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Weighted Distance Based Discriminant
Analysis: The R Package WeDiBaDis
by Itziar Irigoien, Francesc Mestres, and Concepcion Arenas

Abstract The WeDiBaDis package provides a user friendly environment to perform discriminant
analysis (supervised classification). WeDiBaDis is an easy to use package addressed to the biological
and medical communities, and in general, to researchers interested in applied studies. It can be
suitable when the user is interested in the problem of constructing a discriminant rule on the basis
of distances between a relatively small number of instances or units of known unbalanced-class
membership measured on many (possibly thousands) features of any type. This is a current situation
when analyzing genetic biomedical data. This discriminant rule can then be used both, as a means of
explaining differences among classes, but also in the important task of assigning the class membership
for new unlabeled units. Our package implements two discriminant analysis procedures in an R
environment: the well-known distance-based discriminant analysis (DB-discriminant) and a weighted-
distance-based discriminant (WDB-discriminant), a novel classifier rule that we introduce. This new
procedure is based on an improvement of the DB rule taking into account the statistical depth of the
units. This article presents both classifying procedures and describes the implementation of each in
detail. We illustrate the use of the package using an ecological and a genetic experimental example.
Finally, we illustrate the effectiveness of the new proposed procedure (WDB), as compared with DB.
This comparison is carried out using thirty-eight, high-dimensional, class-unbalanced, cancer data
sets, three of which include clinical features.

Introduction

Discriminant analysis (supervised classification) is used to differentiate between two or more naturally
occurring groups based on a suite of discriminating features. This analysis can be used as a means
of explaining differences among groups and for classification. That is, to develop a rule based on
features measured on a group of units with known membership (the so-called training set), and
to use this classification rule to assign a class membership to new unlabeled units. Classification
is used by researchers in a wide variety of settings and fields including biological and medical
sciences. For example, in biology it is used for taxonomic classification, morphometric analysis for
species identification, and to study species distribution. Discriminant analysis is applicable to a
wide range of ecological problems, e.g., testing for niche separation by sympatric species or for the
presence or absence of a particular species. Marine ecologists commonly use discriminant analysis
to evaluate the similarity of distinct populations and to classify units of unknown origin to known
populations. The discriminant technique is also used in genetic studies in order to summarize the
genetic differentiation between groups. In studies with Single Nucleotide Polymorphism (SNP)
or re-sequencing data sets, usually the number of variables (alleles) is greater than the number of
observations (units), so discriminant methods are available for data sets with more variables than
units, as necessary. Furthermore, class prediction is currently one of the most important tasks in
biomedical studies. The diagnosis of diseases, as cancer type or psychiatric disorder, has recently
received a great deal of attention. With actual data, classification presents serious difficulties, because
diagnosis is based on both clinical/pathological features (usually nominal data) and gene expression
information (continuous data). For this reason, classification rules that could be applied to all types of
data are desirable. The most popular classification rules are the linear (LDA) and quadratic (QDA)
discriminant analyses (Fisher, 1936), which are easy to use as they are found in most statistical
packages. However, they require the assumption of normally distributed data; when this condition is
violated, their use may yield poor classification results. Many distinct classifiers exist, differing in the
definition of the classification rule and whether they utilize statistical (Golub et al., 1999; Hastie et al.,
2001) or machine learning (Breiman, 2001; Boulesteix et al., 2008) methods. However, the problem of
classification with data obtained from microarrays is challenging because there are a large number of
genes and a relatively small number of samples. In this situation, the classification methods based on
the within-class covariance matrix fail, as an inverse is not defined. This is known as the singularity
or under-sample problem (Krzanowski et al., 1995). The shrunken centroid method can be seen as
a modification of the diagonal discriminant analysis (Dudoit et al., 2002) and was developed for
continuous high-dimensional data (Tibshirani et al., 2002). Nowadays, another issue that requires
attention is the class-unbalanced situation, that is, the number of units belonging to each class is not the
same. Some classifiers on class-unbalanced data tend to classify most of the new data in the majority
class. This bias is higher when using high dimensional data. Recently, a method which improves
the shrunken centroid method when the high-dimensional data is class-unbalanced was presented
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(Blagus and Lusa, 2013). Furthermore, some statistical approaches are characterized by having an
explicit underlying probability model, but it is not possible to always assume this requirement. One of
the most popular nonparametric, machine-learning, classification methods is the k-nearest neighbor
classification (k-NN) (Cover and Hart, 1967; Duda et al., 2000). Given a new unit to be classified,
this method finds the k nearest neighbors and classifies the new unit in the class to which belong
the majority of neighbours. This classification may depend on the selected value for k. As ecologists
have repeatedly argued, the Euclidean distance is inappropriate for raw species abundance data
involving null abundances (Orloci, 1967; Legendre and Legendre, 1998) and it is necessary to use
discriminant analyses that incorporate adequate distances. In this situation, discriminant analysis
based on distances (DB-discriminant), where any symmetric distance or dissimilarity function can be
used, is a useful alternative (Cuadras, 1989, 1992; Cuadras et al., 1997; Anderson and Robinson, 2003).
To our knowledge, this technique is only included in GINGKO a suite of programs for multivariate
analysis, oriented towards ordination and classification of ecological data (De Caceres et al., 2003;
Bouin, 2005; Kent, 2011). These programs are written in Java language, so it is therefore necessary
to have a Java Virtual Machine to execute it. Even though GINGKO is a very useful tool, it does not
provide the option of a class prediction for new unlabeled units or feature selection. Recently, data
depth was proposed as the basis for nonparametric classifiers (Jornstein, 2004; Ghosh and Chaudhuri,
2005; Jin and Cui, 2010; Hlubinka and Vencalek, 2013). A depth of a unit is a nonnegative number,
which measures the centrality of the unit. That is, depth in the sample version reflects position of the
unit with respect to the observed data cloud. The so-called maximal depth classifier is the simple and
natural classifier defined from a depth function: to allocate a new observation to the class to which it
has maximal depth. There are many possibilities how to define the depth of the data (Liu, 1990; Vardi
and Zhang, 2000; Zuo and Serfling, 2000; Serfling, 2002), nevertheless the computation of the most
popular depth functions is very slow, in particular, for high-dimensional data the time needed for
classification grows rapidly. A new less-computer intensive depth function I (Irigoien et al., 2013a)
was developed, but the authors did not study its use in relation to the classification problem.

A discriminant method should have several abilities. First, the classifier rule has to be able to
properly separate the classes. In this sense, the classifier evaluation is most often based on the error
rate, the percentage of incorrect prediction divided by the total number of predictions. Second, the
rule has to be useful to classify new unlabeled units. Then, cross validation evaluation is needed.
Cross-validation involves a series of sub-experiments, each of which involves the removal of a subset
of objects from a data set (the test set), construction of a classifier using the remaining objects in the
data set (the model building set), and subsequent application of the resulting model to the removed
objects. The leave-one-out method is a special case of cross-validation; it considers each single object
in the data set as a test set. Furthermore, other measures, such as the sensitivity, specificity, positive
predictive value for each class, and the generalized correlation coefficient, are useful to know the
ability of the rule in the prediction task.

Here we introduce WeDiBaDis, an R package which provides a user-friendly interface to run the
DB-discriminant analysis and a new classification procedure, the weighted-distance-based discrimi-
nant (WDB-discriminant) that performs well and improves the DB-discriminant rule. It is based on
both, the DB-discriminant rule and the depth function I (Irigoien et al., 2013a). First, we will describe
the DB and WDB discriminant rules. Then, we will provide details about the WeDiBaDis package
and will illustrate its use and its main outputs using an ecological and a genetic data set. To compare
both DB and WDB rules—and in order to avoid the criticism that artificial data can favour particular
methods—we present a large analysis of thirty-eight, high-dimensional, class-unbalanced, cancer gene
expression data sets, three of which include clinical features. Furthermore, the data sets include more
than two classes. Finally, we conclude the paper presenting the main conclusions. WeDiBaDis is
available at https://github.com/ItziarI/WeDiBaDis.

Discriminant rules and evaluation criteria

Let yi (i = 1, 2, . . . , n) be m-dimensional units measured in any kind of features, with associated class
labels li ∈ {1, 2, . . . , K}, where n and K denote the number of units and classes, respectively. Let Y be
the matrix of all units and d a distance defined between any pair of units, dij = d(yi, yj). Let y∗ be a
new unlabeled unit to be classified in one of the given classes Ck, k = 1, 2, . . . , K.

DB-discriminant

The distance-based or DB-discriminant rule (Cuadras et al., 1997) takes as a discriminant score

δ1
k (y
∗) = φ̂2(y∗, Ck), (1)
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where φ̂2(y∗, Ck) is the proximity function which measures the proximity between y∗ and Ck. This
function is defined by,

φ̂2(y∗, Ck) =
1
nk

nk

∑
i=1

d2(y∗, yi)−
1

2n2
k

nk

∑
i,j=1

d2(yi, yj), (2)

where nk indicates the number of units in class k. Note that the second term in (2),

V̂(Ck) =
1

2n2
k

nk

∑
i,j=1

d2(yi, yj),

called geometric variability of Ck, measures the dispersion of Ck. When d is the Euclidean distance,
V̂(Ck) is the trace of the covariance matrix of Y.

The DB classification rule allocates y∗ to the class which has the minimal proximity value:

CDB(y∗) = l where δ1
l (y
∗) = min

k=1,...,K

{
δ1

k (y
∗)
}

. (3)

That is, this distance-based rule assigns a unit to the nearest group. Furthermore, using appropriate
distances, Equation (3) reduces to some classic and well-studied rules (see Table 1 in Cuadras et al.
1997). For example, under the normality assumption, Equation (3) is equivalent to a linear discriminant
or to a quadratic discriminant if the Mahalanobis distance or the Mahalanobis distance plus a constant
is selected, respectively.

WDB-discriminant

For any unit y, let Ik be the depth function in class Ck defined by (Irigoien et al., 2013a),

Ik(y) =
[

1 +
φ̂2(y, Ck)

V̂(Ck)

]−1

. (4)

Function I takes values in [0, 1] and it verifies the following desirable properties: For a distribution
having a uniquely defined “center” I attains maximum value at this center (maximality at center);
When one unit moves away from the deepest unit (the unit at which the depth function attains
maximum value; in particular, for a symmetric distribution, the center) along any fixed ray through
the center, the depth at this unit decreases monotonically (monotonicity relative to the deepest point)
and the depth of a unit y should approach zero as ||y|| approaches infinity (vanishing at infinity).
According to the distance used, the depth of a unit may or may not depend on the underlying
coordinate system or, in particular, of the scales of the underlying measurements. In any case the
affine invariance holds for translations and rotations. Thus, according to Zuo and Serfling (2000), I is a
type C depth function. As I is a depth function, it assigns to any observation a degree of centrality.
While most of the depth functions assign zero depth to units outside a convex hull and then, it is
possible that some training units have zero depth, the function in Equation (4) attains the zero value if
V(Ck) = 0, that is, in presence of a constant distribution.

For each class Ck we weight the discriminant score δ1
k by 1− Ik(y∗), that is, given a new unit y∗,

we define a new discriminant score for class k by:

δ2
k (y
∗) = δ1

k (1− Ik(y
∗)) = φ2(y∗, Ck)(1− Ik(y

∗)). (5)

The shrinkage we use, reduces the proximity values, this reduction being greater for deeper units.
Thus, this new classification rule,

CWDB(y∗) = l where δ2
l (y
∗) = min

k=1,...,K

{
δ2

k (y
∗)
}

, (6)

allocates a new unit y∗ to the class which has the minimal proximity and maximal depth values.

Evaluation criteria

First consider the case of two classes (K = 2) and the most common measures of performance for
a classification rule. As it is usual in medical statistics, for a fixed class k, let TP, FN, FP, and TN
denote the true positive (number of units of class k correctly classified in class k), the false negative
(number of units of class k misclassified as units in class l, with l 6= k), the false positive (number of
units of class l, with l 6= k misclassified as units in class k), and the true negative (number of units of
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class l, with l 6= k correctly classified as units in class l), respectively. Then (Zhou et al., 2002), the
sensitivity (recall) for class k is defined as the ability of a rule to correctly classify units belonging to
class k, thus Qse

k = TP
TP+FN . The specificity is the ability of a rule to correctly exclude a unit from class

k when it really belongs to another class, thus Qsp
k = TN

TN+FP . Furthermore, the positive predictive
value (precision) is the probability that a classification in class k is correct, thus P+

k = TP
TP+FP and the

negative predictive value is the probability that a classification in class l with l 6= k is correct, thus
P−k = TN

TN+FN . However, these measures do not take into account all the TP, FN, FP and TN values.
For this reason, in biomedical applications the Matthew’s correlation coefficient (Matthews, 1975) MC
it is often used. This is defined by:

MC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

It ranges from −1 if all the classifications are wrong to +1 for perfect classification. A value equal to
zero indicates that the classifications are random or the classifier always predicts only one of the two
classes.

In the general case of K classes with K ≥ 2, one obtains a K× K contingency or confusion matrix
Z = (zkl), where zkl is the number of times that units are classified to be in class l while belonging in
reality to class k. Then, zk. = ∑

l
zkl and z.l = ∑

k
zkl represent the number of units belonging to class k

and the number of units predicted to be in class l, respectively. Obviously n = ∑
kl

zkl = ∑
k

zk. = ∑
l

z.l .

One standard criterium to evaluate a classification rule is to compute the percentage of all correct
predictions,

Qt = 100 ∑ zkk
n

, (7)

the percentage of units correctly predicted to belong to class k relative to the total number of units in
class k (sensitivity for class k),

Qse
k = 100

zkk
zk.

, (8)

the percentage of units correctly predicted to belong to any class l with l 6= k relative to the total
number of units in any class l with l 6= k (specificity of class k),

Qsp
k = 100

∑
l 6=k

zl. − ∑
l 6=k

zlk

n− zk.
, (9)

and the percentage of units correctly classified to be in class k with respect to the total number of units
classified in class k (positive predictive value for class k),

P+
k = 100

zkk
z.k

. (10)

However, we also consider a generalization of the Matthew’s correlation coefficient, the so called
generalized squared correlation GC2 (Baldi et al., 2000), which is defined by

GC2 =

∑
k,l
(zkl − ekl)

2/ekl

n(K− 1)
, (11)

where ekl = zk.z.l
n . This coefficient ranges between 0 and 1, and may often provide a much more

balanced evaluation of the prediction than, for instance, the above percentages. A value equal to zero
indicates that there is at least one class in which no units are classified.

Another interesting coefficient is the Kappa statistic, which measures the agreement of classification
to the true class (Cohen, 1960; Landis and Koch, 1977). It can be calculated by:

Kappa =
TP+TN

n − (TN+FP)·(TN+FN)+(FN+TP)·(FP+TP)
n2

1− (TN+FP)·(TN+FN)+(FN+TP)·(FP+TP)
n2

,

and the interpretation is: Kappa < 0, less than chance agreement; Kappa in 0.01− 0.20, slight agree-
ment; Kappa in 0.21 − 0.40, fair agreement; Kappa in 0.41 − 0.60, moderate agreement; Kappa in
0.61− 0.80, substantial agreement; and Kappa in 0.81− 0.99, almost perfect agreement.
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Finally, another measure used as a result of classification is the F1 statistic (Powers, 2011). For each

class, it is calculated based on the precision P+
k and the recall Qse

k as follows: F1 = 2 · P+
k Qse

k
P+

k +Qse
k

. However,

note that F1 does not take the true negatives into account.

Distance functions

The DB and WDB procedures require the previous calculation of a distance between units. In biomed-
ical, genetic, and ecological studies different types of dissimilarities are frequently used. For this
reason, WeDiBaDis includes several distance functions. Although these distances can be found in
other packages they were included for ease their use for non-expert R users.

The package contains the usual Euclidean distance,

dE(yi, yj) =

√
m

∑
k=1

(yik − yjk)2, (12)

the well known correlation distance, where r is the Pearson correlation coefficient,

dc(yi, yj) =
√
(1− r(yi, yj)), (13)

and the Mahalanobis distance (Mahalanobis, 1936) with S the variance-covariance matrix,

dM(yi, yj) =
√
(yi − yj)

′S−1(yi − yj). (14)

The function named mahalanobis() that calculates the Mahalanobis distance already exists in the stats
package, but it is not suitable in our context. While this function calculates the Mahalanobis distance
with respect to a given center, our function is designed to calculate the Mahalanobis distance between
each pair of units given a data matrix.

Next, we briefly comment on the other distances included in the package. The Bhattacharyya distance
(Bhattacharyya, 1946) is a very well-known distance between populations in the genetic context. Each
population is characterized by a vector (pi1, . . . , pim) whose coordinates are the relative frequencies of
the features (usually chromosomal arrangements), with

pij > 0, j = 1, . . . , m and
m

∑
j=1

pij = 1, i = 1, . . . , n.

Then, the distance between two units (populations) with frequencies yi = (pi1, . . . , pim) and yj =

(pj1, . . . , pjm) is defined by:

dB(yi, yj) = arccos
m

∑
l=1

√
pil pjl . (15)

The Gower distance (Gower, 1971), used for mixed variables, is defined by:

dG(yi, yj) =
√

2(1− s(yi, yj)), (16)

where s(yi, yj) is the similarity coefficient between unit yi = (xi, qi, bi) and unit yj = (xj, qj, bj), and
x., q., b. are the values for the m1 continuous, m2 binary and m3 qualitative features, respectively. The
coefficient s(yi, yj) is calculated by:

s(yi, yj) =
∑m1

l=1

(
1− |xil−xjl |

Rl

)
+ a + α

m1 + (m2 − d) + m3
,

with Rl the range of the lth continuous variable (l = 1, . . . , m1); for the m2 binary variables, a and
d represent the number of matches presence-presence and absence-absence, respectively; and α is
the number of matches between states for the m3 qualitative variables. Note that there is also the
daisy() function in the cluster package, which can calculate the Gower distance for mixed variables.
The difference between this function and dGower() in WeDiBaDis is that in daisy() the distance
is calculated as d(yi, yj) = 1− s(yi, yj) and in dGower() as d(yi, yj) =

√
2(1− s(yi, yj)). Moreover,

dGower() allows us to include missing values (such as NA) and therefore calculates distances based
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on Gower’s weighted similarity coefficients. The dGower() function improves the function dgower()
included in the package ICGE (Irigoien et al., 2013b).

The Bray-Curtis distance (Bray and Curtis, 1957) is one of the most well-known ways of quanti-
fying the difference between samples when the information is ecological abundance data collected at
different sampling locations. It is defined by:

dB(yi, yj) =
∑m

l=1 |yil − yjl |
yi+ + yj+

, (17)

where yil , yjl are the abundance of specie l in samples i and j, respectively, and yi+, yj+ are the total
specie’s abundance in samples i and j, respectively. This distance can be also found in the vegan
package.

The Hellinger (Rao, 1995) and Orloci (or chord distance) (Orloci, 1967) distances are also measures
recommended for quantifying differences between sampling locations when the ecological abundance
of species is collected. The Hellinger distance is given by:

dH(yi, yj) =

√√√√ m

∑
l=1

(√
yil

∑m
k=1 yik

−
√

yjl

∑m
k=1 yjk

)2

, (18)

and the Orloci distance that represents the Euclidean distance computed after scaling the site vectors
to length 1 is defined by:

dO(yi, yj) =

√√√√√ m

∑
l=1

 yil√
∑m

k=1 y2
ik

−
yjl√

∑m
k=1 y2

jk

2

. (19)

This distance between two sites is equivalent to the length of a chord joining two points within a
segment of a hypersphere of radius 1.

The Prevosti distance (Prevosti et al., 1975) is a very useful genetic distance between units repre-
senting populations. Now, we consider that genetic data is stored in a table where the rows represent
the populations and the columns represent potential allelic states grouped by loci. The distance
between two units at a single locus k with m(k) allelic states is:

dP(yi, yj) =
1

2ν

ν

∑
k=1

m(k)

∑
s=1
|piks − pjks|, (20)

where ν is the number of loci or chromosomes (in the case of chromosomal polymorphism) considered
and piks, pjks are the sample relative frequencies of the allele or chromosomal arrangement s in the
locus or chromosome k, in the ith and jth population, respectively. With presence/absence data coded
by 1 and 0, respectively, the term 1

2ν is omitted.

As we explain in the next section, WeDiBaDis allows the user to introduce alternative distances by
means of a distance matrix. Therefore, the user can work with any distance matrix that is considered
appropriate for their data set and analysis. For this reason, no more distances were included in our
package.

Using the package

We have developed the WeDiBaDis package to implement both the DB-discriminant and the new
WDB-discriminant. It can be used with different distance functions and NA values are allowed. When
an unit has a NA value in some features, those features are excluded in the computation of the distances
for that unit and the computation is scaled up to the number m of features involved in the data set.
Package WeDiBaDis requires a version 3.3.1 or a greater of R.

The principal function is WDBdisc with arguments:

WDBdisc(data, datatype, classcol, new.ind, distance, type, method)

where:

• data: a data matrix or a distance matrix. If the Prevosti distance will be used, data must
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be a named matrix where the name of the loci and allele must be separeted by a dot (Loci-
Name.AlleleName).

• datatype: if the data is a data matrix, datatype = "m"; if the data is a distance matrix datatype
= "d".

• classcol: a number indicating which column in the data contains the class variable. By default
the class variable is in the first column.

• new.ind: is only required if there are new unlabeled units to be classified; if datatype = "m" it
is a matrix containing the feature values for the new units to be classified; if datatype = "d" it
is a matrix containing the distances between the new units to be classified and the units in the
classes.

• distance: the distance measure to be used. This must be either “euclidean” (default option),
“correlation” , “Bhattacharyya”, “Gower”, “Mahalanobis”, “BrayCurtis”, “Orloci”, “Hellinger”,
or “Prevosti”.

• type: is only required if distance = "Gower". The value for type is a list (e.g., type =
list(cuant,nom,bin)) indicating the position of the columns for continuous (cuant), nomi-
nal (nom) and binary (bin) features, respectively.

• method the discriminant method to be used. This must be either "DB" or "WDB" for the DB-
discriminant and WDB-discriminant, respectively. The default method is WDB.

The function returns an object with associated plot and summary methods offering:

• The classification table obtained with the leave-one-out cross-validation.

• The total well classification rate in percentage (Qt).

• The generalized squared correlation (GC2 ).

• The sensitivity, specificity, and positive predictive values for each class (Qse
k , Qsp

k , and P+
k ,

respectively).

• The Kappa and F1 statistics.

• The assigned class for new unlabeled units to be classified.

• A barplot for the classification table.

• A barplot for the sensitivity, specificity, and positive predictive values for each class.

Moreover, given a data set, the distances commented on in Section “Distance functions” can
be obtained through the functions: dcor (correlation distance); dMahal (Mahalanobis distance);
dBhatta (Bhattacharyya distance); dGower (Gower distance); dBrayCurtis (Bray and Curtis distance);
dHellinger (Hellinger distance); dOrloci (Orloci distance), and dPrevosti (Prevosti distance).

Example 1: Ecological data

We consider the data from Fielding (2007), which relate to the core area (the region close to the nest)
of the golden eagle Aquila chrysaetos in three regions of Western Scotland. The data consist of eight
habitat variables: POST (mature planted conifer forest in which the tree canopy has closed); PRE
(pre-canopy closure planted conifer forest); BOG (flat waterlogged land); CALL (Calluna (heather)
heath land); WET (wet heath, mainly purple moor grass); STEEP (steeply sloping land); LT200 (land
below 200 m), and L4-600 (land between 200 and 400 m). The values are the numbers of four-hectare
grid cells covered by the habitat, whose values are the amounts of each habitat variable, measured as
the number of four hectare blocks within a region defined as a "core area." In order to evaluate if the
habitat variables allow to discriminate between these three regions, for example, a WDB-discriminant
using the Euclidean distance using the following instructions may be performed:

library(WeDiBaDis)
out <- WDBdisc(data = datafile, datatype = "m", classcol = 1)

The summary method shows, as usual, the more complete information:

summary(out)

Discriminant method: WDB
Leave-one-out confusion matrix:

Predicted
Real 1 2 3
1 7 0 0
2 0 14 2
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Figure 1: Plot of leave-one-out classification table for ecological data in Example 1.

3 2 0 15
Total correct prediction: 90%
Generalized squared correlation: 0.7361
Cohen's Kappa coefficient: 0.84375
Sensitivity for each class:
1 2 3

100.00 87.50 88.24
Predictive value for each class:
1 2 3

77.78 100.00 88.24
Specificity for each class:
1 2 3

87.88 91.67 91.30
F1-score for each class:

1 2 3
87.50 93.33 88.24
------ ------ ------ ------ ------ ------
No predicted individuals

As we can observe, perfect classification is obtained for samples from region 1. For regions 2 and 3,
only two samples were not correctly classified.

If we want to obtain the barplot for the classification table (see Figure 1), we use the command

plot(out)

These commands generate the sensitivity, specificity and positive predicted values barplot (see Fig-
ure 2):

outplot <- summary(out, show = FALSE)
plot(outplot)

Finally to perform a DB discriminant using a different distance that the Euclidean, the following
commands are used:

library(WeDiBaDis)
out <- WDBdisc(data = datafile, datatype = "m", distance = "name of the distance",

method = "DB", classcol = 1)
summary(out)
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Figure 2: Plot of the sensitivity, specificity, and positive predicted value for each class for ecological
data in Example 1.

plot(out)
outplot <- summary(out, show = FALSE)
plot(outplot)

Example 2: Population genetics data

The chromosomal polymorphism for inversions is very useful to characterize the natural populations
of Drosophila subobscura. Furthermore, lethal genes located in chromosomal inversions allow the
understanding of important evolutionary events. We consider the data from a study of 40 samples
of this polymorphism for the O chromosome of this species (Solé et al., 2000; Balanyà et al., 2004;
Mestres et al., 2009). Four groups can be considered: NLE with 16 no lethal European samples, LE
with 4 lethal European samples, NLA with 14 no lethal American samples and LA with 6 lethal
American samples. In this example, two samples one of the group NLA and one of the group NLE
were randomly selected, and considered as new unlabeled units to be classified. The Bhattacharyya
distances between all pairs of units were calculated. Therefore, the input for the WDBdisc function is
an n× (n + 1) matrix dat = (li, dB(yi, y1), . . . , dB(yi, yn))i=1,...,n where the first column contains the
class label and the following columns the distance matrix. Furthermore, xnew is a two-row matrix
where each row contains the distances between the new unlabeled units to be classified and the units
in the four classes. In this situation, the commands to call the WDB procedure to classify the xnew
units and to obtain the available graphics in the package, are:

library(WeDiBaDis)
out <- WDBdisc(data = dat, datatype = "d", classcol = 1, new.ind = xnew)
plot(out)
outplot <- summary(out, show = FALSE)
plot(outplot)

The summary method shows the following information. We can see that the xnew units were correctly
classified:

summary(out)

Discriminant method: WDB
Leave-one-out confusion matrix:
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Figure 3: Plot of leave-one-out classification table for population genetics data in Example 2.

Predicted
Real LA LE NLA NLE
LA 6 0 0 0
LE 0 3 0 1
NLA 0 0 13 0
NLE 0 3 0 12

Total correct prediction: 89.47%
Generalized squared correlation: 0.7442
Cohen's Kappa coefficient: 0.8509804
Sensitivity for each class:
LA LE NLA NLE
100.00 75.00 100.00 80.00
Predictive value for each class:
LA LE NLA NLE
100.00 50.00 100.00 92.31
Specificity for each class:
LA LE NLA NLE
87.50 91.18 84.00 95.65
F1-score for each class:

LA LE NLA NLE
100.00 60.00 100.00 85.71
------ ------ ------ ------ ------ ------
Prediction for new individuals:
Pred. class
1 "NLE"
2 "NLA"

Now, the two unlabeled new units were correctly classified. The barplots are in Figure 3 and Figure 4,
respectively.

Data files

The package contains some examples of data files, each with a corresponding explanation. The
data sets are corearea, containing the data for the example presented in the subsection Example 1:
Ecological data; abundances, which is a simulated data set for abundance data matrix; and microsatt,
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Figure 4: Plot of the sensitivity, specificity, and positive predicted value for each class for population
genetics data in Example 2.

a data set containing allele frequencies for 18 cattle breeds (bull or zebu), of French and African descent,
typed on 9 microsatellites.

Computing time

To illustrate the time consumed by the WDB procedure, which requires more computation than DB, we
performed the following simulation with artificial data. We generated multinormal samples containing
50, 100, 200, 300,. . . ,900, 1000, 2000, and 3000 units, respectively. Then, for each sample size we created
sets containing respectively 50, 100, 500, 1000, 1500, 2000, 2500, . . . , 4500, and 5000 features. For each
combination of sample sizes and features, we considered 2, 3, 4, and 10 classes. All the computations
presented in this paper have been performed on a personal computer with Intel(R) Core(TM) i5-2450M
and 6 GB of memory using a single 2.50GHz CPU processor. The results of the simulation for two
classes are displayed in Figure 5, where the elapsed time (the actual elapsed time since the process
started) is reported in seconds. We can observe that the runtime is mainly affected by the number
of units (Figure 4, top), but affected very little by the number of variables (Figure 4, bottom). This is
expected, as the procedure is based on distances and therefore the dimension of the distance matrix
(number of units) determines the runtime required. The number of classes also affects the runtime,
although its variation with increasing the number of classes is very slight. For example, with 300 units
and 4000 variables, the elapsed time for 2, 3, 4, and 10 classes are 3.38, 3.40, 3.62, and 4.82 seconds,
respectively.

DB and WDB comparison using cancer data sets

In order to compare the performance of DB and WDB procedures, thirty-eight available cancer data
sets were considered in our analysis (Table 1). These are available at http://bioinformatics.rutgers.
edu/Static/Supplements/CompCancer/datasets.htm and Lê Cao et al. (2010). As we can observe in
Table 1, three of them include clinical features and some of the data sets have unbalanced classes. We
performed the evaluation for DB and WDB classifiers using the leave-one-out procedure. We present
the total misclassification rate MQt = 100− Qt and the generalized squared correlation coefficient
GC2 (Table 2). For simplicity, the sensitivity Qkise, the specificity Qsp

k , the positive predictive value P+
k

for each class, the Kappa and F1 statistcis are not presented. For the microarray data sets with only
continuous features we used the Euclidean distance, and for those including clinical and genetic data,
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Figure 5: Artificial data sets with two classes. Top: Elapsed timing in seconds (y axes) for WDB
procedure with respect to the number of units (x axes). Each line (colours in the legend) corresponds
to the set with identical number of features. Bottom: Elapsed timing in seconds (y axes) for WDB
procedure with respect to the number of features (x axes). Each line (colours in the legend) corresponds
to the set with identical number of units.

we considered the Gower distance (Gower, 1971). As we can observe in Table 2, considering only MQt,
the total misclassification percentage rate, WDB was the best classifier in 18 data sets and it shared
this quality in 11 data sets with DB (Wilcoxon signed rank test; one side p-value = 0.0265). Using the
generalized squared correlation GC2 coefficient (Table 2), WDB was the best rule in 16 data sets and
it shared this quality in 11 data sets with DB (Wilcoxon signed rank test; one side p-value = 0.0378).
Note that for data sets 30 and 38 the GC2 value is 0. For example, in the Risinger-2003 case, all units
of the second class (class with 3 units) were badly classified with DB and WDB methods. However,
while with the DB method, 4 units belonging to other classes were badly classified in class 2, with the
WDB method none of the units of other classes were badly classified in class 2, and for this reason the
GC2 is equal to 0. With the Yeoh-2002-v2 data set something similar happened. For all these results,
WDB seems to obtain in general the best results and to be a slightly better in the case where classes are
unbalanced with respect to their sizes.
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ID Data set K n ni p cuant quali

1 Alizadeh-2000-v1 2 42 21(50%), 21(50%) 1095 1095
2 Alizadeh-2000-v2 3 62 42(67.74%), 9(14.52%), 11(17.74%) 2093 2093
3 Armstrong-2002-v1 2 72 24(33.33%), 48(66.67%) 1081 1081
4 Armstrong-2002-v2 3 72 24(33.33%), 20(27.78%), 28(38.89%) 2194 2194
5 Bhattacharjee-2001 5 203 139(68.47%), 17(8.37%), 6(2.96%), 1543 1543

21(10.34%), 20(9.85%)
6 Bittner-2000-V1 2 38 19(50%), 19(50%) 2201 2201
7 Bittner-2000-V2 3 38 19(50%), 12(31.58%), 7(18.42%) 2201 2201
8 Breast 2 256 75(29.30%), 181(70.70%) 5545 5537 8
9 Bredel-2005 3 50 31(62%), 14(28%), 5(10%) 1739 1739
10 Chen-2002 2 179 104(58.10%), 75(41.90%) 85 85
11 Chowdary-2006 2 104 62(59.62%), 42(38.89%) 182 182
12 CNS 2 60 21(35%), 39(65%) 7134 7128 6
13 Dyrskjot-2003 3 40 9(22.5%), 20(50%), 11(27.5%) 1203 1203
14 Garber-2001 4 66 17(25.76%), 40(60.61%), 4(6.06%), 5(7.58%) 4553 4553
15 Golub-1999-v1 2 72 47(65.28%), 25(34.72%) 1877 1877
16 Golub-1999-v2 3 72 38(52.78%), 9(12.5%), 25(34.72%) 1877 1877
17 Gordon-2002 2 181 31(17.13%), 150(82.87%) 1626 1626
18 Khan-2001 4 83 29(34.94%), 11(13.25%), 18(21.69%), 25(30.12%) 1069 1069
19 Laiho-2007 2 37 8(21.62%), 29(78.38%) 2202 2202
20 Lapointe-2004-v1 3 69 11(15.94%), 39(56.52%), 19(27.54%) 1625 1625
21 Lapointe-2004-v2 4 110 11(10%), 39(35.45%), 19(17.27%), 41(37.27%) 2496 2496
22 Liang-2005 3 37 28(75.67%), 6(16.22%), 3(8.11%) 1411 1411
23 Nutt-2003-v1 4 50 14(50%), 7(14%), 14(28%), 15(30%) 1377 1377
24 Nutt-2003-v2 2 28 14(50%),14(50%) 1070 1070
25 Nutt-2003-v3 2 22 7(31.82%),15(68.18%) 1152 1152
26 Pomeroy-2002-v1 2 34 25(73.53%), 9(26.47%) 857 857
27 Pomeroy-2002-v2 5 42 10(23.81%), 10(23.81%), 10(23.81%), 4(9.52%) 1379 1379

8(19.05%)
28 Prostate 2 79 37(46.84%), 42(53.16%) 7892 7884 8
29 Ramaswamy-2001 14 190 11(5.79%), 11(5.79%), 20(10.53%), 11(5.79%), 1363 1363

30(15.79%), 11(5.79%), 22(11.28%), 11(5.79%),
10(5.26%),11(5.79%), 11(5.79%), 10(5.26%),
11(5.79%), 10(5.26%)

30 Risinger-2003 4 42 13(30.95%), 3(7.14%), 19(45.24%), 7(16.67%) 1771 1771
31 Shipp-2002-v1 2 77 58(75.32%), 19(24.67%) 798 798
32 Singh-2002 2 102 50(49.02%), 52(50.98%) 339 339
33 Su-2001 10 174 8(4.60%), 26(14.94%), 23(13.22%), 12(6.90%), 1571 1571

11(6.32%), 7(4.02%), 28(16.09%), 27(15.52%),
6(3.45%), 26(14.94%)

34 Tomlins-2006-v1 5 104 27(25.96%), 20(19.23%), 32(30.77%), 13(12.5%), 2315 2315
12(11.54%) 2315 2315

35 Tomlins-2006-v2 4 92 27(26.35%), 20(21.74%), 32(34.78%), 13(14.13%) 1288 1288
36 West-2001 2 49 25(51.02%), 24 (48.98%) 1198 1198
37 Yeoh-2002-v1 2 248 43(17.34%), 205(82.66%) 2526 2526
38 Yeoh-2002-v2 6 248 15(6.05%), 27(10.89%), 64(25.81%), 20(8.06%), 2526 2526

43(17.34%), 79(31.85%)

Table 1: Cancer data sets (ID = identification number). They present different number of classes
(K), number of samples (n), number of samples in each class (ni), number of features (p), number of
continuous features (cuant) and number of qualitative features (quali). The percentage corresponding
to the number of samples belonging to each class is in brackets in column five.

Conclusions

The package WeDiBaDis, available at https://github.com/ItziarI/WeDiBaDis, is an implementa-
tion of two discriminant analysis procedures in an R environment. The classifiers are the Distance-
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ID 100−Qt 100−Qt GC2 GC2

DB WDB DB WDB

1 7.14 7.14 0.74 0.74
2 1.61 0.00 0.94 1.00
3 8.33 5.56 0.684 0.77
4 4.17 4.17 0.88 0.88
5 19.21 15.27 0.49 0.56
6 13.16 13.16 0.56 0.56
7 36.84 36.84 0.25 0.25
8 32.81 30.47 0.11 0.13
9 18.00 18.00 0.34 0.34

10 11.17 8.94 0.61 0.67
11 18.27 9.62 0.42 0.64
12 41.67 38.33 0.01 0.01
13 15.00 12.50 0.58 0.65
14 21.21 28.79 0.38 0.19
15 6.94 4.17 0.72 0.82
16 6.94 6.94 0.81 0.81
17 12.71 13.26 0.47 0.42
18 1.20 1.20 0.97 0.97
19 21.62 21.62 0.23 0.23
20 31.88 30.43 0.23 0.26
21 30.91 30.91 0.34 0.34
22 13.51 10.81 0.72 0.76
23 32.00 34.00 0.40 0.33
24 17.86 10.71 0.43 0.65
25 4.55 9.09 0.80 0.67
26 29.41 20.59 0.12 0.16
27 16.67 21.43 0.65 0.63
28 34.18 34.18 0.10 0.10
29 36.84 29.47 0.44 0.53
30 28.57 26.19 0.36 0.00
31 29.87 12.99 0.24 0.48
32 30.39 30.39 0.18 0.16
33 20.11 16.67 0.63 0.70
34 17.31 21.15 0.66 0.58
35 23.91 26.09 0.46 0.41
36 20.41 14.29 0.35 0.52
37 1.61 2.02 0.89 0.87
38 21.77 24.60 0.57 0.00

Table 2: In the first column identification number for cancer data sets. In the second and third
columns, total leave-one-out misclassification rate 100−Qt (in percentage) for classifiers DB and WDB,
respectively. In bold the smallest misclassification rate. In the forth and fifth columns, generalized
squared correlation GC2 coefficient for classifiers DB and WDB, respectively. In bold the greater GC2

value.

Based (DB) and the new proposed procedure Weighted-Distance-Based (WDB). Thee are useful to
solve the classification problem for high-dimensional data sets with mixed features or when the input
information is a distance matrix. This software provides functions to compute both discriminant
procedures and to assess the performance of the classification rules it offers: the leave-one-out classifi-
cation table; the general correlation coefficient; the sensitivity, specificity, and positive predictive value
for each class; the Kappa and the F1 statistics. The package also presents these results in a graphical
form (barplots for the classification table and, for sensitivity, specificity and positive predictive values,
respectively). Furthermore, it allows the classification for new unlabeled units. WeDiBaDis provides
a user-friendly environment, which can be of great utility in biology, ecology, biomedical, and, in gen-
eral, any applied study involving discrimination between groups and classification of new unlabeled
units. In addition, it can be very useful in multivariate methods courses aimed at biologists, medical
researchers, psychologists, etc.
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