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1. Introduction 
 
 

Obesity is a complex, multifactorial, chronic disease involving genetic, perinatal, and 

environmental components. Its prevalence in Europe in the last two decades has tripled and 

150 million adults and 15 million children and adolescents in the region are today estimated 

to be obese (Berghöfer et al., 2008). After the United Kingdom, Spain is the EU country to 

have recorded the highest increases in its standardised rate of obesity over this period (OECD, 

2012) and ranks high in terms of overweight and obesity levels on the continent. The latest 

data from the European Health Survey (2009) report that 38% (16%) of Spanish adults are 

overweight (obese) (cf. OECD, 2012).  

 The epidemic is a major public health concern since obesity is a key risk factor for a 

range of chronic conditions (including, hypertension, diabetes, cholesterol, heart disease, 

stroke, gallbladder disease, biliary calculus, narcolepsy, osteoarthritis, asthma, apnoea, 

dyslipidaemia, gout and certain cancers) that tend to reduce the quality of life and ultimately 

result in death (Alberti et al., 2009; López-Suárez et al., 2008). Additionally, a significant 

number of obese patients tend to suffer mental disorders and social rejection leading to a loss 

of self-esteem, a particularly sensitive issue in the case of children (Gariepy et al., 2010). 

Given its prevalence and association with multiple chronic illnesses, obesity tends to increase 

healthcare resource utilisation and costs substantially. 

The connection between obesity and the cost of healthcare in the health economics 

literature lies rooted in Grossman’s model (1972) so that obesity impacts both the demand for 

health and healthcare services through the depreciation of the stock of health. Empirical 

evidence indicates that the obese tend to reduce the demand for health while increasing the 

demand for healthcare resources, thus impacting healthcare budgets.     

 The aim of the paper is to estimate the impact of BMI, obesity and overweight on 

direct medical costs (i.e., diagnosis and treatment) by applying a two-part model (2PM). More 

specifically, the paper contributes to the literature in two main respects. First, we use panel 

data econometrics to estimate medical costs for a longitudinal dataset based on medical and 

administrative records of around 100,000 patients followed up over seven consecutive years 

(2004-2010). This is, as far as we know, the first application exploring the impact of body 

weight on healthcare costs using longitudinal information and its corresponding methods. 

Likewise, we exploit administrative data that contain objective health, weight and height (and 

consequently the BMI) measurements. Hence, the problems associated with self-reported data 
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are not an issue here. Second, we report findings for the impact of body weight on healthcare 

costs in a European country whose healthcare centres operate under a typical national 

healthcare system and strict cost-containment policies were implemented during the period of 

analysis. Thus, we expect a lower impact on direct medical costs compared to, for instance, 

the impact reported for the US, based basically on a private healthcare system.  

The paper is organised as follows: Section 2 presents the related literature; Section 3 

describes the empirical strategy; Section 4 describes the data; Section 5 presents the results, 

Section 6 discusses the main policy implications of the findings and Section 7 concludes. 

 

2. Related Literature 
 
A sizeable body of literature quantifies the magnitude of healthcare expenditure associated 

with the obesity epidemic. Barrett et al. (2011) distinguish two different lines of research on 

the subject. Thus, one set of studies concerns itself with the estimation of annual direct costs 

of obesity at an aggregate level. Most of them follow an “etiologic fraction” approach and 

consider the most frequent obesity-related diseases (Wolf and Colditz, 1998; Colditz, 1999; 

Sander and Bergemann, 2003; Vazquez-Sanchez and Alemany, 2002; Müller-

Riemenschneider et al., 2008), while others make estimates relying on representative sample 

data (Finkelstein et al., 2004; Arterburn et al., 2005). These studies report that the proportion 

of national health care expenditure attributable to obesity ranges from 5.3 to 7% for the US 

and from 0.7 to 2.6% in other countries. In Spain, the share is reported to reach 7% of total 

health care expenditure.1 A second set of studies takes a lifetime perspective and employs 

medical records in order to estimate the impact of BMI categories on resource utilisation and 

direct costs. Most are based on US data (Quesenberry et al., 1998; Thompson et al., 2001; 

Raebel et al., 2004; Finkelstein et al., 2005) and very few on data from other countries (Borg 

et al., 2005; Kakamura et al., 2007; van Baal et al., 2008). 

 The study we report here is conducted in line with this second set of studies. But while 

we employ microdata and take a longitudinal perspective, the methods adopted differ 

significantly. We specifically apply panel data methods which have been widely recognised in 

the literature on the estimation and prediction of healthcare expenditure using cross-section 

data. Namely, our paper is methodologically similar to those of Cawley and Meyerhoefer 

                                                 
1 Among studies of this type, a number estimate medical costs and obesity based on survey data (Sturm, 2002; 
Andreyeva et al., 2004; Von Lengerke et al., 2006). 
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(2012) and Wolfenstetter (2012), although their estimations of the medical costs of obesity 

and overweight rely on cross-section data.2 

 

3. Empirical Method 

 

There is a plethora of investigations in the field of health economics exploring the advantages 

and drawbacks of the empirical methods proposed to analyse the use of healthcare services 

and their associated medical costs.3 The (cross-section) datasets used for analysing such 

healthcare outcomes typically contain a large proportion of zero observations (non-users) as 

well as a long right-hand tail of individuals who make a heavy use of healthcare services and 

who incur high costs (skewness). Given these characteristics, OLS estimation is biased and 

inefficient. A good alternative for analysing these outcomes and dealing with such data 

problems is the well-known “hurdle” or “two-part model”, which assumes that the censoring 

mechanism and the outcome may be modelled using two separate processes or parts 

(Manning et al., 1981; Duan et al., 1983; Duan et al., 1984). For instance, in explaining 

individual annual hospital expenses, the first part determines the probability of 

hospitalization, while the second part explains associated hospital expenditures conditional on 

being hospitalised.4 

The traditional candidates for modelling the first part in this literature are binary 

regression models (i.e., probit and logit). However, much controversy exists regarding the 

estimation of the dependent variable in the second part. On the one hand, researchers have 

proposed the log transformation of costs (also the square root) before OLS estimation in order 

to accommodate or reduce skewness.5 As nobody is interested in log model results per se 

(e.g., log dollars) such estimates must subsequently be retransformed to the original scale, but 

these retransformations can be problematic due to the impact of, for instance, 

heteroskedasticity (Manning, 1998). On the other hand, generalised linear models (GLMs) 

have recently been proposed as an alternative approach when there are unknown forms of 

heteroskedasticity (Mullahy, 1998; Manning and Mullahy, 2001; Buntin and Zaslavsky 2004; 

                                                 
2 This is the first paper to estimate the (causal) impact of obesity on medical costs using the MEPS 2000-2005 
data and applying the aforementioned methods in health econometrics. 
3 See Jones (2010) for a review of these econometric methods and their comparative performance. 
4 These two distinct processes can be understood from the perspective of a principal-agent model where the 
decision to contact a physician is made by the patient but the frequency of visits or continuation of treatment is 
decided by the doctor. 
5 Estimates based on logged models are actually often much more precise and robust than direct analyses of the 
unlogged original dependent variable (Manning, 1998). They may also reduce (but not eliminate) 
heteroskedasticity. 
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Manning et al. 2005). These models specify a distribution function (e.g., gamma, Poisson, or 

Gaussian) that reflects the relationship between the variance and the raw-scale mean functions 

and a link function that relates the conditional mean of medical costs to the covariates. 

Interestingly, GLM estimates are performed on the raw medical cost scale, so there is no need 

for retransformation. A further advantage is that this approach allows for heteroskedasticity 

through the choice of the distribution function. 

 

3.1 Two-part model strategy 

 

In line with previous studies, this paper estimates direct medical costs by means of a 2PM 

taking into account the panel structure of the data. Interestingly, in our dataset medical costs 

are zero for 16% of the sample and positive medical costs are highly skewed to the right. 

Thus, the first part of the 2PM models the probability of incurring a positive cost (yi >0) using 

a random-effects (RE) logit or probit binary model of the type,  

 

( | , ) Pr( 0 | , ) ( )it i i it i i itE y x y x F xβ α β α α β= > = +  (1) 

 

where the non-linear function F(·) is the logistic or the standard normal cumulative 

distribution function, xit are the regressors and αi is the unobserved time-invariant and 

individual-specific effect that is normally distributed, αi ~ N(0, σα2). Then, the second part of 

the 2PM uses linear panel data methods to predict the mean direct medical costs conditional 

on positive costs. Notice that these two parts are assumed to be independent and are estimated 

separately. Specifically, two specifications are analysed here:  

 

i) First, a RE generalised least squares (GLS) regression of log medical costs (log y) on a set 

of controls, 

 
'(log 0, , ) ( )i i it it i itE y y x xα δ α ε> = + +  (2) 

 

where xit are the regressors, αi ~ N(0, σα2) and εit ~ N(0, σε2) is the idiosyncratic error term. 

Given that the combined error is uit = αi + εit [with Var(uit)= σα2+σε2 = σu
2 and Cov(uit,uis) = 

σα2, s≠t], it follows that the RE model permits serial correlation over time: ρu = Corr(uit,uis)= 
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σα2 / (σα2+ σε2) for all s≠t. In this model, the individual-specific effect is assumed to be 

uncorrelated with the explanatory variables. 

If the (combined) residuals from the log medical costs in equation (3) are lognormal 

and homoscedastic, then the retransformation to raw scale medical costs using the 

exponentiation function is not a serious problem. The problems become more evident when 

we deviate from these circumstances. If the error terms of the logged or transformed model 

are not normally distributed, but are homoscedastic, the usual alternative for the 

retransformation has been to rely on Duan’s (1983) smearing or retransformation factor, as 

applied in several RAND Health Insurance Experiment studies (e.g., Duan et al., 1983, 1984; 

Manning et al. 1987). In this case the expected value of medical costs at levels conditional on 

positive costs is,  

 

( ) ( )' ˆˆ ´ ˆ| 0, , itx
i i itE y y x e Dα δα +
> =  (3) 

 

where α̂  and δ̂  are consistent parameter estimates of equation (2) and D̂  is the smearing 

factor, that is, the average of the exponentiated OLS residuals of the logged dependent 

variable ( ˆ1 ( )

1

ˆ
N

u

i
D N e−

=

= ∑ ) where ' ˆˆˆ log itu y xα δ= − − .6 As the typical value for the smearing 

factor lies between 1.5 and 4.0 in healthcare costs applications, ignoring the retransformation 

can result in a substantial underestimation of mean medical costs. 

 However, according to Manning (1998) and Mullahy (1998) this strategy is 

problematic when transformed errors have a heteroskedastic distribution with a variance that 

depends on the regressors in a non-trivial manner (i.e., 2( | ) ( )uVar u x h xσ= , where h(x) is 

some function of the covariates x that determines the heteroskedasticity). Both authors point 

out that OLS estimates of ( )| 0,i i itE y y xα>  that ignore the possible dependence of the 

retransformation factor on the regressors and which, therefore, use the (homoscedastic) 

smearing factor instead are likely to yield biased estimates of key parameters of interest 

including marginal effects or elasticities.  

 Given the presence of heteroskedasticity (detected by means of the Breusch-Pagan or 

White tests), if it is produced by several covariates, some of which are continuous (i.e., 

                                                 
6 When errors are lognormally distributed and homoskedastic, u ~ N(0,σu

2), then Equation (3) becomes 

( ) ( )' 2ˆˆ ´ 0.5
| 0, itx u

i i itE y y x e
α δ σ

α
+ +

> = . 

6



 

complex heteroskedasticity), one alternative is to assume a parametric structure for the 

heteroskedastic error term. Here, in line with Mullahy (1998), we assume the exponential 

conditional mean (ECM) specification accounting for the panel structure of the data: 
2 ( )( ) x
u h x e α γσ +=  which ensures the positivity of the variance function. Therefore, the 

heteroskedasticity adjusted retransformation of the expected response of medical costs on the 

explanatory variables is,  

 

( )
' ˆ' ( )ˆˆ 0.5

| 0, ,
x

itx e

i i itE y y x e
α γα δ

α
+⎛ ⎞+ +⎜ ⎟

⎝ ⎠> =  (4) 

 

where γ̂  are the estimated coefficients for the logarithmic regression 
2

0 1 1 2 2log( ) ... k ku x x x eα χ γ γ γ= + + + + + +  and their significance indicates the main variables 

contributing to the heteroskedasticity. Note that equation (4) rests on the assumption of the 

lognormality of residuals.  

 As long as the purpose is to recover the estimation of the conditional expected direct 

medical costs in levels for the entire sample under a 2PM setting, we can write, 

 

( )
' ˆ( )' ˆˆ 0.5

' ˆ| , ( )
xit

itx e

i it i itE y x F x e
α γα δ

α α β
+⎛ ⎞+ +⎜ ⎟

⎝ ⎠= +  (5) 

 

where F(·) is the logistic or standard normal distribution. Notice that equation (5) adopts the 

heteroskedasticity adjusted retransformation of the second part of the 2PM. 

 

ii) Second, a GLM panel regression of (positive) direct medical costs on a set of controls, 

 
'( 0, , ) ( )i i it i i itE y y x f xα μ α δ> = = +  (6) 

 

where the link function f(·), the first component of the GLM, relates the conditional mean of 

costs directly to the covariates. The second component is a distribution function that specifies 

the relationship between the variance and the conditional mean. This is often specified as a 

power function: ( | 0, , ) ( | 0, , )Var y y x E y y x uυ υα α> = > = . In order to determine which 

specific link (e.g., logarithm, square root or linear function) and distribution functions (e.g., 

gamma, Poisson or Gaussian) best fits the data, we calculated Pregibon’s link test and the 
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Park (1966) test, respectively. However, the most frequently used GLM specifications in 

healthcare cost studies are the log link function and the Gamma distribution (see, for example, 

Manning and Mullahy, 2001; Manning et al., 2005). In this case, the expected value of 

medical costs for the entire sample is computed as, 

 
' 'ˆ ˆˆ( , ) ( ) ( )i it i itE y x F x f xα α β α δ= + +  (7) 

 

where F(·) is again the logistic or standard normal cumulative distribution function. 

In selecting these two competing approaches to analyse the impact of BMI (or obesity 

categories) on mean medical costs, we are aware of their respective advantages and 

drawbacks. For instance, general linear modelling is recommended, as opposed to log 

estimation with retransformation, when complex heteroskedasticity is present and residuals 

are not lognormally distributed. However, Manning and Mullahy (2001) point out that GLM 

estimation suffers a substantial loss in precision in the face of heavy-tailed, log scale residuals 

or when the variance function is misspecified (see, also, Buntin and Zaslavsky, 2004; Baser, 

2007). A general finding that seems to emerge from the literature that compares the 

performance of these two models for positive expenditure (among other methods) in terms of 

consistency and precision (Manning and Mullahy, 2001; Buntin and Zaslavsky, 2004; 

Manning et al., 2005; Baser, 2007; Hill and Miller, 2010) is that no one method dominates the 

other and there are important trade-offs in terms of precision and bias, mainly when different 

subgroups of population or types of medical costs are analysed (Hill and Miller, 2010; Jones, 

2010). Notwithstanding, Mihaylova et al’s (2011) literature review confirms that 2PM models 

perform better.  

 Finally, given the difficulties of finding adequate exclusion restrictions in the data, the 

usual procedure when estimating 2PM models is to assume the same type of regressors in 

both parts of the equations. Fortunately, our data provide information about the patients’ 

relatives, so that we can construct the binary indicator of living with relatives (value 1) or 

alone (value 0). This indicator is then used as an exclusion restriction since we assume that 

living with relatives influences the decision to seek care and, hence, the incurring of positive 

healthcare costs (first equation), but it is irrelevant when estimating the amount of medical 

costs incurred (second equation). 
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3.2 Marginal and incremental effects in two-part models 

 

The derivation of marginal effects (MEs) and incremental effects (IEs) in non-linear models is 

not as straightforward as it is in linear regression models (see Hertz, 2010). In this paper, we 

are interested in estimating both the ME of the BMI regressor, xk, and the IE of the obesity 

regressor, xd, on direct medical costs (measured in levels) in a two-part framework, using the 

above specifications in the second part.  

 When we estimate mean medical costs using the heteroskedasticity adjusted 

retransformation model, to calculate the ME of BMI we take the partial derivative of equation 

(5) with respect to xk holding the remaining covariates constant, 

 

( )
( )'' ( )

'' ( )

0.5

0.5( | , ) ( ' )
( ' )

x

x

x e

x e

k k k

e
E y x F x

e F x
x x x

γ

γ

α δ

α δ
δ

δ α δ α β
α β

δ δ δ

+ +

+ ++
= + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

 (8) 

Now if we assume that F(·) is the cumulative logistic distribution, 
'

'

( )
'

( )
( )

1

x

x

ex
e

α β

α β
α β

+

+
Λ + =

+
, 

then the ME becomes: 

 

( ) ( ) ( )

( ) ( )

'' ( )

'
'

'( )

0.5' '

0.5' ( )

( | , )
1

                     0.5

x

x

x e

k
k

x e x
k k

E y x
x x e

x

x e e

α γ

α γ

α δ

α δ α γ

δ α
β α β α β

δ

α β δ γ

+

+

+ +

+ +
+

= Λ + − Λ +

+ Λ + +

⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠
⎛ ⎞⎛ ⎞ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠

 (9) 

where the first term in equation (9) is the ME of the probability of positive medical costs with 

respect to the BMI and the second term measures the ME of the heteroskedasticity adjusted 

conditional medical costs on positive values with respect to the same regressor. 

 Now if we calculate the ME using the GLM specification of the second part of the 

2PM model and assume the standard normal cdf for the first part 
'

'( ) ( )
x

x z dz
α β

α β φ
+

−∞
Φ + = ∫ , 

then the partial derivative of equation (7) is, 

 

( )( ) ( )( )'' ' ' '( | , )
( ) ( )k

k

E y x
x f x x

x
f xδ α

β α α α β
δ

φ β δ α δ= + + ++ Φ +  (10)
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3.3 Econometric issues 

 

Some of the econometric challenges posed by our panel data were adequately addressed in the 

estimations. First, a patient’s weight and height are not always measured when visiting their 

doctor, which means that for a subset of individuals their BMI may present a missing value in 

time t. To overcome this problem, we restricted the sample to those individuals who had at 

least one weight and height measurement. Based on this information we were able to infer the 

individuals’ BMI for the period 2004-2010. Second, since not having weight and height 

measurement information may induce sample selection bias, we followed Wooldridge’s 

(2005, page 581) proposal to accommodate this impact. In other words, we ran a robust probit 

estimation of not having covariate measurements for each period t and then saved the inverse 

Mill’s ratios. These were later added to the two-part model equations. 

Third, a further issue to be addressed is that of estimating the models with fixed effects 

(FEs) or random effects (REs) in a panel data context. Although FEs should control for 

unobserved heterogeneity at the individual level, we preferred the REs option. This decision 

was driven by the infeasibility of estimating the same FEs in the two parts of the 2PM. To the 

best of our knowledge, no standard procedure can perform this. Therefore, we used REs panel 

estimation, which relies on the normality of the errors and the fact that errors are uncorrelated 

with the observed covariates (xit). Fourth, to allow for the possibility that the observed BMI 

may be correlated with the time-invariant and individual-specific effect (αi), we parameterised 

this association.7 However, here we followed the Mundlak (1978) procedure, which uses 

within-individual means of the BMI rather than separate values for each year. As a 

consequence, the original set of regressors is augmented with the global BMI mean. Fifth, to 

further control for heterogeneity we considered the impact of the previous year’s BMI on our 

regressions. Notice that although some endogenous effects may still be present, such as a 

health status shock (e.g., accident or a job loss) that would have a marked impact on medical 

spending (on traumatology or psychiatric services), we assumed that no other effects at the 

individual level could be controlled for. 

Sixth, we also specified a dynamic panel regression model by including the medical 

costs incurred in the previous year as an additional regressor to capture state dependence. To 

deal with the initial conditions problem, we followed Albouy et al’s (2010) proposal which 

modifies Wooldridge’s (2005) approach. In fact, these authors proposed using the generalised 
                                                 
7 In line with Chamberlain (1980), one option could be to assume that 2´  (0, )i i iBMI u idd Nα α σ= + where 
BMIi = (BMIi1,..,BMIiT) are the values of the BMI for every year of the panel, and α = (α1,....., αT). 
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residual of a simple model in cross-section at the initial date but taking into account the two-

part model framework. The latter can be considered the best available estimation of the over 

or under propensity to consume at the initial date. Seventh, a further sample selection issue of 

concern occurs if during the analysed period individuals drop out from the panel because of 

immigration, incapacity, death, etc. We found that around 3% of our total observations 

suffered attrition as a consequence of death. Here, the strategy adopted involved simply 

including a dummy on the occurrence of death rather than including an additional probability 

of individuals’ dropping out from the panel. Eighth, to control for non-linearity, we 

alternatively modelled the impact of the BMI categories (e.g., overweight and obesity 

compared to normal weight) on both equations of the two-part model. Finally, the marginal 

effects were computed manually as a consequence of having transformed data and were 

conveniently bootstrapped.8 

 

4. Data and variables 

 

Observational and longitudinal data are drawn from the administrative and medical records of 

patients followed up over seven consecutive years in six primary care centres (Apenins-

Montigalà, Morera-Pomar, Montgat-Tiana, Nova Lloreda, Progrés-Raval and Marti i Julià) 

and two reference hospitals (Hospital Municipal de Badalona and Hospital Universitari 

Germans Trias i Pujol), serving more than 110,000 inhabitants in the north-eastern sector of 

Barcelona. This population is mostly urban, of lower-middle socioeconomic status from a 

predominantly industrial area. Our sample includes patients aged 16+ who had at least one 

contact with the healthcare system between 1 January 2004 and 31 December 2010, and who 

were assigned to one of the aforementioned healthcare centres during this period. The study 

also considers those who died during the period analysed. However, we exclude subjects that 

were transferred or who moved to other centres and patients from other areas or regions. 

 This dataset incorporates a rich set of information about the individual patients’ use of 

healthcare resources (including, number of visits to the GP; specialist and emergency care; 

number of hospitalizations and bed days; laboratory, radiology and other diagnostic tests; and 

consumption of medicines), their clinical measurements of height and weight, and each 

patient’s chronic conditions and other diagnosed diseases (according to the ICPC-2), any 

functional limitations, their date of admission and discharge, type of healthcare 

professional(s) contacted and the motive of their visit. Moreover, the dataset includes details 
                                                 
8 We thank Partha Deb for providing with the Stata codes to perform these calculations. 
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of each patient’s age, gender, employment status (active/retired), place of birth and habitual 

residence.  

 Owing to a unique identifier, the data from the administrative and medical records can 

be merged with the Population Census allowing us to incorporate new variables for each 

patient (e.g., education or marital status) not available in the original sample. 

 

4.1 Data on Healthcare Costs 

 

In addition to its longitudinal nature, the dataset provides a wide array of information on 

healthcare costs. This includes the specific characteristics of the primary and hospital 

healthcare centres considered and also the extent of development of their information 

systems. In addition to these internal sources, costs were also calculated (where necessary) 

using data taken from invoices for intermediate products issued by a number of different 

providers and from the prices fixed by the Catalan Health Service. 

The computation of healthcare costs follows a two-stage procedure: first, incurred 

expenditures (financial accounting) are converted into costs (analytical accounting), which are 

then allocated and classified accordingly.9 Depending on the volume of activity, we consider 

two types of costs: fixed or semi-fixed costs and variable costs. The former include personnel 

(wages and salaries, indemnifications and social security contributions paid by the health 

centre), consumption of goods (intermediate products, health material and instruments), 

expenditures related to external services (cleaning and laundry), structure (building repair and 

conservation, clothes, and office material) and management of healthcare centres, according 

to the Spanish General Accounting Plan for Healthcare Centres. The latter include costs 

related to diagnostic and therapeutic tests and pharmaceutical consumption.10  

 Our unit of measurement is the cost per treated patient during the period in which the 

subject was observed and all the direct cost concepts imputed for the set of diagnosed 

episodes. Table 1 presents our estimates of the resulting unitary cost rates for the years 2004 

and 2010. As such, the total medical costs per patient in each period are calculated as the sum 

of fixed and semi-fixed costs (i.e., average cost per medical visit multiplied by the number of 

medical visits) and variable costs (i.e., average cost per test requested multiplied by the 
                                                 
9 Expenditures not directly related to care (e.g. financial spending, losses due to fixed assets, etc.) were excluded 
from the analysis. 
10 For instance we considered: (i) laboratory tests (haematology, biochemistry, serology and microbiology), (ii) 
conventional radiology (plain film requests, contrast radiology, ultrasound scans, mammograms and 
radiographs), (iii) complementary tests (endoscopy, electromyography, spirometry, CT, densitometry, perimetry, 
stress testing, echocardiography, etc.); iv) pharmaceutical prescriptions (acute, chronic or on demand). 
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number of tests + retail price per package at the time of prescription multiplied by the number 

of prescriptions). Note that in this study we do not account for the computation of ‘out-of-

pocket payments’ paid by the patient or family, as they are not registered in the database. 

Healthcare costs figures were converted to 2010 Euros using the Consumer Price Index (CPI).  

 

[Insert Table 1 around here] 

 

4.2 Other variables 

 

The body mass index (BMI) of each patient, our continuous variable of interest, was 

calculated as weight (in kilograms) divided by the square of height (in metres) using clinical 

or measured information, thus avoiding the traditional problems found with self-reported data. 

Notice that in our sample not all patients were measured when they visited the physician; 

however, others were measured on more than one occasion. We also computed the impact of 

obesity and overweight on medical costs by using the WHO classification that distinguishes 

between normal-weight (18 ≤ BMI ≤ 24.9 kg/m2), overweight (25 ≤ BMI ≤ 29.9 kg/m2) and 

obesity (BMI of ≥ 30 kg/m2).11 

 To identify the impact of BMI (or, alternatively, of obesity and overweight) on 

medical costs we included a wide range of covariates. First, we controlled by the patients’ 

demographic characteristics, including age and gender, and also by immigrant status, since 

there is evidence that the immigrant population presents a different pattern of use and access 

to healthcare services. Note that non-linear age effects were considered after running the 

modified Hosmer-Lemeshow test. We also added a set of dummies to control for their 

employment status (active/retired), whether the individual was the main beneficiary of the 

public health insurance, and whether Catalan was their usual language of communication. 

Two groups of indicators were employed with respect to the individuals’ health conditions 

that affected medical costs. On the one hand, we included the Charlson comorbidity index for 

each patient and the individual case-mix index obtained from the ‘Adjusted Clinical Groups’ 

(ACG), a patient classification system for iso-consumption of resources.12 On the other hand 

                                                 
11 Although the BMI is the most widely used measure of obesity, it is not free of problems. For instance, the 
BMI does not take into consideration body composition (adiposity vs. lean weight) or body fat distribution. This 
means it may fail to predict obesity among very muscular individuals and the elderly. 
12 A task force consisting of five professionals (a document administrator, two clinicians and two technical 
consultants) was set up to convert the ICPC-2 episodes to the International Classification of Diseases (ICD-9-
CM). The criteria used varied depending on whether the relationship between the codes is null (one to none), 
univocal (one to one) or multiple (one to many). The operational algorithm of the Grouper ACG ® Case-Mix 
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we considered the number of medical episodes suffered by each patient during the period 

analysed as a proxy for the individual’s health status. Merging these data with the Population 

Census allowed us to control medical costs by the patients’ educational level and marital 

status. 

 We have an initial balanced panel dataset containing 706,473 observations for the 

whole period 2004-2010. However, when we restrict the sample to patients presenting at least 

one weight and height measurement, the final sample is reduced to 452,108 observations, that 

is, 64% of the original. 

 

5. Results 

 

5.1 Summary statistics 

 

Descriptive statistics for the main set of variables used in the empirical exercise are presented 

in Tables 2-4. Table 2 shows that the unconditional mean annual medical costs per patient for 

the period is 755.11€ (in 2010 Euros), which is considerably higher than the unconditional 

median of 306.92€ (less than half that of the mean cost in our final sample). The skewness 

statistic (5.91 compared to 0 for symmetric data) and the kurtosis coefficient (82.97 compared 

to 3 for normal data) indicate that the distribution of costs in levels is highly skewed to the 

right. As expected, the logarithmic transformation reduces the range of variation of costs, 

narrowing the degree of skewness: the mean medical cost (5.02€) approximates to that of the 

median (5.73€) and the skewness (kurtosis) statistic falls to -0.97 (2.85).13 

 

[Table 2 around here] 

 

Direct medical costs are zero for 16.4% of the sample (74,144 obs.), a non-negligible portion 

of zeros, while the number of observations with positive medical costs is 377,964. As Table 3 

shows the mean positive annual costs per patient reaches 903.09€. This figure is significantly 

                                                                                                                                                         
System consists of a series of consecutive steps to obtain the 106 mutually exclusive ACG groups, one for each 
patient. The application of ACG provides the resource utilization bands (RUB) so that each patient, depending 
on his/her overall morbidity, is grouped into one of five mutually exclusive categories (1: healthy users or very 
low morbidity; 2: low morbidity; 3: moderate morbidity; 4: high morbidity; and 5: very high morbidity). 
13 A comparison with the initial sample, Table 2 shows that medical costs have increased. This indicates that 
patients without any weight or height measurements, after having visited their physician, enjoyed a better health 
status and incurred lower costs. 
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higher for women (949.40€) than it is for men (845.96€). As expected, medical costs increase 

with patients’ age, with a higher Charlson comorbidity index and with terminal illness. 

 

[Table 3 around here] 

 

Finally, Table 4 summarises the mean and standard deviation values of the variables of 

interest and of the controls. In our sample, the mean BMI in the period of study (2004-2010) 

is 26.70, corresponding to a prevalence of obesity (overweight) of 23% (36%). As expected, 

the mean measured BMI is slightly higher among men (26.75) than it is among women 

(26.67), with the prevalence of obesity being higher among women (25% vs. 21%) and 

overweight among men (42% vs. 31%). Notice that women represent 54% of the sample and 

that they are slightly older than men (48.86 vs. 47.52 years of age). The mean Charlson 

comorbidity index is similar for both genders although the mean number of episodes is higher 

among women (2.28 vs. 1.73). As for labour status, around 67% of the sample is active and 

the percentage of individuals who have to be dropped from the sample due to death is higher 

among men (3% vs. 2%). 

 

[Table 4 around here] 

 

5.2 BMI and direct medical costs 

 

In Tables 5-9 we present the results of our RE panel data estimations of direct medical costs 

using a 2PM. These tables show the bootstrapped estimates of the MEs (IEs) of the patients’ 

measured BMI (obesity and overweight) on medical costs using different econometric 

specifications. Accompanying these estimates, we also report measures of goodness of fit and 

of the predictive performance for each model (i.e., the auxiliary R2, the root mean square error 

– RMSE, and the mean absolute prediction error - MAPE). Note that these estimations 

account for a wide list of controls (see Section 4.2), health district dummies and time dummy 

variables. In addition, as discussed previously, each model incorporates the inverse Mill’s 

ratio of not having weight and height measurements, the global mean BMI (i.e., the Mundlak 

correction procedure), one-year lagged measured BMI, a dummy for the occurrence of death 

and a dichotomous exclusion restriction. The number of bootstrap replications is set at 200. 

 The first set of results (Table 5) presents the estimation of the ME of (measured) BMI 

on direct costs in levels following equation (9). It should be noted that the first part predicts 
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the probability of any medical costs being incurred assuming a panel data logit model, while 

the second part, in the case of positive costs, specifies a heteroskedasticity adjusted 

retransformed panel OLS estimation on log costs. The Shapiro-Wilk normality test of 

residuals rejects the null hypothesis that the log residuals are normally distributed (W=18.13, 

p-value=0.000). We find evidence of heteroskedasticity when regressing the squared residuals 

of log costs on the set of covariates (chi-squared=1.18*106, p-value=0.000). A variant of the 

Park test suggests that several covariates contribute to this heteroskedasticity, which justifies 

the adjustment of the retransformed log costs. According to the first specification in Table 5, 

we find that one additional unit of BMI results in an increase of 4.712€ in annual medical 

costs per patient. A dynamic version of the model is also investigated in which the (log) 

medical costs incurred in the previous year and a one-year lagged cost indicator are included 

in the model (the second specification in Table 5). Interestingly, while we report a statistically 

significant lower marginal impact (ME of 2.775€), the auxiliary R2 (from a regression of 

actual log costs on the predicted values) increases markedly up to 40.5%, suggesting an 

improved goodness of fit, while the RSME and MAPE errors, which measure the precision of 

the predictions, are significantly reduced. 

 

[Table 5 around here] 

 

 However, as discussed above, a significant drawback of the log OLS approach is that 

the retransformation of the estimates back to the original scale requires knowledge of the 

degree and form of heteroskedasticity. As pointed out by the empirical literature (cf. Hill and 

Miller, 2010) such regression models, tend to perform poorly in terms of their bias and 

predictive accuracy, making the GLM more attractive for the second part of the two-part 

model. This alternative approach is additionally favoured by the fact that the Kurtosis index 

of log residuals from a panel OLS regression of direct medical costs has an average value of 

2.9 in the data. Although this is slightly lower than the normal distribution (3), we believe that 

GLMs should be reasonably efficient with this degree of skewness (Manning and Mullahy 

2001).14 

 Thus, in Table 6 we estimate the ME of (measured) BMI on annual direct medical 

costs according to equation (10). Notice that the first part specifies a panel data probit model 

to estimate positive medical costs while the second part uses GLM panel data regression. 

                                                 
14 Cawley and Meyerhoefer (2012) follow the same strategy when estimating their models. 
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According to the first specification, based on Gamma GLM with log link (widely used in the 

literature on health care costs),15 we find that one additional unit of BMI results in an increase 

of 7.458€ in annual medical costs per patient, a significantly higher impact than that estimated 

in Table 5. Notice that with our data the GLM model performs much better than the OLS log 

costs estimation as long as the RMSE and MAPE (auxiliary R2) measures decrease (increase) 

substantially. Interestingly, the dynamic specification shows a lower marginal impact 

(5.459€) on annual medical costs caused by a one-unit rise in BMI, but a relatively better 

performance is achieved here compared to that recorded with the non-dynamic specification. 

 

[Table 6 around here] 

 

5.3 Obesity, overweight and medical costs 

 

In addition to the impact of BMI, we also investigated the effect of obesity and overweight 

categories on healthcare costs. Table 7 reports the bootstrapped estimated incremental effect 

(IE) of obesity and overweight (since they are both dummy variables) on direct medical costs 

using the same approach as in Table 6, namely, a GLM procedure for the second part based 

on a Gamma distribution and the log link function.16 Notice, however, that here we excluded 

the Mundlak correction procedure and the one-year lagged BMI regressor, when the rest of 

the econometric issues posed by the data set (Section 3.3) were accounted for. Generally our 

results show a highly significant and positive estimated IE of obesity and overweight on 

medical costs. Under the first “static” specification we find that a one unit increase in the 

prevalence of obesity raises direct medical costs by 51.868€ per patient and year. As expected 

the impact of the overweight status on such costs is notably lower (16.559€). Notwithstanding 

this, according to the dynamic specification, the IE of both obesity and overweight on costs is 

much stronger (77.737€ and 41.040€, respectively). Again, the accuracy and goodness of fit 

achieved with this estimation is greater. 

 

[Table 7 around here] 

 

 
                                                 
15 The Pregibon link test gives an estimated value of -0.591*10-5 (p-value=0.000) which is practically 0, 
suggesting the logarithm as the link function. The Park (1966) test gives a coefficient 1.79υ =  (p-value=0.000) 
which is consistent with a gamma-class distribution. 
16 Notice that the equation used to compute the IEs or discrete changes differs slightly from equation (10). 
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5.4 Robustness checks 

 

To assess how sensitive the above estimations are with respect to the impact of BMI on 

medical costs, several robustness checks have been performed (see Table 8). Notice that the 

reference estimation is the last specification from Table 6 based on a Gamma GLM with log 

link and using a dynamic approach (i.e., an ME of 5.459€). We begin the sensitivity analysis 

by dividing the sample by sex, given the evidence of a marked differentiated pattern in the 

utilization of healthcare resources by gender in most western countries. This set of new 

estimates, however, includes the same controls as those accounted for in the previous tables. 

Interestingly, the first two rows of Table 8 show a marked differential impact of gender on 

healthcare costs. While we find a stronger and statistically significant ME of BMI on direct 

medical costs per patient for males (11.021€), this effect is much weaker for females (2.859€). 

Although not shown here, if we restrict the sample to patients aged 20-64 our estimations 

report a relatively similar effect of BMI on medical costs compared to the reference case. So, 

although elderly patients consume the highest share of medical resources, as highlighted in 

Table 3, the BMI tends to peak at a much younger age. 

Finally, the last row of Table 8 verifies how sensitive the impact of BMI is when key 

covariates affecting medical costs (i.e., patients’ medical conditions) are dropped from the 

model. Under these conditions, our dynamic version predicts a significant and slightly higher 

ME of BMI on costs (7.995€ vs. 5.459€) since part of the variation in medical costs 

attributable to such health conditions are now captured by the individuals’ body mass. 

 

[Table 8 around here] 

 

5.5 Instrumenting BMI by means of biological information 

 

In a final step we followed Cawley and Meyerhoefer’s (2012) proposal, and one that is widely 

used in the literature, and instrumented the individuals’ BMI with the BMI of a biological 

relative (i.e., children’s information).17 Although i) our weight and height data are clinically 

measured and, as such, the BMI does not suffer any misreporting, ii) we control for specific 

chronic diseases and iii) we use longitudinal information to control for unobserved 

heterogeneity. Even so we opted to use their approach in our estimations given that some kind 

                                                 
17 Given that we linked our dataset to census information we were able to obtain household and parental 
identifiers. 
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of heterogeneity might still be present. Moreover, because various primary care programs 

(principally, the Healthy Child Program) specifically targeted children, we have considerably 

more information on children’s BMI to construct the instrument than was the case in Cawley 

and Meyerhoefer’s (2012) study. We considered non-linearities in the instrument (quadratic 

and cubic terms).  

 Table 9 reports the new IV results.18 This table contains two sections: section A 

presents the ME of BMI on direct medical costs, and section B does the same for the IE of 

obesity and overweight. For comparative purposes the first row of each section shows the ME 

(IE) of BMI (obesity, overweight) using the same sample size as that used under the IV 

estimation, which of course is greatly reduced. The second rows report our IV estimations. 

In line with Cawley and Meyerhoefer (2012), our findings indicate that the IV 

estimates of the impact of BMI or obesity and overweight on direct costs are notably higher 

than those without instrumenting. Thus, the ME of BMI is 39% greater than that without 

instrumenting (10.003€ vs. 7.201€). However, more marked increases were observed for the 

non-linear estimations for the ME of BMI. Thus, being obese (overweight) increases direct 

medical costs by 96.155€ (78.814€) per patient and year, which is 84% (291%) higher than in 

the non-instrumented case.19 

 

[Table 9 around here] 

 

6. Conclusion 

 

This study has examined the impact of BMI, obesity and overweight on direct medical costs. 

We have applied panel data econometrics and used a two-part model with a longitudinal 

dataset of medical records of patients followed up over seven consecutive years (2004-2010). 

This is the first application in the literature of this methodology based on longitudinal 

information and BMI measurements as opposed to self-reported data. 

 One of the consequences of obesity is the higher health care costs borne by the entire 

society (i.e., negative externality) through higher insurance premiums or taxes to cover the 

extra funding. Hence, understanding the link between body mass or obesity and medical costs 

should be then crucial to achieve a more sustainable growth of health expending; especially at 

                                                 
18 The sample is considerably reduced as we only take into account individuals with children. 
19 Note that these results provide an estimate of the Local Average Treatment Effect (LATE) of one additional 
BMI unit on medical costs for a sample of individuals with children. 
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a time of increased pressure to cut successively public budgets. But it should also serve as a 

way to stimulate the allocation of more resources into prevention actions to tackle the 

development of the epidemic. 

Our estimations indicate that a one unit increase in individual BMI increases direct 

medical costs by between 5 and 10€ per patient and year. Similarly, obesity (overweight) 

increases direct medical costs by between 50 and 96€ (17 and 79€) per patient and year. This 

means that if half the analysed population (i.e., individuals using the healthcare centres at 

least once during the study period) experienced a one unit increase in their BMI, annual direct 

costs would increase by between 250,000 and 500,000€. Similarly, if half the Spanish 

population experienced the same BMI increase, then the annual rise in direct healthcare costs 

would represent around 0.025% of GDP (256 million €). These magnitudes are similar to the 

recent budget cuts suffered by the Spanish healthcare system. 

As expected, the impact of bodyweight on healthcare costs for our sample of primary 

and secondary health centres is lower than that reported by Cawley and Meyerhoefer (2012) 

as the Spanish healthcare system provides universal coverage and its services are free at the 

point of delivery. Furthermore, during the period of analysis, strict cost-containment policies 

were in operation. 
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Table 1. Unit cost estimates per patient in 2004 and 2010 

Healthcare resources 
Unit costs (€) 

2004 
Unit costs (€) 

 2010 
Medical visits:   

    Visits to Primary Medical Care 16.09 24.37 
    Visits to Emergency Care 79.49* 123.48 
    Hospitalization (per day) 217.03* 337.13 
    Visits to Specialist Care 71.30* 110.76 

Complementary tests:   
    Laboratory tests 18.33 22.64 

    Conventional radiology 14.64 18.79 
    Diagnostic/therapeutic tests 21.37 37.76 

Pharmaceutical prescriptions PVP PVP 
Note: Figures for years 2004-2010 are estimated from linear interpolation based on observed data in 2003 and 
2009. Figures for the year 2010 are derived using the same growth rates. (*) These figures were estimated using 
the growth rate experienced by primary care visits during the period 2003-2009. PVP is retail price. 
Source: BSA analytical accounts.  
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Table 2. Mean Annual Direct Medical Costs per Patient 2004-2010 (Euros year 2010) 
 
 Initial Sample Final Sample 

 
Costs  

(in Euros) 
Log Costs Costs 

(in Euros) 
Log Costs 

Unconditional Mean 544.04 4.01 755.11 5.02 
Unconditional Median 139.93 4.95 306.92 5.73 

Standard Deviation 1,138.78 2.92 1,309.96 2.55 
     

Skewness 6.70 -0.36 5.91 -0.97 
Kurtosis 103.72 1.62 82.97 2.85 

N (Number of obs.) 706,473 706,473 452,108 452,108 
 

26



 

Table 3. Mean Positive Annual Direct Medical Costs per Patient 2004-2010 (Euros year 
2010) 
 
 Final Sample with Positive Costs 
 Both Genders Male Female 
Full sample 903.09 (1,382.42) 845.96 (1,378.48) 949.40 (1,383.88) 
  
 By subgroups of the population: 
Ages 16-24 335.29 (425.99) 325.67 (418.85) 344.10 (432.24) 
Ages 24-40 390.40 (607.38) 380.78 (664.52) 398.32 (555.83) 
Ages 40-54 624.72 (852.38) 574.61 (855.90) 664.21 (847.53) 
Ages 54-65 1,049.15 (1,246.88) 974.56 (1,212.95) 1,113.64 (1,271.99)
Ages + 65 1,911.87 (2,097.58) 1,862.60 (2,167.37) 1,947.54 (2,044.84)
Active (labour status) 493.28 (678.66) 467.65 (673.02) 515.50 (682.74) 
Charlson index (>0) 1,777.23 (2,057.78) 1,693.65 (1,992.99) 1,863.36 (2,119.18)
Immigrant status 411.74 (698.34) 383.81 (764.77) 435.35 (635.88) 
Deceased individuals 3,302.33 (4,727.91) 3,411.68 (5,066.23) 3,173.23 (4,292.89)
N (Number of obs.) 377,964 169,199 208,765 
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Table 4. Descriptive statistics of control variables. Period 2004-2010 
 
 Final Sample 
 Both Genders Male Female 
    
BMI 26.70 (5.18) 26.75 (4.54) 26.67 (5.67) 
Obesity 0.23 (0.42) 0.21 (0.41) 0.25 (0.43) 
Overweight 0.36 (0.48) 0.42 (0.49) 0.31 (0.46) 
Age 48.24 (19.23) 47.52 (18.84) 48.86 (19.54) 
Female 0.54 (0.50)   
Immigrant status 0.05 (0.22) 0.05 (0.23) 0.05 (0.22) 
Active (labour status) 0.67 (0.47) 0.70 (0.46) 0.65 (0.48) 
Charlson comorb. index 0.07 (0.35) 0.07 (0.37) 0.06 (0.32) 
Average number episodes 2.02 (2.05) 1.73 (1.84) 2.28 (2.18) 
Deceased individuals 0.03 (0.17) 0.03 (0.18) 0.02 (0.15) 
N (Number of obs.) 452,108 209,637 242,471 
Note: Figures are mean values between 2004-2010. Standard deviations are reported in parentheses. 
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Table 5. Bootstrapped Marginal Effects of Measured BMI on Annual Direct Medical 
Costs (in Euros year 2010): OLS log costs panel data estimation 
 

Two-Part Model ME of BMI RMSE MAPE Auxiliary 
R2 

OLS on Log(y) + Heteroskedasticity-
adjusted Retransformed Model 
(N=318,276) 

4.712 (1.10)*** 416,295 737.90 0.216 

OLS on Log(y) + Heteroskedasticity-
adjusted Retransformed Model + Lagged 
Costs + Lagged Costbin  
(N=258,900) 

2.775 (1.18)** 344,489 675.89 0.405 

Notes: Auxiliary R2 denotes the R-squared from a regression of actual costs on the predicted values; RMSE 
denotes the root mean squared error; MAPE is the mean absolute prediction error. Estimations account for an 
extensive list of covariates, health district dummies and time dummy variables. In addition, all regressions 
contain one-year lagged measured BMI, the Mundlak correction and a dichotomous exclusion restriction for the 
first part. N sample units refers to the second part. 
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Table 6. Bootstrapped Marginal Effects of Measured BMI on Annual Direct Medical 
Costs (in Euros year 2010): GLM panel data estimation 
 

Two-Part Model ME of BMI RMSE MAPE Auxiliary 
R2 

GLM- Log link + Gamma distr. 
(N=318,276) 7.458 (1.47)*** 296,512 525.14 0.516 

GLM- Log link + Gamma dist. + Lagged Costs 
& Lagged Costbin 
(N=258,900) 

5.459 (1.50)*** 258,719 508.58 0.556 

Notes: Auxiliary R2 denotes the R-squared from a regression of actual costs on the predicted values; RMSE 
denotes the root mean squared error; MAPE is the mean absolute prediction error. Estimations account for an 
extensive list of covariates, health district dummies and time dummy variables. In addition, all regressions 
contain one-year lagged measured BMI, the Mundlak correction and a dichotomous exclusion restriction for the 
first part. N sample units refers to the second part. 
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Table 7. Bootstrapped Incremental Effects of Obesity and Overweight on Annual Direct 
Medical Costs (in Euros year 2010): GLM panel data estimation 
 

Two-Part Model IE  
Obesity 

IE 
Overweight RMSE MAPE Auxiliary 

R2 
GLM- Log link + Gamma dist. 
 (N=373,058) 

51.868 
(3.06)*** 

16.559 
(2.33)*** 318,853 442.60 0.514 

GLM- Log link + Gamma dist. + Lagged 
Costs & Lagged Costbin 
 (N=258,900) 

77.737 
(3.88)*** 

 

41.040 
(5.42)*** 258,813 508.76 0.556 

Notes: Auxiliary R2 denotes the R-squared from a regression of actual costs on the predicted values; RMSE 
denotes the root mean squared error; MAPE is the mean absolute prediction error. Estimations account for an 
extensive list of covariates, health district dummies and time dummy variables. Regression contains a 
dichotomous exclusion restriction for the first part. N sample units refers to the second part. 
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Table 8. Robustness Analysis: GLM panel data estimation with Log link + Gamma distr. 
+ Lagged Costs & Costbin 
 

Two-Part Model ME of BMI RMSE MAPE Auxiliary 
R2 

Male sample 
(N= 111,862) 11.021 (2.75)*** 168,867 505.17 0.544 

Female sample 
(N=147,038) 2.859 (1.14)** 195,295 509.35 0.569 

Without health controls 
(N=259,775) 7.995 (1.36)*** 257,807 503.56 0.625 

Notes: Auxiliary R2 denotes the R-squared from a regression of actual costs on the predicted values; RMSE 
denotes the root mean squared error; MAPE is the mean absolute prediction error. Estimations account for an 
extensive list of covariates, health district dummies and time dummy variables. In addition, all regressions 
contain one-year lagged measured BMI, the Mundlak correction and a dichotomous exclusion restriction in the 
first part. N sample units refers to the second part. 
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Table 9. IV estimates: GLM panel data estimation with Log link + Gamma distr. + 
Lagged Costs & Costbin 
 
Section (A) 

Two-Part Model ME of BMI RMSE MAPE Auxiliary 
R2 

Non IV estimation 
(N=140,137) 7.201 (1.44)*** 164,780 441.16 0.510 

IV estimation 
(N= 140,137) 10.003 (1.60)*** 164,899 441.49 0.511 

 
Section (B)     

Two-Part Model IE  
Obesity 

IE 
Overweight RMSE MAPE Auxiliary 

R2 
Non IV estimation 
(N=139,703) 

52.170 
(4.18)*** 

20.152 
(2.89)*** 164,848 441.34 0.510 

IV estimation 
(N=139,703) 

96.155 
(6.53)*** 

 

78.814 
(5.08)*** 164,321 439.85 0.508 

Notes: Auxiliary R2 denotes the R-squared from a regression of actual costs on the predicted values; RMSE 
denotes the root mean squared error; MAPE is the mean absolute prediction error. Estimations account for an 
extensive list of covariates, health district dummies and time dummy variables. Regressions contain one-year 
lagged measured BMI, the Mundlak correction and a dichotomous exclusion restriction in the first part. N 
sample units refers to the second part. 
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