relation R1 as

R1 = {(su, tu) | ∀k ∈ K.(sk - tk)} .

Then define R to include probabilistic distributions, where

R = {(�m∈M pm • sm,�m∈M pm • tm) | ∀m ∈M.(sm, tm) ∈ R1} .

Now we prove that R is a probabilistic branching bisimulation.

By case analysis of the possible transitions of su; there are 9 cases to consider,

namely an internal transition by P , output by P , input by P , communication from

P , the respective transitions by R, and probabilistic transitions. In this proof we will

use the convention that s = ⊕k∈K fk sk and su = ⊕k∈K fk suk in order to simplify

the notation, and Theorem 4.4 (type preservation) will be used implicitly to ensure

that the typing conditions remain satisfied.

Internal transition by P : If su
τ−→ su′ then by L-Par we have the hypothesis

s
τ−→ s′ where

s′ = ⊕i∈I′k
k∈K

fkg
′
ik (σ′ik; q̃′P , q̃R;λx̃′P .P

′; ṽ′Pik
) and

su′ = ⊕i∈I′k
k∈K

fkg
′
ik (σ′ik; q̃′P , q̃R;λx̃′P x̃R.P

′ ‖ R; ṽ′Pik
, ṽRk

) .

Lemma 4.12 gives ∀k ∈ K.(sk
τ−→ s′k). Then, for each k ∈ K, because sk - tk there

exist configurations t′k, t
′′
k such that tk =⇒ t′k

τ−→
+
t′′k with sk - t′k and s′k - t′′k .

Therefore by Lemma 4.12 we have t =⇒ t′
τ−→

+
t′′ where

t′ = ⊕j∈J′k
k∈K

fkh
′
jk (τ ′jk; q̃′Q, q̃R;λx̃′Q.Q

′; ṽ′Qjk
) and

t′′ = ⊕j∈J′′k
k∈K

fkh
′′
jk (τ ′′jk; q̃′′Q, q̃R;λx̃′′Q.Q

′; ṽ′Qjk
) .

By L-Par we obtain the transitions tu =⇒ tu′
τ−→

+
tu′′ where

tu′ = ⊕j∈J′k
k∈K

fkh
′
jk (τ ′jk; q̃′Q, q̃R;λx̃′Qx̃R.Q

′ ‖ R; ṽ′Qjk
, q̃Rk

) and

tu′′ = ⊕j∈J′′k
k∈K

fkh
′′
jk (τ ′′jk; q̃′′Q, q̃R;λx̃′′Qx̃R.Q

′ ‖ R; ṽ′Qjk
, q̃Rk

) .

Lemma 4.10 gives for each k ∈ K, ρE(sk) = ρE(s′k) and ρE(tk) = ρE(t′k) = ρE(t′′k)

hence ρE(sk) = ρE(t′k) and ρE(s′k) = ρE(t′′k). Therefore (su, tu′) ∈ R and (su′, tu′′) ∈

103

4.3. BEHAVIOURAL EQUIVALENCE

R.

Internal transition by R: The transition su
τ−→ su′ has the hypothesis u1

τ−→ u′1

where
u1 = ⊕i∈Ik

k∈K
fkgik (σik; q̃P , q̃R;λx̃R.R; ṽRk

) and

u′1 = ⊕ i∈Ik
k∈K′

f ′kgik (σ′ik; q̃P , q̃
′
R;λx̃′R.R

′; ṽ′Rk
) .

By Lemma 4.11 there exists u′2 such that u2
τ−→ u′2 where

u2 = ⊕j∈Jk
k∈K

fkhjk (τjk; q̃Q, q̃R;λx̃R.R; ṽRk
),

u′2 = ⊕j∈Jk
k∈K′

f ′khjk (τ ′jk; q̃Q, q̃
′
R;λx̃′R.R

′; ṽ′Rk
)

and ρq̃
′
Rq̃E (u′1) = ρq̃

′
Rq̃E (u′2). By L-Par we have tu

τ−→ tu′.

Let s′k = ⊕i∈Ik gik (σ′ik; q̃P ;λx̃P .P ; ṽik) and t′k = ⊕j∈Jk hjk (τ ′jk; q̃Q;λx̃Q.Q; ṽjk).

We must show that ∀k ∈ K.(s′k - t′k). It is only necessary to consider the possible

cases for the derivation of ui
τ−→ u′i in which the quantum state is altered; these are

R-Trans, R-Measure and L-Qbit (in all other cases sk = s′k and tk = t′k).

• R-Trans: For σ′ik, we have [q̃P q̃Rq̃E 7→ |ψ′ik〉 = (IP ⊗ U ⊗ IE)|ψik〉] for some

unitary operator U and where IP and IE denote the identity operators on qubits

q̃P and q̃E respectively. Similarly, for τ ′jk we have [q̃Qq̃Rq̃E 7→ |φ′jk〉 = (IQ ⊗
U ⊗ IE)|φjk〉]. Now define a relation Ru such that (s′k, t

′
k) ∈ Ru if sk - tk and

ρ(s′k) = (IP ⊗U ⊗IE)†ρ(sk)(IP ⊗U ⊗IE) and ρ(t′k) = (IQ⊗U ⊗IE)†ρ(tk)(IQ⊗
U ⊗ IE).

If s′k
τ−→ s′′k then, by a straightforward induction on the derivation, we have

sk
τ−→ s′′′k and ρ(s′′k) = (I ′P ⊗ U ⊗ IE)†ρ(s′′′k)(I ′P ⊗ U ⊗ IE). Because sk - tk

we have tk =⇒ t′′k
τ−→

+
t′′′k and sk - t′′k and s′′k - t′′′k . By induction on the

derivation of each transition in this sequence, we obtain t′k =⇒ t′′′′k
τ−→

+
t′′′′′k

where ρ(t′′′′k) = (I ′′Q ⊗ U ⊗ IE)†ρ(t′′k)(I ′′Q ⊗ U ⊗ IE) and ρ(t′′′′′k) = (I ′′′Q ⊗ U ⊗
IE)†ρ(t′′′k)(I ′′′Q ⊗ U ⊗ IE). Therefore (s′k, t

′′′′
k) ∈ Ru and (s′′k , t

′′′′′
k) ∈ Ru.

If s′k
c?[q̃,ṽ]−→ s′′k then similar reasoning applies as in the previous case.

If s′k
c![V,r̃]−→ �m pm • s′′km then sk

c![V,r̃]−→ �m pm • s′′′km and ρ(s′′km) = (I ′P ⊗
U ⊗ IE)†ρ(s′′′km)(I ′P ⊗ U ⊗ IE) and then we have ρr̃q̃Rq̃E (s′′km) = (Ir̃ ⊗ U ⊗
IE)†ρr̃q̃Rq̃E (s′′′km)(Ir̃ ⊗ U ⊗ IE). Because sk - tk we have tk =⇒ t′′k

c![V,s̃]−→
�m pm • t′′′km and sk - t′′k and ∀m.(s′′km - t′′′km). By induction on the deriva-

tion of each transition in this sequence, we obtain t′k =⇒ t′′′′k
c![V,s̃]−→ �m pm •

t′′′′′km where ρ(t′′′′k) = (I ′′Q ⊗ U ⊗ IE)†ρ(t′′k)(I ′′Q ⊗ U ⊗ IE) and ∀m.(ρ(t′′′′′km) =

(I ′′′Q ⊗ U ⊗ IE)†ρ(t′′′km)(I ′′′Q ⊗ U ⊗ IE)). Therefore ρs̃q̃Rq̃E (t′′′′′km) = (Is̃ ⊗ U ⊗
IE)†ρs̃q̃Rq̃E (t′′′km)(Is̃ ⊗U ⊗ IE) and because ρr̃q̃Rq̃E (s′′′km) = ρs̃q̃Rq̃E (t′′′km) we have

104

4.3. BEHAVIOURAL EQUIVALENCE

ρr̃q̃Rq̃E (s′′km) = ρs̃q̃Rq̃E (t′′′′′km). Therefore (s′k, t
′′′′
k) ∈ Ru and ∀m.(s′′km, t′′′′′km) ∈ Ru.

We find that Ru is a probabilistic branching bisimulation, hence s′k - t′k.

• R-Measure: We have a set of measurement operators {Mm} such that ρ(s′k) =∑
m fm(IP ⊗Mm ⊗ IE)†ρ(sk)(IP ⊗Mm ⊗ IE) and ρ(t′k) =

∑
m fm(IQ ⊗Mm ⊗

IE)†ρ(tk)(IQ⊗Mm⊗ IE). We construct a relation Rm such that (s′k, t
′
k) ∈ Rm

if sk - tk and ρ(s′k) =
∑
m fm(IP ⊗ Mm ⊗ IE)†ρ(sk)(IP ⊗ Mm ⊗ IE) and

ρ(t′k) =
∑
m fm(IQ ⊗Mm ⊗ IE)†ρ(tk)(IQ ⊗Mm ⊗ IE). By similar reasoning to

the previous case, we find that Rm is a bisimulation, hence sk - tk.

• L-Qbit: We have the relationships ρ(s′k) = ρ(sk) ⊗ |0〉〈0| and ρ(t′k) = ρ(tk) ⊗
|0〉〈0|. We construct a relation and follow similar reasoning to the previous

cases.

Communication from P : The derivation by L-Com is

∀k ∈ K, i ∈ Ik.((sik
c![ũik,q̃]−→p s′ik) (uik

c?[ũik,q̃]−→p u′ik))

su
τ−→ su′

where
sik = (σik; q̃P , q̃R;P{ṽPik

/x̃P }),
s′ik = (σik; q̃′P , q̃R;P ′{ṽPik

/x̃P }),
uik = (σik; q̃P , q̃R;R{ṽRk

/x̃R}),
u′ik = (σik; q̃P , q̃

′
R;R′{ṽRk

/x̃R})

and

su′ = ⊕i∈Ik
k∈K

fkgik (σik; q̃′P , q̃
′
R;λx̃P x̃R.P

′ ‖ R′; ṽPik
, ṽRk

) .

For each k ∈ K, we derive by L-Out the transition (sk
c![Uk,q̃]−→ s′ko) where Uk =

{uik | i ∈ Ik} and

s′ko = �m∈Mk
pm • skmo and skmo = (⊕i∈Ikm

gik
pm

(σ′ik; q̃′P ;λx̃P .P
′; ṽPik

) .

For each k ∈ K, because sk - tk we get t′k, t
′′
ko

such that tk =⇒ t′k
c![Uk,r̃]−→ t′′ko where

t′k = ⊕j∈J′k h
′
jk (τ ′jk; q̃′Q;λx̃′Q.Q

′; ṽ′Qjk
),

t′′ko = �m∈Mk
pm • t′′kmo

,

t′′kmo
= ⊕j∈J′km

h′jk (τ ′′jk; q̃′′Q;λx̃′Q.Q
′′; ṽ′Qjk

)

and sk - t′k and for each m ∈Mk, s′kmo
- t′′kmo

and ρE(skmo
) = ρE(t′kmo

). Applying

Lemma 4.12 to each step in tk =⇒ t′k gives tu =⇒ tu′. By L-Com we can derive the

transition tu′
τ−→ tu′′.

105

4.3. BEHAVIOURAL EQUIVALENCE

Now, by Lemma 4.10 we have for each k ∈ K, ρE(tk) = ρE(t′k), therefore it follows

that ρE(sk) = ρE(t′k) and because sk - t′k we have (su, tu′) ∈ R. By convention we

have

s′k = ⊕i∈Ik gik (σik; q̃′P ;λx̃P .P
′; ṽPik

) and

t′′k = ⊕j∈J′k h
′
jk (τ ′jk; q̃′′Q;λx̃Q.Q

′′; ṽ′Qjk
)

where σik and σ′ik (respectively τ ′jk and τ ′′jk) differ by the permutation and renaming

applied by L-Out. Because for each m ∈Mk, s′kmo
- t′′kmo

, we have

⊕i∈Ik gik (σ′ik; q̃′P ;λx̃P .P
′; ṽPik

) - ⊕j∈J′k h
′
jk (τ ′′jk; q̃′′Q;λx̃′Q.Q

′′; x̃′Qjk
)

therefore it follows that s′k - t′′k . It follows from ρE(sk) = ρE(t′k) that ρE(s′k) =

ρE(t′′k), therefore (su′, tu′′) ∈ R.

Communication from R: This transition is derived by L-Com:

∀k ∈ K, i ∈ Ik.(sik
c?[ũk,r̃]−→p s′ik uik

c![ũk],r̃−→p u′ik)

su
τ−→ su′

.

Because the output is from R, the classical values ũk that are transferred in the

communication must be dependent on the index k and be independent of i. We

rewrite the configurations so that ũk are copies of the respective values in ṽRk
; this

enables us to maintain the distinction between variables appearing in the respective

processes P , Q and R after the communication. Therefore we have

su = ⊕i∈Ik
k∈K

fkgik (σik; q̃P , q̃R;λx̃P x̃Rỹ.P ‖ R; ṽPik
, ṽRk

, ũk)

and

su′ = ⊕i∈Ik
k∈K

fkgik (σik; q̃′P , q̃
′
R;λx̃P x̃Rỹ.P

′ ‖ R′; ṽPik
, ṽRk

, ũk) .

For each k ∈ K, because ∀i ∈ Ik.(sik
c?[ũk,r̃]−→p s′ik) we obtain by Lemma 4.13 that

sk
c?[ũk,r̃]−→ s′k. Furthermore, because sk - tk, there exist t′k and t′′k such that tk =⇒

t′k
c?[ũk,r̃]−→ t′′k where sk - t′k and s′k - t′′k . Then by applying L-Par to each step of the

transition tk =⇒ t′k we obtain tu =⇒ tu′, and applying Lemma 4.13 to the transition

t′k
c?[ũk,r̃]−→ t′′k gives ∀j ∈ J ′k.(t′ik

c?[ũk,r̃]−→p t′′ik). Therefore by L-Com we can derive the

transition

∀k ∈ K, j ∈ J ′k.(t′jk
c?[ũk,r̃]−→p t′′jk uik

c![ũk,r̃]−→p u′ik)

tu′
τ−→ tu′′

.

Using Lemma 4.10 we have ρE(tk) = ρE(t′k), hence ρE(sk) = ρE(t′k). Then we have

ρE(s′k) = trr̃ρE(sk) and ρE(t′′k) = trr̃ρE(t′k), from which we obtain ρE(s′k) = ρE(t′′k).

106

4.3. BEHAVIOURAL EQUIVALENCE

Therefore we have (su, tu′) ∈ R and (su′, tu′′) ∈ R as required.

Output by P : If su
c![U,q̃]−→ su′ where

su′ = �m∈M pm • ⊕i∈Ikm
k∈K

fkgik
pm

(σ′ik; q̃′P , q̃R;λx̃P x̃R.P
′ ‖ R; ṽPik

, ṽRk
)

then the derivation by L-Out and P-Par has the hypothesis ∀k ∈ K, i ∈ Ik.(sik
c![ũik,q̃]−→p

s′ik) where U = {ũik | i ∈ Ik, k ∈ K} and

sik = (σik; q̃P , q̃R;P{ṽPik
/x̃P }) and

s′ik = (σik; q̃′P , q̃R;P ′{ṽPik
/x̃P }) .

Then, for each k ∈ K, by L-Out we have sk
c![Uk,q̃]−→ s′k where

sk = ⊕i∈Ik gik sik,

s′k = �m∈Mk
pkm • s′km and

s′km = ⊕i∈Ikm

gik
pkm

s′ik .

For each k ∈ K, because sk - tk then there exists t′k, t
′′
k such that tk =⇒ t′k

c![Uk,r̃]−→
t′′k and sk - t′k and t′′k = �m∈Mk

pkm • t′′km and ∀m ∈Mk.(s
′
km - t′′km) and ρE(s′km) =

ρE(t′′km). Then, for each k ∈ K, the derivation of t′k
c![Uk,r̃]−→ t′′k gives the hypothesis

∀j ∈ Jk.(t′jk
c![ṽjk,r̃]−→p t′′jk) where

t′k = ⊕j∈J′k h
′
jk (τ ′jk; q̃′Q, q̃R;λx̃′Q.Q

′; ṽ′Qjk
),

t′′km = ⊕j∈Jkm

h′jk
pkm

(τ ′jk; q̃′′Q, q̃R;λx̃′Q.Q
′′; ṽ′Qjk

),

t′jk = (τ ′jk; q̃′Q, q̃R;Q′{x̃′Q/ṽ′Qjk
}) and

t′′jk = (τ ′jk; q̃′′Q, q̃R;Q′′{x̃′Q/ṽ′Qjk
}) .

Now, applying Lemma 4.12 to each step in the transitions tk =⇒ t′k gives tu =⇒ tu′

where

tu′ = ⊕j∈J′k
k∈K

fkh
′
jk (τ ′jk; q̃′Q, q̃R;λx̃′Qx̃R.Q

′ ‖ R; ṽ′Qjk
, ṽRk

) .

Using P-Par and L-Out we can derive the transition tu′
c![U,r̃]−→ tu′′ where

tu′′ = �m∈M pm • ⊕j∈J′km
k∈K

fkh
′
jk

pm
(τ ′′jk; q̃′′Q, q̃R;λx̃′Qx̃R.Q

′′ ‖ R; ṽ′Qjk
, ṽRk

),

107

4.3. BEHAVIOURAL EQUIVALENCE

noting that pm =
∑
k∈K pkm. Let

su′m = ⊕i∈Ikm
k∈K

fkgik
pm

(σ′ik; q̃′P , q̃R;λx̃P x̃R.P
′ ‖ R; ṽPik

, ṽRk
) and

tu′′m = ⊕j∈J′km
k∈K

fkh
′
jk

pm
(τ ′′jk; q̃′′Q, q̃R;λx̃′Qx̃R.Q

′′ ‖ R; ṽ′Qjk
, ṽRk

)

then, for each m ∈M because ∀k ∈ K.(s′km - t′′km) and ρE(s′km) = ρE(t′′km) we have

(su′m, tu
′′
m) ∈ R. For each k ∈ K, using Lemma 4.10 we have ρE(tk) = ρE(t′k), hence

ρE(sk) = ρE(t′k) and therefore (su, tu′) ∈ R.

Output by R: If su
c![U,r̃]−→ su′ then the derivation by L-Out and P-Par gives the

hypothesis

∀k ∈ K, i ∈ Ik, (σik; q̃P , q̃R;R{ṽRk
/x̃R})

c![ũk,r̃]−→p (σik; q̃P , q̃
′
R;R′{ṽRl

/x̃R})

where U = {ũk} = {ṽm} and each list of values ũk is only dependent on k since

it must be contained within ṽRk
. Because these transitions are independent of the

quantum state, we get

∀k ∈ K, j ∈ Jk, (τjk; q̃Q, q̃R;R{ṽRk
/x̃R})

c![ũk,r̃]−→p (τjk; q̃Q, q̃
′
R;R′{ṽRl

/x̃R}) .

By applying P-Par and L-Out we can derive the transition tu
c![U,r̃]−→ tu′ where

tu′ = �m∈M p′m • ⊕ j∈Jk
k∈Km

fk
p′m

hjk (τ ′jk; q̃Q, q̃R;λx̃Qx̃R.Q ‖ R; ṽQjk
, ṽRk

) .

For each m ∈M let Km = {k | ũk = ṽm}, then we have

pm =
∑
k∈Km

fk
∑
i∈Ik

gik =
∑
k∈Km

fk =
∑
k∈Km

fk
∑
j∈Jk

hjk = p′m .

Let su′ = �m∈M pm • su′m and tu′ = �m∈M pm • tu′m and let Π be the permu-

tation operator corresponding to the permutation q̃Rq̃E 7→ q̃′Rq̃E r̃ (this permuta-

tion is applied in the transformation from σik to σ′ik and from τjk to τ ′jk due to

L-Out). Then we have ρq̃
′
Rq̃E r̃(su′m) =

∑
k∈Km

fk
pm

(IP ⊗ Π)†ρE(sk)(IP ⊗ Π) and

ρq̃
′
Rq̃E r̃(tu′m) =

∑
k∈Km

fk
pm

(IQ⊗Π)†ρE(tk)(IQ⊗Π). Because for each k ∈ K, ρE(sk) =

ρE(tk) and ρE(su′m) = trq̃′R(ρq̃
′
Rq̃E r̃(su′m)) and ρE(tu′m) = trq̃′R(ρq̃

′
Rq̃E r̃(tu′m)) we

have ρE(su′m) = ρE(tu′m). Then, because for each k ∈ K, (sk - tk) we have

∀m ∈M.((su′m, tu
′
m) ∈ R).

Input by P : We have the transition su
c?[ũ,r̃]−→ su′ where

su′ = ⊕i∈Ik
k∈K

fkgik (σik; q̃P , r̃, q̃R;λx̃P x̃R.P
′ ‖ R; ṽPik

, ṽRk
) .

108

4.3. BEHAVIOURAL EQUIVALENCE

The derivation of this transition by L-Par gives the hypothesis s
c?[ũ,r̃]−→ s′ where

s = ⊕i∈Ik
k∈K

fkgik (σik; q̃P ;λx̃P .P ; ṽPik
) and

s′ = ⊕i∈Ik
k∈K

fkgik (σik; q̃P , r̃;λx̃P .P
′; ṽPik

) .

Applying Lemma 4.12 gives ∀k ∈ K.(sk
c?[ũ,r̃]−→ s′k) where

s′k = ⊕i∈Ik gik (σik; q̃P , r̃;λx̃P .P
′; ṽPik

) .

For each k ∈ K, because sk - tk there exist configurations t′k, t
′′
k such that tk =⇒

t′k
c?[ũ,r̃]−→ t′′k where sk - t′k and s′k - t′′k . We now apply Lemma 4.12 to these transitions

to get t =⇒ t′
c?[ũ,r̃]−→ t′′. Applying L-Par then gives the required transitions tu =⇒

tu′
c?[ũ,r̃]−→ tu′′. For each k ∈ K we have ρE(s′k) = trr̃(ρE(sk)) and ρE(t′′k) = trr̃(ρE(t′k))

and (by Lemma 4.10) ρE(t′′k) = ρE(t′k), then because sk - t′k and s′k - t′′k we have

(su, tu′) ∈ R and (su′, tu′′) ∈ R.

Input by R: We have the transition su
c?[ũ,r̃]−→ su′ where

su′ = ⊕i∈Ik
k∈K

fkgik (σik; q̃P , q̃
′
R, λx̃P x̃R.P ‖ R′; ṽPik

, ṽRk
)

Then the derivation by L-Par gives the transition u1
c?[ũ,r̃]−→ u′1 corresponding to the

action of R in isolation, where

u1 = ⊕i∈Ik
k∈K

fkgik (σik; q̃P , q̃R, λx̃R.R; ṽRk
) and

u′1 = ⊕i∈Ik
k∈K

fkgik (σik; q̃P , q̃
′
R, λx̃R.R

′; ṽRk
) .

Since this transition is independent from the quantum state we obtain the transition

u2
c?[ũ,r̃]−→ u′2 where

u2 = ⊕j∈Jk
k∈K

fkhjk (τik; q̃Q, q̃R, λx̃R.R; ṽRk
) and

u′2 = ⊕j∈Jk
k∈K

fkhjk (τik; q̃Q, q̃
′
R, λx̃R.R

′; ṽRk
) .

Applying L-Par to this transition gives tu
c?[ũ,r̃]−→ tu′ where

tu′ = ⊕j∈Jk
k∈K

fkhjk (τik; q̃Q, q̃R, λx̃Qx̃
′
R.Q ‖ R′; ṽQjk

, ṽRk
) .

Because the qubits r̃ are contained within q̃E , we have q̃′R = q̃R, r̃ and q̃E = q̃′E , r̃.

Therefore ρq̃Rq̃E (su) = ρq̃
′
Rq̃
′
E (su′) and ρq̃Rq̃E (tu) = ρq̃

′
Rq̃
′
E (tu′). Because ∀k ∈ K.(sk -

tk), we have (su′, tu′) ∈ R.

109

4.3. BEHAVIOURAL EQUIVALENCE

Probabilistic configurations: If su = �m∈M pm • sum then by the definition of

R we must have tu = �m∈M pm • tum where for each m ∈ M , (sum, tum) ∈ R.

Therefore, for each m ∈ M we have µ(su, sum) = pm = µ(tu, tum). The respective

sets {sum} and {tum} are exhaustive since
∑
m∈M pm = 1, hence we have ∀D ∈

S/R.(µ(su,D) = µ(tu,D)).

Theorem 4.15 (Parallel Preservation). If P - Q then for any process R such that

Γ ` P ‖ R and Γ ` Q ‖ R then P ‖ R - Q ‖ R.

Proof. Because P - Q we have for all σ, (σ; ∅;P) - (σ; ∅;Q). Define a relation R
according to the statement of Theorem 4.14; using the same notation, if sk = (σ; ∅;P)

and tk = (σ; ∅;Q) then su = (σ; ∅;P ‖ R) and tu = (σ; ∅;Q ‖ R). Then we have for

all σ, ((σ; ∅;P ‖ R), (σ; ∅;Q ‖ R)) ∈ R. By Theorem 4.14 R is a bisimulation, hence

P ‖ R - Q ‖ R.

We now consider preservation with respect to other process constructions.

Lemma 4.16. Probabilistic branching bisimilarity is preserved by output prefix, ac-

tion prefix, channel restriction and non-deterministic choice.

Proof. This proof consists of a subset of the cases from the proof of Lemma 4.19.

We have now shown that probabilistic branching bisimilarity is preserved by all

process constructs except input and qubit declaration. Following the approach used

for the π-calculus in [Sangiorgi and Walker 2001] we first consider a non-input con-

gruence, however for our language we must also exclude qubit declaration, hence we

consider non-input, non-qubit congruence.

Theorem 4.17 (Probabilistic branching bisimilarity is a non-input, non-qubit con-

gruence). If P - Q and for any non-input, non-qubit context C if Γ ` C[P] and

Γ ` C[Q] then C[P] - C[Q].

Proof. Follows directly from Theorem 4.15 and Lemma 4.16.

4.3.2 Full Probabilistic Branching Bisimilarity

Probabilistic branching bisimilarity is not a congruence because it is not preserved by

substitution. We can therefore define a stronger relation, full probabilistic branching

bisimilarity, in which equivalence must also be preserved by substitutions.

Definition 4.10 (Full probabilistic branching bisimilarity). Processes P and Q are

full probabilistic branching bisimilar, denoted P -c Q, if for any substitution κ =

{ũ, q̃/x̃} and for any quantum state σ, (σ; q̃;Pκ) - (σ; q̃;Qκ).

110

4.3. BEHAVIOURAL EQUIVALENCE

We now prove that full probabilistic branching bisimilarity is preserved by all pro-

cess constructs. We proved that probabilistic branching bisimilarity is preserved by

parallel composition in Theorem 4.14, and note that this is independent of substitu-

tions. Lemma 4.19 considers the other process constructs.

First we prove the following lemma, which will be used in the proof of Lemma

4.19.

Lemma 4.18. If ∀i ∈ I.((σi;ω;P) - (σi;ω;Q)) and
∑
i∈I gi = 1 then

⊕i∈I gi (σi;ω;P) - ⊕i∈I gi (σi;ω;Q).

Proof. There is a bisimulation R1 such that ∀i ∈ I, ((σi;ω;P), (σi;ω;Q)) ∈ R1. Now

define a relation R2 as

R2 = {(⊕ i∈I
j∈Ji

figij (σij ;ωP ;λỹP .P ; ṽPij),⊕ i∈I
k∈Ki

fihik (τik;ωQ;λỹQ.Q; ṽQik
)) |

∀i ∈ I.(((σij ;ωP ;λỹP .P ; ṽPij), (τik;ωQ;λỹQ.Q; ṽQik
)) ∈ R1)} .

Then extend this relation to include probabilistic configurations:

R3 = {(�m∈M pm • sm,�m∈M pm • tm) | ∀m ∈M.((sm, tm) ∈ R2)} .

We now show that R2 ∪R3 is a bisimulation.

For (s, t) ∈ R2, if s
α−→ s′ where

s′ = ⊕ i∈I
j∈J′i

fig
′
ij (σ′ij ;ω

′
P ;λỹ′P .P

′; ṽ′Pij
)

then by Lemma 4.12 we have ∀i ∈ I.(si
α−→ s′i) where

si = ⊕j∈Ji gij (σij ;ωP ;λỹP .P ; ṽPij
) and s′i = ⊕j∈J′i g

′
ij (σ′ij ;ω

′
P ;λỹ′P .P

′; ṽ′Pij
) .

For each i ∈ I, because (si, ti) ∈ R1 there exists t′i, t
′′
i such that ti =⇒ t′i

α−→ t′′i where

ti = ⊕k∈Ki
hik (τik;ωQ;λỹQ.Q; ṽQik

),

t′i = ⊕k∈K′i h
′
ik (τ ′ik;ω′Q;λỹ′Q.Q

′; ṽ′Qik
) and

t′′i = ⊕k∈K′′i h′′ik (τ ′′ik;ω′′Q;λỹ′′Q.Q
′′; ṽ′′Qik

) .

By Lemma 4.12 we have t =⇒ t′
α−→ t′′ where

t′ = ⊕ i∈I
k∈K′i

h′ik (τ ′ik;ω′Q;λỹ′Q.Q
′; ṽ′Qik

),

t′′ = ⊕ i∈I
k∈K′′i

h′′ik (τ ′′ik;ω′′Q;λỹ′′Q.Q
′′; ṽ′′Qik

)

and (s, t′) ∈ R2 and (s′, t′′) ∈ R2.

111

4.3. BEHAVIOURAL EQUIVALENCE

If s
c![U,r̃]−→ s′ where s′ = �m∈M pm • s′m and

s′m = ⊕ i∈Im
j∈Jim

fi
pm

gij (σij ;ω
′
P ;λỹ′P .P

′; ṽ′Pij
)

then by L-Out we can derive ∀i ∈ I.(si
c![Ui,r̃]−→ s′i) where

s′i = �m∈Mi pim • ⊕j∈Jim
gij
pim

(σij ;ω
′
P ;λỹ′P .P

′; ṽ′Pij
)

and U =
⋃
i∈I Ui and M =

⋃
i∈IMi and

pm =

∑
i∈Im pim∑
i∈I pim

.

For each i ∈ I, because (si, ti) ∈ R1 there exist t′i, t
′′
i such that ti =⇒ t′i

c![Ui,r̃]−→ t′′i .

Using L-Out we can derive the transitions t =⇒ t′
c![U,r̃]−→ t′′ where t′′ = �m∈M pm•t′′m

and (s, t′) ∈ R2 and (s′, t′′) ∈ R3 and ∀m ∈M.((s′m, t
′′
m) ∈ R2).

Lemma 4.19. Full probabilistic branching bisimilarity is preserved by input prefix,

output prefix, action prefix, qubit declaration, channel restriction and non-deterministic

choice.

Proof. Because P -c Q, there exists a bisimulation R1 such that for all quantum

states σ and for all substitutions κ = {ũ, q̃/x̃} we have ((σ; q̃;Pκ), (σ; q̃;Qκ)) ∈ R1.

For each case we construct a suitable relation and show that it is a probabilistic

branching bisimulation. The most complicated cases are for output and action prefix;

for these cases we must consider transitions due to L-Out and L-Act respectively,

and also transitions derived by L-Expr.

Input prefix: Let R2 be a relation such that ∀σ, κ′ = {ṽ, r̃/ỹ},

((σ; r̃; c?[x̃].Pκ′), (σ; r̃; c?[x̃].Qκ′)) ∈ R2 .

We now show that R = R1 ∪ R2 is a bisimulation: There is only one transition

possibly, namely an input action. If (σ; r̃; c?[x̃].Pκ′)
c?[ũ,q̃]−→ (σ; r̃, q̃;Pκ′κ) = s′ then we

also have (σ; r̃; c?[x̃].Qκ′)
c?[ũ,q̃]−→ (σ; r̃, q̃;Qκ′κ) = t′ and (s′, t′) ∈ R1.

Output prefix: Define an equivalence relation R2 such that for all σ, κ,

((σ; q̃; c![ẽ].Pκ), (σ; q̃; c![ẽ].Qκ)) ∈ R2

112

4.3. BEHAVIOURAL EQUIVALENCE

whenever P - Q. Then define R as the relation

R = {(�m∈M pm • ⊕i∈Im gi (σim; q̃;λx̃.Pκ; ṽim),

�m∈M pm • ⊕i∈Im gi (σim; q̃;λx̃.Qκ; ṽim))

| ∀m ∈M, i ∈ Im.((σim; q̃;Pκκ′), (σim; ∅;Qκκ′)) ∈ R1 ∪R2} .

where κ′ = {ṽim/x̃}. Note that we also include non-probabilistic configurations in R;

these correspond to the cases when M is a singleton set. The possible transitions are

ultimately derived by either R-Plus, R-Measure, R-Trans or L-Out; we consider

each case in turn.

R-Plus: Let

s = ⊕i∈I gi (σi; q̃;λx̃.c![ẽ].Pκ; ṽi) and

s′ = ⊕i∈I gi (σi; q̃;λx̃y.c![ẽ
′].Pκ; ṽi, ui) .

If s
τ−→ s′ then t

τ−→ t′ where

t = ⊕i∈I gi (σi; q̃;λx̃.c![ẽ].Qκ; ṽi) and

t′ = ⊕i∈I gi (σi; q̃;λx̃y.c![ẽ
′].Qκ; ṽi, ui) .

We have ∀i ∈ I, ((σi; q̃; c![ẽ
′]{ṽiui/x̃y}Pκ), (σi; q̃; c![ẽ

′]{ṽiui/x̃y}Qκ)) ∈ R2, therefore

(s′, t′) ∈ R.

R-Measure: Let

s = ⊕i∈I gi (σi; q̃;λx̃.c![ẽ].Pκ; ṽi) and

s′ = ⊕ i∈I
j∈Ji

gihij (σij ; q̃;λx̃ỹ.c![ẽ
′].Pκ; ṽi, ṽij) .

If s
τ−→ s′ then t

τ−→ t′ where

t = ⊕i∈I gi (σi; q̃;λx̃.c![ẽ].Qκ; ṽi) and

t′ = ⊕ i∈I
j∈Ji

gihij (σij ; q̃;λx̃ỹ.c![ẽ
′].Qκ; ṽi, ṽij) .

We have ∀i ∈ I, j ∈ Ji, ((σi; q̃; c![ẽ
′]{ṽiṽij/x̃ỹ}.Pκ), (σi; q̃; c![ẽ

′]{ṽiṽij/x̃ỹ}.Qκ)) ∈ R2,

therefore (s′, t′) ∈ R.

R-Trans: Let

s = ⊕i∈I gi (σi; q̃;λx̃.c![ẽ].Pκ; ṽi) and

s′ = ⊕i∈I gi (σ′i; q̃;λx̃.c![ẽ
′].Pκ; ṽi) .

113

4.3. BEHAVIOURAL EQUIVALENCE

If s
τ−→ s′ then t

τ−→ t′ where

t = ⊕i∈I gi (σi; q̃;λx̃.c![ẽ].Qκ; ṽi) and

t′ = ⊕i∈I gi (σ′i; q̃;λx̃y.c![ẽ
′].Qκ; ṽi) .

We have for all i ∈ I, ((σ′i; q̃; c![ẽ
′]{ṽi/x̃}Pκ), (σ′i; q̃; c![ẽ

′]{ṽi/x̃}Qκ)) ∈ R2, therefore

(s′, t′) ∈ R.

L-Out: If

⊕i gi (σi; q̃;λx̃ỹ.c![x̃, r̃].Pκ; ũi, ṽi)
c![U,r̃]−→ �m∈M pm • s′m

where s′m = ⊕i∈Im
gi
pm

(σi; q̃
′;λx̃ỹ.Pκ; ũi, ṽi) and q̃ = q̃′r̃ and U = {ũi} then

⊕i gi (σi; q̃;λx̃ỹ.c![x̃, r̃].Qκ; ũi, ṽi)
c![U,r̃]−→ �m∈M pm • t′m

where t′m = ⊕i∈Im
gi
pm

(σi; q̃
′;λx̃ỹ.Qκ; ũi, ṽi). By IT-Out and Lemma 3.10 we have

r̃ /∈ fq(Pκ) and r̃ /∈ fq(Qκ), therefore Pκ = Pκ′ and Qκ = Qκ′ where κ′ = {ũq̃′/x̃}.
Then we have ∀m ∈M, i ∈ Im

((σi; q̃
′;Pκ′{ũiṽi/x̃ỹ}), (σi; q̃′;Qκ′{ũiṽi/x̃ỹ})) ∈ R1,

therefore ∀m ∈M.(s′m, t
′
m) ∈ R.

Qubit declaration: Define a relation

R2 = {((σ; q̃; (qbit x).Pκ), (σ; q̃; (qbit x).Qκ)) | ((σ; q̃;Pκ), (σ; q̃;Qκ)) ∈ R1} .

Then (σ; q̃; (qbit x).Pκ)
τ−→ (σ′; q̃, r;Pκκ′) where κ′ = {r/x} and r is fresh. We also

have (σ; q̃; (qbit x).Qκ)
τ−→ (σ′; q̃, r;Qκκ′). Then ((σ′; q̃, r;Pκκ′), (σ′; q̃, r;Qκκ′)) ∈

R1, hence R1 ∪R2 is a bisimulation.

Restriction: Given a configuration s = ⊕i gi (σi;ω1;λx̃.P ; ũi), let sn denote the

corresponding configuration with a restriction ⊕i gi (σi;ω1;λx̃.(νc)P ; ũi). Define a

relation

R2 = {(sn, tn) | (s, t) ∈ R1} .

If sn
α−→ s′n then by L-Res we have s

α−→ s′. Because (s, t) ∈ R1, there exist t′, t′′

such that t =⇒ t′
α−→ t′′ and (s, t′) ∈ R1 and (s′, t′′) ∈ R1. By L-Res we have

tn =⇒ t′n
α−→ t′′n and we have (sn, t

′
n) ∈ R2 and (s′n, t

′′
n) ∈ R2.

Action prefix: Define a relation R2 as

R2 = {((σ; q̃; {e}.Pκ), (σ; q̃; {e}.Qκ)) | ((σ; q̃;Pκ), (σ; q̃;Qκ)) ∈ R1} .

114

4.4. APPLICATIONS

Then define

R3 = {(⊕i gi (σi; q̃;λỹ.{e}.Pκ; ṽi),⊕i gi (σi; q̃;λỹ.{e}.Qκ; ṽi)) |

∀i.((σi; q̃; {e}{ṽi/ỹ}.Pκ), (σi; q̃; {e}{ṽi/ỹ}.Qκ)) ∈ R2} .

Then, for (s, t) ∈ R3, if s
τ−→ s′ where s′ = ⊕ij gihij (σij ; q̃;λỹỹ

′.{e′}.Pκ; ṽi, ṽij) then

t
τ−→ t′ where t′ = ⊕ij gihij (σij ; q̃;λỹỹ

′.{e′}.Qκ; ṽi, ṽij) and for each i, j we have

((σij ; q̃; {e′}{ṽiṽij/ỹỹ′}.Pκ), (σij ; q̃; {e′}{ṽiṽij/ỹỹ′}.Pκ)) ∈ R2 therefore (s′, t′) ∈ R3.

If s
τ−→ s′ by L-Act where s′ = ⊕i gi (σi; q̃;Pκ) since variables ỹ are not in Pκ,

then t
τ−→ t′ where t′ = ⊕i gi (σi; q̃;Qκ). By Lemma 4.18 we have s′ - t′.

Non-deterministic choice: Because R -c R there exists a bisimulation R2 such

that ∀σ, κ.((σ; q̃;R), (σ; q̃;R)) ∈ R2, and because α.P -c α.Q from the previous

cases, there is a bisimulation R3 such that ∀σ, κ.((σ; q̃;α.Pκ), (σ; q̃;α.Qκ)) ∈ R3.

Now define a relation R4 such that

R4 = {((σ; q̃;α.Pκ+R), (σ; q̃;α.Qκ+R)) | P -c Q} .

If we have the derivation

(σ; q̃;α.Pκ)
β−→ s′

(σ; q̃;α.Pκ+R)
β−→ s′

then (σ; q̃;α.Qκ)
τ−→ t′ and (s′, t′) ∈ R3. Therefore by L-Sum we have the transition

(σ; q̃;α.Qκ + R)
β−→ t′. Note that the prefix α guarantees that this transition is

strongly matched.

If (σ; q̃;α.Pκ + R)
β−→ s′′ is derived from the transition (σ; q̃;R)

β−→ s′′ then by

L-Sum we have (σ; q̃;α.Qκ+R)
β−→ t′′ where s′′ = t′′, hence (s′′, t′′) ∈ R2. Therefore

R2 ∪R3 ∪R4 is a bisimulation.

We have now proved that full probabilistic branching bisimilarity is preserved by

all process constructs, hence we can state and prove the following theorem.

Theorem 4.20 (Full probabilistic branching bisimilarity is a congruence). If P -c Q

then for any context C, if Γ ` C[P] and Γ ` C[Q] then C[P] -c C[Q].

Proof. Follows directly from Theorem 4.15 and Lemma 4.19.

4.4 Applications

In this section, we apply full probabilistic branching bisimilarity to some quantum

protocols. In particular, we begin by reconsidering the equivalence of teleportation

and a quantum channel that was presented in the previous chapter.

115

4.4. APPLICATIONS

([r̃p 7→ |φ0〉|0〉+ |φ1〉|1〉]; ∅; Teleport)
τ

=⇒ (L-Qbit,R-Trans,L-Act,R-Trans,L-Act)
([r̃pq1q2 7→ (|φ0〉|0〉+ |φ1〉|1〉)⊗ 1√

2
(|00〉+ |11〉)]; q1, q2; (νe)(Alice{q2/z} ‖ Bob{q1/y}))

c?[p]−→ (L-In)
([r̃pq1q2 7→ (|φ0〉|0〉+ |φ1〉|1〉)⊗ 1√

2
(|00〉+ |11〉)]; q1, q2, p;

(νe)({p, q2 ∗= CNot}.{p ∗= H}.e![measure q2.measure p].0 ‖ Bob{q1/y}))
τ

=⇒ (R-Trans,L-Act,R-Trans,L-Act)
([r̃pq1q2 7→ 1

2 |φ0〉(|000〉+ |100〉+ |011〉+ |111〉) + 1
2 |φ1〉(|001〉 − |101〉+ |010〉 − |110〉)];

q1, q2, p; (νe)(e![measure q2,measure p].0 ‖ Bob{q1/y}))
τ

=⇒ (R-Measure,R-Measure)
⊕i∈{0,1}
j∈{0,1}

1
4 ([r̃pq1q2 7→ |ψij〉]; q1, q2, p;λuv.(νe)(e![u, v].0 ‖ Bob{q1/y}); i, j)

τ
=⇒ (L-Com,R-Trans,L-Act,R-Trans,L-Act)
⊕i∈{0,1}
j∈{0,1}

1
4 ([r̃pq1q2 7→ |ψ′ij〉]; q1, q2, p;λuv.(νe)(d![q1].0); i, j)

d![q1]−→ (L-Out)
⊕i∈{0,1}
j∈{0,1}

1
4 ([r̃pq1q2 7→ |ψ′ij〉]; q1, q2, p;λuv.0; i, j)

where

|ψ00〉 = |φ0〉|000〉+ |φ1〉|010〉
|ψ01〉 = |φ0〉|100〉 − |φ1〉|110〉
|ψ10〉 = |φ0〉|011〉+ |φ1〉|001〉
|ψ11〉 = |φ0〉|111〉 − |φ1〉|101〉
|ψ′00〉 = |φ0〉|000〉+ |φ1〉|010〉
|ψ′01〉 = |φ0〉|100〉+ |φ1〉|110〉
|ψ′10〉 = |φ0〉|001〉+ |φ1〉|011〉
|ψ′11〉 = |φ0〉|101〉+ |φ1〉|111〉

Figure 4.4. Execution of quantum teleportation.

4.4.1 Quantum Teleportation

The CQP model of teleportation was defined in Section 3.3 (Figure 3.8). With the

introduction of mixed configurations, the execution of the protocol is different. Figure

4.4 shows the execution of Teleport with respect to the new semantics. The creation of

mixed configurations due to the two measurements can be seen, however probabilistic

branching never occurs because there is no observable output that can distinguish the

components.

Lemma 4.21. QChannel - Teleport.

Proof. We follow a similar argument to the proof of Lemma 3.18, however we do not

need to consider probabilistic branching in this scenario. We construct an equivalence

116

4.4. APPLICATIONS

relation R that contains the pair ((σ; ∅; Teleport), (σ; ∅; QChannel)) for all σ and is

closed under their transitions. Let

S1(σ) = {s | (σ; ∅;P) =⇒ s, P ∈ {Teleport ,QChannel}}

S2(σ) = {s | (σ; ∅;P)
c?[p]
=⇒ s, P ∈ {Teleport ,QChannel}}

S3(σ) = {s | (σ; ∅;P)
c?[p]
=⇒d![q]

=⇒ s, P ∈ {Teleport ,QChannel}} .

Then define R to be the relation where S1(σ), S2(σ) and S3(σ) are the equivalence

classes:

R =
⋃
σ

i∈{1,2,3}

{(s, t) | s, t ∈ Si(σ)} .

We now prove that R is a bisimulation.

If s, t ∈ S1(σ) and if s
τ−→ s′ then we have s′ ∈ S1(σ) and therefore (s′, t) ∈ R.

Otherwise if s
c?[p]−→ s′ then s′ ∈ S2(σ) and we find t′, t′′ such that t =⇒ t′

c?[p]−→ t′′ with

t′ ∈ S1(σ) and t′′ ∈ S2(σ), therefore (s, t′) ∈ R and (s′, t′′) ∈ R.

If s, t ∈ S2(σ) and if s
τ−→ s′ then we have s′ ∈ S2(σ) and therefore (s′, t) ∈ R.

Otherwise if s
d![r1]−→ s′ then s′ ∈ S3(σ) and we find t′, t′′ such that t =⇒ t′

d![r2]−→
t′′ with t′ ∈ S2(σ) and t′′ ∈ S3(σ). If s is a mixed configuration arising from

Teleport then for an arbitrary state σ = [r̃p 7→ |φ0〉|0〉 + |φ1〉|1〉], with reference

to Figure 4.4, ρq1r̃(s) = 1
4ρ
q1r̃(|ψ00〉) + 1

4ρ
q1r̃(|ψ01〉) + 1

4ρ
q1(r̃|ψ10〉) + 1

4ρ
q1r̃(|ψ11〉) =∑

i∈{0,1},j∈{0,1} |i〉〈j||φi〉〈φj |. Otherwise if s arises from QChannel then we also find

that ρq1r̃(s) =
∑
i∈{0,1},j∈{0,1} |i〉〈j||φi〉〈φj |. The same reasoning applies to t′, hence

we have ρq1r̃(s) = ρq2r̃(t′).

If s, t ∈ S3(σ) then there are no possible transitions.

We can extend this result to full probabilistic branching bisimilarity; first we need

the following result.

Lemma 4.22 (Weakening for qubit list). If (σ1;ω1;P) - (σ2;ω2;Q) and r̃ ∩ ω1 =

r̃ ∩ ω2 = ∅, then (σ1;ω1, r̃;P) - (σ2;ω2, r̃;Q).

Proof. Define a relation

R = {((σ1;ω1, r̃;P), (σ2;ω2, r̃;Q)) | (σ1;ω1;P) - (σ2;ω2;Q) and r̃∩ω1 = r̃∩ω2 = ∅}

Then R is a probabilistic branching bisimulation.

Lemma 4.23. Teleport -c QChannel.

Proof. Because Teleport - QChannel , there is a probabilistic branching bisimulation

R such that ((σ; ∅; Teleport), (σ; ∅; QChannel)) ∈ R for all σ. Both Teleport and

117

4.4. APPLICATIONS

DenseC = (qbit q1, q2){q1 ∗= H}.{q1, q2 ∗= CNot}.(νe : [̂Qbit])(Alice(q1) ‖ Bob(q2))

Alice(q1) = c?[a:Bit, b:Bit].{q1 ∗= Xb}.{q1 ∗= Za}.e![q1].0

Bob(q2) = e?[q1:Qbit].{q1, q2 ∗= CNot}.{q1 ∗= H}.d![measure q1,measure q2].0

CChannel = c?[a:Bit, b:Bit].d![a, b].0

Figure 4.5. CQP model for superdense coding and its specification.

QChannel have no free variables, therefore for any substitution κ = {ũr̃/x̃} we have

Teleport κ = Teleport and QChannel κ = QChannel . Therefore for all σ and for all

κ we have

((σ; ∅; Teleport κ), (σ; ∅; QChannel κ)) ∈ R. Then by Lemma 4.22 we have

(σ; r̃; Teleport κ) - (σ; r̃; QChannel κ)

It follows from Theorem 4.20 that Teleport and QChannel are congruent processes.

Corollary 4.24. Teleport = QChannel

4.4.2 Superdense Coding

The superdense coding protocol was described in Section 2.2.2. Figure 4.5 presents

a CQP model for superdense coding, DenseC . This CQP model, unlike the circuit

model, is able to clearly describe the actions of the two users using the processes Alice

and Bob.

We have also described a high-level specification for superdense coding, CChannel .

Essentially, this specification is a 2-bit classical channel. We shall now show that

DenseC is bisimilar to CChannel . First, we shall describe the execution of DenseC

and then we shall formally define an equivalence relation. Based on the execution, we

can argue that this relation is a probabilistic branching bisimulation.

Consider an arbitrary quantum state [r̃ 7→ |ψ〉]. Let s = ([r̃ 7→ |ψ〉]; ∅; DenseC),

118

4.4. APPLICATIONS

then the execution is as follows.

s
τ−→([r̃q1q2 7→ |ψ1〉]; q1, q2; {q1 ∗= H}.{q1, q2 ∗= CNot}.(νe : [̂Qbit])(Alice(q1) ‖ Bob(q2)))
τ−→([r̃q1q2 7→ |ψ2〉]; q1, q2; {q1, q2 ∗= CNot}.(νe : [̂Qbit])(Alice(q1) ‖ Bob(q2)))
τ−→([r̃q1q2 7→ |ψ3〉]; q1, q2; (νe : [̂Qbit])(Alice(q1) ‖ Bob(q2)))

c?[α,β]−→ ([r̃q1q2 7→ |ψ4〉]; q1, q2; (νe : [̂Qbit])({q1 ∗= Xb}.{q1 ∗= Za}.e![q1].0 ‖ Bob(q2)))
τ−→([r̃q1q2 7→ |ψ5〉]; q1, q2; (νe : [̂Qbit])({q1 ∗= Za}.e![q1].0 ‖ Bob(q2)))
τ−→([r̃q1q2 7→ |ψ6〉]; q1, q2; (νe : [̂Qbit])(e![q1].0 ‖ Bob(q2)))
τ−→([r̃q1q2 7→ |ψ7〉]; q1, q2; (νe : [̂Qbit])({q1, q2 ∗= CNot}.{q1 ∗= H}.

d![measure q1,measure q2].0))
τ−→([r̃q1q2 7→ |ψ8〉]; q1, q2; (νe : [̂Qbit])({q1 ∗= H}.d![measure q1,measure q2].0))
τ−→([r̃q1q2 7→ |ψ9〉]; q1, q2; (νe : [̂Qbit])(d![measure q1,measure q2].0))
τ−→([r̃q1q2 7→ |ψ10〉]; q1, q2; (νe : [̂Qbit])(d![α,measure q2].0))
τ−→([r̃q1q2 7→ |ψ10〉]; q1, q2; (νe : [̂Qbit])(d![α, β].0))

d![α,β]−→ ([r̃q1q2 7→ |ψ10〉]; q1, q2; 0)

The quantum states that arise in the execution are clearly dependent on the two

bit values α and β that are received. This results in four possible executions – it is

important to note that these are neither probabilistic branches nor components in a

mixed configuration.

Table 4.1 shows the quantum states and measurement outcomes for each of the

four possible values that α, β can take. The normalisation factors and the state |ψ〉
have been omitted for convenience.

It is interesting to note that the measurements in this protocol do not result in

mixed configurations. This is an example of a protocol in which the measurements

are designed to reveal specific information about the quantum state.

Let t = ([r̃ 7→ |ψ〉]; ∅; CChannel). Then define an equivalence relation R by the

equivalence classes C1, C2(α, β) and C3 as follows.

(u′, v′) ∈ C1 if u =⇒ u′ and v =⇒ v′ for u, v ∈ {s, t},

(u′, v′) ∈ C2(α, β) if u′
c?[α,β]
=⇒ u′ and v

c?[α,β]
=⇒ v′ for u, v ∈ {s, t},

(u′, v′) ∈ C3 if u
c?[α,β]
=⇒ d![α,β]

=⇒ u′ and v
c?[α,β]
=⇒ d![α,β]

=⇒ u′ ∀α, β ∈ {0, 1} and u, v ∈ {s, t}

The class C2(α, β) is parameterised by the bit values, resulting in 4 distinct classes,

while the class C3 only requires the input and output values to be identical.

Lemma 4.25. DenseC - CChannel.

119

4.4. APPLICATIONS

α 0 1 0 1
β 0 0 1 1

|ψ1〉 |00〉
|ψ2〉 |00〉+ |10〉
|ψ3〉 |00〉+ |11〉
|ψ4〉 |00〉+ |11〉
|ψ5〉 |00〉+ |11〉 |10〉+ |01〉
|ψ6〉 |00〉+ |11〉 |00〉 − |11〉 |10〉+ |01〉 |01〉 − |10〉
|ψ7〉 |00〉+ |11〉 |00〉 − |11〉 |10〉+ |01〉 |01〉 − |10〉
|ψ8〉 |00〉+ |10〉 |00〉 − |10〉 |11〉+ |01〉 |01〉 − |11〉
|ψ9〉 |00〉 |10〉 |01〉 |11〉
|ψ10〉 |00〉 |10〉 |01〉 |11〉

measure q1 0 1 0 1
measure q2 0 0 1 1

Table 4.1. The states and measurement outcomes of the superdense coding protocol
for inputs α, β.

Proof. Consider (u, v) ∈ C1. If u
τ−→ u′ then by definition (u′, v) ∈ C1. The only

other possible transition is u
c?[α,β]−→ u′ for some α, β ∈ {0, 1}. We can see that if

s =⇒ v then there are configurations v′, v′′ such that v =⇒ v′
c?[α,β]−→ v′′ and by

definition (u, v′) ∈ C1 and (u′, v′′) ∈ C2(α, β). Alternatively if v = t then v
c?[α,β]−→ v′

where (u′, v′) ∈ C2(α, β).

A similar argument applies to (u, v) ∈ C2(α, β). We note that for (u, v) ∈ C3,

then the process is 0.

We have therefore shown that R is a probabilistic branching bisimulation. Hence,

for any quantum state |ψ′〉 we can define a probabilistic branching bisimulation

R(|ψ′〉). The union Ru =
⋃
|ψ′〉R(|ψ′〉) is also a probabilistic branching bisimula-

tion. Thus we have for all σ, ((σ; ∅; DenseC), (σ; ∅; CChannel)) ∈ Ru ⊆-.

Lemma 4.26. DenseC -c CChannel.

Proof. Lemma 4.25 gives ∀σ.((σ; ∅; DenseC) - (σ; ∅; CChannel)). Both DenseC

and CChannel have no free variables, therefore for any substitution κ = {ũr̃/x̃}
we have DenseC κ = DenseC and CChannel κ = CChannel . Therefore for all

σ, κ we have (σ; ∅; DenseC κ) - (σ; ∅; CChannel κ). By Lemma 4.22, we have

∀σ, κ.((σ; r̃; DenseC κ) - (σ; r̃; CChannel κ)). Therefore DenseC -c CChannel .

Corollary 4.27. DenseC = CChannel.

120

4.5. DISCUSSION

4.5 Discussion

In this section, we discuss the semantic model that has been introduced in this chapter,

and we consider some issues that might arise with potential extensions to the language.

The aim of the new semantics is to capture the observational properties of both

the quantum and classical states. The density matrix formalism is used to describe

quantum subsystems, and therefore represents the information a particular agent (or

process) can determine from his share of the quantum state (the qubits owned by

that process). This description is affected by the classical information that arises

from measurement outcomes, and it is this link that was not respected in Chapter 3.

Mixed quantum states are ensembles of pure states that combine classical probabil-

ities with quantum states. We have replaced the probabilistic branching behaviour of

measurements by incorporating the probabilistic information into mixed states, how-

ever, this change is not a straightforward one. The classical values of measurement

outcomes are important in the process calculus setting, hence our use of mixed con-

figurations has arisen from the need to represent probabilistic ensembles of quantum

states alongside their respective classical values.

The crucial part of this approach, is to combine mixed configurations with proba-

bilistic branching. From an observational point of view, the probabilistic distribution

of configurations will change if information concerning measurement outcomes is out-

put. Up until the point of output, this classical information is internal to the process,

but afterwards it becomes global information. It is this globalisation that coincides

with branching.

It is worth considering whether it matters that probabilistic branching is performed

at some point after a measurement, even though it is the measurement operation

that produces a probabilistic outcome. The subtlety here is in the distinction of

quantum and classical uncertainty; the act of measurement changes the former into

the latter, while probabilistic branching resolves the resulting classical uncertainty.

The branching itself describes the transition from a state in which the observer has

uncertainty to a state in which this is resolved, while the associated probabilities

quantify the uncertainty.

Labelled transitions vs. Reductions. The labelled transition semantics defined

in Chapter 3 are closely linked to the original reduction semantics in [Gay and Na-

garajan 2005], providing the additional input and output actions to describe external

interactions. In this chapter, the semantics was radically changed to coincide with the

observational properties of quantum information. We briefly consider the validity of

the reduction semantics in light of these findings, and whether it is compatible with

the new semantics.

The reduction semantics is designed to model systems that are closed, and there-

121

4.5. DISCUSSION

fore no input or output actions are considered. In this chapter, we described the

requirement to represent measurement on two levels; locally to the process, and at

the global observation level. The reduction semantics does not consider this second

level, and therefore we require either probabilistic branching or mixed states. But

does it matter which?

In both cases, measurement results in a distribution of configurations; the prob-

abilities or weights and the corresponding states are the same. The difference is in

whether or not this distribution causes branching. The use of probabilistic branch-

ing in the reduction semantics is not necessarily wrong, as long as we are careful

about the physical interpretation. In particular, it makes little sense to consider the

observational properties of the quantum state in this setting. Conversion to mixed

configurations is unlikely to offer any benefits related to interpretation, however it

could be a worthwhile venture in order to maintain consistency between the two

semantics.

Distributed modelling. CQP was developed by Gay and Nagarajan [2005] based

on the idea that qubits are physical resources and processes represent distributed

agents. One of the main results that arises from the type system, is the unique

ownership of qubits. This result guarantees that each qubit is treated as a physical

resource, and can only be in one place at any time.

It is worth considering whether this is a reasonable assumption, and what impact

it has on observational equivalence. Using the distributed model does not allow us to

consider concurrency in a physical locality. For example, a quantum computer may

have concurrent processes, each with access to the same quantum registers. In this

case, it may be required to model processes such as {q ∗= U}.P ‖ {measure q}.Q, in

which parallel components share the same qubits.

Waiving the unique ownership of qubits condition would be incompatible with

our notion of process equivalence. Included in the conditions for output matching, is

the equality of the reduced density matrices of the qubits in the environment (ρE)

after the output has occurred; this is the quantum subsystem directly available to

an external process (the context). Instead, we would have to assume the context

has access to the complete quantum state, thereby having more information available

than is described by this reduced density matrix. This suggests that the concurrent

approach used by Lalire [2006] does not agree with the use of the reduced density

matrix in the process equivalence. This may partly explain why the bisimilarity in

[Lalire 2006] is not preserved by parallel composition.

For the protocols that we are interested in, in particular communication protocols,

it seems the logical approach to associate quantum systems with physically distributed

locations. This enables us to consider, for example, what information an attacker can

122

4.5. DISCUSSION

gain with only a subset of the quantum system. Indeed, it should be possible to model

local concurrency by implementing shared quantum registers as processes.

Language Extensions

The semantics presented in this chapter depends on each component of a mixed

configuration having the same process structure. That means that only values may

differ between components, and the result is that the complete configuration can

make a combined transition. Although this is compatible with the current language,

additions, such as the match operator, may not be.

Match operator. Incorporation of a match operator in CQP would provide the

ability to model classical process control. The inclusion of conditional unitary oper-

ators is a partial solution that has enabled the formal modelling of protocols such as

teleportation. Using a match operator, we might represent conditional operators as

a guarded sum:

[x = 0]P + [x = 1]{q ∗= X}.P

That is, if x evaluates to 0 continue as P , or if x evaluates to 1 then continue as

{q ∗= X}.P . Conditional operators represent only one type of classical control; for

example, we could choose between totally different executions with a process [x =

0]P + [x = 1]Q.

The problem here, is that combined transitions become more complicated. In par-

ticular, not all components in a mixed configuration will have the same capabilities.

Due to the possibility of producing observationally distinguishable executions, the

match operator could be implemented as a second source of probabilistic branching.

If, in the teleportation protocol, Bob were to use a match operator instead of a condi-

tional unitary, we would get probabilistic branching in the execution. The difference

between this, and the execution described in Chapter 3, is the point at which the

branching occurs. Specifically, it would be after Bob has received the measurement

values from Alice, and so this doesn’t contradict quantum mechanics. Moreover, we

would expect these branches to be observationally equivalent, and therefore we would

still obtain the equivalence of teleportation and a quantum channel.

It may also be necessary to include the match operator in order to axiomatise

bisimilarity in the presence of channel mobility. In particular, the match operator is

used in the expansion law of the π-calculus in order to account for the substitution

of channel names.

Recursion and replication. Another interesting extension to the language would

be support for replication or recursion. This could provide, for example, the ability

123

4.5. DISCUSSION

to model a continuous EPR source. There are many protocols that can be mod-

elled without using replication, or using finite replication for fixed length messages.

However it is interesting to consider the impact of adding such features.

An example was given by Feng et al. [2006] which identifies one problem with

recursive processes and quantum information; given a process P = c![q].P , the free

qubits of P are not well-defined in qCCS. Indeed, such processes also result in typing

contradictions in CQP. It is obvious that P is not a valid process, instead we are

interested in processes such as Q = c?[q].{q ∗=H}.d![q].Q, which do satisfy the typing

rules.

The effect of recursion on process equivalence is of particular interest. Specifically,

recursion may introduce loops into the transition system, although it is unclear what

the effect of this would be. There has been a significant amount of recent work (for

example, [Andova and Willemse 2006; Trčka and Georgievska 2008]) concerning the

combination of probability and non-determinism in transition systems, and it is likely

that this would be closely related to an implementation of recursion in CQP.

4.5.1 Comparison with qCCS

In this final section we discuss some of the differences between the language and

equivalences presented in this chapter, and the work by Feng et al. [2011] on qCCS.

The language presented in [Feng et al. 2011] combines aspects from the models

previously proposed in [Feng et al. 2007] and [Ying et al. 2009], and provides the

ability to model processes with both quantum and classical data. A weak bisimilarity

is defined for this new model of qCCS, which is found to be a congruence. Although

this result addresses the same problem as we have been investigating in this chapter,

there are several differences in the respective solutions.

The syntax of the two languages are considerably different; in qCSS there are

fewer constructs and the syntax is defined inductively. The quantum operators in

qCCS consist of superoperators (E [q̃].P) and measurements (M [q̃;x].P); these exist

as prefixes in qCCS as opposed to the action construct in CQP ({·}.P) which may

encompass quantum operators within an expression. Unitary operators and qubit

initialisation are both cases of superoperators, however it is not possible for a qCCS

process to initiate new qubits internally.

The ownership of qubits is controlled at the syntactic level in qCCS, through rules

such as “If qv(P)∩ qv(Q) = ∅ then P ‖ Q ∈ qProc and qv(P ‖ Q) = qv(P)∪ qv(Q)”.

This is in contrast to the type system in CQP which guarantees the unique ownership

of qubits in typed processes, while not implementing any such restrictions at the

syntactic level.

The type system is not only used to control qubit ownership, but also supports

the flexible expression language of CQP. Although classical data can be represented

124

4.5. DISCUSSION

in qCCS, there is no corresponding language and semantics for the representation

and evaluation of arbitrary expressions. This limits the ability to model protocols

with classical components that require computation, however it can be argued that

classical computations can be carried out using quantum data instead. As a result,

the simpler language of qCCS could easily lead to more complicated process specifi-

cations, whereas CQP supports a higher-level description which is likely to be more

appropriate for defining an accurate model in a formal verification setting.

A significant difference between the equivalences for CQP and qCCS is in the

treatment of the quantum state. In qCCS, for two configurations to be bisimilar, the

set of internal qubit names of the respective processes must be equal. Whereas in

CQP the names, order and number of internal qubits can be different, and it is only

upon output that the state is taken into account. Feng et al. [2011] also consider

the verification of quantum teleportation, and this example illustrates the different

treatments. In contrast to the direct quantum channel QChannel used in this chapter,

the qCCS specification process features a 3-qubit unitary operator SWAP1,3 which

swaps the states of the first and third qubits. Their specification process is defined as

Tel spec = c?[x].{x, y, z ∗= SWAP1,3}.d![z].0

expressed in the syntax of CQP. This process features three qubits instead of one,

to match the three required by the teleportation process. The swap operator is also

required in qCCS because the qubit names must be matched in the corresponding out-

put actions, in contrast to our abstraction which is only concerned with the quantum

state.

We argue that the additional qubits and the swap operation detract from the

simplicity of the specification process, where effective verification using bisimilarity

is dependent on an unambiguous specification. Although in the case of teleportation

the behaviour of Tel spec is obvious, this is unlikely to be the case for more compli-

cated processes. For this reason, the bisimilarity of qCCS may be of limited use for

verification.

Perhaps the most significant advantage of CQP is due to the introduction of mixed

configurations in this chapter. Mixed configurations are similar to the configuration

distributions used in qCCS as they both consist of distributions over pure config-

urations (i.e. process definition and quantum state). The difference with CQP is

the incorporation of classical data in mixed configurations, which enables probabilis-

tic branching to occur. As explained in this chapter, probabilistic branching may

occur as the result of an output action in which the constituent components can

be distinguished by the output values. Typically, this would arise because a mea-

surement result influences the classical output, and hence the classical uncertainty

of the state is reduced. A simple example is a quantum random number generator

125

4.6. SUMMARY

(qbit x).{x ∗= H}.c![measure x].0, which outputs either 0 or 1. The output value will

determine whether the quantum state is either |0〉 or |1〉 - it is no longer a mixed state

and hence branching must be used.

In qCCS, all transitions are from (distributions of) configurations to distributions,

and there is no concept of branching. In particular, it is not possible to have a

transition in which the output values are not identical amongst the components of

the distribution. As a result, the random number generator described above cannot

be fully modelled in qCCS because the state after measurement, expressed in CQP

as
1

2
• ([q 7→ |0〉]; q; c![0].0)�

1

2
• ([q 7→ |1〉]; q; c![1].0) ,

would have no transitions. Ignoring such possibilities significantly reduces the ability

of qCCS to represent the observational behaviour of processes. Furthermore, the

qCCS bisimilarity could identify two processes incorrectly because a non-deterministic

output is not acknowledged by the semantics. We therefore believe that qCCS is not

able to accurately model the class of processes that contain such outputs, whereas

the semantics of CQP have been designed specifically to capture this behaviour.

In comparison to qCCS, the proofs of preservation in this chapter are undoubtedly

more involved, however a major cause of this is from the incorporation of mixed

configurations with probabilistic branching in the semantics. As the example above

illustrates, this added complexity is necessary to capture the full behaviour of quantum

processes.

4.6 Summary

In Chapter 3, we found that the implementation of probabilistic branching results in

observations of the quantum state that are incompatible with the theory of quantum

mechanics. In light of these findings, we develop the semantics of CQP to produce

a language in which the observational aspects of the quantum state agree with the

mathematical formulation of quantum mechanics.

In Section 4.1, we introduce and motivate the use of mixed configurations, a con-

cept that extends the notion of mixed quantum states to configurations. We use a

series of examples to illustrate this novel approach combining internal branching and

probabilistic branching. In Section 4.2, the new operational semantics are presented,

including the transition relation for pure configurations (Figure 4.2), which is used to

derive internal communication. The most significant change to the semantics is the

source of probabilistic branching moving from R-Measure to L-Out. In particu-

lar, the rule L-Out now represents the probabilistic distribution of possible output

values. Type preservation is reconsidered in Section 4.2.2 with respect to the new

semantics.

126

4.6. SUMMARY

Probabilistic branching bisimulation is redefined for the new semantics in Section

4.3. This relation is similar to the relation considered in Chapter 3, but takes into

account the new behaviour arising from outputs. In Section 4.3.1, we prove that

probabilistic branching bisimilarity is preserved by all contexts except input and qubit

declaration prefixes. This includes preservation by parallel composition (Theorem

4.14), which has not been shown before for general quantum processes.

The step from bisimilarity to full bisimilarity, in order to achieve preservation by

input prefix, is a method used in the π-calculus [Sangiorgi and Walker 2001]. We define

full probabilistic branching bisimilarity in a similar fashion, by requiring bisimilarity to

hold for all substitutions. In Section 4.3.2, we prove that full probabilistic branching

bisimilarity is preserved by all contexts, and is therefore a congruence (Theorem 4.20).

In Section 4.4, we revisit quantum teleportation and show that it is congruent to

a quantum channel based on the new semantics. We also show that the superdense

coding protocol is congruent to a 2-bit classical channel.

127

5
Towards an Equational

Theory

The notion of congruence is very important in process calculus because it provides the

foundation for equational reasoning. An axiomatisation of an equivalence defines the

rules that, together with the rules of equational reasoning (reflexivity, symmetry, and

transitivity) prove only valid equations. An axiomatisation is complete if it proves all

the valid equations.

In this chapter, we investigate the use of an axiomatic approach for proving process

equivalence with respect to the full probabilistic branching bisimilarity defined in

Chapter 4. Through the analysis of the teleportation protocol, specifically motivated

by the equivalence Teleport -c QChannel from Section 4.4, we identify a number of

equalities with respect to the relation -c.

In contrast to axiomatisations for classical process calculi, we must consider the

role of quantum operations. As a result, we present several rules for the manipulation

of quantum operators, relating to familiar principles from quantum mechanics such

as commutativity, deferred measurement, and implicit measurement. In Section 5.2

we prove the soundness of this axiomatisation.

Alongside rules for quantum operations we may expect to see rules for the struc-

tural manipulation of processes, analogous to the laws for classical process calculi.

In Section 5.3, we consider the adaptation of the expansion law from the π-calculus,

finding that the law cannot hold for CQP due to the semantics of expressions. As a

result, the rules presented in this chapter do not form a complete axiomatisation.

128

5.1. ANALYSING TELEPORTATION

• • •

= �������� • �������� •
�������� �������� ��������

Figure 5.1. Controlled-NOT circuit identity.

5.1 Analysing Teleportation

The expansion law in process calculus enables the expansion of a parallel construction

into a summation, in which each summand eliminates parallel composition at the top

level. Repeated use of the law can flatten a process, the result being a summation

of sequential processes where each summand corresponds to a single interleaving of

parallel operations. As previously mentioned, a straightforward adaptation of the

expansion law from the π-calculus is not possible, hence for the purpose of this analysis

we begin with a flattened version of the teleportation protocol:

Teleport = (qbit y, z).{z ∗= H}.{z, y ∗= CNot}.c?[x].{x, z ∗= CNot}.

{x ∗= H}.{y ∗= Xmeasure z}.{y ∗= Zmeasure x}.d![y].0 (5.1)

In the following sections, we consider several analogues to circuit model identities,

including commutativity, permutations, and implicit measurements. Through the

application of these identities, we aim to simplify the quantum operators in the above

teleportation process and transform it into the QChannel process.

5.1.1 Quantum Identities

In Section 3.3, we proved that teleportation is bisimilar to a state swapping circuit

Swap. This result is a parallel to the analysis by Mermin [2001], in which equivalence

is shown by using circuit model identities. These identities enable the gates to be

moved around and replaced with other gates in the circuit. For example, Figure 5.1

illustrates how one controlled-NOT gate can be replaced by four, using an ancilla

qubit. Another identity featured in [Mermin 2001] enables the control and target of

a controlled-Z gate to be swapped; this is shown in Figure 5.2.

These identities are useful because they enable manipulation of the standard quan-

tum gates, however this can be generalised to arbitrary quantum operators. If U, V,W

are unitary operators, then we obtain the identity in Figure 5.3.

This circuit identity can be expressed by the following rule in CQP

{x̃ ∗= V }.{x̃ ∗=W}.P = {x̃ ∗= U}.P if U = WV . (Qi1)

129

5.1. ANALYSING TELEPORTATION

• • Z

�������� =
H Z H

=
H • H

Figure 5.2. Controlled-Z circuit identity.

U V W...
...

= ...
...

... if U = WV

Figure 5.3. Circuit identity for arbitrary operators.

Applying Qi1 to the teleportation process in (5.1) enables us to collapse the unitary

actions into a single action. To combine single qubit gates with 2-qubit gates, we

use the tensor product with the identity operator, for example, {z ∗= H} = {z, y ∗=
(H⊗ I)}. This gives

(qbit y, z).{z, y ∗= CNot.(H⊗ I)}.c?[x].{x, z ∗= (H⊗ I).CNot}.

{y ∗= Xmeasure z}.{y ∗= Zmeasure x}.d![y].0 (5.2)

5.1.2 Deferred Measurement

The corrective operators X and Z are classically controlled by the outcomes of mea-

suring qubits z and x. In Section 3.3, we showed an alternative implementation of the

teleportation protocol (TeleportD), in which these operators are replaced by quantum

controlled operators. This is achieved through the principle of deferred measurement

[Nielsen and Chuang 2000, p. 186]. We can express this principle as the following

rule for an arbitrary unitary operator U :

{ỹ ∗= Umeasure x}.P = {x, ỹ ∗= CU}.{measure x}.P (Qi2)

where CU is a controlled-U gate.

If we apply Qi2 to the two measurement operations in (5.2), noting that CX =

CNot, we get

(qbit y, z).{z, y ∗= CNot.(H⊗ I)}.c?[x].{x, z ∗= (H⊗ I).CNot}.

{z, y ∗= CNot}{measure z}.{x, y ∗= CZ}.{measure x}.d![y].0

130

5.1. ANALYSING TELEPORTATION

5.1.3 Commuting Operators

In the circuit model, we are able to “slide” operators around due to commutativity.

For example, we can swap the order of the measurement on z and the controlled-

Z operator on x and y because the qubits are independent; mathematically, this is

due to the use of the tensor product. For simplicity, we will only consider the basic

quantum operations and not arbitrary expressions. The commutativity of internal

operators are expressed by the following rules.

{x̃ ∗= U}.{ỹ ∗= V }.P = {ỹ ∗= V }.{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc1)

{x̃ ∗= U}.{measure ỹ}.P = {measure ỹ}.{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc2)

{x̃ ∗= U}.(qbit ỹ).P = (qbit ỹ).{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc3)

{measure x̃}.{measure ỹ}.P = {measure ỹ}.{measure x̃}.P if x̃ ∩ ỹ = ∅ (Qc4)

{measure x̃}.(qbit ỹ).P = (qbit ỹ).{measure x̃}.P if x̃ ∩ ỹ = ∅ (Qc5)

(qbit x̃).(qbit ỹ).P = (qbit ỹ).(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc6)

Using Qc2 on this, we can move the measurement of z after the controlled-Z

operator, and then using Qi1, the unitary operators are combined to give

(qbit y, z).{z, y ∗= CNot.(H⊗ I)}.c?[x].{x, y, z ∗= CZxy.CNotzy.Hx.CNotxz}.

{measure z}.{measure x}.d![y].0

where the subscripts on the unitary operators identify which qubits they apply to. The

corresponding 3-qubit operators are found using a combination of permutations and

tensor products with identity operators. For example, CNotxz = Π−1.(CNot ⊗ I).Π,

where π is a permutation given by π(x) = x, π(y) = z, π(z) = y, and Π is the

permutation matrix corresponding to π.

The rules Qc1–Qc6 do not consider commutativity with input and output actions,

which we would like to use in order to move the input action c?[x] to the very top.

In terms of the branching structure, the number of internal actions is not important,

however we cannot simply swap an input and a unitary transformation as the following

example demonstrates.

Example 5.1. Consider processes {x ∗= U}.c?[y].0 and c?[y].{x ∗= U}.0. If σ =

[q 7→ |ψ〉] then, because x does not have to be included in every substitution, we have

(c?[y].{x ∗= U}.0)
c?[q]−→ {x ∗= U}.0), whilst (σ; ∅; {x ∗= U}.c?[y].0) has no possible

transitions. Therefore

{x ∗= U}.c?[y].0 6-c c?[y].{x ∗= U}.0 .

131

5.1. ANALYSING TELEPORTATION

In the case of teleportation, the qubits y and z are initialised by the process so

the situation in the example will never arise. Therefore we propose the rule

(qbit x̃).{x̃ ∗= U}.c?[ỹ].P -c (qbit x̃).c?[ỹ].{x̃ ∗= U}.P .

By applying this rule we can move the input action to the top of the process, giving

(qbit y, z).c?[x].{z, y ∗= CNot.(H⊗ I)}.{x, y, z ∗= CZxy.CNotzy.Hx.CNotxz}.

{measure z}.{measure x}.d![y].0 .

We can generalise this rule to include several combinations of operations;

α.{ỹ ∗= U}.c?[x̃].P = α.c?[x̃].{ỹ ∗= U}.P (Qc7)

α.{ỹ ∗= U}.c![x̃].P = α.c![x̃].{ỹ ∗= U}.P (Qc8)

α.{measure ỹ}.c?[x̃].P = α.c?[x̃].{measure ỹ}.P (Qc9)

α.{measure ỹ}.c![x̃].P = α.c![x̃].{measure ỹ}.P (Qc10)

if ỹ ⊆ n(α) and ỹ ∩ x̃ = ∅. The condition ỹ ∈ n(α) is necessary to ensure that the

action on ỹ does not result in blocking behaviour.

We are also able to commute qubit declarations with input and output actions

since a qubit declaration is never blocking. This is expressed by the rules

(qbit x̃).c?[ỹ].P = c?[ỹ].(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc11)

(qbit x̃).c![ỹ].P = c![ỹ].(qbit x̃).P if x̃ ∩ ỹ = ∅ . (Qc12)

Using these rules we are able to bring the input action to the top, and also move the

measurement operations after the output. This gives

c?[x].(qbit y, z).{z, y ∗= CNot.(H⊗ I)}.{x, y, z ∗= CZxy.CNotzy.Hx.CNotxz}.

d![y].{measure z}.{measure x}.0 . (5.3)

5.1.4 Surplus Operators

We have applied the principle of deferred measurement in order to swap classical

control for quantum control. Now we consider the principle of implicit measurement

([Nielsen and Chuang 2000, p. 187]), which states that, any qubits at the end of a

circuit may be assumed to be measured. We showed in Lemma 4.10 that a measure-

ment does not affect the reduced density matrix of other qubits, hence we propose

the rule

{measure x}.0 = 0 . (Qs1)

132

5.1. ANALYSING TELEPORTATION

Then, by Qs1, we can eliminate the measurements in (5.3). By combining the re-

maining quantum operators with Qi1, we obtain

c?[x].(qbit y, z).{x, y, z ∗= CZxy.CNotzy.Hx.CNotxz.CNotzy.Hz}.d![y].0 . (5.4)

Measurements are not the only operators that produce no observable effect at the

end of a process – the same applies to unitary operators and qubit declarations, as

expressed by the rules

{x̃ ∗= U}.0 = 0 (Qs2)

(qbit x).0 = 0 . (Qs3)

5.1.5 Permutations

Up until this point, we have applied rules that, in general, simplify the process. Prov-

ing that (5.4) is bisimilar to QChannel is considerably easier than for the original

teleportation process, because many intermediate states have been eliminated. How-

ever, it is not obvious how this can be shown equationally. In particular, the ancilla

qubits that are used in teleportation must be eliminated, since they are not present

in QChannel .

First, we shall introduce extra unitary operators at the end. We can see that qubits

x and z will each finish in the state 1√
2
(|0〉 + |1〉), and so we apply the Hadamard

operator to each. The rule Qs2 given in the previous section allows these operations

to be added, thus giving

c?[x].(qbit y, z).{x, y, z ∗= CZxy.CNotzy.Hx.CNotxz.CNotzy.Hz}.

d![y].{x ∗= H}.{z ∗= H}.0 .

The operators can then be combined into a single unitary action by using Qc8 and

Qi1;

c?[x].(qbit y, z).{x, y, z ∗= Hx.Hz.CZxy.CNotzy.Hx.CNotxz.CNotzy.Hz}.d![y].0 . (5.5)

Next, we insert a permutation in order to swap the output qubit y with x. Let

π be a permutation of qubits, and let Π be the corresponding permutation on the

quantum state, then define the rule

α.P = α.{x̃ ∗= Π}.P{π(q̃)/x̃} if x̃ ⊆ n(α) . (Qp1)

As in previous rules, we require x̃ ⊆ n(α) in order to prevent the introduction of a

133

5.1. ANALYSING TELEPORTATION

blocking operator. Applying this rule to (5.5), followed by Qi1, we get

c?[x].(qbit y, z).{x, y, z ∗= Π.Hx.Hz.CZxy.CNotzy.Hx.CNotxz.CNotzy.Hz}.d![x].0 .

(5.6)

where π(x) = y, π(y) = x, π(z) = z and Π is the corresponding permutation operator.

5.1.6 Qubit Declaration

In this final stage, we will simplify the unitary operation by taking account of the

qubit declaration (qbit y, z). This declaration ensures that the quantum state of the

new qubits y, z will be |00〉, and hence the input domain of the unitary operation is

significantly restricted.

Let

U = Π.Hx.Hz.CZxy.CNotzy.Hx.CNotxz.CNotzy.Hz .

Then we have

c?[x].(qbit y, z).{x, y, z ∗= U}.d![x].0 .

In this process, we have the qubit declaration (qbit yz) which introduces two qubits

in the combined state |00〉. We can define a linear map Q corresponding to this

declaration:

Q = I ⊗

[
1

0

]
⊗

[
1

0

]
=



1 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0


.

Then, the action of teleportation on the single qubit x is given by UQ. Based on Qi1,

we can define a similar rule to deal with quantum operators that appear under qubit

declarations.

(qbit x).{ỹx ∗= U}.P -c (qbit x).{ỹx ∗= V }.P if U(Iỹ ⊗ |0〉) = V (Iỹ ⊗ |0〉) . (Qd1)

We have UQ = IxyzQ where Ixyz is the identity operator on qubits x, y, z. There-

fore, by applying Qd1 to (5.6), we have

c?[x].(qbit y, z).{x, y, z ∗= I}.d![x].0 . (5.7)

134

5.2. SOUNDNESS OF THE EQUATIONAL LAWS

From this point, we can apply Qi1, Qc8, and Qs2 to give

c?[x].{x ∗= I}.d![x].0 .

Finally, a special case of Qp1, in which we consider the identity permutation, results

in the process that we are aiming for:

c?[x].d![x].0 .

5.2 Soundness of the Equational Laws

In the previous section we presented a number of equalities with respect to full proba-

bilistic branching bisimulation; these are summarised in Figure 5.4. In this section, we

prove the soundness of these laws. Included with these rules are the laws R1–R3 for

manipulating restrictions. These laws were not used in the analysis of teleportation

in the previous section, however they are common laws for classical process calculi,

and their use will be demonstrated in Section 5.3.

Each proof in this section follows the same argument; we define a suitable equiv-

alence relation for the processes in question, and then prove that it is a probabilistic

branching bisimulation for arbitrary quantum states and substitutions.

Quantum identities

This lemma proves the soundness of Qi1.

Lemma 5.1 (Operator identities). For any process P and unitary operators U,W, V ,

if U = WV then

{ỹ ∗= V }.{ỹ ∗=W}.P -c {ỹ ∗= U}.P .

Proof. Let κ = {ũ, p̃, q̃/x̃, ỹ, z̃} be an arbitrary substitution; we assume that the

variables ỹ are included, otherwise there are no possible transitions. Let σ1 = [p̃r̃ 7→
|ψ1〉], σ2 = [p̃r̃ 7→ |ψ2〉], and σ3 = [p̃r̃ 7→ |ψ3〉], where |ψ2〉 = (V ⊗ Ir̃)|ψ1〉 and

|ψ3〉 = (W ⊗ Ir̃)|ψ2〉. Because U = WV we have |ψ3〉 = (U ⊗ Ir̃)|ψ1〉. Now let

s1 = (σ1; p̃, q̃; ({p̃ ∗= U}.P)κ),

s2 = (σ1; p̃, q̃; ({p̃ ∗= V }.{p̃ ∗=W}.P)κ),

s3 = (σ2; p̃, q̃; ({p̃ ∗=W}.P)κ),

s4 = (σ3; p̃, q̃;Pκ) .

Define an equivalence relation R as

R = {(s1, s2), (s1, s3), (s2, s3)} ∪ I

135

5.2. SOUNDNESS OF THE EQUATIONAL LAWS

{x̃ ∗= V }.{x̃ ∗=W}.P = {x̃ ∗= U}.P if U = WV (Qi1)

{ỹ ∗= Umeasure x}.P = {x, ỹ ∗= CU}.{measure x}.P (Qi2)

{x̃ ∗= U}.{ỹ ∗= V }.P = {ỹ ∗= V }.{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc1)

{x̃ ∗= U}.{measure ỹ}.P = {measure ỹ}.{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc2)

{x̃ ∗= U}.(qbit ỹ).P = (qbit ỹ).{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc3)

{measure x̃}.{measure ỹ}.P = {measure ỹ}.{measure x̃}.P if x̃ ∩ ỹ = ∅ (Qc4)

{measure x̃}.(qbit ỹ).P = (qbit ỹ).{measure x̃}.P if x̃ ∩ ỹ = ∅ (Qc5)

(qbit x̃).(qbit ỹ).P = (qbit ỹ).(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc6)

α.{ỹ ∗= U}.c?[x̃].P = α.c?[x̃].{ỹ ∗= U}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc7)

α.{ỹ ∗= U}.c![x̃].P = α.c![x̃].{ỹ ∗= U}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc8)

α.{measure ỹ}.c?[x̃].P = α.c?[x̃].{measure ỹ}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc9)

α.{measure ỹ}.c![x̃].P = α.c![x̃].{measure ỹ}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅
(Qc10)

(qbit x̃).c?[ỹ].P = c?[ỹ].(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc11)

(qbit x̃).c![ỹ].P = c![ỹ].(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc12)

{measure x}.0 = 0 (Qs1)

{x ∗= U}.0 = 0 (Qs2)

(qbit x).0 = 0 (Qs3)

α.{x̃ ∗= Π}.P{π(q̃)/x̃} = α.P if x̃ ⊆ n(α) (Qp1)

(qbit x).{ỹx ∗= U}.P = (qbit x).{ỹx ∗= V }.P (Qd1)

if U(Iỹ ⊗ |0〉) = V (Iỹ ⊗ |0〉)
(νc)(P +Q) = (νc)P + (νc)Q (R1)

(νc)α.P = 0 if α ∈ {c?[·], c![·]} (R2)

(νc)α.P = α.(νc)P if α /∈ {c?[·], c![·]} (R3)

Figure 5.4. Axioms for full probabilistic branching bisimilarity.

136

5.2. SOUNDNESS OF THE EQUATIONAL LAWS

where I is the identity relation. We now prove that R is a probabilistic branching

bisimulation by case analysis of the transitions of s1, s2, and s3.

If s1
τ−→ s4 then we have s2

τ−→ τ−→ s4 and also s3
τ−→ s4 where (s4, s4) ∈ R.

If s2
τ−→ s3 then we have (s1, s3) ∈ R and (s3, s3) ∈ R. If s3

τ−→ s4 then we have

s1
τ−→ s4 and also s2

τ−→ τ−→ s4 where (s4, s4) ∈ R.

Deferred measurement

This lemma proves the soundness of Qi2.

Lemma 5.2 (Deferred measurement). Assume x /∈ ỹ. If U is a unitary operator and

CU is the corresponding controlled operator then

{ỹ ∗= Umeasure x}.P -c {x, ỹ ∗= CU}.{measure x}.P .

Proof. Assume that κ = {p, q̃/x, ỹ}. The substitution of more qubits has no effect on

the proof, whilst fewer qubits will result in some configurations blocking; in the latter

case a simpler relation is required. Let

s1 = ([pq̃ 7→ |ψ1〉]; p, q̃; ({ỹ ∗= Umeasure x}.P)κ),

s2 = ⊕i∈I gi ([pq̃ 7→ |ψ2i〉]; p, q̃;λz.({ỹ ∗= Uz}.P)κ; i),

s3 = ⊕i∈I gi ([pq̃ 7→ |ψ3i〉]; p, q̃;Pκ),

s4 = ([pq̃ 7→ |ψ1〉]; p, q̃; ({x, ỹ ∗= CU}.{measure x}.P)κ),

s5 = ([pq̃ 7→ |ψ4〉]; p, q̃; ({measure x}.P)κ),

s6 = ⊕i∈I gi ([pq̃ 7→ |ψ5i〉]; p, q̃;Pκ)

where I = {0, 1}. Let M0, M1 be the measurement operators corresponding to the

measurement of x, then

M0 =

[
1 0

0 0

]
⊗ Iỹ and M1 =

[
0 0

0 1

]
⊗ Iỹ .

The controlled operator is defined by the matrix

CU =

[
I 0

0 U

]
.

Then |ψ2i〉 = Mi|ψ1〉 and |ψ3i〉 = U i|ψ2i〉 = U iMi|ψ1〉 and |ψ4〉 = CU |ψ1〉 and

|ψ5i〉 = Mi|ψ4〉 = MiCU |ψ1〉. For each i ∈ I a straightforward calculation shows

U iMi = MiCU , therefore |ψ3i〉 = |ψ5i〉 and s3 = s6.

137

5.2. SOUNDNESS OF THE EQUATIONAL LAWS

Now define an equivalence relation where

R = {(s1, s2), (s1, s4), (s1, s5)} ∪ I .

We have s1
τ−→ s2

τ−→ s3 and s4
τ−→ s5

τ−→ s6. Therefore it is straightforward to see

that R is a probabilistic branching bisimulation.

Commuting operators

In this lemma we prove the soundness of the rules Qc1–Qc6, relating to the commu-

tativity of internal actions.

Lemma 5.3 (Internal commutativity). If x̃ ∩ ỹ = ∅ then

1. {x̃ ∗= U}.{ỹ ∗= V }.P -c {ỹ ∗= V }.{x̃ ∗= U}.P .

2. {x̃ ∗= U}.{measure ỹ}.P -c {measure ỹ}.{x̃ ∗= U}.P .

3. {x̃ ∗= U}.(qbit ỹ).P -c (qbit ỹ).{x̃ ∗= U}.P .

4. {measure x̃}.{measure ỹ}.P -c {measure ỹ}.{measure x̃}.P .

5. {measure x̃}.(qbit ỹ).P -c (qbit ỹ).{measure x̃}.P .

6. (qbit x̃).(qbit ỹ).P -c (qbit ỹ).(qbit x̃).P .

Proof. For each case we construct an equivalence relation and then prove it is a

bisimulation. We consider the case {x̃∗=U}.{measure ỹ}.P -c {measure ỹ}.{x̃∗=U}.P
and note that the other cases are similar.

Let

s1 = ([q̃ 7→ |ψ1〉];ω1; ({x̃ ∗= U}.{measure ỹ}.P)κ),

s2 = ([q̃ 7→ |ψ2〉];ω1; ({measure ỹ}.P)κ),

s3 = ([q̃ 7→ |ψ1〉];ω1; ({measure ỹ}.{x̃ ∗= U}.P)κ),

s4 = ⊕i∈I gi ([q̃ 7→ |ψ3i〉];ω1; ({x̃ ∗= U}.P)κ),

s5 = ⊕i∈I gi ([q̃ 7→ |ψ4i
〉];ω1;Pκ) .

Assume that x̃ and ỹ are included in κ (otherwise a different relation is required since

not all configurations admit a transition). Let Ux denote U applied to qubits x and let

{Mi} be the measurement operators for qubits ỹ. We have s1
τ−→ τ−→ s2

τ−→ τ−→ s5

where |ψ2〉 = Ux|ψ1〉 and |ψ4i〉 = Mi|ψ2〉. Because Ux and Mi act on different qubits,

we have UxMi = MiUx. Therefore s3
τ−→ τ−→ s4

τ−→ τ−→ s5 where |ψ3i〉 = Mi|ψ1〉 and

|ψ4i〉 = Ux|ψ3i〉. Define an equivalence relation R by taking the equivalence closure

of

R = {(s1, s2), (s1, s3), (s1, s4)} ∪ I

138

5.2. SOUNDNESS OF THE EQUATIONAL LAWS

where I is the identity relation. It is straightforward to see that R is a probabilistic

branching bisimulation.

The rules Qc7–Qc12 must be treated differently than the other commutative laws

due to the presence of visible actions. In these cases, the inclusion of the prefix α

plays a central role in the proof, ensuring that the quantum operation is not blocking.

Lemma 5.4 (External action commutativity). If ỹ ⊆ n(α) and x̃ ∩ ỹ = ∅ then

1. α.{ỹ ∗= U}.c?[x̃].P -c α.c?[x̃].{ỹ ∗= U}.P .

2. α.{ỹ ∗= U}.c![x̃].P -c α.c![x̃].{ỹ ∗= U}.P .

3. α.{measure ỹ}.c?[x̃].P -c α.c?[x̃].{measure ỹ}.P .

4. α.{measure ỹ}.c![x̃].P -c α.c![x̃].{measure ỹ}.P .

5. (qbit x̃).c?[ỹ].P -c c?[ỹ].(qbit x̃).P .

6. (qbit x̃).c![ỹ].P -c c![ỹ].(qbit x̃).P .

Proof. In cases 1–4, the condition ỹ ⊆ n(α) ensures that the expression evaluation

is not blocking if the term α is not blocking. In cases 5 and 6, this condition is

not required because the qubit declaration is never blocking. We consider the case

α.{ỹ ∗= U}.c![x̃].P -c α.c![x̃].{ỹ ∗= U}.P and note that the other cases are similar.

Let κ be an arbitrary substitution, σ1 be an arbitrary quantum state, and let

s1 = (σ1;ω1; (α.{ỹ ∗= U}.c![x̃].P)κ1)

s2 = (σ2;ω2; ({ỹ ∗= U}.c![x̃].P)κ1κ2)

s3 = (σ3;ω2; (c![x̃].P)κ1κ2)

s4 = (σ3;ω3;Pκ1κ2)

t1 = (σ1;ω1; (α.c![x̃].{ỹ ∗= U}.P)κ1)

t2 = (σ2;ω2; (c![x̃].{ỹ ∗= U}.P)κ1κ2)

t3 = (σ3;ω3; ({ỹ ∗= U}.P)κ1κ2)

t4 = (σ3;ω3;Pκ1κ2)

where κ2 is a substitution due to α. Assume that κ1κ2 = {p̃, q̃/x̃, ỹ}, then we have

the transitions s1
α−→ s2

τ−→ s3
c![p̃]−→ s4 and t1

α−→ t2
c![p̃]−→ t3

τ−→ t4. We note that

s4 = t4, and that ρE(s4) = ρE(t3) because unitary operators are trace-preserving.

Therefore, we define an equivalence relation

R = {(s1, t1), (s2, t2), (s3, t3), (s4, t3)} ∪ I

139

5.2. SOUNDNESS OF THE EQUATIONAL LAWS

where I is the identity relation. Then it is straightforward to see that R is a proba-

bilistic branching bisimulation.

Surplus operators

The soundness of the rules relating to surplus operators, Qs1–Qs3, are proved in the

following lemma.

Lemma 5.5. 1. {measure x̃}.0 -c 0.

2. {x̃ ∗= U}.0 -c 0.

3. (qbit x).0 -c 0.

Proof. For each case we construct a relation and prove that it is a probabilistic branch-

ing bisimulation.

1. Let κ be an arbitrary substitution, σ1 be an arbitrary quantum state, and let

s1 = (σ1;ω; ({measure x̃}.0)κ), s2 = ⊕i∈I gi (σ2i
;ω; 0), and s3 = (σ1;ω; 0) .

Then define an equivalence relation R where

R = {(s1, s2), (s1, s3), (s2, s3)} .

If qubits x̃ are replaced by κ then we have the transition s1
τ−→ s2 and (s2, s3) ∈

R. There are no transitions in all other cases.

2. For arbitrary σ1 and κ, let

s1 = (σ1;ω; ({x̃ ∗= U}.0)κ), s2 = (σ2;ω; 0), and s3 = (σ1;ω; 0) .

Then define an equivalence relation R where

R = {(s1, s2), (s1, s3), (s2, s3)} .

If qubits x̃ are replaced by κ then we have the transition s1
τ−→ s2 and (s2, s3) ∈

R. There are no transitions in all other cases.

3. For arbitrary σ1 and κ, let

s1 = (σ1;ω; ((qbit x).0)κ), s2 = (σ2;ω; 0), and s3 = (σ1;ω; 0) .

Then define an equivalence relation R where

R = {(s1, s2), (s1, s3), (s2, s3)} .

140

5.2. SOUNDNESS OF THE EQUATIONAL LAWS

The variable x is bound in s1, hence κ has no effect. We have the transition

s1
τ−→ s2 and (s2, s3) ∈ R. The configurations s2 and s3 admit no transitions.

Permutations

This next lemma proves the soundness of Qp1.

Lemma 5.6 (Permutations). If π is a permutation on qubit variables x̃ and Π is the

corresponding permutation operator and x̃ ⊆ n(α) then

α.{x̃ ∗= Π}.P{π(x̃)/x̃} -c α.P .

Proof. Assume that κ1 = {q̃/x̃}; if not all qubits x̃ are included then neither process

can proceed, on the other hand substituting more qubits has no effect on the proof.

Let σ1 = [q̃ 7→ |ψ〉], and let σ2 = [π(q̃) 7→ Π|ψ〉]. Now let

s1 = (σ1; q̃; (α.{x̃ ∗= Π}.P{π(x̃)/x̃})κ1),

s2 = (σ2; q̃′; ({x̃ ∗= Π}.P{π(x̃)/x̃})κ1κ2),

s3 = (σ3; q̃′;P{π(x̃)/x̃}κ1κ2),

t1 = (σ1; q̃;α.Pκ1),

t2 = (σ2; q̃′;Pκ1κ2)

where κ2 is a substitution introduced by α. Then we have the transitions s1
α−→

s2
τ−→ s3 and t1

α−→ t2. Define an equivalence relation as

R = {(s1, t1), (s2, s3)} ∪ I

where I is the identity relation. Structural congruence of configurations gives s3 ≡ t2,

therefore (s3, t2) ∈ R. It is then straightforward to see that R is a probabilistic

branching bisimulation.

Qubit declaration

The soundness of Qd1 is proved in the following lemma.

Lemma 5.7 (Qubit declaration). If U(Iỹ ⊗ |0〉) = V (Iỹ ⊗ |0〉) then

(qbit x).{ỹx ∗= U}.P -c (qbit x).{ỹx ∗= V }.P .

Proof. Assume that κ = {q̃/ỹ}. Let σ1 = [q̃ 7→ |ψ〉], σ2 = [q̃r 7→ |ψ〉|0〉], and

141

5.2. SOUNDNESS OF THE EQUATIONAL LAWS

σ3 = [q̃r 7→ U |ψ〉|0〉]. We have |ψ〉|0〉 = (Iỹ ⊗ |0〉)|ψ〉, hence U |ψ〉|0〉 = V |ψ〉|0〉. Let

s1 = (σ1; q̃; ((qbit x).{ỹx ∗= U}.P)κ),

s2 = (σ2; q̃, r; ({ỹr ∗= U}.P{r/x})κ),

s3 = (σ1; q̃; ((qbit x).{ỹx ∗= V }.P)κ),

s4 = (σ2; q̃, r; ({ỹr ∗= V }.P{r/x})κ),

s5 = (σ3; q̃, r;Pκ) .

Define an equivalence relation

R = {(s1, s3), (s2, s4)} ∪ I

where I is the identity relation. We have s1
τ−→ s2 and s3

τ−→ s4 where (s2, s4) ∈ R,

and we have s2
τ−→ s5 and s4

τ−→ s5 where (s5, s5) ∈ R. ThereforeR is a probabilistic

branching bisimulation.

Restriction

The following lemma proves the soundness of the restriction laws R1–R3.

Lemma 5.8 (Restriction Laws). For any P,Q and c:

1. (νc)(P +Q) -c (νc)P + (νc)Q,

2. (νc)α.P -c 0 if α ∈ {c?[·], c![ṽ, q̃]},

3. (νc)α.P -c α.(νc)P if α /∈ {c?[·], c![·]}.

Proof. 1. Define a relation R as the identity relation extended with the pairs

((σ;ω; (νc)(P+Q)), (σ;ω; (νc)P+(νc)Q)). The transition (σ;ω; (νc)(P+Q))
α−→

(σ′;ω′; (νc)R) is derived by L-Res and L-Sum. Then applying these rules in the

reverse order we can derive (σ;ω; (νc)P + (νc)Q)
α−→ (σ′;ω′; (νc)R). Therefore

we have R is a probabilistic branching bisimulation.

2. Define a relation R as the pair ((σ;ω; (νc)α.P), (σ;ω; 0)). If α ∈ {c?[·], c![ṽ, q̃]}
then (σ;ω; (νc)α.P) has no transitions. The configuration (σ;ω; 0) has no tran-

sitions by definition, hence R is a bisimulation.

3. Define a relation R as the identity relation extended with

{((σ;ω;α.(νc)P), (σ;ω; (νc)α.P)) | α /∈ {c?[·], c![·]}} .

We consider the derivation of the transition (σ;ω;α.(νc)P)
β−→ s′. If the deriva-

tion is by L-Expr then s′ = (σ′;ω;α′.(νc)P) and by L-Res and L-Expr we

142

5.3. EXPANDING PROCESSES

have (σ;ω; (νc)α.P)
β−→ (σ′;ω; (νc)α′.P) = t′ and therefore (s′, t′) ∈ R. If

the derivation is by either L-In, L-Qbit or L-Act then s′ = (σ′;ω′; (νc)P ′).

Applying L-Res followed by the respective rule gives the transition

(σ;ω; (νc)α.P)
β−→ (σ′;ω′; (νc)P ′ = t′

and therefore (s′, t′) ∈ R. If the derivation is by L-Out then s′ = �m∈M pm •
⊕i∈Im gi (σ′i;ω

′;λx̃.(νc)P ; ṽi) and by L-Res and L-Out we have the transition

⊕i∈I gi (σi;ω;λx̃.(νc)α.P ; ṽi)
β−→

�m∈M pm • ⊕i∈Im
gi
pm

(σ′i;ω
′;λx̃.(νc)P ; ṽi) = t′

and therefore (s′, t′) ∈ R.

5.3 Expanding processes

In this section, we discuss the issues preventing the expansion law of classical pro-

cess calculus from being adapted to CQP. We present the natural conversion of the

expansion law from the π-calculus into CQP, and illustrate how such a law could be

applied to quantum teleportation. In doing so, we show that the process Teleport is

congruent to the flattened version (Equation 5.1, used as the starting point in Section

5.1), noting — informally — that in this particular case the equalities are correct.

The Teleport process consists of a preparation stage (the creation of the entangled

qubits) followed by the parallel composition of processes Alice and Bob. In this

particular protocol, there is no interleaving between the parallel components because

Bob must wait until Alice sends her measurement values. Therefore, it is natural to

expect that we can expand this parallel composition into a single sequential process;

the expansion law is the conventional method for this.

5.3.1 CQP and The Expansion Law

Adapting the expansion lemma from the π-calculus (see [Sangiorgi and Walker 2001,

Lemma 2.2.14]) results in the following proposed equality, expressed with respect to

CQP.

If M =
∑m
i=1 αi.Pi and N =

∑n
j=1 βj .Qj , then

M ‖ N -c
m∑
i=1

αi.(Pi ‖ N) +

n∑
j=1

βj .(M ‖ Qj) +
∑

αi comp βj

τ.Rij

143

5.3. EXPANDING PROCESSES

where αi comp βj if αi is c![ẽ] and βj is c?[x̃] and Rij = Pi ‖ Qj{ẽ/x̃}.
The expansion law serves to make every possible action explicit, by unfolding the

parallel composition into a summation. The prefixes of the terms in the first two

parts of this summation correspond to the capabilities of M and N respectively. The

third part is a summation corresponding to the potential communications between M

and N . The condition αi comp βj identifies complementary actions, that is when αi

is an output and βj is a matching input.

Before applying this law to teleportation, we discuss three issues which prevent

its application to general processes. First, there is no τ prefix in CQP, however this

is easily overcome by replacing the τ by, for example, {unit} because the semantics of

the {unit} prefix is analogous to the semantics of the τ prefix in the π-calculus.

The second issue is concerned with the evaluation of expressions in CQP. In con-

trast to the π-calculus, because CQP includes the syntax and semantics for the eval-

uation of expressions, a prefix does not necessarily correspond to a single action. The

consequence of this is that the execution tree of the left hand process has more states

than that of the right hand process. The process c![measure x].0 ‖ d![measure y].0

provides a simple counter-example in which the expansion is not bisimilar; in the

expansion, for example, the measurement of x would preclude the output on channel

d from occurring before the output on channel c.

The third issue that we consider is concerned with the output of expressions. The

term Rij , which results from communication, features the substitution {ẽ/x̃} in order

to transfer the expression from one process to another. The effects of transferring

expressions in this way are multiple; evaluation of the expression is deferred since

normally evaluation would occur before the communication; evaluation may occur

multiple times if x̃ appears more than once, which is a problem for non-idempotent

expressions such as ỹ ∗=U ; and typing is not preserved, for example, if the expression

is measure x then the transfer may contradict the unique ownership theorem.

5.3.2 Expanding Teleportation

Despite the general incompatibility of the expansion law, the issues mentioned pre-

viously cause little concern in the case of teleportation. Primarily, this is because

the teleportation process exhibits no branching, which is common to all of the afore-

mentioned points. Although the analysis in the section is not rigorous, it provides

useful insight into the role of equational reasoning, and also reinforces the potential

existence of a suitable expansion law for CQP. This analysis also serves to illustrate

the restriction laws given in Figure 5.4.

We begin by applying the expansion law to the parallel process Alice ‖ Bob. Let

144

5.3. EXPANDING PROCESSES

Alice = c?[x].Alice ′ and Bob = e?[r, s].Bob′, then we have

Alice ‖ Bob = c?[x].(Alice ′ ‖ Bob) + e?[r, s].(Alice ‖ Bob′) .

The first term corresponds to Alice’s initial input action, the second term to Bob’s

input action. There are no cases in which they can communicate at this point, hence

the final term is empty.

Restrictions

We know that Bob cannot start until Alice is ready to send the measurement results,

therefore we expect that the second term, prefixed by Bob’s input e?[r, s], has no

behaviour. Specifically, this inability to execute is a result of the restriction (νe)

covering Alice and Bob. In Figure 5.4 we included the following rules for restriction:

(νc)(P +Q) = (νc)P + (νc)Q (R1)

(νc)α.P = 0 if α ∈ {c?[·], c![ṽ, q̃]} (R2)

(νc)α.P = α.(νc)P if α /∈ {c?[·], c![·]} (R3)

These rules enable us to move restrictions in and out of summations, identify se-

mantically null processes, and commute with prefixes. Using R1 we can move the

restriction into the sum:

(νe)(c?[x].(Alice ′ ‖ Bob) + e?[r, s].(Alice ‖ Bob′)) =

(νe)c?[x].(Alice ′ ‖ Bob) + (νe)e?[r, s].(Alice ‖ Bob′) .

Now, we can apply R2 to the second term, identifying it as semantically null:

(νe)e?[r, s].(Alice ‖ Bob′) = 0 .

Combined with structural congruence, we can remove this term from the summation.

Finally, R3 allows us to bring the input c?[x] outside the restriction:

(νe)c?[x].(Alice ′ ‖ Bob) = c?[x].(νe)(Alice ′ ‖ Bob) .

We have now expanded part of the parallel composition and eliminated semantically

null terms to give

(νe)(Alice ‖ Bob) = (νe)c?[x].(Alice ′ ‖ Bob) .

By applying this procedure iteratively, we can fully expand the process Alice up

145

5.4. SUMMARY

to the output action on e. At this point we have

(νe)(Alice ‖ Bob) =

c?[x].{x, z ∗= CNot}.{x ∗= H}.(νe)(e![measure z,measure x].0 ‖ Bob) .

The next application of the expansion law involves the communication between Alice

and Bob, giving

(e![measure z,measure x].0 ‖ Bob) = e![measure z,measure x].(0 ‖ Bob)

+ e?[r, s].(e![measure z,measure x].0 ‖ Bob′)

+ τ.(0 ‖ Bob{measure z,measure x/r, s}) .

In this case, we have complementary actions e?[r, s] and e![measure z,measure x] which

result in a third term in the summation, representing the communication that can

occur. By including the restriction, we are able to identify the first two terms as

semantically null processes, thus

(νe)(e![measure z,measure x].0 ‖ Bob) = 0 + 0

+ (νe)τ.(0 ‖ Bob{measure z,measure x/r, s}) .

The 0 processes can be removed using structural congruence, and through several

iterations of R3 followed by the structural congruence rule (νe)0 ≡ 0, we have

(νe)(Alice ‖ Bob) =

c?[x].{x, z ∗= CNot}.{x ∗= H}.τ.Bob{measure z,measure x/r, s} .

Aside from the additional τ which serves no purpose in this case, the process ob-

tained is identical to the flattened version of teleportation given in Equation (5.1),

having eliminated all parallel constructions. Although the measurement expressions

measure x and measure z have been deferred as a result of the expansion, there is

no adverse consequence; instead we obtain a process similar to the TeleportD process

introduced in Section 3.3, which is based on the principle of deferred measurement.

5.4 Summary

In Chapter 4, we defined full probabilistic branching bisimilarity and proved that it

is a congruence. In Section 4.4, we proved that the process Teleport is congruent to

QChannel by defining a full probabilistic branching bisimulation. In this chapter, we

developed an equational theory of full probabilistic branching bisimilarity in order to

146

5.4. SUMMARY

enable the determination of equivalence through equational reasoning.

In Section 5.1, we used the quantum teleportation process to motivate a number

of equational laws. In doing this, we demonstrated the application of equational

reasoning to the analysis of a practical quantum process. Due to the difficulty of

adapting the expansion law from classical process calculi, the analysis started with

a flattened version of the Teleport process. In Section 5.3, we discussed the issues

surrounding the use of the expansion law with CQP, and the potential use of an

appropriate law to manipulate the parallel composition found in the original Teleport

process.

In Section 5.2, we proved the soundness of the equational laws presented in this

chapter, as summarised in Figure 5.4.

147

6
A Combined Approach to

Quantum Verification

In the previous chapters, we described the use of process calculus for the verification

of quantum protocols. Process calculus is an established and successful field in clas-

sical computer science, providing the framework for an algebraic approach to system

analysis. We have used manual proof techniques to verify properties of simple quan-

tum systems, although, while this is an effective approach, it can become unweildy

for analysing more complex systems.

Automated techniques are often considered a better approach to verification, not

only due to the offloading of work to a machine, but also because the precise nature of

a machine removes the possibility of incorrect proofs. Model–checking [Clarke et al.

2000] is one such automated technique for formal verification and works by performing

an exhaustive search on the state space of the system in question. Properties for

system correctness are usually specified using temporal logic formulae, which can

be checked against the resulting state space. Model–checking differs from testing in

its exhaustive nature. Testing is normally based on a sample of conditions which

are meant to represent a range of possible scenarios. This is often limited by the

imagination of the designer, a limitation that is avoided in model–checking.

Classical model checking tools are not fully adequate for the analysis of quantum

systems, in much the same way that classical process calculi struggle. The ability

to represent quantum information and its properties is required for analysing all but

the basic properties. Previous attempts at using existing tools include the modelling

and verification of the BB84 key distribution protocol [Bennett and Brassard 1984]

with CCS and the Concurrency Workbench of the New Century (CWB-NC) tool

by Nagarajan and Gay [2002], and the use of the PRISM probabilistic model checker

[Kwiatkowska et al. 2001] by Gay et al. [2005] to check a selection of quantum protocols

148

including quantum teleportation [Bennett et al. 1993] and quantum error correction.

These efforts provided the foundation for both CQP and the Quantum Model Checker

(QMC) tool.

There are many software tools and libraries that have been developed for the

simulation of quantum systems on classical computers (see [Glendinning 2010] for a

partial list), however the Quantum Model Checker (QMC) [Gay et al. 2007, 2008;

Papanikolaou 2009] is a tool that goes beyind simulation and is designed for verifi-

cation. Simulation plays a central role in model checking, although it is not possible

to simulate quantum computations efficiently on a classical computer; indeed this is

one of the major advantages promised by quantum computers. This inefficiency is

compounded by the fact that model checking is computationally expensive, since all

possible executions of a system must be explored.

The stabilizer formalism is a sub-class of quantum computation which include the

Pauli, Hadamard, controlled-NOT and phase operators. This class of computation is

particularly interesting because, according to the Gottessman-Knill Theorem, it can

be simulated on a classical computer in polynomial time and space. The advantage of

the stabilizer formalism lies within the representation of the quantum state; instead

of a state vector representation, the quantum state can be specified by the operators

which are stabilizers (a group theoretic concept in which the stabilizers of a group

are those operators which map the group to itself). The obvious disadvantage of the

stabilizer formalism is that it falls short of the full power of quantum computation

needed to implement quantum algorithms.

QMC was designed to take advantage of the efficient representation and simulation

algorithms offered by the stabilizer formalism, and it has been tested with a number

of small but practical case studies. However, the stabilizer formalism is too restrictive

in the long term, since the verification of larger systems and complex protocols with

security requirements requires support for arbitrary quantum operators. The security

of quantum coin flipping protocols [Berĺın et al. 2008] is an example where there

are known attacks using non-stabilizer quantum states, while the normal protocol

operates within the scope of the formalism.

In this chapter we define a translation from CQP to the modelling langauge of

QMC. This will enable the expressive power of CQP, combined with the process

equivalence in Chapter 4, to be used in conjunction with the automated approach

offered by QMC. The semantic correctness of the translation is proved, in order to

ensure that translated specifications describe the same system. There is considerable

scope for extending both CQP and QMC, and this chapter will provide the technical

underpinning to develop this translation alongside the languages.

This chapter is based on the CQP language and reduction semantics of [Gay

and Nagarajan 2006], and does not consider the modifications featured in Chapters

149

6.1. MODELLING QUANTUM PROTOCOLS IN QMC

3 and 4. In particular, QMC is designed to model closed systems and therefore

the ability to model external interactions, as introduced in the previous chapters,

is not required. Indeed, if the semantics of external interactions is removed from

Chapters 3 and 4, then there are only minor differences between these semantics and

the reduction semantics in [Gay and Nagarajan 2006]. However, this does highlight a

major difference between the applications of bisimilarity and model-checking; in the

latter case, external entities must be specified explicitly in order to define a closed

system.

6.1 Modelling Quantum Protocols in QMC

In this section we introduce the Quantum Model Checker (QMC) and its use in the

verification of quantum protocols. QMC is a software tool developed by Gay et al.

[2008], that automatically explores all possible behaviours arising from a protocol

model, and enables logic properties expressed with Quantum Computation Tree Logic

(QCTL) [Baltazar et al. 2008] to be checked over the resulting structure.

In QMC, a protocol model consists of one or more processes, where each process

describes a series of commands. The commands of each process are interleaved to

model concurrent execution. Non-determinism arises through interleaving, selection

constructs and measurement, which is resolved to produce an execution tree for the

modelled system.

Each node in the execution tree is represented by a configuration. This a tuple

(P, κ,Σ, |ψ〉), where P is the abstract representation of the program, κ is the global

store, Σ is the set of local stores, each corresponding to a process, and |ψ〉 is the

quantum state. The inclusion of global and local stores is a reflection of the compu-

tational nature of QMC, as opposed to the algebraic nature of CQP in which values

are contained within the process.

The internal representation of the quantum state is of particular interest; rather

than storing the state vector representation of |ψ〉 (which grows exponentially in

size with the number of qubits), the stabilizer array representation is used in QMC.

This is a binary representation of the set of Pauli operators that stabilize (or fix) |ψ〉.
This representation results in significant computational benefits in term of both space

and time when simulating protocols. This is because the size of the representation

grows polynomially with the number of qubits, and because there are polynomial-time

algorithms for the simulation of stabilizer circuits [Aaronson and Gottesman 2004].

6.1.1 Syntax

Models are written in an imperative-style concurrent specification language that has

been developed for QMC. The syntax of the language is defined by the grammar in

150

6.1. MODELLING QUANTUM PROTOCOLS IN QMC

t ::= integer | bool | real | qubit | channel of t

e ::= n | r | x | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2

| true | false | not e | e1 and e2 | e1 or e2

| e1 = e2 | e1 < e2 | e1 > e2 | meas e | newqubit

S ::= e | x := e | x1!x2 | x1?x2 | cnot x1 x2 | had x

| ph x | X x | Y x | Z x | S1;S2

H ::= :: SH | :: S

GC ::= if H fi | do H od

C ::= S; | GC | C1 C2 | ε
V D ::= var x : t;V D | ε
P ::= process p V D begin C end P | ε
M ::= program p V D begin P end

Figure 6.1. QMC Concrete Syntax

Figure 6.1 (from [Papanikolaou 2008]). Expressions e consist of names, values, arith-

metic operators, boolean operators, quantum measurement and initialisation of new

qubits. Statements S consist of expressions, assignment, output, input, quantum op-

erations (limited to operators in the stabilizer formalism) and sequential composition.

Options H allow a choice between one or more statements; these are used in guarded

commands GC, which consist of the if and do constructs. Commands C consist of

statements, guarded commands, or a sequence of commands. Variable declarations

V D allow a (possibly empty) sequence of declarations. Processes P are a (possibly

empty) sequence of processes (these processes are executed concurrently and not se-

quentially), each containing variable declarations and commands. A program M is a

single construct containing (global) variable declarations and processes.

The syntax is best demonstrated by an example. The program in Figure 6.2

illustrates the modelling of quantum teleportation in QMC. We assume the state to

be “teleported” is |ψ〉 = 1√
2
(|0〉+ |1〉).

The language allows for global variables (such as e1, e2), typed communication

channels (such as ch) which are always global, and local (private) variables for each

process (such as a,b,c,d,q). Communication is asynchronous, with executability rules

restricting the way in which the interleaving of process is performed. For instance,

the process Bob cannot start unless channel ch is filled with a value.

6.1.2 Verification with QMC

There are several properties of quantum protocols that we are interested in reasoning

about. In particular, we are interested in properties of the quantum state, such as

151

6.1. MODELLING QUANTUM PROTOCOLS IN QMC

program Teleport;
var e1,e2:qubit; ch:channel of integer;
process Alice;
var q:qubit; a,b:integer;
begin
q := newqubit; had q;
e1 := newqubit; e2 := newqubit;
had e1; cnot e1 e2;
cnot q e1; had q;
a := meas q;
b := meas e1;
ch!a; ch!b;

end;
process Bob;
var c,d: integer;
begin
ch?c; ch?d;
if
:: ((c=1) and (d=0)) -> X q; break;
:: ((c=0) and (d=1)) -> Z q; break;
:: ((c=1) and (d=1)) -> X q; Z q; break;
:: ((c=0) and (d=0)) -> break;
fi

end;
endprogram.

Figure 6.2. Quantum teleportation modelled in QMC.

152

6.1. MODELLING QUANTUM PROTOCOLS IN QMC

α ::= ⊥ | qb | α⇒ α | α ∨ α | α ∧ α
t ::= x | (t+ t) | (tt) | Re(|>〉A) | Im(|>〉A) | ∫ φ
γ ::= (t ≤ t) | ⊥ | (α A α) | (αg α) | (αf α) | [qbi, qbj , . . .]

θ ::= γ | θ A θ | (EXθ) | ([θ EU θ]) | (AFθ)

Figure 6.3. Syntax of QCTL.

which qubits are “active” in a given state and which qubits are entangled with the

rest of the system. The evolution of classical values is also important, including the

possible outcomes of measurements. These properties can be expressed for QMC

models using QCTL [Baltazar et al. 2008].

QCTL adds the usual temporal connectives (AX, EF, EU) of Computation Tree

Logic (CTL) [Emerson 1990] to the propositional logic EQPL [Mateus and Sernadas

2006]. The meaning of formulae in Exogenous Quantum Propositional Logic (EQPL)

is expressed in terms of valuations, which are truth-value assignments for the symbols

qb0, qb1, . . . , qbn corresponding to each qubit in the system. For example, the quan-

tum state 1√
2
(|00〉 + |11〉 is understood as a pair of valuations (v1, v2) for a 2-qubit

system such that v1(qb0) = 0, v1(qb1) = 0, v2(qb0) = 1, v2(qb1) = 1.

The formulae accepted by the QMC tool for verification allow the user to reason

about the state of individual qubits, and involve usual logical connectives such as

negation and implication. The syntax of QCTL is given in Figure 6.3 (from [Baltazar

et al. 2008]):

There are two levels of formulae: classical formulae (α), which hold only if all

valuations in a state satisfy them, and quantum formulae (γ), which are essentially

logical combinations of classical formulae. For instance, the quantum conjunction

in the formula φ1 f φ2 is only satisfied if both the classical formulae φ1 and φ2 are

satisfied in the current state. A particularly distinctive type of quantum formula is

of the form [Q], where Q is a list of qubit variables qbi, qbj , . . .; this type of formula

is satisfied only if the qubits listed are separable from all other qubits in the system.

Example of a Property for Verification

We have considered the correctness requirement for the teleportation in the process

calculus setting, that is, bisimilarity to a quantum channel. We can express a similar

requirement in the context of a QMC model; at the end of the protocol, the third

qubit will be in the same state as the first qubit was to begin with, and this qubit

will be disentangled from the rest of the system. We can express this requirement,

for the case where the input is the quantum state |0〉, in the input language of QMC

153

6.2. TRANSLATION

using the specification

finalstateproperty ([q2]) # /\ (!q2);

which corresponds to the EQPL formula [q2] f (¬q2). The first part of the formula

asserts that the last qubit (q2) is disentangled from the rest of the system, while the

second part asserts that the current valuation assigns to this qubit a value of 0. The

entire formula is true if both parts are true, indicated by the connective of quantum

conjunction (we represent f in ASCII form by #/\). We can also use a temporal

formula:

property true EU (([q2]) # /\ (!q2));

6.2 Translation

In this section we define a translation from CQP processes to QMC programs. This

translation has been developed partly in tandem with QMC, and is based on the

formal syntax and semantics in the unpublished report [Papanikolaou 2008] and the

updated semantics in [Papanikolaou 2009]. The translation has the potential to be

adapted following any future developments in CQP and QMC.

There are several differences between the languages that result in limitations or

special treatment in the translation. The most significant, due to the inability to

model universal quantum computation, is the restriction to processes that fall within

the stabilizer formalism. Other issues, which we discuss in more detail in the following

sections, include the removal of channel mobility, translating from polyadic to monadic

channels, and allowing only single qubit measurements.

To simplify the presentation, we also require that all variable names are unique

among all CQP processes; this can be achieved by alpha conversion if necessary. As

a result we are able to define all variables globally when translated to QMC without

risk of collision.

6.2.1 Translation Functions

In this section, we define a function TprogJK : PC −→ PQ where PC and PQ are the

set of CQP processes and QMC programs respectively. We follow a similar approach

to Nielson and Nielson [1999]; the translation is defined in several steps on the struc-

tural elements of CQP. We will introduce functions to translate processes in parallel

contexts, expressions, types and values.

A QMC program consists of one or more named processes. Although the formal

syntax of CQP does not feature named processes, we choose to use them as standard

154

6.2. TRANSLATION

T ::= Int | Unit | Qbit | [̂T̃] | Op(1) | Op(2) | . . .

e ::= v | measure ẽ | ẽ ∗= ee | e+ e

v ::= x | 0 | 1 | · · · | unit | H | X | · · ·
P ::= 0 | (ProcName(x̃) ‖ ProcName(x̃)) | e?[x̃ : T̃].P | e![ẽ].P

| {e}.P | (νx : [̂T])P | (qbit x)P

D ::= ProcName(x̃ : T̃) = P

C ::= D̃

Figure 6.4. CQP syntax with named processes.

(as, for example, the processes Teleport , Alice and Bob in Figure 6.10) instead of

introducing arbitrary names as part of the translation. In this approach, the parallel

composition primitive must use process names instead of processes. For example, the

process P.(Q ‖ R) would be represented by the named processes

Process1 = P.(Process2 ‖ Process3)

Process2 = Q

Process3 = R .

Formally, for this translation we define additional non-terminals, D for process

definitions and C for a collection of process definitions, to the CQP syntax in order to

introduce named processes. Processes P are also modified such that parallel process

constructs are written as calls to named processes. This extended grammar is shown

in Figure 6.4.

These new syntactic elements do not change the language, however we must re-

member that each named process may only appear once. We shall refer to the col-

lection of process definitions as a CQP program, in order to distinguish between the

collection and the individual processes.

We now define a series of transcription functions from the syntactic elements of

CQP to the corresponding QMC syntax. These are: TprogJK for the program;

TprocJK for processes; TexprJK for expressions; TvalJK for values; and TtypeJK for

types.

The Program

The complete CQP program (C), which consists of the list of named processes (D1,

. . . , Dn), must be rewritten to a QMC program. This top-level transcription is

performed using the function TprogJK, defined in Figure 6.5. The resulting QMC

program is encapsulated in a program block and contains global variable declarations

155

6.2. TRANSLATION

TprogJC = D1, . . . , DnK =

program Translated; gVars(C);

TprogJD1K · · ·TprogJDnK
endprogram

TprogJProcName(x̃:T̃) = P K =

process ProcName; lVars(P)

begin isInvoked(ProcName)

TprocJP K
end

Figure 6.5. Translation of programs.

followed by a list of process blocks. Each process block corresponds to a named CQP

process, and these are translated in turn using TprogJK. We describe the generation

of global and local variables declarations (gVars and lVars) later.

Each QMC process declaration defines a single process containing local variable

declarations and process body, structured with the process, begin and end key-

words. Given a single CQP process definition as input, TprogJK rewrites this defini-

tion into a QMC process declaration.

For processes that are invoked from (that is, nested within) other processes the

function isInvoked (Definition 6.2) inserts a receive statement (Proc_ctrl?signal;,

where Proc is the process name) that is used to signal the start of execution. For

non-invoked processes the function isInvoked produces no output (the empty string

ε). The set of invoked processes Pin(C) (Definition 6.1) is determined by analysis of

the structure of the CQP program C.

Definition 6.1 (Pin: Set of Invoked Processes). Pin(C) gives the set of names of

invoked processes in the CQP program C. Let C = D̃, then this set is defined on the

156

6.2. TRANSLATION

structure of C as follows

Pin(D1, . . . , Dn) =
⋃

i
Pin(Di)

Pin(ProcName(x̃ : T̃) = P) = Pin(P)

Pin(0) = ∅

Pin((P1(x̃) ‖ P2(ỹ))) = {P1, P2}

Pin(e?[ẽ].P) = Pin(P)

Pin(e![ẽ].P) = Pin(P)

Pin({e}.P) = Pin(P)

Pin((νx : [̂T̃])P) = Pin(P)

Pin((qbit x)P) = Pin(P)

This set is used in the following formal definition of isInvoked .

Definition 6.2 (isInvoked : Invoked Process Function). isInvoked is a function from

process names to QMC statements, where

isInvoked(Proc) 7→

Proc_ctrl?signal; if Proc ∈ Pin(C)

ε otherwise.

After any control statement has been added, the CQP process body is translated

by the function TprocJK.

Processes

The function TprocJK, for translating the process body, is defined in Figure 6.6.

The 0 process, denoting inaction, is rewritten to an empty string. The “invocation”

of parallel processes (P1(x̃) ‖ P2(ỹ)) is achieved through signalling; as described in

the previous section, processes that are invoked will await a signal before proceeding

(determined by the function isInvoked) hence sending this signal allows the invoked

process to begin execution.

CQP and QMC use different models of communication; in the former, commu-

nication is synchronous, thus an input and output action must execute as one step.

In contrast, communication in QMC is asynchronous, therefore an output action oc-

curs strictly, but not necessarily immediately, before a corresponding input action.

We simulate synchronous communication in QMC by requiring the sending process

to wait for an acknowledgement from the receiving process. Thus, each CQP output

action will be followed by an input action (TexprJeK_ack?ack) when translated, and

similarly an output action (TexprJeK_ack!ack) will follow each CQP input action.

157

6.2. TRANSLATION

TprocJ0K = ε

TprocJ(P1(x̃) ‖ P2(ỹ))K = P1_ctrl!signal; P2_ctrl!signal;

TprocJe?[x1 : T1, · · · , xn : Tn].P K =

TexprJeK1?TvalJx1K · · ·TexprJeKn?TvalJxnK
TexprJeK_ack!ack;TprocJP K

TprocJe![e1, · · · , en].P K = e_1:=TexprJe1K; . . . e_n:=TexprJenK;
TexprJeK1!e_1; . . .TexprJeKn!e_n;
TexprJeK_ack?ack;TprocJP K

TprocJ{e}.P K = TexprJeK TprocJP K
TprocJ(νx : [̂T])P K = TprocJP K
TprocJ(qbit x)P K = x := newqubit;TprocJP K

Figure 6.6. Translation of processes.

The communication models also differ in the fact that CQP channels are polyadic

(allowing multiple subjects), whereas in QMC channels are monadic (having a single

subject), hence it is necessary to separate CQP communication actions into multiple

QMC actions. Because channels are typed in both languages, we cannot use a single

channel name for all resulting actions. Instead, we introduce distinct channel names

for each action. For example, a CQP channel c of arity n will correspond to channels

c1, . . . , cn in QMC.

The use of distinct names also serves to prevent cross-talk and resulting deadlock.

Consider, for example, two processes which can send on the same channel:

c![11, . . . , 1n].0 ‖ c![21, . . . , 2n].0 .

If, in the translation, we use the same channel name for each action, we would get

c!11; . . . c!1n; ‖ c!21; . . . , c!2n; .

This could result in an output sequence such as 11, 21, 22, 23, 12, . . . , in which values

appear from both processes.

Furthermore, QMC allows only variable names as the subject in output actions,

hence it is necessary to assign any value or expression to be sent to a fresh variable

before sending. For example, the CQP action ch![x, 3] is translated to

ch_1 := x; ch1!ch_1; ch_2 := 3; ch2!ch_2; ch_ack?ack;

Although it is not strictly necessary to make the assignment for x in this translation,

158

6.2. TRANSLATION

TexprJvK = TvalJvK
TexprJmeasure e1, . . . , enK = meas TexprJe1K, . . . ,TexprJenK
TexprJe1, . . . , en ∗= eK = TexprJeK TexprJe1K . . .TexprJenK

TexprJe1, . . . , en ∗= ef K = TexprJeK_cond := TexprJfK
if

::(TexprJeK_cond = 1) -> TexprJe1, . . . , en ∗= eK break;
::(TexprJeK_cond = 0) -> break;

fi

TexprJe+ eK = TexprJeK+TexprJeK

Figure 6.7. Translation of expressions.

this convention is extended to variables for the purpose of generalisation.

The creation of a new channel ((νc : [̂T̃])) has no corresponding statement in the

QMC process body, however these constructs will be used later by the function anG to

collect channel and qubit declarations. In contrast, new qubit declarations ((qbit q))

have a corresponding initialisation statement in the QMC process body.

Expressions

CQP expressions consist of values, quantum measurements, quantum operations, and

arithmetic expressions. We define the function TexprJK in Figure 6.7 for the trans-

lation of expressions. Values v are translated by TvalJK (defined later). Quantum

measurements on multiple qubits are possible in both languages, however they follow

different conventions for the assignment of values to outcomes (decimal values 0, 1, 2, 3

in CQP as opposed to bit tuples (0, 0), (0, 1), (1, 0), (1, 1) in QMC). We therefore re-

strict the translation to single qubit measurements (on which the resulting values

correspond) and note that this does not impact expressiveness.

There are two cases for quantum operators; conditional and non-conditional. In

general, quantum operations are transcribed with the quantum operator first, followed

by a comma separated list of qubit names. Controlled operations Ue are implemented

using an if construct, preceded by an assignment to allow for the evaluation of an

arbitrary expression. We only consider bit values (generally resulting from single qubit

measurements) for controlled operations, although this could be extended to allow any

integer using the fact that U4 = I for all operators in the stabilizer formalism.

Addition is the only arithmetic operator formally defined in CQP, however the

translation is easily extended to other arithmetic expressions.

159

6.2. TRANSLATION

v TvalJvK T TtypeJT K

x, q, c, . . . x, q, c, . . . Int integer
0, 1, . . . 0, 1,. . . Qbit qubit
X,Y,Z X, Y, Z [̂T] channel of TtypeJT K
H,CNot,Ph had, cnot, ph

Figure 6.8. Translation of values and types.

Values and Types

The functions TvalJK and TtypeJK defined in Figure 6.8 are used for the translation

of values and types respectively. Variable names and literal values are left unchanged,

while quantum operators are mapped to their QMC equivalents as per the definition.

There is no translation for arbitrary quantum operators since only the Clifford op-

erators are supported by QMC. The types Unit,Op(1),. . . corresponding to arbitrary

operator types need not be translated since they are not used in QMC programs.

Channel types ̂[T̃] make a recursive call to translate the component types. Since we

don’t allow channel mobility in the translation, declarations which are not allowed in

QMC such as channel of channel of T are excluded.

Variable Declarations

QMC requires variables to be explicitly declared prior to use, either in a local process

scope or globally. We take the approach of placing all variables in the global scope

to avoid issues arising from the implementation of invocation. In particular, since

channel names cannot be sent over QMC channels whereas other variables can, it is not

possible to simulate inheritance of channel names. Instead we state the requirement

that variable names must be unique, hence scoping in QMC will have no effect.

The functions gVars and lVars are used by TprogJK in the translation of pro-

grams to provide global and local variable declarations respectively for the QMC

program. gVars inspects the CQP program for binding operators including c?[x̃:T̃]

(gives declarations for each xi), (νx : [̂T̃]) (declares a series of channels xi of type

Ti), and (qbit x) (declares x as a qubit variable). Signalling channels for each pro-

cess (procname_ctrl: channel of integer;) are also declared regardless of which

processes will use them. Finally, gVars adds declarations for signal and ack which

may be used for signalling and acknowledgments respectively.

Since we have chosen to declare all variables globally, the only use for lVars is to

generate declarations for the intermediate assignments that arise from outputs and

conditional unitary operations. An output c![ṽ] will results in declarations c_i: T_i

where Ti are the types associated with channel c, and an operator q̃ ∗=Ue will result

in a declaration e_cond: T where T is the type of expression e.

160

6.2. TRANSLATION

Formally, we define functions anG (Definition 6.3) and anL (Definition 6.4) to

determine the variables of programs and single processes respectively.

Definition 6.3 (anG: Global variable analysis). Let Id denote a set of QMC identi-

fiers and T a set of QMC types. Furthermore, let IT = Id× T . We define a function

anG : PC → 2IT inductively as:

anG(D1 . . . Dn) = {(signal, integer), (ack, integer)}
∪

⋃
i anG(Di)

anG(Proc(x̃:T̃) = P) = {(Proc_ctrl, channel of integer)}
∪ anG(P)

anG(0) = ∅
anG((P1(x̃) ‖ P2(x̃))) = ∅

anG(e?[e1 : T1, . . . , en : Tn].P) = anG(P) ∪
⋃
i{(ei,TtypeĴ [Ti]K)}

∪ {(e_ack, channel of integer)}
anG(e![ẽ].P) = anG(P)

anG({e}.P) = anG(P)

anG((νx : [̂T1, . . . , Tn])P) = anG(P) ∪
⋃
i{(xi,TtypeĴ [Ti]K)}

anG((qbit x)P) = anG(P) ∪ {(q, qbit)}

Definition 6.4 (anL: Local variable analysis). We define a partial function anL :

PC ⇀ 2IT inductively as:

anL(Proc(x̃ : T̃) = P) = anL(P)

anL(0) = ∅
anL((P1(x̃) ‖ P2(x̃))) = ∅

anL(e?[ẽ : T̃].P) = anL(P)

anL(e![e1, . . . , en].P) = {(e_i,TtypeJTiK) | 1 ≤ i ≤ n,` ei : Ti}
∪ anL(P)

anL({e}.P) = anL(P)

anL({ẽ ∗= ef}.P) = anL(P) ∪ {(e_cond,TtypeJT K)| ` f : T}
anL((νx : [̂T])P) = anL(P)

anL((qbit x)P) = anL(P)

We now define a function vars which takes a set of pairs (x, T) resulting from anL

and anG, and produces a QMC variable declaration statement:

vars({(x1 : T1), . . . , (xn : Tn)}) = x_1: T_1; . . . x_n: T_n;

161

6.3. EXAMPLES

Then, for a CQP program consisting of processes D̃, we have

gVars(D̃) = vars(anG(D̃))

lVars(D) = vars(anL(D))

6.3 Examples

In this section, we demonstrate the translation through some examples.

6.3.1 Random Bit Generator

The example consists of a quantum random number generatorR which sends a random

bit on a channel. The process Q simply receives the generated bit and is included to

demonstrate communication. Process P is the starting process that invokes the other

two. The three process definitions are:

P = (νc : [̂Int])(Q(c) ‖ R(c))

Q(c : [̂Int]) = c?[r : Int].0

R(c : [̂Int]) = (qbit x)({x ∗= H}.c![measure x].0)

We begin the translation by constructing the sets of global and local variables from

these process definitions. These are generated by the functions anG and anL.

anG(P,Q,R) = {(signal, integer), (ack, integer),

(Q_ctrl, channel of integer), (R_ctrl, channel of integer),

(c1, channel of integer), (c_ack, channel of integer), (x, qubit), (r, integer)}

The local variables are empty for processes P and Q, while for R there is a variable

c_1 used prior to sending:

anL(P) = ∅

anL(Q) = ∅

anL(R) = {(c_1, integer)}

162

6.3. EXAMPLES

We now proceed by using the translation function TprogJK on the set of process

definitions.

TprogJP,Q,RK = program Translated;

gVars(P,Q,R)

TprogJP K TprogJQK TprogJRK

endprogram

The translations of each process P , Q and R are considered separately before being

substituted in the above program.

For the body of process P we have the following translation:

TprocJ(νc : [̂Int])(Q(c) ‖ R(c))K = TprocJQ(c) ‖ R(c)K =

Q_ctrl!signal; R_ctrl!signal;

The set of local variables anL(P) is empty, therefore there are no local declarations.

The process definition is hence translated by TprogJK to the following:

TprogJP = (νc : [̂Int])(Q(c) ‖ R(c))K = process P

begin

Q_ctrl!signal;

R_ctrl!signal;

end

We now translate the process Q. The set of local variables anL(Q) is empty, therefore

lVars(Q) results in an empty string. The process body, consisting of a single input

action is translated as

TprocJc?[r]K = c1?r; c_ack!ack; ,

thus we arrive at the following:

TprogJQ(c : [̂Int]) = c?[r].0K = process Q

begin

c1?r; c_ack!ack;

end

163

6.3. EXAMPLES

The most interesting part is the translation of process R using TprocJK.

TprocJ(qbit x){x ∗= H}.c![measure x].0K

= x := newqubit; TprocJ{x ∗= H}.c![measure x].0K

= x := newqubit; had x; TprocJc![measure x].0K

= x := newqubit; had x; c_1 := meas x; c1!c_1; c_ack?ack;

TprocJ0K

= x := newqubit; had x; c_1 := meas x; c1!c_1; c_ack?ack;

Combining this with the local variable declarations for process R we have the following

translation:

TprogJR(c : [̂Int]) = (qbit x){x ∗= H}.d![measure x].0K =

process R

var c_1:integer;

begin

x := newqubit;

had x;

c_1 := meas x; c1!c_1; c_ack?ack;

end

These three process translations can now be substituted into TprogJP,Q,RK to com-

plete the translation. The result is the QMC program listed in Figure 6.9.

6.3.2 Quantum Teleportation

We now apply this translation to the teleportation process defined in Figure 6.10. We

expect the result to resemble the QMC program in Figure 6.2; the result is shown in

Figure 6.11.

Unsurprisingly, the programs are not identical since differences in the languages

allow for alternate representations of various components. The first point to note is the

introduction of the signalling channels Teleport_ctrl, Alice_ctrl and Bob_ctrl.

Since the Teleport process is not nested, the corresponding control channel is declared

but never used. Incidentally, the use of the control channel in Bob is superfluous in

teleportation, because execution cannot start until a value is received from Alice.

Another change is the conditional applications of the unitary operators by Bob;

these have been compounded into one if statement in the QMC specification, however

the simplistic support for conditionals by CQP leads to multiple statements in the

164

6.3. EXAMPLES

TprogJP,Q,RK =

program Translated;
var signal:integer, ack:integer,

Q_ctrl:channel of integer, R_ctrl:channel of integer,
c1:channel of integer, c_ack:channel of integer,
x:qubit, r:integer;

process P
begin
Q_ctrl!signal; R_ctrl!signal;

end

process Q
begin
c1?r; c_ack!ack;

end

process R
var c_1:integer;

begin
x := newqubit;
had x;
c_1 := meas x; c1!c_1; c_ack?ack;

end
endprogram

Figure 6.9. Translation of a quantum random number generator

Teleport = (qbit y, z)({z ∗= H}.{z, y ∗= CNot}.(νe : [̂Int, Int])(Alice(e, z) ‖ Bob(e, y)))

Alice(e, z) = (qbit x).{x ∗= H}.{z, x ∗= CNot}.{z ∗= H}.e![measure z,measure x].0

Bob(e, y) = e?[r : Int, s : Int].{y ∗=Xr}.{y ∗= Zs}.0

Figure 6.10. Quantum teleportation modelled in CQP.

165

6.3. EXAMPLES

program Translated;
var x: qubit; y: qubit; z: qubit;
e1: channel of integer; e2: channel of integer;
e_ack: channel of integer;
Teleport_ctrl: channel of integer;
Alice_ctrl: channel of integer;
Bob_ctrl: channel of integer;
r: integer; s: integer;
signal: integer; ack: integer;

process Teleport;
begin

y := newqubit; z := newqubit;
had z; cnot z y;
Alice_ctrl!signal; Bob_ctrl!signal;

end;

process Alice;
var e_1: integer; e_2: integer;
begin

Alice_ctrl?signal;
x := newqubit; had x; cnot z x; had z;
e_1 := meas x; e1!e_1; e_2 := meas z; e2!e_2;
e_ack?ack;

end;

process Bob;
var X_cond: integer; Z_cond:integer;
begin

Bob_ctrl?signal;
e1?r; e2?s; e_ack!ack;
X_cond := r;
if
:: (X_cond = 1) -> X y; break;
:: (X_cond = 0) -> break;
fi
Z_cond := s;
if
:: (Z_cond = 1) -> Z y; break;
:: (Z_cond = 0) -> break;
fi

end;
endprogram

Figure 6.11. Translated version of quantum teleportation.

166

6.4. CORRECTNESS OF THE TRANSLATION

translation. We have introduced the assignments X_cond := r and Z_cond := s,

although in this particular case, since r and s are variables, they are not necessary.

6.4 Correctness of the Translation

In Section 6.2, we defined a translation from CQP processes to QMC programs. We

now present a proof of the semantic correctness of this translation.

In order to argue that a QMC program translated from CQP has the same meaning

as the original CQP process, it is necessary to show that the semantics of CQP

processes are preserved by the translation function – this is equivalent to saying that

the result of translating a CQP process into QMC then executing it should be identical

to executing it in CQP then translating the result to QMC [Nielson and Nielson 1999].

The operational semantics of both languages are defined in terms of single step

transitions from one configuration to another. Configurations, which include state

information alongside the process, are necessary because the behaviour is not fully

determined by the process. In order to reason about the equivalence of execution,

we must extend the syntactic translation to a translation of configurations. This

extension is given by the function T , defined in Section 6.4.1.

We prove the semantic correctness of the translation by induction on the sequence

of transitions in the execution. In Section 6.4.2, we investigate the relationship be-

tween CQP transitions and QMC transitions, in order to formulate our inductive

hypothesis. This relationship is an interesting one, since it takes into account the

different semantic models used by the languages, and also the differences in execution

that arise from the translation.

6.4.1 Translating Configurations

We begin by introducing the notation that will be used in the following text: CC and

CQ are the sets of CQP and QMC configurations, respectively; PC and PQ are the

sets of CQP and QMC programs, respectively; the transitions −→C and −→Q denote

the reduction relations on CQP and QMC configurations, respectively; −→∗ is used

to denote 0 or more transitions. For any partial mapping g : A ⇀ B and a ∈ A, b ∈ B
we define a partial mapping g[a 7→ b] : A ⇀ B as g[a 7→ b](x) = b if a = x, and

g[a 7→ b](x) = g(x) otherwise.

It is worth taking a moment at this point to describe the relationship between

QMC programs and configurations, which is slightly more complicated than for CQP.

A QMC configuration consists of a global store alongside a list of pairs containing the

local store and process description. These processes are expressed using the abstract

syntax of QMC, through which the operational semantics is defined. The translation

167

6.4. CORRECTNESS OF THE TRANSLATION

from concrete to abstract syntax is straightforward and we will not dwell on the

distinction in the following.

The translation of a process assumes that we start from an empty state, however

configurations, which describe processes during execution, also contain state informa-

tion.

The extension from the syntactic translation, given by the function TprogJK, to

the translation T is defined component-wise. Formally,

T (([q̃ 7→ |ψ〉];φ;P)) = evalVD((TP (P), Tκ(q̃, φ), TΣ(q̃, P), |ψ〉))

where:

• TP is the translation from CQP processes to QMC programs given by TprogJK.
A QMC configuration contains the abstract program representation instead of

the concrete representation resulting from TprogJK. This conversion is straight-

forward and is implicit in TP .

• Tκ populates the global store with channel and qubit identifiers using the CQP

channel list φ and qubit list q̃: Tκ(q̃, c̃) = o[q1 7→ 1] · · · [qn 7→ n][c1 7→ null] . . . [cn 7→
null] where o : Id ⇀ V al is an empty partial mapping from QMC identifiers to

QMC values. The channel names occurring in φ and qubit names in q̃ are those

which have been declared in previous execution steps. Eventually, the global

store must be populated with all variable names; this is achieved by evalVD .

• TΣ assigns an empty local store to each process. These stores will be populated

by evalVD with any local variables.

• The purpose of evalVD is to populate the global and local stores with the remain-

ing variables that cannot be determined directly from the CQP configuration.

Through the analysis of the CQP process, TprogJK produces a program with

variable declaration statements. Beyond the first steps, these statements do not

appear in executing programs. evalVD represents the evaluation of all variable

declaration statements, and the result is two-fold; through this evaluation, the

local and global stores are populated with all the variables that will appear in

the program, and after this evaluation, the program will have the first proper

statements at the top of the execution stack.

168

6.4. CORRECTNESS OF THE TRANSLATION

6.4.2 Execution Relationship

The overall relationship between configurations of CQP and QMC that we wish to

prove is illustrated by the following diagram.

CC
C

∗//
_

T
��

C ′C_

T
��

CQ
Q

∗// C ′Q

where CC , C
′
C ∈ PC and CQ, C

′
Q ∈ PQ. This reflects the equivalence of an execution

(CC −→∗C C ′C) of CQP and an execution (CQ −→∗Q C ′Q) of QMC. This relation-

ship is based on executions, or sequences of transition. We now consider how single

transitions fit into this picture, in order to use a co-inductive proof method.

In the ideal scenario, a single CQP transition would correspond to a single QMC

transition. This is akin to strong simulation, and expands the above diagram to give

the following:

CC
C
//

_

T
��

C1
C C

//
_

T
��

C2
C

//
_

T
��

···

CnC_

T
��

CQ
Q
// C1
Q Q

// C2
Q

// CnQ

Unfortunately, the relationship between transitions is not as simple as this. There

are two factors that we must consider; the different semantic models that are used,

and the different execution models.

From Small–steps to Big–steps

The operational semantics of both languages are defined in terms of transitions from

one configuration to another. In CQP the semantics are in the small–step style of

Plotkin [2004], whilst the QMC semantics are in the big–step style of Kahn [1987].

In small-step semantics, a single execution step arises from the execution of an

atomic element of the process. The steps involved in evaluating a complex expression

will be a succession of individual steps evaluating one atomic element at a time. For

example, the evaluation of addition may be defined in small–step semantics by the

rules
e1 −→ e′1

e1 + e2 −→ e′1 + e2

e2 −→ e′2

v1 + e2 −→ v1 + e′2

In this case, the evaluation of an expression e1 + e2 will result in several steps, de-

pending on the form of e1 and e2,

e1 + e2 −→ v1 + e2 −→ v1 + v2 −→ v3

169

6.4. CORRECTNESS OF THE TRANSLATION

where v3 = v1 + v2.

Example 6.1. The evaluation of 2 + 3 + 1 + 6 using small-step semantics.

2 + 3 −→ 5

2 + 3 + 1 + 6 −→ 5 + 1 + 6

5 + 1 −→ 6

5 + 1 + 6 −→ 6 + 6
6 + 6 −→ 12

In contrast, big-step semantics give rise to the evaluation of a term in a single

step. For example, using big–step semantics, we may find the rule

e1 −→ v1 e2 −→ v2 v1 + v2 −→ v3

e1 + e2 −→ v3

which leads to the evaluation of e1 + e2 in a single step, incorporating the individual

evaluations of e1 and e2 as well as the addition.

Example 6.2. The evaluation of 2 + 3 + 1 + 6 using big-step semantics.

2 + 3 −→ 5 5 + 1 −→ 6

2 + 3 + 1 −→ 6 6 + 6 −→ 12

2 + 3 + 1 + 6 −→ 12

Due to the different style of semantics in each language, we cannot expect each

step of a CQP process execution to correspond to a single step in QMC. The differ-

ence between small-step and big-step operational semantics leads to a relationship in

which several small-step transitions correspond to a single big-step transition. This

is represented by the following diagram.

C1
C_

T
��

C
// C2
C C

··· // CnC_

T
��

CQ
Q
// C ′Q

Semantic Equivalence

In addition to the different semantic models, we must also account for artifacts of

the translation. For example, the assignment statements that are added for output

actions and conditional unitary operators. The sequence of CQP executions does not

correspond to QMC executions in these cases, because expressions are evaluated in a

process context in CQP, but are evaluated sequentially in QMC.

If we consider a configuration C = (σ;φ; {q ∗= Xu+v}.P), then the translation

begins with the assignment statement X_cond:=u+v, before the if construct. A

transition from C, corresponding to the evaluation of the expression u + v, results

in the configurations C ′ = (σ;φ; {q ∗= Xw}.P). The translation of this configura-

170

6.4. CORRECTNESS OF THE TRANSLATION

CC
C
//

_

T
��

C ′C
∗
C
//

_

T
��

C ′′C_

T
��

CQHI :;∗ Q
OO

C ′Q
∗
Q

// C ′′Q

Figure 6.12. The requirement for a translation T to be semantics-preserving.

tions begins with the statement X_cond:=w, again followed by the same if construct.

Because QMC expressions are not executed in context, there is no execution step

X_cond:=u+v −→ X_cond:=w, that corresponds to the CQP step.

To account for such cases, we use a notion of semantic equivalence. By this,

we mean that there exists a QMC configuration CQ, such that T (C) −→∗Q CQ and

T (C ′) −→∗Q CQ.

To integrate this semantic equivalence with the conversion from small-step to big-

step semantics, we also require CQ to be the translation of a descendent CQP con-

figuration. That is, CQ = T (C ′′) where C ′ −→∗C C ′′. This results in the relationship

expressed in Figure 6.12.

6.4.3 Preservation of Semantics

We now prove that the translation T preserves the semantics of CQP processes.

By proving that the relationship illustrated in Figure 6.12 holds for all single step

transitions CC −→C C ′C , it follows that for any terminating execution CC −→∗C C ′′C
that T (CC) −→∗Q T (C ′′C). This is precisely the requirement described at the beginning

of this section.

We begin by considering the semantics of expressions in the following lemmas,

before proving the main result (Theorem 6.4). These intermediate results require us

to consider value and expression transitions in CQP, and the corresponding expression

transitions in QMC. The CQP value and expression transitions (−→v and −→e) have

been described in Chapter 3 (Figure 3.3). These relations are defined on expression

configurations; these are similar to configuration, but feature an expression in place

of a process: (σ;φ; e). We denote a QMC expression transition using an uppercase

E, the general form of which is (e, σ, |ψ〉) −→E (v, |ψ′〉.

Lemma 6.1. Let e be defined by the grammar e ::= v | measure q | e + e. If

([q̃ 7→ |ψ〉];φ; e) −→e ([q̃ 7→ |ψ′〉];φ; v) then (TexprJeK, σ, |ψ〉) −→E (TvalJvK, |ψ′〉).

Proof. R-Plus: We have the transition (σ;φ;u+ v) −→e (σ;φ;w) where w = u+ v.

The corresponding transition in QMC, since TvalJuK = u andTvalJvK = v is given

by

(u+ v, σ, |ψ〉) −→E (w, |ψ〉)

171

6.4. CORRECTNESS OF THE TRANSLATION

where TvalJwK = w.

R-Measure: We have the transitions ([q, r̃ 7→ |ψ〉];φ;measure q) −→e �i pi •
([q, r̃ 7→ |ψi〉];φ; i)

pi ([q, r̃ 7→ |ψi〉];φ; i), including the final probabilistic transition

which results in the value i. The corresponding QMC transition for a measurement

expression TexprJmeasure qK is

(meas q, σ, |ψ〉) −→E (i, |ψi〉) .

Because QMC only uses stabiliser states, the measurement outcomes are equi-probable

and therefore it is not necessary to represent any explicit probabilities.

Lemma 6.2. Let e be defined by the grammar e ::= v | measure q | e + e. If

([q̃ 7→ |ψ〉];φ; e) −→e ([q̃ 7→ |ψ′〉];φ; e′) and (TexprJe′K, σ, |ψ′〉) −→E (TvalJvK, |ψ′′〉)
then (TexprJeK, σ, |ψ〉) −→E (TvalJvK, |ψ′′〉).

Proof. We have the derivation

([q̃ 7→ |ψ〉];φ; f) −→v ([q̃ 7→ |ψ′〉];φ; v′)

([q̃ 7→ |ψ〉];φ;E[f]) −→v ([q̃ 7→ |ψ′〉];φ;E[v′])

for some expression context E where e = E[f] and e′ = E[v′]. By Lemma 6.1, we have

(TexprJfK, σ, |ψ〉) −→E (TvalJv′K, |ψ′〉). Therefore, we have the required derivation

(TexprJfK, σ, |ψ〉) −→E (TvalJv′K, |ψ′〉) (TexprJe′K, σ, |ψ′〉) −→E (TvalJvK, |ψ′′〉)

(TexprJeK, σ, |ψ〉) −→E (TvalJvK, |ψ′′〉)
.

Lemma 6.3 (Preservation of Expression Semantics). Let e be defined by the grammar

e ::= v | measure q | e + e. If ([q̃ 7→ |ψ〉];φ; e) −→∗e ([q̃ 7→ |ψ′〉];φ; v) then

(TexprJeK, σ, |ψ〉) −→E (TvalJvK, |ψ′〉).

Proof. By induction on the length (n) of the sequence of transitions. The base case

is n = 0, then e = v. For n > 0 we have

([q̃ 7→ |ψ〉];φ; e) −→e ([q̃ 7→ |ψ′〉];φ; e′) −→∗e ([q̃ 7→ |ψ′′〉];φ; v)

where −→∗e is a sequence of n− 1 transitions. The inductive hypothesis gives

(TexprJe′K, σ, |ψ′〉) −→E (TvalJvK, |ψ′′〉) .

Then, by Lemma 6.2 we have the required QMC transition

(TexprJeK, σ, |ψ〉) −→E (TvalJvK, |ψ′′〉) .

172

6.4. CORRECTNESS OF THE TRANSLATION

Theorem 6.4 (Preservation of Semantics). Let CC = (σ;φ;P) and C ′C = (σ′;φ′;P ′).

If Γ ` P and CC −→C C ′C then there exists C ′′C = (σ′′;φ′′;P ′′) such that T (CC) −→∗Q
T (C ′′C) and T (C ′C) −→∗Q T (C ′′C).

Proof. By induction on the derivation of CC −→C C ′C .

R-Expr: We have P = F [e] and P ′ = F [e′] for a process context F , where

F ∈ {v![[], ẽ].P, . . . , v![ṽ, []], {[]}.P}. We exclude the contexts []?[x̃] and []![ẽ] in which

the hole must be filled with a channel name.

Subcase Fk = c![v1, . . . , vk−1, [], ek+1, . . . , en].P : Let CCk
= ([q̃ 7→ |ψk〉];φ;Fk[ek])

and C ′Ck
= q̃ = |ψ′k〉;φ;Fk[e′k]). We prove this by induction on the sequence of

transitions CC1 −→∗C C ′Cn
. The inductive step considers a sequence of transitions

CCk
−→∗C CCk+1

where Fk+1[ek+1] = Fk[vk], corresponding to the evaluation of the

expression ek that results in a value vk. Let us define the QMC configuration

CQk
= ([ck : 7→ TexprJekK]; . . . cn := TexprJenK; c1!c1; . . . cn!cn; cack?ack;TprocJP K,

κ[c1 7→ v1, . . . , ck−1 7→ vk−1],Σ, |ψk〉) .

Diagrammatically, the relationship between the configurations that we are aiming to

prove is as follows.

Ck
C
//

_

T

��

C ′Ck C

∗//
_
T

��

CCk+1_
T

��

Q ∗��
Q

∗$$JJJJJJJJJ

Q ∗��
CQk Q

// CQk+1

The base case is k = n+ 1, then

T (CCn+1
) = (c1 := v1; . . . cn := vn; c1!c1; . . . cn!cn; cack?ack;TprocJP K, κ,Σ, |ψ1〉)

and T (CCn+1
) −→∗Q CQn+1

.

Assume for 0 < k ≤ n that CQk+1
−→Q CQk+2

−→Q · · ·CQn+1
. Then we have

T (CCk
) = (c1 := v1; . . . ck−1 := vk−1; ck := TexprJekK; . . . cn := TexprJenK;

c1!c1; . . . cn!cn; cack?ack;TprocJP K, κ,Σ, |ψk〉)

173

6.4. CORRECTNESS OF THE TRANSLATION

and

T (C ′Ck
) = (c1 := v1; . . . ck−1 := vk−1; ck := TexprJe′kK; . . . cn := TexprJenK;

c1!c1; . . . cn!cn; cack?ack;TprocJP K, κ,Σ, |ψ′k〉) .

These QMC configurations give rise to the sequences of transitions T (CCk
) −→∗Q CQ

where CQ = CQk
and T (C ′Ck

) −→∗Q C ′Q where

C ′Q = (ck := TexprJe′kK; . . . cn := TexprJenK; c1!c1; . . . cn!cn; cack?ack;TprocJP K,

κ[c1 7→ v1, . . . , ck−1 7→ vk−1],Σ, |ψ′k〉) .

Let C ′′Ck
= ([q̃ 7→ |ψk+1〉];φ;Fk[vk]) = CCk+1

where CC′k −→
∗
C C ′′Ck

. Then, by Lemma

6.3 we have transitions

(TexprJekK, κ[c1 7→ v1, . . . , ck−1 7→ vk−1], |ψk〉) −→E (TvalJvkK, |ψk+1〉) (6.1)

and

(TexprJe′kK, κ[c1 7→ v1, . . . , ck−1 7→ vk−1], |ψ′k〉) −→E (TvalJvkK, |ψk+1〉) . (6.2)

By (6.1) we can conclude CQk
−→Q CQk+1

and also by (6.2) we have C ′Q −→Q CQk+1
.

Subcase F = {[]}.P : We consider two cases; unitary operators and non-unitary ex-

pressions. Let CC = ([q̃ 7→ |ψ〉];φ;F [e]) where e is an expression defined by the

grammar e ::= v | measure q | e+ e, then

T (CC) = (TexprJeK;TprocJP K, κ, σ, |ψ〉) .

By Lemma 6.3 we have CC −→∗C C ′C where C ′C = ([q̃ 7→ |ψ′〉];φ;F [v]) and T (CC) −→∗Q
(TvalJvK;TprocJP K, κ, σ, |ψ′〉) = T (C ′C).

If e is a unitary operation, then we have ([q̃, r̃ 7→ |ψ〉];φ; {q̃∗=Uv}.P) −→∗C ([q̃r̃ 7→
|ψ′〉];φ;P). If v = 0 then |ψ′〉 = |ψ〉 and if v = 1 then |ψ′〉 = (U ⊗ I)|ψ〉. We have

T (CC) = (U_cond :=TvalJvK; if :: (U_cond = 0) -> break;

:: (U_cond = 1) ->TvalJUKTvalJq1K . . .TvalJqnK; fi; TprocJP K, κ, σ, |ψ〉)

−→Q(if :: (U_cond = 0) -> break; :: (U_cond = 1) ->

TvalJUKTvalJq1K . . .TvalJqnK; fi; TprocJP K, κ, σ[U cond 7→ v], |ψ〉)

174

6.4. CORRECTNESS OF THE TRANSLATION

If v = 0 then we have the transition

−→Q(TprocJP K, κ, σ[U cond 7→ v], |ψ〉)

otherwise, if v = 1 then we have the transition

−→Q(TprocJP K, κ, σ[U cond 7→ v], |ψ′′〉)

This last transition is derived from

(TvalJUKq1 . . . qn, κ, σ, |ψ〉) −→E (ε, Uqop |ψ〉)

where Uqop is the unitary operator corresponding to the quantum operator TvalJUK.
Because we are restricted to operators in the stabiliser formalism, then Uqop is defined

and equal to (U ⊗ I). Therefore, |ψ′′〉 = |ψ′〉.
R-Com: Let P = c![ṽ, q̃].Q ‖ c?[x̃:T̃ , ỹ:Q̃bit].R where ṽ are non-qubit values and

σ = [q1, . . . , qr 7→ |ψ〉]. Then we have the transition

(σ;φ;P) −→C (σ;φ;Q ‖ R{ṽ, q̃/x̃, ỹ}) .

The translation of CC is

T (CC) = (c1 := v1; . . . , cm := vm; cm+1 := q1; . . . , cm+n := qn;

c1!c1; . . . ; c(m+ n)!cm+n; cack?ack;TprocJQK

‖ c1?x1; . . . cm?xm; c(m+ 1)?y1; . . . c(m+ n)?yn; cack!1;TprocJRK,

κ, (σQ, σR), |ψ〉)

Let CQ = T (CC). The first transitions from this QMC configuration are the assign-

ments to temporary variables (c1, . . . , cm+n) prior to sending.

CQ −→Q (c2 := v2; . . . , cm := vm; cm+1 := q1; . . . , cm+n := qn;

c1!c1; . . . ; c(m+ n)!cm+n; cack?ack;TprocJQK

‖ c1?x1; . . . cm?xm; c(m+ 1)?y1; . . . c(m+ n)?yn; cack!1;TprocJRK,

κ, (σQ[c1 7→ v1], σR), |ψ〉)

−→∗Q (cm+1 := q1; . . . , cm+n := qn;

c1!c1; . . . ; c(m+ n)!cm+n; cack?ack;TprocJQK

‖ c1?x1; . . . cm?xm; c(m+ 1)?y1; . . . c(m+ n)?yn; cack!1;TprocJRK,

κ, (σQ[c1 7→ v1] · · · [cm 7→ vm], σR), |ψ〉)

175

6.4. CORRECTNESS OF THE TRANSLATION

−→∗Q (c1!c1; . . . ; c(m+ n)!cm+n; cack?ack;TprocJQK

‖ c1?x1; . . . cm?xm; c(m+ 1)?y1; . . . c(m+ n)?yn; cack!1;TprocJRK,

κ, (σQ[c1 7→ v1] · · · [cm 7→ vm][q1 7→ null][cm+1 7→ 1]

· · · [qn 7→ null][cm+n 7→ n], σR), |ψ〉)

The ordering of the next sequence of transitions, in which one process sends and the

other receives the values, is non-deterministic due to the possible interleavings. We

show one possible execution and note that all executions will arrive at the same final

configuration.

−→Q (c2!c2; . . . ; c(m+ n)!cm+n; cack?ack;TprocJQK

‖ c1?x1; . . . cm?xm; c(m+ 1)?y1; . . . c(m+ n)?yn; cack!1;TprocJRK,

κ[c1 7→ v1], (σQ[c1 7→ v1] · · · [cm 7→ vm][q1 7→ null][cm+1 7→ 1]

· · · [qn 7→ null][cm+n 7→ n], σR), |ψ〉)

−→Q (c2!c2; . . . ; c(m+ n)!cm+n; cack?ack;TprocJQK

‖ c2?x2; . . . cm?xm; c(m+ 1)?y1; . . . c(m+ n)?yn; cack!1;TprocJRK,

κ, (σQ[c1 7→ v1] · · · [cm 7→ vm][q1 7→ null][cm+1 7→ 1]

· · · [qn 7→ null][cm+n 7→ n], σR[x1 7→ v1]), |ψ〉)

−→∗Q (c(m+ 1)!cm+1; . . . ; c(m+ n)!cm+n; cack?ack;TprocJQK

‖ c(m+ 1)?y1; . . . c(m+ n)?yn; cack!1;TprocJRK,

κ, (σQ[c1 7→ v1] · · · [cm 7→ vm][q1 7→ null][cm+1 7→ 1]

· · · [qn 7→ null][cm+n 7→ n], σR[x1 7→ v1] · · · [xm 7→ vm]), |ψ〉)

−→∗Q (cack?ack;TprocJQK ‖ cack!1;TprocJRK,

κ, (σQ[c1 7→ v1] · · · [cm 7→ vm][q1 7→ null] · · · [qn 7→ null],

σR[x1 7→ v1] · · · [xm 7→ vm][y1 7→ 1] · · · [yn 7→ n]), |ψ〉)

The final transitions are for the message acknowledgement, preventing Q from pro-

ceeding until the communication is complete.

−→∗Q (TprocJQK ‖ TprocJRK,

κ, (σQ[c1 7→ v1] · · · [cm 7→ vm][q1 7→ null] · · · [qn 7→ null][ack 7→ 1],

σR[x1 7→ v1] · · · [xm 7→ vm][y1 7→ 1] · · · [yn 7→ n]), |ψ〉)

Finally, let us rename the variables in process R (we can take the substitution of

176

6.4. CORRECTNESS OF THE TRANSLATION

names inside TprocJRK) to give

C ′Q = (TprocJQK ‖ TprocJR{ṽ, q̃/x̃, ỹ}K,

κ, (σQ[c1 7→ v1] · · · [cm 7→ vm][q1 7→ null] · · · [qn 7→ null][ack 7→ 1],

σR[v1 7→ v1] · · · [vm 7→ vm][q1 7→ 1] · · · [qn 7→ n]), |ψ〉)

Because Γ; ΣQ, q̃ ` c![ṽ, q̃].Q, we have Γ; ΣQ ` Q. Therefore TΣ(Q, [q1, . . . , qr 7→ |ψ〉])
does not include qubits q̃, which are instead provided by TΣ(R, [q1, . . . , qr 7→ |ψ〉]).
We have

T (C ′C) = (TprocJQK ‖ TprocJR{ṽ, q̃/x̃, ỹ}K, κ,

(σQ[q1 7→ null] · · · [qn 7→ null], σR[q1 7→ 1] · · · [qn 7→ n]), |ψ〉)

The temporary variables c1, . . . , cm do not appear in Q, hence we can conclude that

T (C ′C) = C ′Q.

R-Act: Let P = {v}.Q. Then (σ;φ;P) −→C (σ;φ;Q). We have

T (CC) = (v;TprocJQK, κ; Σ; |ψ〉)

and the transition

T (CC) −→Q (TprocJQK, κ; Σ; |ψ〉) .

Therefore we have T (CC) −→Q T (C ′C).

R-Res: Let P = (νc : [̂T])Q. Then (σ;φ;P) −→C (σ;φ, c;P) where we substitute

the fresh channel name c for the variable c. Then we have the translations

T (CC) = (TprocJQK, κ,Σ, |ψ〉)

and

T (C ′C) = (TprocJQK, κ,Σ, |ψ〉) .

In the first case, c ∈ κ due to the use of anG and evalV D which identifies the channel

from the structure (νc : [̂T]) and then places it in the channel store through the

evaluation of variable declarations. In the second case, c ∈ κ comes directly from the

CQP channel list using Tκ.

R-Qbit: Let P = (qbit q)Q. Then ([q1, . . . , qn 7→ |ψ〉];φ;P) −→C ([q1, . . . , qn, q 7→
|ψ〉|0〉];φ;Q). We have the translation

T (CC) = (q := newqubit;TprocJQK, κ, σ, |ψ〉)

where σ contains the qubit mappings qi 7→ i for i ∈ I where Γ; {qi|i ∈ I} ` P . Then

177

6.5. DISCUSSION

we have the transition

T (CC) −→Q (TprocJQK, κ, σ[q 7→ n+ 1], |ψ〉|0〉)

which adds the new mapping q 7→ n + 1 to σ. We have Γ; {qi|i ∈ I}, q ` Q, hence

T (CC) −→Q T (C ′C).

R-Par: We have the derivation

(σ;φ;Q) −→C (σ′;φ′;Q′)

(σ;φ;Q ‖ R) −→C (σ′;φ′;Q′ ‖ R)
.

The inductive hypothesis gives C ′′C = (σ′′;φ′′;Q′′) where (σ;φ;Q) −→∗C C ′′C and

(σ′;φ′;Q′) −→∗C C ′′C and T ((σ;φ;Q)) −→∗Q T (C ′′C) and T ((σ′;φ′;Q′)) −→∗Q T (C ′′C).

Then, by induction on the sequence of transitions, we get T ((σ;φ;Q ‖ R)) −→∗Q
T ((σ′′;φ′′;Q′′ ‖ R)) and T ((σ′;φ′;Q′ ‖ R)) −→∗Q T ((σ′′;φ′′;Q′′ ‖ R)). By applying

R-Par on each transition, we get (σ′;φ′;Q′ ‖ R) −→∗C (σ′′;φ′′;Q′′ ‖ R).

6.5 Discussion

In this section, we consider the motivation and weaknesses of the translation presented

in this chapter.

Our aim in defining this translation is to enable the verification of quantum pro-

tocols using process calculus and model checking. For these formal techniques to be

effectively combined, it is vital that the respective specifications describe the same

system. Proving that the translation preserves the semantics of CQP processes is

intended to establish this equivalence.

We have described and proved the relationship that ensures a translated program

can simulate all actions of the original CQP process. But does the translated program

allow other behaviours that are not permitted in the CQP model? A particularly

interesting case is the conversion from synchronous to asynchronous communication.

In this case, constructs that would be evaluated by a single communication transition

in CQP give rise to a series of assignment, output, and input actions. Combined with

the addition of actions for acknowledgment, the number of transitions is over 3n times

as long as the corresponding CQP actions for an n-part message. When concurrency

is considered, there are many states that occur in the translated program which do

not arise in the CQP process. Generally, the effect of this is to turn a communication

that occurs at a particular time, into an action that occurs between two points in

time.

More important than this “blurring” of time, is the order in which events occur.

Events that must complete before the communication, are still required to do so, whilst

178

6.6. SUMMARY

events that cannot occur until after are also maintained. There is one minor exception;

in this translation, a sending process may begin output before a receiving process is

ready. However, this isn’t significant for two reasons. Firstly, because the sending

process cannot continue until a receiver sends an acknowledgement, and secondly

because this output doesn’t constitute communication in the sense of synchronisation

and transfer of information, which only occurs in the presence of a receiver.

The additional states that occur in a translated program are likely to affect the

efficiency of verification. An increase in the size of the state space adds unwanted com-

plexity, and uninformative extra behaviour. For this reason alone, it would be bene-

ficial to avoid these states. A partial solution is offered by the prospect of “atomic”

statements, which group a series of statements into a single execution step. Atomic

statements appear in other modelling languages, such as Promela (the modelling lan-

guage for the SPIN model checker [Holzmann 2003]). An atomic construct was a late

addition to QMC and has not been included in the current translation. Syntactically,

atomic constructs are represented by curly braces, hence we could translate c![x, 3] to

{c_1 := x; c_2 := 3; c1!c_1; c2!c_2;} c_ack?ack;

Note that we cannot include c_ack?ack in the atomic construct because we cannot

group the input and output actions of separate processes together. In effect, we are

able to reduce the number of transitions from 3n times to 3 times the number of CQP

transitions (excluding acknowledgment messages).

Implementation A software implementation of the translation has been imple-

mented using the Java programming language, with the aim of integration with the

QMC tool. The translator has been developed using the ANTLR parser generator

[Parr 2007, 2008] and is currently available as a command line application.

6.6 Summary

Chapters 3 and 4 focussed on the analysis of quantum protocols using process calculus.

In this chapter, we describe an approach that enables the combination of process

calculus techniques with automated verification. This synthesis is achieved through

a translation from CQP to the modelling language of the Quantum Model Checker

software tool.

In Section 6.1, we describe the QMC tool that has been developed by Gay et al.

[2008]. We briefly describe the stabilizer formalism, which is used by QMC to provide

efficient simulation of quantum protocols. This is at the expense of universal quantum

computation, which results in a significant restriction to the translation. The use of

QCTL to express verification properties is described in Section 6.1.2.

179

6.6. SUMMARY

The formal translation is defined in Section 6.2. The translation is defined induc-

tively on the structure of CQP processes, following a similar approach to Nielson and

Nielson [1999]. We demonstrate the translation in Section 6.3, by application to a

random number generator and to the teleportation protocol.

In Section 6.4, we describe the requirements for a semantics preserving translation.

This includes accounting for the difference between small-step and big-step semantics,

as well as the use of auxiliary statements in the translation (such as the sequence of

assignments prior to an output). We extend the syntactic translation of Section 6.2

to a translation of configurations, and then prove that this translation preserves the

semantics of CQP processes.

180

7
Conclusion

This chapter begins with a brief summary of the achievements described in the pre-

vious chapters. This is followed in Section 7.2 by a conclusion of the work presented

in this thesis. Finally, in Section 7.3 we outline several possible directions of study in

which this work may be extended.

7.1 Summary

Chapter 1. The first chapter described the emergence of the quantum computation

and communication discipline. We discussed the characteristics of quantum systems,

highlighting the factors that differentiate this paradigm from classical information,

such as entanglement and probabilistic measurement. We discussed the benefits of

formal methods and presented a survey of recent work into the development of formal

modelling and analysis techniques for quantum systems.

Chapter 2. A review of the background material necessary for the following chap-

ters was provided, including the core concepts of quantum computation and an intro-

duction to process calculus and bisimilarity.

Chapter 3. This chapter presented an investigation into observational equivalence

for quantum processes, and addressed the issues regarding congruence for general

quantum processes. The operational semantics of CQP was redefined using a labelled

transition relation, in order to describe external interactions. We introduced a notion

of behavioural equivalence for CQP processes, namely probabilistic branching bisim-

ilarity. Using this relation, we showed that quantum teleportation is bisimilar to a

quantum channel. This relation is not preserved by parallel composition in general,

however we proved that for a particular class of processes including teleportation,

181

7.2. CONCLUDING REMARKS

bisimilarity is preserved by parallel composition. We found that the implementation

of measurement, based on probabilistic branching, leads to a description of the quan-

tum state that disagrees with the theory of quantum mechanics. This provided the

starting point for Chapter 4.

Chapter 4. In this chapter, we presented a new operational semantics for CQP

which combines probabilistic branching with mixed quantum states, in order to ad-

dress the incompatibility with quantum observations found in the previous chapter.

We proved that the new transition relations preserve typing, and we redefined prob-

abilistic branching bisimilarity with respect to the new semantics. We then proved

that probabilistic branching bisimilarity is preserved by non-input, non-qubit con-

texts, and furthermore that full probabilistic branching bisimilarity is a congruence.

Using this relation, we showed that quantum teleportation and superdense coding

protocols are each congruent to their respective high-level specification processes.

Chapter 5. In this chapter, we presented an axiomatic approach to verification

based on the full probabilistic branching bisimilarity from Chapter 4. Using telepor-

tation as the motivation, we defined several equalities for the manipulation of quan-

tum operators. Many of these rules are based on analogous principles from quantum

mechanics. The principles of implicit and deferred measurement are two previously

discussed examples, which have been presented as axioms in this chapter. We proved

the soundness of the given axiomatisation, and we discussed the potential role of an

expansion law and the difficulties in the adaptation of such a law.

Chapter 6. We defined a translation from CQP to the quantum model checking tool

QMC. The purpose of this translation was to enable multiple formal techniques, both

manual and automated, to be applied to a single specification. We investigated the

relationship between the semantic models of the two languages, and we proved that

the translation preserves the semantics of CQP processes, and is therefore suitable

for formal reasoning.

7.2 Concluding Remarks

This thesis set out to further develop formal methods techniques for quantum infor-

mation systems, and, in doing so, to improve our understanding of the principles of

quantum mechanics in relation to communication and computation. A central part of

this study focussed on the congruence properties of quantum systems, understanding

why previous approaches have failed to produce congruence relations for general quan-

tum systems, and improving these approaches to develop an interesting and practical

notion of congruence.

182

7.2. CONCLUDING REMARKS

The existing quantum process calculus Communicating Quantum Processes (CQP)

has provided the foundation for much of this work, and the adaptation of CQP has

successfully led to the achievement of these aims. Chapter 3 provides a deep un-

derstanding of the application of process calculus to quantum systems, in particular,

focussing on the representation and manipulation of the quantum state. This under-

standing set out the foundations for Chapter 4, in which a radically new semantics of

quantum process evolution was presented. An important factor in the development

of this semantics was to ensure correspondence with quantum physical laws, most

notably the interpretation of the density matrix representation of quantum state.

This close tie with physical theory ensures that the calculus is able to model realistic

systems.

Chapters 5 and 6 build upon the CQP framework by providing new methods

for reasoning about quantum processes; such generalised results are the hallmark of

formal methods. The equational theory presented in Chapter 5 is based upon the

full probabilistic branching bisimilarity of Chapter 4 and illustrates the significance

of congruence relations. The ability to prove equivalence using equational reasoning,

instead of the longhand proofs seen in Chapters 3 and 4, significantly reduces the

complexity of analysis and provides clear motivation for seeking a congruence relation.

The translation described in Chapter 6 extends the facility of CQP in a separate

direction, taking advantage of the Quantum Model Checker tool. The ability to

combine the manual techniques of CQP with the automation offered by QMC through

this translation offers a significant advantage for this analytical approach.

The application of formal methods to quantum systems is motivated in particular

by their use in cryptographic applications. Secure communication networks based

on quantum key distribution are the next step beyond point-to-point links, and their

verification is likely to benefit from compositional as well as automated analysis where

protocols such as quantum teleportation and superdense coding constitute the build-

ing blocks of large and complex systems. The equational theory of Chapter 5 and the

translation of Chapter 6 both provide significant advances in this respect.

Feng et al. [2011] have recently presented an independent congruence relation for

their process calculus qCCS. A detailed comparison between their congruence and

the relation in Chapter 4 requires further study, however, as previously discussed, the

semantics of qCCS processes differs from CQP in several respects. One advantages

of this work is the ability to abstract from the number of auxiliary qubits required,

enabling the 3-qubit teleportation protocol to be identified with a single-qubit chan-

nel. Additionally, qCCS does not have the extensible framework for the evaluation

of expressions, which is likely to play a major role in the analysis of more compli-

cated protocols. Conversely, the semantics of qCCS and the accompanying results

are somewhat simpler, and thus will undoubtedly be very important in furthering

183

7.3. FURTHER WORK

our understanding of the field. Nevertheless, while these advantages have come at

the expense of additional complexity, the framework and results in this thesis retain

the flexibility and extensibility of CQP, providing a solid foundation with which to

progress.

7.3 Further Work

In this final section we outline several directions for future work based around CQP

and the verification framework presented in this thesis.

Various extensions to the CQP language would facilitate the specification of the

more complicated protocols. Examples given in [Gay and Nagarajan 2005, 2006]

illustrate the potential use of “if-then-else” constructs, and structured data. We have

also discussed the inclusion of recursion and replication, and the match operator.

Some of these extensions may be achieved through encodings into the current calculus,

while others require new primitives.

Also of interest would be an analysis of the recent work concerning the combination

of probabilistic and non-deterministic transitions, and how this relates to process

equivalence. Ideas from this field are likely to be relevant to the implementation

of new process constructs in CQP, and may offer inspiration for improvements to

the current implementation of probabilistic branching and non-deterministic choice

in CQP.

The current software implementation of the translation would benefit from sev-

eral improvements. These include the incorporation of type checking algorithms and

robust variable analysis to detect type errors and alleviate the requirement for unique

variable naming. The ability to convert nested processes to a named set would allow

the choice between using named processes or the formal nested syntax, or even an

arbitrary mixture. A significant benefit to the accessibility of the translation would

be integration into the QMC tool; the current implementation has been developed in

Java to facilitate this.

Papanikolaou [2009] outlines several improvements to QMC which would enhance

the overall framework. Of particular significance, is the possibility to extend simu-

lation to universal quantum computation. This is not possible to do in an efficient

manner, however according to Aaronson and Gottesman [2004], stabilizer circuits can

be extended to include a limited number of non-Clifford gates without completely

losing the efficiency gain.

It would be interesting to integrate the results of Ying et al. [2007, 2009] on

approximate bisimilarities with the concept of mixed configurations. Approximate

bisimilarity is used to take into account quantum noise that may occur in physical

implementations, and is therefore an important aspect for the formal verification

184

7.3. FURTHER WORK

of quantum communication devices. The semantics of purely quantum processes in

[Ying et al. 2007, 2009] uses mixed states, and the inclusion of probabilistic branching

may provide the ability to incorporate classical information and obtain interesting

congruence results.

There are many interesting directions for further study, and the hope is that

the developments in this thesis will provide a solid grounding for future progress in

quantum process calculus.

185

List of Abbreviations

CCS Calculus of Communicating Systems. 9

CQP Communicating Quantum Processes. 28

CTL Computation Tree Logic. 149

EQPL Exogenous Quantum Propositional Logic. 149

LTS labelled transition system. 24

qCCS Quantum CCS. 29

QCTL Quantum Computation Tree Logic. 148

QKD Quantum Key Distribution. 5

QMC Quantum Model Checker. 148

QPAlg Quantum Process Algebra. 28

QRAM quantum random access machine. 12

186

Index

-c, 60, 110

µ, 49

−→+, 49

-, 97

ρE , 95

−→e, 85
α−→p, 86

−→v, 85
α−→, 87
α

=⇒, 49

=⇒, 49

Sn, 48

Sp, 48

S, 48

axiomatisation, 127

bra, see braket notation

braket notation, 13

cnot, see controlled-NOT operator

Communicating Quantum Processes

semantics, 34

syntax, 32

type system, 35

congruence, 98

non-input, non-qubit, 98

context, 60, 97

non-input, non-qubit, 98

prefix, 60

controlled-NOT operator, 16

dense coding, see superdense coding

density matrix, 19

density matrix (ρ)

configurations, of, 49, 95

density operator, see density matrix

entangled state, 15

Exogenous Quantum Propositional Logic,

152

expansion law, 142

Hadamard operator, 16

Hilbert space, 14

ket, see braket notation

measurement, 17

mixed state, 78

Pauli operators, 16

probabilistic branching bisimilarity, 50, 97

configurations, of, 97

full, 60, 110

probabilistic branching bisimulation, 49,

96

QChannel (process), 53

QMC, see Quantum Model Checker

quantum bit, see qubit

Quantum Computation Tree Logic, 152

quantum mechanics, 13

Quantum Model Checker, 149

quantum teleportation, 21

qubit, 14

reduced density matrix, 20

187

INDEX

separable state, 15

standard basis, 14

superdense coding, 22

superposition, 15

Swap (process), 58

Teleport (process), 53

TeleportD (process), 56

unitary operator, 15

188

Bibliography

S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Physical

Review A, 70(5):052328, 2004.

S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science

(LICS). IEEE Computer Society, 2004. Also arXiv:quant-ph/0402130.

P. Adão and P. Mateus. A process algebra for reasoning about quantum security.

In Proceedings of the 3rd International Workshop on Quantum Programming Lan-

guages (QPL 2005), volume 170 of Electronic Notes in Theoretical Computer Sci-

ence, pages 3–21, March 2007. Preliminary version presented at QPL’05.

T. Altenkirch and J. Grattage. A functional quantum programming language. In 20th

Annual IEEE Symposium on Logic in Computer Science, pages 249–258, Jun 2005.

T. Altenkirch, J. Grattage, J. K. Vizzotto, and A. Sabry. An algebra of pure quan-

tum programming. Electronic Notes in Theoretical Computer Science, 170:23 – 47,

2007. Proceedings of the 3rd International Workshop on Quantum Programming

Languages (QPL 2005).

S. Andova. Process algebra with probabilistic choice. In J.-P. Katoen, editor, Formal

Methods for Real-Time and Probabilistic Systems, volume 1601 of Lecture Notes in

Computer Science, pages 111–129. Springer Berlin / Heidelberg, 1999.

S. Andova and T. A. C. Willemse. Branching bisimulation for probabilistic systems:

characteristics and decidability. Theoretical Computer Science, 356(3):325–355,

2006.

P. Baltazar, R. Chadha, and P. Mateus. Quantum Computation Tree Logic – model

checking and complete calculus. International Journal of Quantum Information, 6

(2):219–236, 2008.

J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics, 1(3):195–200, 1964.

C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution

and coin tossing. In Proceedings of IEEE International Conference on Computers,

Systems and Signal Processing, pages 175–179, Bangalore, India, December 1984.

189

BIBLIOGRAPHY

C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public dis-

cussion. SIAM Journal on Computing, 17(2):210–229, 1988.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin. Experimental

quantum cryptography. Journal of Cryptology, 5:3–28, 1992a. 10.1007/BF00191318.

C. H. Bennett, G. Brassard, and N. D. Mermin. Quantum cryptography without

Bell’s theorem. Physical Review Letters, 68(5):557–559, Feb 1992b.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters.

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-

Rosen channels. Physical Review Letters, 70(13):1895–1899, Mar 1993.

C. H. Bennett, G. Brassard, C. Crpeau, and U. M. Maurer. Generalized privacy

amplification. In ISIT: Proceedings IEEE International Symposium on Information

Theory, sponsored by The Information Theory Society of The Institute of Electrical

and Electronic Engineers, 1995.

J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.

Information and Control, 60(1-3):109–137, 1984.

G. Berĺın, G. Brassard, F. Brussières, and N. Godbout. Loss-Tolerant Quantum

Coin Flipping. In Second International Conference on Quantum, Nano and Micro

Technologies (ICQNM 2008), pages 1–9, Feb 2008.

T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LO-

TOS. Computer Networks and ISDN Systems, 14(1):25 – 59, 1987.

G. Brassard and C. Crépeau. Quantum bit commitment and coin tossing protocols.

In A. Menezes and S. Vanstone, editors, Advances in Cryptology-CRYPT0’ 90,

volume 537 of Lecture Notes in Computer Science, pages 49–61. Springer Berlin /

Heidelberg, 1991.

G. Brassard and L. Salvail. Secret-key reconciliation by public discussion. In in Ad-

vances in Cryptology — EUROCRYPT ’93, pages 410–423. Springer-Verlag, 1994.

G. Brassard, S. L. Braunstein, and R. Cleve. Teleportation as a quantum computation.

Physica D: Nonlinear Phenomena, 120:43–47, 1998.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

R. Cleaveland and S. Sims. Concurrency Workbench of the New Century (CWB-NC).

http://www.cs.sunysb.edu/˜cwb/, 2009.

V. Danos, E. D’Hondt, E. Kashefi, and P. Panangaden. Distributed measurement-

based quantum computation. Electronic Notes in Theoretical Computer Science,

170:73 – 94, 2007a. Proceedings of the 3rd International Workshop on Quantum

Programming Languages (QPL 2005).

V. Danos, E. Kashefi, and P. Panangaden. The measurement calculus. Journal of the

ACM, 54(2):8, 2007b.

190

http://www.cs.sunysb.edu/~cwb/

BIBLIOGRAPHY

T. Davidson, S. J. Gay, H. Mlnař́ık, R. Nagarajan, and N. Papanikolaou. Model

checking for Communicating Quantum Processes. International Journal of Uncon-

ventional Computing, 8(1):73–98, 2012.

D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum

computer. Proceedings of the Royal Society of London Ser. A, A400:97–117, 1985.

D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. In

Proc. R. Soc. Lond., Ser. A, volume 439, pages 553–558, 1992.

E. D’Hondt. Distributed quantum computation: a measurement-based approach. PhD

thesis, Vrije Universiteit Brussel, 2005.

D. Dieks. Communication by EPR devices. Physics Letters A, 92(6):271 – 272, 1982.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22(6):644–654, Nov 1976.

P. A. M. Dirac. The Principles of Quantum Mechanics. Oxford University Press,

fourth edition, 1958.

A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of

physical reality be considered complete? Physical Review, 47(10):777–780, May

1935.

A. K. Ekert. Quantum cryptography based on Bell’s theorem. Physical Review Letters,

67(6):661–663, Aug 1991.

M. Elboukhari, M. Azizi, and A. Azizi. Analysis of Quantum Cryptography Protocols

by Model Checking. International Journal of Universal Computer Sciences, 1(1):

34–40, 2010.

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. Information Theory, IEEE Transactions on, 31(4):469–472, Jul 1985.

C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh. Current status

of the DARPA quantum network. arXiv:quant-ph/0503058v2, Mar 2005.

E. A. Emerson. Temporal and modal logic, volume B: Formal Models and Semantics,

pages 995–1072. MIT Press, 1990.

Y. Feng, R. Duan, Z. Ji, and M. Ying. Probabilistic bisimilarities between quantum

processes. arXiv:cs.LO/0601014, 2006.

Y. Feng, R. Duan, Z. Ji, and M. Ying. Probabilistic bisimulations for quantum

processes. Information and Computation, 205(11):1608–1639, 2007.

Y. Feng, R. Duan, and M. Ying. Bisimulation for quantum processes. In Proceedings

of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, POPL ’11, pages 523–534, New York, NY, USA, 2011. ACM.

R. Feynman. Simulating physics with computers. International Journal of Theoretical

191

BIBLIOGRAPHY

Physics, 21(6&7):467–488, 1982.

W. Fokkink. Introduction to Process Algebra. Springer-Verlag, 2007.

S. Gay, R. Nagarajan, and N. Papanikolaou. Probabilistic model–checking of quantum

protocols. arXiv:quant-ph/0504007, 2005.

S. J. Gay. Quantum programming languages: survey and bibliography. Mathematical

Structures in Computer Science, 16(4):581–600, 2006.

S. J. Gay and R. Nagarajan. Communicating Quantum Processes. In POPL ’05:

Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 145–157, New York, NY, USA, 2005. ACM Press.

S. J. Gay and R. Nagarajan. Types and Typechecking for Communicating Quantum

Processes. Mathematical Structures in Computer Science, 16(3):375–406, 2006.

S. J. Gay, N. Papanikolaou, and R. Nagarajan. QMC: a model checker for quantum

systems. arXiv:0704.3705, 2007. Also Research Report RR432, Department of

Computer Science, University of Warwick.

S. J. Gay, N. Papanikolaou, and R. Nagarajan. QMC: a model checker for quantum

systems. In CAV 2008: In Proceedings of the 20th International Conference on

Computer Aided Verification, volume LNCS of Lecture Notes in Computer Science,

pages 543–547. Springer-Verlag, July 2008.

I. Glendinning. Links on simulation, modelling, and error prevention for quan-

tum computers, 2010. http://www.vcpc.univie.ac.at/˜ian/hotlist/

qc/simulation.shtml.

L. K. Grover. A fast quantum mechanical algorithm for database search. In STOC ’96:

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,

pages 212–219, New York, NY, USA, 1996. ACM.

J. Gruska. Quantum Computing. McGraw Hill, 1999.

C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,

21(8):666–677, 1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

G. Holzmann. A Theory for Protocol Validation. IEEE Transactions on Computers,

100(31):730–738, 1982.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley, 2003.

P. Jorrand and M. Lalire. Toward a quantum process algebra. In CF ’04: Proceedings

of the 1st Conference on Computing Frontiers, pages 111–119, New York, NY, USA,

2004. ACM Press.

G. Kahn. Natural semantics. In F. Brandenburg, G. Vidal-Naquet, and M. Wirsing,

192

http://www.vcpc.univie.ac.at/~ian/hotlist/qc/simulation.shtml
http://www.vcpc.univie.ac.at/~ian/hotlist/qc/simulation.shtml

BIBLIOGRAPHY

editors, STACS 87, volume 247 of Lecture Notes in Computer Science, pages 22–39.

Springer Berlin / Heidelberg, 1987. 10.1007/BFb0039592.

A. Kent. Quantum bit string commitment. Physical Review Letters, 90(23):237901,

Jun 2003.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model

checker. In P. Kemper, editor, Proc. Tools Session of Aachen 2001 Interna-

tional Multiconference on Measurement, Modelling and Evaluation of Computer-

Communication Systems, pages 7–12, September 2001. Available as Technical Re-

port 760/2001, University of Dortmund.

M. Lalire. A probabilistic branching bisimulation for quantum processes. arXiv:quant-

ph/0508116, 2005.

M. Lalire. Relations among quantum processes: bisimilarity and congruence. Math-

ematical Structures in Computer Science, 16(3):407–428, 2006.

M. Lalire and P. Jorrand. A process algebraic approach to concurrent and distributed

quantum computation: Operational semantics. TUCS General Publication No 33,

pages 109–126, Turku Centre for Computer Science, July 2004.

H.-K. Lo and H. F. Chau. Is quantum bit commitment really possible? Physical

Review Letters, 78(17):3410–3413, Apr 1997.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.

In Tools and Algorithms for the Construction and Analysis of Systems (TACAS),

volume 1055, pages 147–166. Springer-Verlag, Berlin Germany, 1996.

D. Markham and B. C. Sanders. Graph states for quantum secret sharing. Physical

Review A, 78(042309):17, Oct 2008.

P. Mateus and A. Sernadas. Weakly complete axiomatization of Exogenous Quantum

Propositional Logic. Information and Computation, 204(5):771—794, 2006.

D. Mayers. Unconditionally secure quantum bit commitment is impossible. Physical

Review Letters, 78(17):3414–3417, Apr 1997.

D. Mayers. Unconditional security in quantum cryptography. Journal of the ACM,

48(3):351–406, 2001.

N. D. Mermin. From classical state-swapping to quantum teleportation. Physical

Review A, 65(1):012320, Dec 2001.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1982.

R. Milner. Communication and Concurrency. Prentice-Hall International Series in

Computer Science. Prentice-Hall, Upper Saddle River, NJ, USA, 1989.

R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Univer-

sity Press, June 1999.

193

BIBLIOGRAPHY

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Information

and Computation, 100(1):1–40, 1992.

R. Nagarajan and S. J. Gay. Formal verification of quantum protocols. arXiv:quant-

ph/0203086, 2002.

R. M. Needham and M. D. Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12):993–999, 1978.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, 2000.

H. R. Nielson and F. Nielson. Semantics with applications: A formal introduction.

Revised edition; original published by John Wiley & Sons, 1992, 1999.

N. Papanikolaou. Techniques for design and validation of quantum protocols. Master’s

thesis, Department of Computer Science, University of Warwick, 2004.

N. Papanikolaou. Definition of the QMC Specification Language. Avail-

able online at http://www.dcs.warwick.ac.uk/˜nikos/downloads/

qmcsemantics.pdf, October 2008.

N. Papanikolaou. Model Checking Quantum Protocols. PhD thesis, Department of

Computer Science, University of Warwick, 2009.

D. Park. Concurrency and automata on infinite sequences. In Proceedings of the

5th GI-Conference on Theoretical Computer Science, pages 167–183, London, UK,

1981. Springer-Verlag.

T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. The

Pragmatic Bookshelf, 2007.

T. Parr. ANTLR parser generator. http://www.antlr.org, Dec 2008.

S. Perdrix. Quantum patterns and types for entanglement and separability. In Pro-

ceedings of the 3rd International Workshop on Quantum Programming Languages

(QPL 2005), volume 170 of Electronic Notes in Theoretical Computer Science, pages

125–138, 2007.

S. Perdrix. Quantum entanglement analysis based on abstract interpretation. In

M. Alpuente and G. Vidal, editors, Static Analysis, volume 5079 of Lecture Notes

in Computer Science, pages 270–282. Springer Berlin / Heidelberg, 2008.

G. D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI Report FN-19, Computer Science Department, Aarhus University, 1981.

G. D. Plotkin. The origins of structural operational semantics. In Journal of Logic

and Algebraic Programming, pages 60–61, 2004.

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev,

M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger. Practical

194

http://www.dcs.warwick.ac.uk/~nikos/downloads/qmcsemantics.pdf
http://www.dcs.warwick.ac.uk/~nikos/downloads/qmcsemantics.pdf
http://www.antlr.org

BIBLIOGRAPHY

quantum key distribution with polarization entangled photons. Optics Express, 12

(16):3865–3871, 2004.

F. Prost and C. Zerrari. A logical analysis of entanglement and separability in quan-

tum higher-order functions. arXiv:0801.0649v1 [cs.LO], 2008.

M. O. Rabin. Digitalized signatures and public-key functions as intractable as fac-

torization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer

Science, Cambridge, MA 02139, Jan 1979.

E. Rieffel and W. Polak. An introduction to quantum computing for non-physicists.

ACM Computing Surveys, 32(3):300–335, Sep 2000.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21:120–126, February

1978.

A. W. Roscoe. Model-checking CSP, pages 353–378. Prentice Hall International (UK)

Ltd., Hertfordshire, UK, UK, 1994.

R. Rüdiger. Quantum Programming Languages: An Introductory Overview. The

Computer Journal, 50(2):134–150, 2007.

P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and Analysis

of Security Protocols. Addison Wesley, 2001.

D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge

University Press, 2001.

P. Selinger. Towards a quantum programming language. Mathematical Structures in

Computer Science, 14(04):527–586, 2004a.

P. Selinger. A brief survey of quantum programming languages. In Y. Kameyama and

P. J. Stuckey, editors, Functional and Logic Programming, volume 2998 of Lecture

Notes in Computer Science, pages 61–69. Springer Berlin / Heidelberg, 2004b.

P. W. Shor. Algorithms for quantum computation: discrete logarithms and factor-

ing. In FOCS ’94: Proceedings of the 35th Annual Symposium on Foundations of

Computer Science, pages 124–134, Washington, DC, USA, 1994. IEEE Computer

Society.

N. Trčka and S. Georgievska. Branching bisimulation congruence for probabilistic

systems. Electronic Notes in Theoretical Computer Science, 220(3):129 – 143, 2008.

R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimu-

lation semantics. Journal of the ACM, 43(3):555–600, 1996.

S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:

802—803, 1982.

195

BIBLIOGRAPHY

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information

and Computation, 115(1):38–94, 1994.

M. Ying, Y. Feng, and R. Duan. An algebra of quantum processes.

http://arxiv.org/abs/0707.0330v1, Jul 2007.

M. Ying, Y. Feng, R. Duan, and Z. Ji. An algebra of quantum processes. ACM

Transactions on Computational Logic, 10(3):1–36, 2009.

196

	WRAP_THESIS_Davidson_2012.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	t.davidson-phd_thesis-jan2012.pdf
	Abstract
	Introduction
	Context
	Quantum Information
	Quantum Computing
	Quantum Communication

	Motivation
	Contribution
	State of the Art
	Quantum Process Calculus
	Verification of Quantum Systems
	Semantics for Analysis of Quantum Systems

	Outline

	Background
	Quantum Mechanics
	Hilbert Spaces
	Qubits
	Quantum Operators
	Measurement
	Density Matrices
	Quantum Gates and Circuits

	Quantum Protocols
	Quantum Teleportation
	Superdense Coding

	Process Calculus
	Labelled Transition Systems
	Bisimulation
	Quantum Process Calculus

	Behavioural Equivalence for CQP
	A Labelled Transition System for CQP
	Describing External Interactions
	Semantics
	Type System

	Quantum Process Equivalence
	Probabilistic Branching Bisimulation

	Applications
	Quantum Teleportation
	Quantum Teleportation with Deferred Measurement
	Qubit-Swap Circuit

	Congruence Properties
	Parallel Preservation

	Discussion
	Summary

	Congruence for Quantum Processes
	Understanding Measurement
	Measurement and Process Calculus
	Mixed Configurations

	CQP with Mixed Configurations
	Semantics
	Type Soundness

	Behavioural Equivalence
	Preservation Properties
	Full Probabilistic Branching Bisimilarity

	Applications
	Quantum Teleportation
	Superdense Coding

	Discussion
	Comparison with qCCS

	Summary

	Towards an Equational Theory
	Analysing Teleportation
	Quantum Identities
	Deferred Measurement
	Commuting Operators
	Surplus Operators
	Permutations
	Qubit Declaration

	Soundness of the Equational Laws
	Expanding processes
	CQP and The Expansion Law
	Expanding Teleportation

	Summary

	A Combined Approach to Quantum Verification
	Modelling Quantum Protocols in QMC
	Syntax
	Verification with QMC

	Translation
	Translation Functions

	Examples
	Random Bit Generator
	Quantum Teleportation

	Correctness of the Translation
	Translating Configurations
	Execution Relationship
	Preservation of Semantics

	Discussion
	Summary

	Conclusion
	Summary
	Concluding Remarks
	Further Work

	List of Abbreviations
	Index
	Bibliography

