

Document de treball de l'IEB 2014/17

CROSS-SECTIONAL GROWTH IN US CITIES FROM 1990 TO 2000

Rafael González-Val

Cities and Innovation

Documents de Treball de l'IEB 2014/17

CROSS-SECTIONAL GROWTH IN US CITIES FROM 1990 TO 2000

Rafael González-Val

The **IEB** research program in **Cities and Innovation** aims at promoting research in the Economics of Cities and Regions. The main objective of this program is to contribute to a better understanding of agglomeration economies and 'knowledge spillovers'. The effects of agglomeration economies and 'knowledge spillovers' on the Location of economic Activities, Innovation, the Labor Market and the Role of Universities in the transfer of Knowledge and Human Capital are particularly relevant to the program. The effects of Public Policy on the Economics of Cities are also considered to be of interest. This program puts special emphasis on applied research and on work that sheds light on policy-design issues. Research that is particularly policy-relevant from a Spanish perspective is given special consideration. Disseminating research findings to a broader audience is also an aim of the program. The program enjoys the support from the **IEB-Foundation**.

The Barcelona Institute of Economics (IEB) is a research centre at the University of Barcelona (UB) which specializes in the field of applied economics. The IEB is a foundation funded by the following institutions: Applus, Abertis, Ajuntament de Barcelona, Diputació de Barcelona, Gas Natural and La Caixa.

Postal Address:

Institut d'Economia de Barcelona Facultat d'Economia i Empresa Universitat de Barcelona C/ Tinent Coronel Valenzuela, 1-11 (08034) Barcelona, Spain

Tel.: + 34 93 403 46 46 Fax: + 34 93 403 98 32

ieb@ub.edu

http://www.ieb.ub.edu

The IEB working papers represent ongoing research that is circulated to encourage discussion and has not undergone a peer review process. Any opinions expressed here are those of the author(s) and not those of IEB.

CROSS-SECTIONAL GROWTH IN US CITIES FROM 1990 TO 2000 *

Rafael González-Val

ABSTRACT: This paper analyses the growth of American cities, understood as the growth of the population or of the per capita income, from 1990 to 2000. This empirical analysis uses data from all the cities (incorporated places) with more than 25,000 inhabitants in the year 2000 (1152 cities). The results show that while common convergence behaviour is observed in both population and per capita income growth, there are differences in the evolution of the distributions: the population distribution remains almost unchanged, while the per capita income distribution makes a great movement to the right. We use two different methodologies to test cross-sectional convergence across cities: linear growth models (allowing for spatial spillovers between locations) and spatial quantile regressions. We find evidence of significant spatial effects and non-linear behaviour.

JEL Codes: R00, R11, R12

Keywords: City growth, linear model, spatial lag model, spatial error model, spatial

quantile regression

Rafael González-Val Universidad de Zaragoza & IEB Departamento de Análisis Económico Facultad de Economía y Empresa Gran Via 2

50005 - Zaragoza (Spain) E-mail: <u>rafaelg@unizar.es</u>

_

^{*} The author acknowledges financial support from the Spanish Ministerio de Educación y Ciencia (ECO2009-09332 and ECO2010-16934 projects), the DGA (ADETRE research group), and FEDER. An earlier version of this paper was previously circulated under the title "What makes cities bigger and richer? New evidence from 1990-2000 in the US." The original version of this article was a chapter of my doctoral thesis; although the current version is quite different, I had benefited from the helpful comments of the members of the thesis committee: Olga Alonso-Villar, Fernando Sanz, José Olmo, Jan Eeckhout and David Cuberes. Comments from my supervisors (Luis Lanaspa and Fernando Pueyo) contributed to improving the paper. Earlier versions of this paper were presented at the VIII Jornadas de la Asociación Española de Economía Laboral (Zaragoza, 2009), at the XXXIV Symposium of Economic Analysis (Valencia, 2009), at the 25th Annual Congress of the European Economic Association (Glasgow, 2010), at the 51th Congress of the European Regional Science Association (Barcelona, 2011) and at the 23rd Annual European Association of Labour Economists Conference (Pafos, 2011), with all the comments made by participants being highly appreciated. All remaining errors are mine.

1. Introduction

Jacobs (1969) was the first to suggest that cities are the basic economic units of each country when she stated that 'cities are also primary economic organs'. Later, other writers would argue the same² (Quigley, 1998; Duranton, 2000; Fujita and Thisse, 2002). Indeed, some very special characteristics coincide in the city as an economic unit. First, among cities there is complete freedom of movement in labour and capital (they are completely open economies). In addition,, it is in cities that knowledge spillovers are most easily generated and transmitted, as documented both at the theoretical level (Loury, 1979; Garicano and Rossi-Hansberg, 2006) and at the empirical level (Glaeser et al., 1992; Henderson et al., 1995). Finally, the New Economic Geography adds that cities are a source of agglomeration economies (Duranton and Puga, 2004).

The starting point for this work is the idea that the city has a double nature, on the one hand as a population centre and on the other as an engine of economic growth, and that the different external effects generated in cities can potentially have different effects on the population growth and per capita income growth. In particular, this paper analyses the cross-sectional growth of American cities, understood as growth of the population or per capita income, from 1990 to 2000, including variables to control for the main determinants of growth.

The American case has already been dealt with in earlier literature, using different econometric techniques and considering different periods and sample sizes. The two most direct precedents are Glaeser et al. (1995) and Glaeser and Shapiro (2003). Glaeser et al. (1995) examine the urban growth patterns in the 200 most populous cities in the US between 1960 and 1990 in relation to various urban characteristics in 1960. They show that the income and population growth are positively related to initial schooling, negatively related to initial unemployment, and negatively related to the initial share of employment in manufacturing. Glaeser and Shapiro (2003), using a larger sample size (they imposed a minimum population threshold of 25,000 inhabitants, considering the 1,000 most populous cities), conclude that this behaviour would have continued during the decade 1990–2000. During this decade, the three most relevant variables would be human capital, individuals' transport systems (public or

_

² A good commentary on the relationship between cities and national economic growth can be found in Polèse (2005).

private), and climate. The latter variable points out the important role played by geography in cities' per capita income or population growth. Glaeser and Shapiro (2003) find that people moved to warmer, drier places. Moreover, in related work, Glaeser et al. (2001) argue that the correlation between weather and growth is evidence of the growing importance of consumers, relative to producers, in determining the location of cities. Therefore, a consumer city view would predict that weather variables would become more important in the 1990s. Black and Henderson (1998) conclude that the extent of city growth and mobility is related to natural advantage, or geography. Beeson et al. (2001) show that access to transportation networks, either natural (oceans) or produced (railroads), was an important source of growth over the period 1840–1990, and that weather is one of the factors promoting population growth. Furthermore, Mitchener and McLean (2003) find that some physical geography characteristics account for a high proportion of the differences in state productivity levels.

Other empirical studies exist analysing the growth of the American population and per capita income, although the geographical unit analysed is not the city. At the county level, Beeson et al. (2001) study the evolution of the population from 1840 to 1990, while Young et al. (2008) analyse the evolution of the income distribution from 1970 to 1998. Mitchener and McLean (2003) use data beginning in 1880 to study the variations among states in labour productivity. Finally, Yamamoto (2008) examines the disparities in per capita income in the period 1955–2003 using different geographical levels (counties, economic areas, states, and regions).

Furthermore, studies about the evolution of income distribution in the United States in terms of β -convergence have a long tradition. Barro and Sala-i-Martin (1992), Evans and Karras (1996a, 1996b), Sala-i-Martin (1996), and Evans (1997) find statistically significant β -convergence effects using US state-level data, and Higgins et al. (2006) use US county-level data to document statistically significant β -convergence effects across the United States. However, one fundamental issue is missing in all of these studies: the spatial dimension. Rey and Montouri (1999) were the first to adopt a spatial econometric perspective to study the US state income convergence over the 1929–1994 period, finding strong patterns of both global and local spatial

autocorrelation. In recent research, Heckelman (2013) also finds significant spatial effects in US states for per capita income from 1930 to 2009.³

The next section presents the data used. We follow a two-step strategy. First, in Section 3, we determine whether the city population and city per capita income distributions followed similar paths in the 1990s. The results show that, while similar convergence behaviour is observed in both population and per capita income growth, there are differences in the evolution of the distributions: the population distribution remains almost static, while the per capita income distribution makes a great movement to the right. Second, to try to explain the differentiated behaviours observed in the evolution of the distributions of cities' per capita income and population, we examine the relationship between the initial urban characteristics in 1990 and the city growth (both in population and in per capita income) using two empirical methodologies; in Section 4, we estimate cross-sectional linear models allowing the existence of spatial effects between locations; and in Section 5, a spatial quantile regression model is used. The work ends with our conclusions.

2. Data Description

We use data for all the cities in the United States with more than 25,000 inhabitants in the year 2000 (1152 cities). The data come from the censuses⁴ for 1990 and 2000. We identify cities as what the US Census Bureau calls incorporated places. The US Census Bureau uses the generic term incorporated place to refer to a type of governmental unit incorporated under state law as a city, town (except in the New England states, New York, and Wisconsin), borough (except in Alaska and New York), or village and having legally prescribed limits, powers, and functions.

The geographic boundaries of census places can change between censuses. As in Glaeser and Shapiro (2003), we address this issue by controlling for change in the land area. Although this control may not be appropriate because it is also an endogenous variable that may reflect the growth of the city, none of our results change significantly if this control is excluded. Moreover, we eliminate cities that either more than doubled

³ See Le Gallo et al. (2003) for a similar exercise of spatial econometric analysis of convergence across European regions.

⁴ The US Census Bureau offers information on a large number of variables for different geographical levels, available on its website: www.census.gov.

their land area or lost more than 10 percent of their land area.⁵ This correction eliminates extreme cases in which the city in 1990 is very different from the city in 2000.

The explanatory variables chosen are similar to those in other studies on city growth in the US and city size, and correspond to the initial 1990 values. The influence of some of these variables on city size has been empirically proven by other works (Glaeser et al., 1995; Glaeser and Shapiro, 2003). Table 1 presents the variables, which can be grouped into four types: urban sprawl variables, human capital variables, productive structure variables, and geographical variables.

The urban sprawl variables are basically intended to reflect the effect of city size on urban growth. For this, we use the population density (inhabitants per square mile), the growth in land area from 1990–2000 (as a control for the change in boundaries), and the variable median travel time to work (in minutes), representing the commuting cost borne by workers. The commuting time is endogenous and depends in part on the spatial organisation of cities and the location choice within cities. The median commuting time may reflect traffic congestion in larger urbanised areas, but might also reflect the size of the city in less densely populated areas or the remoteness of the location for rural towns. This is one of the most characteristic costs of urban growth, explicitly considered in some theoretical models; that is, the idea that as a city's population increases, so do the costs in terms of the time taken by individuals to travel from home to work.

Regarding human capital, many studies demonstrate the influence of human capital on city size, as cities with better-educated inhabitants tend to grow more. We take the percentage of the population aged 18 years and over who are high school graduates (including equivalency) or have a higher degree. This variable represents a wide concept of human capital.

The third group of variables, referring to the productive structure, contains the unemployment rate and a measure of the diversity of the sectoral structure of the cities. We calculate the following diversity index:

⁵ The land area data also comes from the US Census Bureau: http://www.census.gov/population/www/censusdata/places.html and http://www.census.gov/geo/www/gazetteer/places2k.html.

Urban diversity =
$$1 - \sum_{m=1}^{M} \left(\frac{E_{mk}}{\sum_{m=1}^{M} E_{mk}} \right)^2$$
.

The index is one minus the Herfindahl index in terms of the employment in the main productive sectors in city k, representing the degree of industrial diversity in that city; E_{mk} is the employment in each sector. The value of the urban diversity index is between zero and one. As the value becomes closer to one, the city industries become more diverse. We consider the percentage of the employed civilian population aged 16 years and over in the following sectors: the primary sector (agriculture, forestry, fishing and hunting, and mining), construction, manufacturing (durable and non-durable goods), wholesale and retail trade, finance, insurance, real estate; education, health, and other professional and related services; and employment in the public administration.

We disaggregate 'geography' into physical geography and the socio-economic environment. We try to control for both kinds. We use two measures of weather: annual precipitation (inches) and a temperature index. The temperature discomfort index (TEMP_INDEX) represents each city's climate amenity and is constructed as in Zheng et al. (2009) or Zheng et al. (2010). It is defined as:

$$TEMP_INDEX_k = \sqrt{\frac{(W \text{ int } er_temperature_k - min(W \text{ int } er_temperature))^2 + \\ + (Summer_temperature_k - max(Summer_temperature))^2}}.$$

It represents the distance of the k-city's winter and summer temperatures from the mildest of the winter and summer temperatures across the 1152 cities. A higher TEMP_INDEX means a harsher winter or a hotter summer, which makes the city a harder place in which to live. Additionally, information on the city's percentage of water area, related to the city's natural environment, is also considered.

Finally, we include several dummies that provide information about the geographic location, and which take the value 1 depending on the region (northeast

⁶ These data are the 30-year average values computed from the data recorded during the period 1971–2000. Source: U.S. National Oceanic and Atmospheric Administration (NOAA), National Climatic Data Center (NCDC), Climatography of the United States, Number 81 (http://cdo.ncdc.noaa.gov/cgi-bin/climatenormals.pl).

region, midwest region, south region, or west region) in which the city is located.⁷ These dummies show the influence of a series of variables for which individual data are not available for all places, and which could be directly related to the geographical situation (access to the sea, presence of natural resources, etc.) or, especially, the socio-economic environment (differences in economic and productive structures). One potential problem is that these differences are hardly exogenous (unlike factors such as rainfall and temperature). These structures themselves are the results of the previous round of economic and productive activities; in other words, structures and agency are mutually constituted (see Plummer and Sheppard, 2006).

3. Population and Per Capita Income: Twin Paths or Not?

Our first step is to determine whether the city population and city per capita income distributions followed similar paths in the 1990s. Figure 1 shows scatter plots of the city population growth and city per capita income growth (logarithmic scale) against the initial levels in 1990 and 1989. We use data from all the incorporated places with more than 25,000 inhabitants in the year 2000: 1152 cities.

We can observe that in both cases there is a negative relationship between the initial level and the growth rate. This implies that a larger initial population or per capita income means less growth (convergence growth). This negative effect is greater in the case of population growth than in the case of per capita income growth. Thus, while the slope β of the line adjusted with OLS in the case of population growth is a clearly significant and negative coefficient (-0.070), with the per capita income growth this coefficient (-0.016) is significantly different from zero only at the 10% level, not the 5% level. Moreover, the income's growth rates present a higher variance.

We would expect this convergent behaviour to have consequences for the evolution of distributions. Figure 2 shows the estimated empirical distributions using an adaptive kernel of city size, whether in per capita income or in population. It highlights an important change in the distribution of the city per capita income. The negative relationship observed earlier between initial city per capita income and growth, which we can identify with convergent growth, has clearly produced a rightwards

⁷ We also introduce state-level dummies into some of the preliminary estimations, but most of them are not significant and the results are qualitatively the same.

displacement of the distribution.⁸ Meanwhile, there is hardly any change in the population distribution of the cities, even though there was also a negative relationship between the initial population and the growth rate. Therefore, despite the common convergence evolution observed in the growth of both population and per capita income, there are differences in the evolution of the distributions; the population distribution remains almost static, while the per capita income distribution makes a great movement to the right.

Finally, we would like to determine the relationship between population growth and income growth. Accordingly, we construct the distributions of the population and per capita income growth rates, and then we study how they are related (Ioannides and Overman, 2004). Figure 3 shows the stochastic kernel estimations of the distribution of population growth conditional on the distribution of per capita income growth. The contour plot is also shown, to simplify the interpretation. This figure shows the well-known positive relationship in large cities between per capita income and city growth. There is an extensive literature reporting the benefits of urban agglomeration on city income or productivity; see the surveys on this subject by Puga (2010) and Rosenthal and Strange (2004).

However, the differentiated behaviour observed in the evolution of the distributions of cities' per capita income and population could corroborate our initial idea: the different external effects generated in cities may produce different effects on population growth and per capita income growth. Therefore, the next sections analyse the cross-sectional growth in US cities controlling for the initial city characteristics in 1990, both in population and in per capita income, using different approaches.

4. Linear Models

In this section, we estimate linear models that relate the growth in population or per capita income to a vector of initial city characteristics. Population growth can be described by this general equation:

_

⁸ Everything seems to indicate that this behaviour has persisted for decades. Figure 2 of Young et al. (2008), corresponding to the evolution of the distribution of US counties' log per capita incomes from 1970 to 1998, presents a very similar effect to that observed in our estimated kernel of city per capita income distribution from 1989 to 1999.

⁹ Although there is a great deal of variability in the results reported in the literature, see the meta-analysis by Melo et al. (2009).

$$Log\left(\frac{N_{it+1}}{N_{it}}\right) = \alpha + \gamma' X_{ik} + \zeta_{it}, \qquad (1)$$

where N_{it} is city *i*'s population at time *t*. Thus, the dependent variable is the logarithmic growth rate, α is a constant, X_{ik} is the vector of city characteristics, γ is the vector of parameters describing the marginal effect of these explanatory variables, and ξ_{it} is the error term.

Theoretical economic foundations for this kind of linear equation can be found in the model of urban growth put forward by Glaeser et al. (1995) and further explicated by Glaeser (2000) and Glaeser and Shapiro (2003). This is a model of spatial equilibrium similar to the Roback (1982) model, in which the relationship between population growth and initial characteristics is determined by changes in the demand for some aspect of the city's initial endowment in production or consumption, or by the effect of this initial characteristic on productivity growth.

However, Equation (1) does not allow spillover effects between cities. Such effects are plausible and highly likely when cities are close to one another (the cities are not autonomous economic or demographic units). Another source of possible spatial bias in the OLS regressions could be the spatial autocorrelation in the residuals. Overall, the spatial effects could be an important issue; for the US case, Rey and Montouri (1999) and Heckelman (2013) find significant spatial effects at the state level. Therefore, we apply the robust Lagrange multiplier and Moran's I tests to the residuals of the OLS regressions of the model in Equation (1). If significant spatial effects are found, we estimate a spatial error model and a spatial autoregressive model with the aim of explicitly considering the impact of neighbouring locations on population growth. The spatial error model extends model (1) by considering an error variable that satisfies

$$\xi_{it} = \lambda W \xi_{it} + v_{it},$$

with $|\lambda| < 1$ being a parameter that reflects the effect of the residuals of neighbouring variables on the residual of city i, W a weighting matrix that measures the distances between the different locations, and v_{ii} an iid random variable that describes the error

¹⁰ Fingleton and López-Bazo (2006) survey the literature on empirical growth models with spatial effects and conclude that most contributions focus their attention on the spatial lag and the spatial error models, neglecting the spatial cross-regressive specification.

of the regression model. Different possibilities exist for choosing W; we consider an inverse distance weights matrix obtained from the coordinates (longitude and latitude)¹¹ of the locations in order to construct the Euclidean distance between the cities.¹² The spatial autoregressive model considers the following econometric specification:

$$Log\left(\frac{N_{it+1}}{N_{it}}\right) = \alpha + \rho W Log\left(\frac{N_{it+1}}{N_{it}}\right) + \gamma' X_{ik} + \zeta_{it}, \qquad (2)$$

with $|\rho| < 1$ measuring the effect on the response variable of population growth in neighbouring cities.¹³ The estimation of spatial models is carried out using maximum likelihood (ML) techniques under the assumption that the error variables are normally distributed.

Table 2 displays the OLS estimates of Equation (1) and the ML estimates of the spatial models. The interpretation of the coefficients is easy; they measure the impact of the variables on logarithmic point growth (which can be approximated as percentage growth). We control for the initial per capita income in 1989 and for the city population growth rate in the previous period (1980–1990) in all the specifications. Some regressions include region dummies. Table 2 also reports the p-values of the spatial tests. These p-values provide mixed evidence of the statistical significance of the spatial effects for the spatial error model; the null hypothesis of zero spatial autocorrelation cannot be rejected with the Moran's I test, while the same null can be rejected with the robust Lagrange multiplier test. The robust Lagrange multiplier test also finds significant spatial autocorrelation with the spatial autoregressive model. Moreover, the Wald test confirms that the parameters λ and ρ are significant in both spatial models, and the log likelihood points to a better fit of the spatial error model.

If we consider the linear models without spatial effects (columns 1 and 2), the basic results, in general, show that the estimated coefficients for the variables are similar across the different models; the sign of the coefficients is consistent, although there are slight differences in the magnitude and significance. The results obtained in

¹¹ Spatial coordinates (longitude and latitude in decimal degrees) data for the incorporated places are obtained from the US Census Bureau Gazetteer.

¹² The spatial matrix was constructed using the SPATWMAT Stata command. The spatial regressions are estimated with the SPATDIAG and the SPATREG commands. All these tools for spatial data analysis using Stata were developed by Maurizio Pisati.

¹³ The inclusion of the spatial lag in these OLS regressions can cause an endogeneity issue. We will deal with this potential problem in the next section.

previous studies are confirmed. The initial per capita income is only significant in the spatial error model. The positive coefficient would indicate that thriving cities attract population. The past population growth rate (1980–1990) has a significant positive coefficient in all the specifications, confirming the high persistence of the growth rates of US cities (Glaeser and Shapiro, 2003). The sign of the travel time coefficient is positive, although no theory of urban growth predicts that commuting time (that is, congestion) should have a positive effect on growth. A more plausible explanation for this result is that some relevant variables are missing. Cities that are more spread out have both more developable land (so that there is space for the construction of new homes and room for the city to grow) and also have a larger distance between the residential fringe and the central business district. The key omitted variable here would be the percentage of developable land.¹⁴

Surprisingly, the human capital variable becomes not significant when we introduce the spatial effects. As we will show later, human capital is more important to economic growth than to population growth. However, the unemployment rate has a significant negative coefficient (except in the spatial error model) and a clear interpretation: cities with high unemployment experience lower population growth rates. This would indicate migration across cities and transition to a spatial equilibrium. Regarding the diversity index, once we account for spatial effects, both the spatial error and the spatial lag models indicate a significant positive effect on population growth, with an estimated coefficient around 0.25. As higher values of the index represent more diverse productive structures, this result indicates that specialised economies grew less in population during the period.

Finally, the influence of geography on population growth is slight. The temperature index has a negative effect on growth, as expected: a higher index means that the city is a harder place in which to live. However, this coefficient is only significant in the spatial lag model. Precipitation is only significant in two cases (columns 1 and 5). The spatial error model also reveals a negative effect of the percentage of water area on growth.

We also estimate Equation (1) using city per capita income growth (y_{it}) as the dependent variable. Then, Equation (1) changes to:

-

¹⁴ This is omitted because of data scarcity, although part of this variable could be captured by the city land area growth, which has already been included.

$$Log\left(\frac{y_{it+1}}{y_{it}}\right) = \eta + \beta \cdot Log(y_{it}) + \varphi'Z_{ik} + \varepsilon_{it}, \qquad (3)$$

the well-known expression of the conditional β -convergence (Evans, 1997; Evans and Karras, 1996a, 1996b). η is a constant, Z_{ik} is a vector of variables that control for cross-city heterogeneity in determinants of the steady-state growth rate (we use exactly the same independent variables as in the population growth model), φ is a vector of coefficients, and v_{it} is a zero-mean finite-variance error. There are several theoretical economic growth models that can produce equation (2) at the state, county, or region level. For a neoclassical growth model, see Barro and Sala-i-Martin (1992).

The spatial alternatives to Equation (3) are modelled in a similar fashion to the spatial population growth models explained above. The spatial error model extends model (3) by including an error variable that satisfies

$$\varepsilon_{it} = \lambda W \varepsilon_{it} + v_{it},$$

while the econometric specification of the spatial autoregressive model is the following:

$$Log\left(\frac{y_{it+1}}{y_{it}}\right) = \eta + \rho W Log\left(\frac{y_{it+1}}{y_{it}}\right) + \beta \cdot Log(y_{it}) + \varphi' Z_{ik} + \varepsilon_{it}. \tag{4}$$

Fingleton and López-Bazo (2006) provide theoretical foundations for both spatial models, based on two growth models with across-region externalities due to knowledge diffusion.

Table 3 presents the OLS estimates of equation (3), using the same exogenous variables as the population growth model (although the table structure is the same, in this model the initial city per capita income is the main explanatory variable and the rest are controls). The ML estimates of the spatial models and the p-values of the spatial tests are also shown. Again, the p-values provide mixed evidence of the statistical significance of the spatial effects for the spatial error model (Moran's I test cannot reject the no spatial autocorrelation null while the same null can be rejected with the robust Lagrange multiplier test) and significant spatial effects with the spatial autoregressive model. However, this time, the Wald test rejects the significance of the ρ parameter at the 5% level for the spatial lag model and the log likelihood again indicates a better fit of the spatial error model.

The estimate of the β -coefficient corresponding to the initial level of per capita income is negative and clearly significant in all the specifications, finding evidence in favour of convergence across cities, as in the previous section. The difference is that here, when controlling for cross-city heterogeneity, the coefficient is greater (around -0.07 instead of -0.016), indicating stronger convergence, which better describes the behaviour observed in the evolution of the distribution of city per capita income (Figure 2).

Some of the coefficients in Table 3 keep the same sign as in the models for population growth—for example, urban diversity still has a positive (although less significant) effect on per capita income growth—but there are remarkable differences. First, it is notable that the unemployment rate has no significant effect on income growth, but a clear negative influence on population growth. This means that unemployment's main effect concerns basically the individual's movements rather than the city's productivity. A second important difference from the population growth results is that the human capital variable is significant and positive in all the models, revealing a positive influence of human capital on economic growth at the city level. This result coincides with those of other studies analysing the influence of education on city growth. Simon and Nardinelli (2002) analyse the period 1900–1990 for the US and conclude that the cities with higher average levels of human capital grew faster over the twentieth century and Glaeser and Saiz (2003) study the period 1970–2000 and show that this is due to skilled cities being more economically productive (than less-skilled cities).

Third, physical geography seems to be more important to income growth than to population growth. Thus, the coefficient of the temperature index is again significant and negative, indicating that a higher index means that the city is a harder place in which to produce. The effect of the annual precipitation variable is positive but significant only in half of the estimations, and the percentage of water area is positive and significant in all the specifications. Both precipitation and water area are particularly intense in the northeast and midwest regions; the positive estimated coefficients indicate higher growth rates of the cities located in these regions.

5. Spatial Quantile Regressions

In this section, we use an alternative approach. One important issue with the previous estimations derived from linear models is the possible non-linear behaviour. Some of the variation in city growth rates (both in population and in income) may reflect the fact that the influence of some city characteristics is not the same across the distribution of growth rates. To model these possible heterogeneous effects of city variables on the growth rate, we estimate quantile regressions accounting for spatial autocorrelation. Although there are not many studies applying this methodology to city or regional data, Zietz et al. (2008) and Kostov (2009) discuss the advantages of this approach in depth and apply it to hedonic models of house prices and land, respectively.

The quantile regression version of the linear spatial lag models shown in Equations (2) and (4) can be written as

$$Log\left(\frac{N_{it+1}}{N_{it}}\right) = \alpha(\tau) + \rho(\tau)WLog\left(\frac{N_{it+1}}{N_{it}}\right) + \gamma'(\tau)X_{ik} + \zeta_{it}$$
(5)

and

$$Log\left(\frac{y_{it+1}}{y_{it}}\right) = \eta(\tau) + \rho(\tau)WLog\left(\frac{y_{it+1}}{y_{it}}\right) + \beta(\tau) \cdot Log(y_{it}) + \varphi'(\tau)Z_{ik} + \varepsilon_{it}$$
 (6)

for population and per capita income growth, respectively. We still consider an inverse distance weights matrix obtained from the coordinates of the locations, but note that the parameters to estimate now are τ -dependent, where τ is the corresponding quantile of the growth rate. As Kostov (2009) argues, quantile regressions take into account unobserved heterogeneity and allow for heteroskedasticity among the disturbances, including spatial error dependence.

The second main concern with the estimations in the previous section is the possible endogeneity issue. Including a spatial lag in an OLS regression can cause inference problems owing to the endogeneity of the spatial lag (Anselin, 2001), and the same can apply to the quantile regressions. To deal with this issue, we use the Kim and Muller (2004) estimation procedure. This two-stage method uses the regressors and

their spatial lags as instruments. The standard errors are calculated using a simple bootstrap estimator. ¹⁵

Figure 4 shows the spatial quantile regression results for the population growth model of Equation 5 (the estimated coefficients are presented in Table A1 in the Appendix). The different graphs display the estimates of the coefficients and the confidence intervals for each explicative variable across the nine quantiles considered (τ ranges from 0.1 to 0.9). The estimated model also includes regional dummies (not shown).

Although the sign of the effects mostly coincides with the results obtained in the linear models estimated previously, the quantile regressions reveal interesting nonlinear behaviour. The effect of some variables increases for the higher quantiles; as expected, the variables measuring urban sprawl and congestion (land area growth and median travel time to work) have a greater effect on the higher-quantile cities. The same applies to the unemployment rate; the negative effect of unemployment on population growth is greater in the bottom quantile cities, meaning that the higher the unemployment rate, the lower the city population growth rate. The increasing effect of the past population growth rate on the highest-quantile cities indicates that the persistence in the growth rates of US cities detected by Glaeser and Shapiro (2003) is higher than the linear model estimates revealed; the quantile estimates show that the effect of past growth is three times higher (the coefficient rises from 0.182 to 0.605) on the top quantile (0.9) than on the bottom quantile (0.1). The effect of the urban diversity index and precipitation on population growth also increases for the top quantiles, but the estimated effects are not significant. This is one of the differences from the linear model estimations, in which we find a significant positive effect of urban diversity on growth. The explanation could be an endogeneity issue in the previous estimations in Section 4, which is now corrected.

The effect of the other variables decreases for the cities with the highest population growth at the top quantiles (temperature index and initial income). In the other cases, the estimated effect follows an inverted U-shape pattern (population density, human capital, and water area). However, as in the linear models, the human

_

¹⁵ The spatial quantile regressions are estimated using the McSpatial R package developed by Daniel McMillen.

capital variable is not significant in most of the quantiles (the exceptions are quantiles 0.1 and 0.2).

Regarding income growth, Figure 5 reports the spatial quantile regression results for the per capita income growth model; see Equation 6 (the estimated coefficients are shown in Table A2 in the Appendix). Again, we find clear non-linear behaviour. The effect of some variables increases for the higher quantiles (land area growth, median travel time to work, unemployment rate, temperature index, water area, initial income, and past population growth), while the effect of other variables decreases for the cities with the highest income growth in the top quantiles (population density, urban diversity, and precipitation). The estimated coefficients of the initial income change from significantly negative for the bottom and middle quantile cities to non-significant for the top quantile, indicating strong income convergence across cities. Thus, for the lowest income growth cities, a high initial income has a clear negative effect on growth, while for the highest income growth cities the initial income has no significant effect. A kind of inverted U-shape pattern can also be found for the human capital variable, although it is less pronounced than in the population growth model. The estimated coefficient for the human capital measure is always positive and significant, but it is higher in the middle quantile cities. This suggests that the benefits of education are not equally distributed across cities.

Finally, the influence of the spatial lag is not significant in either of the two models for most of the quantiles; in the population growth model, the effect is increasing with the quantile, while in the income model, the effect is decreasing with the quantile. Thus, we can reject the spatial lag dependence over most of the sample. Nevertheless, this does not mean the rejection of any kind of spatial dependence. On the contrary, the quantile regressions allow for heteroskedasticity among the disturbances, including spatial error dependence (Kostov, 2009), and in the linear models estimated in Section 4, we have already found a better fit of the spatial error model than that of the spatial lag model.

6. Conclusions

This paper analyses the growth of American cities, understood as the growth of the population or the per capita income, from 1990 to 2000. One of the contributions of the paper is the analysis of cross-sectional growth at the city level, using data from all the

cities (incorporated places) with more than 25,000 inhabitants in the year 2000 (1152 cities). The descriptive results show that, while common convergence behaviour is observed in both population and per capita income growth, there are differences in the evolution of the distributions: the population distribution remains almost unchanged, while the per capita income distribution develops a great movement to the right.

Another contribution is that we use two different methodologies to try to explain these differentiated behaviours in the evolution of the population and income distributions: linear growth models and spatial quantile regressions, allowing for spatial spillovers between locations. By estimating linear models, we find significant evidence of high persistence in population growth rates and conditional β -convergence in per capita income across cities. We introduce several explanatory variables to control the initial city characteristics. Some of the results, similar to those of other studies, are that specialised economies grew less in population in the period, the unemployment rate has a clear negative influence on population growth (Glaeser et al., 1995) but no significant effect on income growth, the human capital variable is significant and positive in all the models, indicating a positive influence of human capital on economic growth (Glaeser et al., 1995; Simon and Nardinelli, 2002; Glaeser and Shapiro, 2003), and the weather variables (physical geography) seem to have a greater impact on income growth than on population growth (Black and Henderson, 1998; Glaeser et al., 2001; Glaeser and Shapiro, 2003). We also find significant spatial effects at the city level and our empirical results favour the error model specification rather than the spatial lag model.

The spatial quantile regressions allow us to test non-linear behaviour and correct the possible endogeneity issues of the spatial lag. We use the Kim and Muller (2004) estimation procedure, a two-stage method that uses the regressors and their spatial lags as instruments. Although the signs of the effects mostly coincide with the results obtained in the linear models, there are some exceptions. For example, we do not find a significant effect of urban diversity on growth. Moreover, we find clear non-linear behaviours in both population and income growth. These non-linearities indicate that the persistence in population growth and the income convergence across cities are stronger than indicated by the linear models.

However, these results can be improved in several ways. First, beneath the overall cross-sectional convergence there could be different spatial regimes (Beaumont et al., 2003). Thus, the linear models can be extended to account for convergence clubs

(Durlauf and Johnson, 1995). Second, we could quantify how much of the spatial pattern of per capita income can be attributed to exogenous first-nature factors alone and how much is a consequence of endogenous second-nature elements (Roos, 2005; Chasco et al., 2012). To carry out this analysis we would need more data, specifically to improve the information on first-nature indicators. Both questions clearly deserve further research.

References

- [1] Anselin, L., (2001). Spatial econometrics. In B. H. Baltagi (Ed.), A companion to theoretical econometrics. Malden, MA and Oxford: Blackwell.
- [2] Barro, R. J., and X. Sala-i-Martin, (1992). Convergence. Journal of Political Economy, 100(2): 223–251.
- [3] Beaumont, C., C. Ertur and J. Le Gallo, (2003). Spatial convergence clubs and the European regional growth process, 1980-1995. In B. Fingleton (ed) European Regional Growth: Springer-Verlag, 131–158.
- [4] Beeson, P. E., D. N. DeJong, and W. Troesken, (2001). Population Growth in US Counties, 1840–1990. Regional Science and Urban Economics, 31: 669–699.
- [5] Black, D., and V. Henderson, (1998). Urban Evolution in the USA. Brown University Working Paper No. 98–21.
- [6] Chasco, C., A. M. López, and R. Guillain, (2012). The influence of geography on the spatial agglomeration of production in the European Union. Spatial Economic Analysis, 7(2): 247–263.
- [7] Duranton, G., (2000). Urbanization, Urban Structure, and Growth, in: J.-M. Huriot and J. F. Thisse (Eds) Economics of Cities: Theoretical Perspectives, pp. 290–317. Cambridge: Cambridge University Press.
- [8] Duranton, G., and D. Puga, (2004). Micro-Foundations of Urban Agglomeration Economies. Handbook of Urban and Regional Economics, Vol. 4, J. V. Henderson and J. F. Thisse, eds. Amsterdam: Elsevier Science, North-Holland, Chapter 48, pp. 2064–2117.
- [9] Durlauf, S. N., and P. A. Johnson, (1995). Multiple regimes and cross-country growth behaviour. Journal of Applied Econometrics, 10: 365–384.
- [10] Evans, P., (1997). How Fast Do Economies Converge? Review of Economics and Statistics, 79(2): 219–225.
- [11] Evans, P., and G. Karras, (1996a). Do Economies Converge? Evidence from a Panel of U.S. States. Review of Economics and Statistics, 78(3): 384–388.
- [12] Evans, P., and G. Karras, (1996b). Convergence Revisited. Journal of Monetary Economics, 37: 249–265.
- [13] Fingleton, B., and E. López-Bazo, (2006). Empirical growth models with spatial effects. Papers in Regional Science, 85(2): 177–198.
- [14] Fujita, M. and J.-F. Thisse, (2002). Economics of Agglomeration. Cambridge: Cambridge University Press.
- [15] Garicano, L., and E. Rossi-Hansberg, (2006). Organization and Inequality in a Knowledge Economy. The Quarterly Journal of Economics, 121(4): 1383–1435.
- [16] Glaeser, E. L., (2000). The New Economics of Urban and Regional Growth, in: G. L. Clark, M. P. Feldman, and M. Gertler, (eds.), The Oxford Handbook of Economic Geography, Oxford: Oxford University Press, pp. 83–98.
- [17] Glaeser, E. L., H. D. Kallal, J. A. Scheinkman, and A. Shleifer, (1992). Growth in Cities. The Journal of Political Economy, Vol. 100(6), Centennial Issue, 1126–1152.

- [18] Glaeser, E. L., J. Kolko, and A. Saiz, (2001). Consumer City. Journal of Economic Geography, 1(1): 27–50.
- [19] Glaeser, E. L., and A. Saiz, (2003). The Rise of the Skilled City. Harvard Institute of Economic Research, Discussion Paper number 2025.
- [20] Glaeser, E. L., J. A. Scheinkman, and A. Shleifer, (1995). Economic Growth in a Cross-section of Cities. Journal of Monetary Economics, 36: 117–143.
- [21] Glaeser, E. L., and J. Shapiro, (2003). Urban Growth in the 1990s: Is City Living Back? Journal of Regional Science, Vol. 43(1): 139–165.
- [22] Heckelman, J. C., (2013). Income convergence among U.S. states: cross-sectional and time series evidence. Canadian Journal of Economics/Revue canadienne d'économique, 46(3): 1085–1109.
- [23] Henderson, V., A. Kuncoro, and M. Turner, (1995). Industrial Development in Cities. Journal of Political Economy 103(5), 1067–1090.
- [24] Higgins, M. J., D. Levy, and A. T. Young, (2006). Growth and Convergence Across the U.S.: Evidence from County-Level Data. Review of Economics and Statistics, 88(4): 671–681.
- [25] Ioannides, Y. M., and H. G. Overman, (2004). Spatial evolution of the US urban system. Journal of Economic Geography, 4(2): 131–156.
- [26] Jacobs, J., (1969). Economy of Cities. Vintage, New York.
- [27] Kim, T.-H., and C. Muller, (2004). Two-Stage Quantile Regression when the First Stage is Based on Quantile Regression. Econometrics Journal, 7: 218–231.
- [28] Kostov, P., (2009]. A Spatial Quantile Regression Hedonic Model of Agricultural Land Prices. Spatial Economic Analysis, 4(1): 53–72.
- [29] Le Gallo, J., C. Ertur and C. Baumont, (2003). A spatial econometric analysis of convergence across European regions, 1980-1995. In B. Fingleton (ed) European Regional Growth: Springer-Verlag, 99–129.
- [30] Loury, G. C., (1979). Market Structure and Innovation. The Quarterly Journal of Economics, 93(3): 395–410.
- [31] Melo, P. C., D. J. Graham, and R. B. Noland, (2009). A Meta-analysis of Estimates of Urban Agglomeration Economies. Regional Science and Urban Economics, 39: 332–342.
- [32] Mitchener, K. J., and I. W. McLean, (2003). The Productivity of US States Since 1880. Journal of Economic Growth, 8: 73–114.
- [33] Plummer, P., and E. Sheppard, (2006). Geography Matters: Agency, Structures and Dynamics at the Intersection of Economics and Geography. Journal of Economic Geography, Vol. 6(5): 619–637.
- [34] Polèse, M., (2005). Cities and National Economic Growth: A Reappraisal. Urban Studies, 42(8): 1429–1451.
- [35] Puga, D., (2010). The Magnitude and Causes of Agglomeration Economies. Journal of Regional Science, Vol. 50(1): 203–219.
- [36] Quigley, J. M., (1998). Urban Diversity and Economic Growth. Journal of Economic Perspectives, 12(2): 127–138.

- [37] Rey, S. J., and B. D. Montouri, (1999). US regional income convergence: A spatial econometric perspective. Regional Studies, 33(2): 143–156.
- [38] Roback, J., (1982). Wages, Rents, and the Quality of Life. Journal of Political Economy, 90(6): 1257–1278.
- [39] Roos, M. W. M., (2005). How important is geography for agglomeration? Journal of Economic Geography, 5: 605–620.
- [40] Rosenthal, S. S., and W. C. Strange, (2004). Evidence on the Nature and Sources of Agglomeration Economies. Handbook of Urban and Regional Economics, Vol. 4, J. V. Henderson and J. F. Thisse, eds. Amsterdam: Elsevier Science, North-Holland, Chapter 49, pp. 2119–2171.
- [41] Sala-i-Martin, X., (1996). Regional Cohesion: Evidence and Theories of Regional Growth and Convergence. European Economic Review, 40: 1325–1352.
- [42] Simon, C. J., and C. Nardinelli, (2002). Human capital and the Rise of American Cities, 1900–1990. Regional Science and Urban Economics, 32: 59–96.
- [43] Yamamoto, D., (2008). Scales of Regional Income Disparities in the USA, 1955–2003. Journal of Economic Geography, Vol. 8(1): 79–103.
- [44] Young, A. T., M. J. Higgins, and D. Levy, (2008). Sigma Convergence versus Beta Convergence: Evidence from U.S. County-Level Data. Journal of Money, Credit and Banking, Vol. 40(5): 1083–1093.
- [45] Zheng, S., Y. Fu, and H. Liu, (2009). Demand for Urban Quality of Living in China: Evolution in Compensating Land-Rent and Wage-Rate Differentials. Journal of Real Estate Finance and Economics, 38(3): 194–213.
- [46] Zheng, S., M. E. Kahn, and H. Liu, (2010). Towards a System of Open Cities in China: Home Prices, FDI Flows and Air Quality in 35 Major Cities. Regional Science and Urban Economics, 40: 1–10.
- [47] Zietz, J., E. N. Zietz, and G. S. Sirmans, (2008). Determinants of House Prices: A Quantile Regression Approach. Journal of Real Estate Finance and Economics, 37: 317–333.

Table 1. Means and standard deviations, city variables in 1990

Variable	Mean	Stand. dev.
Population growth (ln scale), 1990–2000	0.14	0.20
Per capita income growth (ln scale), 1989–1999	0.38	0.10
Urban sprawl		
Land area growth (ln scale), 1990–2000	0.09	0.14
Population per square mile	3642.07	3399.70
Median travel time to work (in minutes)	20.56	4.86
Human capital variable		
Percentage of population aged 18 years and over: high school graduate or higher degree	58.54	9.63
Productive structure variables		
Unemployment rate	6.26	2.81
Urban diversity index	0.83	0.03
Weather		
Temperature index	65.44	11.38
Percentage of water area	0.09	0.34
Annual precipitation (inches)	35.15	14.47

Sources: 1990 and 2000 Censuses, <u>www.census.gov</u>

Table 2. City population growth models

	OLS line	ar models	Spatial er	ror models	Spatial lag models	
Variables	(1)	(2)	(3)	(4)	(5)	(6)
Urban sprawl						
Land area growth (ln scale)	0.407***	0.403***	0.422***	0.423***	0.416***	0.425***
Population per square mile (ln scale)	-0.049***	-0.047***	-0.060***	-0.061***	-0.053***	-0.054***
Median travel time to work (in minutes)	0.005***	0.005***	0.004***	0.004***	0.004***	0.003***
Human capital variable						
Percentage of population aged 18 years and over: high school graduate or higher degree	-0.001*	-0.001**	-0.001	-0.001	-0.001	-0.001
Productive structure variables						
Unemployment rate	-0.009***	-0.010***	-0.002	-0.002	-0.007***	-0.007***
Urban diversity index	0.259*	0.193	0.278**	0.261**	0.292**	0.231*
Weather						
Temperature index	-0.000	-0.002***	-0.001	-0.000	-0.001**	-0.002***
Percentage of water area	-0.018	-0.017	-0.021*	-0.021**	-0.011	-0.009
Annual precipitation (inches)	-0.001**	0.000	-0.000	-0.000	-0.001*	0.000
Controls						
Initial per capita income (ln scale) in 1989	-0.038	-0.031	0.033**	0.030*	-0.035	-0.032
City population growth rate 1980–1990 (ln scale)	0.346***	0.346***	0.343***	0.343***	0.343***	0.340***
Regions (geographical dummy variables)	No	Yes	No	Yes	No	Yes
λ			0.009***	0.011***		
ρ					0.001***	0.002***
Wald test of λ or $\rho = 0$			74.581	85.610	15.452	24.844
Moran's I test, p-value			0.418	0.306		
Robust Lagrange multiplier test, p-value			0.000	0.000	0.001	0.018
Log likelihood R ²			841.854	844.151	768.299	782.542
R^2	0.603	0.610				
Observations	1152	1152	1152	1152	1152	1152

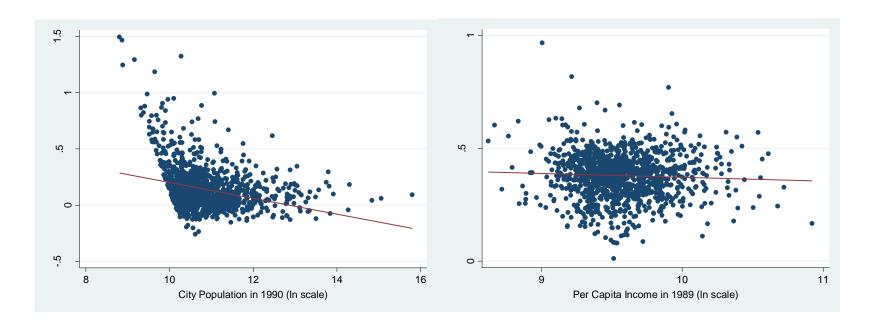
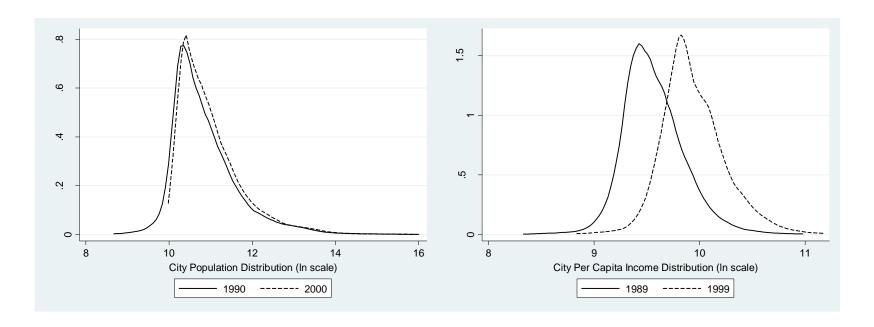

Note: Endogenous variable: logarithmic population growth (1990–2000). All the specifications include a constant. The null hypothesis in the robust Lagrange multiplier and Moran's I tests is that there is zero spatial autocorrelation. *** Significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

Table 3. City per capita income growth models

	OLS line	ar models	Spatial err	or models	Spatial lag models	
Variables	(1) (2)		(3)	(4)	(5)	(6)
Urban sprawl						_
Land area growth (ln scale)	0.135***	0.105***	0.119***	0.086***	0.139***	0.107***
Population per square mile (ln scale)	-0.039***	-0.031***	-0.034***	-0.025***	-0.042***	-0.031***
Median travel time to work (in minutes)	0.001	0.001	0.003***	0.003***	0.001	0.001
Human capital variable						
Percentage of population aged 18 years and over: high school graduate or higher degree	0.002***	0.002***	0.002***	0.002***	0.003***	0.002***
Productive structure variables						
Unemployment rate	-0.001	0.000	-0.002	-0.001	-0.001	0.001
Urban diversity index	0.166*	0.144	0.045	0.007	0.209**	0.154
Weather						
Temperature index	-0.002***	-0.003***	-0.002***	-0.003***	-0.002***	-0.003***
Percentage of water area	0.038***	0.040***	0.035***	0.037***	0.040***	0.041***
Annual precipitation (inches)	0.000	0.001**	-0.000	0.001*	0.000	0.001**
Controls						
Initial per capita income (ln scale) in 1989	-0.074***	-0.056***	-0.071***	-0.054***	-0.079***	-0.058***
City population growth rate 1980–1990 (In scale)	-0.015	-0.012	-0.023*	-0.021*	-0.012	-0.011
Regions (geographical dummy variables)	No	Yes	No	Yes	No	Yes
$_{ullet}\lambda$			-0.001***	-0.001***		
ρ					0.001*	0.000
Wald test of λ or $\rho = 0$			10.639	13.396	2.960	0.211
Moran's I test, p-value			0.355	0.255		
Robust Lagrange multiplier test, p-value			0.000	0.000	0.001	0.000
Log likelihood			1206.912	1232.226	1202.293	1223.826
R^2	0.251	0.280				
Observations	1152	1152	1152	1152	1152	1152

Note: Endogenous variable: logarithmic per capita income growth (1989–1999). All the specifications include a constant. The null hypothesis in the robust Lagrange multiplier and Moran's I tests is that there is zero spatial autocorrelation. *** Significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.


Figure 1. Scatter plots of city growth (In scale) against the initial level

Note: Line fitted as $(\ln y_{it} - \ln y_{it-1}) = \alpha + \beta \ln y_{it-1}$.

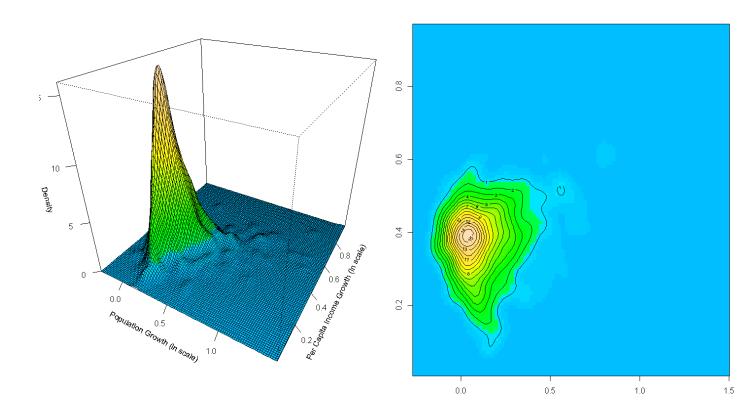

Data source: 1990 and 2000 Censuses, www.census.gov

Figure 2. Kernel density estimation (ln scale) of city per capita income and city population distributions

Data source: 1990 and 2000 Censuses, www.census.gov

Figure 3. Stochastic kernel estimates of the relationship between Per Capita Income Growth (In scale) and Population Growth (In scale)

Data source: 1990 and 2000 Censuses, www.census.gov

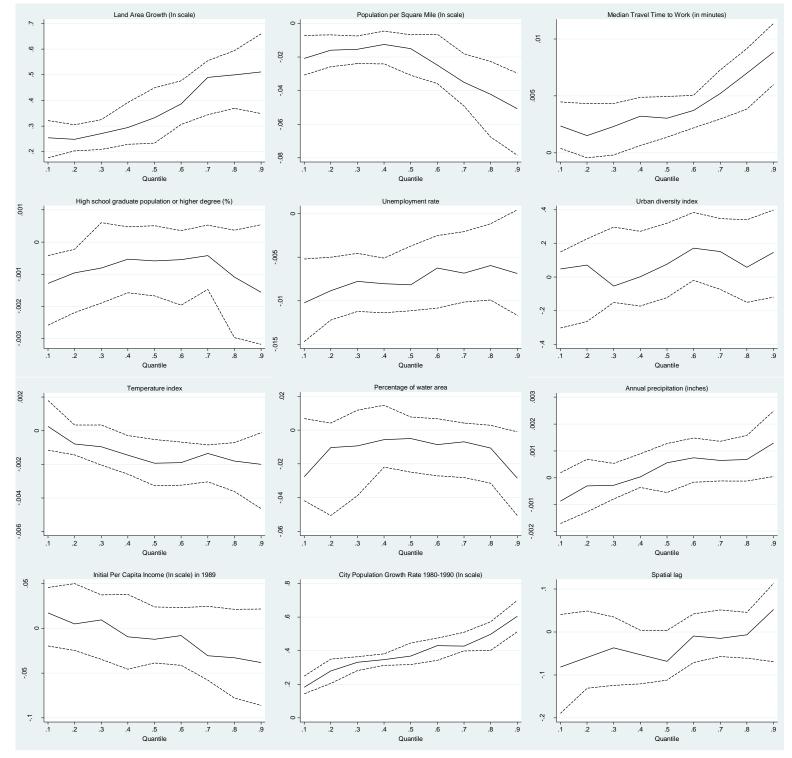


Figure 4. Spatial quantile regression estimates, population growth model

Note: Kim and Muller (2004) two-stage quantile regression results. Endogenous variable: logarithmic population growth (1990–2000). The model includes a constant and regional dummies. Bootstrap standard errors. The 95% confidence intervals are based on the percentile method.

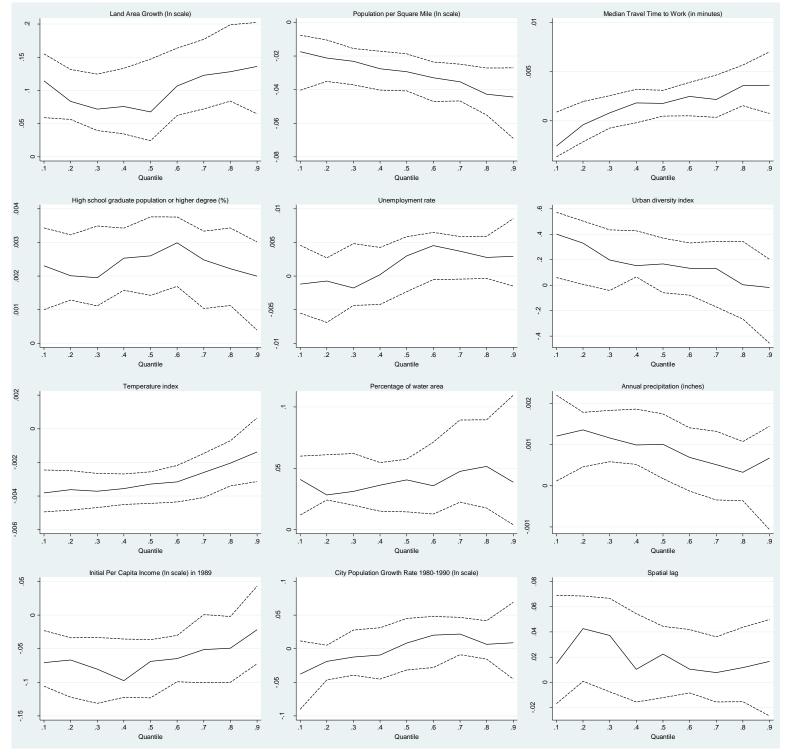


Figure 5. Spatial quantile regression estimates, per capita income growth model

Note: Kim and Muller (2004) two-stage quantile regression results. Endogenous variable: logarithmic per capita income growth (1989–1999). The model includes a constant and regional dummies. Bootstrap standard errors. The 95% confidence intervals are based on the percentile method.

Appendix

Table A1. Spatial quantile regression estimates, population growth model

Variables	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Urban sprawl									
Land area growth (ln scale)	0.255***	0.248***	0.271***	0.295***	0.332***	0.386***	0.49***	0.499***	0.511***
Population per square mile (ln scale)	-0.021***	-0.016***	-0.015***	-0.012**	-0.015**	-0.025***	-0.035***	-0.042***	-0.051***
Median travel time to work (in minutes)	0.002**	0.002	0.002*	0.003***	0.003***	0.004***	0.005***	0.007***	0.009***
Human capital variable									
Percentage of population aged 18 years and over: high school graduate or higher									
degree	-0.001**	-0.001*	-0.001	-0.001	-0.001	-0.001	-0.000	-0.001	-0.002
Productive structure variables									
Unemployment rate	-0.010***	-0.009***	-0.008***	-0.008***	-0.008***	-0.006***	-0.007***	-0.006***	-0.007**
Urban diversity index	0.049	0.071	-0.054	0.003	0.077	0.172	0.152	0.058	0.147
Weather									
Temperature index	0,000	-0.001	-0.001	-0.001**	-0.002***	-0.002***	-0.001**	-0.002**	-0.002*
Percentage of water area	-0.028*	-0.01	-0.009	-0.006	-0.005	-0.009	-0.007	-0.011	-0.028**
Annual precipitation (inches)	-0.001*	-0.000	-0.000	0,000	0.001	0.001	0.001*	0.001	0.001**
Controls									
Initial per capita income (In scale) in 1989	0.017	0.005	0.009	-0.01	-0.012	-0.008	-0.031	-0.033	-0.038
City population growth rate 1980–1990 (In scale)	0.182***	0.279***	0.331***	0.346***	0.367***	0.43***	0.427***	0.497***	0.605***
Regions (geographical dummy variables)	Yes								
Spatial lag	-0.082	-0.059	-0.037	-0.053	-0.068*	-0.009	-0.015	-0.007	0.052

Note: Kim and Muller (2004) two-stage quantile regression results. Endogenous variable: logarithmic population growth (1990–2000). The model includes a constant. Bootstrap standard errors. *** Significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

Table A2. Spatial quantile regression estimates, per capita income growth model

Variables	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Urban sprawl									
Land area growth (In scale)	0.114***	0.083***	0.072***	0.076***	0.068**	0.107***	0.123***	0.128***	0.136***
Population per square mile (In scale)	-0.017**	-0.021***	-0.023***	-0.028***	-0.029***	-0.033***	-0.035***	-0.043***	-0.044***
Median travel time to work (in minutes)	-0.003**	-0.000	0.001	0.002**	0.002**	0.002***	0.002**	0.004***	0.004**
Human capital variable									
Percentage of population aged 18 years and over: high school graduate or higher degree	0.002***	0.002***	0.002***	0.003***	0.003***	0.003***	0.002***	0.002***	0.002***
Productive structure variables									
Unemployment rate	-0.001	-0.001	-0.002	0.000	0.003	0.005**	0.004**	0.003	0.003
Urban diversity index	0.401***	0.331**	0.197	0.154	0.168	0.134	0.131	0.004	-0.018
Weather									
Temperature index	-0.004***	-0.004***	-0.004***	-0.004***	-0.003***	-0.003***	-0.003***	-0.002***	-0.001
Percentage of water area	0.041***	0.028***	0.031**	0.036***	0.041***	0.036**	0.047**	0.052***	0.039
Annual precipitation (inches)	0.001**	0.001***	0.001***	0.001***	0.001**	0.001*	0.001	0.000	0.001
Controls									
Initial per capita income (In scale) in 1989	-0.071***	-0.067***	-0.081***	-0.098***	-0.069***	-0.065***	-0.051*	-0.049*	-0.022
City population growth rate 1980–1990 (In scale)	-0.038	-0.019	-0.012	-0.009	0.008	0.02	0.022	0.006	0.009
Regions (geographical dummy variables)	Yes								
Spatial lag	0.015	0.043**	0.037*	0.010	0.022	0.010	0.008	0.012	0.017

Note: Kim and Muller (2004) two-stage quantile regression results. Endogenous variable: logarithmic per capita income growth (1989–1999). The model includes a constant. Bootstrap standard errors. *** Significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

- **2011/1, Oppedisano, V; Turati, G.:** "What are the causes of educational inequalities and of their evolution over time in Europe? Evidence from PISA"
- 2011/2, Dahlberg, M; Edmark, K; Lundqvist, H.: "Ethnic diversity and preferences for redistribution "
- 2011/3, Canova, L.; Vaglio, A.: "Why do educated mothers matter? A model of parental help"
- 2011/4, Delgado, F.J.; Lago-Peñas, S.; Mayor, M.: "On the determinants of local tax rates: new evidence from Spain"
- 2011/5, Piolatto, A.; Schuett, F.: "A model of music piracy with popularity-dependent copying costs"
- 2011/6, Duch, N.; García-Estévez, J.; Parellada, M.: "Universities and regional economic growth in Spanish regions"
- 2011/7, Duch, N.; García-Estévez, J.: "Do universities affect firms' location decisions? Evidence from Spain"
- 2011/8, Dahlberg, M.; Mörk, E.: "Is there an election cycle in public employment? Separating time effects from election year effects"
- 2011/9, Costas-Pérez, E.; Solé-Ollé, A.; Sorribas-Navarro, P.: "Corruption scandals, press reporting, and accountability. Evidence from Spanish mayors"
- 2011/10, Choi, A.; Calero, J.; Escardíbul, J.O.: "Hell to touch the sky? private tutoring and academic achievement in Korea"
- **2011/11, Mira Godinho, M.; Cartaxo, R.:** "University patenting, licensing and technology transfer: how organizational context and available resources determine performance"
- **2011/12, Duch-Brown, N.; García-Quevedo, J.; Montolio, D.:** "The link between public support and private R&D effort: What is the optimal subsidy?"
- 2011/13, Breuillé, M.L.; Duran-Vigneron, P.; Samson, A.L.: "To assemble to resemble? A study of tax disparities among French municipalities"
- 2011/14, McCann, P.; Ortega-Argilés, R.: "Smart specialisation, regional growth and applications to EU cohesion policy"
- **2011/15, Montolio, D.; Trillas, F.:** "Regulatory federalism and industrial policy in broadband telecommunications" **2011/16, Pelegrín, A.; Bolancé, C.:** "Offshoring and company characteristics: some evidence from the analysis of
- **2011/16, Pelegrín, A.; Bolancé, C.:** "Offshoring and company characteristics: some evidence from the analysis of Spanish firm data"
- 2011/17, Lin, C.: "Give me your wired and your highly skilled: measuring the impact of immigration policy on employers and shareholders"
- 2011/18, Bianchini, L.; Revelli, F.: "Green polities: urban environmental performance and government popularity"
- 2011/19, López Real, J.: "Family reunification or point-based immigration system? The case of the U.S. and Mexico"
- 2011/20, Bogliacino, F.; Piva, M.; Vivarelli, M.: "The impact of R&D on employment in Europe: a firm-level analysis"
- 2011/21, Tonello, M.: "Mechanisms of peer interactions between native and non-native students: rejection or integration?"
- 2011/22, García-Quevedo, J.; Mas-Verdú, F.; Montolio, D.: "What type of innovative firms acquire knowledge intensive services and from which suppliers?"
- 2011/23, Banal-Estañol, A.; Macho-Stadler, I.; Pérez-Castrillo, D.: "Research output from university-industry collaborative projects"
- 2011/24, Ligthart, J.E.; Van Oudheusden, P.: "In government we trust: the role of fiscal decentralization"
- 2011/25, Mongrain, S.; Wilson, J.D.: "Tax competition with heterogeneous capital mobility"
- 2011/26, Caruso, R.; Costa, J.; Ricciuti, R.: "The probability of military rule in Africa, 1970-2007"
- 2011/27, Solé-Ollé, A.; Viladecans-Marsal, E.: "Local spending and the housing boom"
- **2011/28**, Simón, H.; Ramos, R.; Sanromá, E.: "Occupational mobility of immigrants in a low skilled economy. The Spanish case"
- 2011/29, Piolatto, A.; Trotin, G.: "Optimal tax enforcement under prospect theory"
- 2011/30, Montolio, D; Piolatto, A.: "Financing public education when altruistic agents have retirement concerns"
- 2011/31, García-Quevedo, J.; Pellegrino, G.; Vivarelli, M.: "The determinants of YICs' R&D activity"
- 2011/32, Goodspeed, T.J.: "Corruption, accountability, and decentralization: theory and evidence from Mexico"
- **2011/33**, **Pedraja**, **F.**; **Cordero**, **J.M.**: "Analysis of alternative proposals to reform the Spanish intergovernmental transfer system for municipalities"
- 2011/34, Jofre-Monseny, J.; Sorribas-Navarro, P.; Vázquez-Grenno, J.: "Welfare spending and ethnic heterogeneity: evidence from a massive immigration wave"
- 2011/35, Lyytikäinen, T.: "Tax competition among local governments: evidence from a property tax reform in Finland"
- 2011/36, Brülhart, M.; Schmidheiny, K.: "Estimating the Rivalness of State-Level Inward FDI"
- **2011/37, García-Pérez, J.I.; Hidalgo-Hidalgo, M.; Robles-Zurita, J.A.:** "Does grade retention affect achievement? Some evidence from Pisa"
- 2011/38, Boffa, f.; Panzar. J.: "Bottleneck co-ownership as a regulatory alternative"

2011/39, González-Val, R.; Olmo, J.: "Growth in a cross-section of cities: location, increasing returns or random growth?"

2011/40, Anesi, V.; De Donder, P.: "Voting under the threat of secession: accommodation vs. repression"

2011/41, Di Pietro, G.; Mora, T.: "The effect of the l'Aquila earthquake on labour market outcomes"

2011/42, Brueckner, J.K.; Neumark, D.: "Beaches, sunshine, and public-sector pay: theory and evidence on amenities and rent extraction by government workers"

2011/43, Cortés, D.: "Decentralization of government and contracting with the private sector"

2011/44, Turati, G.; Montolio, D.; Piacenza, M.: "Fiscal decentralisation, private school funding, and students' achievements. A tale from two Roman catholic countries"

2012

2012/1, Montolio, D.; Trujillo, E.: "What drives investment in telecommunications? The role of regulation, firms' internationalization and market knowledge"

2012/2, Giesen, K.; Suedekum, J.: "The size distribution across all "cities": a unifying approach"

2012/3, Foremny, D.; Riedel, N.: "Business taxes and the electoral cycle"

2012/4, García-Estévez, J.; Duch-Brown, N.: "Student graduation: to what extent does university expenditure matter?"

2012/5, Durán-Cabré, J.M.; Esteller-Moré, A.; Salvadori, L.: "Empirical evidence on horizontal competition in tax enforcement"

2012/6, Pickering, A.C.; Rockey, J.: "Ideology and the growth of US state government"

2012/7, Vergolini, L.; Zanini, N.: "How does aid matter? The effect of financial aid on university enrolment decisions"

2012/8, Backus, P.: "Gibrat's law and legacy for non-profit organisations: a non-parametric analysis"

2012/9, Jofre-Monseny, J.; Marín-López, R.; Viladecans-Marsal, E.: "What underlies localization and urbanization economies? Evidence from the location of new firms"

2012/10, Mantovani, A.; Vandekerckhove, J.: "The strategic interplay between bundling and merging in complementary markets"

2012/11, Garcia-López, M.A.: "Urban spatial structure, suburbanization and transportation in Barcelona"

2012/12, Revelli, F.: "Business taxation and economic performance in hierarchical government structures"

2012/13, Arqué-Castells, P.; Mohnen, P.: "Sunk costs, extensive R&D subsidies and permanent inducement effects"

2012/14, Boffa, F.; Piolatto, A.; Ponzetto, G.: "Centralization and accountability: theory and evidence from the Clean Air Act"

2012/15, Cheshire, P.C.; Hilber, C.A.L.; Kaplanis, I.: "Land use regulation and productivity – land matters: evidence from a UK supermarket chain"

2012/16, Choi, A.; Calero, J.: "The contribution of the disabled to the attainment of the Europe 2020 strategy headline targets"

2012/17, Silva, J.I.; Vázquez-Grenno, J.: "The ins and outs of unemployment in a two-tier labor market"

2012/18, González-Val, R.; Lanaspa, L.; Sanz, F.: "New evidence on Gibrat's law for cities"

2012/19, Vázquez-Grenno, J.: "Job search methods in times of crisis: native and immigrant strategies in Spain"

2012/20, Lessmann, C.: "Regional inequality and decentralization – an empirical analysis"

2012/21, Nuevo-Chiquero, A.: "Trends in shotgun marriages: the pill, the will or the cost?"

2012/22, Piil Damm, A.: "Neighborhood quality and labor market outcomes: evidence from quasi-random neighborhood assignment of immigrants"

2012/23, Ploeckl, F.: "Space, settlements, towns: the influence of geography and market access on settlement distribution and urbanization"

2012/24, Algan, Y.; Hémet, C.; Laitin, D.: "Diversity and local public goods: a natural experiment with exogenous residential allocation"

2012/25, Martinez, D.; Sjögren, T.: "Vertical externalities with lump-sum taxes: how much difference does unemployment make?"

2012/26, Cubel, M.; Sanchez-Pages, S.: "The effect of within-group inequality in a conflict against a unitary threat" 2012/27, Andini, M.; De Blasio, G.; Duranton, G.; Strange, W.C.: "Marshallian labor market pooling: evidence from Italy"

2012/28, Solé-Ollé, A.; Viladecans-Marsal, E.: "Do political parties matter for local land use policies?"

2012/29, Buonanno, P.; Durante, R.; Prarolo, G.; Vanin, P.: "Poor institutions, rich mines: resource curse and the origins of the Sicilian mafia"

2012/30, Anghel, B.; Cabrales, A.; Carro, J.M.: "Evaluating a bilingual education program in Spain: the impact beyond foreign language learning"

2012/31, Curto-Grau, M.; Solé-Ollé, A.; Sorribas-Navarro, P.: "Partisan targeting of inter-governmental transfers & state interference in local elections: evidence from Spain"

- 2012/32, Kappeler, A.; Solé-Ollé, A.; Stephan, A.; Välilä, T.: "Does fiscal decentralization foster regional investment in productive infrastructure?"
- **2012/33, Rizzo, L.; Zanardi, A.:** "Single vs double ballot and party coalitions: the impact on fiscal policy. Evidence from Italy"
- **2012/34, Ramachandran, R.:** "Language use in education and primary schooling attainment: evidence from a natural experiment in Ethiopia"
- 2012/35, Rothstein, J.: "Teacher quality policy when supply matters"
- 2012/36, Ahlfeldt, G.M.: "The hidden dimensions of urbanity"
- 2012/37, Mora, T.; Gil, J.; Sicras-Mainar, A.: "The influence of BMI, obesity and overweight on medical costs: a panel data approach"
- 2012/38, Pelegrín, A.; García-Quevedo, J.: "Which firms are involved in foreign vertical integration?"
- 2012/39, Agasisti, T.; Longobardi, S.: "Inequality in education: can Italian disadvantaged students close the gap? A focus on resilience in the Italian school system"

- 2013/1, Sánchez-Vidal, M.; González-Val, R.; Viladecans-Marsal, E.: "Sequential city growth in the US: does age matter?"
- 2013/2, Hortas Rico, M.: "Sprawl, blight and the role of urban containment policies. Evidence from US cities"
- **2013/3, Lampón, J.F.; Cabanelas-Lorenzo, P-; Lago-Peñas, S.:** "Why firms relocate their production overseas? The answer lies inside: corporate, logistic and technological determinants"
- 2013/4, Montolio, D.; Planells, S.: "Does tourism boost criminal activity? Evidence from a top touristic country"
- **2013/5, Garcia-López, M.A.; Holl, A.; Viladecans-Marsal, E.:** "Suburbanization and highways: when the Romans, the Bourbons and the first cars still shape Spanish cities"
- **2013/6, Bosch, N.; Espasa, M.; Montolio, D.:** "Should large Spanish municipalities be financially compensated? Costs and benefits of being a capital/central municipality"
- 2013/7, Escardíbul, J.O.; Mora, T.: "Teacher gender and student performance in mathematics. Evidence from Catalonia"
- 2013/8, Arqué-Castells, P.; Viladecans-Marsal, E.: "Banking towards development: evidence from the Spanish banking expansion plan"
- **2013/9, Asensio, J.; Gómez-Lobo, A.; Matas, A.:** "How effective are policies to reduce gasoline consumption? Evaluating a quasi-natural experiment in Spain"
- 2013/10, Jofre-Monseny, J.: "The effects of unemployment benefits on migration in lagging regions"
- 2013/11, Segarra, A.; García-Quevedo, J.; Teruel, M.: "Financial constraints and the failure of innovation projects"
- 2013/12, Jerrim, J.; Choi, A.: "The mathematics skills of school children: How does England compare to the high performing East Asian jurisdictions?"
- 2013/13, González-Val, R.; Tirado-Fabregat, D.A.; Viladecans-Marsal, E.: "Market potential and city growth: Spain 1860-1960"
- 2013/14, Lundqvist, H.: "Is it worth it? On the returns to holding political office"
- 2013/15, Ahlfeldt, G.M.; Maennig, W.: "Homevoters vs. leasevoters: a spatial analysis of airport effects"
- **2013/16, Lampón, J.F.; Lago-Peñas, S.:** "Factors behind international relocation and changes in production geography in the European automobile components industry"
- **2013/17, Guío, J.M.; Choi, A.:** "Evolution of the school failure risk during the 2000 decade in Spain: analysis of Pisa results with a two-level logistic mode"
- 2013/18, Dahlby, B.; Rodden, J.: "A political economy model of the vertical fiscal gap and vertical fiscal imbalances in a federation"
- 2013/19, Acacia, F.; Cubel, M.: "Strategic voting and happiness"
- 2013/20, Hellerstein, J.K.; Kutzbach, M.J.; Neumark, D.: "Do labor market networks have an important spatial dimension?"
- 2013/21, Pellegrino, G.; Savona, M.: "Is money all? Financing versus knowledge and demand constraints to innovation"
- 2013/22, Lin, J.: "Regional resilience"
- 2013/23, Costa-Campi, M.T.; Duch-Brown, N.; García-Quevedo, J.: "R&D drivers and obstacles to innovation in the energy industry"
- **2013/24, Huisman, R.; Stradnic, V.; Westgaard, S.:** "Renewable energy and electricity prices: indirect empirical evidence from hydro power"
- 2013/25, Dargaud, E.; Mantovani, A.; Reggiani, C.: "The fight against cartels: a transatlantic perspective"
- 2013/26, Lambertini, L.; Mantovani, A.: "Feedback equilibria in a dynamic renewable resource oligopoly: preemption, voracity and exhaustion"

- 2013/27, Feld, L.P.; Kalb, A.; Moessinger, M.D.; Osterloh, S.: "Sovereign bond market reactions to fiscal rules and no-bailout clauses the Swiss experience"
- 2013/28, Hilber, C.A.L.; Vermeulen, W.: "The impact of supply constraints on house prices in England"
- 2013/29, Revelli, F.: "Tax limits and local democracy"
- 2013/30, Wang, R.; Wang, W.: "Dress-up contest: a dark side of fiscal decentralization"
- 2013/31, Dargaud, E.; Mantovani, A.; Reggiani, C.: "The fight against cartels: a transatlantic perspective"
- 2013/32, Saarimaa, T.; Tukiainen, J.: "Local representation and strategic voting: evidence from electoral boundary reforms"
- **2013/33, Agasisti, T.; Murtinu, S.:** "Are we wasting public money? No! The effects of grants on Italian university students' performances"
- 2013/34, Flacher, D.; Harari-Kermadec, H.; Moulin, L.: "Financing higher education: a contributory scheme"
- 2013/35, Carozzi, F.; Repetto, L.: "Sending the pork home: birth town bias in transfers to Italian municipalities"
- 2013/36, Coad, A.; Frankish, J.S.; Roberts, R.G.; Storey, D.J.: "New venture survival and growth: Does the fog lift?"
- **2013/37**, **Giulietti**, **M.**; **Grossi**, **L.**; **Waterson**, **M.**: "Revenues from storage in a competitive electricity market: Empirical evidence from Great Britain"

- **2014/1, Montolio, D.; Planells-Struse, S.:** "When police patrols matter. The effect of police proximity on citizens' crime risk perception"
- 2014/2, Garcia-López, M.A.; Solé-Ollé, A.; Viladecans-Marsal, E.: "Do land use policies follow road construction?"
- 2014/3, Piolatto, A.; Rablen, M.D.: "Prospect theory and tax evasion: a reconsideration of the Yitzhaki puzzle"
- 2014/4, Cuberes, D.; González-Val, R.: "The effect of the Spanish Reconquest on Iberian Cities"
- **2014/5, Durán-Cabré, J.M.; Esteller-Moré, E.:** "Tax professionals' view of the Spanish tax system: efficiency, equity and tax planning"
- 2014/6, Cubel, M.; Sanchez-Pages, S.: "Difference-form group contests"
- 2014/7, Del Rey, E.; Racionero, M.: "Choosing the type of income-contingent loan: risk-sharing versus risk-pooling"
- 2014/8, Torregrosa Hetland, S.: "A fiscal revolution? Progressivity in the Spanish tax system, 1960-1990"
- 2014/9, Piolatto, A.: "Itemised deductions: a device to reduce tax evasion"
- 2014/10, Costa, M.T.; García-Quevedo, J.; Segarra, A.: "Energy efficiency determinants: an empirical analysis of Spanish innovative firms"
- 2014/11, García-Quevedo, J.; Pellegrino, G.; Savona, M.: "Reviving demand-pull perspectives: the effect of demand uncertainty and stagnancy on R&D strategy"
- **2014/12, Calero, J.; Escardíbul, J.O.:** "Barriers to non-formal professional training in Spain in periods of economic growth and crisis. An analysis with special attention to the effect of the previous human capital of workers"
- 2014/13, Cubel, M.; Sanchez-Pages, S.: "Gender differences and stereotypes in the beauty"
- 2014/14, Piolatto, A.; Schuett, F.: "Media competition and electoral politics"
- 2014/15, Montolio, D.; Trillas, F.; Trujillo-Baute, E.: "Regulatory environment and firm performance in EU telecommunications services"
- **2014/16, Lopez-Rodriguez, J.; Martinez, D.:** "Beyond the R&D effects on innovation: the contribution of non-R&D activities to TFP growth in the EU"

ieb@ub.edu www.ieb.ub.edu

Cities and Innovation